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Abstract
Two types of shear flows are investigated in this thesis; numerical simulations
are performed for the analysis and control of the perturbation arising in a
boundary layer over a flat plate, whereas PIV measurements are analysed for
the investigation of a confined turbulent jet. Modal structures of the flows
are identified: the aim is to understand the flow phenomena and to identify
reduced-order models for the feedback control design.

The attenuation of three-dimensional wavepackets of streaks and Tollmien-
Schlichting (TS) waves in the boundary layer is obtained using feedback control
based on arrays of spatially localized sensors and actuators distributed near the
rigid wall. In order to tackle the difficulties arising due to the dimension of the
discretized Navier-Stokes operator, a reduced-order model is identified, preserv-
ing the dynamics between the inputs and the outputs; to this end, approximate
balanced truncation is used. Thus, control theory tools can be easily handled
using the low-order model. We demonstrate that the energy growth of both TS
wavepackets and streak-packets is substantially and efficiently mitigated, using
relatively few sensors and actuators. The robustness of the controller is inves-
tigated by varying the number of actuators and sensors, the Reynolds number
and the pressure gradient. The configuration can be possibly reproduced in
experiments, due to the localization of sensing and actuation devices.

A complete analysis of a confined turbulent jet is carried out using time-
resolved PIV measurements. Proper orthogonal decomposition (POD) modes
and Koopman modes are computed and analysed for understanding the main
features of the flow. The frequencies related to the dominating mechanisms are
identified; the most energetic structures show temporal periodicity.

Descriptors: Flow control, flat-plate boundary layer, laminar-turbulent tran-
sition, model reduction, balanced truncation, Koopman modes, POD modes,
turbulent co-flowing jet

iii



Preface

This thesis deals with feedback control via model reduction in flows over flat-
plate boundary layers and flow analysis using global modes. A brief introduc-
tion on the basic concepts and methods is presented in the first part. The
second part contains three articles. The papers are adjusted to comply with
the present thesis format for consistency, but their contents have not been al-
tered as compared with their original counterparts.

Paper 1. O. Semeraro, S. Bagheri, L. Brandt & D. S. Henningson,
2010
Feedback control of three-dimensional optimal disturbances using reduced-order
models. Under revision - Journal of Fluid Mechanics

Paper 2. O. Semeraro, S. Bagheri, L. Brandt & D. S. Henningson,
2010
Transition delay in boundary layer flow using feedback control. To be submit-
ted - Journal of Fluid Mechanics

Paper 3. O. Semeraro, G. Bellani & F. Lundell, 2011
Analysis of time-resolved PIV measurements of a confined co-flowing jet using
POD and Koopman modes. Internal Report
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Introduction





CHAPTER 1

Introduction

Control of wall-bounded transitional flows might lead to high potential benefits
and outcomes, e.g. a reduction of fuel consumption. As reported by Kim &
Bewley (2007), ocean shipping consumes about 2.1 billion barrels of oil per
year, whereas the airline industry consumes about 1.5 billion barrels of jet fuel
per year. Thus, any reduction of aerodynamic drag can positively influence
the operational cost of cargo ships or commercial aircraft. In recent years,
research efforts have been devoted to the manipulation of fluids, using both
passive and active means; passive control can be implemented – for instance
– using riblets (Choi et al. 1993) or discrete roughness elements (White &
Saric 2000). Examples for active control are given by active wave cancellation
(Sturzebecher & Nitsche 2003), opposition control (Hammond et al. 1998), wall-
motion techniques (Quadrio & Ricco 2004) or by linear and nonlinear control
theoretical approaches, using spatially localized convolution kernels (Högberg
et al. 2003) or adjoint-based optimization methods (Bewley et al. 2001).

In this thesis, feedback control is applied using localized sensors and actua-
tors for the mitigation of the perturbations arising in a boundary layer spatially
evolving on a flat plate. The configuration is fully three dimensional (3D) and
resembles experimental setups – see for instance Lundell (2007). The main aim
of our investigation is the delay of transition from laminar to turbulent flow.
Indeed, it is well established that under certain conditions the initial phase
of the laminar-turbulent transition in wall-bounded flows is largely governed
by linear mechanisms (Schmid & Henningson 2001). Thus, the tools of linear
control theory may provide efficient, robust and feasible controllers to delay
transition to turbulence.

Transition from laminar to turbulent flow can be promoted by the growth
of Tollmien-Schlichting (TS) wavepackets; this scenario - often referred to as
classical transition - is usually observed in clean environments characterized by
low levels of free stream turbulence (smaller than 1%). In figure 1.1, the linear
propagation of a localized Tollmien-Schlichting wavepacket is depicted. Iso-
contours of the streamwise velocity component of the disturbance are visualized
at three different instances in time, viewed from above. The direction of the
propagation is from left to right; the perturbation grows in size along the
streamwise-direction and spreads in the spanwise direction, as it propagates.
The structure is 3D, as it can be observed by the bending of the perturbation
along the spanwise direction. In the right panels, the effects of the controller
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Figure 1.1. Evolution of a TS wavepacket at three instants
of time, without control (left column) and with control (right
column). The iso-contours of the streamwise component are
shown in the xz-plane; the same iso-levels are used: red iso-
lines indicate positive velocity, while the negative one is indi-
cated with blue.

are shown. The original structure is distorted into a more complicated three-
dimensional pattern, where traces of the localized actuation are recognizable.
When the perturbation is further convected downstream, a significant damping
of the energy is observed; indeed, the contour levels are barely visible, while
the perturbation for the uncontrolled case attains its maximum energy. When
finite-amplitude disturbances are considered, such a drastic energy reduction
results in a delay of the initial stages of the transition process.

The long-term aim of this research project is to develop numerically reliable
and fast controllers that are suitable for the use in laboratory experiments.
From this point of view, numerical investigations can be useful for wind-tunnel
experiments and provide guidelines for the spatial distribution and shape of
the actuators and sensors.

These investigations, however, pose a significant challenge for the systems
under analysis. Indeed, the complexity of the flows leads to large systems.
For instance, the flat plate case involves about n ≈ 107 degrees of freedom;
the control theory tools cannot easily be applied in this case. An alternative
is provided by model reduction: a low-order model is computed, capturing the
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essential dynamics of the flow, and used for the control design. This strategy al-
lows to easily apply standard tools of control theory and design a fast controller
running on-line simultaneously with the main simulation. Moreover, the analy-
sis of modal structures of the flow provides valuable information. For instance,
the algorithm used in this thesis for the model reduction of the system makes
use of a basis consisting of balanced modes; the information given by the spatial
support of these modes can be used for actuator/sensor placement. Thus, the
analysis of a complex flow can take advantage of modal decompositions.

A second shear flow is analysed in this thesis; proper orthogonal decompo-
sition (POD) and Koopman modes are computed using PIV measurements of
a turbulent confined jet with co-flow. POD is a common method for extracting
coherent spatial structures from a flow, ranked according to the energy content;
the temporal counterpart is provided by the temporal coefficients associated to
the spatial structures. However, the most energetic structures of a flow are not
necessarily the most relevant for the flow analysis; the Koopman modes method
is a novel technique providing an alternative way for analysing the flow. Both
techniques are employed and compared to classical spectral analysis.

The first part of the thesis is organized as follows. In chapter 2, the govern-
ing equation of the flow are introduced. Inputs and outputs are introduced in
the system and briefly described. The modal decompositions used for the flow
analysis are summarized in chapter 3; as an example, the analysis of a confined
turbulent jet is used. Control design and model reduction for the boundary
layer flows are described in chapter 4. Finally, the first part of the thesis fi-
nalizes with a short summary of the papers (chapter 5) and the outlook in the
conclusive chapter 6.



CHAPTER 2

Governing equations

In this chapter the equations used to describe the flow are introduced. In sec-
tion 2.1, the incompressible Navier-Stokes equations and the linearized Navier-
Stokes are briefly described. The design of the linear control requires the intro-
duction of inputs and outputs in the system (section 2.2); the setup described
here, combined with a low-order model of the system and a linear quadratic
controller (LQG), allows to mitigate the perturbation as shown in figure 1.1.

2.1. Navier-Stokes equations and linearization

The Navier-Stokes equations governing the viscous, incompressible flow are
given by

∂u

∂t
= −u ·∇u −∇p +

1

Re
∆u (2.1a)

0 = ∇ · u (2.1b)

The velocity field u(x, t) = (u, v, w)T is a solution of the equation and

p(x, t) indicates the pressure field, both depending on space x = (x, y, z)T

and on time t ∈ [0, Tf ]; the differential operators appearing in the equa-
tions are the gradient, defined as ∇ = (∂/∂x, ∂/∂y, ∂/∂z), and the laplacian
∆ =

(

∂2/∂x2, ∂2/∂y2, ∂2/∂z2
)

. The equations are written in non-dimensional
form; the velocity is normalized by the reference velocity U∞, the pressure by
the dynamic pressure and the lengths by the displacement thickness at the
inflow position, hereafter indicated with δ∗0 . Thus, the Reynolds number is
defined as

Re =
U∞δ∗0

ν
, (2.2)

where ν is the kinematic viscosity. A second definition of the Reynolds number
used in this thesis is based on the distance from the leading edge, x

Rex =
U∞x

ν
. (2.3)

The solution of this set of non-linear partial differential equations is provided
by numerical simulations and is dependent on the initial condition u0 = u (x, 0)
and the imposed boundary conditions; no-slip conditions are imposed on the
wall, whereas in the far field Neumann conditions or Dirichlet conditions can
be imposed. More details on the numerical procedure are included in Chevalier
et al. (2007), where the fully spectral code used for this work is introduced.

6
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Both direct numerical simulations (DNS) and large eddy simulations (LES)
were performed.

Stability analysis and control design are based on the characterization of
the small-amplitude perturbations evolution; to this end, the decomposition

u(x, t) = U(x) + εũ(x, t) (2.4a)

p(x, t) = P (x) + εp̃(x, t) (2.4b)

is inserted in the (2.1). P is the mean pressure and p̃ the pressure perturba-
tion, whereas U(x) is a steady solution of the Navier-Stokes equations. The
linearization is performed neglecting the terms of order ε2; the resulting system,
governing the perturbation velocity ũ (x, t) reads

∂ũ

∂t
= − (U ·∇) ũ − (ũ ·∇)U −∇p̃ +

1

Re
∇2ũ (2.5a)

0 = ∇ · ũ (2.5b)

The linearized Navier–Stokes equations set can be discretized in space, resulting
in an initial-value problem

˙̃u(t) = Aũ(t) (2.6a)

ũ(0) = ũ0 (2.6b)

The action of A ∈ Rn×n on ũ ∈ Rn corresponds to evaluating the right-
hand side of the linearized Navier–Stokes equations and enforcing the boundary
conditions.

2.2. Introducing inputs and outputs

As suggested by Bewley (2001), the only requirement to achieve the desired
flow behavior is that suitable control signals are determined based on filtered
information delivered from the sensors. Thus, the relation among the inputs
and the outputs is crucial for an efficient control design. The input-output
dynamics of the system can be described defining a linear state-space system
as

u̇(t) = Au(t) + Bf(t) (2.7a)

y(t) = Cu(t) + Df(t), (2.7b)

where the tilde has been omitted for brevity. The quantity f(t) ∈ Rm denotes
the input and y(t) ∈ Rp is the output the system. The matrix A ∈ Rn×n

represents the action of the Navier-Stokes operator, as already introduced. The
matrices B ∈ Rn×m and C ∈ Rp×n are usually low-rank (i.e. m, p & n)
and describe the spatial distribution of the actuators and sensors, respectively.
Finally, the matrix D ∈ Rp×m is defined as

D =

(

0 0 Il

0 Iα 0

)

, (2.8)

where the vectors Iα ∈ Rp simulates the noisy corruption of the measurements
and the matrix Il ∈ Rk×m represents the control penalty; indeed the energy
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Disturbance
                      B1

Sensors
     C222

Actuators
       B2

Domain to minimize 
disturbance energy
                 C1

     LQG
controller

z(t)

u(t)

v(t)

w(t)

Figure 2.1. Input-output configurations. The input B1 is an
optimal initial condition. The control action is provided by the
input B2, which consists of a row of actuators located. The
output C2 contains an array of sensors used for flow estima-
tion. The effect of the controller is quantified by C1; all the
estimation sensors are connected to all the actuators (central-
ized control).

expended by the actuator has to be limited in order to design an efficient
controller. The formal solution of the stable system (2.7) is given by

y(t) = C

∫ t

−∞

eA(t−s)Bf(s)ds, (2.9)

assuming both the initial condition u0 and the term D to be zero. Note that
the solution given in (2.9) provides a linear mapping from the input signals to
the output signals.

A sketch of the configuration is depicted in figure 2.1, where the actuators
and sensors are schematically indicated. This setup is used for the control of
three-dimensional disturbances in the boundary layer shown in figure 1.1.

The first input B1 is located upstream and models an incoming external
perturbation. In this thesis, the optimal initial conditions leading to the largest
energy growth for a final time are used; a streaky packet is obtained for short
time of optimization, whereas long time leads to a localized initial condition
triggering packets of TS-waves, as shown by Monokrousos et al. (2010). The
second input B2 is the actuator; it consists of an array of elements distributed
along the spanwise direction. Each element of the actuator B2 is represented
by a volume forcing, localized in a region close to the wall. Two sensors are
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used, C1 and C2. The first sensor is located downstream and quantifies the
action of the controller. The second sensor C2 consists of a number of localized
elements, located a short distance upstream of the actuators; the configuration
of the sensors array is the same as that characterizing the actuators line. With
this definitions, (2.7) reads

u̇(t) = Au(t) + B1w(t) + B2φ(t), (2.10a)

z(t) = C1u(t) + Ilφ(t), (2.10b)

v(t) = C2u(t) + Iαg(t), (2.10c)

where the physical shape of the inputs/outputs is given by the matrices B =
(B1, 0,B2) and C = (C1,C2)T . The temporal behaviour of the system is

described by the input vector f(t) = (w, g,φ)T and the output vector y(t) =

(z, v)T , respectively. In more detail, the signals φ feed the actuators with a
control signal based on the noisy measurement signals contained in the vectors
v and extracted by the sensors C2; the noise corruption is introduced by the
unit-variance white noise g. The aim is to minimize the perturbation energy in
the region defined by C1; thus the output z can be regarded as the objective
function of the controller. For more details about the configuration, we refer
to Semeraro et al. (2010).



CHAPTER 3

A portrait of the flow: linear and nonlinear

decompositions

In this chapter, two different approaches are introduced for the analysis of
complex flows: the proper orthogonal decomposition (POD) and the Koopman
modes analysis. For both cases, time-resolved PIV measurements of a con-
fined co-flowing turbulent jet are considered; a snapshot from the experimental
measurements is shown in figure 3.1. The two decompositions extract informa-
tion from datasets, obtained either by numerical simulations or experiments.
POD modes represent the most energetic structures of the flow, not related –
in general – to a specific frequency. Conversely, the Koopman modes analysis
allows the identification of flow structures related to a certain frequency; the
associated modes, in this case, can be regarded as harmonic averages.

POD modes are briefly introduced in section 3.1. Koopman modes are
described in section 3.2. A detailed introduction of the Koopman modes is
beyond the scope of this thesis; however the definition is provided and the
numerical procedure - the dynamic mode decomposition (DMD) - is briefly
outlined.

3.1. Proper orthogonal decomposition

Given a set of flow-field snapshots {u1,u2, . . . ,um}, taken from a time interval
[0, Tf ], proper orthogonal decomposition determines the most energetic struc-
tures of the flow by diagonalizing the correlation matrix

R =

∫ Tf

0
uuT dt (3.1)

The eigenfunctions are orthogonal and real-valued and the eigenvalues are real
and positive; thus, it is possible to rank them in descending order. The en-
ergy related to each function is contained in the corresponding eigenvalue. A
projection onto the subspace spanned by m POD modes provides an optimal
finite-dimensional representation of the initial data-set of dimension m (Holmes
et al. 1996).

The temporal information can be recovered projecting back the entire se-
quence of snapshots on the obtained basis or using the bi-orthogonal decompo-
sition (BOD), where a second set of temporal modes is computed by diagonal-
izing the spatial-average cross-correlation (see Aubry 1991). In literature, the

10



3.1. PROPER ORTHOGONAL DECOMPOSITION 11

Figure 3.1. Snapshot of the turbulent jet from the PIV mea-
surements; the streamwise component is shown at t ≈ 1.4. The
color-bar indicates the velocity values.

spatial modes are usually referred as topo-modes, while the temporal modes
are referred as chrono-modes.

The first three POD modes obtained from the analysis of the jet are shown
in figure 3.2; the modes are computed using the snapshot method (Sirovich
1987). The first mode (figure 3.2a) represents the mean flow and is associated to
the largest eigenvalue; the corresponding chrono-mode is constant. The second
and third topo-modes - figure 3.2(b − c) - come in pairs: this is not surprising.
Indeed, the POD modes are real-valued functions and two real-valued functions
are required to describe flow structures traveling as a wavepacket (see, e.g,
Rempfer & Fasel 1994). This is also clear from the analysis of the corresponding
chrono-modes in time domain (figure 3.2d), and spectral domain (figure 3.2e).
Indeed, the frequencies characterizing the time-behaviour are the same for both
the modes. In the latter figure, the frequency is reported in dimensionless
form as St, the Strouhal number, defined as St = f(d/2)/Uc, where f is the
frequency, d is the diameter of the internal jet and Uc a characteristic velocity
of the flow. From the physical point, these modes are related to the flapping
of the turbulent jet.

Thus, POD allows to identify spatial coherent structures and rank them in
descendent order according to the energy contents. Unfortunately, this criterion
is not always a meaningful measure: low-energy structures can sometimes be
more relevant for the flow analysis than high-energy ones.

3.1.1. POD and controllability: an alternative perspective for linear systems

Before describing the Koopman modes analysis, we step back and consider
again (2.10) with inputs and outputs. In particular, when the actuators and
sensors are localized in a small region close to the wall as sketched in figure
2.1, the actuators can manipulate only certain structures of the flow, whereas
the sensors can detect only a limited region of the system. Thus, it is crucial
to identify the states that can be controlled or observed for control design. In
particular, controllability is a property of a state-space realization and measures
of the response of states to control inputs; a controllability test is provided by
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(a) Topo-mode 0, mean-flow

(b) First topo-mode (c) Second topo-mode
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(e) Chrono-modes in frequency domain

Figure 3.2. In (a−c), the streamwise component is depicted;
in (d) and (e), the solid line indicates the first chrono-mode,
while the dashed dotted line indicate the second chrono-mode.

the controllability Gramian, defined as

P =

∫
∞

0
eAtBBT eAT tdt, (3.2)

and obtained as the solution of an optimal control problem, (see, e.g., Lewis &
Syrmos 1995). Since the impulse response for the linear system (2.10) is given
by u = eAtB, it is easy to recognize that the Gramian equals the correlation
function (3.1). Thus, the eigenvectors obtained from the diagonalization of (3.2)
can be regarded as POD modes and are characterized by the same properties
listed above. In this context, these modes represent the most controllable
structures of a flow. In control theory, POD analysis is usually referred to as
principal component analysis (PCA).

For sake of completeness, note that an analogous analysis can be under-
taken when observability is considered; like controllability, observability is a
property of the state-space realization and describes the ability to reconstruct
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the states from available measurements. Both concepts are essential for the
identification of the input-output behaviour of a system including sensors and
actuators, as discussed in section 4.1.

3.2. Koopman modes and dynamic mode decomposition

A drawback of POD is related to the temporal description; although frequen-
cies are captured by the chrono-modes, we cannot identify structures related to
only one frequency. Moreover, the correlation function provides second-order
statistics ranked according to the energy content; in general, low-energy struc-
tures can be relevant for a detailed flow analysis. Koopman modes analysis
was recently proposed by Rowley et al. (2009); this method is also available for
experimental measurements.

In order to describe this technique, we need to introduce the definition of
observable. An observable is a function that associates a scalar to a flow field;
in general, we do not have access to the full flow field in experiments: the
velocity – or the other physical quantities – are probed at a point, using hot
wires, or in a plane, using PIV. However, considering a fully nonlinear flow, the
analysis of the observable for a statistically long interval of time is sufficient to
reconstruct the phase space and investigate the flow behaviour. By definition,
the Koopman operator U is a linear mapping that propagates the observable
a (u) forward in time

Ua (u) = a (g (u)) (3.3)

and is associated to the nonlinear operator g. It can be shown that the operator
is linear and unitary as t → ∞; in this case, the eigenfunctions basis constitutes
an orthonormal expansion basis

Uψj (u) = µjψj (u) , j = 0, 1, 2 . . . (3.4)

where µj denotes the eigenvalues. If a sequence of observables is considered,
starting from an initial condition u0

X = [a (u0) ,a (u1) ,a (u2) , . . .] , (3.5)

an orthogonal projection of the kth sample onto the space spanned by the
Koopman eigenfunctions yields the expression

a (uk) = Uka (u0) = Uk





∞
∑

j=0

ψj (u0)φj



 =
∞
∑

j=0

µk
j ψj (u0)φj (3.6)

The expansion coefficients φj , given by the integral

φj =

∫

a (u0)ψ
∗

j (u0) du0, (3.7)

are defined as the jth Koopman mode associated to the map g. Some interesting
properties characterize these modes:

1. Each Koopman mode is associated with an amplitude that indicates its
significance.
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2. The temporal behaviour is given by the associated Koopman eigenval-
ues; the phase arg(µi) determines its frequency and the magnitude |µi|
determines the growth rate of the mode.

From the physical point of view, the computed modes are harmonic components
of the flow, oscillating at certain frequencies given by the eigenvalues of the
operator. For a periodic case, these modes are Fourier modes; when a linearized
flow is considered, these modes are global modes. For a detailed introduction
to the properties of this decomposition we refer to Mezić & Banaszuk (2004);
Mezić (2005); Rowley et al. (2009); Bagheri (2010).

3.2.1. Dynamic mode decomposition (DMD)

The dynamic mode decomposition (DMD) is an algorithm proposed by Schmid
(2010). Essentially, the DMD algorithm belongs to the category of Arnoldi
methods for the computation of the eigenvalues and the related eigenvectors
of a system: a low-order model of the system is identified, whose eigenvalues
- referred to as Ritz values - approximate the most important eigenvalues of
the true system. In the classical Arnoldi method the basis is computed via
a Gram-Schmidt orthogonalization (Arnoldi 1951; Saad 1980), that requires
a model of the system. An alternative is given by a projection basis defined
using a collection of samples or snapshots (Ruhe 1984). Given a snapshot
(observable) at time tj , the successive snapshot (observable) at a later time
tj+1 is given by

uj+1 = Auj . (3.8)

The defined sequence

Xr+1 = [u1 Au1 Au2 . . . Aur] (3.9)

will gradually become ill-conditioned. Indeed, the columns of the sequence
align progressively to the dominant direction of the operator A. On the other
hand, the last snapshot can be written as

ur+1 = c1u1 + c2u2 + . . . + crur + ũr+1, (3.10)

expanding it on a basis constituted by the previous r snapshots. Here, ũr+1

indicates the residual error. Defining the sequence Xr as

Xr = [u1 Au1 Au2 . . . Aur−1] , (3.11)

the aim is to minimize the residual such that ũr+1⊥Xr. This can be cast into
the form of a least-square problem, such that the elements cj are given as a
solution of it. Introducing the companion matrix

M =










0 0 · · · 0 c1

1 0 · · · 0 c2

0 1 · · · 0 c3
...

. . .
...

0 0 · · · 1 cr










(3.12)
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Figure 3.3. In (a), the black dot indicates the mean flow
and is associated to the highest amplitude; all the amplitudes
associated to each frequency are reported in (b). In (c) the
most important eigenvalues are shown.

(3.10) is finally re-written as

AXr = XrM + ũr+1e
T
r (3.13)

Thus, the companion matrix propagates forward in time the entire sequence
of snapshots, whereas the last one is reconstructed using the coefficients cj .
The eigenvalues of M approximate the eigenvalues of the real system; the
related eigenvectors are given by Φ̃ = XrT, where T are the eigenvectors
of the companion matrix M. Hence, this algorithm can be used to extract Ritz
values and the related vectors from experimental data or sequence of snapshots
of nonlinear simulations; moreover, as observed by Rowley et al. (2009), it
approximates the Koopman modes.

A drawback of the method is the linear dependency of the dataset. An im-
provement of the algorithm is proposed by Schmid (2010), where a self-similarly
transformed companion matrix M is used, resulting in a better-conditioned
eigenvalue problem.

3.2.2. Brief overview of the results

In figure 3.3(a) the discrete spectrum associated to the Koopman/DMD analy-
sis of a confined co-flowing turbulent jet is shown; as previously noticed, when
the flow is fully developed, the eigenvalues tends to lie on an unitary circle. The
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Figure 3.4. Fifth POD mode; the streamwise component,
(a), and the spectral analysis, (b), are shown.

black dot indicates the mean flow and is associated to the highest amplitude
mode; it corresponds to the first POD mode. The spectrum resulting from the
DMD is discrete; the continuous spectrum is obtained applying the relation
ω = log(µ)/dt, where dt is the sampling time. In figure 3.3(b), the amplitudes
of the modes are represented as function of St. As shown by Rowley et al.
(2009) and Bagheri (2010), the amplitudes allow to select only the modes that
are significant from the physical point of view. Thus, the most relevant fre-
quencies of the flow correspond to the peaks in figure 3.3(b); these are reported
in the spectrum in 3.3(c)

The DMD is able to isolate structures associate to harmonics of the flow.
An interesting example is reported in figure 3.4 and 3.5, where a comparison
between the two techniques is proposed. The fifth POD mode (figure 3.4) show
the simultaneous presence of shear layer phenomena, far downstream in the
domain, and oscillation on the side of the inlet-jet, in the lower-upstream part
of the domain; the resulting spectral analysis confirms the contemporary pres-
ence of lower and higher frequencies, related to the recirculation and shear flow
structures, respectively. Using Koopman modes, it is possible to distinguish
these physical phenomena (figure 3.5). In figure 3.5(a) an elongated lobe ap-
pears in the lower-upstream region of the domain; the structure is associated to
a low frequency, St = 0.01, in agreement with the spectral analysis of the PIV
measurements and POD modes. The shear flow structures are shown in figure
3.5(b−d); the finer structures located downstream in the domain are associated
to higher frequencies and closely resemble the structure already observed.
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(a) St = 0.01 (b) St = 0.04

(c) St = 0.06 (d) St = 0.07

Figure 3.5. The streamwise component of four Koopman
modes is shown. The associated Strohual number is reported
in each label.



CHAPTER 4

Model reduction and flow control

In this section, the linear feedback controller is introduced; the aim is to quench
the perturbations growing in the boundary layer, using a set of localized actu-
ators close to the wall. Unfortunately, standard tools of linear control theory
cannot be applied to large systems; in order to tackle this difficulty, reduced-
order models are identified. The model reduction problem is introduced in
section 4.1, where approximate balanced truncation is briefly outlined. The
design of feedback control is summarized in section 4.2. Finally, a brief review
of the main results is reported in section 4.3. The control of TS-wavepacket is
used as an example; more details about streaks control are included in Semeraro
et al. (2010).

4.1. Model Reduction using balanced truncation

The tools of linear control theory cannot be easily applied to large systems; in
control theory, two different strategies are usually employed: i) Compute a high
dimensional controller, reduce its dimensions and then apply it to the system
you wish to control; ii) Identify a reduced-order model with proper techniques
and build a small controller. In our case the number of degrees of freedom,
n ≈ 107, makes the first approach unfeasible, since the controller would be
of the same dimension as the system. Moreover, from the experimental point
of view, it is more relevant to compute a model of the flow directly from the
measurements and design the control based on it. Thus, the second approach
is applied; the procedure can be briefly outlined as follows:

1. Introduction of inputs and outputs in the linearized Navier-Stokes
model.

2. Identification of a reduced-order model.
3. Design of a small controller, running in parallel with the main simula-

tion.

Reduced-order models can be identified via a projection of the system onto
a low-dimensional subspace, spanned by r & n basis functions, Φ =
(φ1,φ2, . . . ,φr) ∈ Rn×r. Thus, the flow field - or, in general, the state variable
- is approximated as

ũ =
r

∑

j=1

qjφj = Φq (4.1)

18
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where q = (q1, q2, . . . , qr)T ∈ Rr are the scalar expansion coefficients. The
coefficients are computed as

q = Ψ∗u (4.2)

where Ψ = (ψ1,ψ2, . . . ,ψr) ∈ Rn×r are adjoint modes, bi-orthogonal to the
expansion basis Φ. Plugging (4.1) in the input-output system (2.10) and using
the adjoint modes, the resulting reduced model of order r is computed, with
A = Ψ∗AΦ, Bi = Ψ∗Bi and Ci = CiΦ.

Clearly, the choice of the projection basis is crucial for the performance of
the reduced-order system; for instance, the modal decomposition of the system
and the projection onto a basis containing the least stable modes is a classical
way to proceed when unstable systems are considered. However, we aim to
build a model that preserves the dynamics between the actuators and sensors.
Among all the possible flow disturbances, only a portion can be excited by the
inputs and observed by the outputs; in literature, these states are referred as
controllable and observable (see e.g. Glad & Ljung 2001; Bagheri et al. 2009).
With a limited number of inputs and outputs, most of the states are weakly
controllable and observable. Since the control design is based on the dynamics
coupling the actuators and sensors, one way to proceed is to disregard uncon-
trollable/unobservable states. In such a way, the entire input-output behaviour
of the system can be accurately reproduced by a reduced number of states.

Balanced truncation, first proposed by Moore (1981), represents a system-
atic way to perform this reduction. The procedure makes use of the Hankel
operator to define the relation among the inputs and the outputs (Glover 1984);
this operator is defined as

y(t) = Hf(t) =

∫ 0

−∞

CeA(t−s)Bf(s)ds. (4.3)

and maps past inputs signals f(t) to future outputs y(t). As already noticed
in section 2.2, the formal solution of (2.10) also provides a mapping between
inputs and outputs of the system. Unfortunately, the mapping given by this
solution is not a finite rank operator; conversely, it can be shown that the
operator H has at most rank n for a state space of order n, resulting in an
easier mapping to be handled, see Glover (1984).

Using the Hankel operator and the related adjoint operator H∗, we can
quantify the output energy obtained from a past input f(t), by

‖y‖2
L2 = 〈Hf,Hf〉L2 = 〈f,H∗Hf〉L2 . (4.4)

If a given input forcing fi(t) is a unit-norm eigenvector of H∗H, then the output
energy will be given by the square of the corresponding Hankel Singular Value
(HSV) σi

H∗Hfi(t) = σ2
i fi(t). (4.5)

The HSVs are real and positive; thus, they can be ranked according to the
associated energy amplification. The balanced modes φi associated with σi is
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Figure 4.1. Snapshots used for balanced truncation; the
streamwise component is depicted in all the insets. Left panels:
snapshots from simulations at t = 400, 1000, 1600; an initial
condition triggering packet of TS-waves is used. Right panels:
snapshots from the adjoint simulations at t =
−400,−1000,−1600.

defined as

φi =
1

σi
Lcfi (4.6)

where Lc is the controllability operator (see Bagheri et al. 2009a; Semeraro
et al. 2010). In an analogous way, the adjoint balanced modes are defined using
the observability operator. The two sets of modes provide a suitable projection
basis for computing the reduced-order model; moreover, their spatial support
reveals peculiarities of the flow from the input-output point of view and provides
physical insight for sensor/actuator placement. In fact, the resulting balanced
mode φj is the global structure in the flow that is “influenced” by the input Bi

by an amount given by its Hankel Singular Value (HSV). The corresponding
adjoint mode ψj is a flow structure that – if used as an initial condition – will
result in an output energy given by its corresponding HSV. For our application,
an approximate basis of balanced modes - and the associated adjoint set - is
computed using a snapshot-based method (Rowley 2005).

4.1.1. Snapshot method

An essential ingredient in the computation of the balanced modes is the iden-
tification of the controllability Gramian,

P =

∫
∞

0
eAtBB∗eA∗tdt (4.7)
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and the observability Gramian,

Q =

∫
∞

0
eA∗tC∗CeAtdt. (4.8)

Both the Gramians are semi-positive definite; thus, the eigenvalues are real and
positive and can be easily ranked. The analysis of the controllability Gramian
allows to identify and rank the states that are more influenced by an input, as
already introduced in the previous section. The observability Gramian identifies
the states that produce the largest output energy; the rank is provided by
the eigenvalue-decomposition of the Gramian Q. The definitions are strictly
connected to the controllability and observability operators (see Bagheri et al.
2009a; Semeraro et al. 2010). Using these operators, it is shown that balanced
modes are equivalently obtained as

PQφi = σ2
i φi, i = 1, . . . , n (4.9)

The adjoint set is represented by the set of left eigenvectors. Following Laub
et al. (1987), a Cholesky decomposition can be performed, such that

P = XX∗, Q = Y∗Y. (4.10)

The Gramians can be computed as solutions of Lyapunov equations, (Green
& Limebeer 1995). The following singular value decomposition (SVD) is per-
formed

Y∗X = UΣV∗. (4.11)

The diagonal matrix Σ contains the HSVs. The direct and adjoint balanced
modes are then given by

Φr = XVΣ−1/2 Ψr = Y∗UΣ−1/2. (4.12)

Unfortunately, the solution of the Lyapunov equations involves a computational
complexity O(n3) and a storage requirement O(n2) making it prohibitive for
high-dimensional systems. The snapshot method is based on the identification
of empirical Gramians (Rowley 2005). Low-rank Cholesky factors are formed
using snapshots collected from the numerical simulations; in particular, snap-
shots are collected marching the simulations forward in time with the inputs
introduced as initial condition, in order to obtain low-order Cholesky factor
X̃ ∈ Rn×ntp; similarly, the Cholesky factor Ỹ can be obtained by sampling
snapshots computed by marching backward in time the adjoint system. Snap-
shots samples are shown in figure 4.1. Using a localized packet triggering
TS-waves as initial condition, three different instants of time are shown in the
left panel, while three snapshots from the adjoint simulation are shown in the
right panel. The number of simulations equal the total number of inputs and
outputs. As long as the number of degrees of freedom n is much larger than
the number of collected snapshots, the method is cheaper than the standard
method.

Using the low-rank Cholesky factors, the approximate direct and adjoint
balanced modes are computed following the procedure previously outlined. In
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Figure 4.2. Balanced modes and related adjoint modes for
the TS waves. Left column: streamwise component of the first
couple of balanced/adjoint balanced modes. Right column:
streamwise component of the third couple of balanced/adjoint
balanced modes.

figure 4.2, the first and third balanced modes, and the associated adjoint modes
are shown for the TS-wavepacket case. In similar way, a set of balanced modes is
computed when considering streaks (see Semeraro et al. 2010). Numerical tests
have shown that the approximate balanced modes are a good approximation to
exact balancing modes and that Σr are close to the true HSVs (Ilak & Rowley
2008; Ahuja 2009; Bagheri et al. 2009a).

In conclusion, note that an equivalent reduced-order model can be identi-
fied directly from the input/output signal analysis using system identification
algorithms. An example is given by the Eigensystem Realization Algorithm
(ERA); it represents an approach formally equivalent to the balanced trun-
cation as shown by Ma et al. (2009), although it is computationally cheaper.
Identification algorithms are particularly suited to experimental setups; indeed,
the model is built on measurements extracted locally and full knowledge of the
flow-field is not necessary.

4.2. Feedback control design

The reduced-order model allows us to easily access the tools of linear control for
the compensator design. The controller is designed using the linear quadratic
Gaussian (LQG) approach; within this approach, the control signal φ has to
be determined, such that an objective function is minimized. In our case, this
criterion reads as follows

E (‖z‖L2) = E

(∫
∞

0
qT CT

1 C1q + φT IT
l Ilφ dt

)

. (4.13)

Thus, the controller provides a control signal φ(t) for the actuators B2, based
on the noisy measurements v(t) extracted from the sensors C2, such that the
mean of the output energy of z is minimized. Moreover, the second term of the
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right-hand side allows to penalize the control effort. The separation principle
states that the problem can be split in two steps, performed independently:

1. The estimation problem consists of an optimization, which can be solved
without any reference to the control problem.

2. It is assumed that the control signal φ(t) can be computed using the
relation

φ(t) = Kq(t), (4.14)

where K is referred to as the control gain.

The so-called compensator consists of an estimator, that provides an estimation
of the flow, and a controller that computes the control input and feeds the
actuators. If each of the two separate problems is stable, the final compensator,
obtained from the optimal estimator and the optimal controller, will be stable.
Moreover, the closed-loop system will be optimal (Anderson & Moore 1990).
For a derivation of the LQG solution, we refer to e.g. Lewis & Syrmos (1995),
Doyle et al. (1989) or Dullerud & Paganini (1999); in the following the two
problems are briefly stated.

4.2.1. Estimation problem

The first step in constructing a controller is to estimate the full state u given
only the noisy measurements v(t). The estimator is defined as

˙̂q(t) = Aq̂(t) + B2φ(t) − L(v(t) − v̂(t)). (4.15)

The reconstructed state is denoted by q̂(t) ∈ Rr and is of the same dimensions
as the reduced model. In the last term of the right-hand side of (4.15), the
noisy measurements v extracted from the sensors C2 are compared with the
measurements v̂ = C2q̂ computed from the estimated state. The estimation
gain L is computed casting an optimization problem, where the estimation
error ‖q − q̂‖ has to be minimized. It can be shown (Kalman 1960) that the
estimation gain is given by

L = −
1

α2
Y CT

2 , (4.16)

where Y ∈ Rr×r is a solution to the algebraic Riccati equation

AY + Y AT − Y CT
2 C2Y + B1B

T
1 = 0 (4.17)

Note that the solution to the Riccati equation for a problem of order n requires
a computational cost of order O(n3), which is intractable for a large system
with n > 105.

4.2.2. Optimal Control

A second optimization problem is formulated in order to compute the control
gain K. We assume that the full state is given by q at all times. Inserting the
feedback relation into (2.10) and neglecting the output v, we get

q̇(t) = (A + B2K)q(t) + B1w(t) (4.18a)

z(t) = C1q(t) + Ilφ(t). (4.18b)
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Figure 4.3. The r.m.s. values of the controlled systems (red
line) are compared with the uncontrolled system (black line).
The location of the actuators and sensors is indicated with a
blue and grey region, respectively.

The gain K is chosen such that the system is stable and the control signal φ(t)
satisfies the objective function (4.13). The solution is provided by a optimal
control state-feedback problem, (see e.g. Anderson & Moore 1990), where the
control signal is given by

K = −
1

2

(

IT
l Il

)−1
BT

2 X, (4.19)

and X is a solution of the Riccati equation

AXT + XA + XB2B
T
2 X + CT

1 C1 = 0. (4.20)

It can be shown that the optimal control signal is given by φ(t) = Kq̂(t), where
K is the control gain computed for the full state and q̂ is the estimated state.
Finally, the LQG compensator is obtained combining the estimator (4.15) and
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Figure 4.4. Energy-density evolution as function of x; the
uncontrolled case (red line) is compared with the respective
controlled case (black line).

the controller

˙̂q(t) = (A + B2K + LC2)q̂(t) − Lv(t) (4.21a)

φ(t) = Kq̂(t). (4.21b)

The main disadvantage of LQG is its limited robustness; indeed, uncertainties
of the underlying system are not accounted for within the framework. The
robustness check can be performed a posteriori, testing the controller at off-
design conditions.

4.2.3. Centralized vs. decentralized approach

The spatial localization of the actuators and the sensors requires a proper
multi-variable approach for the controller design. In the simplest approach
each actuator is connected to only one sensor (in our case, the corresponding
upstream sensor). In such a case, an equal number of actuators and sensors is
required and each loop can be regarded as a single-input-single-output (SISO)
setting; thus, the compensator consists of a number of closed-loops that equals
the number of actuators/sensors. In this case, the controller is called decentral-
ized ; if the decentralized controller is stable in each SISO loop and the inputs
and outputs are decoupled or only weakly coupled, then the closed-loop is also
stable. Conversely, when the system is characterized by strong cross-coupling,
the closed-loop is not guaranteed to be stable. Preliminary tests performed
using DNS show that this approach cannot be applied to our system. Thus, a
centralized control is adopted, where all actuators are connected to all sensors,
as sketched in the inset of figure 2.1.

4.3. Towards laminar-turbulent transition delay

The designed controller is included in the numerical simulations; we analysed
the dynamics of the controlled perturbation within the linear framework, for
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both streaks and TS-waves. The urms as function of the streamwise direction
is shown in figure 4.3. The energy is damped by about one order of magnitude
after the actuation when TS-waves are considered, see figure 4.3(a); the loca-
tion of the sensors and the actuators is marked with a grey and a blue line,
respectively. The controller quenches the propagating disturbance similarly to
opposition controller, transforming the original structure into more complex
3D structure as shown in the introduction, figure 1.1. For the streaks case (fig-
ure 4.3b), a second low-dimensional model is built, using the same typology of
actuators and sensors. A sudden drop of the urms is observed at the actuator
location. The effect of the actuator location is also shown: moving the array
further upstream leads to an improvement of the urms reduction.

When three dimensional TS wavepackets with realistic amplitudes of the
initial perturbation are considered, the energy reduction obtained using the con-
troller results in a delay of the initial stages of the transition process. As shown
in figure 4.4, the original uncontrolled undergoes a rapid energy amplification,
which is delayed when turning on the control. Indeed, mitigation of the en-
ergy is observed soon after the actuation, when the controller is active. Later,
a renewed TS-wavepacket appears and a second energy growth is observed;
however, the entire transition process is delayed by about ∆Rex ≈ 3 × 105.



CHAPTER 5

Summary of the papers

Paper 1

Feedback control of three-dimensional optimal disturbances using reduced-order
models
We apply feedback control to mitigate the growth of small-amplitude three-
dimensional disturbances in boundary layer flows. Numerical simulations are
performed at Reδ∗

0
= 1000, corresponding to Rex ≈ 3 × 105 at the compu-

tational inlet. Low dimension models capture the input-output behavior of
the flat-plate boundary layer; optimal feedback control is designed, based on
a reduced-order model, in combination with localized sensors/actuators (10 to
20 elements). It is shown that with only n = 60 degrees of freedom the entire
input-output behaviour of the full linearized Navier-Stokes, n ≈ 107 system is
captured.

The localized initial conditions introduced provide the maximum energy
growth for a given final time. We demonstrate that the energy of three dimen-
sional Tollmien-Schlichting wavepacket – obtained for long-time optimization –
is damped by two order of magnitude using 9 sensors for the estimation and 9
actuators. The control performance is investigated when reducing the number
of sensors and actuators in the configuration: it was found that a controller
based on a reduced number of actuators affects significantly the performance
of the device. When streaky wavepackets – associated with short time of opti-
mization – are considered, the perturbation energy is damped using 8 sensors
for the estimation and 8 sensor for the actuation.

The influence of the controller effort, the noise contamination of the mea-
surements and the position of the arrays are analysed. Moreover, a robustness
study is carried out. The designed controller schemes are robust also when
strong deviations of the Reynolds number are considered, whereas a less sat-
isfactory behaviour was found when uncertainties of the pressure gradient are
considered.

Paper 2

Transition delay in boundary layer flow using feedback control
Delay of the transition process using a feedback controller based on localized
sensors/actuators is shown. Three dimensional Tollmien-Schlichting wavepack-
ets with realistic initial amplitudes are considered. The controller is designed

27
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using a reduced-order model; the disturbances are mitigated during the early
stage of the propagation, when the flow is still laminar. The action of the
controller resulted in a significant reduction of the perturbation energy of the
disturbance and - later - in a delay of the transition process; a parametric
analysis is carried out, adjusting the controller effort and using different finite-
amplitudes for the initial conditions. The streamwise delay of transition is
estimated in terms of Reynolds number as ∆Rex ≈ 3 × 105.

The analysis of the actuation clearly reveals the excitation of higher order
harmonics; the excitation is related to the three-dimensionality of the controller
action, combined with the non-linearities of the uncontrolled flow. Starting
from this knowledge, a further improvement of the device can be achieved,
including - for instance - the non-linear effects during the modeling process.

Paper 3

Analysis of time-resolved PIV measurements of a confined co-flowing jet using
POD and Koopman modes
Modal analysis by proper orthogonal decomposition (POD) and dynamic mode
decomposition (DMD) of experimental data from a fully turbulent flow is pre-
sented. The flow case is a turbulent confined jet with co-flow, with Reynolds
number based on the jet thickness of Re=10700. Experiments are performed
with time-resolved PIV. The jet is fully turbulent; however the results from
the spectral analysis shows the presence of periodic features, arising from the
flapping of the jet induced by a recirculation zone on the side of the inner jet.

Jet flapping appears as two large structures located downstream on the
first two POD modes. These two modes appear to be coupled to each other;
frequency analysis shows a clear peak at (St = 0.02), in line with previous
experimental results. POD-modes 3, 4 and 5 show the coupling between the
recirculation zone near the inlet and shear-layer oscillation, which is believed
to be the leading sustaining mechanism for the jet flapping. The DMD analysis
clearly isolates these structures, appearing in separate modes; thus, the method
efficiently identifies structures with a single frequency. The peaks found by
spectral analysis of the POD time coefficient are in good agreement with the
frequencies found by DMD. A selection procedure able to retain only the modes
physically relevant is proposed within the DMD framework.



CHAPTER 6

Conclusions and outlook

This chapter contains an overview of the results and few outlines for the future
developments of this work.

Feedback control in boundary layer flows

Numerical simulations of a flat-plate boundary layer have been performed. We
have applied feedback optimal control to quench the arising perturbation; to
this end inputs and outputs have been included in the system. The first in-
put is represented by initial conditions providing a disturbance exploiting the
maximum energy growth for a given final time; the second input is represented
by an array of localized actuators, that act on the the flow. The outputs al-
low us to detect the flow: a set of localized sensors is introduced upstream
of the actuators; the measurements extracted from the flow allow to compute
the control signal which is then fed to the actuators. A second set of sensors
quantifies the action of the controller downstream of the actuators. However,
the complexity of the flow and the number of degrees of freedom arising from
the discretization of the Navier-Stokes equation prohibit the application of the
control theory tools; to tackle these difficulties, the controllers are based on
low-order models, built via a projection onto a suitable expansion basis. Since
modern and robust control is based on the input-output formulation, a success-
ful controller can be designed using a model able to reproduce the dynamics
between the sensors and actuators. To this end, balanced truncation is used.

Within the linear framework, we demonstrate that the energy of three
dimensional Tollmien-Schlichting wavepacket, obtained for long-time opti-
mization, is damped by two orders of magnitude. It was found that a smaller
number of actuators decreases the effectiveness of the controller significantly,
whereas a reduced number of sensors has a smaller impact on the performance.
When an initial condition triggering a streaky wavepacket is considered, the
controller is able to damp by half the perturbation energy.

The drastic reduction of the perturbation energy results in a delay of tran-
sition to turbulence when three dimensional TS wavepacket with realistic am-
plitudes are considered. The controller quenches the disturbances during the
early stage of propagation, when the flow is still laminar, reducing the pertur-
bation energy of the disturbance; this action results - later - in a delay of the
transition process.

29
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The performance of the control is degraded by the 3D nature of the con-
troller action, combined with the non-linearities of the uncontrolled flow. Thus,
an improvement of the performance can be achieved if the non-linear effects
are explicitly accounted with during the modeling process or a more robust
controller is used. More in general, the techniques of flow analysis tested for
the confined turbulent jet, can provide physical insight on the flow and help us
to improve the controllers.

These approaches can improve the controller performance even in more
realistic cases; in particular, control of bypass transition due to free-stream
turbulence (FST) or natural transition can be undertaken. Note that also
within the linear modeling further improvements can be achieved; novel tech-
niques for the model reduction, less computationally demanding than the bal-
anced truncation, allow for more detailed parametric analysis of the optimal
actuators/sensors placement. This aspect can result essential for the design of
realistic actuators and sensors; indeed, numerical tests can help determining
the most efficient form of actuation, provided these are correctly modeled in
the simulations, and valuable information about th experimental set-up before-
hand. Although flat-plate geometry was considered, this framework can also
be applied to more complex geometries, for example an elliptic leading edge.

Analysis of experimental data

POD and DMD have been applied to experimental data from PIV measure-
ments of a turbulent confined jet with co-flow. The jet is fully turbulent,
however the results from the spectral analysis have shown the presence of pe-
riodic features, arising from the flapping of the jet induced by a recirculation
zone on the side of the inner jet.

Spectral analysis of the PIV measurements, modal analysis by POD and
DMD were used and compared. Jet flapping is identified by the first couple
of POD modes. These two modes appear to be coupled to each other, as
highlighted by the eye-inspection of the spatial structure and the temporal-
analysis of the corresponding temporal modes. A recirculation zone appears on
the side of the jet, which is believed to be the leading sustaining mechanism
for the jet flapping; this mechanism is clearly identified by the DMD analysis
together with the associated frequency.

DMD and POD are snapshot-based methods; thus, the same analysis
framework can be easily applied for more detailed investigations of specific
region of the flow using the same dataset (e.g., the inlet of the jet). Moreover,
the analysis of the same flow with polymers can be undertaken.
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The attenuation of three-dimensional wavepackets of streaks and Tollmien-
Schlichting (TS) waves in a transitional boundary layer using feedback control
is investigated numerically. Arrays of localized sensors and actuators (about
10–20) with compact spatial support are distributed near the rigid wall equidis-
tantly along the spanwise direction and connected to a low-dimensional (r = 60)
LQG controller. The control objective is to minimize the disturbance energy
in a domain spanned by a number of proper orthogonal decomposition (POD)
modes. The feedback controller is based on a reduced-order model of the lin-
earized Navier-Stokes equations including the inputs and outputs, computed
using a snapshot-based balanced truncation method. To account for the differ-
ent temporal and spatial behaviour of the two main instabilities of boundary
layer flows, we design two controllers. We demonstrate that the two controller
reduce the energy growth of both TS wavepackets and streak-packets substan-
tially and efficiently, using relatively few sensors and actuators. The robustness
of the controller is investigated by varying the number of actuators and sen-
sors, the Reynolds number and the pressure gradient. This work constitutes
the first experimentally feasible simulation-based control design using local-
ized sensing and acting devices in conjunction with linear control theory in a
three-dimensional setting.

1. Introduction

In recent years, industrial, economical and environmental needs have reinvig-
orated the interest in practical methods for control of transitional and fully
turbulent wall-bounded shear flows. Currently, research efforts are devoted to
the manipulation of fluids by passive means, for example by riblets (Choi et al.
1993) or discrete roughness elements (White & Saric 2000), by ad-hoc active
means, for example via wave cancellation (Sturzebecher & Nitsche 2003), op-
position control (Hammond et al. 1998) or wall-motion techniques (Quadrio
& Ricco 2004) and with linear and nonlinear control theoretical approaches,
for example using spatially localized convolution kernels (Högberg et al. 2003)
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or adjoint-based optimization methods (Bewley et al. 2001). Significant ef-
forts are also devoted to the development of acting and sensing devices, such
as synthetic jets (Smith & Glezer 1998), electro-magnetic actuators (Pang &
Choi 2004), plasma actuators (Grundmann & Tropea 2008) or various micro-
electro-mechanical systems (MEMS) actuators (Ho & Tai 1998) constructed
using micro-machining techniques.

1.1. Linear control of transition

It is now well established that under certain conditions the initial phase of the
laminar-turbulent transition in wall-bounded flows is largely governed by linear
mechanisms. We therefore believe that tools of linear control theory may pro-
vide efficient, robust and feasible controllers to delay transition to turbulence.
The combination of linear systems and control theoretical tools and transi-
tion control dates back to the seminal works by Joshi et al. (1997), Cortelezzi
et al. (1998) and Bewley & Liu (1998) who paved the way for future researchers.
These investigations applied feedback control to the problem of linearized plane
Poiseuille flow, taking into account unknown and variable disturbances in im-
precise flow conditions, mathematical modelling of boundary actuation (blow-
ing and suction at the wall), optimality and robustness (LQG/H∞ methods),
minimal realizations (controllability and observability) and so on.

However, the tools in linear control theory are developed for systems with
number of degrees of freedom of the order 102; controllers with 105 of states
or more are of no interest in engineering applications due to the amount of
hardware and computer resources required to compute a real-time control law.
As a consequence, all model-based control designs involve the problem of re-
ducing the order of the controller. In fact, this issue was already addressed by
Cortelezzi et al. (1998); they analyzed distributed measurements and actuators
and designed the linear controllers in Fourier space, since for spatially invari-
ant systems such as channel flow, the 3D system becomes completely decoupled
into a set of 2D subsystems. The approach requires an on-line 2D (for each
xy-plane) FFT of the measurement vector and an online 2D iFFT of the control
vector, in addition to assuming that the disturbances are spatially periodic in
the spanwise direction. However, the main drawback besides the periodicity
assumption, is that the cost of the online 2D FFTs grows rapidly with the
number of actuators and sensors.

A different approach in physical space was adopted by Högberg & Bewley
(2000) and Högberg et al. (2003), after the theoretical predictions by Bamieh
et al. (2002). There, it was shown that for spatially invariant systems with dis-
tributed control and measurements, optimal and robust controllers, obtained
by solving a set or family of smaller problems in the Fourier space, are spa-
tially localized with compact support. This means that controllers designed in
Fourier space for each wavenumber pair independently (considering for exam-
ple the channel flow) result in realizable and practicable controllers (or kernels)
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in physical space, that can at least hypothetically be implemented using micro-
electromechanical systems (MEMS). Several successful projects were initiated
to extend this approach to weakly spatially developing flows (Chevalier et al.
2007a; Monokrousos et al. 2008) and even to fully turbulent flows (Högberg
et al. 2003b; Chevalier et al. 2006). However, there are several shortcomings of
this approach which have rendered it difficult to implement it experimentally:
(i) it introduces a controller with the same order as the plant; (ii) it is only
applicable to spatially invariant systems; (iii) it assumes distributed sensors
and actuators.

As we mentioned earlier, controllers of very high-order are useless in appli-
cations; today we lack methods to reduce the order of very high-dimensional
controllers in a systematic way, since the methods developed in the control
community are only applicable to moderate size controllers. The limitation to
spatially invariant flows is a severe restriction; even if the approach can be ex-
tended to weakly spatially developing flows, more complex flows such as flows
in ducts, corners, diffusers and around leading edges are out of reach. Finally,
the assumption of distributed sensors and actuators restricts the approach to
acting and sensing devices that can be manufactured in very large numbers such
as MEMS devices; in many applications this is not cost-efficient and, moreover,
only a few localized sensors and actuators suffice to manipulate the flow in a
desired way.

1.2. Model reduction of the Navier–Stokes equations

This paper addresses the limitations – with no assumptions made about the
geometry or about the shape and distribution of actuators and sensors – of
previous methods in a direct and efficient way by reducing the complexity of
the Navier–Stokes equations before designing the controller. For this model
reduction step to be meaningful, the complexity of the governing system must
be reduced by several orders of magnitude, that is, from several million degrees
of freedom to less than a hundred, while preserving the essential dynamics. It
has not been clear how to define“essential dynamics”in the context of transition
control and once defined, if such an enormous order reduction can be performed
in a systematic and efficient manner. The method used in this paper is balanced
truncation. An approximation of this approach for large-scale systems, like
those typical in fluid mechanics, was proposed by Rowley (2005) and recently
applied for channel flow instabilities by Ilak & Rowley (2008).

As recognized by Bewley (2001), the only requirement to achieve the desired
flow behavior is that suitable control signals are determined based only on
filtered information delivered from the sensor measurement. Thus, of utmost
importance for control design is to extract the components necessary to describe
the relation among time signals from the full dynamics governed by Navier–
Stokes equations. A general input-output framework was developed in Bagheri
et al. (2009a), where the disturbance and actuators were considered as inputs,
whereas the objective function and sensors were considered as outputs. It was
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shown that the input-output behavior is the “essential dynamics” and it could
be represented equally well with a reduced-order model of 60 degrees of freedom
as with the Navier–Stokes equations of order 105. This proof-of-concept work
showed for the first time that this significant order reduction can be combined
with control theoretical tools to attenuate disturbances in spatially developing
flows. The work presented in this paper extends previous research on reduced-
order models and linear feedback control of two-dimensional disturbances to
a fully three-dimensional (3D) setting. This is not a trivial extension, since
the third spatial direction introduces several new challenges; the disturbance
dynamics is significantly more complex due to the presence and competition of
different instability mechanisms.

When the background disturbance level is very low (order of 0.05%) packet
of traveling waves, Tollmien-Schlichting (TS) waves, are typically observed in
boundary layers. These waves are characterized by small streamwise scales
and large spanwise extent. However, in the presence of moderate levels of vor-
tical perturbations in the free stream, streaky streamwise elongated structures
emerge in the boundary layer; these streaks have a dominant spanwise length
scale on the order of the boundary layer thickness.

In addition to having completely different spatial structures, of these two
disturbances types also evolve on different time scales. The TS wavepackets
grow exponentially on a viscous time scale and break down when they reach
amplitudes on the order of a few percent of the free stream velocity, whereas
the streaks grow at an algebraic rate, quickly reaching their peak energy and
triggering turbulence at amplitudes one order of magnitude larger than TS
wavepackets. The two types of disturbances span a wide range of temporal and
spatial scales, making the control design and in particular the choice of actu-
ators and sensors and their placement a disturbance-dependent task. Indeed,
previous work on flow control has targeted either streaks or TS wavepackets;
however, in realistic conditions, it is likely that both instability mechanisms
co-exist. In order to be able to control both types of disturbances we build two
controllers: each aimed at one of the two types of instabilities. However, it is
the intention of this work to control both type of disturbances using the same
spatial shape of actuators and sensors.

1.3. Scope of investigation

The present study is based on a fully 3D configuration that resembles actual
experimental setups – see for instance Lundell (2007) or Sturzebecher & Nitsche
(2003) – with a set of localized actuators and sensors distributed near the wall.
The long-term aim of this research project is to develop numerically reliable
and fast controllers that are possible to use in laboratory experiments. For
example, measurements from hot film sensors or wall wires could, after being
processed by analog to digital converters (A/D) and digital signal processors
(DSP), be fed to a computer that quickly computes the control signals using the
numerically obtained low-order controller developed in this work. The control
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signal would then be converted to analog signal using D/A converter and fed to
plasma actuators. Numerical investigations can also be useful for wind-tunnel
experiments, by providing guidelines for the shape and spatial distribution of
actuators and sensors. The design and placement of actuators and sensors
can be studied through extensive numerical parametric studies, reducing the
number of experiments required to obtain a satisfactory controller. Thus, we
believe that the numerical study presented here takes us one step closer to
incorporating theoretical tools into the practical (experimental) flow control
community.

The objective of this work is to investigate whether three-dimensional
streaks and TS wavepackets can be attenuated by specific controllers based
on a few localized sensors and actuators. The controllers are designed using
reduced-order models in conjunction with linear optimal feedback control.
In addition, the efficiency and robustness of the linear controller will be
investigated to assess the control performance when the system is operating at
off-design conditions.

This paper is organized as follows. In sections 2 and 3, the control problem
is formulated with a description of the configuration, disturbances, actuators,
sensors and objective functions. The model reduction problem is briefly intro-
duced. The characterization of the leading balanced modes and the validation
of the reduced-order models of the Navier–Stokes system are provided in sec-
tion 4. In this section, we start to discuss separately the results for streaks
and TS-waves, while the previous theoretical formulation is independent of the
specific disturbance considered. Section 5 provides a short introduction to the
Linear Quadratic Gaussian (LQG) framework. Sections 6 and 7 contain the
main results of the paper: the performance of the control is evaluated for 11 dif-
ferent configurations of sensors and actuators for the TS wavepackets case and
4 configurations for the streaks. The paper ends with a discussion in section 8
and a summary of the main conclusions (section 9).

2. Governing equations and flow parameters

We study the dynamics and control of small-amplitude perturbations in a
viscous, incompressible flow over a flat plate, using numerical simulations.
The three-dimensional input-output configuration, shown in figure 1, is an
extension of the two-dimensional case studied in Bagheri et al. (2009a,a).
The disturbance velocity field is governed by the Navier–Stokes equations lin-
earized around a spatially evolving zero-pressure-gradient boundary layer flow
U(x, t) = (U(x, y), V (x, y), 0)T ,

∂u

∂t
= − (U ·∇)u − (u ·∇)U −∇p + Re−1∇2u + λf (x)u (1a)

0 = ∇ · u (1b)

u = u0 at t = 0. (1c)



44 O. Semeraro, S. Bagheri, L. Brandt & D. S. Henningson

(a)

(b)

(c)

B1 C2T B2T
C1

30

800
341

0
200

U∞

x

y

x

z

120π

300

400

x

z

240

75

125

C2S B2S

C2,+4

C2,+3

C2,+2

C2,+1

C2,0

C2,-1

C2,-2

C2,-3

C2,-4

B2,+4

B2,+3

B2,+2

B2,+1

B2,0

B2,-1

B2,-2

B2,-3

B2,-4

z=0

z=20

z=40

z=60

z=80

B2,+4

B2,+3

B2,+2

B2,+1

B2,-1

B2,-2

B2,-3

B2,-4

C2,+4

C2,+3

C2,+2

C2,+1

C2,-1

C2,-2

C2,-3

C2,-4

z=4

z=8

z=12

z=16

Figure 1. Input-output configurations. For a complete list
of the cases, see table 1 and table 2; here, the reference cases
for the TS case (b) and the streak case (c) are depicted. The
input B1 in (b) is an optimal initial condition that triggers
TS-waves, located at (30, 1, 0). The control action is provided
by the input B2, which consists of a row of actuators located
at x = 400. The output C2 at x = 300 contains an array of
sensors used for flow estimation. For the streak case (c), B1 is
located at (30, 1, 0), B2 at x = 125, and the estimation sensor
row C2 is placed at x = 75. The effect of the controller is
quantified by C1, defined in a region spanned by 10 proper
orthogonal decomposition (POD) modes (here indicated with
a darker gray region); for each case, one set of modes is gener-
ated. In both cases, all the estimation sensors are connected
to all the actuators (centralized control).

The disturbance velocity field and the pressure field are u(x, t) = (u, v, w)T

and p(x, t), respectively. The flow evolves in the spatial domain Ω defined by,

Ω = {x ∈ R
3|x ∈ [0, Lx], y ∈ [0, Ly], z ∈ [−Lz/2, Lz/2]},

where the streamwise, wall-normal and spanwise directions are denoted by x,y
and z, respectively. The Reynolds number is defined as Re = U∞δ∗0/ν, where
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δ∗0 is the displacement thickness at the inflow position, U∞ is the uniform
freestream velocity and ν is the kinematic viscosity. The simulations were per-
formed at Reδ∗

0
= 1000, corresponding to Rex ≈ 3 × 105 at the computational

inlet.

The following boundary conditions are imposed in Ω,

u(x, y,−Lz/2) = u(x, y, Lz/2) (2a)

u(0, y, z) = u(Lx, y, z) (2b)

u(x, 0, z) = u(x, Ly, z) = 0. (2c)

A no-slip condition is imposed on the flat plate (y = 0). Far away from the wall
(y = Ly), in the freestream, Dirichlet boundary conditions enforce vanishing
perturbations. Periodicity of the solution is assumed in the spanwise direction,
whereas in the streamwise direction, an outflow boundary condition is imposed
within the Fourier approximation by the term λf (x)u in equation (1a). This
forcing is identically zero inside the physically relevant domain (x ∈ [0, 800])
and raises to order one inside a fringe region, starting at x=800, where it forces
the perturbations to zero (Nordström et al. 1999).

In this work, our aim is to present the linear systems and control theory
in as simple and compact form as possible and put the focus on the control
performance and the associated physics. Therefore, we omit entirely any dis-
cussion of partial differential equations and the following analysis is presented
for finite-dimensional systems – ordinary differential equations – for simplicity.
The infinite-dimensional formulation of the theory is presented in Bagheri et al.
(2009a), where the relevant function spaces, inner products and derivations of
adjoint operators alongside a more in-depth theoretical discussion are provided.
Note, however, that the fundamental difference between the theory for ODEs
and PDEs is related to convergence (see e.g. Curtain & Zwart 1995); other than
that, the two formulations are analogous.

The results presented in this paper are computed with a pseudo-spectral
code (Chevalier et al. 2007). The computational domain Ω has the dimensions
indicated in the captions of tables 1 and 2; a resolution of 768× 101× 120 has
been deemed sufficient and used for all the simulations. The spatial discretiza-
tion requires thus n ≈ 107 degrees of freedom. The discretized and linearized
Navier–Stokes equations 1 with the boundary conditions 2 can be written as
an initial-value problem

u̇(t) = Au(t) u(0) = u0, (3)

where u ∈ U ⊂ Rn is the state variable in the state space U endowed with
the inner product 〈·, ·〉Ω. For the flat-plate boundary layer, the flow is globally
stable (Åkervik et al. 2008) – but convectively unstable – resulting in a stable
matrix A, i.e., all the eigenvalues of A have negative real part.

The action of A ∈ Rn×n on u corresponds to evaluating the right-hand
side of the linearized Navier–Stokes equations and enforcing the boundary con-
ditions. Associated with this operator is the evolution operator T, that can be
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Figure 2. Impulse response of the system to an initial dis-
turbance in B1, leading to maximum energy growth at time
T = 1820; the streamwise component of the resulting distur-
bance is displayed at t = 400, 800, 1600. The red and blue
colours represent positive and negative velocity, respectively.
The spreading of a TS wave-packet is observed.

defined as

u(t) = T(t)u(0) = exp(At)u0. (4)

Given an initial flow field u0, T provides the velocity field at a later time t;
the action of the operator amounts to integrating the governing equations for-
ward in time. In a similar way, the adjoint evolution operator T∗ provides
the solution of the adjoint linearized Navier–Stokes equations at different in-
stants in time. Applying this operator corresponds to integrating the adjoint
state backward in time. The continuous and discrete adjoint equations are
given in Appendix Appendix B; a detailed derivation of the operators for the
corresponding two-dimensional case is provided in Bagheri et al. (2009a).

3. Input-output system and model reduction

The input-output configuration is schematically depicted in figure 1; formally,
the linear system with inputs and outputs is defined as follows:
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u̇(t) = Au(t) + B1w(t) + B2φ(t), (5a)

z(t) = C1u(t) + Ilφ(t), (5b)

v(t) = C2u(t) + Iαg(t). (5c)

The first input B1 ∈ Rn, located far upstream, models an incoming external
perturbation, whereas the second input B2 ∈ Rn×m represents m actuators.
The temporal behaviour of the inputs is given by the signals w ∈ R, g ∈ R and
φ ∈ Rm respectively. The measurement signals, contained in the vectors v ∈ Rp

and z ∈ Rk, provide information about the perturbation and are extracted
by p sensors C2 ∈ Rp×n and k sensors C1 ∈ Rk×n, respectively. To model
measurement noise corrupting the sensors signals, the output equation (5b) is
forced with unit-variance white noise g(t). The vector Iα ∈ Rp contains in
each entry the scalar value α. A large value of α introduces a high level of
noise corruption on the measurement v(t), whereas a small value indicates high
fidelity of the information extracted by the sensors C2. Finally, the matrix
Il ∈ Rk×m contains in each entry the parameter l, which allows penalization of
the controller effort, as further discussed in section 3.3.

The energy growth of the TS wavepacket and the streaks is characterized by
different growth rates and temporal scales: whereas the TS wavepacket grows
at an exponential rate and breaks down quite far downstream of the inflow,
the streaks grow at an algebraic rate, quickly reaching the maximum level of
energy and resulting in a relatively early breakdown. The different time scales
of the disturbances have vital implications for the control design as shown in
figure 1; in order to mitigate properly the two types of disturbances, a proper
control scheme for each case is designed. The set-up designed for the mitigation
of the streaks is located upstream in the domain, before the maximum growth
is reached. Conversely, the location of the TS wavepacket controller is chosen
in the center of the box, since the maximum growth appears far downstream.
In the following sections, the m + 1 inputs and p + k outputs are introduced in
detail.

3.1. B1 — Optimal disturbances

The upstream disturbance B1 is a localized initial condition that provides the
maximum energy of the perturbation at a given final time. As recently shown by
Monokrousos et al. (2010), different instability mechanisms can be triggered by
three-dimensional, localized initial conditions computed for different optimiza-
tion times. In particular, long optimization time provides an initial condition
that triggers a wavepacket of Tollmien-Schlichting waves, whereas streamwise
vortices are obtained as an optimal initial condition when large amplification
in short time is sought.

Figure 2 shows the impulse response to an initial condition B1 that provides
the maximum growth for a final time tmax ≈ 1820 at three instants in time; the
streamwise component is tilted in the upstream direction, leaning against the
shear layer. Initially, the evolving disturbance extracts energy from the mean
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Figure 3. Impulse response to an optimal initial disturbance
in B1 leading to maximum energy growth at T = 720. The
disturbances is represented by the iso-surfaces of the stream-
wise velocity at t = 100, 400, 800; the red and blue colours
represent positive and negative velocity, respectively. The re-
sulting disturbance is characterized by elongated streaky struc-
tures.

flow via the Orr-mechanism (see e.g. Butler & Farrell 1992; Åkervik et al.
2008); the structure gradually rotates until it aligns with the shear. As the
disturbance propagates downstream, the wavepacket grows in size and spreads
in the spanwise direction. The evolution of the disturbance energy, defined as,

E(t) = 〈u(t),u(t)〉Ω (6)

is shown in figure 4(a). We observe an exponential growth of the energy and
an amplification E(tmax)/E(0) ≈ 2 × 103.

The evolution of the optimal initial condition obtained for a shorter time,
tmax = 720, is depicted in figure 3. The initial condition is a packet of stream-
wise vortices, with most of the energy contained in the wall-normal and span-
wise components. The energy growth is related to the lift-up mechanism, char-
acterized by the energy transfer to the streamwise component; this instability
mechanism generates long streaky structures, growing in size in the streamwise
direction, as shown in figure 3. The energy evolution is shown in figure 4(b),
where an amplification E(tmax)/E(0) ≈ 3 × 102 is found.
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Figure 4. Disturbance energy as function of time for the TS-
waves (a) and streaks (b).

3.2. B2 and C2 – Actuators and sensors

Each of the m actuators in B2 is represented by a volume forcing localized in
a region close to the wall. The actuators are placed in a row in the spanwise
direction; the p sensors represented by C2 are also composed by a row of
localized elements, located a short distance upstream of the actuators. All the
elements in B2 and C2 are analytically expressed by a Gaussian function given
in Appendix Appendix A. The fact that we have modeled the actuators and
sensors as volume forcing does not mean that they are unrealistic or not relevant
for practical implementation; it is the effect of an actuator that is important
to model, and not the actuator itself. Therefore, the action that the volume
forcing has on the flow, could possibly be reproduced for example using plasma
actuators (Grundmann & Tropea 2008). The measurement signal v(t) is the
spatial integral of the velocity field u weighted with the Gaussian function (see
equation 22).

The actuator array designed for the mitigation of the TS-wavepackets is
located halfway in the downstream direction, while the array designed for the
streaks control is placed upstream; it was found by numerical simulations that
the performance of the feedback control schemes is dependent on the number
of elements used and the streamwise location, as discussed later.

3.3. C1 – Objective function

The aim is to determine a control signal φ(t) using the noisy measurements v(t),
so that the perturbation energy of the flow is minimized in the region defined
by C1. Moreover, the energy expended by the actuator has to be limited in
order to design an efficient controller. Hence, the criterion to be minimized is
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Figure 5. POD modes generated from the impulse response
to an initial condition triggering TS-waves. The isocontours
of the streamwise velocity component of the first mode (C1,1)
are shown in the xz-plane at y ≈ 1.0, (a), and in the xy-plane
at z = 0, (c); red contours indicate positive velocity, blue
contours the negative one. Analogously, the third POD mode
(C1,3) is shown in the right frame.

expressed by the objective function

‖z‖2
L2(0,T ) =

∫ T

0
‖C1u‖

2
Ω + φT IT

l Ilφ dt (7)

where the entries of the matrix Il, given by the parameter l, define the cost
of the control1. Low values of l allow strong actuations, as the control input
is allowed to have a higher magnitude. On the other hand, high values of l
penalize strong actutation. Also, it is worth noting that values of l that are
too low may result in unphysical control inputs.

The spatial support for C1 is localized in a region downstream, where
disturbances have high energy, as sketched in figure 1. The subspace of
the domain where the controller minimizes the energy is spanned by a ba-
sis {C1,1, . . . ,C1,k}, which in the present configurations is a sequence of POD
modes (see e.g. Holmes et al. 1996), obtained from the impulse response of the
initial disturbances. This approach is similar to the so-called “output projec-
tion” technique used by Rowley (2005) and Ilak & Rowley (2008). The POD
modes are the most energetic structures triggered by the inputs; the corre-
sponding eigenvalues {γ1 ≥ γ2 ≥ · · · ≥ γk} represent the fraction of the total
flow energy captured by each mode.

The POD basis is empirical, i.e., it accurately represents the data that
generated it; therefore, two different sets of modes are computed, one for
each initial condition considered. The POD modes generated for the TS-
wavepacket configuration come in pairs (see e.g Rempfer & Fasel 1994), because

1It is assumed that the cross-term between the control input and C1u is zero (Zhou et al.

2002).
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Figure 6. POD modes generated from the impulse response
to an initial condition triggering streaks. The isocontours of
the streamwise velocity component of the first (C1,1) and sec-
ond (C1,2) POD modes are shown in left and right frame, re-
spectively; the sections in the xz-plane, at y ≈ 1.6, are shown
in (a) and (b), whereas the sections in the xy-plane, at z = 2,
are shown in (c) and (d). Red contours indicate positive ve-
locity, blue contours indicate negative velocity.

two real-valued functions are required to describe a flow structure travelling as
a wavepacket; each pair exhibits the same structure, only shifted in the stream-
wise direction. In contrast, the corresponding POD eigenvalues associated with
the streak disturbance - not shown here - are no longer ordered in pairs, since
the disturbance is characterized by low frequency elongated structures in the
direction of propagation.

To identify a proper POD basis, we also considered snapshots generated
from all the inputs (i.e. including the actuators). The comparison between
the POD modes generated by all the inputs (B1 and B2) and those obtained
from the initial condition (B1), demonstrated that only modes corresponding
to small γ, containing less than 1% of the total energy, are affected by the
structures related to the actuators. Thus, POD modes generated only by the
upstream disturbance were used during the numerical simulation; in particular,
the first 10 POD modes capture 93% and 91% of the total flow energy for the
TS and streak configurations, respectively, and are used as the basis for C1.
An alternative choice for C1 is presented in Semeraro et al. (2010), where a set
of Fourier modes localized in the streamwise and wall-normal directions were
introduced to define the objective function.

The leading POD modes capture the relevant spatial characteristics of each
disturbance as illustrated in figure 5 and 6, where two modes for each set are
shown. For the TS wavepacket (figure 5), one POD mode for each of the
two first pairs is shown: it can be seen that the structure is mostly located
downstream, indicating where the energy response to the forcing is the largest.
For the streaks (figure 6), the first two modes have significant spatial support
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starting from x = 250 and extend all the way to the end of the domain. The
streamwise and the wall-normal components are anti-symmetric with the re-
spect of the xy-plane (z = 0), whereas the spanwise component is symmetric;
opposite symmetry features are observed for the TS wavepackets. The cross
section reveals the tilted shape of the modes, with the streak leading edge
further away from the wall then the trailing edge.

3.4. Model Reduction

In general, a reduced-order model of the input-output system 5 can be obtained
via a projection onto a low-dimensional subspace Ur ⊂ U, spanned by r basis
functions, Φ = (φ1,φ2, . . . ,φr) ∈ Rn×r. Thus, the disturbance field u ∈ U can
be approximated by ũ ∈ Ur,

ũ =
r

∑

j=1

qjφj = Φq (8)

where q = (q1, q2, . . . , qr)T ∈ Rr are the scalar expansion coefficients. The
coefficients can be computed from

qj = 〈u,ψj〉Ω, or q = Ψ∗u

where Ψ = (ψ1,ψ2, . . . ,ψr) ∈ Rn×r are adjoint modes; the adjoint modes
are bi-orthogonal to the expansion basis Φ, i.e. Ψ∗Φ = I, where I ∈ Rr×r

is the identity matrix. The superscript ∗ represents the application of the
inner-product 〈·, ·〉Ω between the rows of Ψ∗ and u. The approximation 8 can
be inserted in the input-output system 5. Taking the inner product with the
adjoint modes results in the reduced-order model of order r,

q̇(t) = Aq(t) + B1w(t) + B2φ(t) (9a)

z(t) = C1q(t) + Ilφ(t) (9b)

v(t) = C2q(t) + Iαg(t), (9c)

where A = Ψ∗AΦ, B1 = Ψ∗B1, B2 = Ψ∗B2, C1 = C1Φ and C2 = C2Φ.

The choice of a proper expansion basis is crucial for the performance of
the reduced-order model; in our case, we aim to build a model that preserves
the dynamics between the actuators and sensors. Indeed, among all the pos-
sible divergence-free velocity fields, only certain states can be triggered by
the inputs (B1 and B2) and observed by the outputs (C1 and C2). These
states are called controllable and observable states, respectively. The unob-
servable/uncontrollable states are redundant for the input-output behaviour of
the system; thus, they can be discarded. Moreover, it turns out that, when
m, p & n, with m the number of inputs and p the number of the outputs, the
complexity of 5 can be further reduced, while preserving the relation between
the inputs and outputs.

A systematic approach of removing these states is called balanced trunca-
tion (Moore 1981); in appendix Appendix C a summary of this method is given
in a simplified space-discrete form. The focus is on the Hankel operator, which
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provides a direct mapping between the inputs and the outputs. From this op-
erator a set of balanced modes and a corresponding adjoint set can be defined,
and used as a projection basis. Unfortunately, the necessity to solve Lyapunov
equations makes the exact balanced truncation unfeasible for large systems.
An approximation based on snapshots of the flow field is introduced in Rowley
(2005). In particular, the snapshots are computed by marching in time the lin-
earized NS forced by all inputs, and backward in time the adjoint system forced
by the sensors. In appendix Appendix C, the method is briefly outlined for the
present notation; note, however, that the original method proposed by Rowley
(2005), also referred as balanced proper orthogonal decomposition (BPOD), is
characterized by the output projection of the sensor over a POD basis generated
from the inputs dataset.

Further extensions of balanced truncation are available for unstable systems
and nonlinear problems. Indeed, a balanced truncation as introduced by Moore
(1981) can be applied only to a system linearized about a stable steady state.
An extension to unstable cases was proposed by (Zhou et al. 1999); the method
relies on the identification of the stable and the unstable states, for instance via
a modal decomposition, and the application of balancing to those subspaces.
Recently, the method was applied using the snapshot-based approximation for
the control of unstable flows such as the open cavity case (Barbagallo et al.
2009) or the flow past a flat plate (Ahuja & Rowley 2010); in those cases,
the unstable dynamics of the system is represented by the unstable modes,
while the approximate balance truncation is applied to obtain a reduced-order
model of the stable partition of the system. Finally, an interesting application
to nonlinear systems is presented in Ilak et al. (2010), where reduced-order
models for the complex Ginzburg-Landau equation are compared. The best
performance is obtained by Galerkin projection of the nonlinear system onto a
basis of balanced modes obtained from the corresponding linearized system.

4. Reduced-order models

In this section, we discuss the set of approximate balanced modes - and the
related adjoint set - computed for both the TS and streaks cases. The struc-
ture of the modes is investigated, pointing out the main structural features.
Indeed, an advantage of this technique is the possibility of analysing the spa-
tial distribution of the modes; the spatial support reveals peculiarities of the
flow from the input-output point of view and provides physical insight for the
sensors/actuators placement. In fact, the resulting balanced mode φj is the
global structure in the flow that is “influenced” by the input B by an amount
given by its Hankel Singular Value (HSV) – see appendix Appendix C. The
corresponding adjoint mode ψj is a flow structure that – if used as an initial
condition – will result in an output energy given also by its HSV. Thus, these
global modes represent flow fields ranked according to their response behavior
(controllability) and output sensitivity (observability).
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Case Act.s Sens.s Control Noise Energy System norm
m p l α E/Enc ‖G‖2

2

Ts0 - - - - 1.00 324.25
A 9 9 100 0.01 0.070 1.42
B 9 9 250 0.01 0.064 13.23
C 9 9 500 0.01 0.12 55.27
D 9 9 100 10 0.068 1.48
E 9 9 100 50 0.061 8.46
F 9 9 100 150 0.57 209.03
G 9 9 100 250 0.85 318.74
H 3 3 100 0.01 0.55 6.91
I 5 5 100 0.01 0.13 2.25
L 7 7 100 0.01 0.071 1.28
M 9 5 100 0.01 0.068 1.56

Table 1. Cases A-M correspond to 11 closed-loop systems for
the control of TS-wavepacket, whereas case ’Ts0’ is an uncon-
trolled configuration. In all the cases the computational box
Ω has dimensions [Lx, Ly, Lz] = (100, 30, 120π). The number
of actuators B2 (m), the number of sensors C2 (p), the control
penalty (l) and the degree of noise corruption (α) vary for the
different configurations. The peak perturbation energy of the
controlled cases as a fraction of the uncontrolled peak distur-
bance energy, together with the 2-norm of the input-output
system transfer function are also displayed.

In this section, we first discuss the balanced modes obtained by considering
only the upstream disturbance B1 ∈ Rn and the outputs C1 ∈ Rk×n (POD
modes), for the sake of clarity. Finally, the reduced-order models for the full
system, including also the actuators B2 ∈ Rn×m and sensors C2 ∈ Rp×n, are
presented and their performance is analysed. One model is computed for each
configurations; in table 1, 11 different configurations (labeled A to M) for the
TS mitigation, are listed. In all cases, the elements have an equidistant spacing
in the spanwise direction at ∆z = 20. The relative position of the arrays in
the streamwise direction is fixed; the distance among the actuators was chosen
after preliminary tests to get a proper actuation. For the streaks, we found
that a finer distribution, ∆z = 4, of the actuator elements in the spanwise
direction is necessary. This is mainly due to the smaller spanwise scales of
the streaks (β = 2π

Lz
= 0.58, with a total width of Lz ≈ 11). In table 2 the

configurations for the control of streaks are listed, labeled N to Q. For the
largest cases, the linear systems consist of 10 inputs and 19 outputs (case A,
table 1), and 9 inputs and 18 outputs (case N, table 2); their complexity n is
of order 10 million.
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Case Act.s Sens.s Control Energy Ratio System norm
m p l E/Enc ‖G‖2

2

Sk0 - - - 1.00 114.24
N 8 8 50 0.66 38.84
O 8 8 100 0.67 79.85
P 8 8 150 0.81 96.40
Q 8 8 70 0.79 55.96

Table 2. Cases N-Q correspond to 4 closed-loop systems for
the control of streaks, whereas case ’Sk0’ is an uncontrolled
configuration. The control penalty (l) varies for the differ-
ent configurations; the measurement noise is α = 0.01 for all
setups. The same number (m) of actuators B2 (m) and sen-
sors C2 (p) is considered for all the configurations; in the last
configuration, a different layout is considered, where the sen-
sor array and the actuator array are placed in x = 100 and
x = 150, respectively. The dimensions of the computational
domain for all the cases are [Lx, Ly, Lz] = (1000, 30, 240). The
peak perturbation energy of the controlled cases as a fraction
of the uncontrolled peak disturbance and the 2-norm are re-
ported.

The TS case and the streaks are discussed separately in the following sec-
tions.

4.1. TS wavepackets

Using the snapshot method, the balanced modes and the adjoint balanced
modes related to the TS wavepacket were computed; the snapshots were col-
lected with constant time spacing, ∆t = 16, in a time-interval [0, 3000] for the
forward simulation and in [0,−2600] for the ten adjoint simulations.

The computed Hankel singular values σj are shown in figure 7 (red circles).
Similarly to the POD modes discussed previously, the HSVs generated for the
TS come in pairs, where the corresponding modes have the same structure,
only shifted along the streamwise direction by a quarter of wavelength. The
iso-contours of the streamwise components of the first and the third balanced
modes (φ1,φ3) and their related adjoint modes (ψ1,ψ3) are shown in figure 8;
the structure is shown in both the xy-plane (z = 0) and the xz-plane (y ≈ 1.6).
The leading balanced modes are characterized by a nearly two-dimensional TS-
wavepacket structure, located mostly in the downstream region. These modes
are strongly controllable flow structures and capture the response behavior of
the system to the input B1.
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Figure 7. The Hankel singular values of the complete models
(blue circles) are compared with the HSVs generated consider-
ing the first input B1 and the output C1 only (red circles). On
top Hankel singular values generated for the models related to
TS waves (a), on bottom HSVs for the streaks (b).

The associated adjoint balanced modes are mostly located far upstream
and represent flow structures to which the output C1 is most sensitive. The
spatial separation between these structures and the most controllable structures
identified by the direct balanced modes is similar to the spatial separation
observed between the direct and adjoint global modes of the linearized Navier–
Stokes equations, A. This is a sign of the streamwise non-normality of A
(Chomaz 2005). In figure 8(b − d), the streamwise component of the modes
in the xy-plane (z = 0) is shown. Here one can see a tilted structure leaning
against the shear, similarly to the optimal initial condition discussed in section
3.1.

Figure 7 shows the HSVs corresponding to the balanced modes used to
compute the reduced-order model using all the inputs (m + 1) and all the out-
puts (p + k) (blue circles), pertaining to Case A in table 1. It is interesting
to note that the associated HSVs decay slower than the HSVs computed using
only B1 and C1 (open circles). The leading singular values of the two systems
are equal, indicating that the input-output dynamics of the system is strongly
influenced by the energy triggered by the input B1 and the observability char-
acteristics of the functions chosen as output C1.

One way to validate snapshot-based balanced truncation is to check
whether the controllability and observability Gramians of the ROM are diago-
nal and equal to the HSVs. The diagonal elements of the Gramians associated
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with the reduced-order model and the HSVs were found to be the same for
the first 80 modes. Due to numerical discretization errors, higher order modes
gradually lose bi-orthogonality, causing the presence of off-diagonal elements
in the Gramians.

To test the reduced-order model, we compare impulse responses of the
Navier–Stokes system 5 to impulse responses obtained from the low-order model
9. For configuration A, there are in total 10 input signals and 19 output signals,
resulting in 190 impulse responses. In figure 9, the following three signals are
shown

B1 → C2,0, B2,0 → C1,1, B1 → C1,1. (10)

The second subscript of B2 and C2 indicates the element according to figure 1.
In all the figures, the impulse responses of a reduced model of order r = 60 are
shown with gray dots, while the solid red line provides the DNS results. We
observe that the low-order model (r = 60) is able to preserve the input-output
behaviour of the full Navier–Stokes system (n ≈ 107), albeit the significant
model order reduction. The agreement between all the impulse responses of
the two systems is as good as the three signals shown here.

4.2. Streaks

The approximate Hankel singular values generated for the streak case are shown
in figure 7(b). In this case, the snapshots were collected with a constant time
spacing, ∆t = 16, in a time interval [0, 3000] for the forward simulation and
a time interval [0, 2000] for the 10 adjoint simulations. In agreement with
the POD results, the HSVs do not come in pairs, due to the low–frequency
elongated structure characterizing the modes (see figure 10). The first two
balanced modes resemble the POD modes depicted in figure 6 and shows the
typical structure aligned with the shear, in the xy section at z ≈ 3.1. The
streamwise velocity component u is one order of magnitude larger than v and
w. The corresponding leading adjoint modes shown in the right column of
figure 10 are located slightly more upstream and have an order of magnitude
large value in v, w compared to u. Note that the spatial support of the balanced
modes and the corresponding adjoint modes is nearly the same; the significant
difference between the forward and adjoint modes is in the dominant velocity
component. This is a sign of component-wise non-normality; the most efficient
mechanism of growth of a streak is energy transfer from the wall-normal and
spanwise component to the streamwise component.

As shown in figure 7(b) – similar to the case of the TS wavepacket – the
HSVs of the complete system (including all inputs and outputs) decay slower
than the HSVs computed using only B1 and C1 (blue circles) and the leading
singular values of the two systems are equal.

A low-order model (r = 60) computed using balanced modes captures prop-
erly the input-output behaviour of the entire system (n ≈ 107). The validation
of the snapshot-based balanced truncation method and the properties of the
reduced-model were tested following the same steps as for the TS reduced-order
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Figure 8. Balanced modes and related adjoint modes for the
TS waves. Left column: streamwise component of the leading
balanced mode φ1 (a) and the third balanced order mode φ3

(c). Right column: corresponding adjoint modes ψ1 (b) and
ψ3 (d). Positive velocity is represented in red, while negative
one is in blue; for all the modes depicted here, the top view
is shown in the xz-plane at y ≈ 1.6, the side view is in the
section xy at z = 0.

model. In figure 11, we compare the input-output behaviour of the full Navier-
Stokes system and the reduced-order model, for the following three signals,

B1 → C2,−1, B2,−1 → C1,1, B1 → C1,1. (11)

The second subscript of B2 and C2 indicates the element according to figure 1.
A similar good agreement is observed for all the impulse responses, and we can
conclude that input-output relation of the signals for the streak configuration
can be adequately described with a low-dimensional model.

5. Feedback control

The aim of this section is to use the validated balanced reduced-order models
to mitigate the growth of the disturbances. Although the steps taken to design
the closed-loop control are the same as for the two-dimensional case studied by
Bagheri et al. (2009a), the control problem is significantly more complex due
to the additional spanwise direction.
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Figure 9. Impulse response of the system from the input B1

to the output C2,0, (a), from B2,0 to C1,1, (b) and from B1

to C1,1, (c), when a propagating TS wavepacket is considered.
The red line shows the DNS results, while the gray dots indi-
cate the impulse response of a reduced model of order 60.

Since the reduced-order models show essentially the same input-output
behavior as the original system (but with only 60 degrees of freedom), they are
used during the control design. Once the feedback controller is constructed, it
can be applied on-line, in parallel to the DNS-simulations.

5.1. Main steps of LQG design

Using the tools of control theory, we can determine what action the actuators
should take to minimize the disturbance energy in a region defined by C1, and
if the action of an actuator should depend on all sensor measurements or only
the sensor located upstream at the same spanwise location. In particular, the
controller can be designed using the linear quadratic Gaussian (LQG) approach.
Assume that the external disturbance signal w(t) and the measurement noise
g(t) in 9 are unit-variance white noise processes. Then based on the noisy
measurements v(t) extracted from the sensors C2, the controller provides a
control signal φ(t) for the actuators B2, such that the mean of the output
energy of z

E
{

‖z‖2
L2[0,∞)

}

= E

{∫
∞

0
qT CT

1 C1q + φT IT
l Ilφ dt

}

. (12)

is minimized. The first step in constructing a controller is to estimate the full
state u given only the noisy measurements v(t) - also referred as the estimation
problem. After the state has been successfully estimated, we assume, in a
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Figure 10. Leading balanced modes and related adjoint
modes for the streaks. Left column: streamwise component
of the leading balanced mode φ1 (a) and the second balanced
order mode φ2 (c). Positive velocity is represented in red,
while negative one is in blue. Right column: wall-normal com-
ponent of the corresponding adjoint modes ψ1 (b) and ψ2 (d).
Positive velocity is represented in black, while negative one
is in green. For all the modes depicted here, the top view is
shown in the xz-plane at y ≈ 1.6, the side view is in the section
xy at z = 2.

second step, that the control φ(t) and the estimated reduced state q̂(t) ∈ Rr

satisfy a linear relation involving some yet unknown matrix K ∈ Rm×r, i.e.,

φ(t) = Kq̂(t). (13)

The goal of this second step is then to find such a matrix K, which is referred to
as the control gain. One attractive feature of LQG design is that the two steps
(estimation and full-information problem) can be performed independently of
each other, (see Anderson & Moore (1990)). Moreover, if both problems are
optimal and stable the resulting closed-loop system, composed of the two prob-
lems is also optimal and stable. The main disadvantage of LQG is that it does
not account for uncertainties of the underlying system (A,B,C) (see Doyle
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Figure 11. Impulse response of the system from the input
B1 to the output C2,−1, (b), from B2,−1 to C1,1, (c) and from
B1 to C1,1, (d) for the streak model. The red line shows the
DNS results, while the dotted, the gray dots indicate to the
impulse response of a reduced model of order 60.

1978). One can only check the robustness by ad-hoc testing the controller for
various parameters.

For a derivation of the LQG solution, please refer to e.g. Lewis & Syrmos
(1995) and Bagheri et al. (2009) for a “classical” optimal control framework
or Doyle et al. (1989) and Dullerud & Paganini (1999) for a more “modern”
robust control framework. Here, we just state the solution of the two separate
problems.

To estimate the full state u(t) given only the noisy measurements v(t), an
estimator that governs the dynamics of an estimated state q̂ can be introduced

˙̂q(t) = Aq̂(t) + B2φ(t) + L(v(t) − v̂(t)). (14)

In the above expression, we compare the measurement from the velocity field
v = C2u and the measurement from the estimated state v̂ = C2q̂ and feed
back the mismatch in these two quantities using the estimator gain L ∈ Rr×p.
It can be shown (Kalman 1960) that the estimation gain that minimizes the
estimation error ‖q − q̂‖, and results in a stable system is given by

L = −
1

α2
Y CT

2 , (15)

where Y ∈ Rr×r is a solution to an algebraic Riccati equation (see e.g. Laub
1991).
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In the second step, assume that the full state is given by q at all times and
that φ(t) = Kq(t) (instead of 13). Inserting the feedback relation into 5 and
neglecting the output v, we get

q̇(t) = (A + B2K)q(t) + B1w(t) (16a)

z(t) = C1q(t) + Ilφ(t). (16b)

It remains to choose K ∈ Rm×r such that the system is stable and the control
signal φ(t) minimizes output energy, ‖z‖2. The solution is provided by a optimal
control state-feedback problem, (see e.g. Anderson & Moore 1990), where the
optimal control signal is given by

K = −
1

2

(

IT
l Il

)−1
BT

2 X, (17)

and X ∈ Rr×r is a solution of a Riccati equation.

Finally, combining the estimator 14 and the full-information controller 16,
we obtain the reduced-order controller (also called compensator or observer) of
size r,

˙̂q(t) = (A + B2K + LC2)q̂(t) − Lv(t) (18a)

φ(t) = Kq̂(t) (18b)

At each instant in time, given only the measurements v(t), the compensator
provides the control signal φ(t). The controller thus connects measurements
from sensors to the actuator, that in combination with the Navier–Stokes sys-
tem 5, results in a feedback closed-loop system, denoted by Gc hereafter.

When the external disturbances are white noise processes, the 2-norm of
the closed-loop system is a convenient measure of the input-output behavior.
The 2-norm of the closed-loop system Gc can be defined (Green & Limebeer
1995) as

‖Gc‖
2
2 =

∫
∞

0
|z|2dt = ‖z‖2

L2(0,∞) (19)

So, the 2-norm of Gc equals the control objective 7 defined earlier (for the
infinite time horizon) and can be calculated from the signals extracted by the
output C1.

5.2. Centralized vs. decentralized approach

The spatial localization of the actuators and the sensors requires a proper
multivariable approach for the controller design. A simple approach is a decen-
tralized control, where each actuator is connected only with one sensor (in our
case, the corresponding upstream sensor); in such a controller, each loop can be
regarded as a single-input-single-output (SISO) system and an equal number
of actuators and sensors is required. If the decentralized controller is stable in
each SISO loop and the inputs and the outputs are decoupled or only weakly
coupled, then the closed loop is also stable.

For the TS wavepacket case, the decentralized approach yielded an unsta-
ble closed-loop system in numerical tests. A physical explanation is that the
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Figure 12. Input and output signals of the closed-loop sys-
tem excited by an impulsive forcing. (a) Output signals ex-
tracted from C2,0, located in (x, z) = (300, 0) (solid line), and
C2,2, placed in (x, z) = (300,+40) (dashed line). (b) The
controller signals fed in B2,0 and B2,2 are indicated with a
solid line and a dashed line, respectively. (c) Measurements
extracted by the first sensor C1,1 for case A (solid) and the
uncontrolled case (dashed-dotted line).

perturbation triggered in the boundary layer by the localized initial condition
shown in figure 2 gradually spreads in the spanwise direction while propagating.
This results in a dynamic coupling in the spanwise direction; thus, in this par-
ticular configuration the decentralized approach is unfeasible since the spanwise
coupling is disregarded. A second analysis is given by the relative gain array
(RGA) matrix (Skogestad & Postlethwaite 2005, pp. 510-514), that provides
a measurement of the degree of coupling among the inputs and the outputs of
the system. Applying it on the reduced-order model, a strong coupling was
found, confirming the presumption carried from the numerical tests.

Conversely, for the streaks case, the numerical tests resulted in a stable
closed-loop system with both the approaches, although the closed-loop system
built using the centralized design showed best performance. Moreover, the RGA
matrix analysis suggested a weak degree of cross-coupling of the I/O system.
From a physical point of view, this behaviour can be explained considering the
strong elongation in the streamwise direction and the slow spanwise spreading
of the streaks; these features result in a weak dynamical coupling in the span-
wise direction. Nonetheless, a centralized approach accounts for the spanwise
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cross-coupling without disregarding it, resulting in more efficient disturbance
mitigation.

In this work, we design a centralized controller for all cases (A-M, N-Q),
i.e. all the actuators are connected with all the sensors used for estimation.
Using the LQG approach, a centralized controller is guaranteed to result in a
stable closed-loop system.

6. Control of TS wavepackets

In this section, the performance of the closed-loop system for the different
sensor-actuator configurations listed in table 1 is investigated. In the reference
case A, a full set-up is considered, where the row of actuators and the row
of estimators consist of 9 localized Gaussian elements equally spaced in the
spanwise direction. Using this setup, three cases are studied with different
control penalty l (cases A-C) and four cases are analysed with different degree
of noise contamination α (cases D-G); with α = 0.01, case A can be considered
to be an inexpensive controller when l = 100 (the controller effort is relatively
cheap); case B is an intermediate case, with l = 250, whereas case C is an
expensive case, with l = 500. In configurations D-G, the control penalty l is
fixed, while the noise contamination parameter α is changed. Finally, for the
cases H-M, a reduced number of actuators and/or sensors is used, in order to
investigate the dependence of the closed-loop performance on m and p.

We investigate the performance of the controlled closed-loop system and
the uncontrolled Navier–Stokes system, when an impulsive forcing w(t) = δ(0)
or a stochastic white-noise forcing is applied. We consider: (i) the impulse
response (time signals), which provides a physical and direct measure of the
control performance; (ii) the system 2-norm, which represents a total measure
of the input-output behavior and (iii) perturbation energy in the full spatial
domain Ω.

In table 1, the 2-norm and the ratio between the peak energy and the initial
disturbance energy is tabulated for each case. We observe a significant reduc-
tion of both measures. In the following section these results are investigated
further.

6.1. Input-output analysis of the closed-loop system

In figure 12, a few sensor measurements and actuator signals φ(t) for an impulse
in w(t) pertaining to case A are shown. The location of actuators and sensors
are shown schematically in figure 1. Figure 12(a) shows measurement signals
used for estimation of the disturbance associated with the sensors C2,0 and C2,2

for an impulse in B1. The measurement detected by C2,0 (solid line) reveals a
wavepacket structure of the evolving disturbance. The travelling disturbance
reaches the sensor location at t ≈ 500, in agreement with the estimated velocity
of the wavepacket in a boundary layer (≈ 0.47U∞). The element C2,2 (dashed
line) shows an analogous behaviour, although a delay due to the spanwise
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Figure 13. Kinetic energy as function of time. In (a) and (b),
the solid line shows the energy of B1. In (a), three closed-loop
configurations for three different control penalties l are com-
pared: a cheap case (−◦−), an intermediate case (− 4−) and
an expensive case (−1−). In (b) the influence of noise corrup-
tion α on the performance is considered; the curves correspond
to case D (− 2 −), E (− + −), F (− 5−) and G (− ◦ −).

spreading of the wavepacket is observed; moreover the signal is characterized
by a smaller amplitude.

Figure 12(b) shows the control signals feeding the actuators B2,0 and B2,2;
they are depicted with a solid line and a dashed line, respectively. In both cases
a time lag of 200 time units from the estimation signals is observed, to account
for the advection of the waves from the location of the sensors to the location
of the actuators array. The shift observed between the two signals is related to
the three-dimensional structure of the incoming perturbation. As mentioned
previously, the actuator signals are computed using all the measurements ex-
tracted from C2. The control signal corresponds in fact to a cancellation-signal;
if the sensors were located at the same location as the actuators, a signal 180
degrees out of phase with the control signal would be measured. Cancellation
techniques where a second wave of appropriate amplitude and phase cancel the
traveling wave by interference has been investigated for a long time (see e.g.
Milling 1981). However, the main feature of the feedback approach adopted
here is that no a priori knowledge of the functional behavior of the controller is
required and the controller is able to react to unexpected systems uncertainties.

In figure 12(c), the output signal extracted from C1,1 (first POD mode)
is compared between the controlled case (solid line) and the uncontrolled case
(dashed-dotted line). It is clear that the amplitude of the closed-loop output
signal is significantly reduced. Computing the system 2-norm, the performance
can be evaluated by taking into account all the k = 10 signals extracted by C1.
As shown in table 1, for case A ‖Gc‖2

2 = 1.42; this is a reduction of about 99%
of the 2-norm of uncontrolled case (‖G‖2

2 = 324.25). As the controller effort is
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Figure 14. Evolution of a TS wavepacket at t =
1000, 1250, 1750, without control (left column) and with con-
trol (right column). The iso-contours of the streamwise compo-
nent are shown in the xz-plane at y ≈ 1.9; red isolines indicate
positive velocity, while the negative one is indicated with blue.
All the plots are characterized by the same isocontour range
[−1.03, 1.03].

reduced, we observe higher values of ‖Gc‖2
2 (case B, ‖Gc‖2

2 = 12.23 and case C,
‖Gc‖2

2 = 55.27). Increasing the degree of noise corruption of the signal leads
to a worsening of the performance; in particular, this is evident when rather
high values of α are considered; for instance, in case D, a reduction of about
99% is observed (‖G‖2

2 = 1.48), whereas for cases F and G, ‖Gc‖2
2 = 209.03

and ‖Gc‖2
2 = 318.74, respectively.

6.2. Perturbation energy and disturbance evolution

Figure 13(a) shows the kinetic energy (in the full domain Ω) as a function of
time for the uncontrolled case (solid line) and the controlled case A (− ◦ −).
The energy peak for the uncontrolled case is reached at t ≈ 1820, with an
energy amplification E(tmax)/E(0) = 2 × 103, whereas the controlled case
shows one order of magnitude smaller peak value at t ≈ 1100. Note that
the controller is designed to reduce the norm of C1 and not the total kinetic
energy of the flow. Nonetheless, by demanding the disturbance energy to be
small at C1, the disturbance amplitude has to decrease significantly before it
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reaches the objective function. Therefore, minimization of disturbance energy
in the region defined by C1 results in an actual reduction of the energy in the
entire domain. The streamwise velocity component of the disturbance field
at t = 1000, 1200, 1750 for case A (left column) and the uncontrolled case
(right column) are shown in figure 14. The iso-contours display the flow field
in the xz-plane at y = 2. At t = 1000, the perturbation is convected past the
location x = 400, where the array of actuators is placed; the original structure
is distorted into a more complicated three-dimensional pattern, where traces
of localized actuators are recognizable. At t = 1250, the perturbation appears
to be mostly concentrated in the center (z ≈ [−50, 50]) of the domain, whereas
the spanwise extension of the structures is significantly reduced. The original
nearly two-dimensional structure breaks down into a fully three-dimensional
structure. Finally, at t = 1750, a significant damping of the amplitude results
in contour levels that are barely visible for case A, while the perturbation for
the uncontrolled case attains its maximum energy. It is interesting to note
that similar results were obtained by Sturzebecher & Nitsche (2003). These
authors performed an experiment based on an adaptative controller designed
to attenuate the TS instabilities; also in this case, the disruption of the original
two-dimensional structure resulted in a reduction of the disturbance level.

Figure 13 also shows the performance of the full set-up controller for dif-
ferent choices of the penalty l (cases A, B and C). It is interesting to point out
that for an intermediate value (l = 250, case B) the perturbation is charac-
terized by a peak energy value close to the corresponding configuration with a
cheap controller effort, although the norm ‖Gc‖2

2 is higher. Case C (expensive
controller) is the only configuration where the perturbation energy does not
decay monotonically downstream of the actuators. When the noise corruption
degree is considered as a parameter (cases D-G), an improvement is noticed -
as expected - when smaller values of α are considered.

Figure 15(a) shows the behaviour of the controlled case A (red line) com-
pared to the reference case, when the perturbation is excited with a stochastic
white-noise forcing; the location of the actuators is indicated by a blue region,
whereas the gray region indicates the location of the sensors. In the stream-
wise interval [390, 460], in the vicinity of the actuators, the r.m.s. value of the
streamwise velocity component, after a small overshoot, begins to decay and
at the end of the domain, it is nearly one order of magnitude smaller than the
uncontrolled flow. The behaviour of the disturbance energy in time is shown
in figure 15(b); the mean values indicate a reduction of one order of magni-
tude of the energy amplitude and a significant reduction of the fluctuation (i.e.
variance) is observed for the controlled case.

6.3. Influence of the number of sensors and actuators

The norm ‖Gc‖2
2 and the energy amplification for cases D-F are reported in

table 1. It can be concluded that controllers with a lower number of actuators
than case A (m = 9) are still able to reduce the norm ‖Gc‖2

2 significantly,
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Figure 15. (a), The r.m.s. values of the uncontrolled system
(black line) and the controlled system A (red line). The loca-
tion of the actuators and sensors is indicated by a blue region
and a gray region, respectively. (b), Perturbation energy vs
time for a case forced by stochastic white-noise signal w(t) for
an uncontrolled case (black lines) and a controlled case (red
lines); the dotted lines represent the mean of the energy in the
interval t ∈ [2500, 12500].

whereas there is a somewhat less efficient reduction in the perturbation energy
amplification.

Figure 16(a) shows the energy behaviour for cases H-L in addition to the
reference case A and the uncontrolled case. A gradual improvement of the
performance is observed when the number of actuators is increased. Indeed,
by increasing the number of the equidistant actuators, it is possible to cover
a wider region in the spanwise direction. As a consequence, a considerable
reduction of the energy growth is observed only when a sufficiently wide region
in the spanwise direction is spanned by the actuator array. In particular, case
H (m = 3, p = 3) can be considered an example of insufficient actuation;
in figure 16(a), we notice an initial overshoot of the energy in the interval
t ∈ [1000, 1200], when the controller begins to act, and a weak energy reduction.
Moreover, the spatial evolution of the perturbation - not shown here - is similar



Feedback control of optimal disturbances using reduced-order models 69

0 500 1000 1500 2000
100

101

102

103

0 500 1000 1500 2000
100

101

102

103

(a) (b)

E E

tt

Figure 16. Kinetic energy as function of time. In (a) and (b),
the solid line shows the energy of B1. In (a), case H (− 5−), I
(−+−), L (− 2−) and A (− ◦−) are characterized by 3, 5, 7
and 9 actuators, respectively. In (b), the curves correspond to
case I (− + −), M (− × −) and A (− ◦ −) with 5, 5 and 9
sensors, respectively.

to the uncontrolled case, indicating a weak influence of the actuator on the
perturbation structure.

Figure 16(b) shows the influence of the number of sensors (case I and M).
The energy curve for case A (m = 9), obtained with nine estimators, is hardly
distinguishable from the curve obtained with the controller designed for case
M, based only on five estimators. The array of sensors is located further up-
stream than the array of actuators, where the spanwise extension of the TS
wavepacket is smaller. Therefore, the sensors located on the flanks have a
nearly insignificant contribution to the estimation of the disturbance.

7. Control of streaks

The performance of the closed-loop system in the case of streaks is investigated
considering three different configurations, see table 2. In all cases the rows of
actuators and sensors consist of 8 localized Gaussian elements, equally spaced
in the spanwise direction (∆z = 4). More details are sketched in figure 1,
where the location of the elements is depicted. The parametric investigation is
carried out considering three different control penalties l: the reference case N
is a cheap controller with l = 50; case O is an intermediate case with l = 100,
whereas case P is the expensive case, with l = 150. The description of the
results closely follows the steps considered previously for the TS control, using:
(i) the impulse response (time signals), (ii) the 2-norm of the system and (iii)
the perturbation energy in the full domain.
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Figure 17. Input and output signals of the closed-loop sys-
tem N excited by an impulsive forcing. (a) Output signals
extracted from C2,1, located in (x, z) = (100, 4) (dashed line),
and C2,−1, placed in (x, z) = (100,−4) (solid line). (b) The
controller signals fed in B2,1 and B2,−1 are, respectively indi-
cated with a solid line and a dashed line. (c) Measurements
extracted by the first sensor C1,1 for case N (solid) and un-
controlled (dashed-dotted line).

7.1. Input-output analysis and disturbance evolution

Figure 17(a − c) shows measurements extracted from the system and actuator
signals φ(t) for the reference case N. In particular, figure 17(a) reports the
signals extracted for the estimation from the sensors C2,+1 and C2,−1, depicted
with a dashed line and a solid line, respectively. The signals are opposite in
phase, since the perturbation is anti-symmetric with respect of the xy-plane
(z = 0). The sensors register the disturbance at t ≈ 100, in accordance with
the estimated velocity of propagation of a streak in a boundary layer (≈ 0.80−
0.85U∞). The signal amplitude reaches its maximum at t ≈ 150, after which it
decays. The actuators B2,+1 and B2,−1 are fed with the signals shown in figure
17(b) with a solid and dashed line, respectively. The actuation is activated
as soon as the sensors detect the incoming perturbation. It is interesting to
note that the actuator signal has a sign opposite to the corresponding sensor
measurement: a positive measurement extracted by the sensor coincides with
a negative actuation signal further downstream and vice versa, similar to the
so-called opposition control (Hammond et al. 1998).

Finally, figure 17(c) shows the measurements extracted from the sensor
C1,+1 for both the controlled case (solid line) and the reference uncontrolled
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Figure 18. Impulse response to a localized initial condition
triggering the lift-up effect at t = 100, 500, 750. The iso-
contours of the streamwise component are shown in the xy-
plane at z = 4 without control (left column) and with control
(right column). Positive velocity is indicated with red con-
tours, while blue contours indicate negative velocity; all the
plots have the same isocontour range [−0.65, 0.65].

case (dashed-dotted line). A reduction of the signal amplitude is observed,
although the overall performance is worse than for the TS case. Figure 18 shows
the streamwise velocity component for the uncontrolled case (left column) and
the controlled case H (right column); the iso-contours display the flow field in
the xy-plane at z = 1.5 for three instants of time, t = 100, 500, 750. The same
isocontour levels are considered for each instant of time. As previously noticed,
the controller action starts as soon as the perturbation reaches the estimation
sensors location at x = 75; indeed, it is possible to notice at t = 100 the
action of the controller in x = 125. At t = 500, the perturbation has travelled
further downstream, while being reduced by the controller. The structure of the
perturbation, show in figure 18d, is similar to the uncontrolled case in figure
18c, although of lower amplitude. Final decay due to the viscous effects is
observed at t = 750 in both the cases. The streak is disrupted by the actuation
at the wall. The effect of the control on the evolving perturbation is similar
to the reactive controller implemented by Lundell (2007) and the modulated
blowing/suction used by the same author in a previous work, (Lundell 2003).

In table 2, the performance of the controllers with various control penalties
is quantified by the 2-norm of the transfer function Gc. A reduction of about
66%, 30% and 16% of the 2-norm of the transfer function Gc is reported for
the cheap (case N), intermediate (case O), and the expensive controller (case
P), respectively.
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Figure 19. Disturbance energy as function of time for the
streaks. The uncontrolled reference case St0 is represented by
a solid line. The closed-loop configurations listed in table 2
are shown: the cheap case N, (− ◦ −), the intermediate case
O, (− 4−), and the expensive case P (−1−).

7.2. Perturbation energy

Figure 19 shows the kinetic energy of the streak disturbance in the full domain
Ω as a function of time. The uncontrolled case is indicated with a solid line
and it is characterized by an energy amplification E(tmax)/E(0) = 3 × 102,
occurring at t ≈ 350. The cheap controller (l = 50) and the intermediate
controller (l = 100) give an initial peak at t ≈ 180, followed by the decay of
the perturbation amplitude; in both cases, a reduction of about 33% of the
energy peak is observed. Although the energy peaks are almost comparable for
the controller N and O, the first one is more aggressive and shows a stronger
damping of the energy amplitude for t ≈ 200.

Figure 20 shows the behaviour of the controlled cases N and Q compared
with the reference case, when the perturbation is excited with a stochastic
force (white noise); the r.m.s of the streamwise velocity is considered along
the streamwise direction. The aim of this analysis is twofold: understanding
how the controller behaves along the x-coordinate, and providing some insights
about the influence of a different location of the arrays. In all the cases a quick
drop of the r.m.s. values is observed at the location of the actuators, where the
controller starts to act on the perturbation. Actuators located upstream, as in
case N, allow a larger reduction of the maximum urms. However, simulations
performed with actuators further upstream show a worsening of the perfor-
mance due to an increase of energy at the actuators locations. Downstream of
the actuation, at x ≥ 150, the r.m.s values slowly decay.

The control performance subject to stochastic excitations indicates that
the controller is able to continuously react to different temporal scales, which
is encountered for example in the presence of free-stream turbulence (FST).
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8. Discussion and remarks

In this section we discuss the results presented above in the context of practical
implementation and future development of our investigation. The fully three-
dimensional set-up makes the present controller close to possible experimental
implementation, where localized actuators and sensors are used. It is possible
to use numerical studies to gain valuable information about the experimental
set-up beforehand and to compute the control gains that will be implemented.
The sensors and the actuators (C2 and B2, respectively) can be modeled as
localized volume forcing. The objective function C1 can be defined either
numerically or using an array of sensors. In particular, the first choice relies on
the possibility of reproducing a POD approach as the one we followed in the
control design once the upstream disturbance B1 is modelled. Here, optimal
initial conditions were used to show the feasibility of the control, but - in
general - the choice of the upstream disturbance B1 is closely related to the
enviroment that one desires to reproduce. For instance, the perturbation arising
from free stream turbulence (FST) can be modeled using a projection over a
finite number of optimal modes (Tempelmann et al. 2010). Conversely, in a
low-noise environment, where TS waves dominate, localized initial conditions
distributed in the spanwise direction can spontaneously generate packets of TS
waves. Once the inputs and outputs are modeled, the LQG compensator can
be easily designed following the explained procedure; moreover, numerical tests
can help determining the most efficient form of actuation, provided these are
correctly modeled in the simulations. The location and number of sensors and
actuators is also easier to test in a simulation than in a laboratory. Useful
information can be obtained in this case by examining the spatial structure
of the direct and adjoint balanced modes. In this respect, our results suggest
that, for an effective implementation of feedback control of a three-dimensional
wavepacket in a boundary layer, actuation may be more crucial than sensing
and estimation of incoming disturbances. This is in agreement with the recent
empirical observations in Monokrousos et al. (2010b).

A further strategy directly applicable in experiments relies on a system
identification algorithm, known as the Eigensystem Realization Algorithm
(ERA). This represents an approach formally equivalent to the model reduc-
tion procedure discussed here; for more details, we refer to Ma et al. (2009).
This technique allows the identification of a model for the system from the in-
put/output analysis and is thus particularly well-suited to experimental setup.
Once the model is identified from the experimental data, it is possible to de-
sign an appropriate LQG controller for the experiment. However, information
about balanced modes, sensitivity and spatial structures of the most amplified
perturbations are not accessible in this way.

The choice of actuators/sensors and their placement was decided mainly
by following physical arguments based on the knowledge of the instabilities. To
control TS wavepackets, the array of actuators was placed in the center of the
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Figure 20. The r.m.s. values of the uncontrolled system
(black line), the controlled system N (red line) and the con-
troller system Q (dashed red line). For case N, the location
of the actuators and sensors is indicated with a blue and grey
region, respectively.

box. Indeed, after the actuation, the perturbation recovers the spanwise co-
herence and experiences new energy growth, similar to the one achieved during
the first stage (see figure 14f). However, this behaviour clearly suggests the
need of introducing a repeated streamwise actuation, as shown in Sturzebecher
& Nitsche (2003). The introduction of multi-stage actuation can improve the
overall performance of the device, moving the transition location further down-
stream. Moreover, using successive arrays it is possible to target instabilities
of different frequency growing at different Reynolds numbers (different stream-
wise regions), or perturbations that arise in the presence of adverse pressure
gradients.

To control streaks, two different setups located in different streamwise po-
sitions were tested; an improvement of the overall performance (around ≈ 15%)
was observed when the sensors and actuators were further upstream. Note that
in the case streaks are induced by FST, there is a longer upstream region of
streak growth; moreover, the streaks we introduced are optimal and charac-
terized by a fast energy growth. Therefore, in presence of external FST, the
estimation/control can be more effective. As shown before, and in agreement
with the experimental results by Lundell (2007), streaks are damped at the
location of actuators. However, streaks can be regenerated early with the pres-
ence of FST, see Monokrousos et al. (2008). Thus repeated control can be also
exploited here by introducing a number of arrays acting at different position in
the streamwise direction.

The possibility of placing more than one actuation array and their interac-
tion was also investigated. We performed numerical tests - not reported here
- where the TS-controller and the streak controller were simultaneously active,
in presence of a TS-wave, streaks or a linear combination of the two optimal
initial conditions. We observed that the streaks controller damped only the
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Figure 21. Perturbation energy as function of time for TS
wavepackets at two off-design conditions. The controlled cases
are obtained using the controller A. Left panel: kinetic energy
vs time for the TS-wave propagating at Re = 1050 is rep-
resented by a dashed-dotted line. A black line indicates the
behaviour of the controller in off-design condition, whereas the
dotted-line is related to the same controller acting at design
conditions. Right panel: perturbation energy evolution for a
wavepacket evolving in presence of an adverse gradient pres-
sure (m=-0.025). The black line is the controlled case.

streaky structures, while the setup further downstream quenched only the TS-
waves. The behaviour can be interpreted considering the POD-based objective
function, which is completely different in the two cases, so that one type of dis-
turbance is transparent to the controller designed for the other type. In other
words, the TS controller did not react in the presence of streaks, whereas it
was effective when TS-packets were introduced, and, vice versa, the streak con-
troller did not react in presence of TS. Note that this framework allows building
of a reduced-order model able to act on disturbances that have different time-
and length-scales.

Finally, for a practical implementation, we have to account for unavoidable
modeling errors; in the present paper, we assumed a perfect knowledge of the
flow parameters, but, in general, a practical implementation of the control needs
to guarantee robust performance when uncertainties are present as well. The
optimal control framework used here does not account explicitly for uncertain-
ties; however, it is important to note that the behaviour of the controller can
nonetheless be robust enough to small deviation of the flow parameters. Using
numerical simulations, it is possible to verify the robustness of the controller.
In figure 21, two examples are shown: deviation from the design-Reynolds num-
ber (a), and behaviour in presence of adverse pressure gradient (b). In the first
case, for a deviation of ±5% of the nominal Reynolds number, it is still possible
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to achieve good performance. Further investigation at higher Reynolds num-
ber revealed a progressive worsening of the performance, analogous to what
we observed with fewer actuators. The presence of an adverse pressure gra-
dient introduces a strong change in the propagation of the wavepackets, both
in terms of amplification and propagation speed; a Falkner-Skan-Cooke (FSC)
boundary layer is considered, with m = −0.025, see Schlichting & Gersten
(2000). As expected from linear stability theory, the disturbance energy shows
a larger amplification, Emax/E0 ≈ 1.3 × 106, figure 20b. In this case the con-
troller used for case A is still able to reduce the magnitude of the energy peak
by almost one order of magnitude, but the result is overall less satisfactory
than for the nominal pressure gradient. The difference in the performance is
mainly attributed to the different speed of the traveling unstable waves, which
makes the actuation slightly out of phase. In addition, since the estimator is
expecting lower amplifications, the control signal is weaker than necessary. To
conclude, it is worthwhile to point out that a more robust controller can be in-
cluded in this framework. An example is given by the H∞ approach (Dullerud
& Paganini 1999).

9. Conclusion

Using systematic methods from control theory in combination with localized
sensing/actuation, it is possible to reduce the growth of small-amplitude three-
dimensional disturbances in the boundary layer. To this end, we have built
low-dimensional models (r = 60) that capture the input-output behavior of
the flat-plate boundary layer, and used these models for the optimal feedback
control design. The initial conditions considered provide the maximum energy
growth for a given final time; in particular, we demonstrated that the energy
of three dimensional Tollmien-Schlichting wavepacket, obtained for long-time
optimization, is damped by two orders of magnitude using 9 sensors for esti-
mation and 9 actuators. The control performance was also investigated with
a reduced number of sensors and actuators in the configuration; it was found
that a smaller number of actuators decreases significantly the effectiveness of
the controller, whereas a reduced number of sensors has a smaller impact on
the performance. When a short time of optimization is considered, an initial
condition triggering a streaky wavepacket is obtained; in this case, the pertur-
bation energy can be damped using 8 sensors for the estimation and 8 sensor
for the actuation.

Although the significant reduction of perturbation energy for transition
control remains to be tested, such a drastic energy reduction is likely to result
in a delay of the initial stages of the transition process. If the actuators and
sensors represent realistic models of physically feasible devices, it is possible
to use the low-dimensional controller designed numerically in laboratory ex-
periments. The fact that we have modeled the inputs and outputs as volume
forcing does not mean that they cannot be implemented experimentally. It
is the effect of an actuator that is important to model, and not the actuator
itself. Another issue that needs to be taken into account for a real application
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is control robustness. If the numerically designed controller is used in labo-
ratory experiments, it is unavoidable that some parameters, such as Reynolds
number and pressure gradients, will vary. We showed that the controllers are
robust to a strong deviation of the Reynolds number, whereas the performance
was less satisfactory at an off-design pressure gradient. Fortunately, modern
developments in robust control theory may be used to rigorously incorporate
uncertainties that may be present in the design process. The method for op-
timal control presented in this paper, can be incorporated into such a robust
control framework.
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Appendix A. Analytical expressions of actuators and sensors

Each element of the arrays B2 and C2 is a localized Gaussian function

h (x,x0) =





σxŷ
−σyx̂

0



 exp
(

−x̂2 − ŷ2 − ẑ2
)

(20)

where

x̂ =
x − x0

σx
ŷ =

y

σy
ẑ =

z − z0

σz
.

The scalar quantities appearing in the denominator define the size of the Gauss-
ian spatial distribution close to the wall and are equal for all the elements; for
the TS-waves, we considered (σx,σy,σz) = [5, 1.5, 6], whereas for the streaks
we used (σx,σy,σz) = [1.75, 2, 2]. All the elements of the arrays have the same
spatial shape; the position in the plane xz is given by x0 and is contained for
all the test-cases in the tables 1 and 2. From this definition, we obtain

B2 = [h (x,xφ,1) ,h (x,xφ,2) , . . . ,h (x,xφ,m)] (21)

and

C2u =

∫

Ω





h (x,xv,1)u
. . .

h (x,xv,p)u



 dxdydz (22)

where, m and p indicate the number of actuators and sensors, respectively. Each
element of B2 and C2 is denoted with a second subscript. The actuators mimic
a manipulation on the flow close to the wall; the measurements are extracted
by averaging the velocity field using the Gaussian function as weights.
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Denoting with p(x, t) = (u∗, v∗, w∗) the adjoint velocity field, the adjoint of
the input and output operators B2 and C2, associated with the inner product
〈·, ·〉Ω, are

B∗

2p =

∫

Ω





h (x,xφ,1)p
. . .

h (x,xφ,m)p



 dxdydz (23)

and

C∗

2 = [h (x,xv,1) ,h (x,xv,2) , . . . ,h (x,xv,p)] . (24)

Hereinafter, the notation adopted in the next sections will denote the continu-
ous operator; the discretized operators will be indicated by hat. Note that the
hat is omitted in the article.

Appendix B. Adjoint Navier–Stokes equations

In this section, the adjoint Navier Stokes equations are given for the sake of
completeness. A detailed derivation is provided by Bagheri et al. (2009a).

The adjoint velocity field and the adjoint pressure field are denoted by
p(x, t) = (u∗, v∗, w∗) and σ(x, t), respectively. Considering the boundary con-
ditions 2 used for u and requiring that p = (u∗, v∗, w∗), p and σ satisfy

p (0, y,−Lz/2) = p (x, y, Lz/2) (25a)

p (0, y, z) = p (Lx, y, z) (25b)

p (x, 0, z) = p (x, Ly, z) = 0, (25c)

p (0, y,−Lz/2) = p (Lx, y, Lz/2) (26a)

σ (0, y,−Lz/2) = σ (Lx, y, Lz/2) (26b)

the adjoint of the linearized Navier–Stokes equations 5 associated with the inner
product 〈·, ·〉Ω is given by

−
∂p

∂t
= (U ·∇)p − (∇U)T

p + ∇σ + Re−1∇2p + λf (x)p (27a)

0 = ∇ · p (27b)

p = pT at t = T. (27c)

The code described in Chevalier et al. (2007), based on a Chebyshev-Fourier
series approximation, is used for both the forward and adjoint simulations.
Using this approximation, the discrete operators Â, B̂ and Ĉ and the respective
adjoint operators can be defined. As in the case of the forward system, the
adjoint equations 27 can be casted as an initial value problem

−ṗ(t) = Â∗p(t) p(T ) = pT , (28)

where the action of Â∗ corresponds to evaluate the right hand side of the
equation 27, including the boundary conditions. The evolution operator T∗
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associated to Â∗ is defined as

p(−t) = T∗(t)p(T ). (29)

Given an initial condition, the adjoint evolution operator T∗ provides the re-
sulting flow field at time −t.

Appendix C. Balanced truncation for model reduction

In this section ,the basic concepts for balanced truncation – controllability,
observability and the Hankel operator – are briefly recapitulated in a simplified
discrete form; for more details, we refer to Bagheri et al. (2009a), where the
Hilbert spaces and the norms used are introduced for the definition of the
continuous operators and the related adjoint operators.

The relation among the inputs and the outputs of the system can be de-
scribed by considering the formal solution of the input-output system 5. In-
troducing the input vector f(t) = (w, g,φ)T ∈ R(m+2) and the output vector

y(t) = (z, v)T ∈ R(p+k), we can rewrite the system 5 in the standard state-space
form

u̇(t) = Âu(t) + B̂f(t) (30a)

y(t) = Ĉu(t) + D̂f(t) (30b)

where B̂ = (B̂1, 0, B̂2), Ĉ = (Ĉ1, Ĉ2)T and D̂ ∈ R(p+k)×(m+2)

D̂ =

(

0 0 Il

0 Iα 0

)

. (31)

The solution of the system 30 is given by

y(t) = Ĝf(t) = Ĉ

∫ t

−∞

T(t − s)B̂f(s)ds, (32)

assuming both the initial condition u0 and the term D̂ to be zero. The linear
mapping Ĝ : L2(−∞,∞) → L2(−∞,∞) between the inputs f(t), and the
outputs y(t) is a causal input-output operator. Both the signals and the system
Ĝ can be represented in the frequency domain. A Laplace transform of 32
results in a transfer function matrix

y(s) = G̃(s)f(s) = (Ĉ(sI − Â)−1B̂)f(s) (33)

with s ∈ C. Henceforth the tilde on G̃ is omitted since it is related to G by a
linear transformation.

The mapping Ĝ is not a finite rank operator: thus, a second finite-rank
mapping is introduced. For the given system Ĝ, the Hankel operator Ĥ :
L2(−∞, 0] → L2[0,+∞) is defined as

y(t) = Ĥf(t) = Ĉ

∫ 0

−∞

T(t − s)B̂f(s)ds. (34)
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The Hankel operator is closely related to the controllability and observability
operators. In particular, the controllability operator L̂c : L2(−∞, 0] → U is
defined as

u0 = L̂cf(t) =

∫ 0

−∞

T(−s)B̂f(s) ds, (35)

and maps past input signals f(t) to an initial state u0. The action of L̂c is
numerically approximated by the time-stepper that computes the response of
the system governed by the linearized Navier-Stokes equations forced by f(t)
with a zero initial condition. The second operator, the observability operator
L̂o, provides a dual action and maps the state u0 to future outputs, L̂o : U →
L2[0,+∞); it is defined as

y(t) = L̂ou0 = ĈT(t)u0 t ≥ 0. (36)

Using the above definitions, the Hankel operator can be seen as the combination
of the two operators

Ĥ = L̂oL̂c. (37)

Note that the operator Ĥ has at most rank n for a state space of order n.
Indeed, an input is driven via L̂c to an initial state u0 and each output can be
determined from the knowledge of the state u0. Since each state u0 is deter-
mined uniquely from an input, two linearly independent states will produce two
linearly independent future outputs; thus, the rank of the operator Ĥ cannot
exceed the dimension of the state space n.

C.1. Adjoint operators

Using the adjoint of the inputs and outputs introduced in 23 and 24, re-
spectively, it is possible to define the adjoint of the controllability operator
L̂c : L2(−∞, 0] → U and the observability operator L̂o : U → L2[0,∞). To
this end, we introcuce the inputs vector t = (z∗, v∗) ∈ R(p+k), and the outputs
vector e = (w∗,φ∗, g∗) ∈ R(m+2). The adjoint of the controllability operator
L̂∗

c : U → L2(−∞, 0] maps an initial adjoint state p0 ∈ U to a signal e at time
−t

e(−t) = L̂∗

cp0 = B̂∗T∗(−t)p0 (38)

The adjoint of the observability operator L̂∗

o : L̂2[0,∞) → U drives the input
signal t to the reference state p0

p0 = L̂∗

ot(t) =

∫
∞

0
T∗(s)Ĉ∗t(s) ds (39)

The direct mapping from the inputs t to the outputs e can be obtained com-
bining L̂∗

o and L̂∗

c ; the adjoint Hankel Ĥ∗ : L2[0,∞) → L2(−∞, 0] operator is
thus defined as

e(−t) = Ĥ∗t(t) = L̂∗

cL̂
∗

ot(t) =

∫
∞

0
B̂∗T∗ (s − t) Ĉ∗t(s) ds (40)
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Finally, introducing B̂∗ and Ĉ∗ in the initial value problem 28, the dual input-
output system can be defined as

−ṗ = Â∗p + Ĉ∗t (41)

e = B̂∗p. (42)

In the adjoint system, the roles of B̂ and Ĉ have been exchanged: the system is
now forced by the outputs t, while the inputs are extracted as measurements.

C.2. Balanced modes

Using the Hankel operator and the related adjoint operator, we can quantify
the output energy obtained from a past input f(t), by

‖y‖2
L2[0,∞) = 〈Ĥf, Ĥf〉L2[0,∞) = 〈f, Ĥ∗Ĥf〉L2(−∞,0]. (43)

If a given input forcing fi(t) is a unit-norm eigenvector of Ĥ∗Ĥ, then the output
energy will be given by the square of the corresponding Hankel Singular Value
(HSV) σi

Ĥ∗Ĥfi(t) = σ2
i fi(t). (44)

The HSVs are real and positive; thus, they can be ranked according to the
associated energy amplification. Multiplying 44 from left with L̂c, we get

L̂cĤ
∗Ĥfi(t) = L̂cL̂

∗

c
︸ ︷︷ ︸

P

L̂∗

oL̂o
︸ ︷︷ ︸

Q

L̂cfi
︸︷︷︸

σiφi

= σ2
i (σiφi) (45)

where we have defined the balanced mode φi associated with σj as

φi =
1

σi
L̂cfi (46)

and the controllability Gramian P and the observability Gramian Q as

P = L̂cL̂
∗

c =

∫
∞

0
T(τ)B̂B̂∗T∗(τ)dτ (47a)

Q = L̂∗

oL̂o =

∫
∞

0
T∗(τ)Ĉ∗ĈT(τ)dτ. (47b)

The balanced modes are thus the eigenvectors of the product of the observability
Q and controllability Gramians P, written in matrix form,

(PQ)Φ = ΦΣ2, (48)

Φ = (φ1,φ2, . . . ,φr) and Σ2 =diag{σ2
1 , . . . ,σ2

r}. The set of left eigenvectors of
PQ represents the adjoint balanced modes set, hereinafter denoted by Ψ.

Two main reasons make the model reduction obtained by projection onto
balanced modes particularly convenient:

1. the reduced-order system is guaranteed to be asymptotically stable if
σj 3= σj+1 for all j (Pernebo & Silverman 1982);



82 O. Semeraro, S. Bagheri, L. Brandt & D. S. Henningson

2. tight error bounds exist (Glover 1984)

σr+1 ≤ ‖Ĝ − Ĝr‖∞ ≤ 2
n

∑

j=r+1

σj , (49)

where Ĝ and Ĝr are the input-output systems associated with 5 and 9,
respectively, and ‖Ĝ − Ĝr‖∞ is the infinity norm. More details about
the operators introduced in the identification of the balanced mode are
given by Glover (1984) or Dullerud & Paganini (1999).

C.3. Snapshot method

An essential ingredient in the computation of the balanced modes is the iden-
tification of the Gramians P and Q, usually evaluated as solution of Lyapunov
equations, (Green & Limebeer 1995). Unfortunately, the solution of the Lya-
punov equations involves a computational complexity O(n3) and a storage re-
quirement O(n2) making it unfeasible for high-dimensional systems (Laub et al.
1987). An alternative is given by the snapshot method (Rowley 2005), where
empirical Gramians are computed using the following quadratures

P̂ ≈
nt∑

j=1

T(tj)B̂B̂∗T∗(tj)δj = XX∗ (50a)

Q̂ ≈
nt∑

j=1

T∗(tj)Ĉ
∗ĈT(tj)δj = Y∗Y. (50b)

Here δj are the time quadrature weights, nt the number of samplings, X ∈
Rn×ntm and Y ∈ Rn×ntp are the Cholesky factors

X = [T(t1)B̂
√

δ1,T(t2)B̂
√

δ2, . . . ,T(tk)B̂
√

δnt
] (51a)

Y = [T∗(t1)Ĉ
∗
√

δ1,T
∗(t2)Ĉ

∗
√

δ2, . . . ,T∗(tk)Ĉ∗
√

δnt
]. (51b)

Each element of the Cholesky factor X contains snapshots of the flow field
computed by the impulse response to each input B̂i at a given time tj . Similarly,
the Cholesky factor Y can be obtained by gathering the snapshots computed
by marching backward in time with the adjoint system 27. Please note that
the number of collected snapshots is nt times the number of inputs (m) and
output (p).

Using the low-rank Cholesky factors, the approximate direct and adjoint
balanced modes can be computed as follows. As a first step, the singular values
decomposition (SVD) of Y∗X is formed,

Y∗X = UΣV∗. (52)

The size of Y∗X is ntp × ntm; as long as the number of degree of freedom n
is smaller than the number of collected snapshots, the method is cheaper than
the standard method (using full Cholesky factors of size n× n) . The diagonal
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matrix Σ contains the approximate HSVs. The direct and adjoint balanced
modes are then given by

Φr = XVΣ−1/2 Ψr = Y∗UΣ−1/2. (53)

Here, only time quadrature weights were considered; however, note that spatial
integral weights are introduced when inner product are computed, see (Bagheri
et al. 2009a). In general, numerical tests (Ilak & Rowley 2008; Ahuja 2009;
Bagheri et al. 2009a) have shown that the approximate balanced modes are
a good approximation to exact balancing modes and that Σr are close to the
true HSVs. This can be attributed to the low numerical rank of the Gramians,
when m, p & n.
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We apply feedback control to delay laminar-turbulent transition in boundary-
layer flows. The dynamics of the flow is analysed from the input-output point
of view: spatially localized sensors and actuators are distributed near the wall
in arrays spanning the homogeneous span-wise direction. Reduced-order mod-
els of the linearized Navier-Stokes equations, including the inputs and outputs,
are built via balanced truncation and used to design an LQG controller. The
controller provides an optimal signal that minimizes the amplitude of the per-
turbation downstream. Using a limited number of sensors and actuators (10 to
20 elements), the controller quenches packets of Tollmien-Schilchting waves and
reduces substantially their energy growth. We demonstrate that using a linear
controller the laminar-turbulent transition is delayed for realistic amplitudes of
the initial perturbation, such that transition occurs for Rex = 1.5 − 2 × 106.
Effect of the actuation on the disturbances and the effort of the controller is
characterized in the nonlinear regime.

1. Introduction

Transition from laminar to turbulent flow originating from the growth of
Tollmien-Schlichting (TS) wavepackets is considered; this scenario - usually
referred as classical transition - is usually observed in clean environments char-
acterized by low levels of free stream turbulence (smaller than 1%). Higher
values of free-stream turbulence involve other mechanisms and the classical
scenario is by-passed. However, the TS scenario is still of remarkable interest
from the technological point of view, for instance in aerodynamic flows around
a wing, typically characterized by clean environment and low turbulence level.
In that sense, the control of wall-bounded transitional flows has high potential
benefits and outcomes; any reduction of aerodynamic drag - for instance - can
lead to relevant reduction of the operational cost of cargo ships or commercial
aircraft (Kim & Bewley 2007). The large sensitivity of wall bounded tran-
sitional and turbulent flows allows to manipulate the global flow using local
perturbation acting on only small parts of it with a small amount of energy.
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Moreover, it is now well established that under certain conditions the initial
phase of the laminar-turbulent transition in wall-bounded flows is largely gov-
erned by linear mechanisms (Schmid & Henningson 2001). Thus, the tools of
linear control theory may provide efficient, robust and feasible controllers to
delay transition to turbulence.

The majority of experimental flow control studies have used control laws
based on physical intuition and trial-and-error basis, while in recent years flow
control has progressively developed toward more systematic approach. The ap-
plication of the control theory as a tool for flow control emerged in the works by
Joshi et al. (1997), Cortelezzi et al. (1998) and Bewley & Liu (1998), who paved
the way for future researchers. Several groups have applied the control theory
to simplified models (Lauga & Bewley 2003, 2004; Cohen et al. 2005; Bagheri
et al. 2009) and wall-bounded shear flows using direct numerical simulations
(DNS) (Joshi et al. 1997; Bewley & Liu 1998; Högberg & Henningson 2002;
Högberg et al. 2003). For a thorough review of the applications, the reader is
also referred to the reviews by Bewley (2001) and Kim & Bewley (2007).

As suggested by Bewley (2001), the only requirement to achieve the desired
flow behavior is that suitable control signals are determined based on filtered
information delivered from the sensor. Thus, it is necessary to describe the
relation among the inputs and the outputs time signals for an efficient con-
trol design. A general input-output framework was developed in Bagheri et al.
(2009a), where the disturbance and actuators were considered as inputs, and
the objective function and sensors were considered as outputs. The approach is
based on approximating the complex high-dimensional system that arise from
discretization of the Navier-Stokes equations with a low-order model. Using
approximate balanced truncation (Rowley 2005), a low-order system preserv-
ing the dynamics between the actuators and sensors is built; finally, the de-
sign of the controller is based on the resulting simpler model. Semeraro et al.
(2010) extended the analysis to a fully three-dimensional (3D) configuration
and demonstrated that the perturbation energy can be substantially mitigated
using localized actuation and sensing; indeed, the control setup was based on
a set of localized actuators and sensors distributed near the wall resembling
actual experimental setups (see for instance Lundell (2007); Sturzebecher &
Nitsche (2003)).

Although successful, these previous investigations considered perturbations
governed by linearized equations. In the present work we examine the effect
of linear feedback control in the full nonlinear regime with finite-amplitude
perturbations effectively leading to transition to turbulence. The same con-
figuration as in Semeraro et al. (2010) is now used in nonlinear simulations.
The remarkable energy reduction results in a delay of the initial stages of the
laminar-turbulent transition. We investigate the effects of the actuation on
the flow, when a stronger actuation is employed and the initial perturbation
amplitude is increased. The localization of the actuators and sensors, together
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with a more detailed analysis of the manipulated flow is essential for an ex-
perimental application. Numerical investigations can be useful for wind-tunnel
experiments, providing valuable information beforehand: experiments can be
designed after evaluating a large number of numerical simulations.

This paper is organized as follows. In section 2 the problem is introduced
with a short description of the configuration. The input-output system, the
model reduction problem and the feedback control are briefly summarized. In
section 3, the transition delay is discussed considering the results achieved in
the simulations performed for this paper. A short parametric analysis is also
introduced. The effects of the actuation are further discussed in section 4,
where the energy spectra are analysed. The paper finalizes with conclusions in
section 5.

2. Input-output system, model reduction, feedback control:
an overview

The dynamics and control of finite-amplitude perturbation in a viscous, incom-
pressible flow over a flat plate are considered. The velocity field is denoted with
u(x, t) = (u, v, w)T and is governed by the Navier–Stokes equations; x, y and z
denote the stream-wise, cross-stream and span-wise coordinates, respectively.
The Reynolds number is defined as Re = U∞δ∗0/ν, where δ∗0 is the displacement
thickness at the inflow position, U∞ is the uniform free-stream velocity and ν is
the kinematic viscosity. All the simulations considered in the paper were per-
formed at Reδ∗

0
= 1000, corresponding to Rex ≈ 3 × 105 at the computational

inlet. For all the simulations, Dirichlet conditions enforce zero perturbations
velocity in the freestream (y = Ly) and at the wall (y = 0). Finally, periodicity
is assumed in the span-wise direction and enforced in the stream-wise direction
in a fringe region at the outlet of the domain (Nordström et al. 1999).

The results presented in this paper were computed with a pseudo-spectral
code (Chevalier et al. 2007). Large eddy simulation (LES) were performed using
the ADM-RT subgrid-scale model for the simulation of transition; ADM-RT
model proved to be accurate and robut in predicting transitional and turbulent
flows with spectral methods (Schlatter et al. 2004, 2006). Note, however, that
the subgrid-scale model (SGS) term is effectively active only when the flow
becomes turbulent. An application of LES in flow control, using the same
numerical method, is discussed by Monokrousos et al. (2008), where comparison
with full DNS are carried out.

The action of the actuators and the dynamics of the controlled and uncon-
trolled flows were first analysed in a short box [Lx, Ly, Lz] = (1000, 30, 256);
for those tests, a resolution of 768×101×256 was deemed sufficient for getting
converged results. Finally, the transition delay was studied in a longer box
[Lx, Ly, Lz] = (2000, 30, 256), with a resolution 1536 × 101 × 256.

A linear feedback control based on the linearized Navier-Stokes system
is designed to quench the perturbations growing in the boundary layer. In
Semeraro et al. (2010), control of three-dimensional (3D) disturbances in a
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Disturbance
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     C222

Actuators
       B2

Domain to minimize 
disturbance energy
                 C1

     LQG
controller

z(t)

u(t)

v(t)

w(t)

Figure 1. Sketch of the configuration. The initial condition
B1 is optimal and triggers packets of TS-wave. The control
action is provided by the input B2, constituted by a row of
actuators located at x = 400. The output C2 at x = 300
contains an array of sensors used for flow estimation. The
effect of the controller is quantified in a region spanned by 10
POD modes (here indicated with a darker grey region). All
the estimation sensors are connected to all the actuators, as
sketched in the inset (centralized control).

boundary layer flow is examined within a linear framework. Similar strategy is
now employed for the transition delay.

2.1. Input-output system

The first step is the linearization of the Navier-Stokes equations around a steady
state U (x, t) = (U (x, y) , V (x, y) , 0). Indicating the inputs with B1 and B2,
and the outputs with C1 and C2, the system can be rewritten as

u̇(t) = Au(t) + B1w(t) + B2φ(t) (1a)

z(t) = C1u(t) + Ilφ(t) (1b)

v(t) = C2u(t) + Iηg(t). (1c)

where A is obtained from the discretization of the linearized Navier-Stokes
including the boundary conditions, governing the perturbation velocity field
u = (u, v, w).

In figure 1 a sketch of the configuration is provided; the disturbance is
introduced upstream by a localized initial condition B1. This optimal initial
condition is obtained in Monokrousos et al. (2010) and consists of a packet
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of TS waves. The second input B2 ∈ Rn×m consists of an array of m = 9
actuators placed at x = 400. Each element is equidistant each other (∆z = 20)
and described by an analytical Gaussian function. The temporal forcing of the
inputs is provided by the time signals w ∈ R, g ∈ R and φ ∈ Rm.

The measurements extracted from the sensors provide us information about
the flow; the signal v(t) ∈ Rp is extracted by p = 9 sensors, C2, located a
short distance upstream of the actuators, at x = 300; the configuration of
the sensors array is the same as that characterizing the actuators line. The
resulting measurement signal v(t) is the spatial integral of the velocity field u
weighted with the Gaussian function that spatially describes the sensor. The
vector Iη ∈ Rp contains the noise contamination parameter η, which accounts
for the accuracy of the measurements.

Finally, the signal z(t) ∈ Rk – measured by C1 ∈ Rk×n – provides informa-
tion on the controller performance; all the entries of the matrix Il ∈ Rk×m are
represented by the parameter l, related to the effort of the controller. Large
values of l indicate higher control costs and therefore weaker actuation. The fi-
nal goal is to determine a control signal φ(t) using the noisy measurements v(t)
so that the perturbation energy of the flow is minimized in the region defined
by C1. The criterion is expressed by the following objective function

‖z‖2
L2(0,T ) =

∫ T

0
‖C1u‖

2
Ω + φT IT

l Ilφdt. (2)

The basis for C1 is a sequence of proper orthogonal decomposition (POD)
modes, generated by a dataset of snapshots collected from the impulse response
to the initial condition B1. The first 10 modes are able to capture about the
93% of the total flow energy and were deemed sufficient to characterize C1.

2.2. Model reduction and feedback control design

Among all the possible flow disturbances, only a portion can be excited by the
inputs and observed by the outputs; in literature, these states are referred as
controllable and observable. With a limited number of inputs and outputs most
part of the states is scarcely controllable and observable. Since the control
design is based on the dynamics among actuators and sensors, one way to
proceed is to disregard uncontrollable/unobservable states. In such a way, the
entire input-output behaviour of the system can be accurately reproduced by a
reduced number of states. Balanced truncation, first proposed by Moore (1981),
represents a systematic way to perform this reduction. We refer to Glover
(1984) and Bagheri et al. (2009a) for more details. For our application, an
approximate basis of balanced modes - and the related adjoint set - is computed
using a snapshot-based method, see Rowley (2005). For this configuration, a set
composed by 60 modes was deemed sufficient for reconstruct properly the entire
input-output behaviour of the system, as shown by Semeraro et al. (2010).

The reduced order model allows us to easily access the tools of linear con-
trol for the compensator design. The controller is designed using the linear
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Case Amplitude Control pen. Tran. delay. Reynolds Num.
umax|t=0 l ∆x ∆Rex

A 3.2 × 10−4 150 ≈465 4.7 × 105

B 3.2 × 10−4 250 ≈545 5.4 × 105

C 3.2 × 10−4 300 ≈580 5.8 × 105

D 4.3 × 10−4 150 ≈180 1.8 × 105

E 4.3 × 10−4 250 ≈295 3.0 × 105

F 4.3 × 10−4 300 ≈355 3.6 × 105

G 5.4 × 10−4 150 No No
H 5.4 × 10−4 250 ≈140 1.4 × 105

I 5.4 × 10−4 300 ≈210 2.1 × 105

Table 1. Test cases for the parametric analysis of the transi-
tion delay; the parameters used are the control penalty l and
the initial amplitude. The performance is compared consider-
ing the achieved transition delay in terms of ∆x and ∆Rex.
In all the uncontrolled cases related to these amplitudes we
observed transition to turbulence.

quadratic Gaussian (LQG) approach and is of the same order of the model.
The so-called compensator consists of an estimator, that provides an estima-
tion of the flow, and the controller that feeds the actuators. For a derivation
of the LQG solution, please refer to e.g. Lewis & Syrmos (1995) or Doyle et al.
(1989) and Dullerud & Paganini (1999) for a more “modern” robust control
framework. Here, we just mention that the spatial localization of the actuators
and the sensors requires a proper multi-input-multi-output (MIMO) approach
for the controller design. Here a centralized control is adopted, where all the
actuators are connected to all the sensors. This configuration results in a stable
closed-loop. Since the perturbation propagates in the span-wise direction, while
travelling downstream Monokrousos et al. (2010), it has a strong correlation in
this direction. Thus, a controller where each sensor is connected only to the
actuator farther downstream is unfeasible since the coupling in the span-wise
direction is disregarded.

3. Transition delay

As already introduced, the classical transition scenario is usually observed in
clean environments characterized by low levels of free stream turbulence. The
transition is here triggered by the growing of three dimensional wavepacket with
realistic amplitudes; indeed, all the uncontrolled simulations related to the three
initial amplitudes listed in table 1 allow to obtain transition in the end of the
computational box. At this location, the TS amplitude is about 0.03% of the
free stream velocity and Rex ≈ 1.6−2.0×106. In table 1, 9 cases are reported; a
parametric analysis is performed using different controllers (varying the penalty
l) and three different initial amplitudes. The controllers used for the transition
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Figure 2. Evolution of the energy-density, (a). With a red
line the uncontrolled case is indicated, while the black line
indicates the controlled case. The circles denote the position of
the leading edge of the disturbance. Snapshots for the stream-
wise velocity are shown at t = 1250, (b) and (c), and at t =
3750, (d) and (e), for the uncontrolled case and the controlled
case, respectively; the surface contour corresponds to the 30%
of the maximum perturbation velocity for each case.
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delay are designed in the shorter box, Lx = 1000; their performance is presented
in Semeraro et al. (2010) for linear perturbations, where the best performance
achieved was a reduction of 93% of the peak energy. To investigate transition
delay, a longer box is now used, where the controller acts when the flow is still
laminar but weakly non-linear. However, this computational domain is still
characterized by the same width; in principle, due to the spanwise elongation
of the TS-wavepacket, a large domain should be introduced. However, little
changes are observed in the physical behaviour of the propagating disturbance
although interaction due to the periodicity in z is observed. Moreover, in a
realistic case, a random distribution of disturbances is expected interaction,
leading to an interaction between the disturbance spots.

The transition delay obtained for case F is shown in figure 2(a), where
the energy evolution in time is depicted and compared with the corresponding
uncontrolled case. The energy is scaled with the total volume of the compu-
tational domain. Initially, the disturbance extracts energy from the mean flow
via the Orr-mechanism: the initial condition is tilted in the upstream direction.
During the early stage, the structure rotates until it is aligned with the shear.
Farther downstream, the wavepacket propagates spreading progressively along
the span-wise direction and growing in size; the resulting structure is nearly
two-dimensional, as shown in figure 2b, where a snapshot of the stream-wise
component is depicted at t = 1250. When the control is active, the perturbation
has already experienced the effects of the actuation at t = 1250: the original
nearly two-dimensional structure is distorted into a more complicated three-
dimensional pattern, see figure 2c. The span-wise coherence of the disturbance
is disrupted and the perturbation energy is roughly one order of magnitude
lower than in the uncontrolled case.

However, farther downstream of the actuation array, the perturbation
recovers its span-wise coherence. This leads to renewed growth of the TS-
wavepacket; indeed, the slope of the energy curve (see figure 2a) corresponds
roughly that obtained for the uncontrolled case. Thus, it seems reasonable to
evaluate the transition delay by extrapolating the transition location from the
disturbance energy at this stage; the following disturbance evolution can be
assumed to be the same for the two cases, only small differences due to higher
Reynolds numbers in the uncontrolled case. To relate time to stream-wise lo-
cation of transition, we assume that the leading edge of the wavepacket has a
propagation velocity ce = 0.47, see Monokrousos et al. (2010). Using this value,
the delay is here provided in terms of ∆x and ∆Rex. For case F, ∆x ≈ 355,
corresponding to a transition delay of ∆Rex ≈ 3.6 × 105. Table 1 summarizes
the transition delay for all test cases.

At a later stage, the uncontrolled flow starts the transition to turbulence.
The structure is now completely three-dimensional, as shown in figure 2d, and
the energy curve strongly deviates from the linear behaviour previously ob-
served, showing a rapid growth; conversely, the behaviour of the controlled
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Figure 3. Energy-density evolution as function of x. In a the
uncontrolled case (red line) is compared with cases D, E and F;
the arrow indicates increasing values of l. In b, cases F (black,
dashed line) and I (black, dashed-dotted line) are compared
with the respective controlled case (red lines).

case is still essentially linear as confirmed by the energy growth and the anal-
ysis of the structure shown in figure 2e.

The localization of the actuators and sensors, the control penalties and
the initial amplitudes provide a broad range of parameters for the analysis
of the performance. The control penalty l and the initial amplitude of the
disturbance are analysed in figure 3a and 3b, respectively, where the evolution
of the energy-density is reported. The controller configuration – sketched in
figure 1 – is fixed and the noise contamination η = 0.01. This configuration
provides best performance in the linear simulations; we expect worsening of the
controller behaviour when higher noise contamination is introduced.

The performance differs from the linear prediction when the control penalty
l is changed. Indeed, a reduced control effort provides improved performance
(see fig. 3a); in particular, cases E and D are characterized by a delay of the
transition ∆x ≈ 295 (corresponding to ∆Rex ≈ 3.0 × 105) and ∆x ≈ 180
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Figure 4. Amplitude expansion analysis at t = 1000 for the
uncontrolled case. The stream-wise velocity is shown for the
first (a), the second (b) and third order (c); the corresponding
energy spectra are shown in (d − f9

(∆Rex ≈ 1.8 × 105), respectively. This is in contrast with the results ob-
tained for the linear case, where improvements are observed when l is de-
creased. Higher actuation amplitude triggers nonlinear effects quickly; thus,
the efficiency of the controller deviates from the behaviour of the linear model.

We also vary the amplitude of the initial condition, see table 1. Higher
values for the amplitudes introduce stronger non-linearity that leads to worse
performance; in particular, we do not observe transition delay for the largest
amplitudes (case G), while in case I a reduction of the control effort enhances
the performance of the device. In figure 3b case F and case I are compared.

Thus, the parametric analysis clearly shows the importance of the non-
linear effects and how they affect the overall performance of the controller. A
more detailed analysis of the flow features is introduced in the following section,
where the actuation and its influence on the flow are discussed.
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Figure 5. Amplitude expansion analysis at t = 1000 for the
controlled case. The energy spectra for the first order (a),
second order (b) and third order (c) are shown.

4. Analysis of the controlled flow

The analysis of the actuation can be performed using an amplitude expansion
where the following expansion is applied to the perturbation velocity

u (ε) =
n

∑

k=1

ukε
k + O

(

εn+1
)

. (3)

Here, ε represents the initial amplitudes, uk the perturbation velocity fields,
and n = 3 for our application. The first order, n = 1, corresponds to the
linear solution, while n > 1 indicates perturbations triggered by nonlinear
interactions. The uk components are computed from velocity fields obtained
with several values of ε in 3, see Henningson et al. (1993) for more details.

First, the uncontrolled flow is considered at t = 1000. The linear, the
quadratic and the cubic terms of the stream-wise component are shown in figure
4(a − c) whereas the energy spectra are shown in 4(d − f) versus the stream-
wise wavenumber (α = 2πNx

Lx ) and the span-wise wavenumber (β = 2πNz

Lz ).
The nonlinear terms, n = 2, introduce structures elongated in the stream-wise
direction and characterized by β ≈ 0.1. At the third order, the energy peak is
obtained from the interaction between the linear term and the quadratic term.
It is important to note that the low-order model is based on the linearized
Navier–Stokes equations and therefore nonlinear interactions are not included;
thus, these modes are those that need to be modeled to increase the performance
at higher amplitudes.

A qualitative analysis of the actuation was already introduced in figure 2d,
where the flow is shown at t = 1250. The amplitude expansion, at t = 1000,
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Figure 6. Full energy spectra for case F at t = 1000 (a),
t = 2000 (b) and t = 3000 (c). Case G is shown for the same
instants in the insets (d − e). The contour are depicted using
the logarithmic scale.

reveals more quantitative data about the flow field. In figure 5a, the spectrum
of the first order expansion shows a clear damping of the energy at the frequency
related to the TS-waves and the appearance of three-dimensional modes due
to the localization of the actuation. The quadratic term is characterized by
two peaks at β ≈ 0.1 (see figure 5b); the first is characterized by a lower value
of α and is related to the nonlinearities of the uncontrolled flow. The second
peak is related to the interaction between the action of the controller and the
uncontrolled flow and is found also in the cubic term (see figure 5c). Moreover,
in the nonlinear terms n > 1, higher-order span-wise modes β > 0.2 appear.

Thus, the propagation of energy to smaller span-wise scales appears due to
the interaction between the controller and the uncontrolled flow; worsening of
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the performance of the controller for larger amplitudes of the initial disturbance
is connected to the excitation of these scales. To investigate this behaviour we
compare a satisfactory test-case with one inefficient; in figure 6 the full energy
spectra of the controlled case F, (a− c), are compared with the controlled case
G, (d − f); logarithmic contours are used to magnify energy-containing scales.
At t = 1000, the excited frequencies are essentially the same in both cases.
However, the evolution for the two cases is different due to the higher energies
involved in case G. The amplitudes for the two cases are comparable: in case
F, at t = 1000, the amplitude is about ≈ 0.002, whereas a =≈ 0.004 for case
G.

In (b), at t = 2000, two peaks appear; one corresponds to the renewed
packet of TS-waves, appearing, as already noticed previously, after the actua-
tion. The second peak is localized around β ≈ 0.6; the amplitude is still of the
same order, a = 0.002. Later, as shown in figure (c), except for a second peak
along the span-wise wavenumbers in β = 0.2, the frequency appears damped.
The comparison with the same instant of time for case G, instead, reveals the
excitation of the smaller scales triggering the transition to turbulence. In fig-
ure 6(e), all the modes active at t = 1000 are now characterized by higher
energy and higher amplitudes appear; further, small scales are excited along
the span-wise wavenumber. Finally, at t = 3000, the spectrum reveals clearly
the transition to turbulence; the amplitude is a ≈ 0.03 and results of one order
of magnitude larger than the corresponding case in (c).

5. Conclusion

We demonstrated the possibility to delay the transition process using a feed-
back controller based on localized sensors/actuators. Three dimensional TS
wavepacket with realistic amplitudes of the initial perturbation are considered;
a reduced order model, capturing the entire input-output behaviour of the flat-
plate boundary layer, is built and used for the control design. The controller
quenched the disturbances during the early stage of the propagation, when the
flow is still laminar; the action of the controller resulted in a significant reduc-
tion of the perturbation energy of the disturbance and - later - in a delay of
the transition process.

To verify the robustness of the device, a parametric analysis was carried
out, considering the controller effort and different finite-amplitudes for the ini-
tial conditions. A stronger controller effort resulted in a worsening of the per-
formance: this behaviour of the device is in contrast with the linear prediction;
however the delay of the transition was still remarkable. Also, higher ampli-
tudes of the initial condition – generating stronger deviation from the linear
behaviour – affected the device, resulting in worst performance.

The analysis of the actuation clearly revealed the excitation of higher order
harmonics; the excitation is related to the three-dimensionality of the controller
action, combined to the non-linearities of the uncontrolled flow. Starting from
this knowledge, a further improvement of the device can be achieved; modern
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developments in robust control theory may be used to rigorously incorporate
uncertainties that may be present in the design process. Moreover, the non-
linear effects can be explicitly accounted during the modeling process.
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Modal analysis by proper orthogonal decomposition (POD) and dynamic mode
decomposition (DMD) of experimental data from a fully turbulent flow is pre-
sented. The flow case is a turbulent confined jet with co-flow, with Reynolds
number based on the jet thickness of Re=10700. Experiments are performed
with time-resolved PIV. The jet is created on a square channel with the con-
finement ratio is 1:5. Statistics of the flow are presented in terms of mean
and r.m.s. fields. Analysis of spatial spectra and temporal spectra reveal the
presence of dominant wavelengths and frequencies embedded in broad-band
turbulent spectrum. Frequencies in the shear layer migrate from St ≈ 1 near
the jet inlet to St < 0.1 at 18 jet thickness downstream.

This flow case provides an interesting and challenging benchmark for test-
ing POD and DMD and discuss their ”efficiency” in a fully turbulent case. At
first, issues related to convergence and physical interpretation of the modes are
discussed, then the results are analyzed and compared. POD analysis reveals
the most energetic spatial structures are related to the flapping of the jet; a
low frequency peak (St = 0.02) is found when the associated temporal mode is
analysed. Higher order modes revealed the presence of faster oscillating shear
flow modes combined to a recirculation zone near the inner jet. The flapping
of the inner jet is sustained by this region. A good agreement is found between
DMD and POD; however, DMD is able to rank the modes by frequencies,
isolating structures associated to harmonics of the flow.

1. Introduction

While until the last decade investigations of turbulent flow fields were mainly
performed based on a local approach – e.g. hot-wire or laser doppler velocime-
try (LDV) single point measurements – recent advances in experimental tech-
niques – e.g. high-speed stereo and tomographic particle image velocimetry
(PIV) – and direct numerical simulations (DNS) have provided access to simul-
taneously spatially and temporally resolved flow data. This also changed the
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Figure 1. Example of PIV snapshots. The contours show the
streamwise velocity component.

approach to data analysis. Local analysis of temporal spectra and autocorre-
lations have been very useful tools to investigate coherent structures (Hussain
1986) from local time series, but with the advent of PIV and similar techniques
that introduced spatially resolved data many other methods could be applied.
For example one of the classical problem of the analysis of local time series
is to convert from temporal to spatial scales. Very often Taylor hypothesis of
frozen turbulence is used to go from the former to the latter. Having temporally
and spatially resolved data from DNS, Álamo & Jiménez (2009) uses spatio-
temporal spectra and correlations to measure directly convection velocities in
wall bounded turbulent flows and correct Taylor hypothesis.

However, in order to fully exploit the potential of these techniques, it is be-
coming increasingly important to develop tools that have ”global” view, which
can give an insight not only on the topology of the coherent structures but
also on the dynamics. This is of great importance for understanding complex
natural or industrial flows, such as, for example, atmospheric and environmen-
tal flows, combustion chambers, etc. One possible approach to simultaneously
make use of the temporal and spatial resolution is to use snapshots of the flow
field obtained by time-resolved PIV (see figure 1) or DNS to build a matrix
that somehow contains information about the dynamics of the system. Under-
standing what are the most relevant dynamic structures in a flow is extremely
important from a physical point of view to study the instability mechanisms
that lead to transition to turbulence or the coherent structures hidden in chaotic
turbulent flows, but also, from an engineering point of view, to help building re-
duced order models that can be used in the design and optimization of complex
flow systems (Ilak & Rowley 2008; Bagheri et al. 2009).

1.1. Snapshot-based modal analysis

Among the snapshot-based methods, one of the most commonly used is the
proper orthogonal decomposition (POD) (see, e.g., Holmes et al. 1996; Sirovich
1987). POD ranks the modes based on the most energetic structures as solution
of the eigenvalue problem related to the cross-correlation matrix computed
from the snapshots. The most energetic modes often (but not necessarily)
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correspond to the most relevant coherent structures of the flow. The temporal
information can be recovered using the bi-orthogonal decomposition (BOD),
(Aubry 1991). Two sets of modes are computed, related to the two alternative
ways of computing the cross-correlation matrix; indeed, the eigenvectors of
the temporal-averaged cross-correlation matrix are the spatial modes, while
the eigenvectors of the spatial-averaged cross-correlation matrix provide the
temporal modes. Following the literature, we refer to the temporal structures as
chrono-modes (Chronos) and to the spatial structures as topo-modes (Topos).

The spectral analysis of the chronos provides the temporal frequencies
characterizing the topos, whereas the analysis in time domain can reveal the
presence of temporal periodicities or limit cycles. However, a first drawback
of the technique has to be mentioned here: in general, these structures are
associated to more than one frequency; thus, the only possible way to rank
POD modes is energy-based. Unfortunately, this criterion is not always a cor-
rect measure: low-energy structures associated to instabilities can be relevant
(Noack et al. 2008). Moreover, this is a statistical method, so the results ob-
tained are intrinsically connected to the conditions in which the snapshots were
obtained.

Recently, the dynamic mode decomposition (DMD) has also been applied
to the analysis of experimental data and the results have been encouraging
(Schmid et al. 2010). The DMD algorithm belongs to the category of the
Arnoldi methods, widely used for the computation of the eigenvalues and re-
lated eigenvectors for linearized flow system, (Ruhe 1984). In Schmid (2010),
an improvement of the method is introduced and applied to nonlinear flows,
also for experimental cases. From the mathematical point of view, the the-
oretical background relies on the spectral analysis of the Koopman operator
(Mezić 2005); indeed, as shown in Rowley et al. (2009), the DMD algorithm
approximates the Koopman modes, which can be seen as the averaged har-
monic components of the flow, oscillating at certain frequencies given by the
eigenvalues of the operator. From the physical point of view, it can be shown
that the Koopman modes coincide with the global modes for linearized flows,
and with the Fourier modes for periodic flows (see Bagheri 2010).

1.2. Aim of the paper

In this paper we focus on the analysis of time-resolved PIV measurements of
a turbulent co-flowing jet confined in a square channel. The flow case has
been chosen not only because it is relevant for several practical applications
(papermaking, combustion engines, etc.) but also for its complexity, since it
is a fully turbulent flow that also contains periodic structures as, for example,
the flapping of the inner jet due to the interaction with recirculating areas on
its side (Maurel et al. 1996; Davidson 2001; Goldschmidt & Bradshaw 1973).
These periodic structures can be hard to identify with spectral analysis, since
they are often ”hidden” by the random turbulent fluctuations, however here we
try to identify them by the analysis of POD and DMD. Issues concerning the
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choices of the snapshots and convergence are addressed and the results obtained
with two methods are discussed.

1.3. Structure of the paper

The paper is organized as follows. In section 2, a brief theoretical overview
of the modal analysis is proposed. The experimental setup is briefly described
in section 3; details of the measurement technique and the flow quality are
provided. Section 4 is devoted to the spectral analysis of the flow; spatial
distribution of the dominant frequencies are discussed. The analysis of the
coherent structure using POD is proposed in section 5, while the Koopman
analysis is carried out in section 6. The paper ends with a summary of the
main conclusions (section 7).

2. Theoretical background

The aim of the section is providing a brief theoretical background of the modal
decompositions used in this paper. First, proper orthogonal decomposition is
introduced. In the second part, Koopman modes analysis is summarized; the
focus of the section is mainly on the DMD that provides an approximation of
the modes; for a detailed description of the numerical methodology we refer
to Schmid (2010), while more theoretical details are provided by Mezić (2005),
Rowley et al. (2009) and Bagheri (2010).

2.1. Proper Orthogonal Decomposition

Proper orthogonal decomposition (POD) is a well known method for extracting
coherent structures of a flow from a sequence of flow-field realizations. Given
a dataset of flow realizations {u(t1), u(t2), . . . , u(tm)} stacked at m discrete
times – usually referred as snapshots or strobes – POD ranks the most energetic
structures of the flow, computed as solution of the eigenvalue problem

∫

X
R∗ (x, x′)ϕkdx′ = λkϕk (x) , (1)

where the integral is defined on the spatial domain and

R∗ (x, x′) =

∫

T
u (x, t) u (x′, t)

T
dt (2)

is the time-average cross-correlation; the integral is performed in time domain.
By definition, the function R∗ is positive semidefinite. The eigenfunctions
Φ = {ϕ1,ϕ2, . . . ,ϕm} are orthogonal and real-valued, while each eigenvalue λk

contains the energy associated to each mode.

The technique was originally proposed as a statistical tool by Loève (1978);
in this context, it is usually referred in literature as Karhunen-Loève decom-
position (KL). According to the related theorem, a random function can be
expanded as a series of deterministic functions with random coefficient. In
such a way, the deterministic part – represented by the POD modes – is sepa-
rated from the random part. Successively, Lumley (1970) applied the method to
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turbulence analysis; the flow field is expanded using the spatial eigenfunctions
obtained from the KL decomposition, where the statistical ensemble employed
for the decomposition is represented by a dataset of snapshots.

The temporal information can be recovered projecting back the entire se-
quence of snapshots on the obtained basis; the projection results in time coef-
ficients series related to the spatial structures. An alternative way to proceed
is formalized by Aubry (1991), where bi-orthogonal decomposition (BOD) is
introduced. Essentially, a second eigenvalue problem related to the temporal
cross-correlation function

R∗∗ (t, t′) =

∫

X
u (x, t) u (x, t′)

T
dx (3)

is cast. Denoting the eigenvectors obtained from the diagonalization of (3)
as Ψ = {ψ1,ψ2, . . . ,ψm}, it can be shown that the following correspondence
between spatial and temporal modes holds

ψk = λ−1
k Xtϕk, (4)

where Xt : X → T is a mapping between the temporal and spatial domain; this
decomposition allows to split the space and the time dependence in the form

u (x, t) =
m

∑

k=1

λkϕk (x)Tψk (t) (5)

It can be shown that a projection onto the space spanned by m POD modes
provides an optimal finite-dimensional representation of the initial data-set of
dimension m (Holmes et al. 1996).

Hereafter – following the literature – the spatial modes will be referred as
topo-modes and the temporal modes as chrono-modes. The temporal structures
give access to the analysis of the frequencies dominating each modes; in general,
more then a frequency is identified for each structure.

2.2. Approximating Koopman modes: dynamic modal decomposition

As already noticed, although frequencies are captured by the chrono-modes, we
cannot identify structures related to only one frequency using POD. Moreover,
the correlation function provides second-order statistics ranked according to the
energy content; in general, low-energy structures can be relevant for a detailed
flow analysis. Koopman modes analysis is a promising, novel technique that
can tackle these drawbacks. The method was recently proposed by Rowley
et al. (2009) and is also available for experimental measurements.

In order to describe this technique, we need to introduce the definition of
observable. An observable is a function that associates a scalar to a flow field; in
general, we don’t have access to the full flow field in experiments: the velocity
- or the other physical quantities are probed at a point, using hot wires, or in
a plane, using PIV. However, considering a fully nonlinear flow, the analysis of
the observable for a statistically long interval of time is sufficient to reconstruct
the phase space and investigate the flow dynamics. By definition, the Koopman
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operator U is a linear mapping that propagates forward in time the observable
a (u)

Ua (u) = a (g (u)) (6)

and is associated to the nonlinear operator g. The spectral analysis of the oper-
ator provides information on nonlinear flows; in particular, the technique allows
to compute averaged harmonic components of the flow, oscillating at certain
frequencies given by the eigenvalues of the operator, hereafter indicated with
µ. In particular, the phase of the eigenvalue arg(µ) determines the oscillating
frequency.

The DMD algorithm proposed by Schmid (2010) provides modes that
approximate the Koopman modes, as shown by Rowley et al. (2009) and
Bagheri (2010); the complete demonstration is beyond the scope of this paper,
however it is relevant to outline briefly the main steps of the DMD algorithm.

Essentially, the DMD algorithm enters the category of the Arnoldi methods
for the computation of the eigenvalues and related eigenvectors of a system. A
projection of the system is performed on a basis; the best - and computationally
more involved - choice is represented by an orthonormal basis. In the classical
Arnoldi method the basis is computed via a Gram-Schmidt orthogonalization
(Arnoldi 1951; Saad 1980), that requires a model of the system. A second
possibility is given by forming the projection basis simply using a collection
of samples or snapshots (Ruhe 1984). This alternative represents the most
ill-conditioned among the possible choices, but can be applied in cases when a
model of the system is not available.

Given a snapshot at time tj , the successive snapshot at a later time tj+1 is
given by

uj+1 = Auj (7)

The resulting sequence of snapshots Xr = [u1 Au1 Au2 . . . Aur] will
become gradually ill-conditioned; indeed, the last columns of it will align along
the dominant direction of the operator A. This observation motivates the
possibility of expand the last snapshot r on a basis formed by the previous
r − 1 ones, as

ur+1 = c1u1 + c2u2 + . . . + crur + ũr+1. (8)

Here, ũr+1 indicates the residual error. The aim is to minimize the residual
such that ũr+1⊥Xr; a least square problem is cast, such that the elements cj

are given as a solution of it. Introducing the companion matrix

M =










0 0 · · · 0 c1

1 0 · · · 0 c2

0 1 · · · 0 c3
...

. . .
...

0 0 · · · 1 cr










(9)
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the equation (8) is re-written in matrix-form as

AXr = XrM + ũr+1e
T
r (10)

The action of the companion matrix is clear: it propagates one step forward
in time the entire sequence of snapshots, whereas the last snapshot is recon-
structed using the coefficients cj . Moreover, the equivalence represented by (8)
shows that the operator A ∈ Rn is now substituted by M ∈ Rr, with r & n.
It results that the eigenvalues of M – usually referred as Ritz values – approx-
imate the eigenvalues of the real system. The related eigenvectors are given
by Φ̃ = XrT, where T are the eigenvectors of the companion matrix M. As
observed by Schmid (2010), this algorithm can be used for extract Ritz values
and the related vectors from experimental data or sequence of snapshots of
nonlinear simulations.

It is a worth mentioning two features of the algorithm, here: first, the modes
are characterized by a magnitude that can be easily computed as the norm of
the modes |φ̃j |. The resulting amplitudes are essential for separating the wheat
from the chaff: as shown by Rowley et al. (2009), high-amplitude modes are
related to the most important - and convergent - eigenvectors. Moreover, (10)
allows to estimate the norm of the residual error as ‖ũ‖ = ‖AXr − XrM‖.
The analysis of the residuals is helpful for the identification of the snapshots
dataset; indeed, the selection of the ∆ts of sampling and of the proper time
windows of investigation are related to the residual analysis.

The linear dependency of the dataset, necessary for identifying the last
snapshot, makes this method prone to convergence issues and ill-conditioness.
An improvement is proposed by Schmid (2010), where a self-similar transfor-
mation of the companion matrix M is obtained as results of the projection of
the dataset on the subspace spanned by the POD generated from it. To this
aim, a preliminary singular value decomposition (SVD) of Xr is performed; the
SVD allows to disregard the redundant states and the transformed companion
matrix is now a full matrix: both these features make the eigenvalues problem
better conditioned.

3. Experimental setup

The experiments are performed in a square channel whose dimension D is of
50 mm. The first 300 mm of this square channel are divided into three sections
of dimensions 19, 10 and 19 mm by means of two horizontal walls that span
the entire width, see figure 2c. The end of the splitter walls corresponds to the
beginning of a planar co-flowing jet, which is our measurement domain, see fig-
ure 2a. The thickness d of the inner jet is of 10 mm, which gives a confinement
ratio d/D of 1:5. The flow in the three jets is supplied by two independent
pumps through two radial distributors, one connected to the inner and one
to the two outer channels, see figure 2d. This configuration allows to control
the flow rates of the inner and the outer sections independently, therefore two
non-dimensional parameters can be varied in the present setup: the velocity
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Figure 2. Experimental setup.

ratio λr = Uj/Us, where Uj and Us are the centerline velocities of the inner
and the outer jets respectively, and the Reynolds number Re = Ujd/ν, where
d is the inner duct thickness and ν is the kinematic viscosity of the fluid.
In this work we show results for λr = 2.1 and Re = 10700.

3.1. Measurement technique

The time-resolved measurements of the flow were done by high-speed Particle
Image Velocimetry (PIV). The PIV system used in this work consists of a
double cavity 10mJ Nd:YLF laser (repetition rate 2-20000 Hz) as a light
source, and two high-speed cameras (up to 3000 fps at full resolution) with
resolution of 1024x1024 pixels.
The arrangement of the cameras and the laser-sheet is shown in figure 2b.
The two cameras were used to acquire two 2-D velocity fields, each of them of
50x100 mm2. The second camera was tilted by 5◦ in order to reach an overlap
between the two fields of about 20 mm, so that the total measurement area is
of about 180 mm.
The two cameras were calibrated by taking images of a calibration plate with
known reference points in situ, and the calibration parameters were extracted
using a pinhole-based model (see Willert 2006).
The flow was seeded with 10µm silver-coated tracer particles, and a series
of double-frame, single-exposure images were acquired at a rate of 1500Hz
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for a total time of 4 seconds. The velocity fields were calculated using the
commercial PIV software DaVis 7.2 from LaVision GmbH. The algorithm
used is a multi-pass correlation with continuous windows deformation and
shift, which allowed to achieve a final interrogation window size of 8x8 pixels.
The size of the interrogation window is of about 0.75x0.75 mm2 in physical
space, which sets the lower limit for the spatial resolution. The window
overlap was 50%. For detailed information about the performance of the PIV
algorithm, see Stanislas et al. (2008).

3.2. Flow quality

In order to establish the characteristics of the flow in the channel, we measured
cross-stream profiles at 5 spanwise stations including the channel centerline,
and spanwise profiles at the centerline of the three jets. In this paper we refer
to the direction parallel to the x-coordinate as the streamwise direction, the
direction parallel to y as the cross-stream and the one parallel to z as the
spanwise direction. The streamwise and cross-stream velocity components are
U and V , respectively.
Figure 3 shows the streamwise development of the time average of U (〈U〉)
and the root mean square (r.m.s) of the streamwise turbulent fluctuations u′

(〈u′2〉) at the channel centerline (z = 0). The profiles are scaled to fit the
figure, and the x and y coordinates are normalized by the inner jet thickness d.
Two main features can be observed in the mean velocity profiles: the boundary
layers developing at the channel walls and the two wakes generated by the
blunt end of the splitter walls on the profiles near the inlet. The r.m.s. profiles
show the characteristic local maxima at the two shear layers. The dashed
lines show the centerlines of the three jet regions. The dashed-dotted lines
follow the development of the jet half width L, defined as the point where
(U − Us)/(Uj − Us) = 0.5.

The spanwise evolution of the velocity profiles have also been investigated
to asses to what extent the flow can be considered two-dimensional. Fig-
ures 4(a) and (b) show the cross-stream profiles of 〈U〉 at 5 spanwise stations



118 O. Semeraro, G. Bellani & F. Lundell

0 0.5 1

−2

−1

0

1

2 a)

y/
d

<U>/Uj

 

 

z/d=−2
z/d=−1
z/d=0
z/d=1
z/d=2

0 0.5 1

b)

<U>/Uj

 

 

z/d=−2
z/d=−1
z/d=0
z/d=1
z/d=2
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(Z/d = −2,−1, 0, 1, 2), whereas figures 5(a) and (b) show the spanwise profiles.
The latter has been measured by rotating the channel 90◦ around the x-axis,
so that the light sheet was parallel to the z-axis.
These figures show that although the inlet profiles are not perfectly top-hat,
the flow rates on upper and lower channel are quite the same and the boundary
layer at the side walls never reaches the center of the channel. Therefore we
can consider the flow as quasi -2D.
Normalized mean, r.m.s. and Reynolds stress profiles profiles are shown in
figure 6. The normalizing scales are the local velocity excess U0 = Uj − Us for
the mean velocity, and the jet half width L for the y coordinate. From figure
6(a) we can see that the mean velocity profiles are still affected by the wake
behind the walls splitter but self similarity is reached already at x/d = 5, see
figure 6(b). From these figures we can also see the growth of the boundary lay-
ers from the channel walls, which however do not reach the self-similar region
at the core of the jet. Figures 6(f) and 6(d) show that r.m.s and Reynolds
stresses reach self similarity later than the mean flow, at around x/d = 10, as
reported by Chua & Lua (1998) in a similar flow case. It is interesting to note
that the typical saddle shape of the r.m.s profiles is not symmetric and seem
to be inclined so that the r.m.s values on the lower part of the channel are
higher than in the upper part. This might be an indication of a recirculation
zone induced by the confinement due to a slight asymmetry of the experimental
setup. Recirculation zones around a jet due to confinement has been observed
by (Maurel et al. 1996; Davidson 2001; Goldschmidt & Bradshaw 1973). In
these works it has been shown that the re-circulation zone can induce self-
sustained oscillation of the jet. The frequency of the oscillations are dependent
on the geometry and the confinement ratio but in general they have low fre-
quency and are characterized by Strouhal numbers based on the jet thickness
of St ≈ 0.01.
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4. Spectral analysis

4.1. Computational procedure

Time resolved PIV measurements were done at the symmetry plane of the chan-
nel. As an output of the PIV measurements, for each point of the measurement
domain ( 0 < x/d < 18 ) we obtained a time signal made of 6000 samples for a
total sampling time of 4 seconds. We therefore have spatially and temporally
resolved data from which we can detect the presence of dominant wavelength
and frequencies by the analysis of the Power Spectral Density (PSD). Temporal
spectra are calculated using the Welch method seeking a compromise between
smoothness and good resolution low frequencies. For the spatial spectra we
followed a similar approach, but in this case the maximum length of the sig-
nal was determined by the physical length of the measurement domain, and
the final PSD estimate was obtained by averaging the spectra at different time
steps.

Examples of temporal and spatial spectra (Φu and Θu, respectively) can
be seen in figure 7. Figure 7(a) shows the normalized PSD of the streamwise
velocity fluctuations at 5 streamwise stations (x/d = 0, 1.5, 7, 10, 15) along the
jet centerline. It can be seen that the slope of the spectra approaches the
value of -5/3 as we move downstream, where we expect to have nearly isotropic
turbulence in the jet core. Peaks might also be present in some regions of
the spectra but it is hard to distinguish it from the noise, since the time series
relatively short due to the limited capabilities of PIV to acquire long time series
do not allow us further smoothing.

Therefore, in order to get an idea of the dominant scales in the different
regions of the flow we can plot the contours of the spectra as a function of y as
shown in figure 8. The normalized spectra here are presented on a logarithmic
scale, thus they and premultiplied by the frequency or wavelength vector. Fig-
ure 7(a) shows the temporal spectra computed at the jet outlet, whereas figure
7(b) shows the distribution of spatial spectra. In the latter, it can be seen that
much of the energy is contained in the two regions corresponding to the shear
layer, with a maximum peak located at d/λx ≈ 0.3− 0.4, which corresponds to
about half of the channel width D/2 in physical terms. In the same region we
can observe two peaks in the temporal spectra at St = 1, where St indicates the
Strouhal number and is defined as St = f(d/2)

Uj−Us
, with f being the dimensional

frequencies. In the rest of the domain instead, most of the energy is contained
at low St, in particular in the co-flow region peaks appear at St < 0.1. This is
another evidence of low-frequency structures, like a re-circulation zone due to
the jet confinement, even if the St is higher than the one reported in previous
studies. This can be explained by the fact that the limited length of the time
series and the windowing used to compute the spectra, the resolution of the
low frequencies is poor.
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4.2. Spatial distribution of dominant frequencies

The spectra shown in figure 7(a) are computed at the jet outlet. However
it is interesting to analyze what happens further downstream. This is shown
in figure 9, where the y distribution of Φu is show at 8 streamwise stations:
x/d = 0.38, 0.75, 1.13, 1.50, 3.40, 7.16, 10.90 and 15.80. What it can be ob-
served from this sequence is that the two high-frequency peaks in the shear
layer tend to ”migrate” towards lower frequencies as we move downstream, to
approach the value of St = 0.1 for x/d > 10, i.e. in the self-similar region.
This can be explained by the fact that in the region x/d < 5 we still have small
scale/high-frequency structures due to the wake behind the splitter walls, which
can influence the dynamics of the shear layer, as reported in Örlu et al. (2008).
However, further downstream the most dominant structures are large/low fre-
quency due to the flapping of the inner jet (Maurel et al. 1996; Davidson 2001;
Goldschmidt & Bradshaw 1973).
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(c) x/d = 1.13
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(d) x/d = 1.50
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(f) x/d = 7.16
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Figure 9. Contours of premultiplied spectra StΦu. The con-
tour lines are drawn at: 0.4, 0.45, 0.50, 0.55, 0.60, 0.65, 0.70.
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Figure 10. U -component of the first topo-modes (mean-flow).

5. Analysis of coherent structures I: POD

5.1. Choice of the snapshots

The mapping Xt provides a relation between the space and time domains;
thus, the diagonalization of the (3) provides temporal modes, while the spatial
modes can be evaluated using (4). A discrete form of this procedure was
introduced by Sirovich (1987). Here the author shows that the corresponding
discrete form of the operator Xt can be built by stacking Nt snapshots of the
flow field to form a matrix of dimensions n × Nt, where n is the number of
grid points in space and Nt is the number of snapshots. Therefore this method
is known as snapshot method. The advantages of the techniques relies on the
dimensions of the eigenvalue problems associated with the two alternative
cross-correlations; indeed, the number of snapshots stacked in time is usually
smaller than the number of spatial degrees of freedom; thus, the eigenvalue
problem associated to the spatial cross-correlation matrix is more expensive
than diagonalizing the temporal cross-correlation; however, the relation (4)
provides a mean for recovering the spatial modes from the temporal modes
using the mapping Xt. Note that the same results can be achieved performing
a singular value decomposition (SVD); in this case, the temporal structures and
the spatial structures are obtained simultaneously, see Schmid (2010). The two
procedures are equivalent, and the former method was used in our calculations.

When choosing the snapshots, there are two important choices to be made:
the total number of snapshots Nt and the time interval between two consecutive
snapshots ∆ts. In fact, as already mentioned, the modes obtained by POD
are always the optimal (in a least square sense) representation of the snapshots
used to compute the cross-correlation matrix, but it has to be kept in mind that
this modes are representative of the flow just as much as the cross-correlation
matrix is. Therefore if we want to extract physically relevant information of
the flow structures, Nt has to be chosen so that there are a sufficient number
of independent samples to ensure a converged statistics, and that the time
spanned by the snapshots is long enough to contain the slowest scales of the
flow. Provided the above conditions, the topos-mode (i.e. the spatial modes)
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Figure 11. Eigenvalues and temporal modes for ∆t = 1/750
(black), 1/250 (blue) and 1/125 (red).

do not seem to depend at all on the time of sampling ∆ts. However, when
recovering the temporal information by (4), it is clear that this parameter
determines the temporal resolution of the chronos-modes; thus, if ∆ts is too
large, the chronos-modes associated with high frequencies do not converge. An
example of this is idea is shown in figures 9.11(b) and 9.11(c), where we see
the chronos-modes corresponding to mode number 1 and 29 respectively. It
can be seen that the time series of mode 1, which shows mainly low-frequency
quasi-periodic fluctuations is well captured for every ∆ts, whereas for mode 29
the time series obtained with the largest ∆ts does not follow the ones obtained
with smaller time interval between the snapshots. Differences appears also in
the eigenvalues, see figure 9.11(a). The spectra obtained with ∆ts=1/750 and
1/250 are basically the same, whereas the spectrum computed with the largest
interval diverges as the number of modes, N , increases.

5.2. Spatial and temporal modes

From the first convergence analysis of the previous section we conclude that
a ∆ts of 1/250 is adequate to temporally resolve the structures of our flow
case.An acquisition time of 3.3sec is chosen, corresponding to Nt = 834 is fixed
which is on the order of about three times the slowest time scale of the flow.
As a convergence test, we take three sets of 5000 snapshots which differ from a
time offset of ≈ 0.2sec from each other. The convergence is directly analyzed
by comparing the POD eigenvalues obtained from each set. A relative error
of order O(10−4) is obtained among the set; this value is deemed sufficient to
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with a dashed line.

guarantee convergence of the results. A further numerical test is related to the
orthogonality of the modes. The condition is satisfied down to O

(

10−13
)

for
all the modes.

In figure 9.11(a), the eigenvalues related to the POD modes are shown; the
portrait obtained is rather typical: the first mode contains 97% and is related to
the meanflow of the jet, figure 9.11(a). Hereafter, we will denote it as 0-mode.
As expected, the corresponding chrono-mode is constant.
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The remaining modes are related to the fluctuating part of the flow field,
and the sum of their eigenvalues represents the turbulent kinetic energy (TKE).
A first eye-inspection of the topo-modes reveals that some of the modes come
in pairs. This is evident for example for mode 1 and 2, as shown in figures
12(a − b). Here we can see that the structure of the two modes is the same,
except for a shift in phase: they are both anti-symmetric with respect to the x-
axis, and they both present two large lobes located downstream. The analysis
of the corresponding chrono-modes confirms the similarities between the two
structures: they both show periodicity with similar amplitude of the peaks.
This is an evidence that the modes represent a wave-like periodic structure of
the flow. In fact, since the POD modes are real, two modes are needed to
describe a flow structure traveling as a wave (see e.g Rempfer & Fasel 1994).
From a physical point of view this structure represent the flapping of the jet,
which is the most energetic feature of the flow. A frequency analysis of the
signal from the chrono-modes (see figure 12d) shows that there is a very clear
peak at St = 0.02 for both mode 1 and 2. This is in line with the previous
frequency measurements of flapping of confined turbulent jets mentioned in the
earlier sections. It is remarkable that, although in general each POD mode can
be associated with more than one frequency, the peak at St = 0.02 appears
more clearly than in the spectral analysis of the time series. This is because
the time series contains information about all the turbulent structures, whereas
the considered modes isolate only one feature.

Finally, figure 12(e) shows the temporal orbit obtained by projecting
the flow field onto the subspace spanned by ϕ1 and ϕ2. It is clear that the
trajectory shows an attractor-like behavior, similar to what we would observe
from the vortex shedding behind a cylinder. This confirms the impression that
the modes represent a physical coherent structure and are important for the
reconstruction of the dynamics of the flow system.

In figure 13(a − c), the modes 3-5 are shown. These modes are character-
ized by smaller scales and higher frequencies (see figures 13d and 13e) than the
previous ones, but they are also clearly associated with oscillations of the shear
layer. One interesting feature emerging from these modes there is a structure
in the lower part of the channel that seems to be associated with a recircu-
lation zone. This recirculation might be responsible for the jet self-sustained
oscillations, which is confirmed by the fact that this feature is coupled in the
POD mode corresponding to shear layer oscillations. The analysis of the re-
lated chrono-modes in spectral space (figure 13e) reveals the presence of three
well defined frequencies in all these modes; however, the peaks have different
magnitudes in the three modes.

Note that the frequency increases as the energy associated to the modes
decreases. This might be a consequence of the fact that lower energy is asso-
ciated to smaller scales; indeed, an eye-inspection of the modes shows that, as
the rank increases, the topo-modes is characterized by low-energy structures,



128 O. Semeraro, G. Bellani & F. Lundell

(a) Third topo-mode (b) Fourth topo-mode
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Figure 13. The third, fourth and fifth POD modes are
shown. The streamwise component of the topo-modes is
shown. The first chrono-mode is indicated with a solid line,
the second one with a dashed line and the third with a dashed-
dotted line.

progressively smaller, while the corresponding chrono-modes are dominated by
higher frequencies. This trend is confirmed by figure 14, where the normal-
ized spectrum for each of the first N = 100 modes is depicted. In addition, it
can be noticed that strong peaks occur for high-energy modes; moreover the
number of peaks increase with the order of the modes; thus, modes containing
high-energy, are also characterized by few and well distinguished frequencies
(i.e. they are associated with periodic coherent structures).

6. Analysis of coherent structures II: Koopman modes

6.1. Convergence tests and selection of the modes

As mentioned in section 2.2, the linear dependency of the snapshots dataset
allows to write (10); however, this feature makes the method prone to ill-
conditioness. Thus, to ensure the effectiveness of the numerical procedure, we
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Figure 14. Spectral analysis of the first Nm = 100 chrono-modes.

carry out ad − hoc tests. In particular, the choice of an adequate sample of
snapshots turns out to be crucial; following the guidelines already discussed for
the POD, we select as parameters for the choice, the number of snapshots Nt

and the sampling time ∆ts, i.e. the distance between two successive snapshots.
To this aim, we make use of the residuals ũ (see section 2.2), analysing their
trend when changing Nt or ∆ts: the main idea is to select the set of parameters
that guarantees the smaller residual.

Figure 15(a) reports the behaviour of the residual as function of time. Two
different sampling-strides are considered: the dashed line indicates a stride
Ns = 20, while for the continuous line Ns = 10. The overall trend shows a
reduction of the residual value as the number of samples increases. In figure
15(b), the residual value is analysed as function of the number of snapshots
spanning the sampling interval ∆ts for two datasets: the original PIV mea-
surements (dashed lines) and a filtered set of snapshots (solid lines). The
cut-off frequency of the filter is of 250Hz, which reduces the measurement noise
but leaves unaltered all the relevant scales of the flow. The third parameter
considered in the graph is the time-window of observation: the lines are dark-
ened progressively according to the chosen final time of the time-window, from
t = 0.667 to t = 4.0. We can summarize as follows the main results included
in figure 15(b):

1. In all the case, a monotonic reduction of the value is obtained when
reducing ∆ts.

2. Longer windows of observation guarantee better results.
3. Fixing the sampling parameters and using the filtered data, an improve-

ment of about 20% is observed for the residual values.

However, we need to keep in mind also the physical point of view; clearly,
longer sampling interval act as a filter; thus, high-frequency modes cannot be
resolved if a too large ∆ts is chosen. The filtering of the dataset theoretically
imposes the lower limit ∆tS = 1/250; however, the SVD pre-processing of the
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Figure 15. Residual analysis - in (a) the dashed line indicates
the residuals associated to the original data, while the solid line
indicates the filtered data (250Hz). In (b) the same legend is
adopted; darker lines are related to longer time windows of
sampling.

dataset allows to circumvent the problem, disregarding the states numerically
not relevant, usually related to linear dependencies. In more detail, denoting
with σ the singular values computed for the shapshots dataset, the ratio σj/σ1

provide an estimation of the condition number. A threshold can be selected:
as a rule of thumb, one can consider the numerical precision – if DNS data
are used – or the precision given by the experimental instrumentation. The
states associated to the singular values that are below this threshold can be
disregarded.

The amplitudes associated to the Koopman modes serve efficiently as pa-
rameter for the selection of the modes. Here a further convergence criterion
is introduced due to the complexity of the analysed flow. In particular, three
sets of snapshots are formed: each of them is characterized by Nt = 700 and
a snapshots stride of ∆Nt = 8: the resulting interval in time for each case is
∆t = 3.3sec; the sets differ in the selected time-window, which slides forward
with a small ∆t. Since the investigation involves a flow fully developed after the
transient, we expect that the most important features appear in all the consid-
ered sets: thus, our procedure relies on the comparison of the modes obtained
applying the DMD to the three sets. We consider convergent the eigenvalues
that for each set had a difference in frequency below a chosen tolerance. More-
over, the corresponding eigenvectors are compared via a cross-correlation, in
order to ensure the physical correspondence among the modes picked in each
set.
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Figure 16. The spectrum obtained from the DMD is shown
in (a). In (b) the amplitudes associated to each eigenvalue are
shown (except the first mode). The physical relevant ones are
kept in (c).

6.2. Spatial modes by DMD

In figures 16(a), the discrete spectrum obtained for the first set – spanning the
time interval t = [0, 3.3sec] – is shown. As observed in Mezić (2005) and Bagheri
(2010), for t → ∞, the Koopman operator is unitary, thus all the eigenvalue
will lie exactly on the unit circle. Indeed, we can observe that nearly all the
eigenvalues lie close to the unit circle. The amplitudes related to each modes
are depicted in 16(b) with the same colour; the darker is the colour, the higher is
the amplitude of the mode. The peaks are still quite numerous and - although
are quite well resolved - the result demonstrates the necessity of introducing
the convergence method for the selection of the modes physically meaningful.

After the selection is performed, only a part of the eigenvalues is kept, as
shown in figure 16(c) where the corresponding Strouhal number is reported
for each of them; in the latter figure, the spectrum is in continuous form,
obtained using the relation ω = log µ/(∆ts). In particular, the selected modes
approach the 0 growth limit; indeed, in a nonlinear flow we cannot expect
growing/decaying structures. The presence of a growth rate is mainly related
to the time-window of observation; in principle, due to the property of the
Koopman operator referred above, infinite time of observation would lead to
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(a) Mean flow (b) St < 0.01

Figure 17. The streamwise component of the meanflow is
shown in (a). In (b) the low frequency mode associated with
the highest amplitude is shown.

eigenvalues characterized by null growth. The distance from the ωi = 0 can
be also regarded as a convergence test: the more the eigenvalues are close, the
more are convergent the modes, i.e. physically relevant.

The black dot indicates the mean-flow, appearing as the 0 frequency mode
in the continuous spectrum and shown in figure 17(a). The first mode is charac-
terized by a low Sthroual number (figure 17b); the structures is anti-symmetrical
with the respect of the streamwise direction and mostly located downstream,
where two elongated lobes dominate the structures. This mode – and the ones
characterized by low frequency – closely resembles the POD modes shown in
figure 12; indeed, from a physical point of view, these structure are related
to the flapping of the jet, as confirmed by the St in line with the previous
frequency measurements.

The DMD/Koopman mode analysis turns out particular fruitful for the
analysis of the recirculation close to the jet-inlet. In figure 18a, the mode
related to this feature is shown; an elongated lobe is observed in the lower,
upstream region of the domain where the previous analysis showed the presence
of recirculation. The corresponding St number is in agreement with the former
measurements. Note that this region was highlighted also by POD analysis;
however, the modes (figure 13) were characterized by the simultaneous presence
of the shear flow and the recirculation phenomena, as confirmed by the analysis
of the chrono-modes (figure 13d − e). Using the Koopman modes, is now
possible to clearly distinguish the physical phenomena related to the frequency
peaks (figure 13e). In particular, figures 18(b−d) show the shear-flow structures
associated to the Strouhal number obtained by the spectral analysis (13e).
The modes are anti-symmetric; the finer structures located downstream in the
domain are associated to higher frequencies and closely resemble the structure
already observed with the POD analysis.

7. Conclusions

POD and DMD have been applied to experimental data from PIV measure-
ments of a turbulent confined jet with co-flow. The jet is fully turbulent,
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(a) St = 0.01 (b) St = 0.04

(c) St = 0.06 (d) St = 0.07

Figure 18. The streamwise component of four Koopman
modes is shown. The associated Strohual number is reported
in each label.

however the results from the spectral analysis have shown the presence of pe-
riodic features, arising from the flapping of the jet induced by a recirculation
zone on the side of the inner jet.

Jet flapping appears as two large structures located downstream (x/d > 10)
on the first two POD modes. These two modes appear to be coupled to each
other, since they only differ from each other by a phase shift both in time
(from the analysis of the chrono-modes) and in space. Frequency analysis
of the topo-modes shows a clear peak at (St = 0.02), which is in line with
previous experimental results. Modes 3, 4 and 5 show the coupling between the
recirculation zone near the inlet and shear-layer oscillation, which is believed
to be the leading sustaining mechanism for the jet flapping. Although the
recirculation zone and the shear layer oscillations are characterized by different
frequency, they appear coupled in the POD modes since the two structures
are correlated. Instead, in the DMD modes the two structures appear in two
separate modes; thus, the method efficiently isolates structures with a single
frequency. The peaks found by spectral analysis of the topo-modes are in good
agreement with the frequencies found by DMD.

DMD modes are selected with an iterative procedure that identify con-
sistent modes by projecting the results of one iteration on the previous one
obtained with another set of snapshots that have an offset origin in time, and
retaining those whose projection is larger than a user defined threshold. We
observed that the most consistent modes (i.e. those who survive increasing the
threshold) are those whose growth rate is closer to 0; moreover, these modes
are generally the ones characterized by high amplitude, in accordance with the
theoretical results.
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