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Stability analysis of channel flow laden with small particles

Joy Klinkenberg
Linné FLOW Centre, KTH Mechanics, Royal Institute of Technology
SE-100 44 Stockholm, Sweden

Abstract
This thesis deals with the stability of particle laden flows. Both modal and
non-modal linear analyses have been performed on two-way coupled particle-
laden flows, where particles are considered spherical, solid and either heavy or
light. When heavy particles are considered, only Stokes drag is used as interac-
tion term. Light particles cannot be modeled with Stokes drag alone, therefore
added mass and fluid acceleration are used as additional interaction forces.
The modal analysis investigates the asymptotic behavior of disturbances on a
base flow, in this thesis a pressure-driven plane channel flow. A critical Rey-
nolds number is found for particle laden flows: heavy particles increase the
critical Reynolds number compared to a clean fluid, when particles are not too
small or too large. Neutrally buoyant particles, on the other hand, have no
influence on the critical Reynolds number.
Non-modal analysis investigates the transient growth of disturbances, before
the subsequent exponential behavior takes over. We investigate the kinetic en-
ergy growth of a disturbance, which can grow two to three orders of magnitude
for clean fluid channel flows. This transient growth is usually the phenomenon
that causes transition to turbulence: the energy can grow such that secondary
instabilities and turbulence occurs. The total kinetic energy of a flow increases
when particles are added to the flow as a function of the particle mass frac-
tion. But instead of only investigating the total energy growth, the non-modal
analysis is expanded such that we can differentiate between fluid and particle
energy growth. When only the fluid is considered in a particle-laden flow, the
transient growth is equal to the transient growth of a clean fluid.
Besides thes Stokes drag, added mass and fluid acceleration, this thesis also
discusses the influence of the Basset history term. This term is often neglected
in stability analyses due to its arguably weak effect, but also due to difficulties
in implementation. To implement the term correctly, the history of the particle
has to be known. To overcome this and obtain a tractable problem, the square
root in the history term is approximated by an exponential. It is found that
the history force as a small effect on the transient growth.
Finally, Direct numerical simulations are performed for flows with heavy par-
ticles to investigate the influence of particles on secondary instabilities. The
threshold energy for two routes to turbulence is considered to investigate whether
the threshold energy changes when particles are included. We show that par-
ticles influence secondary instabilities and particles may delay transition.

Descriptors: Transition, modal analysis, non-modal analysis, direct numerical
simulations, multi-phase flow, particle-laden, heavy particles, light particles
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Preface

This thesis considers particle-laden flows. The first part introduces the particle-
laden flows: which models are used and what are the simplifications made in
the analysis. Furthermore, both modal and non-modal analysis are presented
and their usage with particle-laden flows. Also secondary instabilities are dis-
cussed, using results of direct numerical simulations.
The second part contains the following papers.

Paper 1. Joy Klinkenberg, H.C. de Lange and Luca Brandt, 2011
Modal and non-modal stability of particle-laden channel flow,
Physics of Fluids. 23, 064110 (2011)

Paper 2. Joy Klinkenberg, H.C. de Lange and Luca Brandt, 2011
Modal and non-modal stability analysis of a channel flow seeded with light par-
ticles,
submitted to European Journal of Mechanics B/Fluids

Paper 3. Joy Klinkenberg, G. Sardina, H.C. de Lange and Luca
Brandt, 2011
Numerical Simulations of laminar-turbulent transition in particle-laden chan-
nel flow
Internal report
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CHAPTER 1

Introduction

Particle laden flows are an important type of flow since many flows contain
particles. Examples of such flows are soot in a gas flow or sand in the at-
mosphere. Because such flows are common, many efforts have been made to
better understand the behavior of particles in (turbulent) flow, recent reviews
are written by Toschi & Bodenschatz (2009) and Balachandar & Eaton (2009).
For turbulent flows, it has been found that adding dust to a turbulent pipe flow
reduces drag already in the early ’60s by Sproull (1961). Drag reduction is a
major issue in increasing the efficiency of fluid transport since it helps minimiz-
ing energy losses. Therefore a lot of research is devoted to drag reduction in
turbulent flows. Recently, Zhao et al. (2010) found numerically that inclusion
of small and heavy particles reduces drag. Light particles have been experi-
mentally investigated by McCormick & Bhattacharyya (1973) and Jacob et al.
(2010) to cite only two. They also found drag reduction for particle laden flows
with light particles. Micro bubbles, which can be modeled as rigid spheres when
they are small enough, have been numerically investigated by both Ferrante &
Elghobashi (2003) and Xu et al. (2002) for a turbulent flow. They found that
rigid micro-bubbles reduce the drag as well.

Sproull (1961) explains the drag reduction by a reduction of the viscosity of a
dusty gas with as much as 40%. Saffman (1962) proposed that dust particles
dampens the turbulence structures due to a larger inertia of a dust particle
compared to a fluid particle. He also proposes that drag reduction in particle
laden flows can be investigated by looking at laminar-turbulent transition. An
explanation is that the particle-fluid interaction also dampens the growth of
disturbances which might lead to turbulence. Turbulent flow enhances drag
and thus, if turbulence is delayed, particles reduce drag.
To investigate the onset of turbulence, a transitional flow has to be considered.
To describe such a flow, a laminar flow is considered first. If small, linear, dist-
urbances are added to this laminar flow, these disturbances can either decay
or grow in time and space. When the disturbances are damped, the flow stays
laminar. When disturbances grow in energy, the disturbances can grow such
that secondary (non-linear) effects become important. These secondary effects
in turn can lead to a turbulent flow. The transitional flow is the flow state
which is neither fully laminar, nor turbulent.
The onset of transition is historically investigated using linear stability analysis.
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1. INTRODUCTION 3

A perturbation in the form q = q̂(y)exp(αx− iωt), with streamwise wavenum-
ber (α) and complex frequency (ω = ωr + iωi) is added to a linearized set
of equations and the eigenvalues are investigated. These eigenvalues indicate
whether perturbations will either grow or decay. A critical Reynolds number
exists, above which a flow is unconditionally unstable. Note that this method
is suitable to investigate whether the flow is stable for an infinite amount of
time, independent of the disturbance amplitude. This method is called modal
stability analysis.
The next step is the non-modal analysis. Non-modal analysis is used to inves-
tigate short-term behavior of disturbances as opposed to the modal analysis.
Some disturbances can grow, before the subsequent exponential behavior be-
comes the dominant feature (Ellingsen & Palm 1975; Trefethen et al. 1993;
Reddy & Henningson 1993; Schmid & Henningson 2001a). It is found that
when modal analysis shows that all eigenmodes are damped, it is possible for
some disturbances to grow in a finite amount of time. For a clean fluid channel
flow some disturbance energies can grow as much as two to three orders of
magnitude. When the initial perturbation is large enough, the energy can grow
such that non-linear effects become important and breakdown of the disturban-
ces might occur, which in turn leads to turbulence. The non-modal analysis is
used to determine the largest possible energy growth of disturbances in particle-
laden flows. The optimal growth of a particle-laden flow is therefore compared
to the results of a clean fluid.
The last step performed is the investigation of transition beyond the initial
linear disturbances, using Direct Numerical Simulations. Two paths to turbu-
lence are analysed, as defined in Reddy et al. (1998a). For these paths, the
threshold energy is investigated. Above this threshold flows becomes turbulent
and below the threshold the flow relaminarizes. We performed numerical simu-
lations with particles and investigated whether this transition threshold shifts.
If the threshold shifts to larger amplitudes, the flow has become more stable
and vice versa.

Saffman (1962) and Michael (1964) found that heavy particles increase the
critical Reynolds number for linear stability, when the particles meet certain
criteria: e.g. the particle should not be too small. The equations used by
Saffman (1962) are the Navier Stokes equations extended with one extra term,
the Stokes drag, which accounts for the coupling between particles and fluid.
A two-way coupling model is defined, with a convection equation for the parti-
cles including the Stokes drag as interaction term, acting as dissipation. This
model is valid for heavy particles only. An extended model for particle laden
flows is given by Maxey & Riley (1983): added mass, fluid acceleration, Bas-
set history term and gravity are also modeled. The added mass (or virtual
mass) term exists because an accelerating or decelerating particle also accel-
erates/decelerates fluid from the surroundings. The added mass is therefore
modeled as extra fluid moving with the particle, as if the particle were a bit
larger, hence the name added mass. The fluid acceleration term, also known
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as the pressure correction force, models the pressure of the undisturbed flow.
The Basset history term takes the history of the particle into account: the
movement of particles depends also on the history of those particles due to the
development of a boundary layer on the particles.
For a particle laden flow with heavy particles, only Stokes drag is used. When
light particles are considered, particles which have almost equal density as the
surrounding fluid, added mass and fluid acceleration term are also considered.
The Basset history term is usually not taken into account, for both heavy and
light particles. This term might be relevant and is therefore also discussed. Be-
cause the history term is not explained in the papers and no results are shown
in any of the papers, the Basset history term is explained and discussed in part
I. Also, the results including the history term are presented in this part of the
thesis.

The aim of the research presented in this thesis is to investigate whether hard,
spherical particles affect transition. Both the initial linear stages using stability
analysis and the secondary instabilities by means of direct numerical simula-
tions are investigated.
In the following chapter the governing equations are presented and the different
interaction terms are shown. An implementation of the the Basset history term
is given as well. Chapter 2 also deals with the stability analysis and the im-
plementation of modal and non-modal analysis. Main results from the papers
are presented in chapter 3, in which also results from the implementation of
the Basset history force are shown. Chapter 4 deals with the numerical simula-
tions. The method is explained and some results are given. In the last chapter
some conclusions are presented and an outlook is given for the work that will
be performed in the final part of the project.



CHAPTER 2

Theoretical Model

2.1. Particle-Fluid Coupling

To model particle-laden flows, a coupling between the particles and fluid is
needed. Three coupling models are used in literature: one-way, two-way and
four-way coupling. Figure 2.1 shows the three regimes for turbulent flows with
the volume fraction of particles on the horizontal axis and the relative timescale
on the vertical axis (Elghobashi 1994). The timescale τp is the particle response
time, τK the Kolmogorov time scale and τe the turnover time of large eddy.
The Kolmogorov timescale is important in turbulent flows, but not in transi-
tional flow, because transitional flow does not have any turbulent timescales.
The turnover time of large eddy is important in transitional flows.
If the particle volume is small, Φ < 10−6, the particles can be modeled through
one-way coupling. Particle motion is influenced by the fluid. When the particle
volume increases, 10−6 < Φ < 10−3, a two-way coupling model is sufficient. In
this model, the particles also influence the fluid. For an even larger particle
volume, Φ > 10−3, a four-way coupling model should be used. In addition
to the particle-fluid and fluid-particle interactions, also particle-particle inter-
actions (collisions) are modeled. One should remember that these results are
valid for turbulent flows and that we work with laminar flows. Laminar flows
might have different bounds on the volume fraction, because the flow is ordered
and less chaotic.
The model used throughout this paper is the two-way coupling model.

2.2. Governing Equations

The equations used to model a particle laden flow are described and we explain
which interaction terms are present between the flow and particles and how
these interaction terms are modeled.

The particle equation described by Maxey & Riley (1983) is the starting point.
In the Lagrangian framework the motion of a particle upi in a Newtonian fluid

5
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Figure 2.1: A schematic overview of the coupling models used in turbulent
flows.

with radius r with its centre at Y (t), particle mass mp, fluid mass mf obeys

mp
dupi

dt
= mf

Dui

Dt
|Y (t) +

1

2
mf

(

Dui

Dt
|Y (t) −

dupi

dt

)

+ 6πrµ (ui[Y (t), t]− upi)

+ 6πr2µ

∫ t

−∞

dτ
d/dτ{upi(τ)− ui[Y (τ), τ ]}

[πν(t− τ)]1/2
+ (mp −mf )gi.

(2.1)

With ui the fluid velocity, µ the fluid viscosity and gi the gravitational force.
The term d/dt is used for the time derivative following the moving particle,
while D/Dt is used for the time derivative following a fluid element. The terms
on the right hand side are: the fluid acceleration term, added mass, Stokes
drag, the Basset history term and the gravitational force. The fluid accelera-
tion term comes from the undisturbed flow, which is assumed incompressible
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Table 2.1: Definition of the non-dimensional numbers used.

ξ ρf
ρp

Density ratio

f Φ
ξ = mp

mf
Mass fraction

R ρfUL
µ Reynolds number

S ντ
L2 = 2

9
r2

L2

ρp
ρf

Relaxation time

SR Uτ
L Stokes number

Φ
N0

4

3
πr3

L3 Volume fraction

and where the term ν∇2ui is neglected. As for the added mass term, it can
be seen why it is called like this. If the d/dt term is put on the left hand side,

we get:
(

mp +
1
2mf

) dupi
dt . Thus a virtual mass, half the mass of the fluid, has

been added to the system. The Basset history term takes the development of
a boundary layer on the particle into account. The Stokes drag is a drag force
induced by the velocity difference between the particle and the fluid.

Stability analysis cannot be performed in the Lagrangian framework, therefore
equation 2.1 is rewritten into the Eulerian framework. The Eulerian framework
is a valid assumption under the condition that particles are homogeneously
distributed.
We consider plane channel flow with a homogeneous particle distribution. In
the following, every term is made non-dimensional with the channel half-width
L, to be consistent with a clean fluid channel flow, centerline velocity U , fluid
density ρf and the fluid viscosity µ. The dimensionless numbers used in the
equations are defined in Table 2.1, where ρp is the particle density, r the particle
radius and N0 the number of particles present in the flow.

The particle momentum equation rewritten into a Eulerian framework reads:

dupi

dt
= ξ

Dui

Dt
−

1

2
ξ

[

dupi

dt
−

Dui

Dt

]

+
1

SR
(ui − upi) . (2.2)

The counterpart, the momentum equation for the fluid can be written as

Dui

Dt
= −

∂p

∂xi
+

1

R

∂2ui

∂x2
j

−fξ
Dui

Dt
−

1

2
fξ

[

Dui

Dt
−

dupi

dt

]

+
f

SR
(upi − ui) . (2.3)

Two forces described by Maxey & Riley (1983) are discarded here: gravity
and the Basset history term. The Basset history term will be discussed later
on in more detail. We assume that sedimentation effects do not occur on the
timescale we are interested in, therefore gravity is neglected.
The Stokes drag describes the drag force between the fluid and particle veloc-
ity, using Stokes number SR. The Stokes drag number consists of two other
dimensionless numbers. The Reynolds number R and the particle relaxation
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time S. The smaller SR becomes, the smaller the relaxation time and the faster
a particle adjusts to the fluid velocity.
Looking closely at these equations one can distinguish two extremes: heavy
particles (ξ $ 1) and light particles (ξ ∼ 1). When heavy particles are consid-
ered, the added mass and fluid acceleration terms can be neglected and only
Stokes drag remains.

For a full system of equations, we also need the conservation of mass for particles
and fluid:

∂f

∂t
= −

∂

∂xi
(fupi) (2.4)

∂ui

∂xi
= 0 (2.5)

Combining these equations with the conservation of momentum and linearizing,
we get the following linearized Navier-Stokes equations:

∂ui

∂t
= −

∂p

∂xi
−Uj

∂ui

∂xj
−uj

∂Ui

∂xj
+

1

SR

∂2ui

∂x2
j

+
f

SR
(upi − ui)+AMf+FAf (2.6)

∂upi

∂t
= −Uj

∂upi

∂xj
− upj

∂Ui

∂xj
+

1

SR
(ui − upi) +AMp + FAp (2.7)

∂f ′

∂t
= −

∂

∂xi
(f ′Ui + fupi) (2.8)

∂ui

∂xi
= 0. (2.9)

With Ui the base velocity and ui the perturbation velocity and AM and FA
the Added Mass and Fluid Acceleration, with subscripts f and p, denoting fluid
and particle respectively:

AMf = −
1

2
fξ

(

∂ui

∂t
+ Uj

∂ui

∂xj
+ uj

∂Ui

∂xj
−

∂upi

∂t
− Uj

∂upi

∂xj
− upj

∂Ui

∂xj

)

=

= −
1

2
fξ

(

∂

∂t
(ui − upi) + Uj

∂

∂xj
(ui − upi) + (ui − upi)

∂Ui

∂xj

)

,

(2.10)

FAf = −fξ

(

∂ui

∂t
+ Uj

∂ui

∂xj
+ uj

∂Ui

∂xj

)

, (2.11)

AMp = −
AMf

f
, (2.12)

FAp = −
FAf

f
. (2.13)

The boundary conditions are assumed ui = upi = 0 at the walls.
Note that the particle mass conservation is decoupled from the system and can
therefore be computed a posteriori.
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To perform stability analysis the system is rewritten into an Orr-Sommerfeld-
Squire system. The details of the derivations can be found in Part II of this
thesis.

2.2.1. Energy Analysis for Heavy Particles

For heavy particles it can be shown that when the velocities of particles and
fluid are different, this always results in a loss in energy in channel flow. The
energy equation can be derived by multiplying equation 2.6 with ui and 2.7
with upi and add them using the mass fraction f for the particle momentum
equation:

∂Ev

∂t
= −

∫

V
uiuj

∂Ui

∂xj
dV −

1

Re

∫

V

∂ui

∂xj

∂ui

∂xj
dV

− f

∫

V
upiupj

∂Ui

∂xj
dV −

f

SR

∫

V
(ui − upi)

2 dV,
(2.14)

where the divergence terms disappear owing to periodic boundary conditions
and zero velocity at the walls. It is clear from the last term on the right hand
side that a velocity difference always induces a loss in energy.

2.3. Basset History Term

The Basset history term has not been used in any of the papers in part II, be-
cause the implementation is a recent development. The history term is different
than the terms discussed so far. For this term, the total history of the fluid
and particle flow has to be known. For Direct Numerical Simulations this is
expensive and therefore the total history is usually not taken into account, but
only the recent history. Sometimes a model for large times is used(van Hins-
berg et al. 2011). For stability analysis the intergal in the term is also difficult.
Therefore the integral is rewritten into a system which can be implemented in
stability analysis.
The Basset history term can be written as convolution:

q̄(t) =
1

Sb
·

∫ t

−∞

dτ
d/dτ{upi − ui}

[t− τ ]1/2
=

1

Sb
·

∫ t

−∞

F (t− τ)q(τ)dτ, (2.15)

where we have to approximate
∫ t
−∞

F (t−τ)dτ for implementation of this effect
in the stability analysis.
The approximation is done using an exponential, because if we have an expo-
nential filter:

q̄(t) =

∫ t

−∞

Cexp

(

−
t− τ

∆

)

q(τ)dτ, (2.16)

we can get the differential form:

dq̄(t)

dt
= Cq −

q̄

∆
(2.17)

If we can approximate the history term with an exponential, we are able to
solve an eigenvalue problem similar to the case without Basset history term,
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but extended with three extra equations for q̄i, similar to equation 2.17 but in
all three directions. Sb is a new dimensionless number, similar to the Stokes
number SR, but typically larger.

Now we have to approximate the square root dependence of the Basset term into
an exponential. Figure 2.2 shows the difficulty with the approximation: either
the exponential is more accurate for small times, or for larger times. Several
combinations of C and ∆ should be tried to investigate whether any combi-
nation changes the critical Reynolds number or the transient energy growth.

0 2 4 6 8 10 12 14 16 18 200

0.5

1

1.5

2

2.5

3

3.5

t

 

 

1/(t1/2)
C=3,    Δ=1
C=0.6, Δ=20
C=1,    Δ=10

Figure 2.2: The approximation of a 1/
√

(t) by an exponential in the form
C exp(−t/∆)

2.4. Stability

Both modal and non-modal stability analyses are performed. Modal stability is
classical in hydrodynamic stability, where the critical Reynolds number is com-
puted. Below this Reynolds number all disturbances are exponentially damped.
At larger Reynolds numbers on the other hand, disturbances exist which expo-
nentially grow. Although this is a very useful tool for predicting transition, it is
known that at smaller Reynolds numbers transition to turbulence occurs, due
to transient effects. The growth of a perturbation for a limited time, before the
exponential modal behavior is most dominant, can induce secondary instabili-
ties and transition to turbulence. The initial growth in energy is investigated
using the non-modal analysis.
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2.4.1. Modal analysis

To study linear stability, we assume wave-like perturbations in the following
form:

q = q̂(y)ei(αx+βz−ωt),

Neglecting the Basset history term for now, q = (v, η, up, vp, wp)T when the
linearized equations are written into an Orr-Sommerfeld-Squire system. In the
expression above, α and β define the streamwise and spanwise wavenumber
of the perturbation respectively, ω = ωr + iωi is a complex frequency. The
temporal problem is considered: when ωi > 0, the perturbation grows expo-
nentially in time. When ωi) < 0, the disturbance decays asymptotically. When
all complex frequencies have an imaginary part smaller than zero, the flow is
stable. The point where ωi = 0, is called neutrally stable. When computing ωi

in a range of wavenumbers α and Reynolds numbers, a neutral stability curve
is obtained. This curve defines the range where exponentially unstable waves
can be found.
The neutral stability curve can be computed assuming two-dimensional pertur-
bations, since a modified version of Squire’s theorem holds for the modified Orr-
Sommerfeld equation (Saffman 1962; Boronin 2008). Squire’s theorem states
that for every three dimensional disturbance an equivalent two dimensional
disturbance exists at smaller Reynolds number (Squire 1933).

2.4.2. Non-modal analysis

Non-modal analysis determines the largest possible growth of a perturbation
in a finite time interval, also called optimal growth. The initial disturbance
yielding optimal growth is called an optimal initial condition.

The governing linear equations can be written in compact form as:

∂q

∂t
= Lq. (2.18)

The largest possible growth at time t is the norm of the evolution operator,
or propagator, T = exp(tL). This propagator takes any initial condition from
t = 0 to a specified final time t. The maximum amplification is defined as:

max
q0

||q||

||q0||
= max

q0

|| exp(tL)q0||

||q0||
= ||exp(tL)|| ≡ G(t). (2.19)

The norm used should be relevant to the problem, therefore the kinetic energy
is used.

Ekin =
1

2

(

mfu
2
i +mpu

2
pi

)

, (2.20)

with mf and mp the mass of the fluid and the particles respectively.
A matrix M can be constructed to compute the kinetic energy. This matrix
M is applied directly to the vector q = [v, η, up, vp, wp]T when the full system
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is investigated. The kinetic energy integrated over the volume V is

E(t) =
1

2

∫

Ω
qHMqdV. (2.21)

With this definition the optimal growth is defined as the 2-norm of a modified
propagator, see Schmid & Henningson (2001b) and below.
Not only optimisation of the total energy is interesting, but also the investiga-
tion of the optimal growth when perturbing only the fluid or particle velocity.
In this case, we do not consider the total kinetic energy of the system, but only
a part of it, depending on the initial condition and final state chosen. This
separation can be achieved by including either fluid or particle energy when
computing the optimal growth. The optimisation can be written as

G(t) =
||qout(t)||Eout

||qin(0)||Ein

=
||T qin(0)||Eout

||qin(0)||Ein

=
||FoutT qin(0)||2
||Finqin(0)||2

=

=
||FoutT F−1

in Finqin(0)||2
||Finqin(0)||2

= ||FoutT F−1
in ||2. = ||FoutC exp(tL)BF−1

in ||2

(2.22)

where F is the Cholesky factorisation of M = FFH .
Here, propagator T = C exp(tL)B is rewritten to include input and output op-
erators. The input is qin = Bq, while qout = Cq is the output we are interested
in. The energy norm must be separated likewise, Min = FinFH

in is applied
to qin to measure the input energy while Mout = FoutFH

out gives the output
energy. In the classic non-modal analysis the following applies: Fin = Fout and
C = B = I.

2.4.3. Numerical method

For the stability computations presented here, the discretization in y-direction
of the equations is done using the Chebyshev collocation method. (Reddy et al.
1998b) Most computations are performed using ny = 37, with ny the number
of collocation points.
For the transient growth computation, we make use of the following energy
matrix M (excluding the Basset history term):

M =















(

−D2

k2 + 1
)

Iw 0 0 0 0

0 1
k2 Iw 0 0 0

0 0 fIw 0 0
0 0 0 fIw 0
0 0 0 0 fIw















. (2.23)

In the expression above, Iw is the diagonal matrix performing spectral integra-
tion in y direction. This matrix can be easily factorized using a singular value
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decomposition (SVD): M = UΣUH = FFH .

When implementing the Basset history term in addition to all other terms,
the system is a bit more complicated. The total system then consists of not
only fluid and particle velocities, ui, upi , but it includes q̄i, extra terms for the
inclusion of the Basset history. The energy computation needed for non-modal
analysis is done using the same method of separation as explained previously
where only fluid or particles are perturbed.



CHAPTER 3

Stability analysis results

Some results are given in this chapter. More results are reported in Part II,
the papers. In part II, the Basset history term is not discussed, therefore the
last section in this chapter presents new results using the Basset history term.

3.1. Modal analysis

The modal analysis for heavy particles was already performed by Rudyak et al.
(1997). For light particles on the other hand, where added mass and fluid
acceleration are also important, no results could be found in literature. The
main results are the critical Reynolds number as a function of Stokes number
and are given in Figure 3.1(a) for several density ratios and a mass fraction of
f = 0.1. Three regimes can be identified in the figure: small Stokes number,
large Stokes number and intermediate values. When the Stokes number is
small, particles are also small and have a small relaxation time. The particles
react very fast to flow changes. This means that the particles only act as passive
tracers in the flow and we call this limit the Lagrangian limit. When the Stokes
number is very large, particles are big; too big even to have an influence on the
fluid. The relaxation time is such that it takes long time to adjust to the flow.
We call this limit the ballistic limit. These limits can be seen in Figure 3.1(a)
on the left (Lagrangian limit) and on the right (Ballistic limit). The particles
have no influence on the flow stability in these regions. They only result in an
effective increase in density of the total flow, for which a modified Reynolds
number Rm can be defined:

Rm =
(1 + f) ρUL

µ
.

In between the two limits, at moderate Stokes numbers, the particles do have
an influence on the stability.
The results for heavy particles are obtained using Stokes drag only as interac-
tion term and are equal to results obtained by Rudyak et al. (1997). What is
apparent in Figure 3.1(a) is that the lighter the particle, the lower the critical
Reynolds number is. Heavy particles obtain the largest critical Reynolds num-
ber and this Reynolds number is larger than the critical Reynolds number of
a clean fluid flow. When the particles are lighter than the fluid (ξ > 1), the
critical Reynolds number decreases compared to clean fluid. Neutrally buoyant

14



3.2. NON-MODAL ANALYSIS 15

particles have no influence, except for a factor of (1 + f), corresponding to an
increase in density of the total system. The results show that for a density
ratio of ξ < 1, the critical Reynolds number increases and therefore the flow is
stabilized.
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Figure 3.1: Modal analysis for heavy particles (Stokes drag only) and for light
particles. Critical Reynolds number as a function of S (left) and SRωr (right)

Instead of investigating the critical Reynolds number as a function of Stokes
number, another dimensionless number can be introduced. The Stokes number
is a dimensionless scale for the particle relaxation time, which can be related
to the time scale of a perturbation. For modal analysis, the time scale of the
perturbation is the period of the wave, so we multiply the Stokes number with
the frequency of the perturbation. We call this number the stability Stokes
number, SRωr. Around SRωr = 1 the critical Reynolds number is influenced
most, Figure 3.1(b). Thus, the particles influence the flow most when the dis-
turbance time is of the same order as the relaxation time.
In the analysis it is important to check the assumptions which have been made.
For turbulent flows the two-way coupling model is valid for volume fractions
smaller than Φ = 10−3 (Elghobashi 1994). The volume fraction can be written
as Φ = fξ, thus fξ < 10−3. This means that, if we want a valid two-way cou-
pling assumption when we have neutrally buoyant particles, the largest mass
fraction with a valid assumption is f = 0.001. This is clearly a much smaller
mass fraction than the value of f used. But, the assumption by Elghobashi
(1994) is true for a turbulent flow and we consider a laminar flow. Because par-
ticles have the same base velocity as the fluid and particles are homogeneously
distributed, the limit for Φ might be stretched to larger volume fractions.

3.2. Non-modal analysis

A non-modal analysis has been carried out and the optimal growth as a function
of spanwise wavenumber β is given in Figure 3.2(a). Here, fluid → fluid
denotes the system where the fluid has been perturbed and the energy of the
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fluid is optimised. all → all is the case where the total system is perturbed
and the energy of the total system is optimised.
It can be seen that no matter whether added mass and fluid acceleration are
taken into account, the growth stays basically the same. For the total system,
the energy is increased by (1 + f)2. This is, again, the result of an increase in
density as shown in the modal analysis. The only difference now, is that this
is also valid for larger Stokes numbers and not only at small Stokes numbers.
This indicates that the time needed to adjust to the flow (defined using the
Stokes number) is less than the time needed for the energy to grow, i.e. the
particles still basically act as passive tracers in non-modal analysis.
This finding can also be analyzed using the stability Stokes number. Now, we
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Figure 3.2: Non-modal analysis of a flow with light particles. (a) fluid → fluid
equals the clean fluid flow, while all → all is larger than a clean fluid flow with
a factor of (1 + f)2. (b) Optimal growth of fluid → fluid as function of SR
for heavy (ξ = 0.001) and light particles.

do not have a frequency as timescale for the perturbation, but we do have the
time needed to reach optimal growth. The time to reach maximum growth is
in the order of 100. Thus, the non-modal growth is too slow to be influenced
by the particles. This can also be seen in Figure 3.2(b), where we see that at
large values of SR the optimal growth is influenced most at SR in the order
of 100. But, as already explained in the modal analysis, the volume fraction
of light particles can be such that the two-way coupling model is not valid,
because particle collisions become more important.

3.3. Basset history term

For heavy particles, only a small difference is found when the history term is
used, Figure 3.3(a): The critical Reynolds number is decreased a few percent
using C = 3,∆ = 1. In non-modal analysis, Figure 3.3(b), hardly anything
changes for all filter parameters investigated. This could be expected due to
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the definition of SR and Sb. Sb is Lπ1/2

rR1/2 times larger than the Stokes number,
thus 1/Sb is much smaller than 1/SR when ξ = 0.001. If we consider SR = 1
and R = 2000, the size is fixed at r/L = 0.0015 and Sb is about 30 times larger
than SR; thus the Basset history term is much less important than Stokes drag
in this regime.
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Figure 3.3: Basset History with heavy particle approximation (only Stokes
drag as interaction term apart from the Basset History term). Left: critical
Reynolds number as a function of S. Right: Maximum transient growth as a
function of S.

When light particles are considered, the Basset history term might have an
effect because the density ratio changes to ξ ∼ 1. Indeed, when we investigate
at the critical Reynolds number in Figure 3.4(a), one can see that the history
term has an effect. For neutrally buoyant particles, the results are the same,
while for the ξ = 2 and ξ = 0.5, the critical Reynolds number shifts. In both
cases, the particles have less influence on the critical Reynolds number com-
pared to the case when light particles without Basset History are considered.
The model used for the Basset history in this case is ∆ = 1 and C = 3.
At a certain relaxation time, our method in finding the eigenmodes fails. Al-
though we only have a model up to a certain value of S, we can see the trend
in critical Reynolds number. We see that the history term makes the particles
less relevant. The history term increases the critical Reynolds number for ξ = 2
and it decreases the critical Reynolds number for ξ = 0.5.
Figure 3.4(b) shows the transient growth for light particles both with and
without the Basset history term. A small decrease in maximal growth at small
values of SR is present, although this is hardly visible on this scale. In the
figure only one set of filter parameters is used (∆ = 1, C = 3), more data
with different filters is given in Table 3.1 for three density ratios. The value
given is the optimal growth at a Stokes number SR = 1 · 10−3 compared to
the optimal growth of a clean fluid. We see that all filters reduce the optimal
growth, although only up to 2% for neutrally buoyant particles. The effect of



18 3. STABILITY ANALYSIS RESULTS

the history term is more profound when the filter for long times is used. This
indicates that when the original square root is used, the optimal growth might
be reduced even more, because the square root is effective for even larger times.
All exponential filters and the square root reach zero asymptotically, however
the exponential filters approach zero faster than the original square root.
These results imply that the Basset history does affect both modal and non-
modal stability for light particles, but the effects are small. For heavy particles,
the Basset history term has no significant influence on flow stability.
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Figure 3.4: Basset History with light particles. Left: critical Reynolds number
as a function of S. Right: Maximum transient growth as a function of SR.

Table 3.1: Normalized transient growth for different filter parameters C and ∆
at Stokes number SR = 1 · 10−3 and a mass fraction of f = 0.1. The value 1
represents the growth of a clean fluid

ξ = 0.5 ξ = 1 ξ = 2
∆ = 1, C = 3 0.997 0.995 0.990
∆ = 10, C = 1 0.991 0.983 0.967
∆ = 20, C = 0.6 0.990 0.980 0.963



CHAPTER 4

Direct Numerical Simulations

In the previous chapters, the linear stability of particle-laden flows is discussed.
The linear stability analysis provides information about the initial, linear stages
of transition, but not about breakdown of the perturbations and non-linear ef-
fects. To investigate transition beyond the initial stages, we performed direct
numerical simulations of a flow laden with heavy particles, i.e. only Stokes drag
is accounted for as interaction term. By means of numerical simulations, we
investigate the behavior of a finite energy perturbation. We investigate how
the threshold energy for transition, the minimum initial disturbance energy
necessary to reach the turbulent state, varies in the presence of heavy parti-
cles. This provides information about the non-linear behavior of streaks and it
shows whether the secondary instabilities might be damped by the presence of
particles.
In relation to transition thresholds several researchers have considered the idea
of ’edge of chaos’ (Schneider et al. 2007); this is the asymptotic state reached
by perturbations neither decaying or evolving into the turbulent regime. It is
charachterized by a complex dynamics where unstable solutions (such as trav-
elling waves, periodic orbits) may play a relevant role. A review about this
edge state is given by Eckhardt et al. (2007).

We examine the two transition scenarios previously analysed by Reddy
et al. (1998a). First transition initiated by streamwise vortices is considered,
without streamwise dependence. The streamwise vortices initiate largest linear
transient growth and they are common in many shear flows (Trefethen et al.
1993; Reddy & Henningson 1993; Schmid & Henningson 2001a). Schematically
the transition process as given by Reddy et al. (1998a) reads:

streamwise vortices ⇒ streamwise streaks ⇒ streak breakdown ⇒ transition.

Transition cannot take place without streamwise dependent structures, there-
fore an extra streamwise perturbations is added to get streak breakdown and
transition. The extra perturbation can be either random noise, or a well-
defined disturbance. We have chosen for one perturbation, an oblique mode
with streamwise wavenumber α = 1 and spanwise wavenumber β = 1.
In the second route to turbulence as discussed by Reddy et al. (1998a), a pair
of symmetrical oblique optimal waves is considered. Each of these waves grows
via the transient growth mechanism. The nonlinear interaction of these modes
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forces streamwise independent structures which, in turn, induce streamwise
streaks by the lift-up effect. The scenario is thus similar to the previously
discussed scenario of streamwise vortices, but with one extra step:

oblique waves ⇒ streamwise vortices ⇒ streamwise streaks ⇒

⇒ streak breakdown ⇒ transition.

This scenario has been extensively investigated in the past for a single phase
fluid, see e.g. Schmid & Henningson (1992); Berlin et al. (1994).

4.1. Numerical implementation

The equations of motion for the fluid and particles are the same as used previ-
ously for the heavy particle approximation. One difference is that the particles
are now solved in a Lagrangian framework and the fluid in an Eulerian grid.
In stability analysis both were solved in a Eulerian framework. The numeri-
cal code is a pseudo-spectral solver where we used a plane Poiseuille flow as
base velocity, u = 1 − y2. The velocity perturbations are expanded in both x
(streamwise) and z (spanwise) direction with Fourier modes and with Cheby-
shev polynomials in the wall-normal, or y-direction. For time-advancement, we
use a fourth order Runge-Kutta algorithm. Boundary conditions in x and z
are periodic and no-slip is assumed at both walls, y = ±1. More details about
this code are given in Chevalier et al. (2007).
The coupling from the Eulerian grid to the Lagrangian particles, to compute
the Stokes drag, is implemented using tri-linear interpolation. The time ad-
vancement of the particle uses the same Runge-Kutta algorithm as the time-
advancement of the fluid. Because a two-way coupling model is used, the Stokes
drag has to be extrapolated back onto the Eulerian grid. For this the same tri-
linear scheme of the interpolation step is used.
The streamwise and spanwise dimensions of the domain are Lx = 2π and
Lz = 2π. The Reynolds number used in all computations is Re = 2000 and
Stokes number SR = 5. The resolution used is 64 × 65 × 64 for streamwise,
wall-normal and spanwise directions respectively. More resolutions have been
used to investigate the convergence of the solution.

A bisection algorithm is used to find the energy threshold (Toh & Itano
2003; Duguet et al. 2008, 2010). In this algorithm, a lower and upper bound
of initial amplitudes are specified of which we are certain they evolve into a
laminar state and into a turbulent state respectively. The algorithm starts with
an amplitude in between these bounds. We investigate whether this amplitude
triggers turbulence or evolves into a laminar state. In the following step either
the lower or upper bound is replaced with the amplitude from the previous step,
depending on the result. This process is repeated, until the energy threshold
is reached. Convergence of the energy threshold is assumed when

2
Au −Al

Au +Al
< 1 · 10−5,
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Figure 4.1: Initial conditions of streamwise vortices (top), streamwise vortices
with an additional oblique mode (middle) and two oblique modes (bottom). On
the left, v-velocity and on the right w-velocity. Horizontal axis is the streamwise
direction, vertical axis the spanwise direction at the channel center. Positive
velocities are colored in red and negative velocities in blue.

with Au the amplitude of the upper bound and Al the amplitude of the lower
bound.

4.2. Results

The bisection results for both the streamwise vortices and the oblique waves
are presented in this section. The initial conditions of these cases are given
in Figure 4.1, consisting of a slice of the domain in streamwise (horizontal
axis) and spanwise (vertical axis) direction at the center of the channel. On
the left, wall-normal velocity v is given and on the right spanwise velocity w.
The top figure presents the initial condition when only streamwise vortices are
implemented, no streamwise dependence is present. The perturbation in the
middle consists of the same streamwise vortices, but with an added stream-
wise dependence, an oblique mode. This streamwise dependency is necessary
for turbulence as explained in the introduction. The bottom figure shows the
initial perturbation of two oblique modes. The ’checkerboard’ is clearly visible.
The bisection algorithm is used with the latter two initial conditions.

The results of the bisection algorithm for the first case, with streamwise
vortices as initial condition (α = 0,β = 2), are given in Figure 4.2. Here, the
initial condition is perturbed with an extra oblique wave (α = 1,β = 1) with
as initial energy 1/9 of the initial energy of the streamwise vortices. The figure
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shows that the threshold energy for small particle mass fractions slightly de-
creases. This decay can be attributed to the forcing from the particles on the
fluid. There are few particles present and they act locally and induce stream-
wise modulations. Large particle mass fractions result in a small increase in
threshold energy, compared to a clean fluid. All changes to threshold energy
are small, indicating that particles do not have a significant influence on this
transition scenario.
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Figure 4.2: The critical threshold energy as a function of mass fraction particles
f .

For the second case, with two symmetrical oblique waves (α = 1,β = ±1)
both given the same energy initially, the bisection results are given in Figure
4.3. What can be seen here, is that again for small particle mass fractions,
the threshold energy decreases. At large particle mass fractions on the other
hand, particles significantly increase the threshold energy, with a factor up to
4, compared to the clean fluid.
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Figure 4.3: The critical threshold energy of two symmetrical oblique waves
(α = 1,β = ±1) as a function of mass fraction particles f .



CHAPTER 5

Summary of the papers

Paper 1

Modal and non-modal stability of particle-laden channel flow

Both modal and non-modal analyses of flows laden with heavy particles are
performed. The non-modal analysis is expanded such that the fluid and parti-
cle energies can be separated.
Modal analysis confirms what was already known in literature: particles with
moderate Stokes number increase the critical Reynolds number. For a small
Stokes number, the critical Reynolds number is decreased with a factor of
(1 + f), with f the mass fraction particles. For large Stokes numbers, the par-
ticles are so large that they have no influence on the fluid anymore. We show
that the energy production in the system is equal for all Stokes numbers, but
that Stokes drag dissipates energy, causing stabilization.
In non-modal analysis mostly spanwise waves are considered, as these cause
the largest growth. When the total system is considered, the energy growth
increases with (1+f)2. When only the fluid is investigated, the growth rates of
clean fluid flow and particle laden flow are equal. The explanation for (1+ f)2

in the total system is that particles increase the density of the total flow with
(1 + f). The transient growth is a function of Reynolds squared, hence the
square dependence on the mass fraction.
Instead of the Stokes number another dimensionless number is defined, the Sta-
bility Stokes number. The stability Stokes number is the ratio of the dimen-
sionless relaxation time to the timescale of the disturbance, for modal analysis
the period of the wave. The most stabilizing effect can be seen when the sta-
bility Stokes number is in the order of one. The timescale of transient growth
is large, the process is slow. Therefore, particles have ample time to adapt to
the flow and thus, the particles have hardly an effect on the transient growth.
Overall, this paper shows that although modal analysis shows an increase in
critical Reynolds number, non-modal shows that heavy particles hardly have
an effect on stability.
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Paper 2

Modal and non-modal stability analysis of a channel flow seeded with light par-
ticles

The same method for modal and non-modal analysis is used as in Paper 1, but
with added mass and fluid acceleration terms included in the system. Neutrally
buoyant particles do not affect the critical Reynolds number, except a decrease
by (1 + f), which can be seen as an increase in density due to the particles.
When particles are lighter than the fluid, the critical Reynolds number even
decreases. The conclusion is that particles lighter than the fluid decrease the
critical Reynolds number and particles heavier than the fluid increase the crit-
ical Reynolds number.
Non-modal analysis shows the same behavior for light particles as for heavy
particles: there is no change in transient growth. With light particles one has
to be careful about the size and number of particles. For neutrally buoyant
particles and a mass fraction of f = 0.1, the volume fraction Φ = 0.1. When
we have such a volume fraction, the model might not be valid anymore: particle
collisions become important and the particles get too big to use the Eulerian
framework. This is discussed in the paper.

Paper 3

Numerical Simulations of laminar-turbulent transition in particle-laden chan-
nel flow

Direct numerical simulations of particle-laden channel flow laden with heavy
particles are performed. Two scenarios have been examined: streamwise vor-
tices and two symmetric oblique waves.
First, streamwise vortices have been implemented as disturbance with a small
initial amplitude. The amplitude is small such that streaks are formed after
which the flow relaminarizes. It is shown that the energy gain of a particle
laden flow is similar to the optimal growth shown in paper 1.
The next step was adding an extra oblique wave with small initial energy com-
pared to the streamwise vortices. With this set-up an analysis of the threshold
energy is performed. The influence of particles on the threshold energy is in-
vestigated and particles are found to have a small influence on the secondary
instabilities. Large particle mass fractions slightly increase the threshold en-
ergy. Also, at a certain initial disturbance energy, the time needed to reach the
turbulent state is investigated. Also shown is that particles increase the time
for transition for disturbances of equal initial energy.
The second scenario consisted of two symmetric oblique waves as disturbance.
The oblique waves interact non-linearly and form streamwise vortices which
leads to streaks and, depending on amplitude, streak breakdown. It is found
that particles enhance the transition threshold for this scenario at large particle
mass fractions.
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The results from these two classical scenarios indicate that, although linear
stability analysis predicts that particles hardly have an influence on optimal
growth, particles do influence the secondary instabilities and streak breakdown.



Conclusions & Outlook

The first conclusion that can be drawn from the work done is that although
modal analysis shows that flows laden with heavy particles are more stable,
non-modal shows particles hardly have any effect. For neutrally buoyant parti-
cles, both the modal and non-modal analysis shows that particles have a small
influence. When the Basset history term is taken into account, small changes
to the optimal growth are present at small particle relaxation times.
When investigating the energy gain of the fluid with initial condition a fluid
perturbation, small differences can be found only at large Stokes number. At
these values, the stability Stokes number is of order one, as is the case when
most stabilization is seen in modal analysis. The Stokes number is that large
though, that some assumptions for the particles are not valid anymore: parti-
cles become too large and particle collisions should be taken into account.
Direct Numerical Simulations show that particles do influence the secondary
instabilities. For the case with two symmetrical oblique waves, small parti-
cle mass fractions reduce the energy threshold and large particle mass fractions
enhance the energy threshold. Streamwise vortices show the same behavior, ex-
cept that the increase in threshold energy is less than with the oblique waves.
The results of the Direct Numerical Simulations shows that, although particles
hardly have an effect on the initial linear stages of transition, particles influence
secondary instabilities and streak breakdown.

Outlook

The project will continue for another two years, in which two major paths will
be explored: DNS with finite sized particles as well as experiments in a water
channel.
The DNS computations will be performed with a code developed by Breugem
(2010) from Delft university, based on a code by Uhlmann (2005). With this
numerical model we are able to investigate channel flows with the inclusion of
neutrally buoyant particles. The stability analysis for neutrally buoyant parti-
cles showed that particles affect the flow most when the stability Stokes number
is of order one. To reach this number, the particles have to have a diameter of
1-10% of the channel height. The numerical code by Breugem (2010) models
such particles using the Immersed Boundary Method. Because both the parti-
cles and the volume fraction of particles is large, a collision model is present to
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account for the particle-particle and particle-wall interactions.
Experiments will be performed in the same set-up as Mans (2007) has per-
formed stability experiments several years ago. Instead of channel flow inves-
tigated in this thesis, a boundary layer flow is considered where we investigate
bypass transition. Two examples of breakdown scenarios as observed by Mans
(2007) are given in Figure 5.1. To investigate the effect on transition of a
boundary layer flow, we will insert (almost) neutrally buoyant particles into
the flow with size of 1-10% of the boundary layer thickness. One might think
of changes to the distance from the leading edge where such breakdown occurs,
or how particles influence the transition scenario: do particles change some-
thing to the sinuous and varicose modes? Some difficulties that we have to
overcome are the injection of the particles into the flow to have a homogeneous
distribution in the boundary layer.
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Figure 5.1: Examples of two breakdown scenarios as observed by Mans (2007).
A sinuous instability mode and a varicose mode.
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Modal and non-modal linear stability analysis of channel flow with a dilute par-
ticle suspension is presented where particles are assumed to be solid, spherical
and heavy. The two-way coupling between particle and fluid flow is therefore
modeled by the Stokes drag only. The results are presented as function of the
particle relaxation time and mass fraction. First, we consider exponentially
growing perturbations and extend previous findings showing the potential for
a significant increase of the critical Reynolds number. The largest stabiliza-
tion is observed when the ratio between the particle relaxation time and the
oscillation period of the wave is of order one. By examining the energy budget
we show that this stabilization is due to the increase of the dissipation caused
by the Stokes drag. The observed stabilization has led to the hypothesis that
dusty flows can be more stable. However, transition to turbulence is most of-
ten subcritical in canonical shear flows where non-modal growth mechanisms
are responsible for the initial growth of external disturbances. The non-modal
analysis of the particle-laden flow, presented here for the first time, reveals
that the transient energy growth is, surprisingly, increased by the presence of
particles, in proportion to the particle mass fraction. The generation of stream-
wise streaks via the lift-up mechanism is still the dominant disturbance-growth
mechanism in the particle laden flow: the length scales of the most dangerous
disturbances are unaffected while the initial disturbance growth can be delayed.
These results are explained in terms of a dimensionless parameter relating the
particle relaxation time to the time scale of the instability. The presence of
a dilute solid phase therefore may not always work as a flow-control strategy
for maintaining the flow as laminar. Despite the stabilizing effect on modal
instabilities, non-modal mechanisms are still strong in internal flows seeded
with heavy particles. Our results indicate that the initial stages of transition
in dilute suspensions of small particles are similar to the stages in a single phase
flow.

37



38 Joy Klinkenberg, H.C. de Lange and Luca Brandt

1. Introduction

The dynamics of small inertial particles transported in a flow is crucial in many
engineering and environmental applications. It is a long known fact that adding
dust to a fluid may reduce the drag in pipe flows (Sproull 1961). To explain
this phenomenon it has been suggested that the dust delays transition and
dampens the formation of turbulent structures. More recently, drag reduction
has been demonstrated by direct numerical simulations in plane channel flow
using heavy spherical particles (Zhao et al. 2010), similarly to what has been
observed with polymer or fibrous additives. Motivated by these results, we
investigate whether the transition from laminar to turbulent flow might also
be delayed, i.e. whether particles make the flow more stable. As a first step in
this direction, the stability of a dusty-laminar flow is discussed in this paper.

The stability problem for a dusty gas was already formulated by Saffman
(1962). He considered a plane parallel flow, where the base laminar profile is the
same for the two phases considered, and an Eulerian description for the particle
field; the coupling between fluid and solid phase is defined only through Stokes
drag. In addition, a homogeneous distribution of particles is assumed and clas-
sic modal stability analysis performed. The particle perturbation velocities are
expressed in terms of the fluid velocities and the stability problem reduces to
solving a modified complex Orr-Sommerfeld equation. Saffman (1962) distin-
guishes two different cases: fine and coarse dust. For fine dust, the particle
relaxation time is small and the dust adjusts quickly to the gas flow. There-
fore, the added particles only lead to an increase in density and consequently
a decrease of the critical Reynolds number. Coarse dust, conversely, increases
the critical Reynolds number and thus stabilizes the flow. In a later investi-
gation, Michael (1964) considers Poiseuille flow and presents neutral stability
curves for several relaxation times. The results confirm that fine particles in-
deed decrease the critical Reynolds number whereas coarser particles increase
it. Furthermore, Michael shows that very large/heavy particles have almost no
effect on flow stability: the neutral stability curves retreats to the curve for the
clean fluid when particles are too heavy to be affected by the fluid (ballistic
limit).

The work by Michael (1964) was extended by Rudyak et al. (1997) using
an improved numerical accuracy. These authors (Rudyak et al. 1997) again
considered the linear modal stability of plane Poiseuille flow seeded with small
heavy particles. Besides the fact that they propose to change the dimensionless
numbers to some having more relevant physical meaning, the general results
stay the same: small particles decrease stability, while larger particles increase
the stability of the flow. In this study, inhomogeneous particle concentration
is also examined and it is shown that stability is modified, both enhanced and
reduced, when increasing the particle concentration in two layers near the walls
while keeping the total number of particles constant.
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The stability of the flat-plate boundary-layer flow is studied by Asmolov
& Manuilovich (1998). These authors adopt the same model as introduced
by Saffman (1962); in this case, however, the base flow differs from the case
of single phase fluid in the presence of particles. For large particles and long
relaxation times, the numerical analysis of Michael (1964) becomes inaccurate,
the neutral stability curves become irregular, and integration of the stabil-
ity equation needs to be performed in the complex plane, as done also by
Rudyak et al. (1997). The dust suppresses the instability waves for a wide
range of the particle size. The most efficient suppression takes place when the
relaxation length of the particle velocity is close to the wavelength α of the
Tollmien–Schlichting wave. The analysis by Asmolov & Manuilovich (1998) is
also extended to a polydisperse dust. The growth rate of disturbances does
not differ much from the monodisperse dust, only discontinuities arise in the
(α, R)-plane for damped disturbances (with R the Reynolds number). The
number of discontinuities equals the number of different particle sizes present.

These investigations only used Stokes drag as coupling term between the
two phases: however, more recent studies discuss also additional coupling terms,
mostly in the context of turbulent flows, e.g. Calzavarini et al. (2009). The
paper by Maxey & Riley (1983) introduces the description of several forces
arising between fluid and particles for different density ratios, namely the added
mass term, a pressure gradient term, buoyancy and the Basset history term.
The starting point of their analysis is the equation of motion proposed by
Tchen (1947) and modified by Corrsin & Lumley (1956). Boronin & Osiptsov
(2008) investigated the influence of the Saffman lift force (Saffman 1965) and
a non-uniform particle distribution on the flow stability. The Saffman lift force
itself has been investigated by several authors (Dandy & Dwyer 1990; Mei 1992;
McLaughlin 1991). Furthermore the effect of the finite particle volume fraction
is investigated by Vreman (2007) and Boronin (2008).

All investigations mentioned so far have considered only modal stability
analysis. However, it is now understood that perturbation in wall-bounded
shear flow can experience significant transient energy growth (Ellingsen & Palm
1975; Trefethen et al. 1993; Reddy & Henningson 1993; Schmid & Henningson
2001); the latter is responsible for the initial linear amplification of external
disturbances which lead to subcritical transition to turbulence. As example,
the critical Reynolds number for channel flow is R = 5772, while experiments
show transition at Reynolds numbers as low as R ≈ 1000. From a mathemati-
cal point of view, this transient energy growth is related to the non-normality
of the governing linear stability operator: non-orthogonal eigenfunctions can be
linearly combined to yield a low energy initial condition. However, owing to the
different decay rates, the initial cancellation is later lost and the perturbation
energy increases before eventually decaying to zero in a stable system. From
a physical point of view, transient growth is associated to the generation of
elongated spanwise-periodic streamwise velocity perturbations. These streaks
are induced by pairs of counter-rotating streamwise vortices via the so-called
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lift-up effect (Landahl 1980). In such a context, modal stability analysis is only
relevant to study the asymptotic behavior of the system at large times: non-
modal input-output analysis is necessary to explore the possibility of transient
energy growth. In this case, one wishes to know the largest possible energy
amplification that can be obtained over a finite time. The initial condition
leading to the largest possible growth is denoted optimal disturbance and it is
indeed found to consist of streamwise vortices in shear flows. The growth of the
streaks, induced by these streamwise vortices, can be such that disturbances
reach significant amplitudes and non-linear effects become important. In par-
ticular, it has been observed that streaks of high amplitude become susceptible
to secondary inflectional instability leading to breakdown to turbulence (Reddy
et al. 1998; Elofsson et al. 1999; Brandt & Henningson 2002).

The aim of this paper is therefore to investigate for the first time the
non-modal stability of particle-laden channel flows for different particle mass
fraction and relaxation time. Although modal stability analysis shows a stabi-
lization of the flow in the presence of particles, an effective delay of the turbulent
onset in channel flows requires also damping of non-modal growth mechanisms.

2. Governing equations and stability analysis

2.1. Equations for particle-laden flows

We consider a channel flow seeded with solid spherical particles whose size is
smaller than the characteristic scale of the flow. To perform our analysis, we
adopt the continuous, or Eulerian, model introduced by Saffman (1962): the
particles are assumed to be under the action of Stokes drag only; lift force,
buoyancy and added mass are neglected. While the continuous approach is
bound to fail in turbulent flows, owing to particle clustering and singularities in
the particles field, it can still be retained valid for laminar flow and perturbation
of it, such as in linear stability calculations (Boffetta et al. 2007). In the
following, p is the pressure, ρ the density of the fluid, N the number of particles
per unit volume, r the radius of the particle and µ the dynamic viscosity. mN
is the mass of the particles per volume with m = 4

3πr
3ρp the mass of one

particle, using the density of the particle ρp. Furthermore, K is the Stokes
drag per relative velocity and defined as K = 6πrµ. The governing equations
for incompressible flow can be written as follows where ui and upi are the fluid
and particle velocity respectively,

ρ
∂ui

∂t
= −

∂p

∂xi
− ρuj

∂ui

∂xj
+ µ

∂2ui

∂x2
j

+KN (upi − ui) (1)

mN
∂upi

∂t
= −mNupj

∂upi

∂xj
+KN (ui − upi) , (2)

∂N

∂t
= −

∂

∂xi
(Nupi) (3)

∂ui

∂xi
= 0. (4)
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The stability of this flow is investigated by considering a small perturbation
u′ to the base flow U . The base flow considered is Poiseuille flow driven by a
constant pressure gradient. In the presence of a dispersed phase, the steady
mean flow for both fluid and particles takes the form U(y) = 1−y2, y ∈ [−1, 1],
independent of the number of particles. Substituting u = U + u′, up = U + u′

p,
p = P+p′ and N = N0+N ′ in equations(1-4), linearized stability equations are
derived in a standard way (Schmid & Henningson 2001). These read (primes
are omitted):

∂ui

∂t
= −

∂p

∂xi
− Uj

∂ui

∂xj
− uj

∂Ui

∂xj
+ ν

∂2ui

∂x2
j

+
KN0

ρ
(upi − ui) (5)

∂upi

∂t
= −Uj

∂upi

∂xj
− upj

∂Ui

∂xj
+

K

m
(ui − upi) (6)

∂N

∂t
= −

∂

∂xi
(NU +N0upi) (7)

∂ui

∂xi
= 0. (8)

The dimensional parameters used are reported in table 1 for clarity. Three
non-dimensional parameters can be defined for this problem and they are given
in table 2 where we follow the notation by Saffman (1962). They are the mass
concentration f , defined as the mass of particles divided by the mass of the
fluid per unit volume, the Reynolds number R, using channel half height L, and
the Stokes number S defined as the particle relaxation time over the viscous
time scale. Note however that S appears in the equations multiplied by R: SR
can be seen as a Stokes number based on the convective time scale of the flow.

Table 1: Physical parameters defining the particle laden flows under consider-
ation.

N m−3 Number density of particles
K 6 πrµ kg s−1 For sphere with radius r, constant
mN kg m−3 Mass of dust per unit volume
s KN0

ρf
s−1 Constant, dimension of frequency

τ m
K = f

s (=
2
9
r2

ν
ρp
ρf
) s Relaxation time

For the particular configuration considered, the equation for the particle
distribution N0 (equation 7) is decoupled from the rest of the system. As a
consequence, Squire’s theorem can be extended to this case and a complex
Orr-Sommerfeld equation can be derived for the stability of the flow (Saffman
1962; Michael 1964), which has been considered in the past. However, we are
also interested in the non-modal stability of the full three-dimensional problem
and introduce therefore the initial value problem for the particle velocities
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Table 2: Definition of the non-dimensional numbers used.

f mp

mf
- Mass concentration

R ρUL
µ - Reynolds Number

S ντ
L2 = 2

9
r2

L2

ρp
ρf

- Dimensionless relaxation time

and for the wall-normal velocity v and wall-normal vorticity η = ∂u
∂z − ∂w

∂x
of the fluid, analogous to the standard Orr-Sommerfeld-Squire system used for
parallel single phase flows. The corresponding system of linearized equations
in dimensionless form is given by:

−
∂

∂t
∇2v =

[(

U
∂

∂x
+

f

SR

)

∇2 − U ′′
∂

∂x
−

1

R
∇4

]

v +

+
f

SR

(

∂2up

∂x∂y
+

∂2wp

∂y∂z
−

∂2vp
∂x2

−
∂2vp
∂z2

)

(9)

∂η

∂t
=

[

−U
∂

∂x
+

1

R
∇2 −

f

SR

]

η +
f

SR

(

∂up

∂z
−

∂wp

∂x

)

−
∂v

∂z
U ′(10)

∂up

∂t
= −U

∂up

∂x
− vp

∂U

∂y
+

1

SR
(u− up) (11)

∂vp
∂t

= −U
∂vp
∂x

+
1

SR
(v − vp) (12)

∂wp

∂t
= −U

∂wp

∂x
+

1

SR
(w − wp) (13)

The boundary conditions of this system are v = η = up = vp = wp = 0 at both
walls.

In the limit of SR → 0, Lagrangian limit (r $ L), the coupling between
the fluid and particle motion is very strong and particles behave as passive
tracers. The particles have a very small relaxation time and will adjust to the
fluid almost immediately. This results in an effective increase in density of the
total flow, for which a modified Reynolds number Rm can be defined:

Rm =
(1 + f) ρUL

µ
.

In the limit SR → ∞, ballistic limit (ρp $ ρf ), the equation describing the
particles motion is decoupled from the particle velocity. Particles are too heavy
to be affected by the fluid and perturbations in the particle velocity are simply
advected by the base flow.
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2.2. Modal Stability

To study modal linear stability, we assume wave-like perturbations

q = q̂(y)ei(αx+βz−ωt),

with q = (v, η, up, vp, wp)T . In the expression above, α and β define the stream-
wise and spanwise wavenumber of the perturbation, respectively, while ω is
a complex frequency: -(ω) > 0 indicates solutions exponentially growing in
time. Here we will mainly focus on the onset of the instability, -(ω) equals
zero, and report neutral stability curves. As mentioned above, the neutral
stability curve can be computed assuming two-dimensional perturbations since
a modified version of Squire’s theorem holds for the complex Orr-Sommerfeld
equation (Saffman 1962) derived from equations (9, 11, 12).

2.3. Non-modal Stability

As discussed in the introduction, when the eigenvectors of the system are non-
orthogonal, transient growth is possible even in asymptotically stable systems.
Input-output or non-modal analysis is then necessary. The aim of such analysis
is to determine the largest possible growth that can be achieved during a finite
time interval; this is called optimal growth. The initial condition yielding
optimal growth is denoted as optimal initial condition. If we indicate the
discretized governing linear equations (9-13) in compact form as

∂q

∂t
= Lq, (14)

the largest possible energy growth at time t is the norm of the evolution oper-
ator, or propagator, T = exp(tL). To quantify the energy growth, we use the
kinetic energy of the full system defined as the kinetic energy of the fluid and
of the particles

Ekin =
1

2

(

mfu
2
i +mpu

2
pi

)

, (15)

with mf and mp the mass of the fluid and the particles respectively.
A matrix M can be associated with the energy norm. This is applied directly
to the vector q = [v, η, up, vp, wp]T to give the kinetic energy integrated over
the volume V

E(t) =
1

2

∫

V
qHMqdV. (16)

In this study, we are not only interested in optimizing the total energy of the
system. We wish also to investigate the optimal way to excite a response in the
fluid/particles by an initial condition consisting only of perturbations in the
fluid/particle velocity. To this aim we introduce the input disturbance qin, the
output qout and corresponding input and output operators B and C. The input
qin consists of those quantities we wish to optimize for at time t = 0, while
qout defines the quantities we want to have amplified at time t. The dynamics
of the system is still described by (14); to restrict the initial condition to qin
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we need to define the input operator B such that q = Bqin. In analogy, to
study only the response qout, C is defined such that qout = Cq. The evolution
operator from qin(t = 0) to qout(t) becomes therefore

T = C exp(tL)B. (17)

Finally we define the input and output energy matrix with Min = FinFH
in

and Mout = FoutFH
out and the corresponding norms as ||qin||Ein = ||Finqin||2,

||qout||Eout = ||Foutqout||2.

Using the definition for optimal growth (Schmid & Henningson 2001) one
can show that the optimal growth corresponds to the 2-norm of the matrix

G(t) =
||qout(t)||Eout

||qin(0)||Ein

=
||T qin(0)||Eout

||qin(0)||Ein

=
||FoutT qin(0)||2
||Finqin(0)||2

=

=
||FoutT F−1

in Finqin(0)||2
||Finqin(0)||2

= ||FoutT F−1
in ||2 = ||FoutC exp(tL)BF−1

in ||2. (18)

The classic computation of the optimal growth is retrieved when Fin = Fout

and C = B = I.

2.4. Energy analysis

An equation for the evolution of the kinetic energy of the system can be derived
by multiplying equation (5) with ui and equation (6) by upi . Adding the two
energies using a factor f to account for the particle mass and integrating over
the total volume of the system V gives

∂Ev

∂t
= −

∫

V
uiuj

∂Ui

∂xj
dV −

1

Re

∫

V

∂ui

∂xj

∂ui

∂xj
dV

− f

∫

V
upiupj

∂Ui

∂xj
dV −

f

SR

∫

V
(ui − upi)

2 dV (19)

where the divergence terms disappear owing to periodic boundary conditions
and zero velocity at the walls.

The first two terms in (19) represent production of kinetic energy of the
perturbation due to the work of the Reynolds stress uiuj against the shear of
the base flow and viscous dissipation in the fluid. The third term, appearing
in the presence of particles, accounts for the production of particle kinetic
energy against the mean shear of the particle base motion. The last term
accounts for fluid/particle interactions and it is always negative. The fluid-
particle interaction always introduces a loss in energy. One can therefore expect
that, as a results of the optimization, particles and fluid will tend to have the
same velocity in order to reduce losses. When upi = ui the dissipative term
equals zero and the production of kinetic energy is enhanced by the presence of
the particles, by a factor proportional to their mass fraction. When examining
the energy gain of particles only,

∂Evp

∂t
= −f

∫

V
upiupj

∂Ui

∂xj
dV +

f

SR

∫

V
(uiupi − upiupi) dV, (20)
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we see that when SR → ∞, the coupling between the particle and fluid ve-
locities becomes negligible and the last term in equation (20) vanishes. This
results in a particle energy equation without dissipation, which then can result
in unbounded growth of the particle energy, the inviscid Orr-Mechanism (Orr
1907).

The production and dissipation terms in equation (19) can be computed
separately to gain insight into the instability mechanisms (Cossu & Brandt
2004). Assuming normal mode expansion, (E,D,Ds, Ty, Tpy ) =

(Ê, D̂, D̂s, T̂y, T̂py )e
2ωit, with Ty and Tpy the energy production terms, D the

viscous dissipation, Ds the losses induced by the coupling Stokes drag and E
the total perturbation kinetic energy. These terms become of the form (in 2
dimensions)

Ê =

∫ 1

−1
(ûû∗ + v̂v̂∗) dy (21)

T̂y =

∫ 1

−1
− (ûv̂∗ + û∗v̂)

dU

dy
dy T̂py =

∫ 1

−1
− (ûpv̂p

∗ + ûp
∗v̂p)

dU

dy
dy (22)

D̂ =

∫ 1

−1
2

(

∂ûi

∂xj
·
∂ûi

∂xj

∗
)

dy D̂s =

∫ 1

−1

(

(ûi − ûpi) (ûi − ûpi)
∗
)

dy,(23)

where ∗ indicates the complex conjugate.
Using equation (20) one can show that

ωi =
T̂y

2Ê
+

T̂py

2Ê
−

D̂

2Ê
−

D̂s

2Ê
. (24)

The different terms in this equation can be evaluated using the eigenvector
from the stability analysis (û, v̂, ûp, v̂p).Variation of the production terms and
of the Stokes drag is used to understand how modal stability is affected by the
presence of particles. Note that the different terms should add to the growth
rate ωi, the imaginary part of the eigenmode. Eq. (24) therefore represents an
a posteriori validation of the numerics.

2.5. Numerical method

Discretization of the equations is done using a Chebyshev collocation method
in y-direction (Reddy et al. 1998). For most of the computations presented we
used ny = 37, with ny being the number of collocations points. Tests were
performed with ny = 67, 167 to validate the accuracy of the results.

For the computation of the neutral stability, integration in the complex
y−plane is performed to remove singularity in the limit of SR → ∞ (Asmolov
& Manuilovich 1998; Rudyak et al. 1997). To validate our implementation we
report in Figure 1 a comparison with the results of Rudyak et al. (1997).
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Figure 1: The critical Reynolds number as a function of dimensionless relax-
ation time S. A comparison between the present results and those in Rudyak
et al. (1997)

For the computation of transient growth, the energy matrix M is built to
compute the kinetic energy of the fluid and particles

M =















(

−D2

k2 + 1
)

Iw 0 0 0 0

0 1
k2 Iw 0 0 0

0 0 fIw 0 0
0 0 0 fIw 0
0 0 0 0 fIw















, (25)

where Iw is a diagonal matrix performing spectral integration in y direction. As
M is diagonal, this can be easily factorized M = UΣUH using Singular Value
Decomposition (SVD). This can be done for Min as well as Mout to define Fin,
F−1
in ,Fout and F−1

out: given M = UΣUH , F = UΣ1/2.

3. Results

3.1. Modal analysis

Considering the least stable eigenvalue of our system of equations, the neutral
stability curves for different values of S are given in figure 2. The critical
Reynolds number is seen to decrease for small S(S = 1 · 10−7), to increase for
intermediate S, while for larger S it returns to the value found in Poiseuille
flow without particles.

When S is very small, the particles are very small and just follow the fluid:
relaxation time is fast and the particles adjust almost immediately to the fluid
velocity. Therefore, the particles just act as to increase the total density of
the system, thus lowering the critical Reynolds number by a factor (1 + f).
The neutral stability curves would coincide when instead of R, the Reynolds
number of the mixture, Rm, is taken into account. For large values of S,
however, the heavy and large particles are not able to interact with the fluid,
thus they have no effect on the flow stability. In between these two extremes,
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Figure 2: (Color online) Neutral stability curves for a particle laden flow with
S = [1 · 10−7, 5 · 10−5, 2.5 · 10−4, 1 · 10−2] and f = 0.05 (a), f = 0.15 (b). As
reference, also the curve for a single phase flow is given.

the particles do interact with the flow and they have a positive effect on the
flow stability; the critical Reynolds number increases with respect to the single
phase channel flow. On the other hand, both the wavenumber and the phase
velocity corresponding to the critical Reynolds number decreases. Our results
are in agreement with the results of Saffman (1962), Rudyak et al. (1997) and
Michael (1964), obtained using the complex Orr-Sommerfeld equation.

It can be noted that the mass fraction f affects the value of the critical Rey-
nolds number: more particles have larger stabilizing effect. For mass fraction
f = 0.15, Rcrit can grow to as much as 105, i.e. almost two order of magnitude.
When increasing f , a second effect is that the value of S yielding the largest
critical Reynolds number decreases.

In figure 3 we display the critical Reynolds number versus Stω = SRωr;
this is the ratio of the particle relaxation time to the period of the wave and
can be interpreted as stability Stokes number. With this scaling, the largest
reduction of the growth rate is observed for Stω = O(1) for all values of the
mass fraction f . In other words, particles have a stabilizing effect on the flow
when their relaxation time is close to the pulsation of the least stable waves.

To better understand this behavior, we consider the energy budget given
in equation (19), where the expressions in (21-23) are used to compute the pro-
duction and dissipation terms. Table 3 shows the results of these computations
using R = 1.25 ·104, α = 1, f = [0 0.05] and SR = [0.001 1 5 10 100] In the last
column we report the difference between the system eigenvalue and the growth
rate estimated by the energy balance as further validation of our implementa-
tion. Figure 4 shows the production and dissipation terms versus the particle
relaxation time SR. It can be noted that the total energy production, T̂y+ T̂yp ,
and the viscous dissipation are almost constant with SR. The energy losses
induced by the Stokes drag are initially very low but increase significantly when
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Figure 3: (Color online) Critical Reynolds number as a function of Stω = SRωr

for f = [0.05, 0.1, 0.15, 0.2], where SRωr is the ratio of the particle relaxation
time to the period of the wave. The larger the f , the larger the critical Reynolds
number Rcrit.

SR ≈ 1. The large increase of D̂s is therefore responsible for the stabilization
documented above.

SR T̂ y

2Ê
· 103 T̂ py

2Ê
· 103 D̂

2Ê
· 103 D̂s

2Ê
· 103 Σ(T̂ − D̂) ·103 ωi · 10

3 ∆ε

(f=0) 9.9442 0 5.7273 0 4.2169 4.2046 0.0123
0.001 9.4227 0.4790 5.6611 0.0074 4.2331 4.2206 0.0125
1 4.7140 5.7205 5.5637 5.5503 -0.6794 -0.6915 0.0121
5 5.9511 4.9145 5.4490 6.7058 -1.2892 -1.3006 0.0114
10 7.6115 3.9600 5.4401 5.7641 0.3673 0.3558 0.0115
100 8.5340 1.6584 5.0170 1.6262 3.5492 3.5382 0.0110

Table 3: Production and dissipation terms for modal stability with α = 1,
f = 0.05 and R = 1.25 · 104. Production terms Ty and Tpy are positive, while
D and Ds are negative. The difference ∆ε between the computed eigenvalue
and the growth rate estimated by the energy budget is reported in the right-
most column.

Finally, the eigenfunctions of the most unstable mode for α = 1 and Rey-
nolds number 104 are given in figure 5, both for a clean fluid and for a particle-
laden flow. The single phase fluid has an unstable mode, while the particle
laden flow with f = 0.15 is stable. The streamwise u- and wall-normal v-
velocities, depicted in figure 5(a) are similar for single phase and particle laden
flow. For particle laden flow, the maximum u-velocity is larger for the same
kinetic energy of the disturbance, although this value is reached further away
from the walls. The fluid and particle velocities for the case of particle laden
flow are shown in figure 5(b). The disturbance particle velocity up is larger
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than that of the fluid, while the wall-normal particle velocity, vp, is smaller.
The difference in the ui and upi velocities are responsible for the increase of
the critical Reynolds number, as the difference between these values stabilizes
the flow by introducing extra dissipation in the system (cf. equation 19).
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Figure 4: (Color online) Energy as a function of Stω = SRωr for f = 0.05,
R = 12500 and α = 1. The total production is also shown.
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Figure 5: (Color online) Eigenfunctions at R = 104, α = 1, using S = 2.5 ·10−4

and particle concentration f = 0.15. (a) shows the absolute velocities u and
v for flow with and without particles. (b) shows absolute particle and fluid
velocities for a particle laden flow.

3.2. Non-modal analysis

As discussed earlier, non-modal growth mechanisms are responsible for sub-
critical transition to turbulence in shear flows. We wish to investigate, there-
fore, whether these are affected by the presence of the particles in the same way
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as the linear modal stability. This would imply that particles may induce signif-
icant transition delay. First, we introduce the quantities that will be considered
in the following. The transient growth for a perturbation with wavenumbers
(α,β) = (0, 2) in a single phase flow with R = 2000 is given in figure 6. In this
example, pertaining to the wavenumber pair yielding the largest amplification
in Poiseuille flow, the optimal growth is given as a function of time, as defined
in equation (18). The curve is the envelope of the amplification curves of all
initial conditions, in other words the maximum response to each optimal ini-
tial condition q0(t;Re,α,β, f, S) is used to define this curve. The maximum
growth, Gmax, presented in figure 6, is an interesting parameter to be used to
investigate the influence of particles on fluid flow as this is the global maximum
in time of possible energy growth,

Gmax = max
t

G (t) .

Preliminary calculations indicate that, in agreement to the case without parti-
cles, the largest non-modal amplification is attained by streamwise independent
perturbations, where α = 0. Therefore, in the following, we will present results
of the non-modal analyses as curves of Gmax versus α or β in which β and α
are in turn set to zero. The case β = 0 will also be considered, in analogy
to previous investigations in single phase shear flows (Farrell 1988), to exam-
ine the effect of particles on the Orr-mechanism and the optimal triggering of
modal disturbances.
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900

t

G
(t)

Gmax

tfor max

Figure 6: Transient growth for (α,β)=(0,2) and R = 2000 for a clean fluid.
Gmax indicates the largest growth in energy while tfor max indicates the time
needed to reach this maximum

As already mentioned, results for nine different cases will be presented.
In addition to these, results for the single phase flow, or reference flow, will
also be displayed in each plot. All these cases are given in figure 7 for S =
5 ·10−5, R = 2000 and f = 0.15. Results are reported both for spanwise waves,
α = 0 in 7(a-b), and streamwise waves, β = 0 in 7(c-d). The cases displayed
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are denoted as initial → final with reference to the quantities used in the
definitions of input and output energy norms; when both the particle and fluid
kinetic energy are considered in the input/output norm, the case is denoted as
all.
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Figure 7: (Color online) Optimal growth for all 9 cases using S = 5 ·10−5, R =
2000 and f = 0.15, for spanwise (top) and streamwise (bottom) disturbances.
As reference, also the single phase optimal growth is displayed. For clarity, the
nine cases are divided into two figures (left and right).

Comparing the results for streamwise (α) and spanwise (β) perturbations,
it is obvious that spanwise perturbations lead to higher energy gain than
streamwise perturbations. This result is in agreement to results of single
phase flow, as already presented in Butler & Farrell (1992), Gustavsson (1991)
and Henningson et al. (1993). The spanwise perturbations consist of counter-
rotating streamwise vortices, which induce high- and low-speed streaks owing
to the lift-up effect.

3.2.1. Spanwise-dependent disturbances

The results for streamwise-independent spanwise-periodic disturbances are first
discussed referring to the results shown in figure 7(a-b). The energy gain for
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the case all → all provides the largest possible energy growth, the amplification
is augmented by a factor (1 + f)2 with respect to the flow without particles.
The optimal energy growth for the total system is thus larger for particle-laden
flows. The optimal gain in the case of a non-zero initial fluid velocity only
(fluid → all) also gives response larger than that in the clean flow, which
may be expected since the particles contribute to the final energy as well. The
growth is however smaller than for all → all. The level of perturbation induced
by perturbations in the particle motion, induced by stirring the particles with
some external force, part → all, is much lower in comparison to the previous
cases; this indicates that initial particle disturbances are less effective to excite
the flow. This can be explained by the low mass fraction of the solid phase in
our model.

Considering the final particle velocity only (initial → part) indicates the
possibility to induce mixing in the density distribution. The values of the
possible energy amplification are small, about 1/f lower than for the fluid
velocity. However, the particle velocity is the same as the fluid velocity, and
the gain is small only because the mass fraction is small, f = 0.15. The
cases all → part and fluid → part are close to each other, suggesting a small
amplification part → part, which is indeed the case.

The final three cases examined deal with the optimal growth of the fluid
flow perturbations (figure 7b). The fluid is able to gain more energy from the
system when particles are present, compare all → fluid to no-particles. The
fluid, however, is not able to gain much energy from the particles only (part →
fluid), while the fluid → fluid case is very close to the single phase optimal
growth. This may indicate that losses due to the particle-fluid interactions are
weak for the parameters in figure 7. As shown below, however, we observe a
more complicated interplay between initial losses induced by interaction with
the particles and the larger amplification observed in the case all → fluid.

As seen above when considering the total energy of the system (equation
19), the dissipation of energy due to fluid/particle interactions vanishes when
the fluid and particle velocity are equal. It is therefore not surprising that the
optimal initial condition has the same velocity for fluid and particles in the case
all → all. For the values of S allowed by our model, moderate SR, also in the
case of zero initial particle velocity, the difference (and thus the Stokes drag)
becomes small and eventually zero for relatively long optimization intervals. In
figure 8 we report the optimal initial condition (a) and the optimal response
(b) for the case fluid → fluid with β = 2, S = 5 ·10−5, f = 0.15 and R = 5000.
The initial condition consists of a pair of counter-rotating streamwise vortices
spanning the full channel height. The particles have no initial disturbance
velocity. The perturbation at the final time is composed mainly of streamwise
velocity, with two streaks antisymmetric with respect to the centerline, for both
the fluid and particles. The lift-up effect is clearly at work also in particle-laden
flows. Note that the particle velocity adjusts to the fluid velocity, although only
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Figure 8: (Color online) Optimal initial condition and response for the case
fluid → fluid with β = 2, S = 5 · 10−5, f = 0.15 and R = 5000. On top
the absolute velocities of fluid and particles are displayed. On the bottom
figures the velocity vectors of the fluid (a) or the u-velocity contours are given
(b). Initial condition consists of streamwise vortices of the fluid (a), while the
disturbance velocity of the particles is zero. For the response (b), low- and
high-speed streaks can be clearly recognized.

the response of the fluid perturbation is considered. These equal velocities
reduce the dissipation of energy due to fluid/particle interaction.

We now investigate the effect of S and f . In figure 9(a) the optimal growth
is given for five different cases and a value of S = 2.5 · 10−3, larger than
that in figure 7. The difference between the single phase flow and the case
fluid → fluid is small, although present. It is interesting to note that, at this
value of S, very large variations in the asymptotic stability of the two-phase
flow are already observed, see figure 3. The presence of particles has therefore
a completely different impact on modal and non-modal stability.

While the maximum gain of the fluid kinetic energy is hardly affected by the
particles, the time at which the optimal growth is reached varies. To document
this, the optimal growth is displayed as a function of time for (α,β) = (0, 2)
and R = 2000 in figure 9(b) for fluid → fluid. Here results for two values of
f and two values of S are compared to the case without particles. The results
indicate that the delay induced by the particles increases with increasing f ,
but that this delay is not affected by the value of S.

Figure 10 shows the optimal growth and the time to reach the optimal
growth as a function of mass fraction f using S = 2.5 ·10−3 and R = 2000. The
optimal growth increases by a factor (1 + f)2 for the case all → all compared
to the single phase flow, while for the cases all → fluid and fluid → all the
optimal growth is enhanced only with a factor (1 + f). The time needed to
reach the optimal growth on the other hand increases by (1 + f) for all cases,
figure 10(b).
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Two competing mechanisms appear to be present in this case. Losses are
induced by the initial difference between fluid and particle velocity. These
are proportional to the mass fraction f and cause a slower initial growth of
the perturbation (figure 9b). Losses decrease faster for lower S, indicating
shorter relaxation time, but this effect appears negligible. At the same time,
once particles move at the fluid velocity, larger amplifications are observed (see
all → fluid in figure 7 and figure 10). In conclusion, the amplification of
the fluid kinetic energy in the presence of particles is slower because of the
losses due to the initial difference between fluid and particle velocity but the
potential growth is larger. These two effects compensate and the total energy
gain is similar in laden and unladen flow.
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Figure 9: (Color online) (a): Optimal growth for 5 different cases, including
the clean fluid flow, using α = 0, f = 0.15, S = 2.5 · 10−3 and R = 2000. (b):
Transient growth for the case fluid → fluid with β = 2, α = 0 and R = 2000,
using f = 0.3 and 0.15 as well as S = 2.5 · 10−3 and 5 · 10−5.

The optimal growth versus Reynolds number is given for spanwise pertur-
bations in figure 11(a). The growth for spanwise waves is found to be propor-
tional to R2, as in the case of flows without particles. The results also confirm
that non-modal growth is enhanced in the presence of particles, and, as shown
by the inset in the figure, the energy gain for the case all → all is (1 + f)2

times that for the single phase flow. The transient growth appears to be pro-
portional to the effective Reynolds number based on the total density of the
medium ρt = (1 + f) ρfluid as in the case of modal stability at low values of S.
In this case, however, the effect is observed also at large values of S. This again
suggests that a different definition of the Stokes number may be more relevant
for stability problems. We therefore consider again the stability Stokes num-
ber Stω, introduced above as the ratio of the particle relaxation time and the
instability time scale. This parameter Stω assumes low values for non-modal
growth since the latter is occurring on a time scale longer than the character-
istic particle relaxation time. The effect of particles on modal and non-modal
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Figure 10: (Color online) (a): Gmax as a function of mass fraction f for several
cases denoted in the legend using S = 2.5 · 10−3 and R = 2000. (b): tfor max

as a function of mass fraction f for the same cases as (a) using S = 2.5 · 10−3

and R = 2000.

stability can therefore be explained by this new parameter: at low values of
Stω, the solid phase acts only to increase the total density and therefore the
effective Reynolds number. Significant energy losses having a stabilizing effect
are found only when Stω ≈ 1.

The optimal growth as a function of S is displayed in figure 11(b). The fig-
ure shows the flow behavior in the ballistic limit, when particles are not affected
by the fluid, and quantifies when these effects become relevant. As shown by
equations (5-8), for large SR the motion of fluid and particles are decoupled.
Particles behave as the fluid but the particle velocity field is not required to be
divergence free and there is no dissipation. In absence of dissipation, we observe
that the particle perturbation velocity can grow significantly. This observation
is in line width the inviscid algebraic instability first examined in Ellingsen &
Palm (1975) for streamwise-independent modes The same behavior is observed
also for streamwise-dependent modes: here it can be seen as the inviscid Orr
mechanism. The computations become grid-dependent and the optimal ini-
tial conditions for the particle velocity become as narrow as possible in the
wall-normal direction, limited to non-zero values in the grid point associated
to highest shear of the base flow. This is allowed since the velocity field for the
particles does not need to be solenoidal and is in agreement with the inviscid
limit of the Orr-Sommerfeld equation. Note however that the validity of our
model is questionable for large particles, i.e. large S.

The case fluid → fluid does not show increased growth at large S, which
indicates that indeed the large growth in the case all → all is associated to the
energy of the particles. The value of S does not have a very large effect on the
optimal gain: the optimal growth between S = 1 · 10−5 and S = 1 · 10−2 is
hardly changing. This confirms that particle relaxation time has little effect on
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non-modal stability since Stω is low in the range considered; the main effect is
from the mass fraction f that increases the fluid density.

(a) β = 2,α = 0, S = 5 · 10−5
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Figure 11: (Color online) (a): optimal growth versus Reynolds number. In the
large figure the cases for a clean fluid, the all → all and fl → all are given, in
which the dependence of R2 can be clearly recognized. As reference, a function
of a constant times R2 has been given as well, the blue line. In the insert the
all → all-case has been given, but then divided by (1 + f)(•) and (1 + f)2(•).
(b): the optimal growth versus S is displayed, for the same cases as in the left
figure including fluid → fluid.

3.2.2. Two-dimensional streamwise-dependent waves

The results for streamwise-dependent disturbances are first discussed referring
to the results shown in figure 7(c-d). The energy gain for the case all → all is
responsible for the largest possible energy gain, as for spanwise disturbances.
For streamwise disturbances the increase with respect to the case of single phase
flow is(1 + f) for small values of S. For the cases where the initial condition
consists of fluid velocity only, fluid → all, its response in energy growth is
less compared to the clean fluid flow. When only the particles are disturbed,
part → all, the response is even less at these low values of the particle relaxation
time.

Investigating the response of the particles reflects the ability to produce
mixing. The possible energy growth of the particles is small; all cases initial →
part are small compared to the cases just presented. As already discussed
for spanwise disturbances, this difference is of order f−1. Furthermore, for
part → part the maximum gain is always equal to one, i.e. no growth.

The final three cases discussed deal with the optimal energy growth of the
fluid. The fluid gains less energy compared to the single phase flow. Even for a
disturbance of the total system, all → fluid, the energy gain is less compared to
the single phase flow. The case fluid → fluid shows a decrease of the transient
growth by more than a factor of (1 + f). This indicates that for streamwise
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disturbances the particles introduce extra dissipation of the disturbance energy.
An initial disturbance of the particles results in a small response to the fluid,
part → fluid, which again can be explained by the relative low density of the
particles.

The initial condition and optimal response for a streamwise disturbance
with α = 1.6, S = 5 · 10−5, f = 0.15 and R = 5000 for the case fluid → fluid
is displayed in figure 12. The initial condition consists of flow patterns oppos-
ing the mean shear direction. As time evolves, they tilt into the mean shear
direction, which introduces the transient growth. This process is similar to the
Orr-mechanism in fluid alone (Orr 1907). Note that at the final optimization
time, the fluid and particle velocities are not exactly equal to each other, unlike
for spanwise disturbances at the same value of S.
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Figure 12: (Color online) Optimal initial condition and response for the case
fluid → fluid with α = 1.6, S = 5 · 10−5, f = 0.15 and R = 5000. On top
the absolute velocities of fluid and particles are displayed. The bottom figures
represent the u-velocity contours (a) and the velocity vectors of the fluid (b).
Initial condition can be seen as flow patterns opposing the mean shear (a).
The disturbance velocity of the particles is zero. In the response (b), the
disturbance is changed into the the mean shear direction. The Orr-mechanism
can be recognized.

In figure 13(a) the optimal growth as function of α is displayed for particles
with S = 2.5 · 10−3, a value larger than that used in figure 7. One notices a
growth larger than in single phase fluid in three different cases, namely all →
all, all → fluid and part → fluid. In other words, in all the cases with large
energy growth, the initial condition consists of particle disturbance velocity.
This can be either as particles alone or as the total system, which includes
particle velocity.

To investigate the effect of S on the growth of two-dimensional disturban-
ces, figure 13(b) shows the optimal growth as a function of S. For small values
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of S, the results are as in figure 7(c). The energy gain is enhanced by a fac-
tor (1 + f) in the case all → all with respect to the single phase flow, unlike
spanwise disturbances where the growth in the laden flow is enhanced by a fac-
tor (1 + f)2. When considering an initial disturbance consisting only of fluid
velocity, fluid → fluid and fluid → all, the energy gain is always smaller in
the presence of particles. The particles induce therefore an energy loss. For
the case of perturbation induced by the particle motion, part → fluid, one ob-
serves that for values of SR = O(1) the transient growth increases significantly
and reaches asymptotic values for the largest S considered. Larger values of
the energy gain in the case of two-dimensional disturbances can therefore be
observed when the particle relaxation time is longer than the typical convective
time scale of the flow. Comparing the amplification with the case all → all,
one can see that this effect is associated to the growth of the particle per-
turbation kinetic energy in the ballistic limit. This was discussed before for
spanwise-periodic modes.
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Figure 13: (Color online) (a): optimal growth for streamwise waves for 5 dif-
ferent cases, including the single phase flow. (b): optimal growth versus S, for
same cases as in the figure on the left. Note that all → all diverges from the
other results at S ∼ 10−3

4. Conclusions

We perform modal and non-modal stability analysis of channel flow seeded
with small, heavy, spherical particles. The interaction between the two phases
is modeled solely by Stokes drag. We present results for different values of the
particle relaxation time and volume fraction. The particle relaxation time is
limited by the fact that particle are assumed to be much smaller than the flow
length scale, while the mass fraction is assumed small since particle-particle
collisions are not included in our model.

We show that the presence of particles has a very different effect on the
exponential and transient growth of external perturbations. The differences are
explained in terms of the different characteristic time scale of the two instability
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mechanisms. As shown in previous investigations, particles can increase the
critical Reynolds number by at least one order of magnitude. However, we
demonstrate here that particles increase the non-modal energy growth. The
presence of a dilute solid phase therefore will not work as a flow-control strategy
for maintaining laminar flow.

Modal stability is influenced by the dimensionless relaxation time, S. At
small values (small particles) the critical Reynolds number decreases propor-
tionally to the density of the solution, as (1 + f). Intermediate values of S
yield the largest increase of the critical Reynolds number, where the increase
is proportional to the volume fraction of the solid phase. In the ballistic limit,
the neutral curves approach again the results for. The largest stabilization is
obtained for Stω = SRωr ≈ 1, that is for waves whose period of pulsation is
of the order of the particle relaxation time. To gain further insight into the
stabilizing mechanisms we consider the evolution of the disturbance kinetic en-
ergy and show that the resonance between particle and instability characteristic
times gives the maximum dissipation associated to the work of Stokes’ drag.

The generation of streamwise streaks via the lift-up mechanism is still the
dominant disturbance-growth mechanism in subcritical particle laden flows:
the length scales of the most dangerous disturbances are unaffected while the
disturbance growth can be initially delayed. The increase by a factor (1 + f)2

of the non-modal gain can also be explained in terms of the stability Stokes
number Stω. This dimensionless parameter assumes very low values in the case
of the low-frequency non-modal growth (Stω ≈ SR/tmax, with tmax ≈ O(100))
and therefore the effect of particles is just that of altering the fluid density.
Particles have the time necessary to follow the slow formation of the streaks.
Indeed particles increase the solution density and the Reynolds number of the
laden fluid becomes then Rm = (1 + f)R. As the optimal growth in unladen
flows is proportional to R2, the presence of the particles increases the energy
gain by (1 + f)2.

To summarize, the effect of particles on the modal and non-modal stability
of channel flows can be explained by the stability Stokes number Stω. Low
values of this parameter indicate that the particles follow passively the fluid
instability and their effect is only that of increasing the total density of the sus-
pension. Significant energy losses that can have a stabilizing effect are observed
only when Stω = O(1).

A method for investigating the response of different flow quantities to dif-
ferent input disturbances has been introduced. Instead of optimizing the energy
of the total system, we optimize for fluid and particles separately as well. When
examining a disturbance in the fluid alone and the corresponding fluid energy
at final time, we find that the optimal growth for a particle laden flow is close
to that of the clean fluid and a noticeable difference is seen only for the largest
values of S. The energy that the fluid can extract by an initial perturbation of
the particle velocity is proportional to the mass fraction f .
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The work presented in this paper could be extended in a number of non-
trivial and interesting ways. First, we have here focussed on heavy particles,
neglecting contributions from added mass and pressure forces. The effect of
light particles on the flow stability should be addressed. Second, one may con-
sider finite-size particles of different shapes. Finally, our results indicate that
the initial stages of transition in dilute suspensions of small particles should
follow a similar path as in a single phase flow. However, to be able to estimate
the effect of the solid phase on the laminar/turbulent transition full nonlinear
simulations will be necessary. Indeed, while little changing the initial forma-
tion of the streamwise elongated streaks, particles may accumulate and affect
the self-sustaining cycle of turbulence (Waleffe 1995). The recent results in
turbulent channel flow (Zhao et al. 2010) indicate that this may be the case.
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Both modal and non-modal stability analysis of a channel flow laden with
light particles is presented. The particles are assumed spherical and solid and
their presence modeled using two-way coupling, with Stokes drag, added mass
and fluid acceleration as coupling terms. The Stokes drag is a function of parti-
cle relaxation time and mass fraction, while added mass and fluid acceleration
are a function of mass fraction and density ratio. When the particles consid-
ered have a density ratio of order one, all three terms are important. Modal
analysis shows a decrease in critical Reynolds number proportional to the mass
fraction for all particle relaxation times at a density ratio of one. Lighter par-
ticles decrease the critical Reynolds number further, whereas heavier particles
might increase the critical Reynolds number. Most effect is found when the
stability Stokes number is of order one. Non-modal analysis shows that the
transient growth of the total system is enhanced in proportion to the particle
mass fraction, as observed in flows laden with heavy particles. The generation
of streamwise streaks is still the most dominant disturbance-growth mechanism
in particle laden flows with light particles. Thus, the presence of particles may
not work to delay the transition.

1. Introduction

Particle laden flows are found in our environment and many applications deal
with these, such as turbines. Indeed, significant efforts have been recently
devoted to the study of particles in turbulence as reviewed by Toschi & Boden-
schatz (2009) and Balachandar & Eaton (2009). In the early ’60, it has been
shown that adding dust to a pipe flow reduces the drag (Sproull 1961). As
an explanation for this phenomenon, it has been proposed that the interaction
between fluid and particles dampens the initiation and growth of disturbances
which then leads to turbulent structures. Turbulent structures enhance drag,
thus, if turbulence is delayed, drag can be reduced. Drag reduction in turbulent

65
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flow has been found more recently in a channel flow seeded with heavy parti-
cles, using Direct Numerical Simulations (Zhao et al. 2010). Drag reduction
in flows with light particles, e.g. bubbles in a liquid, has been demonstrated
in experimental work (McCormick & Bhattacharyya 1973; Jacob et al. 2010).
Micro-bubbles, which can be modeled as rigid spheres when the bubbles are
small enough, have been numerically investigated by Ferrante & Elghobashi
(2003) and Xu et al. (2002) for a turbulent flow. These found that rigid micro-
bubbles reduce the drag.

These findings motivated us to investigate whether the laminar-turbulent
transition can be delayed using particles. In a previous paper (Klinkenberg
et al. 2011) we discussed the case of heavy particles. The interaction term
between fluid and particles consisted of Stokes Drag only. This simplification
was justified for heavy particles, whose density is much larger than the fluid
density. Modal analysis showed stabilization, the critical Reynolds number in-
creased for a large range of particle sizes. The stabilization effect was shown to
arise when the ratio of particle relaxation time and the period of the instability,
the stability Stokes number, is of order one.
The non-modal analysis showed no sign of stabilization: the energy gain of per-
turbations of the total system increased with a factor of (1+f)2 for streamwise-
independent spanwise-periodic waves, where f is the particle mass fraction.
This effect can again be explained using the stability Stokes number: non-modal
growth is a slow process, thus the particle relaxation time is much smaller than
the disturbance time scale. Therefore, the stability Stokes number is small and
the particle has less influence on the non-modal growth. The present study in-
vestigates the effect of the other interaction terms, which are important when
the densities of fluid and particles are of the same order.

Stability analysis of particle laden flows was first by Saffman (1962). He
showed theoretically that adding dust to a gas might stabilize the flow(Saffman
1962). This analysis was used by Michael (1964) to show neutral stability
curves for several particle sizes. The particle sizes are described using a relax-
ation time, the time for a particle to adjust to the flow velocity. Both Saffman
and Michael considered a plane parallel Poiseuille flow in which the base flow
of particles equals the base flow of the fluid. Both the fluid and the particles
are modeled in a Eulerian framework. Besides this, particles are considered
spherical and homogeneously distributed.

The neutral stability curves given by Michael confirm the previous analysis
by Saffman. He noticed that even larger particles have less effect in the stabil-
ity. Therefore, an optimal particle relaxation time exists for stabilization. To
perform stability analysis for large relaxation times, Rudyak et al. (1997) and
Asmolov & Manuilovich (1998) extended the research done by Michael. They
improved numerical accuracy in channel flow and boundary layer flow using
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a different technique based on integration in the complex plane. The general
results stay the same: small particles destabilize the flow due to increased den-
sity while intermediate-size particles enhance stability. In addition to modal
analysis, the more recent paper by Klinkenberg et al. (2011) also discusses non
modal analysis of the particle laden flow. These authors found that non modal
analysis shows that heavy particles have no effect on flow stability, as men-
tioned above.

Non-modal analysis is a relatively new, but an important tool to predict in-
stabilities. Nowadays it is understood that a perturbation in a shear flow can ex-
perience significant transient energy growth (Ellingsen & Palm 1975; Trefethen
et al. 1993; Reddy & Henningson 1993; Schmid & Henningson 2001). This
growth is responsible for the initial linear amplification of disturbances which
leads to subcritical transition to turbulence. Non-modal effects can therefore
explain the discrepancy observed between the critical Reynolds number for lin-
ear instability and the experimental observations of transition in wall-bounded
shear flows. We therefore need to use non-modal analysis to gain insight into
the stability of flows seeded with light particles.

To perform stability analysis on particle laden flows with light particles,
some interaction terms cannot be neglected, which can be with heavy particles.
Maxey & Riley (1983)give an overview of the interaction forces in particle
laden flows. These forces consist of the Stokes drag, the added mass, the fluid
acceleration force (also known as pressure correction force), buoyancy and the
Basset history term. The starting point of their analysis is the equation of
motion proposed by Tchen (1947) and modified by Corrsin & Lumley (1956).
Besides these interaction forces, the Saffman lift force (Saffman 1992) is present,
as discussed by several authors (Dandy & Dwyer 1990; Mei 1992; McLaughlin
1991) and more recently by Boronin & Osiptsov (2008). In addition to these
different interaction terms, the effect of finite particle volume, the volume the
particles have, is investigated by Vreman (2007) and Boronin (2008).

Although the different forces between fluid and particles have been known
for a long time and have been discussed for turbulent flows in several papers,
e.g. Calzavarini et al. (2009), transitional flows with light particles have not
been considered much in literature. Relevant work on transition with the in-
clusion of particles is done by Matas et al. (2003b) and Matas et al. (2003a).
They performed experiments on particle laden flows using light particles in a
pipe flow, with a density ratio of exactly one. To control transition to start at
Re ≈ 2100 for a clean flow, they inserted a ring at the pipe entrance. Particles
of four different sizes were injected into the flow and the Reynolds number at
which transition starts, the transitional Reynolds number investigated. These
authors found that for large concentrations all particle sizes stabilized the flow,
i.e. the transitional Reynolds number increased. For smaller concentrations
(volume fraction ≤ 0.2), large particles destabilized the flow, while the smaller
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Table 1: Definition of the non-dimensional numbers used.

Φ
N0

4

3
πr3

L3 Volume fraction
ξ ρf

ρp
Density ratio

f Φ
ξ = mp

mf
Mass fraction

R ρfUL
µ Reynolds number

S ντ
L2 = 2

9
r2

L2

ρp
ρf

Relaxation time

SR Uτ
L Stokes number

particles (d/D ≤ 70) stabilized the flow. Interestingly, in the range of small
particles, the results became independent of the particle diameter.

The aim of this paper is to investigate the linear stability for flows laden
with light particles using both modal and non-modal analysis. We consider
several interaction terms between fluid and particles and show how these terms
influence the stability of the flow. The interaction terms considered in this
paper are the Stokes drag, the added mass and the fluid acceleration. To
perform our analysis, we adopt the model introduced by Maxey & Riley (1983),
rewritten into a Eulerian framework. While this continuous approach is likely
to fail in turbulent flows, due to particle clustering and singularities in the
particle field, it can still be used for laminar flow with a perturbation, such as
in linear stability calculations (Boffetta et al. 2007).

2. Flow model and analysis

A numerical stability analysis is performed in which a channel flow is considered
seeded with small, spherical particles.

2.1. Governing equations

The equations used are the Navier Stokes Equations with the addition of several
interaction terms, written in a Eulerian framework. In the following, every term
is made non-dimensional with the channel half-width L, centerline velocity U ,
fluid density ρf and the fluid viscosity µ. The dimensionless numbers used
throughout this paper are defined in Table 1, where ρp is the particle density,
r the particle radius and N0 the number of particles present in the flow.
The Reynolds number and the non-dimensional relaxation time S are both used;
these two can also be combined into the Stokes number SR. The momentum
equations finally read:

dupi

dt
= ξ

Dui

Dt
−

1

2
ξ

[

dupi

dt
−

Dui

Dt

]

+
1

SR
(ui − upi) , (1)
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Dui

Dt
= −

∂p

∂xi
+ µ

∂2ui

∂x2
j

− fξ
Dui

Dt
−

1

2
fξ

[

Dui

Dt
−

dupi
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]

+
f

SR
(upi − ui) . (2)

The terms on the right hand side of the particle momentum, equation (1),
are the fluid acceleration term, added mass and Stokes drag, respectively. All
these terms can also be found in the momentum equation of the fluid. The
derivative D/Dt is used for the total derivative following a fluid element, while
d/dt is used for the total derivative following a moving particle. In addition
to the momentum equations, conservation of mass is necessary to close the
system; for particles and fluid these read

∂f

∂t
= −div(fupi) (3)

∂ui

∂xi
= 0 (4)

A small perturbation (u′) to a base flow (U) is introduced, where the base
flow is considered to be a parallel Poiseuille flow, U = U(y) = 1 − y2, with
y ∈ [−1, 1]. The particle base flow is equal to the fluid base flow, independent
of the number of particles. Substituting ui = U +u′

i, upi = U +u′

pi
, p = P + p′

and f = f ′+ f in equations(2-4), linearized stability equations are derived in a
standard way (Schmid & Henningson 2001). These read (primes are omitted):
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with AM and FA the Added Mass and Fluid Acceleration, with subscripts f

and p, denoting fluid and particle respectively:
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For the configuration considered, the equation for the particle mass fraction f
(equation 7) is decoupled from the rest of the system. As a consequence, Squires
theorem can be extended to this case and a complex Orr-Sommerfeld equation
can be derived. (Boronin 2008) This has been done by Saffman (1962) and
Michael (1964) for heavy particles, but the approach cen be extended to incor-
porate the added mass and fluid acceleration. However, we are also interested
in non-modal stability of the full three-dimensional problem and therefore con-
sider the corresponding initial value problem. The fluid velocities are rewritten
into wall-normal velocity v and wall-normal vorticity η = ∂u

∂z − ∂w
∂x , analogous

to the standard Orr-Sommerfeld-Squire system used for parallel monophase
flows. This is done by eliminating the pressure from Equation 5 and by solving
∂u
∂z − ∂w

∂x . The corresponding total system of particle and fluid equations then
reads:

(
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with
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∂2vp
∂x2

+
∂2vp
∂z2

−
∂2up

∂x∂y
−

∂2wp

∂z∂y
(15)

The boundary conditions of this system are v = η = up = vp = wp = 0 at
top and bottom walls.

2.2. Modal analysis

To study linear stability, we assume wave-like perturbations in the following
form:

q = q̂(y)ei(αx+βz−ωt),

with q = (v, η, up, vp, wp)T . In the expression above, α and β define the stream-
wise and spanwise wavenumber of the perturbation respectively and ω is a com-
plex frequency. The temporal problem is considered here: when -(ω) > 0, the
perturbation will grow exponentially in time. Conversely, when all -(ω) < 0,
all disturbances decay asymptotically, i.e. the flow is stable. The point where
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ωi = 0, is called neutrally stable. When computing ωi in a range of wavenum-
bers α and Reynolds numbers, a neutral stability curve can be obtained. This
curve defines the range where exponentially unstable waves can be found. As
mentioned earlier, the neutral stability curve can be computed assuming two-
dimensional perturbations, since a modified version of Squire’s theorem holds
for the modified Orr-Sommerfeld equation (Saffman 1962; Boronin 2008).

2.3. Non-modal analysis

Transient growth exists when the eigenvectors of the system are non-normal.
This is also the case in systems which are asymptotically stable. To investigate
transient growth, non-modal analysis is necessary. Non-modal analysis deter-
mines the largest possible growth of a perturbation in a finite time interval,
also called optimal growth. The initial disturbance yielding optimal growth is
called an optimal initial condition.

The governing linear equations can be written in compact form as:

∂q

∂t
= Lq. (16)

The largest possible growth at time t is the norm of the evolution operator,
or propagator, T = exp(tL). This propagator takes any initial condition from
t = 0 to a specified final time t. The maximum amplification is defined as:

max
q0

||q||

||q0||
= max

q0

|| exp(tL)q0||

||q0||
= ||exp(tL)|| ≡ G(t). (17)

The norm used should be relevant to our problem. Therefore we use the kinetic
energy of the full system defined as the kinetic energy of the fluid and of the
particles together:

Ekin =
1

2

(

mfu
2
i +mpu

2
pi

)

, (18)

with mf and mp the mass of the fluid and the particles respectively.
A matrix M can be constructed to compute the kinetic energy. This matrix M
is applied directly to the vector q = [v, η, up, vp, wp]T to give the kinetic energy
integrated over the volume V

E(t) =
1

2

∫

Ω
qHMqdV. (19)

With this definition the optimal growth is defined as the 2-norm of the modified
propagator

max
q0

||q||E
||q0||E

= max
q0

||Fq||2
||Fq0||2

= max
q0

||F exp(tL)F−1Fq0||2
||Fq0||2

= ||Fexp(tL)F−1||2 ≡ G(t)

(20)
where F is the Cholesky factorization of M = FFH .
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As in our previous study, we are not only interested in optimizing the total
energy of the system, but also wish to investigate the optimal growth when
perturbing only the fluid or particle velocity. In this case, we do not consider
the total kinetic energy of the system, but only a part of it, depending on the
initial condition and final state chosen. This separation can be achieved by
including either fluid or particle energy when computing the optimal growth
(Klinkenberg et al. 2011). The optimizarion can be written as

G(t) =
||qout(t)||Eout

||qin(0)||Ein

=
||T qin(0)||Eout

||qin(0)||Ein

=
||FoutT qin(0)||2
||Finqin(0)||2

=

=
||FoutT F−1

in Finqin(0)||2
||Finqin(0)||2

= ||FoutT F−1
in ||2. = ||FoutC exp(tL)BF−1

in ||2 (21)

Here, propagator T = C exp(tL)B is rewritten to include the input and out-
put operators. The input is qin = Bq, while qout = Cq is the output we are
interested in. The energy norm must be separated likewise, Min = FinFH

in is
applied to qin to measure the input energy while Mout = FoutFH

out gives the
output energy. In the classic non-modal analysis discussed, Fin = Fout and
C = B = I.

2.4. Numerical method

The discretization in y-direction of the equations is done using the Chebyshev
collocation method (Reddy et al. 1998). Most computations are performed us-
ing ny = 37, with ny the number of collocation points. Several cases have also
been computed with ny = 67 to validate the accuracy of the results.

For the transient growth computation, we made use of the following energy
matrix M :

M =















(

−D2

k2 + 1
)

Iw 0 0 0 0

0 1
k2 Iw 0 0 0

0 0 fIw 0 0
0 0 0 fIw 0
0 0 0 0 fIw















. (22)

In the expression above, Iw is the diagonal matrix performing spectral integra-
tion in y direction. This matrix can be easily factorized using a singular value
decomposition (SVD): M = UΣUH = FFH .

3. Results

3.1. Modal analysis

The results for modal stability analysis are given in Figure 1, where we display
the critical Reynolds number versus the particle relaxation time. When the
density ratio ξ = 1, the particles act as a passive tracer: no change is found
in the critical Reynolds number, except for a shift corresponding to the mass
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the particles add to the system (1 + f). When the particles are heavier than
the fluid, the critical Reynolds number is enhanced. The largest stabilization is
found when considering heavy particles and the only relevant interaction term
is the Stokes drag. Particles lighter than the fluid (ξ > 1 and still rigid in our
model) behave oppositely to heavy particles and decrease the critical Reynolds
number. The results in Figure 1(b) shows that the largest is found when the
stability Stokes number SRωr ≈ 1. The stability Stokes number is defined
as the Stokes number times the period of the disturbance wave. The stability
Stokes number therefore, is the ratio between the particle relaxation time and
the timescale of the disturbance.
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Figure 1: Critical Reynolds number as a function of S and SRωr for light
particles using both added mass and fluid acceleration: ξ=[0.5, 1, 2], f = 0.1 .

To gain further understanding on the modal stability, we examine the crit-
ical Reynolds number as a function of density ratio in Figure 2(a and b). The
size of the particles is prescribed together with the volume fraction in panel (a)
and the mass fraction in panel (b). When fixing the particle volume fraction,
three different regimes can be distinguished. For small values of ξ (ξ < 0.02)
the critical Reynolds number is only a function of r/L and ξ, not of Φ: this
is the case of heavy particles. For large values of ξ (ξ > 0.6) the particles are
so light that they have basically no influence on the flow. When ξ > 1, the
critical Reynolds number decreases Rcrit,clean/(1+f). In the region in between
those two extremes, particles do have an effect on the stability and the critical
Reynolds number is increased.

When prescribing the mass fraction (fig. 2b), we can clearly distinguish
between the three values used: the larger the mass fraction, the larger the
critical Reynolds number. On the other hand, when the particle size is larger
the maximum critical Reynolds number is lower. Also, with larger particles
the maximum stabilization is reached for larger values of ξ. The latter finding
can be explained by the definition of S, which is a function of the particle size.
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The largest stabilization is is indeed for stability Stokes number of order one,
as shown above.

In figure 2(c) we display the critical Reynold snumber versus the particle
size normalized with the channel half width, r/L. If we consider small particles,
the critical Reynolds number is not increasing. Since S is too small, we only see
the effect of increasing density: the critical Reynolds number is decreased by a
factor (1+f). When particle size increases, on the other hand, we see the largest
critical Reynolds number for values in the range r/L = 0.001 < r/L < 0.01.
The size at which the critical Reynolds number is maximum is related to the
density ratio: the particle relaxation time S depends linearly on ξ = Φ/f . The
data for heavy particles are obtained using Stokes drag only; fixing the same
volume and mass fraction as for light particles ξ = Φ/f and the size is defined
by r/L =

√

9/2Sξ as a function of S. The forces important at lower density
ratio decrease the critical Reynolds number of the system as seen in 2(d), where
the critical Reynolds number is given as a function of SR with prescribed size
and mass fraction (cf. fig.2 b). We can see that heavy particles induce a larger
critical Reynolds number than light particles. Also, a sharp edge is present at
SR ∼ 10: the ballistic limit. In this region the particles are heavy and we can
use the heavy particle approximation.

The effect of added mass and fluid acceleration on the critical Reynolds
number is examined in Figure 3. The added mass term shows the same trend as
obtained with Stokes drag only: the critical Reynolds number is enhanced, see
Figure 3(a). When the particles become heavier, the stability curve computed
with added mass overlaps with that for heavy particles. The figure indicates
that the lighter the particle, the lower the critical Reynolds number when con-
sidering only added mass. Figure 3(b) shows the results obtained considering
fluid acceleration and Stokes drag: particles seems not to affect the flow when
they are neutrally buoyant; only the density of the system increases by a factor
(1 + f). Lighter particles destabilize the flow and reduce the critical Reynolds
number, as shown for ξ = 2.
The results obtained including the fluid accelaration are similar to those shown
before when all terms are used. Apparently, the fluid acceleration term is the
most dominant force in the system.

3.2. Non-modal analysis

Results of the non-modal analysis are presented in Figure 4. The only cases
presented are fluid → fluid and all → all. The first case only investigates
the transient growth of the fluid energy when the initial condition consists of
fluid perturbation only; the optimal growth of the fluid disturbance velocity
is studied. The particles are in the system and can gain energy, but this is
not apparent. In the case all → all, the total energy of the two-phase system
is investigated and particles may also have some initial disturbance velocity.
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Figure 2: Critical Reynolds number as a function of the density ratioξ (a-b),
the particle size r/L and the Stokes number SR(d). In (c) and (d) we report
also the results for heavy particles. Note that the data in (b) and (d) pertain
the same particle sizes and mass fractions.

In Figure 4(a), we display the optimal growth as a function of spanwise wave-
number β, the streamwise wave-number α is set to zero. The data represent the
maximum over the final optimization time. The computations are performed
for 2D waves as well; since the transient growth of these streamwise waves
is two orders smaller than for spanwise waves the results will be presented
later. The density ratios under consideration are those used also in the modal
analysis, ξ = [0.5, 1, 2]. The results with all extra forces included are similar
to those of heavy particles, namely there is no significant effect of particles
on the streak transient growth. The optimal growth is equal, irrespective of
whether only Stokes drag is used, or whether the system includes added mass
and fluid acceleration. In the second figure, Figure 4(b), the particle size and
total volume is set, while the density ratio is changed along the horizontal axis.
For small values of ξ, the mass fraction is very high and thus the growth for
the case all → all is higher. As shown in Klinkenberg et al. (2011) for heavy
particles, the maximum possible amplification is proportional to (1+ f)2. The
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Figure 3: Critical Reynolds number vs. relaxation time S for particles of
density ratio ξ=[0.5, 1, 2] and mass fraction f = 0.1. As reference, we display
the results for clean flow and heavy particles (Stokes drag only).

larger ξ gets, the smaller the mass fraction and therefore the smaller the optimal
growth, approaching the case of clean fluid.
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Figure 4: a: Optimal growth (Gmax) as a function of spanwise wave-number β
at S = 5 · 10−5, f = 0.1 and R = 2000. The cases fluid → fluid and all → all
are presented for ξ = [0.5, 1, 2]. b: Optimal growth as a function of ξ using
β = 2 at S = 5 · 10−5 and R = 2000

The effect of the added mass and fluid acceleration on the streak transient
growth is further investigated for several values of S using β = 2, where the
optimal growth is at a maximum. These results can be found in Figure 5. The
case all → all with f = 0.1 starts to deviate considerably from S = 1·10−2; this
is due to the decoupling of particle and fluid behavior as discussed for heavy
particles (Klinkenberg et al. 2011). Apparently the two extra terms do not have
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much influence on the growth at large values of S and the results are consistent
with those for heavy particles. One can note that the energy amplification is
larger when considering both fluid and particle energy (all → all) than for fluid
alone (fluid → fluid). Finally, figure 5(a) shows that at fixed mass fraction,
the energy growth for the fluid → fluid case is almost equal to that for clean
fluid and heavy particle flow. Only at very large values of S the optimal growth
deviates a few percent in the presence of particles, as shown later in more detail.
If we prescribe the volume fraction and particle size, the maximum growth goes
as (1 + f)2 as displayed in Figure 5(b) where the largest values of f occur at
large S. This could be seen if plotting G/(1 + f)2 instead of G.
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Figure 5: Optimal growth (Gmax) as a function of S, using β = 2, R = 2000 and
(a) f = 0.1, ξ = [0.5, 1, 2] and (b) Φ = [0.01, 0.1, 0.2], r/L = [0.005, 0.01].
The cases fluid → fluid and all → all are presented

To investigate the structures of the disturbances, we display the optimal
initial condition and response in Figure 6 for the case fluid → fluid, S =
1·10−2. The velocity field at final time of particles and fluid are almost identical
to each other and to the case of clean fluid (not shown here). Since differences
in velocity induce a loss in energy, particles and fluid have similar velocity in
optimal configurations; light particles do not induce any additional gain or loss
in disturbance energy.

We therefore demonstrated how light particles have no effect on the non-
modal stability of spanwise waves, confirming the results previously obtained
for heavy particles; we now investigate streamwise and oblique disturbances.
Even though these disturbances grow less than purely spanwise disturbances,
they might be important for transition in real configurations, e.g. when tran-
sition is initiated by localized disturbances. The effect of particles on these is
therefore worth investigation. Figure 7 shows the results for several streamwise
α and spanwise wavenumbers β. When both are nonzero, the waves are oblique.
The values of the maximum possible amplification are reported in the table,
while the plots display the relative variation with respect to the case of clean
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Figure 6: Initial condition and response for S = 1 · 10−2. Case fluid → fluid
with ξ = 1, β = 2, R = 2000 and f = 0.1

fluid. We first consider small values of SR: for streamwise waves, particles in-
duce a decrease in transient growth of order (1+f) (case fluid → fluid), while
spanwise waves show no difference between laden and unladen flow. For oblique
waves, the results lie in between these two extremes. For slightly oblique waves
(β = 2,α = 0.1), we observe the lowest relative loss of energy growth. The
magnitude of this loss increases for larger values of α.

When increasing the Stokes number, we see a clear decrease of transient
growth when compared to the case of single phase fluid. This occurs at lower
SR for two-dimensional and at larger values of SR for disturbances approaching
spanwise waves. This stabilization effect is observed for values of the stability
Stokes number, defined by the time giving the largest amplification, of order
one; so at lower Stokes for modes with β = 0 for which the transient growth
is faster, and at higher Stokes for modes with α = 0 for which the transient
growth is a slower process. This stabilization is the counterpart of the increase
of critical Reynolds number shown by the modal analysis. Note however, as
discussed in the next section, that the values of the Stokes number necessary
to observe this stabilization can be related to parameters outside the range of
validity of our model. When farther increasing the particle relaxation time, we
observe an increase of the transient growth (values larger than 1 in the figure).
Again, we note that this is however happening for particle size too large for
our model to be valid. The relative increment of the transient growth can be
explained by the fluid acceleration term; the Stokes drag goes to zero as SR
tends to infinity.

4. Discussion

The modal analysis reveals differences between light and heavy particles: the
different interaction terms may have a large influence on the computed critical
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Case Clean flow growth
β = 2, α = 0 783.24
β = 2, α = 0.1 664.14
β = 2, α = 0.5 346.71
β = 2, α = 1 193.87
β = 0, α = 1 13.76

Figure 7: Transient growth of oblique waves normalised with the growth rate
of a clean flow as a function of SR for fluid → fluid and f = 0.1. The values
of the amplification for a single phase fluid are reported in the table.

Reynolds number. As shown in previous studeis, Stokes drag can induce a sig-
nificant delay of the instability onset for certain particle relaxation times. The
added mass term has the least influence on the critical Reynolds number when
used in combination with the Stokes Drag. The fluid acceleration has a more
complicated effect. When ξ = 1, neutrally buoyant particles, the additional
mass of the particles reduces the critical Reynolds number. This is similar to
the effect at small values of S when heavy particles are considered (Klinkenberg
et al. 2011) where it can be explained by looking at the total energy budget.
Particles lighter than the fluid destabilize the flow, while heavier particles in-
duce lower stabilization when acceleration term is considered. When taking the
added mass and fluid acceleration into account, the fluid acceleration term has
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most influence. The particles can be seen more as a passive tracer within the
fluid, and the stabilizing effect on the critical Reynolds number decreases.

Non-modal analysis gives a different result than modal analysis. For heavy
particles, when Stokes drag is used as only interaction term, the total tran-
sient growth for spanwise waves is larger with a factor of (1 + f)2 for the case
all → all with respect to a clean fluid flow, up to large values of S. This can
be explained by the increased Reynolds number due to the increased density of
the total system. The optimal condition is that particles and fluid have equal
velocities in order to minimize energy losses. When implementing extra inter-
action terms, this result is still true. Independent of which interaction forces
one takes into account, the optimal growth is equal up to S = 10−2. At larger
values of S, the equations decouple and the particle energy can grow infinitely
in the linear model, because the only dissipative terms in the particle momen-
tum equation stems from the forces exchanged with the fluid.
When we look at streamwise-dependent disturbances, for which modal anal-
ysis reveals an increase of the critical Reynolds number, the optimal growth
fluid → fluid is smaller by a factor of (1 + f) when compared to that in a
clean fluid flow. Table 2 shows the relation of the optimal growth of particle
laden flows versus clean fluid for both spanwise and streamwise waves for small
values of S. We recall that the transient growth is at least one order of mag-
nitude larger for spanwise-periodic streamwise-independent modes. The extra

Table 2: Dependence of the optimal growth on mass fraction f for streamwise
and spanwise disturbances.

case spanwise streamwise
all → all (1 + f)2 (1 + f)1

all → fluid (1 + f)1 (1 + f)0

fl → fl (1 + f)0 (1 + f)−1

interaction terms have no influence on the non-modal stability and this appears
less obvious than for heavy particles. The energy analysis of heavy particles
shows that particle-fluid interaction always induces a loss in kinetic energy.
To optimize energy, both the fluid and particles should have equal velocities,
which then results in an (1+ f)2 increase of the energy gain when the particles
act as passive tracers and increase the fluid density. In non-modal analysis the
particles act basically as passive tracer up to large values of S because tran-
sient growth is a slow process. Therefore, the stability Stokes number is small
indicating that particles react to the flow faster than the time needed for the
streaks to grow.

So far we reported data for wide variations of the different parameters
defining the particle laden channel flow. Now, we discuss the range of validity
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of the model we use and the limitations of the results. With the help of figure 8
we consider the size of the particles, the number of particles, the density ratio
and the volume fraction of the particles. Investigating these, we see that we
have to be careful in choosing S; the system should be physically feasible. The
density ratio and the size of the particle are related through S = 2

9
r2

L2

1
ξ . This

means that, if the density ratio is known, we can relate dimensionless relaxation
time S to the dimensionless radius of the particle, r/L, where L is the channel
half width. Figure 8 (a) shows the values of S for sizes of the particles small
enough for the model to apply and for different particle density. The lighter
the particles, the larger the particles should be to have the same value of S.
Because most particle-fluid interaction occurs at a stability Stokes number of
order one, we need larger particles to obtain relevant stability Stokes number
for lower density ratios. A problem that might occur is that particles are too
big for solely two-way coupling: particle-particle and particle-wall interactions
become more important.

Figure 8 (b) shows the volume fraction of the particles, Φ, as a function of
the number of particles for different particle sizes. When particles are larger, the
amount of particles needed for a certain volume fraction decreases. The amount
of particle has to be large enough to have a valid assumption for the Eulerian
approach: if we have too few particles, the particles cannot be described by
avaraged particle parameters. For example, with a volume fraction Φ = 0.1 and
a minimum number of N = 1000 particles, the size of the particles becomes
r/L = 0.03, a particle diameter of 6% of the channel half-width. This diameter
is not consistent with our analysis. Or, if the size of the particle is r/L = 0.01
and the density ratio of ξ = 1, the value of S is small enough that particles only
act as in increase in density: no interaction between the particles and fluid can
cause a delay in transition.
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Figure 8: Particle parameters for different values of ξ (a) and for different size
of particles r/L (b). N is the number of particles per volume l3
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5. Conclusion

We presented results for linear modal and non-modal stability of channel flow
laden with particles of varying density. Light particle behaves differently from
heavy particle as concerns the modal growth. Neutrally buoyant particles have
almost no effect when taking the fluid acceleration term into account: the par-
ticles only act as to increase the density of the suspension. This increase in
density then results in a decrease of the critical Reynolds number. The added
mass term has less effect on the modal stability than fluid acceleration force,
although the added mass decreases the critical Reynolds number. The parti-
cles do stabilize the flow compared to the clean fluid flow when the particle
relaxation time is of the order of the period of oscillations of the instability.
This stabilization decreasing when increasing the ratio between fluid density
and particle density.

Non-modal analysis on the other hand does not show a significant difference
between light and heavy particles. Streamwise-independent modes can undergo
large non-modal growth; this is associated to the amplification of streamwise
velocity streaks induced by counter-rotating streamwise vortices. The optimal
energy growth is found when the particle and fluid velocity are equal, resulting
in an increase of the transient energy growth by a factor (1 + f)2 compared to
a clean fluid when considering the total energy of the system. The interaction
terms added for light particles do appear in the energy budget but do not affect
the whole process; this can be explained by the long time scale associated to
the streak lift-up which allows particles to follow the fluid structures.

Finally, we discuss the limitation of the current model and the values of
particle relaxation times for which S the results are valid. Although some sta-
bilization may be seen also for transient growth at large values of S, this may
happen when the model used might not be valid. Considering also the first
part of this investigation (Klinkenberg et al. 2011), we see that the presence of
a solid phase has no significant effect on the non-modal growth responsible for
subcritical transition in channel flows, especially in the case of elongated struc-
tures. As a next step, a non-linear model should be used to investigated which
shows the effect of particles on secondary instabilities and final breakdown.
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Direct Numerical Simulation of a particle-laden channel flow is performed, with
particles assumed solid, spherical and heavy. Two-way coupling between fluid
and particles is modeled with Stokes drag. The equations describing the fluid
flow are solved with an Eulerian mesh and those describing particles are solved
in a Lagrangian frame. The numerical code is validated with results from lin-
ear optimal growth from previous studies; the optimal growth of streamwise
vortices resulting in streamwise streaks is still the most efficient mechanism for
disturbance amplification at subcritical conditions as for the case of a single
phase fluid.
We consider transition initiated by two initial disturbances well-known in lit-
erature, streamwise vortices and oblique waves. The threshold energy for tran-
sition is computed for both cases. It is observed that streamwise vortices in
combination with an oblique wave as additional initial disturbance, result in
a small increase of threshold energy compared to a clean fluid. In addition,
the time at which transition occurs clearly increases for disturbances of equal
initial energy. The threshold energy in the case of the so-called oblique sce-
nario, increases by a factor about 4 in the presence of particles. The results
are explained by considering the reduced amplification of oblique modes in the
presence of particles.
The results from these two classical scenarios indicate that, although stabil-
ity analysis shows hardly any effect on optimal growth, particles do influence
secondary instabilities and streak breakdown, thus the non-linear stages of
transition, in two different ways. The presence of particles introduced three-
dimensional, streamwise-dependent modulations, especially at low concentra-
tions, that may trigger and enhance secondary instabilities of streamwise-
independent streaks. On the other hand, particles decrease the amplitude of
oblique modes thus delaying transition initiated by their nonlinear interactions
as in the oblique scenario.
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1. Introduction

Transition from laminar to turbulent flows has been studied extensively in the
past. Linear stability analysis is typically considered a first analysis towards
understanding transition. This allows determination of critical values of the
relevant adimensional parameters above which exponentially growing distur-
bances exist. However, in many configurations, e.g. shear flows, transition is
subcritical and a full nonlinear analysis is needed. In shear flows, it is possible
to show that linear mechanisms are responsible for the instantaneous amplifica-
tion of perturbation energy and therefore a linear non-modal analysis (Schmid
& Henningson 2001) can reveal the mechanisms responsible for transition in
linearly stable cases. This was the case with the linear lift-up process that was
identified as a key process in wall-bounded flows.

Transition leads to an increase of the drag and is therefore often undesir-
able. One way to influence the transition scenario is by adding small, heavy
particles to the flow (Saffman 1962).
Although many fluid flows are seeded with particles, a lot of research still has
to be done to understand the influence of particles on the flow, in particular on
laminar-turbulent transition. Recent reviews of particle laden turbulent flows
are given by Toschi & Bodenschatz (2009) and Balachandar & Eaton (2009).
A particle in a fluid flow is subject to several different interaction forces (Maxey
& Riley 1983). First, there is a drag force between the particle and fluid.
When particle and fluid have different velocities, a shear force on the interface
is present; this interaction can be modeled using Stokes drag. Furthermore,
there are history effects, added mass and fluid correction forces. For larger
particle volume fraction, also particle-particle interactions have to be taken
into account.

In our previous papers (Klinkenberg et al. 2011b,a) stability of flows with
either heavy or light particles were investigated. For a flow with heavy particles
only Stokes drag is taken into account. For a flow with light particles, added
mass and fluid acceleration need also to be included. We found that particles
do not influence the transient growth of disturbances in plane channel flow.
This suggested that the initial linear stages of transition may not be affected
by the presence of particles. However, the numerical simulations by Zhao et al.
(2010) demonstrate that adding heavy particles reduces the drag of a turbulent
channel flow. The latter result indicates that particles have an effect on turbu-
lent structures. Therefore, although particles show no influence in the initial
linear stages of transition, they might have an effect on secondary, non-linear,
instabilities. The aim of the present paper is therefore to investigate the effect
of solid, spherical particles on the evolution of finite-size disturbances leading
to turbulent flow.

To investigate the effect of solid spheres, we use Direct Numerical Simu-
lations of a plane Poiseuille flow extended with a model for two-way coupling
between the particles and fluid using Stokes drag as interaction force. By means
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of numerical simulations, we investigate the behavior of a finite energy pertur-
bation, instead of the infinitesimal small perturbations as in the non-modal
analysis. We investigate how the threshold energy for transition, the minimum
initial disturbance energy necessary to reach the turbulent state, varies in the
presence of heavy particles. This provides information about the non-linear
behavior of streaks and it shows whether the secondary instabilities might be
damped by the presence of particles.
In relation to transition thresholds several researchers have considered the ’edge
of chaos’ (Schneider et al. 2007). This is the asymptotic state reached by per-
turbations, neither decaying to a laminar state nor evolving to turbulence.
Near the ’edge of chaos’, exact coherent structures are found (Nagata 1990;
Waleffe 1998, 2001). The ’edge state’ has been investigated more recently by
e.g. Duguet et al. (2010); Schneider et al. (2007); Wang et al. (2007); Kawahara
(2005); Duguet et al. (2008a,b). A review is given by Eckhardt et al. (2007).
The exact coherent structures are also investigated for dilute polymer solutions
by Stone et al. (2002) for a plane Couette flow. They found that for polymer
solutions the exact coherent states are a promising method for capturing the
essential physics of drag reduction.

In this paper we examine two transition scenarios previously analysed,
see e.g. Reddy et al. (1998). First we consider transition initiated by stream-
wise vortices, without any streamwise dependence. Streamwise vortices initiate
largest linear transient growth and they are common in many shear flows (Tre-
fethen et al. 1993; Reddy & Henningson 1993; Schmid & Henningson 2001). The
transition process initiated by these vortices can be summarizes as in (Reddy
et al. 1998):

streamwise vortices ⇒ streamwise streaks ⇒ streak breakdown ⇒ transition.

Because transition cannot take place without streamwise dependent struc-
tures,one needs to consider streamwise-dependent perturbations that trigger
streak breakdown and transition. Schoppa & Hussain (2002); Cossu et al.
(2011) show how simple spanwise modulations of the streak can induce a rapid
breakdown.
In the second route to turbulence as discussed by Reddy et al. (1998), we
consider a pair of oblique optimal waves. Each of these waves grow via the
transient growth mechanism so that they can nonlinearly interact. From this
interaction we get streamwise independent structures, streamwise vortices, that
in turn induce streamwise streaks via the lift-up effect. The scenario is thus
equal to the previously discussed scenario of streamwise vortices, but with one
extra initial step:

oblique waves ⇒ streamwise vortices ⇒

⇒ streamwise streaks ⇒ streak breakdown ⇒ transition.

This scenario has been extensively investigated in the past for a clean fluid
flow, see e.g. Schmid & Henningson (1992); Berlin et al. (1994). Note that
the oblique scenario is found to be the most efficient way to trigger turbulence
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(see also Duguet et al. (2010)) and it is identified also in non-linear optimal
localized initial conditions (Cherubini et al. 2010; Monokrousos et al. 2011)

The paper is set up as follows. First we present the governing equations
and the details of our the numerical implementation. Secondly we report the
results for the two scenarios described above; before that we validate our nu-
merical implementation with the results from linear theory in Klinkenberg et al.
(2011b).

2. Governing equations and implementation

2.1. Governing Equations

The equations of motion for the fluid are modeled in an Eulerian grid, whereas
the particles are evolved in a Lagrangian framework. The particles are assumed
to be solid, spherical and heavy spheres with a diameter smaller than the small-
est flow characteristic length scale. By neglecting the gravity, in the hypothesis
of heavy particles, the only significant force acting on a single particle is the
Stokes drag (Maxey & Riley 1983). The equations in non-dimensional form
are:

∂ui

∂xi
= 0, (1)

∂ui

∂t
= −

∂p

∂xi
− uj

∂ui

∂xj
+

1

R

∂2ui

∂x2
j

+
∑

p

f

SR
(upi − ui)δ(xi − xpi), (2)

dxpi

dt
= upi , (3)

dupi

dt
=

ui − upi

SR
, (4)

where ui is the fluid velocity and upi the velocity of one particle. In the equa-
tions above, δ is the Dirac delta function, f the mass fraction of particles and
SR = τp

U
L the Stokes number defined using the convective time scale of the

flow with L the channel half-width and U the laminar centerline velocity. The
particle relaxation is defined as τp = 2

9
r2

ν
ρp
ρf
, with r the radius of the particle ,

ρp the density of the particle , ρf the fluid density and ν the kinematic viscosity.

The Stokes number is a dimensionless relaxation time multiplied by the
Reynolds number. The dimensionless relaxation time based on the flow viscous

time scale is defined as S = ντp
L2 = 2r2ρp

9L2ρf
and is only a function of particle size

and density ratio. When we set the density ratio at ξ = ρf/ρp = 0.001, particles
are considered heavy and we can directly relate the size of the particles to the
relaxation time. The size of the particles can then be related to the number of
particles (N) using the volume fraction (Φ):

Φ = fξ,
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N =
Φ

4/3πr3
.

2.2. Implementation

The numerical code is a pseudo-spectral solver in which a plane Poiseuille
flow is given as base velocity by imposing a constant mass flux. The velocity
components are expanded in both x (streamwise) and z (spanwise) direction
with Fourier modes and with Chebyshev polynomials in the wall-normal, or y-
direction. To advance Equation 2 in time, we use a fourth order Runge-Kutta
algorithm. Boundary conditions in x and z are periodic and no-slip is assumed
at both walls, y = ±1. More details about this code are given in Chevalier
et al. (2007).
The particles are evolved by means of a Lagrangian Solver and are coupled to
the Eulerian grid of the fluid flow. The fluid velocities are interpolated from the
Eulerian grid onto the particle positions using a tri-linear interpolation. The
time advancement of the particle uses the same Runge-Kutta algorithm as the
time-advancement of the fluid. The Stokes drag, forcing also the momentum
equation, can be extrapolated back onto the Eulerian grid using the same tri-
linear scheme of the interpolation. The particle back reaction is calculated in
physical space and added to the nonlinear term, before Fourier transformation
back into spectral space.
The streamwise and spanwise dimensions of the domain are Lx = 2π and
Lz = 2π. The Reynolds number used in all computations is 2000. The reso-
lution used is typically 64× 65× 64 for streamwise, wall-normal and spanwise
directions respectively. Several resolutions have been used to investigate the
convergence of the solution.

A bisection algorithm is used to find the energy threshold (Toh & Itano
2003; Duguet et al. 2008b, 2010). The criterion for convergence of the energy
threshold is the following:

2
Au −Al

Au +Al
< 1 · 10−5,

withAu andAl the amplitude at which turbulent and laminar flow are observed.

3. Results

In section 3.1 the numerical implementation is validated against the linear
stability results in Klinkenberg et al. (2011b), obtained under the continuum
assumption. Second, transition initiated by streamwise-independent counter-
rotating streamwise vortices and a weak three-dimensional disturbance is an-
alyzed in section 3.2. We aim to identify the threshold energy of the initial
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condition: a lower amplitude will results in laminar flow, while a larger ampli-
tude in a turbulent flow. Finally, results for the oblique scenario are presented
in section 3.3.

3.1. Linear Evolution

We consider as initial condition a Poiseuille flow with one low-amplitude dis-
turbance of spanwise wavenumber β = 2 and streamwise wavenumber α = 0.
This consists of the optimal initial condition yielding the largest energy growth
from linear stability theory (this is also the maximum possible amplification
over disturbances of different wavenumber). Particles are assumed to have the
same initial velocity as the undisturbed base flow and to be uniformly dis-
tributed. For low initial amplitude, the disturbance energy goes to zero after a
significant transient growth. The linear stability analysis in Klinkenberg et al.
(2011b) shows that particles only affect the time needed to get to the maximum
growth, the growth itself is hardly affected. Figure 1(a) shows the results for
SR = 5 and different values of the mass fraction f . These results shows that
we correctly reproduce the linear results in Klinkenberg et al. (2011b) by direct
numerical simulation. The time at which the energy maximum is observed is
delayed in time with a factor of (1 + f). This is shown more clearly in Figure
1 (b), where we divided the time by (1 + f).

0 100 200 300 4000

200

400

600

800

t

G

 

 

f=0
f=0.072
f=0.195
f=0.352
f=0.391

(a)

0 100 200 300 4000

200

400

600

800

t/(1+f)

G

 

 

f=0
f=0.072
f=0.195
f=0.352
f=0.391

(b)

Figure 1: Transient growth of the perturbation energy with SR = 5 and R =
2000 versus time. (a) Energy growth for several values of f .(b) Same data with
time divided by (1 + f)

3.2. Streak Scenario

The same perturbation considered above (streamwise-independent vortices) is
used here with an additional streamwise-dependent disturbance (α = 1,β =
1). This is necessary in a monophase fluid to trigger transition and introduce
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a three-dimensional velocity field. This oblique mode has an initial energy
equal to 1/9 of that pertaining to the (α = 0,β = 2)-mode. The energy
threshold for transition is shown in Figure 2 where we report data for four
different numerical resolutions. The thresholds from the different simulations
approximately match, just the lowest one 48× 65× 48 gives a slightly different
result. Therefore results obtained with the mesh-size of 64 × 65 × 64 will be
used in the figures presented next. We notice that the energy threshold is
not significantly affected by the presence of particles. At small mass fractions
the threshold energy is smaller than in a clean fluid flow, whereas larger mass
fractions result in a slight increased of the threshold energy.
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Figure 2: The critical threshold energy as a function of mass fraction particles f ,
SR = 5 and R = 2000. Four different resolutions are used to test convergence.

Although the threshold energy is not significantly affected, Figure 3 shows
that the time at which transition occurs is altered by the presence of heavy
particles. Figure 3 shows the evolution of the integrated wall-normal v- (a)
and streamwise u- (b) velocity perturbations for flows with different particle
mass fractions. In all cases we kept constant the initial disturbance energy at
6.25 · 10−5.

Transition follows a similar path in all cases displayed, although the time
at which transition is observed (sharp increase of the wall-normal velocity per-
turbation) is increasing by a factor of 3 or more in the presence of particles;
the flow relaminarizes for a mass fraction f = 0.39. The particles affect the
instability such that at this amplitude the flow does not become turbulent. It is
also clear from the figure that the transient growth of the streaks is not affected
by the presence of particles, as predicted by linear theory (see Figure 3(b)).

The initial increase of the wall-normal velocity disturbance in Figure 3(a)
accounts for the initial weak transient growth of the oblique modes since the
in-plane disturbance associated to the (α = 0,β = 2) streaky mode is monoton-
ically decreasing. The data clearly indicate that the amplitude of the oblique
mode decreases for increasing mass fraction f . This indicates that particles
influence the oblique mode such that transition is delayed. To confirm this, we
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Figure 3: The v-velocity (a) and u-velocity (b) as a function of time for several
mass fractions at SR = 5 and R = 2000 with an initial perturbation energy of
6.25 · 10−5.

examine the linear behavior of the oblique mode (α = 1,β = 1). The linear
optimal growth is given in Figure 4 where the largest possible transient energy
growth, maximized over the final time at which the disturbance is measured, is
displayed versus the particle mass fraction. It is seen that a larger mass fraction
decreases the optimal growth significantly. Considering the singular values of
the system as representative of the behavior of the system for the evolution of
the oblique mode, we can therefore conclude that particles stabilize the oblique
mode and this induces a delay of the time at which transition is observed. This
is associated to a less effective start of the streak disruption.

In the light of the above discussion, we can now interpret the energy thresh-
old reported in Figure 2. The initial decay of the energy reported for low values
of the concentration can be attributed to the forcing from the particles to the
fluid. Particles act at isolated locations and therefore induce streamwise mod-
ulations of the streaks. This forcing contribute and interact with the oblique
mode to induce the streak breakdown. At larger values of f we observe a weak
stabilizing effect. On one hand, the amplitude of the oblique mode introduced
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initially decreases faster, on the other hand more particles are acting in the
flow and their action on the fluid can be assumed to be more homogeneous.

For the scenario considered here, streaks need to reach a sufficient high
amplitude so that secondary instabilities can initiate; this may explain the
weak dependence of the threshold curves on the mass fraction. The time for
transition, however, does depend on the amplitude of the streamwise dependent
forcing induced by particles and oblique mode since this determines the initial
amplitude of the growing secondary instability mode. Note finally that the
threshold curves for transition have usually a fractal or complicated behavior;
they are very sensitive to the specific initial condition.
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Figure 4: The optimal growth of the oblique mode (α = 1,β = 1) as a function
of mass fraction f using R = 2000 and SR = 5. The optimal energy gain is
maximized over all possible final times

3.3. Oblique Scenario

The oblique scenario is initiated by a pair of symmetric oblique waves, (α =
1,β = ±1). These waves interact non-linearly and intiate streaks in the flow
with (α = 0,β = 2) as in the scenario above (Reddy et al. 1998). The two
oblique waves are both given the same initial energy and again particles are
initialized uniformly distributed and with zero disturbance velocity (note that
tests where particles have initially the local fluid velocity gave no significant
differences in the results).

The threshold energy for transition is displayed in Figure 5 versus the par-
ticle mass fraction, where we also compare results obtained with three different
resolutions.

As in the previous scenario, the energy initially decreases at low mass
fraction and then increases with f , in this case by a factor approximatively 4
for the largest mass fractions considered. As before, we attribute the initial
decrease of the energy required to transition to the modulation introduced in
the system by the few particles present. Indeed, large scale forcing may be
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Figure 5: The critical threshold energy of two oblique waves (α = 1,β = ±1)as
a function of mass fraction particles f , with SR = 5 and R = 2000. Three
different resolutions are used to test convergence.

more effective than small scale forcing due to lower viscous dissipation at this
relatively low value of the Reynolds number. The largest increase observed
at large f is related to the decreased amplitude of the oblique modes in the
presence of particles, as also discussed above.

The time evolution of the perturbation velocities is reported in Figures
6 and 7, where the initial energy is kept constant at 8 · 10−6 and 1.8 · 10−5

respectively. Unlike transition initiated by a pair of counter-rotating streamwise
vortices, there is no significant time-delay in the transition. If the particles
maintain the energy below the threshold, the flow stays laminar. Figure 6
reveals that for f ≤ 0.36, transition is induced in spite of the lower amplitude
of the oblique modes compared to the single phase flow. This clearly points to
the importance of the additional forcing induced by the inertial particles.

In the figures, one can also appreciate the steps involved in the oblique
transition: first the amplification of the oblique modes, v perturbation at t ≈ 10
in Figure 7(a), and later, u perturbation at t ≈ 30 in Figure 7(b), the emergence
of streaky structures. For the case of laminar flow, f = 0.39 in Figure 7, the
transient growth of the streaks is significantly delayed by the low amplitude of
the interacting oblique modes.

4. Discussion and Conclusion

Direct Numerical Simulations of a particle-laden channel flow are performed,
with particles assumed heavy, spherical and solid. The interaction between the
particles and the fluid is therefore modeled by the Stokes drag as the only inter-
action term. The fluid flow is computed on a Eulerian mesh with Lagrangian
tracking of particles. The interpolation of the fluid velocity at the particle posi-
tion and of the Stokes drag back to the Eulerian mesh uses a tri-linear scheme.
The results are shown to be independent of the numerical resolution.
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Figure 6: The v-velocity (a) and u-velocity (b) as a function of time for several
mass fractions at SR = 5 and R = 2000 with an initial perturbation energy of
8 · 10−6.

We study sub-critical transition in plane channel flow and quantify the
effect of particles on the initial energy needed to reach the turbulent regime.
Previous studies (Klinkenberg et al. 2011b) indicate that the linear non-modal
lift-up mechanism, responsible for the amplification of streamwise-independent
streaks induced by counter-rotating streamwise vortices, is the dominant in-
stability mechanism at sub-critical conditions as for single phase channel flow.
This is hardly affected by the presence of particles, unlike modal stability; this
was explained by the disparity between the particle relaxation time and the time
scales typical of transient growth, at least for values of particle size and density
consistent with our model. The aim of the present paper is therefore to assess
whether particles influence the nonlinear stages of transition and whether this
may have a relation to drag reduction observed in turbulent particle-laden shear
flows. It is relevant to recall here that secondary instabilities compete against
viscous diffusion of the streak (Schoppa & Hussain 2002), so that streaks need
to have sufficiently high amplitudes but also streamwise-dependent modes need
time to reach amplitudes at which turbulent breakdown can occur. The time
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Figure 7: The v-velocity (a) and u-velocity (b) as a function of time for several
mass fractions at SR = 5 and R = 2000 with an initial perturbation energy of
1.8 · 10−5.

needed to reach high-enough amplitudes is related to their initial amplitude as
well as to the streak amplitude, driving the instability.

We consider two classic transition scenarios: the streak scenario, induced
by streamwise vortices and a relatively weak streamwise dependent mode, and
oblique transition, induced by a pair of symmetric oblique waves. In the latter,
the non-modal growth of streaks is induced by the nonlinear interaction of
the two streamwise-dependent modes. This oblique scenario is known to be
more effective and require lower initial disturbance energy (Reddy et al. 1998;
Duguet et al. 2010). To appreciate the differences between the two scenarios,
the energy threshold for transition is reported in Figure 8, normalized with the
value for the corresponding single phase fluid. In both cases, we see a decrease
of the energy threshold at very low particle concentrations. This is explained
by the fact that in this case streaks and oblique modes are weakly affected by
the particles, while these induce additional forcing in the flow that is able to
trigger streak secondary instabilities faster. For larger particle mass fraction,
we observe an increase of the energy threshold, most pronounced for the oblique
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scenario. This is attributed to the stabilizing effect particles have on the oblique
modes, an effect quantified by the non-modal analysis of the evolution of these
modes reported in Figure 4. This stabilization is more effective in case of
oblique transition since it acts directly to hinder the generation of streamwise
vortices by nonlinear interactions of these oblique modes. The streak generation
is delayed and weakened when the oblique modes decay faster.

In the case of the streak scenario, the streak evolution is basically unaf-
fected by the presence of the particles. Particles act to weaken the oblique
mode and therefore delay the transition process. Results obtained for the same
initial disturbance amplitude, above the critical threshold, reveal that tran-
sition occurs at later times: the secondary instability is initiated with lower
amplitudes and requires more time to develop.

One can speculate that the results presented here can have implications
for turbulent flows where drag reduction is observed for relatively large mass
fraction. In Hamilton et al. (1995); Waleffe (1997), a regeneration cycle is pro-
posed to underlie wall-bounded turbulent flows. This consists of three steps: i)
generation of streaks induced by streamwise vortices, ii) streak breakdown via
secondary instabilities, iii) regeneration of elongated vortices by nonlinear in-
teractions between oblique modes originating at the streak breakdown. In this
respect, the present investigation indicates that particles can affect this cycle in
two ways. They may be particularly active in the last of these three processes,
namely the regeneration of streamwise vortices by nonlinear interactions. In-
deed, the first step of the oblique scenario is the most affected in the presence
of heavy particles. However, particles also induce a significant time delay on
the streak breakdown (stage ii). This time-delay can break the regeneration
cycle. As shown in Klinkenberg et al. (2011b), the streak generation occurs on
a time scale too long for particles to have an effect.
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Figure 8: Comparison between the threshold energies for the streamwise vor-
tices and the oblique waves, both normalised with their energy threshold of a
clean fluid.
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