
Unsteadiness of Blood Flow

in 90-degree Bifurcations

by

Stevin van Wyk

Licentiate Thesis

in

Engineering Mechanics

December 2011
Technical Reports from

Royal Institute of Technology
KTH Mechanics

SE-100 44 Stockholm, Sweden



Akademisk avhandling som med tillst̊and av Kungliga Tekniska Högskolan i Stock-
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Abstract

The blood is a complex fluid that contains, in addition to water, cells, macro-
molecules and a large number of smaller molecules. The physical properties of the
blood are therefore the result of non-linear combination of its constituents. Hence,
the blood viscosity depends on the local flow field itself. The local blood viscosity
conditions determine the local concentration of the blood constituents. This study
considers blood like flows in generalised 90-degree arterial bifurcations relevant to
the large aortic branches in humans. It is shown that the Red Blood Cell (RBC)
distribution in the region of bifurcations may lead to changes in concentration. This
implies changes to the viscosity that changes the fluid mechanical properties in the
near wall regions, for example, playing a role in arterial disease development. Fur-
thermore, it is shown that oscillatory wall shear stresses, are affected by changes in
RBC concentration in the regions of the bifurcation associated with atherogenesis.
More importantly, an intrinsic rhoelogical property of blood, in conjunction with
stagnation in separated flows, may be responsible for elevated temporal wall shear
stress gradients influencing endothelial cell function.

Descriptors: Blood Rheology, Viscosity, CFD, Bifurcations, Unsteadiness, Wall
Shear Stress.
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Part I

Overview





CHAPTER 1

Introduction

Blood flow is essential for maintaining the functionality of the human body. The
circulatory system is responsible for the delivery of oxygen, nutrients and substances
needed by the cells in addition to removing waste products. However, there are
critical health issues stemming from pathological changes in the blood vessel leading
to cardiovascular diseases (CVD). CVD is related to half of all mortalities in Sweden.
CVD related illness is responsible for the largest share of the costs of public health
care.

The understanding and consideration of the multiphase flow mechanisms in the
modelling of blood flow is important in the study of macroscopic, physiological flow
parameters. The rheological properties of blood can be simplified to being described
as a two phase fluid, due to the dominance of the bulk red blood cell (RBC) (the
haematocrit phase) making up approximately 95 % of the particulate or suspended
phases. Blood viscosity has therefore been commonly correlated to fixed, homoge-
neous bulk haematocrit fractions and the shear rate, which directly influences the
RBC alignment and interactions (Carreau 1972; Casson 1959; Merrill et al. 1966;
Walburn & Schneck 1976). Empirical relations have also been developed for non-
Newtonian viscosity models that account for the variation in haematocrit fraction
(Cockelet 1987; Cockelet et al. 1963; Walburn & Schneck 1976). The non-Newtonian
relations, developed between the 1950’s and 80’s, are applied in modelling the two
phase behaviour from a bulk macroscopic flow perspective, assuming homogeneous
mixtures of varying haematocrit fractions in discretized volumes of an arterial do-
main. Since the dynamics of RBCs are not well understood. The basic hypothesis
in this work is that the local concentration of RBCs is non-homogenous but it is
a function of space and time. Non-uniformity of RBC concentration (and possibly
also of large molecules) implies that the blood viscosity also varies in space and
time. This by itself leads to an additional non-linearity of blood flows.

The variations in mass transport due to the variation of the blood rheology, af-
fects the dynamics of other macromolecules and blood-cells thought to be important
in the artherogenic process (Ross et al. 1999). In the understanding of atheroge-
nesis it has historically been strongly linked to the localized flow characteristics,
usually separation and reversed flow (Caro & Lighthill 1966; Duguid & Robertson
1957; McDonald 1960). Plaque formation has been observed in regions of arterial
curvature or bifurcation, where these flow structures exist (DeBakey et al. 1985;
VanderLaan et al. 2004). Important physiological parameters, commonly related
to the location of atherogenesis is the variation in wall shear stress (WSS). Many
authors correlate atherogenesis to either regions of low WSS, low time-averaged and
oscillatory WSS or simply flow unsteadiness (Caro et al. 1969, 1971; Ku et al. 1985;
Zarins et al. 1983). It is thought that these flow parameters are associated with
regions where either mass transport is altered or the endothelium are disturbed
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2 1. INTRODUCTION

(Ross et al. 1999). The evolution of the WSS is dependent on the local viscosity
that in turn is dependent on the local haematocrit fraction.

This study aims to increase the knowledge for and quantification of the local
RBC concentration (haematocrit) in 90-degree arterial like bifurcations. Four cou-
pled non-Newtonian viscosity models are implemented in order to model a blood
like fluid, where the coupling is defined by dependencies on shear rate and local
haematocrit fraction. The WSS parameters are analysed in detail for varying load
conditions in relation to observed development of atherosclerosis.



CHAPTER 2

Circulation Physiology and the Blood

2.1. Circulation Physiology

The circulatory system is one of the most important components in the functioning
or maintenance of the human body. The heart and the vascular network together
define the circulatory system transporting all oxygen, nutrients, hormones and by-
products to and from the cells, essential to bodily processes. The circulatory system,
together with the blood also help regulate the cellular pH and body temperature.

2.1.1. The Heart and Vascular Network

The blood is pumped through the body via the vascular network by a muscular
organ, the heart. The heart is located in the left, central region of the chest, near
the lungs. It consists of four chambers, two ventricles and two atria. The atria
fulfill the purpose of collecting blood to supply the ventricles. The ventricles have
thicker muscle walls as compared to the atria due to the fact that the ventricles have
to withstand greater blood pressures. The left atrium has the thickest muscular
walls because it supplies most of the body with blood, imposing a higher resistance
and higher pressure. The flow sequence through the heart can be described in four
main steps:

1. Blood flows into the right atrium, supplied with de-oxygenated blood by the
superior and inferior venae cavae and the coronary sinus. The right atrium
is separated from the right ventricle by the tri-cuspid valve.

2. The right ventricle pumps the blood via the pulmonary artery, regulated by
the pulmonary valve, to the lungs where the blood is re-oxygenated.

3. The re-oxygenated blood then flows back into the heart, into the left atrium
via the pulmonary veins. The left atrium is separated from the left ventricle
by mitral valve.

4. Flow of the oxygen rich blood to the rest of the body is maintained by the
left ventricle via the ascending aorta, regulated by the aortic valve.

The circulation (vascular network) physiology is formally divided into two parts,
the systemic and pulmonary circulations. The systemic circulation refers to circu-
lation that supplies the oxygenated blood to the cells in the rest of the body. It
makes up approximately 83% of the total blood volume in the body, where diastolic
and systolic pressures are in the range of 80 and 120 mmHg (11 and 16 kPa). The
pulmonary circulation transports blood via the lungs for re-oxygenation and car-
bon dioxide removal containing approximately 12% of the total blood volume. The
rest of the blood volume is contained in the heart, 5 %. Each of these circulatory
networks consists of three main vessel types; the arteries transporting blood away
from the heart, the capillaries that deliver and distribute nutrients at the different
organs and the veins that transport blood towards the heart. In the pulmonary
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4 2. CIRCULATION PHYSIOLOGY AND THE BLOOD

circulation systolic and diastolic pressures are much lower in the range 20 and 30
mmHg. The flow properties and vascular dimensions throughout the circulatory
network vary substantially depending on the distance from the heart, shown in Ta-
ble 2.1. The systemic artery closest to the heart has the largest cross-section (i.e.
the so called ascending aorta). It initially extends upwards from the heart and has
multiple branches starting with the aortic arch, where there is a set of bifurcations
forming the carotid arteries leading blood to the head and branches leading blood
to the arms. The aorta makes a large turn continuing down through the chest and
abdominal cavity forming the thoracic and abdominal aorta sections. There are
large more or less symmetric branches off the abdominal aorta, namely the renal
and iliac arteries that lead towards the kidneys and legs, respectively. The angles
of these bifurcations from the aorta are closer to 900 (Pedley 1980; Tortora & Der-
rickson 2006). Figure 2.2 depicts a schematic drawing of some of the larger arteries
of the human body. The flow rates (mean velocities) in some arteries, shown in
Table 2.1, depend on the individual and the degree of physical effort. Also given
are the Reynolds (Rep) and Womersley (αp) numbers quoted, equations 2.1 and 2.2
respectively. Here, one uses the viscosity of the plasma (which is the blood minus
the cells which means that it is water containing large and small molecules).

Rep =
U0Dρp
µp

(2.1)

αp =
D

2

�
ωρp
µp

(2.2)

where the plasma density (ρp) and dynamic viscosity (µp) are defined in Table 2.2.

Table 2.1. Human systemic and pulmonary circulation physio-
logical properties. Data taken from Bronzino (2000); Caro et al.
(1978); Charm & Kurland (1974)

Vasculature Internal diameter Mean peak Rep αp

range (D, mm) velocity (U0, m/s)

Ascending Aorta ∼15 ∼0.18 ∼2100 ∼21

Abdominal Aorta ∼9 ∼0.14 ∼1000 ∼12

Renal Artery ∼5 ∼0.40 ∼1500 ∼4

Femoral Artery ∼4 ∼0.12 ∼400 ∼4

Pulmonary Artery 20-30 ∼0.19 ∼3700 ∼20

The blood vessels consist of several wall layers that have different functional
characteristics. Depending on the location of the vessel in the systemic or pul-
monary circulations, it can be subjected to lower or higher pressures. The arterial
wall structure consists of the three main layers; Tunica Intima (Intima), Tunica
Media (Media) and the Tunica Adventitia (Adventitia). The Intima is the inner
most layer made up mostly of endothelial cells that are directly exposed to the
flow. These cells form the inner most layer for all vessels. There is also a basement
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membrane and a layer of elastic tissue called the elastica intima, between the en-
dothelium and the Media. The thickest of the layers is the Media attached to the
Elastica Intima, consisting mostly of smooth muscle cells and elastic tissue that
stretch around the vessel. The Smooth Muscles are covered by a layer of elastic
tissue called the elastica Media. Smooth muscle tone is controlled to stiffen when
the pressure in the flow increases, maintaining the arterial form (Bronzino 2000).
The outer most layer is the Adventitia composed of connective tissue. The arterial
cavity carrying the blood is called the Lumen. Figure 2.1 shows a schematic picture
of the arterial structure. Veins have thinner walls as compared to arteries and in
particular it has a thin media with few smooth muscle cells. The down scaling ap-
pears in the two inner most layers where there is only a thin smooth muscle layer,
making the Adventitia the thickest layer in veins. The smooth muscle in veins is not
as important as in arteries, because veins do not function in a contractile manner
and they have to support only the pressure found in the post-capillary vessels.

Figure 2.1. A schematic view of the layers of the arterial wall structure

2.1.2. The Pathology of Atherosclerosis

Atherosclerosis is a focal, multifactorial vascular disease that tends to occur in
arterial regions where the flow is disrupted with strong flow unsteadiness, secondary
flows and presence of flow separation. (DeBakey et al. 1985; VanderLaan et al.
2004). It is a slowly evolving disease (may take up to several decades) affecting the
intimal layer of the vessel wall, characterized by a localized fibro-fatty plaque build-
up under the endothelial layer. It often leads to obstruction of the lumen (stenosis),
eventually leading to blood clot formation or thrombosis, subsequently blocking the
vessel. The most commonly mentioned factors to influence the progression of the
disease are smoking, obesity, nutrition, genetics and infection. Other less obvious
influences, increasing the risk of development have been identified to be age, gender
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and diseases such as diabetes (Bakhru & Erlinger 2005; Farmer & Gotto 1997;
Ferdowsian & Barnard 2009; Sinha et al. 2009; Streppel et al. 2009). The process
of development is not fully understood due to its complexity, considering both
biomechanical and biochemistry processes. One of the key factors studied over the
last two decades is the inflammation process, thought to participate in all stages of
atherogensis (Libby et al. 2002; Montecucco & Mach 2009; Ross et al. 1999).

2.1.2a. The Process and Localization. The process of atherogenesis is described by
many researchers (Libby et al. 2010; Raja BS 2002; Weissberg 2000), summarized
as follows:

1. The first stage is an accumulation of lipid under the endothelium, the be-
ginning stage of the forming of a fatty streak.

2. Endothelial cell activation entails extending molecules (selectins and adhe-
sion molecules) from the surface that attracts and captures inflammatory
cells (macrophages, T-cells and mast cells) in the circulation. ’This facili-
tates their migration into the subendothelial space’ (Weissberg 2000).

3. Once the inflammatory cells are captured, the cells migrate into the suben-
dothelial space created by the lipid accumulation. Activation of the cells
then takes place by local proinflammatory chemokines, where the monocytes
mature. The main role of macrophages is to ingest and dispose of the lipids,
becoming macrophage foam cells. However, the activated inflammatory cells
contribute to the plaque evolution.

4. Vascular smooth muscle cells (VSMC) are recruited into the intima and
subsequently proliferate. The necessary proteins to form a fibrous cap are
produced, maintaining stability and protection for the plaque against rup-
ture and subsequent thrombosis.

5. Inhibited VSMC proliferation or VSMC death, due to inflammatory cell in-
fluence, leads to weakening or erosion of the fibrous cap and possible rupture.

6. The rupture or erosion of the cap leads to platelet accumulation. This leads
to fibrin formation, followed by thrombosis. In extreme cases the lumen is
occluded.

Initially, the pathological changes in the aortic wall are localized to the aortic
arch and the renal bifurcation. Over time one may find lesions at larger number of
locations throughout the aorta and its larger branches where plaques usually form.
The onset of atherosclerosis tends to form near bifurcations or major curvatures in
the vascular geometry (Gimbrone Jr et al. 2000). An arterial plaque distribution is
shown in Figure 2.2, where the darker shaded, most affected regions, are the carotid
arteries, the renal arteries, the iliac arteries and the bifurcations with the abdom-
inal aorta (DeBakey et al. 1985; Stary 2000; Stary et al. 1992; VanderLaan et al.
2004). Each specific location is shown to cover a broad arterial region due to the
patient specific variability in arterial geometry and the rate of plaque development
(Friedman et al. 1983).

2.1.2b. Fluid Mechanical Aspects. The influence of haemodynamics on Atherogen-
esis has been studied for many years. Several hypotheses have been proposed in the
attempt to relate the development to distinct mechanisms of the flow. Over the last
60 years experimental and numerical studies have related disturbed and separated
flow conditions, in the regions of bifurcations, to the susceptibility of atherosclerotic
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Figure 2.2. The sketch of the vascular network and typical plaque
distribution. The grey regions show the localization of atheroscle-
rosis (DeBakey et al. 1985; VanderLaan et al. 2004)

formation. Wall shear stress (WSS) magnitudes, distributions and gradients have
in recent times become the focal point of study. These fluid mechanical param-
eters are thought to be related to endothelial dysfunction, endothelial erosion or
mechanical damage and enhanced mass transport of solutes to the affected areas
(Caro 2009; Gimbrone Jr et al. 2000; VanderLaan et al. 2004).

For many years the belief was that high levels of WSS lead to arterial wall dam-
age and was the explanation for the localized development of atherosclerosis. This
hypothesis was first hypothesised by Duguid & Robertson (1957) and later McDon-
ald (1960) relating the maximum shear stresses to the most common atherosclerotic
sites. Major contributions were made by Fry (1968) relating morphological changes
to endothelial cells and enhanced, non-uniform protein transport to increased lev-
els of shear stress. Endothelial cell structure was found to be retained below shear
stresses of 38 Pa, above which severe deterioration was observed. The study by Fry
(1968) represents extreme stenotic flows and thresholds of endothelial cells. No di-
rect relation to atherosclerosis was made, although it was suggested that high WSS
values could exist near branches. The WSS value quoted by Fry (1968) is approx-
imately an order of magnitude larger than WSS magnitudes commonly associated
with non-stenosed bifurcations, quoted in works to follow. Experimental work car-
ried out by Friedman et al. (1981) on a human aortic bifurcation model showed
there was no correlation between higher WSS and intimal thickness. Bharadvaj
et al. (1982a) also showed that regions subject to higher WSS tend to be free of
disease.
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Caro (1966); Caro & Lighthill (1966) recognized that branching and curvature
are important arterial features, indicating the presence of secondary flow and large
wall shear variations in these regions. Caro et al. (1969, 1971) went on to correlate
regions of low WSS with early atheroma and relating the WSS to mass transport
processes. A ’low’ WSS is defined to be lower relative to the peak in the branch
domain, outer versus inner wall magnitudes. It has now been widely confirmed
that there is a correlation between low WSS regions and plaque distribution, as
described by Lee & Chiu (1996). Pulsatile 2D Numerical simulations by Friedman
et al. (1975) showed flow separation and large variations to the WSS. Friedman
et al. (1975) emphasized the influence of transient flow behaviour on the arterial
wall, reporting values for WSS of ∼3 Pa. Bharadvaj et al. (1982a,b) carried out
steady flow experiments and stated that zones susceptible to disease formation
experienced low or oscillatory WSS related to low or reversed axial flow. Peak WSS
values were found to range between 2.5 and 5 Pa. Pulsatile flow experiments carried
out by Ku et al. (1985) also produced similar ranges of WSS between 1 and 4.1 Pa,
found at the inner wall during diastole and systole, respectively. Furthermore, the
location of thickest plaque was found to be at the outer wall where the WSS is the
lowest and oscillatory, between -0.7 and 0.4 Pa. Zarins et al. (1983) also concluded
that intimal thickening and atherosclerosis show preference to regions of low and
oscillatory shear, ranging between 0 and -0.6 Pa at the outer wall, while ranging
between 3.1 and 60 Pa at the inner wall. The magnitudes depend on the Reynolds.
There is common agreement between several authors (Bharadvaj et al. 1982b; Caro
1966; Caro & Lighthill 1966; Jou & Berger 1998; Ku et al. 1985) concerning how the
low and oscillating WSS stresses increase fluid residence time and thereby enhance
gradual accumulation of atherogenic substances near the arterial wall due to the
modified mass transport in the lumen.

The most commonly accepted hypotheses regarding the initiation of plaque
formation, nowadays is that of low and oscillatory WSS. Low time averaged and
oscillatory WSS have been found to adversely affect the anti-atherogenic properties
of the endothelial cell layer (Birchall et al. 2006; Gambillara et al. 2005). Correla-
tions between locations for atherosclerosis or intimal thickening and oscillatory or
low time-averaged WSS have been repeatedly documented by several researchers
(Gibson et al. 1993; Lee & Chiu 1996; Moore et al. 1994; Soulis et al. 2006; Zarins
et al. 1983), where shear stresses range between 0.75 and 2.25 Pa (Soulis et al. 2006).
DePaola et al. (1992); Farmakis et al. (2004); Nagel et al. (1999) on the other hand
suggested that elevated WSS gradients affect the function of endothelium or cause
endothelial dysfunction in regions of disturbed flow, enhancing atherogensis. A 3D
simulation carried out with the same 90-degree branch geometry used during this
study showed temporal and spatial gradients located in regions commonly associ-
ated with atherogenesis. However, similar WSS gradients were also found in other
regions not commonly associated with plaque formation (Evegren et al. 2010).

Regions where intimal thickening have been shown to be the highest, display
WSS values of less than 1.0 Pa, according to Wootton & Ku (1999). Wootton & Ku
(1999) states that the arterial walls try to maintain a constant WSS of ∼ 1.5 Pa in
high shear regions. Again, the difference between high and low WSS can be seen to
be as little as 50 %, due to an inner and outer wall comparison of magnitudes. It is
shown that regions of high uni-directional WSS tend to be free of plaque formation
(Zarins et al. 1983). On the other hand, further growth of advanced plaques are
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shown to be different to the processes involved in plaque initiation, happening
under elevated high shear stress conditions (Tang et al. 2008; Yang et al. 2010).
Experiments carried out by Friedman et al. (1986) indicated that intimal thickness
growth increased rapidly initially in regions of high shear but then the growth is
slowed down dramatically. Whilst, areas of lower shear showed a relatively constant
but slower thickness development, eventually surpassing the higher shear areas.

2.2. The Blood

Blood is a multiphase fluid with a dense suspension of cells in plasma. The non-
Newtonian behavioural property of blood was discovered already by Hess in 1915,
who found that blood viscosity was shear dependent. It has also been shown that
blood exhibits viscoelastic and thixotropic behaviour caused by the formation of
RBC microstructures that break-up at higher flow rates (Chien 1970; Thurston
1979, 1994). The rheological characteristics of the blood will be described in more
detail in the following paragraphs.

2.2.1. Blood Plasma and the Cellular Elements

The volume of blood existing in each adult human is between 4 to 6 litres, with a
density of approximately 1060 kg/m3 in a homogeneous state (Brooks et al. 1970;
Cutnell & Johnson 1998). When all particles or cellular components are removed
the carrier fluid plasma remains and makes up 55% of the blood volume. It is
an aqueous solution with 8% organic and inorganic solutes in low concentrations.
Proteins make up approximatley 7% of these solutes. One of these proteins, fib-
rinogen, has been suggested as being the pincipal agent responsible for the RBC
aggregating capacity of plasma. Aggregation capacity has been found to increase
with increasing fibrinogen concentration (Merrill et al. 1963a). The properties of
plasma are displayed in Table 2.2.

Table 2.2. Plasma properties at 37oC. Data taken from Bronzino
(2000); Burton (1965); Caro et al. (1978)

Contituents: Water 92
Mass fraction (%) Proteins 7

Inorganic Salts 1

Dynamic viscosity (µp, mPas) 1.32

Density (rhop, kg/m3
) 1025

The cellular elements in the blood can be split up into three main groups;
Erythrocytes (RBCs), Leukocytes and Thrombocytes, shown in Table 2.3. The
Leukocytes, or White Blood Cells (WBC), exist in several different forms, as de-
scribed in Table 2.3. The WBC are the largest of the cells and roughly spherical
in shape, perform as part of the body’s defence and are much lower in concentra-
tion than RBCs. The Thrombocytes, or Platelets, are the smallest of the cellular
elements. The Platelets are disk shaped and induce the important process of coag-
ulation when a wound is sustained, rushing to the affected area to form a plug to
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stop the bleeding. RBCs dominate the cellular element fraction in blood represent-
ing 99% of the mass fraction of the cellular elements. Therefore the RBCs are the
most important phase in defining the viscosity and will be described in more detail
in the sections to follow.

Table 2.3. The cellullar constituents of human blood. Data taken
from Caro et al. (1978)

Cell type
Number

per mm3

Unstressed

Shape

&

Dimension (µm)

Volume

fraction of

Blood (%)

Red Blood 4-6 Bi-concave disc
45

Cells million 8 x 1 x 2

Leucocytes

(Monocytes,
Lymphocytes &
Granulocytes)

4-11
thousand

Roughly Spherical
7-22

1

Platelets
250-500
thousand

Oval disc
2-4

2.2.2. RBCs and Microstructural Behaviour

The Red Blood Cell is bi-concave disk approximately 6-8 µm in diameter, 2-3 µm at
its thickest point and 1 µm at its thinnest (Caro et al. 1978). On average the RBCs
make up approximately 45% of the blood volume at normal levels (Bronzino 2000;
Cutnell & Johnson 1998; Lowe et al. 1993), and the collective or bulk terminology is
the haematocrit. Each RBC is made up of an elastic, permeable membrane enclos-
ing the interior fluid constituted of water, haemoglobin and inorganic compounds.
The elastic membrane allows RBCs to deform and squeeze their way through the
narrowest of capillaries to the extremities of the body. Haemoglobin gives blood
its red colour and carries the oxygen. The viscosity of the interior fluid is strongly
influenced by the concentration of haemoglobin and can be between 1 and 6 mPas
(Dintenfass 1968a,b), also including membrane effects. Table 2.4 below displays all
physical properties of the RBC.

The microstructure in blood defined by the concentrated particle suspension, is
dominated by the RBCs. According to Chien (1970), two qualitatively distinct mi-
crostructures exist in response to the flow conditions. At low shear rates (0-1 s−1)
the RBCs form an extended network of aggregates called rouleaux. With increas-
ing shear rate the aggregates break up, decreasing the average aggregate size and
thereby defining the non-Newtonian viscosity relationship. The aggregation, dis-
aggregation and deformation properties of the RBCs are the dominating processes
in the relation of the microstructure to the effective viscosity of blood. The effects
of aggregation and deformation on the viscous behaviour has been documented by
Chien (1970), shown in Figure 2.3. The hardening of RBCs leads to an almost
Newtonian type fluid viscosity, where as the loss of aggregation capacity leads to a
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Table 2.4. The Composition of the Red Blood Cell. Data taken
from Bronzino (2000); Burton (1965); Caro et al. (1978).

Contents:

Water 65

Mass fraction (%)

Membrane

components

(Proteins, Phospholipid &
Cholestorol)

3

Haemoglobin 32

Average Surface Area (µm2
) ∼138

Average Volume (µm3
) ∼94

Internal Aqueous Solution Viscosity (mPas) ∼1-6

Density (kg/m3
) ∼1100

decrease in peak viscosity at low shear rates (γ̇ <1s−1). The aggregation process
is a reflection of the existence of a yield stress i.e. the flow shear stress required to
initiate flow from rest state (Merrill et al. 1963a). The stronger the aggregation, i.e.
higher concentration of fibrinogen, the higher the yield stress (Merrill et al. 1966,
1963c). RBCs in serum (plasma minus fibrinogen) also possess a yield stress, but
approximately half of that with fibrinogen (Chien et al. 1966), shown in Figure 2.3.
The yield stress can dramatically increase by only minute increases in fibrinogen
(Copley et al. 1968).

2.2.3. RBC Diffusivity and Tube Flow

The mass diffusivity of RBCs is a consequence of several factors such as fluid shear,
electrostatic forces and collisions. The few studies quantifying the enhanced diffu-
sivity RBCs display due to shear, are restricted to flow in straight, narrow tubes on
the capillary scale (Bishop et al. 2002; Cha & Beissinger 2001; Goldsmith & Mar-
low 1979). Steady flow conditions are the focus in all studies, not complex pulsatile
flows. The experimental studies show that mass diffusivity in a concentrated sus-
pension of RBCs may be very low, approximately of the order of magnitude 10−11

to 10−13 (m2/s). Most studies are more interested in the diffusivity of Platelets,
due to the influence during the later stages of atherogensis. The diffusivity of RBCs
has been shown to be enhanced by the flow (Bishop et al. 2002; Cha & Beissinger
2001; Goldsmith & Marlow 1979; Hudson 2003; King & Leighton Jr 2001; Leighton
& Acrivos 1987) and constrained by close packing of neighbouring particles (Cohen
& De Schepper 1992), in concentrated suspensions. In the tube flow studies for
blood, the RBCs are observed to migrate away from the walls due to hyrdrody-
namic wall effects (Aarts et al. 1988; Goldsmith 1971; Goldsmith & Mason 1971).
This migration effect dominates the movement of RBCs towards the centre of the
channel, in large arteries. The ’caging effect’ (Cohen & De Schepper 1992), caused
by close neighbours, along with the migration effect, limits the diffusion component
towards the walls. Therefore, in large arteries RBCs are thought to exist in lower
concentrations near the wall. In contrast, at the capillary scale, Goldsmith & Mar-
low (1979) shows that RBC concentration increases towards the walls at normal
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Figure 2.3. (top) Schematic of the relationship between the mi-
crostructure and the apparent viscosity. (bottom) The illustration
of the RBC microstructure scales from the aggregation dominated
regime at low shear and distribution at high shear. Data taken
from Chien (1970); Chien et al. (1966).
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bulk haematocrits (45%) with increasing flow rate. This is a capillary attributed
property RBCs portray, related to deformation properties, not replicated in the
larger vasculature flows.

Higher values of diffusivity could be expected during pulsatile flows in complex
bifurcating domains where enhanced flow shear patterns, due to strong secondary
flow, may further enhance diffusion. It is not yet known how transport of blood
is affected in the region of bifurcations. In this study, a wide range of values
is considered to represent the possible values for diffusivity that could occur in
the large scale vascular regions of the circulation. An interesting observation in
the region of bifurcations is the formation of a separation bubble. In 90-degree
bifurcations, it is observed as a forced extension of the shear layer at the wall into
the core, due to the centrifugal effect. The shear layer gradients at the wall and
the separation bubble fluid boundary are therefore similar in magnitude. Therefore
the majority of the RBCs can be expected to migrate away from the shear layer,
as in tube flow. This should be true providing the shear gradients are comparably
greater as compared to the inverse of the RBC dimensions. The shear induced
migration is therefore dominant. In combination with the ’caging effect’, it can be
hypothesised that the transport of bulk RBCs (haematocrit) can be described to
be dominated by advection. An expression for the particle Peclet number (Pe), a
measure of the relative dominance of advection of the particles (RBCs) with respect
to the particles diffusive properties, can be written according to Equation 2.3. It
represents the reasoning behind the advection dominance on the RBCs, by the flow,
in large arteries.

Pe = ReSc =
U0D

DH
∼ U0D

a2γ̇f(H)
∼ D2

a2
>> 1 (2.3)

where Re is the Reynolds number, Sc is the Schmidt number, U0(m/s) is the peak
inflow velocity, D is the inlet or main branch diameter, γ̇(s−1) is the shear rate, a is
the equivalent spherical radius of the bi-concave disk shaped RBCs, H is the RBC
volume fraction and DH(m2/s) is the effective diffusivity of the RBCs. Typical
values for D and a in this study i.e. D=13.2 mm and a ≈3.5 µm. In Equation 2.3,
the shear rate has been approximated to be of the order of U0/D in tube flow. DH

has been shown to be proportional to the product of the square of the particle radius
and the shear rate, in tube flows of concentrated suspensions (Cha & Beissinger
2001; Leighton & Acrivos 1987; Nott & Brady 1994) These studies consider shear
induced diffusion of RBCs and spherical particles. In the case of concentrated RBCs
the shear induced diffusivity was found to decrease with increasing RBC volume
fraction H at or above volume fractions of 45% (Cha & Beissinger 2001). Thus,
DH is shown to be proportional to (a2γ̇f(H)) in Equation 2.3.



CHAPTER 3

Mixture Models

The following section describes viscosity relations developed for blood, implemented
during this study. In the experimental and theoretical proposals to be reviewed,
only the macroscopic or bulk properties of the blood are considered. From an
experimental point of view, the parameters intended to describe the behavioural
character are fixed by macroscopic measurements in viscometers and not the micro-
scopic properties of the suspension. The effective viscosity the measurements define
are not an intrinsic property of the suspension instead dependent on flow condi-
tions and the averaging of the instrument used to measure (Barnes 1995, 2000).
The blood is defined as a homogeneous mixture for each measurement and all the
empirical relations defining the viscosity of blood can be termed mixture models.
All constitutive models considered are time-independent and therefore the visco-
elastic properties of the blood is not included. The viscosity of blood is strongly
influenced by concentrated suspension behaviour due to the dynamics of the RBCs
and will be introduced in short.

3.1. Blood Viscosity Models

Over the last five decades, a handful of non-Newtonian models have been devel-
oped, describing the shear thinning properties of blood. Many non-Newtonian con-
stitutive models exist that have either been adapted or developed for blood. Four
distinctly different models, from what can be viewed as four main model structure
categories, are chosen to carry out this investigation. Each model is chosen for
its consideration of parameters identified as being important for describing the be-
havioural nature of blood flow. The behavioural parameters include the existence
of shear strength (shear stress required to initiate flow), Newtonian viscous lim-
its, shear rate dependency and the dependency on cell and molecular composition
(Charm & Kurland 1972; Wilkinson 1960). The following paragraphs will describe
the models implemented. The four models chosen, quantifying the dynamic viscos-
ity (µ) of Human blood, have been identified during this study as the most well
developed and widely used. Three of the models are functions of both haematocrit
and shear rate, while the fourth is a function based solely on the shear rate.

The most general shear-thinning relation that may be used to describe the phe-
nomenological characteristics of the blood, without the dependence on haematocrit,
is the well known power law model µ = kγ̇(n−1). This model can only represent
a small part of the entire shear rate range. Multi-parameter models for the rela-
tionship between apparent viscosity (µ) and shear rate are more representative. A
generalised three parameter model was theorized by Cross (1965, 1970):

µ = µ∞ + (µ0 − µ∞)[1 + kCrγ̇
(nCr−1)] (3.1)

14
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where µ0 and µ∞ are the viscosities in the limits γ̇ →0 and γ̇ → ∞, respectively,
extending the power law model to a larger part of the phenomenological range.

The Newtonian viscosity value for Blood is commonly found to be the lowest
viscosity (at high shear rates) of a homogeneous blood mixture at normal levels
and approximately 3.5 times that of water. The haematocrit composition of blood
at normal levels is about 45% on average, varying between individuals (Bronzino
2000; Cutnell & Johnson 1998; Lowe et al. 1993).

3.1.1. Bird-Carreau model

A model initially developed for polymers, the Bird-Carreau model, describes the
reaction kinetics between particle chain formation and chain structure rupture due
to varying shear rates. It is similar to the model postulated by Cross (1965, 1970)
representing the reaction kinetics. The relation between limits is described by a
similar power law relation that has been adapted to fit data for blood properties
(Carreau 1972; Johnston et al. 2004; Soulis et al. 2008). It describes the viscosity
by the following equation;

µ = µ∞ + (µ0 − µ∞)[1 + (λγ̇)2]
nC−1

2 (3.2)

where µ0 = 0.056Pas represents ”zero shear viscosity”, the viscosity value just be-
fore the fluid comes to rest; µ∞ = 0.00345Pas is the Newtonian viscosity or ”infinite
shear viscosity”, the viscosity value at high shear rates; λ = 3.313s is the relaxation
time constant for haematocrit and nC is the power law index defining the degree
of non-Newtonian behaviour. The Bird-Carreau model has been widely used with
the values for the above constants. It represents the widest range of shear rates
of the four models, however with no explicit RBC volume fraction correction or
dependency.

3.1.2. Casson model

The Casson model, initially derived to describe the flow behaviour of printing ink,
was suggested for application in the description of blood viscosity by Casson (1959).
The basis for the suggestion was the similarities portrayed by blood, with respect to
the shear rate and shear strength properties of the relation. The group size of the
mutually attractive particles is a function of shear rate i.e. the aggregate size is a
function of the shear rate, decreasing in size for higher shear rates. Shear strength
of the suspension is another property defining the shear stress required to break
the static structure and thereby initiate flow. The Casson model is expressed by
equations 3.3 and 3.4, defined by the linear squared relation between shear stress
and shear rate (Casson 1959; Charm & Kurland 1972).

µ =
τ

γ̇
(3.3)

τ

γ̇
=

��
kC(H)γ̇ +

�
τy(H)

�2

γ̇
for τ > τy(H)

γ̇ = 0 for τ <= τy(H)

(3.4)
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Terms kC(H) and τy(H) are functions of the haematocrit H as follows:

kC(H) =
µp

(1−H)A
(3.5)

τy(H) =

�
B

A
((1−H)A/2 − 1)

�2
(3.6)

where µp and H is the blood plasma viscosity and fraction haematocrit respectively,
values for which are described in section 2.2.2 and displayed in Table 2.2 at normal
human levels. The constants A and B represent grouped experimental constants,
where A = aβ and B = aαB − 1 (Cockelet et al. 1963). The values of the constants
are evaluated according to experimental values for kC(H) = 0.003 Pas and τy(H) =
0.0053 Pa, determined for human blood at H ∼45 % (Cockelet et al. 1963; Merrill
et al. 1963b; Perktold et al. 1991). The Casson model was regarded as the best for
expressing the relationship between shear stress and shear rate for normal blood
in the 1960s. The Casson model is seen to express a valid relationship over a wide
range of shear rates, although only greater than 1 s−1 (Charm & Kurland 1972;
Zydney et al. 1991).

3.1.3. Quemada model

One of the most recently developed models is that of the Quemada constitutive
equation, known to represent the broadest range of shear rates for blood, greater
than approximately 0.01 s−1 (Zydney et al. 1991). It was initially developed to
describe the Newtonian viscosity of concentrated particle suspensions, according to
the principle of minimum energy dissipation (Quemada 1977);

µ = µp

�
1− k(γ̇, H)

2
H

�−2

(3.7)

where k(γ̇, H) is identified as a non-dimensional, effective, intrinsic viscosity co-
efficient, a function of the maximum particle packing concentration. µp and H
are the blood plasma viscosity and fraction haematocrit described earlier for the
Casson model. In follow up work by Quemada, the equation was extended to non-
Newtonian systems similar to blood. A model was developed for k to incorporate the
shear rate dependency on the maximum packing concentration, yielding (Quemada
1978);

k(γ̇, H) =
k0 + k∞(γ̇/γ̇C)1/2

1 + (γ̇/γ̇C)1/2
(3.8)

parameters γ̇C , k0 and k∞ are the critical shear rate and non-dimensional intrinsic
viscosities related to low and high shear rates, respectively. Extensive correlations
of the above parameters, as a function of haematocrit H, have been developed by
Cockelet (1987) as follows;

γ̇C = e(−6.1508+27.923H−25.6H2+3.697H3) (3.9)

k0 = e(3.874−10.41H+13.8H2−6.738H3) (3.10)

k∞ = e(1.3435−2.803H+2.711H2−0.6479H2) (3.11)
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3.1.4. Walburn-Schneck model

In 1976, Walburn and Schneck used a multi-regressional technique to curve fit two
power-law model parameters to viscometric data obtained from anti-coagulated
blood samples of which the haematocrit and chemical composition was determined.
The optimised model includes the complex dependencies on haematocrit and plasma
protein concentration. This model represents a statistical correlation of three of
the most influential fluid parameters; shear rate, haematocrit and plasma protein
concentration (Walburn & Schneck 1976);

µ = C1e
C2HeC4

TPMA
H2 γ̇−C3H (3.12)

Here the empirical constants are C1 = 0.000797 Pas, C2 = 0.0608, C3 = 0.00499,
C4 = 14.585 l/g. Haematocrit is defined as a percentage and TPMA = 25 g/l
is the Total Proteins Minus Albumin concentration for normal human blood. The
shear rate validity for this model has been reported as being in the broad range
greater than approximately 0.01 s−1 (Zydney et al. 1991).



CHAPTER 4

CFD Models and Methods

The CFD methods used during this work are intended to describe the flow of blood
as a multiphase mixture from a continuum perspective, implemeneting finite volume
descritization.

4.1. Governing Equations

The governing equations used to model the flow are the incompressible equations
for conservation of mass and momentum, commonly known as the incompressible
Navier-Stokes equations, including the non-constant density variable to define mix-
tures;

∂ρ

∂t
+

∂(ρui)

∂xi
= 0 (4.1)

∂(ρui)

∂t
+ uj

∂(ρui)

∂xj
= − ∂p

∂xi
+

∂τij
∂xj

+ ρfi (4.2)

where ρ is the density, ui is the velocity component in i-direction, p is the static
pressure, τij is the viscous stress tensor and fi represents the possibility of any
external body force acting on the fluid (e.g. gravity). A derivation for the conser-
vation equation forms can be found in Anderson (1995). The viscous stress tensor,
τij , accounts for the stress due to the fluid motion, given by

τij = 2µ(Sij) (4.3)

where µ respresents the dynamic viscosity, a function of temperature for Newto-
nian fluids or a multi-variable dependency for non-Newtonian fluids or mixtures as
considered here. Considered variables are the shear rate, ˙gamma, and local RBC
phase fraction, H. The non-Newtonian viscosity models are described in Section
3.1, where stress due to fluid motion is not simply a linear function of the shear
rate. The shear rate is obtained from the rate of shear tensor, Sij , defined as found
for Netwonian fluids;

Sij =
1

2

�
∂ui

∂xj
+

∂uj

∂xi

�
(4.4)

The forms of equations 4.1 and 4.2 maintains the influence of density on the left
handside, demonstrating the considerations of density variations when modelling
multiphase liquid mixtures. The mixtures considered here are assumed to be almost
homogeneous, since the difference in RBC and plasma density is small. Thus, the
density is as assumed to be constant and all external forces are neglected whereby
4.1 and 4.2 reduce to the following;

18
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∂ui

∂xi
= 0 (4.5)

∂ui

∂t
+ uj

∂(ui)

∂xj
=

1

ρ

�
− ∂p

∂xi
+

∂τij
∂xj

�
(4.6)

The RBCs are relatively stiff and in larger vessels they can be considered to
be solid. The cells have a density close to that of the plasma and for simplicity
this fact is neglected. The forces that act on the RBCs include the drag, lift,
electrostatic forces and collisions among cells. We assume that all these forces can
be modelled by an equivalent diffusivity of mass (assuming a Fickian relation). With
these assumptions, the motion of the RBCs is determined by a typical conservation
relation with convection by the fluid flow and diffusion by a concentration gradient.
In the future we intend to examine the validity of these assumptions for the high
RBC concentration found in the blood.

∂(H)

∂t
+ uj

∂(H)

∂xj
= DH

∂2H

∂xj∂xj
(4.7)

where H is the local volume fraction of the mixture species or phase and DH is the
effective mass diffusivity co-efficient thereof.

4.2. Numerical Methods

The solution of the non-linear partial differential governing equations of the flow,
namely the Navier-Stokes equations, is not trivial. The progress of the computa-
tional age now allows the study of non-linear flow field characteristics at an ever
increasing level of complexity. The equations are discretized into a set of non-linear
algebraic equations and solved iteratively. The governing equations are discretized
as described in the following paragraphs.

This section describes the numerical methods implemented for discretization of
space, time and the governing equations. The finite volume method implemented
in OpenFOAM-1.6 is used for all numerical simulation data presented in this thesis.

4.2.1. Spatial Discretization

We use unstructured grids consisting of non-orthogonal hexhedral cells to discretize
the governing equations. The computational cost is increased as compared to struc-
tured grids but better suited to complex geometries and adaptive mesh refinement
in achieving a satisfactory level of accuracy. The discretization, equivalent to the
Central Difference Scheme (CDS) on a Cartesian grid, is used to spatially discretize
the variables, thereby rendering the accuracy to second order. Two schemes, CDS
and Quadratic Upwind Interpolation (QUICK), are compared in our accuracy stud-
ies. A previous study offers comparable data but through the implementation of a
different solver, Fluent 3.6. Therefore a comparison study was carried out to ensure
the quality of the results. The two schemes mentioned above are described below.

4.2.1a. Central Difference Scheme (CDS). The central difference scheme is the sim-
plest and most widely used. The discretization of the equations requires that values
of the variables are approximated at control volume (CV) face centres, as well as
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grid nodes. Therefore the scheme performs linear interpolation between the two
nearest nodes, leading to second order accuracy on uniform grids. On non-uniform
grids the scheme performs in a similar manner yielding a second order approxima-
tion as long as the grid is fine enough (asymptotic convergence is achieved), the
computational grid is not too skewed and the grid-spacing gradients are not too
large. These conditions apply to any discretization if one wants to avoid degrada-
tion of the order of approximation. It “offers a good compromise among accuracy,
simplicity and efficieny”(Ferziger & Perić 1999).

4.2.1b. Quadratic Upwind Interpolation (QUICK). The interpolation scheme is
fully named the Quadratic Upwind Interpolation for Convective Kinematics (QUICK)
and has a formal third order accuracy on uniform grids. It extends the interpo-
lation by one more node in every dimension upstream, to construct a parabola
rather than the straight line characteristic of CDS. However, both QUICK and
CDS converge asymptotically with a second order behaviour and “differences are
rarely large”according to Ferziger & Perić (1999). In certain cases where the CDS
produces oscillatory behaviour the QUICK scheme will offer a compromise between
stability and accuracy. Leonard (1979)

4.2.2. Temporal Discretization

Temporal discretization is carried out via the unconditionally stable second order
backward implicit scheme. The Courant Friedrichs Levy (CFL) condition is main-
tained, where no physical information is allowed to propagate further than one grid
cell during a single time-step.

4.2.3. Computational Domain and Boundary Conditions

The geometry is a simplified 90-degree arterial branch or bifurcation shown in
Figure 4.1, depicting the distinguishing features and dimensions important to the
study. The junction region has a curved intersection that is characteristic of the
larger vessels in-vivo. As stated in spatial discretization, the grid is constructed
of an unstructured hexahedral cell set. An O-grid is used to define orthogonality
at the walls of the tubes and the radius of curvature, R=9.7 mm, defining the
intersection of the main and daughter branches of diameters 13.2 and 9.375 mm,
respectively. Cells are progressively finer towards the walls to ensure resolution of
the boundary layer. The mesh properties are displayed in Figure 4.1. Care is also
taken to maintain a high enough resolution in the core of the daughter branch to
capture the gradients in the mass transport equation, Equation 4.7.

The domain used during this this, D2, is an extended version of that used in
a previous study by Evegren et al. (2010), D1. The extension is made along with
a simplification of the cell structure from a hybrid cell (hexahedra and tetrahedra)
type to the pure hexahedral type. The main reason for the extension is to remove
the influence of the outlets on the field values defined by the mass transport equation
in the regions of interest near the bifurcation. The advantages of changing the cell
type to a pure hexahedral structure is that it is easier to control a more uniform
mesh density where needed, along with the ease of high quality refinement when
needed. A detailed comparative grid study is carried out to ensure that accuracy is
maintained when grid cell structure, domain extents and the solver is changed. The
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Figure 4.1. The 90-degree bifurcation geometry, displaying geo-
metric features, domain extensions and cell distribution of the nu-
merical grid.
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results are displayed in the Results section. Figure 4.1 displays the two domains,
D1 and D2, considered during the grid study.

Common boundary conditions are implemented throughout the study. The
no-slip condition is set at the walls. At the outlets constant pressure is set while
the zero gradient condition is set for the scalar transport equation. The zero gra-
dient condition is also set at the walls for the scalar transport equation since the
haematocrit never diffuses across the arterial walls.

The inflow conditions are described by a time dependent axial velocity pro-
file and vanishing cross-flow velocity components. The representing the periodic
pulsating character of the flow in the vascular network, implemented in previous,
comparative work by Evegren et al. (2010). The haematocrit distribution at the
inlet is defined according to observations from experimental work by Aarts et al.
(1988). A similar equation applied to the inlet, describing this observed average
distribution, was first implemented by Hund & Antaki (2009).

4.3. Solution Procedure and Case Setups

The flow field is defined through Equations (4.5)-(4.6). and solved via a hybrid
transient incompressible solver (OpenFOAM solver pimpleFoam) implementing the
PISO algorithm for pressure-velocity coupling. The velocity field is coupled to
the scalar transport Equation 4.7, defining the advection of haematocrit. The
distribution of the scalar (the haematocrit) is considered passive i.e. not coupled
back and hence not influencing the flow field itself. A single flow rate with three
different heart pulsation frequencies are studied, as given in Table 4.1. Reynolds
and Womersley numbers are based on Newtonian viscosity value for blood take to
be 3.5 times that of water.

The first phase of the study, results are described in Paper 1, focuses on the
transport behavioural differences of haematocrit between non-Newtonian and New-
tonian viscosity models.

Table 4.1. Case set up parameters for the Uncoupled simulations.
Peak inflow velocity, heart beats per minute (BPM), max (Re) and
max (α).

Peak Inlet BPM Re α
Velocity (m/s) max max

case 1 0.11 30 440 6.5

case 2 0.11 60 440 9

case 3 0.11 90 440 11

During the follow up phases of the work, the scalar or haematocrit distribu-
tion is coupled back to the non-Newtonian viscosity models, implying a two-way
interaction between the RBC transport equation, Equation 4.7, and the governing
equations of the flow, Equations (4.5)-(4.6). A more complete model of the blood-
like viscosity is obtained by utilizing the local haematocrit and shear-rate. The
equations are solved in the same manner as described earlier, except that the local
RBC concentration is coupled to the viscosity models, described in Section 3.1.
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The effect of varying inflow rate, inlet haematocrit distribution and heart pulsa-
tion frequency are considered, displayed in Table 4.2. Wall Shear stress variations,
pump work and haematocrit distribution variation are related to the non-Newtonian
characteristics.

Table 4.2. Case set up parameters for the coupled simulations.
Peak inflow velocity, heart beats per minute (BPM), Reynolds Rep
and Womersley (αp) numbers with respect to Blood Plasma (p).

Peak Inlet BPM Rep αp

Velocity (m/s)

case 1 0.11 60 1130 14.6

case 2 0.11 90 1130 18.2

case 3 0.22 60 2260 14.6

The simulations for all cases are run on clusters for up to 18 pulsation periods
before data is acquired, taking up to 2 days per pulsation period. The numerical
accuracy of the optimized grid is considered regarding the acquired variables of
interest and is presented in a section below.



CHAPTER 5

Summary of Results

In this chapter we describe the assessment of the numerical accuracy as well as
a short summary of the results, that are presented in more detail in the enclosed
papers.

5.1. Numerical Accuracy

5.1.1. Steady flow

For assessing the accuracy of the numerical results, the grid type and its resolution
is changed along with an extension of the domain at the outlets. Even though care
was taken in maintaining comparable resolution in the change of cell structure and
domain extents it is desired to confirm agreement of results. Since the solver used
here is different from the one used in a previous study by Evegren et al. (2010), a
comparison between the results is required. Table 5.1 shows the grid study matrix,
where the average grid element size is:

h = 3

��ncells

i=1 Vi

ncells
(5.1)

where Vi is the individual grid cell volume, summed up with all other cells to define
the domain volume, ncells is the number of grid cells. The domains considered
are denoted with reference to Figure 4.1 in Section 4.2.3. If the grid element size
refinement ratio is quoted for a grid, the subscript indicates which base grid it is a
hexahedral refinement of. The inflow velocity condition used is a common function
used in the previous study by Evegren et al. (2010), and the shear viscosity (µ)
implemented is a value commonly used to define blood as a Newtonian fluid, 3.5
times higher than water. Velocity gradients in the steady flow case, in the region
of the bifurcation, are higher than that in the pulsatile case due to fully developed
flow.

The accuracy of the velocity plots extracted from the highest gradient regions
in the daughter branch, representing parallel and normal components, is defined by
an RMS error Equation 5.2. Here, the φ represents the variable or property and n
is the number of samples.

Error =

��n
i=1(φ1,i − φ2,i)2

n
(φ1,2,max − φ1,2,min)

(5.2)

Figure 5.1 shows the absolute velocity plots for cases A, B and C at the axial
position, x/d =0.5 in the daughter branch where the gradients are found to be the
greatest. The axial component (along direction of bulk flow) and the major normal

24
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Table 5.1. The steady flow grid study matrix considering the
original and extended domains

Domain Solver Grid

cell

Grid

cell

Average

grid

Grid ele-

ment size

type size

(ncells)

element

size

(h,mm)

refinement

ratio

(rBA =
hB

hA
)

case A D1 Ansys-
Fluent

Hybrid 918,282 0.264 -

case B D1 OpenFOAM-
1.6

Hybrid 918,282 0.264 -

case C D1 OpenFOAM-
1.6

Hexa-
hedral

919,851 0.264 -

case D D1 OpenFOAM-
1.6

Hybrid 3,722,559 0.166 rDB = 1.59

case E D1 OpenFOAM-
1.6

Hexa-
hedral

3,700,909 0.166 rEC = 1.59

case F D2 OpenFOAM-
1.6

Hexa-
hedral

475,179 0.329 -

case G D2 OpenFOAM-
1.6

Hexa-
hedral

1,410,945 0.229 rGF = 1.44

case H D2 OpenFOAM-
1.6

Hexa-
hedral

4,818,447 0.152 rHG = 1.51

component (y-axis) of the flow are compared. The differences observed between
cases A and B represent the change in discretization and the change in grid type by
cases B and C. The axial component shows little difference between cases A, B and
C, with an error of less than 1 %. However, the y-axis or secondary flow component
displays more interesting discrepancies. There is approximately a 1 % difference
between cases A and B, but approximately a 5 % difference between B and C.
This shows that there is a greater sensitivity to the change in mesh compared to
a change in solver. This may be related to a lack of resolution when creating a
hexahedral mesh of equilavent density characteristics. The further local hexahedral
refinements carried out for cases B and C in the region of interest of the daughter
branch, yielding cases D and E respectively. The purpose is to ensure that grid
resolution is not the reason for the discrepency.

Figure 5.2 shows the comparison of between cases B and D, and cases C and
E, respectively. Both plots show that lack of resolution is not the problem. The
refinements only lead to a difference of approximately 0.5 % or less in both com-
parisons. Instead this shows that the sensitivity is associated with the change in
grid type and that the pure hexahedral grid size of 919,851 cells produces accurate
results.

The grid extension is therefore carried out yielding case G of grid size of
1,410,945 cells. Local coarsening and refinement of case G, defining cases F and H,
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Figure 5.1. Comparative cross-sectional velocity data in the y-
direction for Cases A, B and C in the daughter branch at x/d =0.5;
(left) Axial (x-component) and (right) secondary (y-component)
components.

−0.5 −0.25 0 0.25 0.5
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

y/d

U
y 

(m
/s

)

Y−axis line of Y Velocity at x/d=0.5
RMSErrorN = 0.6% 

 

 

case B
case D

−0.5 −0.25 0 0.25 0.5
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

y/d

U
y 

(m
/s

)

Y−axis line of Y Velocity at x/d=0.5
RMSErrorN = 0.4% 

 

 

case C
case E

Figure 5.2. Comparison between; (left) hybrid grid refinement,
cases B and D, and (right) hexahedral grid refinement, cases C and
E, for the sensitive secondary (y-component) velocity component
at axial cross-section x/d =0.5.

respectively, was carried out to check that sufficient grid resolution is maintained
given the domain extension. The comparison of the secondary component, previ-
ously shown to be the most sensitive to grid density, is displayed in Figure 5.3 at
axial cross-sectional positions of x/d =0.5 and 1.5. Case F shows under prediction
of the velocity at the peak for position x/d =0.5 and oscillatory under prediction
at mid channel for position x/d =1.5. Small differences of approximately 0.5 %
exist between cases G and H at both axial positions, with a smooth definition of
secondary velocity components.
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Figure 5.3. Comparison of secondary velocity components (y-
component) in the y-direction for cases F, G and H in the daughter
branch at positions x/d =0.5 and 1.5.

5.1.2. Unsteady WSS comparison

A comparison was performed between the pulsatile wall shear stress characteristics
obtained by the two solvers considered in this study. Cases A and B from Table 5.1
are re-simulated with pulsatile inflow properties replicating a case from which the
current geometry is based upon. “Case 2”from the study by Evegren et al. (2010)
is replicated in OpenFOAM-1.6, using water as the fluid. Figure 5.4 displays the
temporal comparison between regions of negative WSS for cases A and B, at similar
times. The figures show that the flows are almost identical in-spite of the differences
in grid type, resolution and discretization schemes. Figure 5.5 also shows that the
WSS magnitudes and contours are similar in both the axial and radial components.

Figure 5.5 displays that there are slight changes in the WSS magnitudes at 180◦,
with the solver used in the current study yields a slightly higher peak. However
the negative WSS stress regions at 0 and 360◦ closer to the bifurcation at x/d=0.5,
corresponded well with the magnitudes and profiles, reflected throughtout the pul-
sation cycle.

The different solvers show similar flow characteristics and with acceptable ac-
curacy.

5.2. Paper 1

The internal haemodilution in large arterial bifurcations, such as the renal ab-
dominal aortic branch, may imply significant variations in important physiologi-
cal parameters. The complex viscous behaviour of blood strongly influences the
haemodynamic conditions that are important in understanding the development of
atherosclerosis. This is due to the viscosity of blood being directly dependent on
the RBC concentration. The extent of haemodilution in large 90-degree bifurca-
tions has not been considered in the past. This study aims to quantify possible bulk
changes in RBC concentration due to varying haemodynamic conditions. There is
uncertainty regarding RBC distribution in arterial flows, especially in the near wall
region. Sensitivity to unknown RBC properties such as inlet distribution profiles
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Figure 5.4. A comparison between areas of negative axial WSS
(backflow) at two points in time between the study by (left) Eve-
gren et al. (2010) and the (right) current study. The figure shows
the surface of the branch pipe near the bifurcation. The distance
from the bifurcation is given by x/d and the pipe azimuthal angle
by θ.

and mass diffusivity are considered. The range of RBC mass diffusivity is deter-
mined by a range of Schmidt numbers (Sc) relative to the viscosity of water. Bulk
RBCs are defined as a fluid soluble in water.

The relative importance of RBC transport by non-Newtonian and Newtonian
viscosity definitions of physiological flows is the main focus. Pulsatile frequency
defined by a range of heart pulsation rates is the most dominant parameter when
studying inherent flow unsteadiness. The unsteadiness is found to play an impor-
tant role in haemodilution, determined by the extent of development of secondary
flows. At an Sc number greater than 11, advection already starts to dominate and
significant internal haemodilution exists for both Newtonian and non-Newtonian
viscosity models, due to shear. Haemodilution is enhanced nearer the bifurcation
due to centrifugal effects and the forming of a separation bubble. As the heart pul-
staion frequency increases, so the dilution becomes more consistently large, with a
smaller deviation near peak systole. Large differences in dilution between the non-
Newtonian models and a Newtonian model (water) are also found, indicating that
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Figure 5.5. A comparison of WSS magnitudes and contours at
a specified point in time, t/T=0.278, between the study by (left)
Evegren et al. (2010) and the (right) current study.

non-Newtonian flow shear effects are important. The results show that there are
variations in internal haemodilution, due to haemodynamic unsteadiness, that may
have a relevant impact to physiological parameters such as WSS, when coupling
the local RBC concentration back to the viscosity models.

5.3. Paper 2

Flow unsteadiness and low time-averaged and oscillating WSS are influential fea-
tures of the flow in 90-degree arterial bifurcations, regarding atherogenesis. The
importance of the character of the blood being non-Newtonian has been disputed
in previous numerical studies. In recent years advancements have been made in the
understanding of the complex physiological and biochemical processes. In previous
studies it has been shown that fluid mechanical forces, specifically temporal WSSGs,
could play an important role in-vivo to the structural and chemical response of the
endothelium. During this study, the importance of blood-like non-Newtonian vis-
cosity on physiological parameters is considered. This encompasses the effect of
RBC dilution and the implications to WSS variations.

Further evidence is provided for WSS variations previously correlated with the
diseased regions of the larger arteries. The effects of the blood-like non-Newtonian
viscosity models in the progression of separated and secondary flows in the region
of the bifurcation is important. The regions of reversed flow are shown to be
more focal to the bifurcation in disease correlated area. The RBC volume fraction
dependency on non-Newtonian viscosity models is important for the magnitudes of
the WSS gradients and their magnitude. High temporal WSS gradients (WSSG)
follow a stagnation point that moves with the development of the separation bubble
during the heart pulsation cycle. This elevated temporal gradient is due to the
shear-thinning property of the non-Newtonian viscosity, the magnitude of which
is dependent on the RBC volume fraction near the wall. The focal nature of the
gradient has direct implications with respect to the response of the endothelium.



CHAPTER 6

Conclusions

In this work the influence of RBC concentration on the haemodynamic conditions
in the region of arterial bifurcations has been investigated. The geometry represents
similar arterial bifurcations existing in the aorta. Physiological parameters, such
as WSS, important for the understanding of atherogenesis are studied, regarding
variations in flow rate and heart pulsation frequency. Sensitivity to the inlet RBC
distribution and intrinsic mass diffusivity are also considered. Conclusions from
this study are:

• Variations in the RBC concentration exists near bifurcations in the larger
arterial networks.

• Both non-Newtonian and Newtonian shear viscosity models of the flow show
clear RBC dilution effects due to shear. The formation of the separation bub-
ble in the daughter branch is the main fluid mechanical feature responsible
for enhancement of dilution.

• The inflow conditions are important in defining the extent of formation of
the separation bubble. The inherent unsteadiness in the heart cycle is the
most dominant inflow condition and defines more frequent changes in RBC
concentration or dilution, with increased pulsation frequency. This in turn
means more frequent and complex changes in viscosity, implying complex
variations in an important physiological parameter such as WSS.

• There are large differences in RBC dilution as computed by the non-Newtonian
models, relative to the Newtonian model. This implies that there are vari-
ations in viscosity that need to be considered in the region of bifurcations,
when studying dependent physiological parameters important to athergene-
sis.

• Regions of separated and reversed flows, related to atherogenesis, are more
closely focused to the bifurcation under blood-like non-Newtonian flow con-
ditions than under Newtonian conditions. This may imply that Newtonian
models inaccurately determined regions of separated, unsteady flows near
the bifurcation in disease correlated regions.

• The RBC volume fraction dependency on the implemented non-Newtonian
viscosity models is important in determining the magnitudes of the wall
shear stress and the its gradients, due to dilution. The effect of dilution
has a strong influence on the unsteadiness of the WSS and the flow inside
the separation bubble. This may imply modified transport of atherogenic
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substances in the region of bifurcations, otherwise damped by conventional,
excessively viscous non-Newtonian modelling.

• High temporal WSS gradients follow a stagnation point that moves with
the development of the separation bubble during the heart pulsation cycle.
This elevated temporal gradient is due to the shear-thinning property of the
non-Newtonian viscosity, the magnitude of which is dependent on the RBC
volume fraction near the wall. The focal nature of the gradient has direct
implications with respect to the response of the endothelium, mechnically
and biochemically.



CHAPTER 7

Future Work

In the work following we will consider the density variations due to RBC dilution.
This will be accomplished through a two-phase Euler-Euler miscible liquid solver
in OpenFOAM, integrating the non-Newtonian viscosity models. This will include
considering the two phases as Newtonian fluids and studying the different possi-
ble viscosity values of the RBC phase, relative to plasma. The viscosity of the
aqueous fluid contained by RBCs is variable, depending on the concentration of
haemoglobin, and is one of the factors defining the bulk fluid viscosity. Analysis
of the flow field characteristics, pressure losses and WSS variations will be made.
Particular interest lies in the effects of non-Newtonian blood behaviour on the sec-
ondary flow characteristics. The difference in the flow characteristics may also
possibly be a factor in the near wall transport of atherogenic materials in addition
to its effect on the WSS.

Furthermore, the methodology may be applied to multiple bifurcating domains,
where the characteristics of the flow field and RBC distribution phenomena will be
studied. Again, the effects of flow rate and pulsation frequency and sensitivity to
the inlet velocity profile, will also be studied. The non-rigidity of the arterial wall
will not be considered, since the rheological properties of the fluid are the main
focus.

Blood is a dense suspension of cells, dominated by RBCs, where complex in-
trinsic properties due to shear are not well quantified or understood. Few definitive
studies exist regarding relations for mass diffusivity and distributions of RBCs in
large arterial flows. The objective is to explicitly compute the rheological properties
of the flow of water containing RBC like particles at high concentration. We shall
use an existing Lattice Boltzmann method (combined with an immersed boundary
like approach for handling the RBC). Initial tests include a channel flow of a fluid
containing about 7% RBC shaped particles. Future calculations shall handle pipe
flows with varying RBC concentrations and varying pulsation rate (from 0 to phys-
iological values). An extension to charged particles shall also be considered. The
computations shall be used to compute constitutive relations for the suspension
viscosity.

32



Acknowledgements

Firstly, I would like to thank my supervisors Professor Laszlo Fuchs and Doctor
Lisa Prahl-Wittberg for their help, support and tolerance. Thank for always having
your doors open for adhoc discussions and guidance.

The financial support of Vetenskapsr̊adet is greatly appreciated. The com-
puting resources were supplied by the Swedish National Infrastructure for Com-
puting (SNIC) and the HPC clusters; High Performance Computing Center North
(HPC2N) and National Supercomputer Centre in Linkping (NSC).

To my office comrades. The developmental as well as casual discussions in-
duce a relaxing atmosphere at the office. Thank you very much for all the good
company, humour and support; Feng Zhang, Bernhard Semlitsch, Yue Wang and
Aleksander Pasieczny. Thank you very much to the close research group Dr. Mireia
Altimira, Dr. Anders Dahlkild, Dr. Mihai Mihaescu, Dr. Etienne Robert, Martin
Sder, Olle Bodin, Johan Fjllman, Karl Hkansson, Mathias Kvick, Emma Alenius,
Alexander Sakowitz, Markus Pastuhoff, Sissy Kalpakli, Dr. Niklas Winkler for the
friendly support and questioning. Furthermore, I would also like to thank Carolina
Eneqvist, Heide Hornk, Hans Silverhag, Malin Lundin, Karina Bellbrant, Stefan
Skult and Pr Ekstrand for offering immediate administrative assistance whenever
required. The weekly departmental and personal fikas are always pleasant experi-
ences. Thank you for the friendly chats during all the occasions we meet, Lailai
Zhu, Joy Klinkenberg, Amin Rasam, Zeinab Pouransari, Dr. Minh Do-Quang, Dr.
Geert Brethouwer, Florian Stillfried, Andreas Vallgren, Krishnagoud Manda, Marit
Berger, Amer Malik, Johan Malm, David Tempelmann, Natalia Kosterina, Qiang
Li and everyone else.

I would like to thank my mother, father and brother for always being there for
me. I respect you all for the fights that you put up in the last two years to survive.
Finally, I would like to honour my loyal, ever loving fiancée, Ellinor Elowsson, who
always puts life into perspective when I need it most. Thank you for supporting
me.

33



References

Aarts, P., Van Den Broek, S., Prins, G., Kuiken, G., Sixma, J. & Heethaar, R.
1988 Blood platelets are concentrated near the wall and red blood cells, in the center
in flowing blood. Arteriosclerosis, Thrombosis, and Vascular Biology 8 (6), 819.

Anderson, J. D. 1995 Computational Fluid Dynamics: The Basics with Applications.
McGraw-Hill: Mechanical Engineering Series.

Bakhru, A. & Erlinger, T. 2005 Smoking cessation and cardiovascular disease risk
factors: results from the third national health and nutrition examination survey.
PLoS medicine 2 (6), e160.

Barnes, H. 1995 A review of the slip (wall depletion) of polymer solutions, emulsions
and particle suspensions in viscometers: its cause, character, and cure. Journal of
Non-Newtonian Fluid Mechanics 56 (3), 221–251.

Barnes, H. 2000 Measuring the viscosity of large-particle (and flocculated) suspensions–a
note on the necessary gap size of rotational viscometers. Journal of non-newtonian
fluid mechanics 94 (2-3), 213–217.

Bharadvaj, B., Mabon, R. & Giddens, D. 1982a Steady flow in a model of the human
carotid bifurcation. part i–flow visualization. Journal of Biomechanics 15 (5), 349–
362.

Bharadvaj, B., Mabon, R. & Giddens, D. 1982b Steady flow in a model of the hu-
man carotid bifurcation. part ii–laser-doppler anemometer measurements. Journal of
Biomechanics 15 (5), 363–365.

Birchall, D., Zaman, A., Hacker, J., Davies, G. & Mendelow, D. 2006 Analysis of
haemodynamic disturbance in the atherosclerotic carotid artery using computational
fluid dynamics. European radiology 16 (5), 1074–1083.

Bishop, J., Popel, A., Intaglietta, M. & Johnson, P. 2002 Effect of aggregation and
shear rate on the dispersion of red blood cells flowing in venules. American Journal
of Physiology-Heart and Circulatory Physiology 283 (5), H1985.

Bronzino, J., ed. 2000 The Biomedical Engineering Handbook, second edition. Boca Ra-
ton: CRC Press LLC.

Brooks, D., Goodwin, J. & Seaman, G. 1970 Interactions among erythrocytes under
shear. Journal of applied physiology 28 (2), 172.

Burton, A. 1965 Physiology and biophysics of the circulation. Academic Medicine 40 (8).

Caro, C. 1966 The dispersion of indicator flowing through simplified models of the circu-
lation and its relevance to velocity profile in blood vessels. The Journal of Physiology
185 (3), 501.

Caro, C. 2009 Discovery of the role of wall shear in atherosclerosis. Arteriosclerosis,
thrombosis, and vascular biology 29 (2), 158.

Caro, C., Fitz-Gerald, J. & Schroter, R. 1969 Arterial wall shear and distribution
of early atheroma in man. Nature Publishing Group .

34



REFERENCES 35

Caro, C., Fitz-Gerald, J. & Schroter, R. 1971 Atheroma and arterial wall shear
observation, correlation and proposal of a shear dependent mass transfer mechanism
for atherogenesis. Proceedings of the Royal Society of London. Series B. Biological
Sciences 177 (1046), 109.

Caro, C. & Lighthill, M. 1966 Velocity distribution in models of the circulation mea-
sured by indicator dispersion. J Physiol 183, 34.

Caro, C., Pedley, T., Schroter, R. & Seed, W. 1978 The mechanics of the circula-
tion. Oxford University Press New York.

Carreau, P. 1972 Rheological equations from molecular network theories. Journal of
Rheology 16, 99–127.

Casson, N. 1959 Rheology of disperse systems. Pergamon Press, London.

Cha, W. & Beissinger, R. 2001 Evaluation of shear-induced particle diffusivity in red
cell ghosts suspensions. Korean Journal of Chemical Engineering 18 (4), 479–485.

Charm, S. & Kurland, G. 1972 Blood rheology. Cardiovascular fluid dynamics 2.

Charm, S. & Kurland, G. 1974 Blood flow and microcirculation, , vol. 14. John Wiley
and Sons, Inc.

Chien, S. 1970 Shear dependence of effective cell volume as a determinant of blood
viscosity. Science 168 (3934), 977.

Chien, S., Usami, S., Taylor, H., Lundberg, J. & Gregersen, M. 1966 Effects of
hematocrit and plasma proteins on human blood rheology at low shear rates. Journal
of Applied Physiology 21 (1), 81.

Cockelet, G. 1987 The rheology and tube flow of blood. Handbook of Bioengineering
p. 14.

Cockelet, G., Merrill, E., Gilliland, E., Shin, H., Britten, A. & Wells Jr, R.
1963 The rheology of human blood–measurement near and at zero shear rate. Journal
of Rheology 7, 303–307.

Cohen, E. & De Schepper, I. 1992 Transport properties of concentrated colloidal sus-
pensions. AIP Conference Proceedings 256, 359.

Copley, A., Luchini, B. & Whelan, E. 1968 On the role of fibrinogen-fibrin com-
plexes in flow properties and suspension-stability of blood systems. In Hemorheology.
Proc. First Internat. Conf. University of Iceland, Reykjavik, 10–16 July 1966 , p. 375.
Pergamon Press, Oxford, New York.

Cross, M. 1965 Rheology of non-newtonian fluids: a new flow equation for pseudoplastic
systems. Journal of Colloid Science 20 (5), 417–437.

Cross, M. 1970 Kinetic interpretation of non-newtonian flow. Journal of Colloid and
Interface Science 33 (1), 30–35.

Cutnell, J. & Johnson, K. 1998 Physics, 8th Edition. Wiley.

DeBakey, M., Lawrie, G. & Glaeser, D. 1985 Patterns of atherosclerosis and their
surgical significance. Annals of surgery 201 (2), 132.

DePaola, N., Gimbrone, M., Davies, P. & Dewey, C. 1992 Vascular endothelium
responds to fluid shear stress gradients. Arteriosclerosis, Thrombosis, and Vascular
Biology 12 (11), 1254–1257.

Dintenfass, L. 1968a Blood viscosity internal fluidity of the red cell, dynamic coagulation
and the critical capillary radius as factors in physiology and pathology or circulation
and microcirculation. The Medical journal of Australia 1 (16), 688.

Dintenfass, L. 1968b Internal viscosity of the red cell and a blood viscosity equation.
Nature Publishing Group 219, 956–958.

Duguid, J. & Robertson, W. 1957 Mechanical factors in atherosclerosis. Lancet
272 (6981), 1205.

Evegren, P., Fuchs, L. & Revstedt, J. 2010 Wall shear stress variations in a 90-degree
bifurcation in 3d pulsating flows. Medical engineering & physics 32 (2), 189–202.



36 REFERENCES

Farmakis, T., Soulis, J., Giannoglou, G., Zioupos, G. & Louridas, G. 2004 Wall
shear stress gradient topography in the normal left coronary arterial tree: possible
implications for atherogenesis. Current Medical Research and Opinion R� 20 (5), 587–
596.

Farmer, J. & Gotto, A. 1997 Dyslipidemia and other risk factors for coronary artery
disease. u: Braunwald E. i dr.(ur.) Heart disease: A textbook of cardiovascular
medicine. Philadelphia, itd: WB Saunders.

Ferdowsian, H. & Barnard, N. 2009 Effects of plant-based diets on plasma lipids. The
American journal of cardiology 104 (7), 947–956.
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Abstract
The transport behaviour of the haematocrit in the larger arteries is important in defining the variations in viscosity
of blood. In this study, a finite volume method is used in order to simulate the blood flow and haematocrit transport
through a large 3D human-like 90-degree bifurcation. The simulations are carried out to investigate the importance of
explicitly modelling the non-Newtonian viscosity of blood regarding defining the flow. It is expected to be especially
important in the regions surrounding a bifurcation. The main focus is to compare non-Newtonian to Newtonian
behaviour of the flow through important parameters such as pressure losses, mean viscosity variations and bulk
transport properties of haematocrit. The study considers a broad range of physiological and pulsatile flow conditions,
and displays the importance of modelling blood flow as a non-Newtonian fluid. The results have a relevant impact
regarding the possible discrepencies in important physiological parameters such as wall shear stress (WSS), when
coupling the haematocrit field data back to the viscosity models.
Keywords: Haemodynamics, Blood, Biomechanics, CFD, Bifurcation.

Introduction
The role of the complex viscous behaviour of human

blood on the haemodynamic conditions of the cardiovas-
cular system is important. A good example is the devel-
opment and progression of cardiovascular diseases such as
coronary thrombosis, which is strongly influenced by the
viscous properties [5, 13] and the local distribution and in-
teraction of Red Blood Cells (RBC) and Platelets. Platelet
transport towards and deposition on the vessel wall, fun-
damental to plaque formation in coronary atherogenesis
[4, 31], have been strongly related to blood vessel shear
rate and haematocrit [1, 41]. The increased fluid shear in-
creases the rotation of the RBC and thereby hypothesised
to enhance platelet diffusivity [28]. An increase or de-
crease in volume fraction haematocrit on the other hand
has been reported to displace or expell platelets, more or
less respectively, to the cell poor fluid volumes [1, 23].
Sites of plaque formation that lead to thrombosis are com-
mon in the region of the larger 90-degree arterial branches
in man. Understanding of two-phase mechanisms in blood,
RBC and plasma, is therefore important in prediction and
possible control of platelet deposition. Re-atherogenesis
is shown to play an important role in the failure of vascu-
lar implants such as vascular grafts, artificial hearts, heart
valves and ventricular assist devices [21, 32, 38, 39, 43].

Over the years several non-Newtonian models have
been developed to account for the shear thinning proper-
ties of blood, with respect to two main parameters, shear
rate and volume fraction haematocrit. The models are all

steady state models, calibrated for ranges of fixed pres-
sure gradients that defines the range of fixed shear rates
in viscometers. The parameters are fixed by bulk macro-
scopic measurements and not by the microscopic suspen-
sion properties. This means that the effective viscosity de-
fined is not an intrinsic property of the suspension, rather a
property dependent on specific flow conditions and the av-
eraging of the instrument used to measure [2, 3]. However,
due to observations made during this study, it is believed
that these models may define important flow field data in
physiologically relevant flows; i.e. global parameters, such
as pressure drop and mean transport properties of RBCs.

In this study, the temporal and spatial variations of the
flow, local viscosity and haematocrit for pulsatile blood-
like non-Newtonian fluid properties, in a 90-deg bifurca-
tion, are investigated. Comparisons with Newtonian cases
offer a measure for non-Newtonian behaviour of the blood
if one assumes that the blood can be considered as a ho-
mogeneous mixture characterized by a mixture viscos-
ity. Simulations are carried out with three pulsatile inflow
cases, resembling varying load conditions in the human
circulatory system, applied to the 3D 90 degree bifurcation
geometry. Few studies of this kind have been presented
in the past. To be discussed are the effects of pulsation
frequency, RBC mass diffusivity, boundary conditions and
viscosity on the effects of internal haemodilution (i.e. RBC
concentration variations due to shear). The RBC concen-
tration is modelled via a scalar transport model that can be
coupled back to the viscosity models.
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Methods

Theoretical Background
Viscosity Models

In this study, four different models have been implemented
in order to quantify the dynamic viscosity (µ) of Human
blood. The chosen models are identified as the most com-
prehensively developed and widely used, accounting for
important behavioural parameters such as the existence of
shear strength (shear stress required to initiate flow), New-
tonian viscous limits, shear rate dependency and its depen-
dency on cell and molecular composition [12, 44]. Three
of the models are functions of both haematocrit and shear
rate, while the fourth is a function of solely the latter prop-
erty.

The Bird-Carreau model, initially developed for reac-
tion kinetics of polymers and similar to a model postu-
lated by Cross [17], describes the viscosity by the follow-
ing equation [9, 27, 40]:

µ = µ∞ + (µ0 − µ∞)[1 + (λγ̇)2]
nC−1

2 (1)

Where µ0 = 0.056Pas represents ”zero shear viscosity”,
the viscosity value just before the fluid comes to rest;
µ∞ = 0.00345Pas is the Newtonian viscosity or ”infinite
shear viscosity”, the viscosity value at high shear rates,
λ = 3.313s is the relaxation time constant for haematocrit,
nC is the power law index defining the degree of non-
Newtonian behaviour and γ̇ is the rate of shear of the flow
(the same definition in each model). The Bird-Carreau
model has been widely used in literature using the constant
values as displayed above. It represents the widest range
of shear rates of the four models since it reduces to a finite
viscosity value at zero shear rate. The major disadvantage
is that no explicit haematocrit dependency is defined.

The Casson model, initially derived to describe the flow
behaviour of printing ink, was adapted to describing blood
viscosity as follows [10, 12]:

µ =
τ

γ̇
(2)

τ

γ̇
=

��
kC(H)γ̇ +

�
τy(H)

�2

γ̇
for τ > τy(H)

γ̇ = 0 for τ <= τy(H)
(3)

Where τ is the fluid shear stress. Terms kC(H) and
τy(H) are a functions of haematocrit H as follows:

kC(H) =
µp

(1−H)A
(4)

τy(H) =

�
B

A
((1−H)A/2 − 1)

�2
(5)

Where µp and H represent the blood plasma viscos-
ity and fraction haematocrit, respectively, values for which

are displayed in Table 1. The Casson intrinsic viscosity,
kC(H) = 0.003 Pas and Shear strength, τy(H) = 0.0053
Pa, are both functions of haematocrit, defined according
to experimental data for human blood. Constants A and
B represent sets of grouped experimental constants de-
fined in work by Cocklet et al. [15], where A = aβ and
B = aαB − 1. The values of the constants are evaluated
according to experimental data and can be used to compute
the above values for kC(H) and τy(H) [15, 34, 35]. The
model is valid over a wide range of shear rates, however,
the shear rate needs to be greater than 1 s−1 [12, 45].

One of the most recently developed models is that of
the Quemada constitutive equation, known to represent the
broadest range of shear rates for blood, greater than ap-
proximately 0.01 s−1 [45]. It was developed to describe
the Newtonian viscosity of concentrated particle suspen-
sions through the following equation [36]:

µ = µp

�
1− k(γ̇, H)

2
H

�−2

(6)

Where k(γ̇, H) is a function of the haematocrit, µp is
the blood plasma viscosity and H is fraction haematocrit,
for which blood values are quoted in Table 1. Here k(γ̇, H)
incorporates the shear rate and haematocrit dependencies
as follows [37]:

k(γ̇, H) =
k0 + k∞(γ̇/γ̇C)1/2

1 + (γ̇/γ̇C)1/2
(7)

γ̇C = e(−6.1508+27.923H−25.6H2+3.697H3) (8)

k0 = e(3.874−10.41H+13.8H2−6.738H3) (9)

k∞ = e(1.3435−2.803H+2.711H2−0.6479H2) (10)

Where parameters γ̇C , k0 and k∞ are the critical shear
rate and non-dimensional intrinsic viscosities related to
low and high shear rates, respectively. These correlations
have been developed by Cokelet et al. [14].

The Walburn and Schneck model is an optimised power
law model that includes the important dependencies on
shear rate, haematocrit and plasma protein concentration
[42]. Equation 11, below, displays its form.

µ = C1e
C2HeC4

TPMA
H2 γ̇−C3H (11)

Here the empirical constants are C1 = 0.000797 Pas,
C2 = 0.0608, C3 = 0.00499, C4 = 14.585 l/g. Haema-
tocrit is defined as a percentage and TPMA = 25 g/l
is the total proteins minus albumin concentration for hu-
man blood. The shear rate validity for this model has been
reported as being in the range greater than approximately
0.01 s−1 [45]. Figure 1 plots the profiles of each model.

Each of the non-Newtonian models described above are
implemented with respect to corresponding shear rate va-
lidity limits mentioned. All constant material parameters
used during this investigation for blood, and the Newto-
nian fluid, Water, are described in Table 1. The Newtonian
value of viscosity for blood is that commonly found to be
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Figure 1 non-Newtonian viscosity models at 45%
Heamatocrit

the lowest viscosity for blood at normal levels, approxi-
mately 3.5 times that of water. Whole blood composition
(i.e. all components of the blood) at normal levels contains
on average approximately 45% haematocrit [7, 18, 33].

Table 1 Material properties for Human Blood at 37 oC and
Water at 20 oC

Material Density (ρ) Newtonian
(kg/m3) Viscosity (µ) (Pas)

Whole blood 1060 [8, 18] 0.0035 [7]
Blood plasma 1025 [7] 0.00132 [7]

Water 998.2 0.001

RBC Mass Diffusivity

The mass diffusivity of RBCs and other macro-cells is a
consequence of several factors such as fluid shear, electro-
static forces and collisions. There are few studies avail-
able that quantify this property. The mass diffusivity of
RBCs in concentrated suspensions is enhanced by the flow
[6, 11, 24, 26, 29, 30] and constrained by close packing
of neighbouring particles [16]. All studies only consider
steady flow conditions in simple tube geometries and de-
fine empirical shear induced relations describing enhanced
diffusivity properties of RBCs [6, 11, 24]. The values de-
termined via these experimental studies are approximately
two orders of magnitude greater than Brownian diffusion
estimates. However, higher values could be expected dur-
ing pulsatile flows in complex bifurcating domains. Here
complex flow shear patterns, due to strong secondary flow,
could further enhance diffusion. It is not yet known how
transport properties of blood are affected in the region of
bifurcations. Therefore, in this study, a wide range of val-
ues are considered in order to represent the possible values
for diffusivity that could occur in these regions of the arte-
rial network.

Governing Flow Equations

The flow of both the Newtonian and non-Newtonian fluids
are modelled in the single phase incompressible formula-
tion of the Navier-Stokes equations. The fluids are defined
as homogeneous mixtures and expressed as:

∂ui

∂xi
= 0 (12)

∂ui

∂t
+ uj

∂ui

∂xj
= −1

ρ

∂p

∂xi
+ ν

∂2ui

∂x2
j

(13)

where ν = µ/ρ is the kinetmatic viscosity. The
dynamic viscosity, µ, defined through each of the non-
Newtonian models, is normalised by the constant density,
ρ, defining the RBC phase as having the same density as
the carrier phase.

The haematocrit is modelled as an advected mixture,
along with Fick’s laws of diffusion, taking the form of a
scalar or mass transport equation. This model uses the flow
field defined by the flow equations discussed above as its
advector. This form of the transport equation and mass
conservation are expressed respectively as:

∂H

∂t
= DH

∂2H

∂xj∂xj
− uj

∂H

∂xj
(14)

Where H is the haematocrit or local volume fraction
of the mixture and DH is the mass diffusivity co-efficient
thereof. The range of mass Diffusivity studied is quoted
as a range of Schmidt numbers (Sc) in order to assess its
influence on the possible RBC range of diffusivities. In
equation 14, for mass conservation of the scalar, the left-
hand side describes the change over time of the enclosed
volume and the right-hand side considers the sum of ad-
vective and diffusive fluxes across the boundaries.

Charateristic velocity (U0 - peak inlet velocity), length
(D, main branch diameter) ,time (ω, angular frequency)
and the average inlet volume fraction (H) scales can be as-
signed to non-dimensionalise the mass transport equation,
as follows:

4α2

Re

∂H∗

∂T
=

1

Pe

∂2H∗

∂x∗
j
2 − u∗

j
∂H∗

∂x∗
j

(15)

Where H∗ = H/H , T = ωt, u∗
j = uj/U0 and

x∗
j = xj/D. The non-dimensional terms, Reynolds

number, Re, Womersley number, α, Peclet number, Pe
and Schmidt number, Sc, can be written as:

Re =
U0D

ν
(16)

α =
D

2

�
ω

ν
(17)

Sc =
ν

DH
(18)

Pe = ReSc (19)
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The Womersley number represents the relative impor-
tance of transient inertial forces versus the viscous forces.
The Reynolds number relates the convective inertial forces
to the viscous forces. The combination of these two num-
bers determines the time dependent flow properties. The
Schmidt number is a measure of the rate of viscous diffu-
sion to the rate of mass diffusion of a species in the flow.
Mass diffusion here considers only that due concentration
gradients. The Peclet number is a measure of dominance
of advection of the species with respect to diffusion.

Numerical Methods and Case Set-up

Numerical Methods

A finite volume scheme is employed to discretize the gov-
erning equations to second accuracy. Backward implicit
time advancement is employed to evolve the equations in
time. A constant time step is used to ensure a time resolved
solution along with the constant fulfilment of the CFL con-
dition below 1 at each time-step. The PISO scheme main-
tains pressure-velocity coupling during each time step, via
implementation of the pimpleFoam solver in OpenFOAM-
1.6. Each of the fifteen cases require approximately 18
pulsation periods to attain a solution that is independent of
the initial conditions.

A mesh consisting only of hexahedral elements is im-
plemented. Three grids are used to investigate whether suf-
ficient grid resolution is attained. Consecutively finer grid
resolutions; 475 179, 1 410 945 and 4 818 447, grid num-
bers 1, 2 and 3 respectively, are created for the geometry
displayed in Figure 3. The numerical grids are extended
at the outlet positions displayed in Figures 3 and 5, in or-
der to improve the description of the development of the
haemtocrit in the region of the daughter branch and the bi-
furcation. Here backflow at the outlets, without the exten-
sions, would lead to unrealistic, uniform distribution val-
ues entering the region of interest. The actual distribution
is highly non-uniform. The averaged element size (h) for
each of the three grids are related as follows; h2/h1 = 1.44
and h3/h2 = 1.51. Sufficient mesh resolution is attained
with grid two of element size 1 410 945, when considering
the velocity field. Care has also been taken in defining a
high enough resolution in the core of the daughter branch
to model the gradients important to the scalar transport
model. Grid three mentioned above (cell size 4 818 447),
is a local hex refinement of grid two in the region V1. It is
therefore also used to evaluate the accuracy of chosen grid
two in modelling the scalar transport gradients. Figure 2
shows that no further refinement of grid two is required
when analyzing absolute haematocrit values and dilution
behaviour, during systole, displayed at the top and bottom
respectively. The Bird-Carreau non-Newtonian model is
chosen to test this accuracy. Error of the order of 4% for
the absolute value plot at x/d=0.5 along the z-axis, depicted
at the top of Figure 2, is computed at t/T ≈0.24 just af-
ter peak flow. However, this does not significantly affect
the dilution in V1, as an error of approximately 0.5% is
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Figure 2 (top) Volume fraction haematocrit (H) line plot
along the z-axis of a daughter branch cross-section at

x/d=0.5 and t/T ≈0.24, as depicted in Figure 5.; (bottom)
Percentage difference between average haematocrit in V1

and the inlet from t/T= 0.1 to 0.3

computed during systole, depicted at the bottom of Figure
2. The error estimate is defined as the RMS of the differ-
ences, normalised by the range of values as follows:

Error =

��n
i=1(φ1,i − φ2,i)2

n
(φ1,2,max − φ1,2,min)

(20)

where φ is the property and n is the number of samples.

Computational Geometry and Boundary Conditions

A simplified arterial model is chosen in order to avoid pa-
tient specific models. It is a simplified model resembling
one of the larger arterial branches in humans adequate for
understanding general flow behaviour [20]. The geome-
try consists of a main branch with a diameter, D =13.2
mm and a daughter branch with diameter, d =9.35 mm.
The 90-degree bifurcation has a smooth, arterial like shape
with an approximate radius of curvature of 9.7 mm, allow-
ing for a time-dependent point of separation. The geometry
in question is shown in Figure 3.
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Figure 3 a) Geometric domain with absolute dimensions, b)
Intel flow rate vs. Time

The choice of inflow boundary conditions, displayed
in Table 2, are chosen according to characteristic arterial
flow data common to the abdominal aorta and its larger
branches [7]. Peak Inflow velocity or amplitude is esti-
mated from this data. The range of periodic pulsation rates
(heart rates), characteristic of arterial flows, are chosen ac-
cording to a normal range representative of the in-vivo flow
conditions in humans. As argued for the geometric choice,
a well-defined temporal inflow profile is chosen in order to
define this periodic pulsating character [19, 20].

QINLET = AMB .U0.e
−0.5c2 , c =

t− nT

0.6T
− 0.38

0.11
(21)

Where n is the number of preceding periods; i.e. for the
first period n = 0, the second n = 1, etc. U0 is the peak
inlet velocity determined by the present Reynolds number,
T is the period time, determined by the present Womersley
number, and AMB is the cross-sectional area of the main
branch. The inlet flow rate vs. time is plotted in Figure 3
above for the inflow case investigated during this study.

Further boundary conditions implemented are no-slip
conditions at the walls and constant reference pressures at
the two outlets. The walls are modelled as rigid structures.

Regarding the scalar transport modelling, the inlet
boundary conditions implemented are chosen to maintain
a constant average Haematocrit, H , that is transported with
each of the flow fields. Two profiles are chosen with dif-
ferent Haematocrit values at the walls while maintaining a
constant average, shown in Figure 4. The profiles are mod-
elled from experimental high volume fraction RBC profile
measurements for laminar flows in tubes [1]. This is typi-
cal behaviour of RBCs where the RBCs migrate away from
the walls in tube flow due to wall effects [22, 25]. A hy-
perbolic tangent equation describes this migration in tube
flow, leaving a cell depleted plasma layer at the wall. The
equation takes the form as follows:

H = �H (1 + tanh [m(r − δ)]) +Hw (22)

Here H̃ is a value chosen to achieve a target bulk haem-
tocrit of 45%, Hw is the haematocrit value set at the wall,

−0.5 −0.25 0 0.25 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

x/D(m)

H
 (V

ol
um

e 
Fr

ac
tio

n 
H

ae
m

at
oc

rit
)

 

 

Profile 1
Profile 2

Figure 4 Implemented Haematocrit inlet profiles

r is the radial co-ordinate, m and δ are chosen to set the
profile of the distribution towards the wall.

Each of the inlet haematocrit profiles maintain the zero
gradient conditions to co-incide with that set at the walls.
The volume field condition is initialized with the same av-
erage value of 45% as that at the inlet. Zero gradient con-
ditions are also stipulated at both outlets.

Data is acquired after several periods depending on
each flow case. The convergence criteria used for this
study was that the volumetric difference in mass in the re-
gion of interest V2, from cycle to cycle, not to change by
more than 1%.

Case Setup and Analysis

Three inflow cases are defined to which each of the Newto-
nian and non-Newtonian viscous models are applied. Each
case has the same peak inflow velocity but differ in pulsa-
tion time, shown in Table 2. The range of pulsation time,
presented as beats per minute (BPM), represents a range of
physiological human heart rates, depending on the individ-
ual and degree of effort. Reynolds and Womersley num-
bers for blood are quoted as maximum values, regarding
the minimum viscosity for blood quoted in Table 1.

Table 2 Case set up parameters. Peak inflow velocity, heart
beats per minute (BPM), max (Re) and max (α).

Peak Inlet BPM Re α
Velocity (m/s)

case 1 0.11 30 440 6.5
case 2 0.11 60 440 9
case 3 0.11 90 440 11

For each of the flow cases the scalar transport model,
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representing the transport properties of RBC as a mixture,
is computed. The flow is described as homogenous. That
is, the RBC mixture phase or haematocrit has the same
density as the carrier fluid. The haemtocrit, however, is
defined as occupying a certain volume fraction of the fluid
volume representing the mass of RBC. A species equation,
equation 14, is used to model the mass diffusion and ad-
vection of the haematocrit as a volume fraction value. This
equation is coupled back to the computed flow field (uj).
Three RBC mass diffusivities are considered for each in-
flow case, represented by a range Schmidt numbers defined
with respect the viscosity of water, an order of magnitude
apart, Sc ≈1.1, 11, 110. As stated earlier, experimental
values for mass diffusivity of RBCs in complex shear flow
cases does not exist in literature.

The presentation of results will refer to Table 2 when
case referencing. The Newtonian reference case is used
to obtain a measure of non-Newtonian behaviour and aims
to show that the effects are not simply caused by an in-
crease or decrease in Newtonian viscosity. The similarities
in bulk behaviour displayed between the non-Newtonian
models offers qualitative information regarding blood like
mass transport phenomena.

The main region of interest, located by the shaded re-
gion in Figure 5, is due to secondary flows that influence
transport properties, forming a notable separation bubble
due to the 90-degree deviation in the flow. Reference di-
mensions and sample regions used in representing the anal-
ysed data are illustrated in Figure 5.

Figure 5 Co-ordinate system and region references

Volumetric data is extracted from the designated re-
gions of interest, V1 and V2, regarding pressure gradients,
viscosity and volume fraction haematocrit variations. Ef-
fects of pulsation frequency, RBC diffusivity and the dis-
tribution profile on the haemodynamic properties are pre-
sented. One-way and two-way coupled field dependencies
are also compared. Region V2 is half the volume of region

V1, focused on the separation bubble. It is chosen to quan-
tify the influence, proportion wise, the separation bubble
has on haematocrit variation in region V1.

Results
The results presented in the following sections will fo-

cus on the differences in transport properties for an RBC
mixture using Newtonian and non-Newtonian viscosity
models. Firstly, the differences non-Newtonian viscosity
models share when describing blood-like flow behaviour
will be discussed. The effects of RBC mass diffusivity,
pulsation frequency, inlet boundary conditions (Profile 1
and 2) and the different viscosity models on transport prop-
erties in V1 will be displayed. Finally, the influence of the
separation bubble on the change in haematocrit in region
V1 is analysed relative to variations in region V2.

Pressure losses and Viscosity variation
Mean field pressure gradient variations, representing pres-
sure losses, for region V1 for all non-Newtonian models
relative to water are depicted in Figure 6. Mean pressure
gradient values for case 1 initially show a sharp increase,
becoming larger than that of water. This coincides with the
initial high mean levels in viscosity and an increasing flow
rate during systole, Figure 7. The maximum differences
in peak pressure gradient around t/T ≈0.18 are approxi-
mately 20% for between the Bird-carreau and Casson mod-
els. During this increase in flow rate to the point of peak
systole the pressure gradient tends to be higher than for wa-
ter. Almost immediately after the peak pressure gradient a
sudden drop takes place for all cases, reaching a minimum
just after peak systole before rising again. This also coin-
cides with the minimum mean viscosity where the shear
rates are highest. From this point onwards much lower
pressure gradients exist compared to water for case 1. Case
3 continues to rise from the point just after peak systole at
t/T ≈0.24, where pressure gradients are lower than that of
water, to t/T ≈0.32 where higher pressure gradients than
that of water peak again. From this point onwards there
is a drop again, until t/T ≈0.5 where the pressure gra-
dient is slightly lower than water. Around t/T ≈0.7 the
pressure gradients begin to resemble that of water as the
blood comes to rest or exhibits minimal motion. There-
after the pressure gradient differences almost disappear as
flow ceases during diastole. In general, during the pulsa-
tion cycles for all frequencies, large differences in pressure
gradient are observed between the non-Newtonian viscos-
ity models and the Newtonian model water.

The viscosity variation plots displayed in Figure 7
show that as the flow rate increases during systole, all
the models and cases reach a minimum at peak inflow,
t/T ≈0.22. As the flow rate decreases the viscosity in-
creases again until a point at t/T ≈0.55 for case 1 and
t/T ≈0.7 for case 2. There is no distinct point at which
a peak is reached in case 3, as the subsequent decrease
seen in case 1 is due to reverse flow. As the pulsation fre-
quency increases reverse flow in region V1 decreases and
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Figure 6 Difference in the mean pressure gradient (∇P) for
all non-Newtonian models minus the pure Newtonian case

(Water) for (top) Case 1 and (bottom) case 3.

takes place for a shorter period of time at 90 bpm. It is also
observed that each of the viscosity models exhibit very dif-
ferent peaks in viscosity. This is due to the validity limits
set for each model that are constrained differently at shear
rates less than 1 s−1. The reason for the Bird-Carreau
model to display the highest mean viscosity is due to be-
ing the only model valid for the full range of shear rates,
including zero shear rate. The results presented in this sec-
tion dislplays the importance of describing the fluid, blood,
as non-Newtonian in character. The non-Newtonian flow
behaviour is therefore more important than a simple in-
crease or decrease in viscosity and will describe vastly dif-
ferent transport behaviour than a Newtonian fluid like wa-
ter would.

Dilution characteristics
The dilution charaterictics are quantified as the temporal
variation of the average haematocrit fraction in region V1
minus the inlet average. In all figures the dilution variation
is displayed as a percentage difference or deviation with
reference to inlet profile 1. Large variations are observed
in the region of the daughter branch when advection dom-
inates i.e. at high Schmidt numbers. The highest Schmidt
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Figure 7 Difference in mean field viscosity (µ) quantities for
all non-Newtonian models in region V1 for (top) Case 1 and

(bottom) Case 3.

number investigated during the study is 110 for which dif-
fusion is observed to be very low. In the region of bifurca-
tions, flow features such as separation and secondary flows
cause these large variations due to shear. Early on in the
pulsation cycle the centrifugal effect, characteristic to the
radius of the bifurcation curvature, leads to the flow sepa-
ration and generates secondary vortices. The shear layers
produced by these secondary flows leads to the mass trans-
port behaviour affecting haematocrit dilution in the region
of bifurcations.

Figure 8 shows the progression of dilution for cases 1
and 3 in region V1 as a percentage drop in fraction. In
all cases the general progression is similar and correlates
with the applied inflow characteristics. However, with in-
creasing pulsation frequency the correlation becomes less.
For case 1 the first stage of systole shows an increase in
dilution leading to a maximum around peak systole, at
t/T ≈0.22, of as high as 22% for the Bird-Carreau model
and lowest 16% for the Casson model. For case 3 there is
a delay in peak dilution, taking place at around t/T ≈0.3,
leading to dilution of 20% and 12% for the same models as
in case 1. This is an expected delay for higher Womersley
numbers, where the transient inertia is higher leading to a
delay in the core flow momentum. Formation of the sep-

SIMBIO 2011 7



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−35

−30

−25

−20

−15

−10

−5

0

t/T

D
iff

 (%
)

 

 

Uinlet
Bird−Carreau
Casson
Quemada
Walburn−Schneck

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−35

−30

−25

−20

−15

−10

−5

0

t/T

D
iff

 (%
)

 

 

Uinlet
Bird−Carreau
Casson
Quemada
Walburn−Schneck

Figure 8 Comparison of mean fraction haematocrit
difference in region V1, minus the inlet average, for (top)

Case 1 and (bottom) Case 3.

aration bubble is therefore delayed, due to the flow taking
more time to accelerate to a certain velocity. The absolute
increase in dilution between systole and diastole for case 1
is larger than that for case 3. Case 1 shows an absolute dif-
ference of between 11 and 12% and Case 3 only between 3
and 4%, considering the same viscosity models as earlier.
The is caused due to the diminished size of the separation
bubble at higher pulsation frequencies. The delay in for-
mation and the shorter pulsation time, decreases the time
available for the separation bubble to form. The size of
the separation bubble can be depicted by the local extent
of negative axial flow (backflow) near the bifurcation, in
the daughter branch. Figure 9 displays the axial velocity
contours of the Bird-Carreau model at t/T ≈0.34, after
systole, when the separation bubble approximately nears
its maximum size for all cases. The localised ’bubble’ of
backflow decreases in size as the pulsation frequency in-
creases. The emphasis or focus on the impact of the sepa-
ration bubble is described in the section following.

After the peak in dilution, the separation bubble con-
tinues to grow during the deceleration stage of systole. A
steady decrease in dilution is observed in both cases 1 and
3, eventually reaching a constant bulk haematocrit fraction

in the domain. Case 1 reaches this point between t/T ≈0.4
and 0.6 and case 3 between t/T ≈0.6 and 0.8, depending
on the viscosity models. The minimum dilution is there-
fore attained and ranges between 9% and 5% for case 1
and between 16% and 10% for case 3, regarding the Bird-

Figure 9 Axial velocity (m/s) contours relative to the
daughter branch of all cases for the Bird-Carreau model, at

t/T ≈0.34.
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Carreau and Casson viscosity models respectively. The
differences in the dilution properties described by the dif-
ferent viscosity models are due to a combination of the
differences in their viscosity limits and non-Newtonian be-
havioural description. However, there is a consistent ob-
servation that can be made regarding the extent of dilu-
tion throughout the pulsation cycle. The non-Newtonian
model with the consistently highest mean viscosity, as seen
in Figure 7, generates the highest levels of dilution. This
can be observed for both cases in Figure 8 and is also
true when considering the minimums. In general the Bird-
Carreau and the Casson models represent the two extremes
for maximum and minimum dilution respectively. Models
Walburn-Schneck and Quemada always tend to define val-
ues between these models and can be seen to be strongly
related to the mean viscosity defined in Figure 7. This in
turn can be related to the shear layer thickness defined by
each viscosity model. A higher mean viscosity is associ-
ated with thicker shear layers in the daughter branch.
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Figure 10 Comparison of mean fraction haematocrit
difference in region V1, minus the that defined by water, for

(top) Case 1 and (bottom) Case 3.

Another fundamental behavioural property displayed
in Figure 8 is the difference in the maximum range of
haematocrit variation or dilution for each viscosity model.

As the pulsation frequency increases this range decreases
i.e. there is smaller difference between the systolic and
diastolic dilution in case 3 than in case 1. This can be ex-
plained through equation 15, describing the effect of non-
dimensional parameters, Reynolds (Re), Womersley(α)
and Schmidt (Sc) numbers, on the transport. The plots
in Figure 8 maintain constant Re and Sc, but increase α
as the frequency increases. This therefore means that the
∂H∗

∂T term, which signifies the rate of change in haemat-
ocrit over time, decreases and is consistent with what is
observed in the results. Another important feature is that
case 3 also shows a lower value of dilution during the dias-
tolic phase than case 1, reflected by all the viscosity mod-
els. This can be understood by the above explanation and

Figure 11 Example of local haematocrit fraction variation
for all cases at t/T =1 (end of the cycle), with increasing
frequency, focusing on region V1. Data is extracted at the

centre channel cross-section, showing the complete
bifurcation profile.
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can be graphically expressed by the number of haematocrit
pulses or packets existing in region V1 at any point in time
during diastole. Figure 11 uses the Bird-Carreau viscos-
ity model as an example to illustrate the evolution of the
pulses of haematocrit with increasing frequency from case
1 to 3 respectively. The diminished size of the separation
bubble for increased frequency is also evident, described
earlier as one of the main reasons for decrease in the total
increase in dilution from the diastolic level.

The impact of defining blood as a non-Newtonian fluid,
in order to model its two phase flow properties, is quanti-
fied by comparing its dilution behaviour to that of water.
Figure 10 displays temporal data of the dilution defined by
non-Newtonian models minus the dilution defined by wa-
ter for case 1 and case 3, in relation to Figure 8. In case 1 it
is observed that during diastole (t/T =0.4 to 1) there is a
difference in relative dilution. This is due to the flow of wa-
ter alone, as all non-Newtonian models show no change in
dilution during this part of the cycle. The dilution defined
by the non-Newtonian viscosity models shows a maximum
of between 7 and 13% less compared to water. The reason
for this is that water has a relatively low Newtonian vis-
cosity and is observed to maintain momentum in the flow
throughout the cycle, since much less force is required to
move a volume of fluid. This means that transport prop-
erties vary by advection througout the cycle. In case 3 it
can be notice that the difference during diastole is much
less pronounced as compared to case 1. This in turn is due
to the same reasons described earlier, refering to equation
15. The non-Newtonian models display greater dilution
throughout this part of the cycle, ranging between 1 and
10%.

During the systolic part of the cycle for case 1, between
t/T=0 and 0.4, there are large differences in dilution. From
the start of systole to the peak there is a very steap pro-
gression in relative difference, leading to a peak dilution
of between 14 and 20%. After peak systole, during the de-
celaration phase, there is a steady decrease in dilution until
a constant dilution value is reached again during diastole.
This sharp variation in definition of dilution behaviour dis-
plays the degree of importance in modelling the two phase
flow of blood by non-Newtonian viscosity models.

Influence of Separation Bubble
The smaller region V2 is used in order to focus on the dilu-
tion properties surrounding the separation bubble, in order
to further quantify the importance of the influence that the
separation bubble has on the dilution properties within re-
gion V1. At high Schmidt numbers and due to the forma-
tion of secondary flows in the daughter branch enhanced
dilution behaviour exists.

Figure 12 shows the dilution properties existing in V2,
along with a plot depicting its percentage difference rel-
ative to region V1. Figure 12 (top) shows that there is
a maximum dilution around peak systole as in V1, with
a dilution of between 25 and 32%. However, the max-
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Figure 12 Case 1 (top) mean fraction haematocrit difference
in region V2 with respect to the inlet average and (bottom)

(%) greater drop in region V2 vcompared to region V1.

imum dilution is 50 to 60% greater as compared to that
displayed for V1, depicted in Figure 12 (bottom) denot-
ing the % greater drop. During peak systole, all viscosity
models display the same trend, showing the dominant in-
fluence of the formation of the separation bubble. At this
heart cycle frequency, region V2 shows a constantly high
dilution influence, even throughout diastole, depending on
the viscosity model. The different viscosity models display
a great discrepancy where the Casson model shows an 80%
greater drop as apposed to the Bird-Carreau model where
there is a constant value of about 10% after systole. The
higher value obtained using the Casson model is due to a
much lower mean viscosity observed during diastole, com-
pared to that for the Bird-Carreau model, shown in Figure
7. The effect of the flow is a combination of improved
mixing and backflow mechanisms for the Casson model
and the opposite effect for the Bird-Carreau model, during
the transport of haematocrit. When considering the Cas-
son model these effects carry more haematocrit away from
both regions, upstream, back towards the junction, thereby
further diluting the regions. Hence the greater drop per-
centage during diastole, than for the Bird-carreau model.

For case 3, Figure 13 displays the same form of dilution
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Figure 13 Case 3 (top) mean fraction haematocrit difference
in region V2 with respect to the inlet average and (bottom)

(%) greater drop in region V2 vcompared to region V1.

as for case 1 above. During diastole, when comparing the
dilution to that occuring in region V1, there is little differ-
ence in the progression from the results displayed in Figure
8. However, there is a peak dilution around t/T ≈0.3 of
approximately 15 to 24% appearing during systole where
the separation bubble influences the flow. This leads to a
reasonably large contribution from V2 to the overall dilu-
tion in V1, signified by a 15 to 30% greater drop. Un-
like case 1, there is not enough time for the flow to de-
velop enough for mixing and backflow to play a significant
role for this heart cycle frequency. The most influencial
secondary flow mechanism affecting dilution behaviour is
the formation of the separation bubble, causing segregated
flow patterns which narrows the channel of transport into
the daughter branch, during systole.

Effect of RBC profile and Schmidt number
It is of interest to understand the influence the Schmidt
number as well as the inlet haematocrit profiles has on the
dilution. Moreover, whether or not both RBC inlet pro-
files produce significant dilution, is interesting when con-
sidering the differences in variation of both Newtonian and

non-Newtonian viscosity models. Also, the Sc number for
which advective or diffusive fluxes dominate the flow for
non-Newtonian viscosity models is as well.
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Figure 14 Difference in dilution behaviour of the
Bird-Carreau model described by profile 1 and 2 for (top)

Case 1 and (bottom) Case 3.

Haematocrit Inlet profile conditions

In Figure 14 the variation of dilution between cases 1 and 3
are compared for both profiles for the Bird-Carreau model.
Both cases 1 and 3 display the same trend. The dilution
for case 1 shows that there is a difference of 6% between
the profiles during diastole and up to 12% difference near
peak systole. Considering the dilution for case 3 there is
a larger difference between the profiles during diastole of
10% but with a peak systole difference repeatative of case
1. Both profiles describe large, clear variations from what
is imposed at the inlet. Since each profile defines the same
average inlet haematocrit, the differences in dilution be-
haviour come from the minimum value at the wall and the
gradients inherently defined. The trend described by Fig-
ure 14 is similar for all viscosity models.
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Figure 15 Difference in dilution behaviour of the
Bird-Carreau model described by the range of Schmidt

number investigated, between Sc = 1.1 and 110 (top) case 1
and (bottom) case 3.

Schmidt number variation

The variation of the Schmidt number represents the possi-
bility of the increase in mass diffusivity of the haematocrit
when interacting with enhanced secondary flows in the re-
gion of the bifurcation. Figure 15 shows the variation of
haematocrit over a cycle for the three Schmidt numbers
studied, using case 1 and case 3, region V1 and the Bird-
Carreau model. The dilution is strongly influenced by the
increase in Schmidt number. From Sc ≈11 and higher the
dilution during diastole is similar around 9 to 10% (1% dif-
ference) for case 1, while displaying a larger difference for
case 3 of up to 3%. Case 3 shows an additional 4 and 8%
increase in diastolic dilution, for Sc =11 and 110 respec-
tively. The higher pulsation frequency means that there
are more frequent haematocrit packets generated, causing
a greater increase in level of dilution. The higher Schmidt
numbers are more important at higher heart pulsation fre-
quencies.

During peak systole the difference between the higher
Schmidt numbers, Sc =11 and 110, is as large as 4% for
case 1 and 5% for case 3. The difference between the

Schmidt numbers stays similar for all cases. However,
the obsolute increase in dilution from diastole to systole is
still larger for larger values of Sc. This difference is even
greater when considering region V2. At low Schmidt num-
bers, Sc =1.1, the diffusive time scale is small enough,
allowing the diffusive flux to penetrate the separation bub-
ble. This means that only a minor variation in dilution dur-
ing peak systole is experienced. There is, however, a con-
stant dilution value of approximately 3% existing through-
out the cycle. As discussed earlier, the haematocrit or the
RBCs have a low mass diffusivity in high concentrations
and therefore advection dominates the transport behaviour.
All viscosity models display similar trends.

Conclusions
This investigation has carried out analysis of flow field

and transport behaviour of a blood like fluid. The pos-
sible extent of importance of modelling blood in its true
character, as a non-Newtonian viscous fluid, is quantified.
Data representing pressure losses, viscosity variations and
haematocrit transport behaviour has yielded:

• There are large variations in mean pressure gradients
and viscosity throughout the heart cycle, at physio-
logical pulsation frequencies between 30 and 90 beats
per minute, for all non-Newtonian models relative to
the Newtonian model water. This varies throughout
the heart cycle for pulses between 30 and 90 beats per
minute. Describing the flow from a non-Newtonian
viscosity perspective is observed to be more impor-
tant than a simple increase or decrease in Newtonian
viscosity.

• Bulk dilution in the extended region V1 is as high as
16 to 22% in terms of RBC concentration, for case
1, representing low heart pulses of 30 bpm, and 12
to 20% for case 3, representing higher heart pulses of
90 bpm. Large changes in fraction haematocrit there-
fore exists in a 90 degree branch with respect to the
average inlet value.

• Large differences in bulk dilution between non-
Newtonian and Newtonian models exists. At peak
systole up to 14 and 20% difference can be observed
at low heart pulse frequencies of 30 bpm and 10% at
higher pulse frequencies. This shows the importance
of describing transport porperties of haematocrit via
non-Newtonian viscosity models.

• The contribution of the separation bubble to bulk dilu-
tion behaviour is important. It defines the large vari-
ations throughout the heart cycle, especially during
systole. Relative bulk dilution increase in region V2
with respect to V1 is as high as 60% near peak systole
for case 1 and 30% for case 3.

• The large variations in bulk haematocrit existing
at high Schmidt numbers, when comparing non-
Newtonian to Newtonian viscosity models, implies
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that there should be important influences on viscos-
ity that need to be considered. The viscosity of blood
is dependent on local haematocrit fraction.

In future work the haematocrit fraction will be coupled
back to viscosity models to define a more complete viscos-
ity dependency. It is then feasible to investigate physiolog-
ical parameters such as Wall Shear Stress, thought to be
important in the development of vascular diseases.
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Abstract
Over the last decades advancements have been made in the understanding of the complex mechanical and biochemical
processes in atherogenesis. Complex interaction of the different processes govern the development of atherosclerosis,
a previously assumed to be lipid storage disease. It has been shown that fluid mechanical forces could play an
important role for the pathological changes of the endothelium. This study provides further indications for the effects
of fluid mechanical aspects often correlated with the diseased regions of larger arteries. The effects of non-Newtonian
viscosity models are important for the flow behaviour. The regions of reversed flow are more pronounced near
the bifurcation in disease correlated areas. The Red Blood Cell (RBC) volume fraction is also important for the
magnitudes of the wall shear stress (WSS) and its gradients. Unsteady high temporal WSS gradients (WSSG) are
found moving downstream with flow stagnation. This elevated temporal gradient is due to the shear-thinning property
of the non-Newtonian viscosity, the magnitude of which is dependent on the RBC volume fraction. The focal nature
of the gradient has direct implications on the response of the endothelium.
Keywords: Wall shear stress, Wall shear stress gradients, Biomechanics, CFD, Blood, Atherosclerosis.

Nomenclature
Symbol Description Units

µ Effective Dynamic Viscosity Pas
τ Fluid Shear Stress Pa
γ̇ Shear rate magnitude s−1

H Haematocrit (VRBC/VTotal) -
VRBC Volume of RBCs m3

VTotal Total fluid volume m3

µp Plasma Dynamic Viscosity Pas
TPMA Total Proteins Minus Albumin g/l
IFC Inflow case -
C Casson model -
Q Quemada model -
WS Walburn-Schneck model -
BPM Heart Beats per minute min−1

U0 Peak Mean Inlet Velocity m/s
D Diameter of main branch m
d Diameter of daughter branch m
P1 Inlet RBC Profile 1 -
P2 Inlet RBC Profile 2 -
|τ |Peaks Mean value of Coupled Pa

Peak WSS magnitudes
|dτ/dt|Peak Peak temporal Pa/s

WSSG magnitude

Introduction
Atherosclerosis is a common cardiovascular disease

that progradiates rather slowly. It may lead to thrombo-
sis in the coronary and aortic arterial branches causing
disruption of blood flow to important regions of these or-
gans. The formation or development of atherosclerosis is
initially localized to the region of a sharp curvature or bi-
furcation. The flow in these regions is characterized by
flow separation, reversed flow and unsteadiness and has
been strongly attributed to the development process over
the last sixty years [7, 11, 19, 23, 32].

The flow behaviour is thought to affect biological pro-
cesses through increased residence times or biochemical
release processes. Direct mechanical forces on the en-
dothelial layer, on the other hand, have been related to
the dysfunction or damage to the cells. In recent times,
both these processes have been studied through variations
in wall shear stresses (WSS). One of the most common
correlations to atheroma location is regions of low WSS,
which has been thought to be related to the modified trans-
port of solutes at the arterial wall [9, 10]. More recently
correlations have been made between a combination of
low time-averaged and oscillatory WSS with plaque loca-
tion. Both experimental and numerical, steady and pul-
satile flow studies have been carried out to relate this low

1



time-averaged and the oscillatory WSS character to regions
of reversed flow and sites prone to disease [3, 4, 24, 28, 45].
It is often mentioned that this is thought to affect the mass
transport of atherogenic materials in the lumen, increasing
residence times near the arterial walls [4, 8, 28]. There
are also suggestions from studies that link high WSSG to
the disruption of the endothelial cell layer, causing dis-
orientation or damage [18, 22, 35]. Intimal hyperplasia,
thought to be an initiator to atherogenesis and a conse-
quence of relevant WSSG components [17, 27, 44], is re-
lated to widening and stretching of endothelial cell junc-
tions [29]. There is no definitive reason or process that can
account for the atherogenic processes, other than to say
that plaque sites correspond largely to regions of flow sep-
aration, reversed flow, low and oscillatory WSS, and the
departure from unidirectional flow.

The aim of this study is to investigate temporal and spa-
tial variations of the WSS for a blood like fluid in regions
where plaques are commonly found. The flow is affected
by local viscosity variations due to variations in local RBC
volume fraction in the region of the bifurcation. The com-
putational results will be related to current hypotheses re-
lating WSS variations to the possible risk sites. Three dif-
ferent non-Newtonian viscosity models are considered for
three inflow conditions, considering an increase in the peak
flow rate and heart frequency rates. To the knowledge of
the authors, this is the first numerical study of its kind con-
sidering coupling of the local RBC volume fraction varia-
tion affecting the viscosity of the blood flow in large arter-
ies. This study is based upon a geometry used in a previous
Newtonian flow study to which comparison can directly be
made [21].

Methods

Theoretical Background

Viscosity Models

The blood is a multiphase mixture of water with cells and
molcules of widely different size. The volume of RBC
is about 45% of the total blood volume. The cells and
the macro-molecules contribute to the non-Newtonian be-
haviour of the viscosity of the blood. The local RBC con-
centration cannot be assumed to be constant as the cells
are subject to different forces. Thus, a realistic model of
blood viscosity requires that the temporal and spatial dis-
tribution of the RBC is accounted for and this is integrated
into the viscosity models. In this study, three different vis-
cosity models have been implemented accounting for the
local variation in RBC concentration and thereby quanti-
fying the dynamic shear viscosity of human blood. The
chosen models are identified as the most comprehensively
developed and widely used concerning RBC fraction and
shear rate (also dependent on the RBC concentration).

The Casson model, initially derived to describe the
flow behaviour of printing ink, was adapted to describing
blood viscosity as follows [12, 13]:

µ =
τ

γ̇
(1)

τ

γ̇
=

��
kC(H)γ̇ +

�
τy(H)

�2

γ̇
for τ > τy(H)

γ̇ = 0 for τ <= τy(H)
(2)

The terms kC(H) (Casson viscosity) and τy(H) (Shear
Strength) are functions of H as follows:

kC(H) =
µp

(1−H)A
(3)

τy(H) =

�
B

A
((1−H)A/2 − 1)

�2
(4)

The constants A and B represent grouped experimental
constants, where A = aβ and B = aαB − 1 [15]. The val-
ues of the constants are evaluated according to experimen-
tal values for kC(H) = 0.003 Pas and τy(H) = 0.0053
Pa, determined for human blood at H ∼45 % [15, 33, 36].
The model is valid over a wide range of shear rates, greater
than 1 s−1 [13, 46].

One of the most recently developed models is that of
the Quemada constitutive equation, quoted as represent-
ing one of the broadest range of shear rates for blood,
greater than approximately 0.01 s−1 [46]. It was devel-
oped to describe the shear thinning viscosity dependency
of concentrated particle suspensions through the following
equation [37, 38]:

µ = µp



1−
k0+k∞(γ̇/γ̇C)1/2

1+(γ̇/γ̇C)1/2

2
H




−2

(5)

Parameters γ̇C , k0 and k∞ are the critical shear rate and
non-dimensional intrinsic viscosities related to low and
high shear rates, respectively. Empirical correlations for
the RBC concentration dependency on each of these pa-
rameters has been developed as follows [14]:

γ̇C = e(−6.1508+27.923H−25.6H2+3.697H3) (6)

k0 = e(3.874−10.41H+13.8H2−6.738H3) (7)

k∞ = e(1.3435−2.803H+2.711H2−0.6479H2) (8)

The Walburn-Schneck model, is quoted as being an opti-
mised power law model [43]. Equation 9, below, displays
its form.

µ = C1e
C2HeC4

TPMA
H2 γ̇−C3H (9)

Here the empirical constants are C1 = 0.000797 Pa.s,
C2 = 0.0608, C3 = 0.00499, C4 = 14.585 l/g. H
is defined as a percentage and TPMA = 25 for human
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Figure 1 non-Newtonian viscosity model dependency on RBC
concentration

blood. The model is valid for shear rate greater than ap-
proximately 0.01 s−1 [46].

Figure 1 shows the profiles of each model at low and
high shear rates of 1 and 100 s−1, respectively. The shear
rate validity limits mentioned for each model are used to
define the viscosity limits. A haematocrit (RBC concen-
tration) limit is only set for the Walburn-Schneck model
at approximately 25 % due to the invalid relationship at
lower haematocrit fractions, clearly displayed by Figure 1.
All material constant parameters used for density, Newto-
nian viscosities (water and plasma) are described in Table
1. The bulk RBC volume fraction per volume of whole
blood composition at normal levels contains on average ap-
proximately 45% haematocrit [5, 16, 31].

Table 1 Properties for Human Blood at 37 oC and Water at 20 oC

Material Density (ρ) Viscosity (µ)
(kg/m3) (Pas)

Whole blood 1060 (ρm) [6, 16] -
Blood plasma 1025 (ρp) [5] 0.00132 (µp) [5]

Water 998.2 (ρw) 0.001 (µw)

Governing Flow Equations

The flow of Newtonian and non-Newtonian fluids can be
modelled by a single phase incompressible formulation of
the Navier-Stokes equations. The fluids are defined as ho-
mogeneous mixtures and expressed as;

∂ui

∂xi
= 0 (10)

∂ui

∂t
+ uj

∂ui

∂xj
=

1

ρ

�
− ∂p

∂xi
+ µ

∂2ui

∂xj∂xj

�
(11)

Here, µ is defined through each of the non-Newtonian or
Newtonian models and normalised by constant fluid den-

sities, ρ, defining the RBC or haematocrit phase as having
the same density as the carrier phase i.e. blood plasma.

The advection of the haematocrit mixture is modelled
via equation 12. Here we assume that all forces acting
on the RBCs can be expressed by a single effect, namely
that of diffusivity. The evolving haematocrit distribution is
coupled back to the flow field through the dynamic shear
viscosity dependency. The form of the transport equation
and thereby mass conservation can be expressed as;

∂H

∂t
= DH

∂2H

∂xj∂xj
− uj

∂H

∂xj
(12)

where H is the haematocrit or local RBC volume fraction
and DH is the mass diffusivity coefficient thereof. Val-
ues of the mass diffusivity for the RBCs corresponding to
a Schmidt number (Sc) range relative to the viscosity of
water correspond to the following;

11 < Sc =
µ

ρDH
< 110 (13)

Characteristic velocity (U0 - peak inlet velocity), length
(D, main branch diameter) ,time (ω, angular frequency)
scales can be assigned to non-dimensionalise the Navier-
Stokes equation, as follows:

4α2

Re

∂u∗
i

∂T ∗ + u∗
j
∂u∗

i

∂x∗
j

= −∂p∗

∂x∗
i

+
1

Re

∂2u∗
i

∂x∗
j
2 (14)

where T ∗ = ωt, u∗
i = ui/U0, u∗

j = uj/U0, x∗
i = xi/D,

p∗ = p/ρU0
2 and x∗

j = xj/D. The non-dimensional
terms, the Reynolds number Re and the Womersley num-
ber α, can be written as:

α =
D

2

�
ωρ

µ
(15)

Re =
U0Dρ

µ
(16)

The Womersley number represents the relative importance
of transient versus viscous effects, whereas the Reynolds
number relates the convective inertial forces to the viscous
forces. The combination of these two numbers determines
the time dependent flow properties.

Numerical Methods and Case Set-up
Numerical Methods

A finite volume scheme is employed to discretize the gov-
erning equations to second order accuracy. Backward im-
plicit time advancement is employed to evolve the equa-
tions in time. A constant time step is used to ensure a
time resolved solution along with the constant fulfilment
of the CFL condition below 1 at each time-step. The RBC
transport equation is solved and the subsequent computed
(local) RBC concentration coupled to the solution of the
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Navier-Stokes equation via the evaluation of the local non-
Newtoninian shear viscosity models. Depending on the
flow rate, the cases required approximately between 9 and
18 (heart-cycle) periods to obtain a solution, independent
of the initial conditions.
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Figure 2 Axial (left) and azimuthal (right) wall shear stress com-
ponents vs. the azimuthal co-ordinate for grids h2 and h3 at the
x/d=0.68 axial cross-sectional position of the daughter branch.

We consider the flow in a geometry displayed in Fig-
ure 3. For the grid sensitivity study, three hexahedral grids
have been used. Grid h1, h2 and h3 contain 475 179, 1 410
945 and 4 818 447 cells, respectively. The outlets of the
daughter and main branches are extended by 5 and 2 pipe
diameters, respectively. This is done in order to improve
the description of the development of the RBC distribution
in the regions of the daughter branch and the bifurcation.
Here, flow reversal may occur at the outlets if no extension
is used. This is inconsistent with the assumptions made
at the outflow boundaries. By extending the domain, the
flow is unidirectional at the outlet boundaries. The aver-
aged element size (h) for each of the three grids are related
as follows; h2/h1 = 1.44 and h3/h2 = 1.51. Sufficient
mesh resolution is attained with grid h2 of element size 1
410 945 considering the velocity field gradients. However
this does not guarantee that the WSS stress gradients, are
predicted with sufficient accuracy, due to coupling with the
RBC field. Grid h3 (cell size 4 818 447), is a local hex re-
finement of grid h2 in the region of interest and used to
evaluate the accuracy of grid h2 with respect to the WSS
gradients. Figure 2 displays the results with the two grids,
showing the adequacy of grid h2 when analysing the ab-
solute values of WSS in the axial and azimuthal direc-
tions, displayed at the left and right frames, respectively.
The Casson non-Newtonian model is used in this accuracy
test. An error of less than 2 % for the axial WSS (τxr) at
x/d=0.68 along the y-axis is found at t/T ≈0.42 near the
end of systole. There are sharp changes in the azimuthal
component of WSS (τθr). However, the approximate er-
ror is only 0.5 % and corresponds to the largest error in
WSS during the cycle. The error estimate is defined as the

RMS of the differences, normalised by the range of values
as follows:

Error =

��n
i=1(φ1,i − φ2,i)2

n
(φ1,2,max − φ1,2,min)

(17)

where φ is the property and n is the number of samples.

Computational Geometry and Boundary Conditions

A simplified arterial model is chosen in order to avoid pa-
tient specific models. It is a simplified model resembling
one of the larger arterial branches in humans adequate for
understanding general flow behaviour [21]. The geomet-
ric dimensions shown in Figure 3 for D =13.2 mm and
d =9.35 mm [21]. The 90-degree bifurcation has a smooth,
arterial like shape with an approximate radius of curvature
of 9.7 mm, allowing for a time-dependent point of separa-
tion.

Figure 3 a) Geometric domain with absolute dimensions, b) Intel
flow rate vs. Time

Different inflow boundary conditions, displayed in
Table 2, are chosen according to characteristic arterial
flow data common to the abdominal aorta and its larger
branches [5]. Peak Inflow velocity or amplitude is esti-
mated from this data. The range of periodic pulsation rates
(heart rates), characteristic of arterial flows, are chosen ac-
cording to a normal range representative of the in-vivo flow
conditions in humans. As argued for the geometric choice,
a well-defined temporal inflow profile is needed in order to
determine the periodic pulsating character of the flow and
its frequency (Womersley number) response [20, 21, 41].

QIN = AD.U0.e
−0.5c2 , c =

t− nT

0.6T
− 0.38

0.11
(18)

where n is the number of preceding periods; i.e. for the
first period n = 0, the second n = 1, etc. U0 is determined
by the Reynolds number, T is the period time, determined
by the Womersley number, and AD is the cross-sectional
area of the main branch. The inlet flow rate vs. time is
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Table 2 Case set-up matrix. An x indicates a simulated case.

Inflow Case (IFC) No.
Newtonian non-Newtonian

Water
un-Coupled Coupled

Models Inflow Parameters Models
U0 BPM Re α C Q WS RBC Profs Sc C Q WS

1 x x x x
P2 110 x x x
P1 110 x x

0.11 60 1130 14.6 P1 11 x x

2 x x x x
P2 110 x x x
P1 110 x x

0.11 90 1130 18.2 P1 11 x x

3 x x x x
P2 110 x x x
P1 110 x x

0.22 60 2260 14.6 P1 11 x x

plotted in Figure 3 for the inflow cases investigated in this
study.

On the walls the no-slip condition is applied, whereas
constant reference pressures are given at the two outlets.
The walls are modelled as rigid structures.

The inlet boundary condition for the RBC transport
equation is chosen to maintain a constant average (bulk)
haematocrit, H , for each of the flow cases. The profiles
are taken from observations of experimental RBC profile
measurements for laminar flows in large arterial scale tubes
[1]. The typical away migration of RBCs near the walls in
arteriole or capillary scale tube flow, due to wall effects at
low shear rates, is also displayed in previous experimental
studies [25, 26]. In these studies which are at high shear
rates (not encountered in large arteries) RBCs tend to mi-
grate towards the wall, whereby the RBC phase display en-
hanced diffusive behaviour. A hyperbolic tangent equation
is used to model the inlet behaviour observed in large arte-
rial flow, with a cell depleted layer near the walls. Thus, the
inlet RBC concentration profile takes the following form:

H = �H (1 + tanh [m(r − δ)]) +Hwall (19)

Here H̃ is a value chosen to achieve a target bulk haem-
tocrit of 45 %, Hwall is the haematocrit fraction value set
at the wall, r is the radial co-ordinate, m and δ are cho-
sen to qualitatively describe the distribution towards the
wall. Hwall is set to two different values, 0 (0 %) and
0.25 (25 %), to study the effect of the different inlet pro-
files, P1 and P2, respectively. This represents one of the
possible ways of defining an increased RBC concentration
toward the walls, and thereby the sensitivity to the inlet
RBC distribution boundary conditions. Zero gradient con-
ditions are set at the walls by each of these profiles to be
consistent with the zero gradient conditions at the walls
throughout the domain. Zero gradient conditions are also
applied at both outlets.

Several periods are required before periodicity criteria
is met so that the effects of initial conditions are eliminated
whereby data could be extracted. The periodicity criterion
used here is that the volumetric difference in RBC mass in
the region of interest does not change by more than 1%,
from cycle to cycle.

Case Setup and Analysis

The range of flow cases considered are given in Table 2.
Three inflow cases are studied representing the effect of
an increase in flow rate and an increase in heart pulsation
frequency. The heart pulsation range, in Beats Per Minute
(BPM), represents two typical physiological human heart
rates. The flow rates or peak average inlet velocities are
within the range of values common between the ascend-
ing and abdominal aortic regions and their larger branches.
The inflow cases are dependent on the individual, the de-
gree of effort and the possible variation in arterial dimen-
sions. The Reynolds and Womersley numbers for blood are
as quoted, regarding the most consistent viscosity values
for blood, the blood plasma viscosity (µp), given in Table
1. Blood plasma is assumed to be a Newtonian fluid [5].
The considered cases include the effect of an increase in
RBC mass diffusivity through a decrease in Schmidt num-
ber Sc and the variation of RBC concentration gradients
via the RBC distribution profiles, P1 and P2. In Table 2
the non-Newtonian models are refered to as either coupled
or un-coupled, meaning that the evolution of viscosity is
either dependent on the computed haematocrit field or not,
respectively.

The dominance of the advective properties due to the
flow scales studied have been demonstrated in a previous
study, where Sc numbers above 11 display a significantly
lower influence of diffusive fluxes [41]. The values for the
effective RBC diffusivities implemented are therefore ap-
proximately two to three orders of magnitude greater than
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that found in literature for tube flow experiments.
The formation of a notable separation bubble and sec-

ondary flows in the daughter branch, due to the 90-degree
deflection of the flow, is thought to be important for athero-
genesis. Hence, our region of interest is the region close to
the bifurcation and it is shown by the shaded region in Fig-
ure 4. A co-ordinate system and reference dimensions used
in denoting domain locations and the axial and azimuthal
components of the physiological variables are also illus-
trated in Figure 4. Flow cases are referred to according to
the notation in Table 2.

Figure 4 Axial and azimuthal reference co-ordinate system and
location of the investigated region in the daughter branch, taken
from a previous study [21]

Results
The aim of this study is to investigate the sensitivity of

WSS dynamics to changes in the non-dimensional num-
bers (Re,α,Sc) as well as the effects of blood-like non-
Newtonian viscosity. Spatial and temporal WSS varia-
tions and gradients are the focus in regions commonly sus-
ceptible to disease formation in arterial bifurcations. Re-
versed flow behaviour in the daughter branch is analysed
also since regions prone to disease have been associated
with regions of secondary, separated and reversed flows
[7, 11]. A comparison between the Newtonian and non-
Newtonian viscosity models is also made. In recent times
elevated WSSGs have been the focus of studies relating
to regions of plaque formation and endothelial function
[2, 17, 27, 44].

Temporal WSS derivatives
Both spatially and temporally varying WSSGs have been
hypothesized to be related to the possible dis-orientation

of endothelial cells or complex induced stresses that affect
biochemical expression in the endothelial layer. The prolif-
eration of cells in the endothelial layer has been associated
with the early stages of atherogenesis, which in turn has
been found to be enhanced by elevated temporal WSSGs
[27, 44]. The most notable in the present study is the tem-
poral derivative variation at the outer wall near the bifurca-
tion, where plaque formation typically starts. The forma-
tion and motion of a focal peak is observed during systole,
coinciding with the formation of the separation bubble. A
point sample over time at x/d=0.58 and azimuthal angle
θ = 4.6◦, consistent with the WSS analysis to follow, is
used to represent the flow dynamics in the outer wall re-
gion. In this region spatial derivatives are not very different
in character from those of the Newtonian model, described
in a previous study for the same geometry. The distribu-
tion of the spatial derivative is not as strikingly focal to
atherogenic related regions as the temporal derivative.

In Figure 5 the temporal derivatives are plotted for both
the uncoupled and coupled non-Newtonian viscosity mod-
els for each inflow case. The plot on the left depicts Inflow
Cases 2 and 3, normalized with respect to the peaks of each
model in Inflow Case 1, providing information regarding
the increase in the scale of the gradient with the increase
in pulsation frequency and flow rate, respectively. The plot
on the right depicts the difference in gradient with respect
to the Newtonian model.

At pulsation frequencies 60 and 90 BPM, Inflow Cases
1 and 2, the common trend shows an increase in gradient
to around t/T=0.1 followed by a fast, steady decrease to
near peak systole. A sharp peak is reached for all non-
Newtonian model simulations, both coupled and uncou-
pled. This peak arises due to co-incidence with a stag-
nation point that moves past this position on the wall. The
stagnation point forms between the separation bubble and
the reattached flow downstream. The existence of the stag-
nation point leads to a sudden increase in viscosity due
to the sudden, substantial decrease in shear rate, evident
in Figure 10. With an increase in pulsation frequency to
90 BPM, Figure 5 (a) shows that the peak temporal gradi-
ent is doubled and follows a similar pattern to 60 BPM.
Similarly, the increased flow rate of Inflow Case 3 also
displays a doubling of the gradient at the first sharp peak
near t/T=0.2. The peak occurs earlier due to the increased
Reynolds number and the faster development of the sepa-
ration bubble, leading to faster movement of the stagnation
point.

The plot on the RHS gives an indication of the relative
difference in temporal gradient with respect to the Newto-
nian model. Each of the non-Newtonian models shows a
sharp difference near peak systole (t/T=0.22), with the un-
coupled models defining much greater positive and nega-
tive gradient magnitudes as compared to the coupled. This
is due to the greater peak magnitudes displayed in Figure
9 and a similar time scale between the peaks. The coupled
models show decreased magnitudes due to the lower vis-
cosities defined via the consistently lower volume fractions
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Figure 5 A comparison of the temporal WSSG for IFC 2 and 3 at point x/d=0.58 and azimuthal angle 4.6◦ for all non-Newtonian models,
top and bottom respectively. On the left, a) & c) normalized by the peaks of IFC 1 and on the right, b) & d) the difference between the
non-Newtonian and Newtonian models.

of RBCs near the wall. The sharp increase and decrease in
the temporal gradient, most importantly, is a function of
the shear rate dependency of the non-Newtonian viscos-
ity models. The magnitudes are regulated by the regional
change in RBC volume fraction, as will be described in
the following section. Regarding the increased flow rate of
Inflow Case 3, the coupled models display increased un-
steadiness consistent with the lower viscosities and higher
shear rates, as shown in Figure 10, closer to the Newto-
nian behaviour. A comparison with the Newtonian model
shows a peak in difference at t/T=0.2, consistent with the
stagnation point formation described earlier. Large vari-
ations ensue after a second peak near t/T=0.26. The dif-
ferences thereafter are primarily due to the large gradient
differences with the Newtonian model.

A depiction of the focal nature of the temporal gradi-
ents on the outerwall compared to the Newtonian model, is
displayed for points in time during systole in Figures 6 and
7. The Figures represent the inflow cases at 60 BPM, 1 and
3, showing the local temporal gradient magnitudes, both

normalized by the peak of the Quemada model. The points
in time show the focal downstream movement of the peak
temporal WSSG on the outer wall, due to the shear thin-
ning property of blood-like viscosity models. In both flow
cases it is found that the distribution of the sharp peaks is
greater and more focused on the outer wall than that found
for the Newtonian model.

non-Newtonian WSS Dynamics
The regions where reversed flow are found offers insight
into areas of unsteady near wall dynamics and can be ob-
tained through the negative WSS (the shaded regions) pat-
terns. Figure 8 shows the WSS vary during systole as com-
pared to the Newtonian model, during which the most rel-
evant dynamical behaviour takes place. The differences in
WSS directional development are similar for profiles P1
and P2. Therefore only the behaviour due to inflow profile
P2 is displayed.

Each of the non-Newtonian models shows a slightly
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Figure 6 A non-Newtonian versus Newtonian model for the Temporal WSSG distribution at two points located within the investigated
region for IFC 1. Plotted with respect to the axial and azimuthal co-ordinate system in Figure 4.

different time response to separation but with very simi-
lar patterns of formation for the respective inflow cases.
At 60 BPM the time for the separation bubble to grow to
approximately an axial position of x/d=1 on the outer wall
takes place at around t/T=0.261, after systole. Increasing
the frequency to 90 BPM there is a delay in the growth to
a similar size at around t/T=0.273, which is expected with
respect to equation 14. At double the flow rate i.e. Inflow
Case 3, the growth is accelerated due to increased centrifu-
gal forces and appears earlier at around t/T=0.23. In each
of the flow cases, the separation bubble size of the New-
tonian model extends approximately 20 % further down-
stream than the non-Newtonian models. In general, non-
Newtonian separated flow takes place closer to the bifur-
cation during systole than the Newtonian model. For each
of the studied cases reversed flow develops further down-
stream at the outer wall for the Newtonian model. There-
fore it does not fully represent the localised nature of the
unsteadiness closer to arterial bifurcations.

The point used to analyse the temporal WSSGs is also
used for the WSS components to describe the relation to
the temporal WSSG. In Figure 9 both axial and azimuthal
WSS components are plotted to study the effect of both

separated and secondary flow patterns during the heart pul-
sation for each inflow case. In Figure 9 each case is nor-
malized by the mean of peak WSS magnitudes (|τ |Peaks)
of the coupled non-Newtonian models. The temporal de-
velopment of the axial WSS dynamics for Inflow Cases 1
(60 BPM) and 2 (90 BPM) are represented by Inflow Case
2 in Figure 9 due to the similarity in trend. The peak to
peak difference is greater though, defining the larger tem-
poral WSSG displayed earlier for Inflow Case 2, due to
the change taking place over a similar time scale. Inflow
Case 1 and 2 display the same mean peak WSS magni-
tude indicating that it is a function of the Reynolds num-
ber. Regarding the azimuthal component, the flow does not
change direction towards the inner wall during diastole, as
observed for the Newtonian model. Here, the negative di-
rection indicates flow towards the outer wall. This implies
that particulate matter is constantly transported towards re-
gions prone to plaque formation.

In general the coupled models display lower WSS mag-
nitudes, as compared to each respective uncoupled model,
due to the dilution taking place, shown in Figure 10. The
Quemada model displays the lowest WSS magnitudes due
to the lowest defined viscosity, caused by the lowest pre-
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Figure 7 A non-Newtonian versus Newtonian comparison of the Temporal WSSG distribution at points in time of the investigated region
for IFC 3. Plotted with respect to the axial and azimuthal co-ordinate system in Figure 4.

dicted RBC volume fraction, in turn leading to higher shear
rates. Due to dilution, the increased flow rate displays the
effect of decreased viscosity through the fluctuations of the
WSS, displayed in Figure 9. Unsteadiness caused by the
complex seconday flows after the peak in back flow, is ob-
served in both the axial and azimuthal components. The
coupled models display behaviour more similar to that of
the Newtonian model in terms of the increases in oscillat-
ing WSS inside the separation bubble. At the higher flow
rate, both WSS components become less comparable to the
peak magnitude during the acceleration stage of systole,
caused by the much higher shear at the inner wall due to
the larger centrifugal forces.

Coupled vs Uncoupled non-Newtonian Flow
The local RBC volume fraction through the coupled non-
Newtonian models has been shown to influence the fluc-
tuation in WSS, Figure 9. Figures 11 and 12 display the
variation via the terms of Navier Stokes equation, equa-
tion 11, and the non-Newtonian viscosity variables, respec-
tively, at a point inside the separation bubble for a pulsa-
tion frequency of 60 BPM i.e. Inflow Case 1. This fre-
quency is used in order to illustrate the effect of coupled

vs uncoupled viscosity modelling on the flow field dynam-
ics. The position chosen is located 10 % in the daughter
branch diameter (d) in the radial direction (away from the
wall) and coincides axially with the analysed position at
the wall. As discussed in the previous section the results
indicate that the flow unsteadiness inside the separation
bubble may be important to atherogenic processes due to
its correlation with the near wall dynamics. In Figure 11,
the magnitudes of the transient and convective accelera-
tion terms, the pressure gradient and divergence of viscous
stress terms of the momentum equation, are plotted over
the pulsation cycle. Most notably of all the terms is the
viscous diffusion term (µ∇2u) shows that with decreas-
ing viscosity the diffusion is lower throughout the cycle.
The coupled non-Newtonian models display less diffusion
as compared to the uncoupled models during the acceler-
ating and decelerating stages of the flow. At the onset of
the bubble formation near peak flow, t/T =0.2, the lowest
value is reached for all models. The largest discrepancy
in viscous diffusion between the models occurs during the
decelerating stage where secondary flows become more in-
fluential. This can be explained by Figure 12, showing that
a minimum RBC volume fraction is reached near peak sys-
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Figure 8 A comparison of regions of negative axial WSS or backflow (blue shaded regions) between the coupled non-Newtonian models
and Newtonian (water) model, horizontally at points in time during the cycle for Inflow Cases (a) 1, (b) 2 (c) 3. Plotted with respect to
the axial and azimuthal co-ordinate system in Figure 4.

tole. This leads to lower viscosity throughout most of the
cycle. At the same time, higher shear rates exist, partly
due to the lower flow resistance caused by the lower RBC
fraction. This also leads to a further decrease in viscosity.
The lower levels of viscous diffusion lead to higher levels
of convection (∇.(ρuu)) throughout the pulsation cycle,
but still lower than the Newtonian model. The unsteady
acceleration (ρdu

dt ) and pressure gradient (∇p) terms show
similar peaks at approximately t/T=0.15, before a fast de-
crease to a minimum at t/T=0.22. A fast increase in both
terms leads to a second maximum, where the coupled mod-
els produce higher pressure losses and levels of unsteadi-
ness compared to the uncoupled models, yet lower than for

the Newtonian model.

During systole, RBC dilution inside the separation bub-
ble may lead to a decrease in viscous diffusion by as much
as 100 %, considering the Quemada model in Figure 11. In
general, the coupled models display lower values than the
uncoupled models throughout the cycle, especially during
the acceleration and deceleration stages of systole. This
implies that the uncoupled models under-estimate convec-
tion and unsteadiness, as shown in Figure 11. The increase
in velocity gradients inside the separation bubble signi-
fies more complex flows, shown by the greater fluctuation
in the convective acceleration term in Figure 11 and the
higher shear rates in Figure 12 during systole.
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Figure 9 A comparison of axial (left) and azimuthal (right) normalized WSS variations between the coupled non-Newtonian and Newto-
nian (water) models at point x/d=0.58 and azimuthal angle 4.6◦: (a) and (b) IFC 1; (c) and (d) IFC 3.

Influence of RBC Inflow profile

The inlet RBC distribution may produce large variations
in the viscosity due to RBC dilution effects, especially in
the region near the bifurcation. These variations have been
shown to influence the absolute values and derivatives in
the WSS. Figure 13 shows that there is a distinct differ-
ence between the peak temporal gradients defined by both
the Quemada and Casson models of between 18 % and 28
%, respectively, normalized with the peak value of each
profile P2 model. The pulsation frequency of 90 BPM (In-
flow Case 2), is chosen for comparison due to the higher
sensitivity of the temporal gradient, displayed earlier in
Figure 5, to a frequency increase. These results in conjunc-
tion with Figure 14, shows that at lower volume fractions
the shear rate dependency of the non-Newtonian viscosity
models becomes less influential in affecting the fluctuat-
ing WSS. The peak temporal gradient decreases with the
occurrence of the stagnation point. This can be explained
through Figure 1, where it is observed that as the volume
fraction decreases the change in shear rate has a less signif-
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Figure 13 Percentage Difference between the temporal deriva-
tives for inlet profiles P2 and P1, respectively, at outer wall po-
sition x/d=0.58 and 4.6◦ for the coupled Casson and Quemada
models, normalized by the peak values of P2 coupled models.
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Figure 10 Time history of viscosity, shear rate and H throughout the heart-cycle for the coupled non-Newtonian models, at point
x/d=0.58 and azimuthal angle 4.6◦.

icant effect on the change in viscosity. Physically this may
indicate the existence of less RBCs, on which the shear rate
dependency is based, to resist flow.

Influence of RBC Diffusivity

During this study all data considered reflects a value for
diffusivity equal to a Schmidt number (Sc) of approx-
imately 110. A value of Sc=11 was also studied but
produced no significant difference in the absolute values
and development of the WSS, when comparing all Inflow
Cases. In a previous study the convective properties have
been shown to become more dominant at an Sc number
greater than 11 [41].

Discussion and Conclusions
The relation of haemodynamics, via the complete non-

Newtonian fluid mechanical aspects, to the atherogenic
processes has been investigated. Numerical studies in the
past have concluded that a Newtonian viscosity model is
adequate in describing relevant mean physiological param-
eters at medium to high shear rates relevant to large arteries
[21, 40]. There is evidence that the non-Newtonian char-
acter of blood is important in the region of bifurcations and
curvatures, due to shear induced dilution [41]. Large vari-
ations in RBC fraction causes large variations in the local
viscosity, as Figure 1 illustrates. It is therefore reasonable
that the characteristic of separated and reversed flows are
strongly affected by the viscosity variations. The unsteadi-
ness or high gradient anomalies in the WSS have been hy-
pothesized to be the mechanisms initiating or enhancing
atherogenesis over many years.

In this study support is given to the localisation of sep-
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Figure 11 A comparison of the terms of equation 11, considering the differences between the non-Newtonian models, coupled and
uncoupled, and the Newtonian model.

arated and secondary flows close to the bifurcation, dur-
ing systole. The importance of non-Newtonian viscos-
ity parameters in identifying physiological flow features is
demonstrated. These flow regimes and sudden increases
in rates of unsteadiness in the near wall region are closely
associated to commonly known diseased regions near the
bifurcation. During this study, separated flows related to
regions of unsteadiness are shown to be more focal to the
region of the bifurcation than what the Newtonian flow
model predicts. Moreover, previous studies also define the
flow through non-Newtonian models but never consider the
variation in RBC volume fraction. In this study the varia-
tion in RBC volume fraction in the region of the bifurcation
is shown to decrease by up to 40 % at a point inside the sep-
aration bubble region for the coupled non-Newtonian mod-
els, displayed in Figure 12. This has a direct influence on
the terms defining the properties of the flow. The dilution
behaviour decreases the viscosity near to the bifurcation
due to the formation of the separation bubble, leading to a
decrease in the WSS magnitudes from peak to peak during
the WSS cycle at the outer wall. Comparison with the un-
coupled non-Newtonian models shows over prediction of

the WSS magnitudes and damp possible fluctuations due
to the flow being too viscous. It is a direct effect of not
considering the local volume of RBC, where RBC depleted
regions decrease the viscosity.

The most striking property of the analysed flows is the
distinct focal development of temporal WSS gradients on
the outer wall near to the bifurcation. It is in this re-
gion of the arterial wall in 90-degree bifurcations that the
most prominent plaques form [42]. A focused region of
sharp increase in temporal WSSG is observed to be mov-
ing downstream during systole, co-inciding with the stag-
nation point that forms immediately behind the separation
bubble. This is also observed to an extent in the Newtonian
flow, but not nearly with the same impact on the gradient as
observed due to intrinsic properties of the blood-like non-
Newtonian viscosity models. The temporal WSSG can be
as high as 200 % larger compared to the defined value by
the Newtonian model, considering the uncoupled models.
This can however be seen to be an over-estimation of ap-
proximately 100 % due to neglect of the volume fraction
effects accounted for by the coupled viscosity models, as
display in Figure 5. The increase in gradient is not only

13



0 0.2 0.4 0.6 0.8 1
0

10

20

30

t/T

µ
 (m

Pa
s)

0 0.2 0.4 0.6 0.8 1
0

10
20
30
40

t/T

γ.  (s
−1

)

 

 
cassonProfile 2
quemadaProfile 2
walburnProfile 2

0 0.2 0.4 0.6 0.8 1
0.25

0.3

0.35

0.4

t/T

H

Figure 12 The time-evolution of viscosity, shear rate and H throughout the pulsation cycle for all non-Newtonian models, at point
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outer wall position x/d=0.58 and 4.6◦ for the coupled Casson and
Quemada models.

larger but increases very suddenly as well, due to the shear
dependency of the non-Newtonian viscosity models. The
existence of the stagnation point is the cause of a sudden
decrease in shear at the wall, which in turn leads to a sud-
den increase in viscosity. Cell proliferation in the endothe-
lial layer has been shown to be enhanced in vitro in re-
gions of sudden increase in temporal WSSGs [17, 27, 44].
It is also evident that from these experiments that spatial
WSSGs are not as important as the temporal WSSGs. The
process of cell proliferation is thought to be the initiating
process in atherogensis, pre-fatty streak formation. There
is also evidence that temporal gradients in WSS, and not
the absolute WSS, induce expression of bio-chemicals im-
portant in the recruitment of monocytes for example in the
inflammatory process [2]. Atherosclerosis has been de-
scribed by many researchers to be an inflammatory disease
[30, 34, 39]. Important details in the WSS dynamics or
other important physiological parameters can be lost with-
out the consideration of the intrinsic non-Newtonian vis-
cous properties of the blood.
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