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Abstract

Transition to turbulence and flow control are studied by means of numerical
simulations for different simple shear flows. Linear and non-linear optimisation
methods using the Lagrange multiplier technique are employed.

In the linear framework as objective function the standard disturbance ki-
netic energy is chosen and the constraints involve the linearised Navier—Stokes
equations. We consider both the optimal initial condition leading to the largest
disturbance energy growth at finite times and the optimal time-periodic forc-
ing leading to the largest asymptotic response for the case of the flat plate
boundary layer excluding the leading edge. The optimal disturbances for span-
wise wavelengths of the order of the boundary layer thickness are streamwise
vortices exploiting the lift-up mechanism to create streaks. For long spanwise
wavelengths it is the Orr mechanism combined with the amplification of oblique
wave packets that is responsible for the disturbance growth. Also linear optimal
disturbances are computed around a leading edge and the effect of the geom-
etry is considered. It is found that two-dimentional disturbances originating
upstream, relative to the leading edge of the plate are inefficient at generating
a viable disturbance, while three dimentional disturbances are more amplified.

In the non-linear framework a new approach using ideas from non-equilibrium
thermodynamics is developed. We determine the initial condition on the lami-
nar/turbulent boundary closest to the laminar state. Starting from the general
evolution criterion of non-equilibrium systems we propose a method to optimise
the route to the statistically steady turbulent state, i.e. the state characterised
by the largest entropy production. This is the first time information from the
fully turbulent state is included in the optimisation procedure. The method is
applied to plane Couette flow. We show that the optimal initial condition is
localised in space for realistic flow domains, while the disturbance visits bent
streaks before breakdown.

Feedback control is applied to the bypass-transition scenario with high lev-
els of free-stream turbulence. The flow is the flat-plate boundary layer. In this
scenario low frequency perturbations enter the boundary layer and streamwise
elongated disturbances emerge due to non-modal growth. The so-called streaky
structures are growing in amplitude until they reach high enough energy levels
and break down into turbulent spots via their secondary instability. When con-
trol is applied in the form of wall blowing and suction, the growth of the streaks
is delayed, which implies a delay of the whole transition process. Additionally,
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a comparison with experimental work is performed demonstrating a remark-
able agreement in the disturbance attenuation once the differences between the
numerical and experimental setup are reduced.

Open-loop control with wall travelling waves by means of blowing and
suction is applied to a separating boundary layer. For downstream travelling
waves we obtain a mitigation of the separation of the boundary layer while for
upstream travelling waves a significant delay in the transition location accom-
panied by a modest reduction of the separated region.

Descriptors: shear flows, flow control, optimal disturbances, Lagrange method,
transition to turbulence, non-linear dynamics
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Part 1

Introduction



CHAPTER 1

Introduction

Fluids are all around us. We experience them in all kind of manners and ways.
We jump into the water for a swim and feel how it is opposing us but at the
same time keeping us afloat; we feel the wind around us when we run or bike,
we throw a flat stone in the lake and watch it bouncing a few times before it
sinks; we have a sip from a glass of red wine. However, hardly ever we realise
and even less often we understand the complicated phenomena taking place
within them.

It always amazes me how we are able to conceive and describe immense
processes, light years away, like the birth of a star or its cataclysmic death or
we have theories that can explain microscopic phenomena like few sub-atomic
particles interacting and combining to give us a huge variety of elements found
in nature; yet again something so familiar and commonplace like the flow of
the water out of an open tap or down a small stream elude us: suddenly and
for no apparent reason the simple smooth laminar flow turns into a chaotic and
turbulent motion.

The shift of a flow from the laminar to turbulent state is called transition
to turbulence and it has been the subject of study for more than a century.
This thesis deals with problems of the kind and also attempts to shed some
light on how to apply control and try to prevent a transition like the one de-
scribed above. However, the more complicated the flow configuration becomes
i.e. the geometrical and physical characteristics of the solid objects that the
fluid interacts with, the less intuitive or apparent the transition mechanisms
are.

In real flows often (but not always) the transition is initiated by small am-
plitude perturbations and we can assume that their dynamics can be described,
at least at an initial stage, by linear theory. However, whether transition will
occur or not does not depend solely on the perturbation amplitude but also on
its shape in space. Thus, there must be some perturbations that are more effi-
cient at initiating transition than others. These are called optimal disturbances
and they can help us understand the transition process.

The scientific questions of how and why we get transition to turbulence are
sometimes replaced with the more engineering type of questions of when and
where; we are more interested in quantifying the phenomenon than explaining
it. Answering the first questions might be tedious and long and in the end we
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may get no real answer. However, if do manage to get answers, it becomes
much easier to address the engineering problem. In the long run it will be
worth the effort. However, what I believe really matters, even if final answers
elude or disappoint us, is the “journey” and how we learnt of new things we
would never have thought to look for in the first place.



CHAPTER 2
Theoretical background

2.1. Governing equations

This thesis is concerned with the stability, transition and control of simple
shear flows subject to external disturbances. The system of partial differential
equations (PDE) used to model the flow are the incompressible Navier-Stokes
equations:

du+(u-V)u = —Vp+ Re 'Au+f, (2.1)

V-u = 0, (2.2)

where u = (u(x,t),v(x,t),w(x,t))T is the velocity field and p the pressure.
All the quantities are non-dimensionalised with respect to some typical length
and velocity scale present in the flow. The term f is a forcing function that

can assume different roles. For instance, we apply flow control or seek optimal
forcing functions. Re is the Reynolds number which is defined:

_uL
L

Re (2.3)

U and L are velocity and length scales while v is the kinematic viscosity of the
fluid.

In some cases we choose to assume perturbations of small amplitude that
evolve around a steady base flow. The equations that describe the dynamics
of these perturbations are a linearised version of 2.1. The use of optimisation
theory along with a linear system of governing equations gives us insight on
the mechanisms that bring an infinitesimal disturbance to finite amplitudes
and potentially trigger transition to turbulence. The model describing the
dynamics of these small perturbations are therefore the linearised Navier-Stokes
equations,

ow' +(U-V)u' + (0 -V)U = —Vp+ Re 'Au +f, (2.4)

vV.-ud = 0, (2.5)

where U = (U(x),V(x),W(x))T is the base flow we study and u’ =
(u(x,t),v(x,t),w(x,t))T is the small perturbation representing the departure
from the base flow. u = U+u’ would be the total velocity vector. x = (z,y, 2)
is the spatial position vector where x corresponds to the streamwise, y to the

wall-normal and z to the spanwise direction. In the cases studied here all the
base flows have at least one homogeneous direction, so they can be written:

4
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U = (U(z,y),V(x,y),0)T. This allows us to consider Fourier decomposition
along the spanwise direction and treat each Fourier mode independently. This
reduces a big three-dimensional problem into several smaller two-dimensional
ones which from the computational standpoint is advantageous.

In the rest of this introduction we will drop the primes and use u as our
main variable. In the studies based on linear theory, u will be perturbation
from the base flow while in the non-linear case u will be the total velocity field,
base flow plus perturbation.

2.2. State-Space formulation

As it can also be seen from equations (2.4) and (2.5) for incompressible flows
the pressure only acts as a Lagrange multiplier to enforce the constrain of
divergence-free velocity fields. The pressure itself can be formally expressed as
a function of the velocity vector u = (u,v,w)” enabling the use of u as the state
variable and to re-write the equations in a compact form (Kreiss et al. 1994).
The momentum part of the forced linearized Navier—Stokes equations can be
written as

du=—(U-V)u— (u-V)U+ Re 'Au+ Vp+f, (2.6)

where the pressure is a known function of the divergence-free velocity field u
and base flow U
Ap=-V -((U-V)u+ (u-V)U). (2.7)

Inversion of the Laplacian requires boundary conditions and formally we
may obtain these by projecting (2.6) on the outwards pointing normal of the
domain n. The solution of (2.7) is denoted as p = Ku so we have with the
following expression for the system operator

A=—(U-V)—(VU)+ Re *A + VK. (2.8)
The resulting state space formulation of equation (2.6) reads
(O —Au—-£f=0, u(0)=mup, (2.9)

with solution

u(t) =  exp(At)ug +/ exp(AT)f(x,t —7)dr. (2.10)
—— 0

initial value problem

forced problem

Alternatively A may also be defined using semi-group theory, where it is
referred to as an infinitesimal generator. First, the evolution operator 7 () is
defined as the operator that maps a solution at time ¢y to time tg + ¢.

u(t+to) =7 (t)u(to) . (2.11)
The infinitesimal generator of 7 (), A, is defined through the action of 7 for
an infinitesimal amount of time §t

Au = i LO0)u—u

5t—0 ot (2.12)
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See also Trefethen et al. (1993) and Bagheri et al. (2009).

2.3. Objective function and the Lagrangian approach

The optimisation method employed here is called the Lagrange approach. The
idea originates from classical mechanics where the Lagrangian is an alternative
way to write the energy of a dynamical system. Using calculus of variations one
seeks minima of the Lagrangian which often correspond to preferred (by the
system) states. The method is generalised so that new states (still solutions to
the original PDE) are recovered that correspond to extrema of a chosen quan-
tity /functional of the system. Additional constraints, apart from the governing
equations themselves, can be added according to the needs of a specific prob-
lem. Once the Lagrangian is set-up it is a calculus problem to build a new set
of PDEs whose solution not only satisfies the original PDE but is additionally
an extremum with respect to the chosen objective. The chosen functional is
known as objective function and the method is referred to as the Lagrange
multiplier technique.

The objective function we choose depends on the type of problem we aim
to solve. When linear theory is employed the standard choice is the kinetic
energy of the perturbation field since this indicates a measure of the departure
from the laminar profile. However, when non-linear optimisation is performed
this choice becomes less obvious and other alternatives are explored (see section
3.2). In any case we should always use a quadratic objective function to ensure
a well-posed optimisation.

The constraints can be either physical, for instance the need to have a
divergence-free velocity field (part of the governing equations) or ad hoc like
the demand to have an initial condition of unit amplitude. We introduce the
norm based on the kinetic energy of the perturbations

()| = (u(t), ut)) = / u'u do. (2.13)

Q

The general form of the Lagrangian used throughout this thesis is

L = (Objective function) — (u*, (Gov. Eqs)) — (o0, (Additional constraints))

The quantities u* and o are called Lagrange multipliers and they are part of the
final system of PDEs. The Lagrange multiplier u*, attached to the governing
equations, is a solution to a PDE similar to the original governing equations
and is called the adjoint variable or co-state variable.

We apply this method to both the linear and non-linear problem. For the
linear case we study two types of problems. One is finding optimal perturba-
tions, that is structures in the flow that lead to final states with the maximum
disturbance energy while the other is designing controllers that when applied
to a flow minimise the perturbation kinetic energy of the system.
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F1GURE 2.1. The plane Couette flow. The large white arrows
indicate the direction of the moving walls. The thin arrows
indicate the linear variation of the velocity as one moves from
the lower wall to the upper.

2.4. Flow cases

We consider various shear flows. In some projects the interest is shifted to-
wards very simple generic flow cases where understanding of the mechanisms is
relatively easy or intuitive since new ideas are tested in terms of methodology.
In others, well established methods were used and the interest is more towards
applying them to complex problems where physical understanding is lacking.

All the flow cases fall under the category of “simple shear flows” where
direct numerical simulations (DNS) and well-resolved large eddy simulations
(LES) are possible. In particular we studied Couette flow, flat-plate-boundary
layer flow, leading edge flow and a case of separating boundary layer flow. A
short description of each follows.

2.4.1. Plane Couette flow

Plane Couette flow is a shear flow that is created in a channel between two
infinitely wide and long parallel walls that move towards opposite directions
with a constant speed U. It is arguably the simplest wall-bounded shear flow.
There is only one inhomogeneous direction (the wall-normal) and the profile for
the laminar case is a linear function of the distance from the wall. Addition-
ally it can be shown that for any Reynolds number it is asymptotically stable
i.e. linear perturbations eventually decay. In practise, when simulating numer-
ically this flow the domain is truncated and periodic boundary conditions are
imposed along the wall-normal directions.

The computational domain is a rectangular box:

. Ly Ly L, L,

Q_[_27 2]X[—h,h]><[—2, 2]
where L, and L, are the lengths of the domain in the two wall-parallel di-
rections and h the half-width of the channel. We assume Dirichlet boundary

conditions on the two walls with the streamwise velocity u|,—+;, = (+U,0,0)T
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f

FIGURE 2.2. The boundary layer flow. The dashed lines indi-
cate the computational box. The arrow shows the direction of
the flow.

and periodic conditions along the wall-normal directions. The bulk Reynolds
number is defined:
_un

14

Re

2.4.2. Flat plate boundary layer flow

The flat plate-boundary-layer flow also known as the Blasius boundary layer
is a shear flow with two inhomogeneous directions. This case models the flow
above a flat plate excluding the leading edge of the plate. This simplifies
substantially the numerical simulation. Our computational box begins some
distance downstream from the leading edge and we assume that there is already
formed a Blasius boundary layer at the inflow which grows downstream due to
viscous diffusion.

Two different Reynolds numbers are commonly used in this flow case. For
the most part the Reynolds number based on the displacement thickness 6*,

Uood*
Regs = ——— | (2.14)
v
but also the Reynolds number based on the distance from the leading edge 2/,
Uso!
Re, = -2 (2.15)
14

are used. v is the kinematic viscosity.

This flow case is often used as a model for spatially developing flows in
contrast to for example Couette flow where the base flow is constant along the
flow direction. Another significant difference is that this is an inflow-outflow
problem so disturbances are either generated inside the domain or enter the
domain from the inflow, develop as they travel downstream and leave the do-
main through the outflow. From the stability standpoint this flow is a noise
amplifier: incoming disturbances extract energy from the base flow exploiting
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F1GUureE 2.3. Flow visualisation of the separated boundary
layer flow The streamwise velocity component is shown. The
black isocontours mark negative velocities implying the exis-
tence of a separation bubble.

its convective instability and amplify until they propagate outside the domain.
In this perspective the flow is locally unstable but globally stable.

2.4.3. Leading edge flow

The flow is similar to the previous case but now we include the leading edge of
the plate. This adds essentially a geometrical feature which makes the flow case
more particular. In the previous cases, the Reynolds number would uniquely
characterise the flow. Here the specific shape of the leading edge and its blunt-
ness also affect the flow.

This configuration allows to study how perturbations that originate up-
stream, outside the boundary layer penetrate and possibly trigger instabilities
inside. This flow as well falls in the category of noise amplifiers and is globally
stable. The base flow used for the stability analysis is computed by setting
up the proper boundary conditions, and time-advancing the non-linear Navier-
Stokes until a steady state is obtained. The boundary conditions are obtained
by solving the irrotational Euler equations for the far field (Schrader et al.
2010).

2.4.4. Separating boundary layer flow

Separating flows are of interest in many applications. For instance, the flow
around a bluff body is usually characterised by separation in the wake region
which contribute a large portion of the total drag. In that sense one of the most
classic examples is the separation of the flow around a cylinder at high Reynolds
numbers. From the engineering standpoint separation control can lead to large
benefits; in aerodynamics of aeroplane wings it is crucial to prevent separation
at high-lift configuration i.e. during take-off and landing since this can lead to
substantial decrease of the lift force.

Here we want to study a separating flow behind a curved surface of rela-
tively low curvature. This can be modelled simply by considering a flat-plate
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boundary layer and imposing an external pressure gradient, first favourable
and then adverse to model the leading and trailing sections of a solid object in
the flow. The pressure gradient, chosen carefully, generates a separated region
in the trailing section. Once the boundary layer is separated, breakdown to
turbulence quickly occurs.



CHAPTER 3
Optimal disturbances

In this chapter the optimisation methods used to compute optimal disturbances
are presented. The Lagrange multiplier technique is applied to various type
of problems. First we apply the method to compute optimal disturbances
that yield a maximum disturbance energy in the linear framework. Second we
present an new approach to study transition to turbulence using optimisation
in a non-linear setting. We seek the disturbance of minimal initial energy that
optimally excites transition to turbulence.

3.1. Linear optimal disturbances

In the linear setting, we are interested in two different types of optimal dist-
urbances. First we seek the initial condition u(0) that will have the maximum
energy amplification at fixed time. Then we consider the spatial structure of
the time-periodic forcing f that creates the largest response at large times, that
is when all transients effects have died out. The current analysis will therefore
consider flow states induced by forcing or initial conditions, where a flow state
is defined by the three-dimensional velocity vector field throughout the compu-
tational domain €2 at time ¢t. These disturbances were computed of a flat-plate
boundary layer flow, first excluding and then including the leading edge of the
plate.

3.1.1. Initial condition

In the following we report the derivation relevant to the optimal initial condi-
tion. Here we assume the forcing term f in (2.9) to be zero, so that only the
first term on the right end side of the formal solution (2.10) is of interest. We
wish to determine the unit norm initial condition u(0) yielding the maximum
possible energy (u(T'),u(T)) at a prescribed time 7. We define the objective
function, as the the kinetic energy of the perturbations at time T

J = (T),u(T)). (3.1)

Formally, the task is to maximise the above quadratic measure subject to two
constraints: the flow needs to satisfy the governing equations (2.9) (the lin-
earised Navier-Stokes) (without forcing) and the initial condition must have

11
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Pick random IC In DNS :Out In 0 Adj :Out
u(0) u©) UM g (WM DNS | ut0)
u*(T)=u(T)
No Check Convergence
Set lu(0)-u*0)/ yl< e ?
u(0)=u*(0)/7y

Yes

u(0) is the answer!

FIGURE 3.1. Power iterations scheme for the linear case.

unit norm (u(0),u(0)) = 1. By introducing Lagrange multipliers we may for-
mulate an unconstrained optimisation problem for the functional

T
L(u,u*,y) = (u(T),u(T)) —/ (u”, (9 — A)u) dr — 5 ((u(0),u(0)) - 1).

’ (3.2)
Therefore we need to determine u, u(0), u(7), u* and y such that £ is station-
ary, necessary condition for first order optimality. Finding the stationary points
of L is equivalent to solving the eigenvalue problem

yu(0) = exp(A'T) exp(AT)u(0) , (3.3)

where exp(ATT)exp(AT) is the forward and adjoint composite propagator
whose leading eigenfunction is the optimal initial condition for time 7. The
iteration scheme above can be seen as a power iteration scheme finding the
largest eigenvalue of the problem (3.3). The equations are solved iteratively as
described in the block-diagram in figure (3.1). The method is applied in Paper
1.

Additionally the localised initial condition is studied where one chooses
a specific region in space and seeks the optimal shape contained within the
region (see Paper 1 for a detailed description). A sample result is shown in
figure (3.2). It is a three-dimensional localised optimal disturbance for the case
of the flat-plate boundary layer. The final time is 7" = 1820. In the figure we
plot the three velocity components of the optimal initial condition along with
the corresponding response. A disturbance similar to a TS-wave is apparent
while characteristic upstream-tilted structure is present in the initial condition.
The wave-packet acquires a large initial growth while aligning itself with the
wall-normal shear and continues to amplify as it travels downstream exploiting
the convective instability of the Blasius boundary layer. Finally, it experiences
an energy growth of the order of 1700.

We also computed optimal initial conditions and localised initial conditions
for the flow case where the leading edge is included. Due to the geometry the



3.1. LINEAR OPTIMAL DISTURBANCES 13
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FIGURE 3.2. Optimal initial condition and response for 3d
optimals for time 7" = 1820. For the corresponding amplitudes
of each structure look at table 1 in Paper 1. Note that we plot
both the disturbance and the response in the same figure since
they are well separated in space. a) streamwise, b) wall-normal
and ¢) spanwise component.

computational cost of these simulations was significantly higher. Hence we only
considered spanwise periodic disturbances. For results and discussion see Paper
2.

3.1.2. Forcing

This section will focus on the regime response of the system to time-periodic
forcing. Since the formulation of the optimal forcing problem in this framework
is novel we present the derivation of the new system more extensively. We
assume zero initial conditions, u(0) = 0, and periodic behaviour of the forcing
function, i.e.

f=R(f(x)exp(invt)), feC, weR, (3.4)
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where f is the spatial structure of the forcing, w is its circular frequency and R
denotes the real part. With these assumptions, the governing equations become

(0 — A)u — N (fexp(iwt)) =0, u(0)=0. (3.5)

We wish to determine the spatial structure of the forcing f with frequency w
in the limit of large times that maximises the regime response of the flow. The
measure of the optimum is again based on the energy norm. We re-formulate
the optimisation problem transforming it in the temporal frequency domain,
thereby removing the time dependence. We assume time periodic behaviour
and u is replaced by the complex field u so that

u = RN (wexp(iwt)). (3.6)
The resulting governing equations can then be written
(iwI —A)u—-f=0. (3.7

Note that the spatial operator A remains unchanged. The objective function is
the disturbance kinetic energy of the regime response and the Lagrange function
is formulated as follows.

L(@,u*,7,f) = (@) — (4%, (iwZ — A)a—£) —~ ((£,£) —1). (3.8)

The time behaviour of the co-state or adjoint variable is also assumed to be
periodic

u* = R (u* exp(iwt)) . (3.9
Taking variations of £ with respect to @1, u*, f and v gives
oL - oL . oL oL
Finally we set 6£ = 0 and obtain a system of equations
(8€>—Oa(iwI.A)ﬁ+f—0, (3.11)
ou*
(gg) =0—1-—(—iwZ — AMHu* =0, (3.12)
oL
— | =0—=(f,f)—1=0 3.13
(55)=0-@n-1-0. (313)
oL 1
(af>—0—>f_7 u*. (3.14)

Equations (3.11) and (3.12) provide the two equations we have to solve, while
equation (3.13) gives the normalisation condition and (3.14) provides the opti-
mality condition. It can be shown that the above derivation using the Lagrange
multiplier technique is equivalent to the standard matrix method when the re-
solvent norm is considered

f= %(—iw[ — AN iwI — A7, (3.15)
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The above formulation leads to matrix-free method for computing the pseu-
dospectra of the given system. This is a new eigenvalue problem defining the
spatial structure of the optimal forcing at frequency w that is solved iteratively;
the largest eigenvalue corresponds to the square of the resolvent norm

v = ll(iwl — A7, (3.16)

The regime response for the direct and adjoint system is extracted from
the numerical simulations by performing a Fourier transform of the velocity
field during one period of the forcing.

The steps of the optimisation algorithm therefore are (similar to figure 3.1):
(i) Integrate (3.5) forward in time and obtain the Fourier transform response
u at the frequency of the forcing.

(ii) @ is used as a forcing for the adjoint system which in time domain is written

(=0 — AN u* — R (wexp(iwt)) =0. (3.17)

(iii) A new forcing function is determined by normalising f"*! = u*/~.
(iv) If |[f*+1 — £7| is larger than a given tolerance, the procedure is repeated.

A sample result is shown in figure (3.3), the optimal forcing structure at
spanwise wavenumber 3 = 0.6 and zero frequency. The flow case is the flat plate
boundary layer. The wall-normal and spanwise components of the forcing are
displayed in figure (3.3a) and b) while the streamwise component is very weak.
In contrast the streamwise velocity component of the response is dominant
while the other two components negligible (3.3c). In this case lift-up effect is the
prevailing mechanism where counter-rotation vortices parallel to the streamwise
direction create streamwise streaks. This mechanism is characterised by strong
component-wise energy transfer.

Additionally we computed localised optimal forcing functions with an at-
tempt to compare with results for parabolized stability equations. The for-
mulation is a combination of the localised initial condition and the optimal
forcing. However, due to the high computational cost we were restricted only
to the spanwise periodic case. A specific region in the streamwise direction is
chosen and the optimal shape contained within the region is sought.

3.2. Non-linear optimal disturbances

In some shear flows (pipe, channel and Couette flows) transition is typically
subcritical and initial perturbations of finite amplitudes are necessary. So far we
have looked at optimisation of the disturbances in a linear framework, which is
rather standard and well established method in the field (Schmid & Henningson
2001), and extended it to more complex geometries. This approach assumes
that the most natural way to trigger turbulence is to maximise the departure
from the base flow in a short time scale. This disturbance amplification will
distort the base flow enough to cause breakdown. However, this is not the
whole story. It has been shown by Pringle & Kerswell (2010) that linear optimal
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FI1cURE 3.3. Isosurfaces of optimal forcing and response for
the spanwise wavenumber 5 = 0.6 subject to steady forcing.
a) Wall-normal component of optimal forcing structure. b)
Spanwise component of optimal forcing. ¢) Streamwise veloc-
ity component of the flow response. Both the forcing structures
and the response are elongated in the streamwise direction.

disturbances are not always efficient to initiate transition to turbulence, and
indeed it is often necessary to add noise.

The non-modal approach gives a lot of insight into the physical mechanisms
responsible for energy growth in shear flows that experience subcritical transi-
tion and, together with weakly nonlinear models such as secondary instability
analysis, have contributed to drawing a plausible picture of the early stages of
the transition process. However, the later stages are inherently non-linear and
linear theory fails.

Another approach that has lately been introduced is performing a similar
type of optimisation but replacing the linearised Navier-Stokes with the corre-
sponding non-linear (Pringle & Kerswell 2010; Cherubini et al. 2010). In these
studies the authors use the full Navier—Stokes equations to show how nonlin-
earity can change the optimal which emerges from a linear transient growth
analysis.

We have proposed a new method to determine the optimal initial condition
where we use a non-linear framework and design our optimisation problem
considering the fully turbulent field. Following the General Evolution Criterion
(Glansdorff et al. 1964) of non-equilibrium systems, we maximise in a statistical
sense the rate of entropy production. The criterion has been used before in a
wide range of applications, shock-waves (Rebhan 1990), biology (Juretic &
Zupanovic 2003), climate research (Paltridge 1979; Ozawa et al. 2003) and
nuclear fusion (DiVita & Brusati 1995), although never, thus far, in the search
for optimal turbulence-triggering disturbances.
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FIGURE 3.4. Power iterations scheme for the non-linear case.

The argument starts from Glansdorff et al. (1964) who demonstrated that
for time invariant boundary conditions all systems eventually reach a statisti-
cally steady state. All shear flows are in non-equilibrium with their environment
since there is continuous energy exchange through the walls and the Navier-
Stokes equations can be viewed as a special case of the Boltzmann equation for
systems for which the local thermodynamic equilibrium assumption is valid.
Hence a fully developed turbulent flow, from the stand point of thermodynam-
ics, is in a statistically steady state. A chaotic turbulent flow is indeed char-
acterised by steady values of (space and time) averaged quantities, like mean
velocities and fluctuations. The approach of the fluid system to a statistically
steady state is central to the theory presented here.

The general evolution criterion implies that certain quantities obtain ex-
treme values once the statistically steady state is reached. Malkus heuristic
principle (Malkus 1956) claims that a viscous, turbulent, incompressible flow
in statistically steady state maximises the total rate of viscous dissipation.
Thus we choose our Lagrangian for this optimisation problem as:

T
L—J- /0 (0", NS(@)p + (7, V - u) ] dt
—=M(|[u(0) = U||% — eo), (3.18)

with the subscript E' denoting the energy inner product, i.e. the integral over
the whole domain as for the case of the disturbance energy. In the above, u*,
p* and \ are the Lagrange multipliers, i.e. the adjoint variables, N.S the non-
linear Navier—Stokes equations, and €y the kinetic energy of the perturbation
at t = 0; u is the velocity vector and U the base flow. Since the system under
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consideration is chaotic we will maximise the average value of the functional,
integrating over a sufficiently long time interval. As introduced above, the
objective function is the time-averaged dissipation
L Vu: Vu)dt 3.19

j—TORe(u. u) (3.19)
with T the final observation time. Maximising the time integral of the entropy
production implies that we also obtain the fastest route to turbulence for any
given value of the initial energy €¢y. The equations are solved iteratively like
in the linear case with some differences, most crucial, the need to store the
full time-dependent velocity field from the forward iteration to be used in the
adjoint. The procedure is described in the block-diagram in figure (3.4).

We run the optimisation problem for several values of ¢y starting with a
large value for ¢y (where transition to turbulence is guaranteed) run it until
convergence and gradually decrease it. At some point the amplitude of the
initial condition will not be enough to get to turbulence no matter how long we
run the optimisation. We postulate that, the initial condition obtained with
this procedure is the one with the smallest possible amplitude that can trigger
turbulence.

Including the turbulent field in the optimisation introduces one significant
complication, namely the stochastic nature of the turbulent fluctuations render
convergence in the standard way impossible. In particular the updated initial
condition changes significantly for every iteration even in the proximity of an
optimal. Therefore to improve convergence we include a relaxation term

u(0)"™! = (1 —o)u*(0)" + ou(0)™, (3.20)

where u*(0)" is the final condition of the adjoint integration from the previous
iteration and o is a small number (here we used 0.05). Close to convergence,
the relaxation term gives an ensemble average of the different initial conditions,
since the values of the objective function (i.e. the statistics of the turbulent
state) are basically constant.

This method is applied to the Couette flow where transition is subcritical
for all Re. The structure of the initial condition and some intermediate stages
of the transition prosses are shown in figure 3.5. The perturbation at ¢ = 0
is strongest in the cross-stream velocity components and, most interestingly,
it appears localised in all three spatial directions. The initial evolution of the
disturbance is reported in figures 3.5(b) and 4(c). The initial disturbance is
inclined against the mean shear to extract more energy from the base flow
via the Orr-mechanism At time ¢ = 10 the disturbance is up-right and still
localised.

Transition is initiated by a pair of streamwise vortices that generate a single
bent streak Cossu et al. (2010), see figure 3.5(c). The slow growth of the streak
is associated to a decay of the cross-stream velocity components However, once
the streak reaches a sufficient amplitude at ¢t &~ 70, secondary instability sets
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FIGURE 3.5. Optimal initial condition at the threshold level
€or, visualised through isosurfaces of positive and negative
streamwise velocity perturbation, shown with pale (yellow)
and dark (blue) colour. Contour lines show positive and nega-
tive spanwise velocity at x = 1.5m. The base flow is indicated
by the arrows along the sides in (a). Re = 1500, domain
size 41 x 2 x 2w. The isosurface level is 65% of the maxi-
mum value of each component: (a) u2,,, = 2.89 x 107, (b)
U2, = 2.89 x 107°, (¢) v, = 2.09 x 1073, (d) v2,,, =

max max

2.07 x 1071,

in as spanwise oscillations induced by a staggered pattern of vorticity. Rapid
breakdown to turbulence is then observed to occur at t & 130.



CHAPTER 4

Flow control

Flow control is used to alter the behaviour of a fluid with an active or passive
mechanism in order to improve some characteristic. For example in aeroplane
wings, vortex generators are added to promote transition to turbulence and
reduce the chance of the boundary layer to separate and lead to loss of lift.
Control can be divided in two different categories, feedback (or closed-loop)
control and open-loop control.

In the case of the feedback control we need to have sensors and actuators
and connect them with a control-law. In that case we gain real-time information
about the flow state and can adapt our actuation to accommodate any possible
changes in the flow. There are various methods to design the control law. Here
we are interested in optimal control. The Lagrange multiplier technique can
be applied to solve the optimal control problem as we solved the optimisation
problems in the previous chapter. The objective is disturbance attenuation and
transition delay. The problem is divided into two distinct and self-contained
problems. This distinction is possible due to the separation principle (Skogestad
& Postlethwaite 2005). The first problem is full-information control where
assuming full state knowledge of the flow a feedback control signal is computed.
Full-state knowledge is a strong requirement and we relax it by including an
estimator based on wall measurements. The combination of an estimator and a
full information controller is called compensator, where the control law is based
on the estimated flow.

In the case of open-loop control we act without any real-time knowledge
of the flow. This case can be less effective at times but it is much simpler to
implement in a real situation. Usually it is based on physical intuition and
empirical knowledge of the flow case it is applied to. We apply the method
to a separating boundary layer and study the effect it has on transition to
turbulence and as well as on the separation itself.

4.1. Feedback control

4.1.1. Full-information Control

In this section the design process of the full information controller is presented.
Therefore it is assumed that the exact state of the system is known. The
state-space formulation is adopted,

omu = Au + Biw; +BQ¢, (41)

20
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where u is the state variable. Bjw; is the forcing due to external excitations
wy of stochastic nature and Ba¢ is the forcing from the control signal ¢. The
operator A governs the dynamics of the augmented system (Chevalier et al.
2007a). The control is applied through non-homogeneous boundary conditions
as a model for localised blowing and suction at the wall and a lifting procedure
is adopted so that the formulation becomes compatible with classical control
theory where the control signal is expressed in the equations as a forcing (Hog-
berg & Henningson 2002). In the case of full state-feedback control the signal
is calculated directly from the state ¢ so Bo¢p = B3Kq where K is the control
gain.

The aim is to compute the optimal control gain K so that the kinetic energy
of the disturbances is minimised while at the same time the control effort is
kept at low levels. To this end the following objective function is defined,

T
F = % / (u” Qu+ ¢Ro) dt . (4.2)
0
where () is the Hermitian transpose. The term uQu corresponds to the ki-
netic energy of the perturbations where Q is the energy norm operator. The
second term in equation (4.2) represents the control effort where R is the ac-
tuation penalty.

We apply the Lagrange multiplier technique to find the optimal solution
to our problem. The Lagrangian is written as

T
L(u,u*, ¢) = /0 B (uH Qu + d)R(b) —u* (Opu— Au — Bgd))] dt, (4.3)

where u* is, as before the adjoint variable, representing the Lagrange multiplier.
The stochastic term Byw; is dropped since the deterministic approach is used
for the full information control. The variation of the Lagrangian functional can

be written as
oL N oL oL

Combining equations (4.3) and (4.4) and assuming 0L = 0 leads to the set
of equations

ot + Afu* + Qu=0 (4.5a)
—du+ Au+ Byp =0 (4.5b)
R¢ + Biu* =0. (4.5¢)

A linear time dependent relation is assumed between the forward solution
u and the Lagrange multiplier u* = Xu. If we Insert this assumption into
equation 4.5a, replace ¢ from equation 4.56 and add equations 4.5a and 4.5,
we arrive at the differential Riccati equation

oX

e + A X + XA - XByRIBEX +Q=0. (4.6)
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The optimal K is then given through the non-negative Hermitian solution X
of equation 4.6. A full derivation of the above equation is given by Lewis &
Syrmos (1995). A simplified version arises if an infinite time horizon is assumed,
yielding the steady-state Riccati equation

APX + XA - XBRIBEX +Q=0. (4.7)
with the control gain computed from
K=-R'BHQx. (4.8)

4.1.2. Estimation

The estimator is designed to approximate the full three-dimensional velocity
field from wall measurements in real time. Measurements are taken from the
wall and the signal includes noise from the sensors. The estimator can be seen
as a filter operator, also termed Kalman filter, where the equations governing
the flow are used for the filtering process. Input is the measurements from the
real flow and output the estimated flow.

In the estimation problem two flow fields are considered: The ’real’ flow
and the estimated flow. All the quantities that correspond to the estimated
flow are marked with a hat (A) The estimated field is assumed to fulfil the
following equation

%‘t‘ = Ad— L(r — ) + Bao, (4.9)

where L is the measurement gain and r indicates the measurements. The latter
are extracted through the measurement operator C and since the measurements
process introduces noise, we write r = Cu + g and 7 = Ca, where g is the
measurement noise. The derivation below provides us with an operator L
which optimally minimises the difference between the real and the estimated
flow, namely the estimation error 1 = u — . The governing equation for u
reads 5%
a—ltl = (A+ LC)a + Bywy + Lg = At + Byw; + Ly . (4.10)
We employ the stochastic approach instead of the deterministic used in
the full-information control problem, since the equation is forced by stochastic
inputs. We assume that the external disturbances w; and g are zero-mean
stationary white noise Gaussian processes (Chevalier et al. 2007a). Since the
system is forced by these stochastic processes, expected values of the relevant
flow quantities are examined. In particular for the estimation problem the co-
variance of the estimation error, P (Kailath & Hassibi 2000) is considered and,
as for the full information control, a steady state is assumed. The covariance
of the error satisfies the algebraic Lyapunov equation

AP +PAT + BWBI + LGLY =0, (4.11)

where W and G are the covariances of w; and g respectively. This equation
along with the objective function, F = #7 (amplitude of the measurement dif-
ference) form a new Lagrangian M where the traces of the covariance matrices
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are involved. The trace of covariance matrices correspond to rms (root-mean-
square) values of the quantity under consideration (Hoepfiner et al. 2005).

M = trace(PQ) + trace[A(AP + PAZ + LGLT + B, WBH)] (4.12)

where A is the Lagrange multiplier. The first term in equation (4.12) is the
objective function to be minimised and the second is the constraint coming
from the Lyapunov equation satisfied by the covariance error. The Riccati
equation that arises from optimising P reads

AP +PAR —pcHg=tep + BWBHE =0, (4.13)

with the estimation feedback gain given by L = —PCHG~!. For a similar
derivation see also Bagheri et al. (2007). In this project the theory above
is applied in a highly nonlinear case, where one may use the full (nonlinear)
equations when solving the estimation problem (4.9) while the L is computed
with the linear theory. This is the extended Kalman filter and it is expected to
be more accurate than the standard Kalman filter.

4.1.3. Compensator

The compensator is the combination of full information control and state esti-
mation. The measurements taken from the real flow are communicated to the
estimator where they are used to compute the forcing needed to reproduce the
perturbations present in the real flow. The actuation signal is computed from
the estimated flow and it is applied to both the estimated and the real flow.
Although both the control and estimation gains are computed for linear sys-
tems, the control and estimation is applied to the full nonlinear Navier-Stokes
equations (Hogberg et al. 2003c).

The model for the flow employed here is somewhat simplified when com-
pared to the optimal disturbance case. A parallel base flow is assumed and thus
the streamwise wavenumbers can be decoupled. Hence we are able to apply a
Fourier transform along both the wall-parallel directions. We can treat each
wavenumber pair individually and instead of solving one problem with a large
number of degrees of freedom, we solve many smaller systems. This necessity
arises from the fact that we employ a matrix-based method to solve the Riccati
equation which would be intractable for the global problem. This assumption
stands as a good approximation due to the slow viscous growth of the boundary
layer.

The compensator problem assumes that measurements are taken and actu-
ation is applied continuously over the whole domain. This theory is applied to
a spatial boundary layer and both measurements and actuation are available
only on a part of the domain (see figure 2 in Paper 4). Two regions need to be
specified, one for the control and one for the estimator. For both regions, the
local Blasius velocity profile is the base flow in the operator used to solve the
problems introduced in the previous section. Once the control and estimation
gains are calculated, the actuation forcing is limited to the actuation region by
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a smooth transfer function in physical space with two smooth step functions
around the chosen locations (Chevalier et al. 2007a).

(a) .
02 5
—no control ——no control
— full information control — full information control
01512 -estimation based control - - -estimation based control| =~~~ <T_ .=
H] 3 y
£ w
@ o
:E 0.1 2 ]
/
005 ! T L
0
2 4 6 8 2 4 6 8
Re x 10° Re x 10°

FIGURE 4.1. (a): Wall normal maximum t,n,s; (b): skin fric-
tion coefficient c;. No control, ——; Full information con-
trol, ——; Compensator, ----. The shaded areas indicate
the measurement and actuation region.

In figure 4.1 some sample results are shown. Figure 4.1a shows the wall-
normal maximum of the rms-value of the streamwise velocity perturbation for
the uncontrolled case and for both full information control and compensation.
As observed, the growth of the the streaks is reduced within the control region.
However, downstream of the control region, velocity fluctuations continue to
grow. This can be explained by the presence of the free-stream turbulence
above the boundary layer that is able to induce new perturbations inside the
boundary layer.

4.1.4. Approaching the experiment

In this section we describe how we designed a numerical simulation that resem-
bles the experiment done by Lundell (2007). Instead of the opposition control
strategy used in the experiment we use the optimal control theory described
above.

First we recall the differences between the actuator in the experiment and
in the simulations. These pertains the way the control signal is calculated and
the area over which control is applied. In the experiment opposition control
is adopted where the amplitude of the suction velocity and the time delay be-
tween the sensor and the actuator are varied. In the simulation an optimisation
of the distributed control is performed and no further tuning is required. Note
however that the control signal is computed assuming linearly evolving distur-
bances and parallel base flow. Secondly, it should be mentioned that the control
is active over a large area of the plate where relatively weak blowing/suction is
applied in the case of the numerical simulations. Conversely, small holes with
strong suction velocity are used in the experiment. Further, in the simulation
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we apply control over the full spanwise width of the domain while in the exper-
iment control sets are only stationed near the middle of the plate on an area
about 20 mm wide of a total length 450mm.

These differences are reduced and further simulations were performed in
order to study how much and if the two cases converge. The control strategy
in terms of the way the control signal is calculated is not changed and the
focus is put on the geometrical/functioning aspects of the actuator itself. In
that context we first remove the blowing and keep only the suction. Then,
we restrict the area of actuation to spanwise stripes and limit the streamwise
extension of the area where suction is applied. Finally we employ a ‘cheaper’
control in order to obtain stronger suction to better mimic the experiment.

(a) 0035 (b) 70 =
——no cont — full info ref
0.03} — full info ref 60 — stream wise cut, short, strong suction
: ——stream wise cut, short, strong suction — — —exp control, 2 units
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FIGURE 4.2. a) wall-normal maximum of u,,,s and b) con-
trol efficiency €. Solid lines are simulations: blue: reference
case, green line: control reference case, black line: control with
only suction, spanwise and streamwise cut and cheaper control
(stronger suction). Dashed lines from experiment.

In figure 4.2 we show the streak growth and the efficiency of the control
Q) from the simulation where all the previous restriction on the actuator have
been applied. 2 is the relative decrease of the disturbance level in the boundary
layer due to the control,

0 =q_ trmsmazon (4.14)

Urms,mazx,of f

For this case the control effect is similar for both the experiment and the
simulation in the region where actuation is applied. However, downstream
transition delay is observed only in the numerical control. This can be explained
by the fact that in the experiment, control is applied near the middle of the plate
and when transition occurs, fully developed turbulence ‘invades’ the controlled
area from the uncontrolled sides.



26 4. FLOW CONTROL

4.2. Open-loop control

When it comes to flow cases that are more complex and the phenomena are
inherently non-linear, the application of linear optimal control in the form
presented above is less suitable. Furthermore feedback demands time-resolved
knowledge of the flow state which is not always available. A simpler approach
can be employed, namely open-loop control where the modifications that are
applied in the flow target directly the base flow. In this case no real-time
knowledge from the flow state is required and hence no sensors are needed,
only actuators.

The case we consider is a separating boundary layer and we apply control
with travelling waves on the wall. We investigated the influence of the pa-
rameters of the waves (wavenumber, frequency and amplitude) as well as their
travelling direction (downstream and upstream).

We find that for a range of parameters the downstream travelling waves
are able to eliminate the separation and result to a potential reduction in the
form drag of the object moving through the fluid.

On the other hand the upstream travelling waves are attenuating the shed-
ding that comes from the boundary layer leading to re-laminarise downstream.



CHAPTER 5

Numerical codes

Two different numerical codes have been used. The Couette flow, the flat-plate
boundary layer and the separating boundary layer case were tackled with the
fully-spectral numerical code Simson (Chevalier et al. 2007b). For the leading
edge case the spectral element code Nek5000 was used.

5.1. Simson

In Simson, the three-dimensional, time dependent, incompressible Navier-
Stokes equations are solved using a spectral method. The algorithm uses
Fourier representation in the streamwise and spanwise directions and Cheby-
shev polynomials in the wall-normal direction, together with a pseudo-spectral
treatment of the nonlinear terms. Dealiasing using the 3/2-rule is employed
in the wall-parallel (Fourier) directions, whereas a slightly increased resolution
is used in the wall-normal direction to reduce aliasing errors. The time is ad-
vanced with a four-step low-storage third-order Runge-Kutta method for the
nonlinear terms and all the forcing contributions, and a second-order Crank-
Nicolson scheme for the linear terms and boundary conditions. For the Couette
flow case periodic boundary conditions are used in both wall-parallel direction
so the Fourier representation accounts for that implicitly.

For the boundary layer flows, to correctly account for the downstream
boundary-layer growth the spatial simulation approach is necessary. This re-
quirement is combined with the periodic streamwise boundary condition by
the implementation of a fringe region (Nordstrém et al. 1999; Lundbladh et al.
1999). In this region, positioned at the downstream end of the computational
box occupying approximately 10% of the flow domain, a volume forcing is
smoothly raised from zero to force the flow from the outflow to the desired in-
flow condition. The inflow consists of the laminar Blasius boundary layer and
for the case of free-stream turbulence, spatially and temporally varying distur-
bances are superimposed in the fringe. Otherwise, for initial-value problems a
localised perturbations is imposed elsewhere in the domain.

5.2. Nek5000

For the leading edge flow we have adopted the Nek5000 an open source spectral
element code developed by Tufo & Fischer (2001); Fischer et al. (2008). The
governing equations are solved by a weighted residual spectral element method

27
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Patera (1984), which allows multi-domain decomposition while preserving high
order accuracy. The optimisation problem for the optimal initial condition
is validated against previous results from the flat-plate boundary layer case
without the leading edge. The code allows for curved surfaces and supports
full MPI parallelisation. It has been proven to scale up to O(10°) processors.



CHAPTER 6

Conclusions

Numerical simulations of simple shear flows are performed. Optimal disturban-
ces are computed and control is applied with the aim to either delay transition
or mitigate separation. For the optimisations performed, the Lagrange multi-
plier method is used with quadratic objective functions.

The stability of the flat-plate boundary layer flow is studied. Linear op-
timal initial conditions leading to the largest possible energy amplification at
time 7" and the optimal spatial structure of time-periodic forcing are considered.
It is found that two mechanisms dominate the dynamics of this configuration.
One corresponding to a combination of the Orr mechanism and the stream-
wise non-normality of the TS-wave and one to the lift-up effect inherent to
spanwise wavelengths of the order of the boundary layer thickness. It is found
that due to the the long computational box and the relatively high Reynolds
number, as well as due to the exponential-type of instability, the T'S-wave has
more potential for growth. However the streamwise constant structures known
as streaks grow much faster and reach their maximum amplitude sooner. In-
cluding the leading edge of the plate in the computation, we studied the effect
of the geometry to the stability of the boundary layer flow. We found that
two-dimensional disturbances originating upstream from the plate are highly
inefficient at triggering an unstable wave-packet while three-dimensional dist-
urbances are exploiting the lift up mechanism very efficiently at an early stage
and generate strong streamwise streaks inside the boundary layer. With these
two projects we demonstrated that it is possible to perform modal and non-
modal linear stability analysis in complicated flow configuration that include
geometrical elements by using time-steppers, i.e. by direct numerical simulation
of the governing equations.

Non-linear optimisation is used to determine the initial condition of mini-
mum energy leading to laminar/turbulent transition in plane Couette flow; to
do this we have resorted to thermodynamics considerations. Using the general
evolution criterion we have optimised the route to the statistically steady state
the system wants to reach: this is the state of maximum entropy production
which coincides with the turbulent state for large enough values of the Rey-
nolds number and of the initial perturbation energy. Nonlinear optimisation
is needed to determine this optimal initial condition and the energy threshold
below which turbulence cannot ensue. For realistic domain sizes the optimal
initial condition is localised in the three spatial directions. The transition path

29
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is characterised by the occurrence of a single bent velocity streak whose oscil-
lations increase rapidly at breakdown. Although computationally expensive,
the approach proposed is not limited to simple flows, and the next step is to
extend the present results to flows that are inhomogeneous in the streamwise
direction.

A linear-based feedback control is applied in order to delay transition, in a
flow with highly nonlinear behaviour. The estimator and controller are designed
within the Linear Quadratic Regulator (LQR) framework where a parallel base
flow is assumed to simplify the computation of the control gains. The results
show that the control is able to reduce the energy of the streaks, responsible
through their secondary instabilities for the considered bypass-transition sce-
nario and thus delay the whole process. Additionally numerical simulations are
performed for a flow case analogous to the experiment performed by Lundell
(2007). The control strategy differs while the actuation characteristics are kept
as close as possible. Remarkable agreement is achieved in terms of disturbance
attenuation. Two main issues became apparent from the two control projects.
The actuator technology will probably be decisive being the strongest limiting
factor when it comes to implementing these type of control to an experimental
setup.

On that front plasma actuators seem to be one possible answer and we
show here the need and benefit to model these properly in numerical studies.
In this way, numerical simulations can be used effectively to design control
experiments. Furthermore there is a need for reducing the cost of the com-
putation of the control signal, since the current formulation demands a full
numerical simulation running as fast as the flow is changing in real time. This
problem has been studied after the projects presented here were concluded us-
ing techniques for model reduction; these investigations have already provided
very promising results (Bagheri et al. 2009; Semeraro et al. 2011).

Open-loop control is applied to a separating boundary layer by means of
travelling waves on the wall. The waves are essentially alternating regions of
blowing and suction. It is found that the downstream travelling waves can
cancel separation while the upstream delay or eliminate the transition to tur-
bulence. The effect of these waves on turbulent separation deserves further
investigations.



CHAPTER 7

Summary of papers and division of work between
authors

Paper 1

A. MONOKROUSOS, E. AKERVIK, L. BRANDT & D. S. HENNINGSON, 2010
Global three-dimensional optimal disturbances in the Blasius boundary-layer
flow using time-steppers. J. Fluid Mech.650, 181-21

In this paper optimal disturbances are computed for the case of the
flat-plate boundary-layer flow. Both the optimal initial condition leading to
the largest growth at finite times and the optimal time-periodic forcing leading
to the largest asymptotic response (pseudospectra) are considered. The
Lagrange multiplier technique is employed with objective function the kinetic
energy of the flow perturbations and constraints the linearised Navier—Stokes
equations. Additionally optimal disturbances are computed within a localised
framework which for some cases are more relevant to physical situations. In
general two different type of disturbances are recovered; the first is relevant
to the modal mechanism of a TS-wavepacket ignited by Orr-like structures
and convectively amplifying due to the streamwise non-normality; the second
is relevant to streamwise elongated disturbances, called streaks, generated by
counter-rotating streamwise vortices associated with the strong component-
wise transfer of energy due to the lift-up effect. It was found that the first
mechanism(s) is more pronounced because of both the long computational
domain and the relatively high Reynolds number considered here.

The implementation of the adjoint DNS and the optimal initial condition
and forcing power iteration scheme was performed by Antonios Monokrousos
(AM) with feedback from Espen Akervik (EA) and Luca Brandt (LB), whereas
the Arnoldi iteration scheme using ARPACK method was implemented by EA.
The computations were for the most part performed by AM except those per-
formed with the Arnoldi method which were done by EA. The writing of the
paper was done by AM, EA and LB with feedback from DH.

Paper 2

A. MONOKROUSOS, L. BRANDT, C. MAVRIPLIS & D. S. HENNINGSON, 2011
Optimal disturbances of flow above and upstream a flat plate with an elliptic
leading edge. Technical report
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Adjoint-based iterative methods are employed in order to compute optimal
disturbances in the case of linear perturbations in a spatially growing boundary
layer with an elliptic leading edge. The Lagrangian approach is used where an
objective function is chosen and constraints are assigned. Power iterations a
are used, both matrix-free methods, where the state is marched forward in time
with a normal DNS solver and backward with the adjoint solver until a chosen
criterion is fulfilled.

The implementation of the adjoint DNS and the optimal initial condition
power iteration scheme was performed by AM with help from Catherine
Mavriplis (CM), while the computations were done by AM. The writing of the
paper was done by AM and LB with feedback from DH and CM.

Paper 3

A. MONOKROUSOS, A. BoTTAarO, L. BranDT, A. D1 ViTaA & D. S.
HENNINGSON, 2011

Non-equilibrium thermodynamics and the optimal path to turbulence in shear
flows. Phys. Rev. Lett. 106, 134502

In this paper we use ideas from non-equilibrium thermodynamics to de-
termine the initial condition on the laminar/turbulent boundary closest to the
laminar state using nonlinear optimisation for the case of plane Couette flow.
Resorting to the general evolution criterion of non-equilibrium systems we op-
timise the route to the statistically steady turbulent state, i.e. the state char-
acterised by the largest entropy production. This is the first time information
from the fully turbulent state is included in the optimisation procedure. We
demonstrate that the optimal initial condition is localised in space for realistic
flow domains.

The implementation of the non-linear optimisation scheme was performed

by AM as well as the computations. The writing of the paper was done by
AM, Alessandro Bottaro and LB with feedback from DH and Andrea Di Vita.

Paper 4

A. MONOKROUSOS, L. BRANDT, P. SCHLATTER & D. S. HENNINGSON, 2008
DNS and LES of estimation and control of transition in boundary layers sub-
ject to free-stream turbulence. Int. J. Heat and Fluid Flow, 29, Issue 3 841-855

In this paper optimal control is considered where transition to turbu-
lence occurs in a flat-plate boundary-layer flow subjected to high levels of
free-stream turbulence. This scenario is denoted bypass transition and is
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characterised by the non-modal growth of streamwise elongated disturbances
called streaks. Linear feedback control is applied in order to reduce the
perturbation energy and consequently delay transition. Control is applied by
blowing and suction at the wall and it is both based on the full knowledge
of the instantaneous velocity field (i.e. full information control) and on the
velocity field estimated from wall measurements.

The control is able to delay the growth of the streaks in the region where it
is active, which implies a delay of the whole transition process. The flow field
can be estimated from wall measurements alone: The structures occurring in
the ‘real’ flow are reproduced correctly in the region where the measurements
are taken. Downstream of this region the estimated field gradually diverges
from the ‘real’ flow, revealing the importance of the continuous excitation of
the boundary layer by the external free-stream turbulence. Control based on
estimation, termed compensator, is therefore less effective than full information
control.

The code development and computations relevant to the control part
were performed by AM with feedback from LB. The code development and
computations relevant to the LES part were performed by Philipp Schlatter
(PS). Most of the paper has been written by AM with feedback from LB and
DH except the LES part, which was written by PS with feedback from AM,
LB and DH.

Paper 5

A. MONOKROUSOS, F. LUNDELL & L. BRANDT, 2010
Feedback control of boundary layer bypass transition: comparison of a
numerical study with experiments. ATAA J., 48 (8), 1848-1851

In this paper simulations of optimal feedback control have been per-
formed for a flow configuration similar to that used by and disturbance
attenuation as well as transition delay have been obtained. First, an effort is
made to match the disturbance behaviour in the experimental flow case and
in the simulation. Secondly control is applied in simulations of the matched
system aiming at approaching the type of actuation used in the experiments
(localised suction). Optimal feedback of the linear system is still the basis
for computing the control signal. Remarkable agreement is obtained in terms
of disturbance attenuation while the discrepancy in the transition delay can
be explained by the fact that in the experiment the controlled region was
very narrow in the spanwise direction. Consequently, the controlled region is
contaminated by turbulence from the sides.

The experiments were performed by Fredrik Lundell (FL). The code
development and computations relevant to the optimal control part were
performed by AM with feedback from LB. The writing of the paper was
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divided accordingly.

Paper 6

A. MONOKROUSOS & L. BRANDT, 2011
Control of a separating boundary layer with travelling waves on the wall.
Technical report

Control of a separating boundary layer is applied by means of travelling
waves of blowing and suction on the wall. We find that downstream travelling
waves, even for very low amplitudes, are able to eliminate the separation
and re-attach the boundary layer. Upstream travelling waves for relatively
high amplitudes are able to reduce the separation and at the same time
re-laminarise the flow.

The implementation of the wall actuation was bone by LB as well as the
set-up of the base flow. The computations were done by AM. The writing of
the paper was done by AM with feedback from LB.
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Global optimal disturbances in the Blasius
boundary-layer flow using time-steppers

By Antonios Monokrousos, Espen Akervik, Luca Brandt &
Dan S. Henningson

Linné Flow Centre, Department of Mechanics
Royal Institute of Technology, SE-100 44 Stockholm, Sweden

Journal of Fluid Mechanics, 650, 181-214, 2010

The global linear stability of the flat-plate boundary-layer flow to three-
dimensional disturbances is studied by means of an optimisation technique. We
consider both the optimal initial condition leading to the largest growth at finite
times and the optimal time-periodic forcing leading to the largest asymptotic
response. Both optimisation problems are solved using a Lagrange multiplier
technique, where the objective function is the kinetic energy of the flow per-
turbations and the constraints involve the linearised Navier—Stokes equations.
The approach proposed here is particularly suited to examine convectively un-
stable flows, where single global eigenmodes of the system do not capture the
downstream growth of the disturbances. In addition, the use of matrix-free
methods enables us to extend the present framework to any geometrical con-
figuration. The optimal initial condition for spanwise wavelengths of the order
of the boundary layer thickness are finite-length streamwise vortices exploiting
the lift-up mechanism to create streaks. For long spanwise wavelengths it is the
Orr mechanism combined with the amplification of oblique wave packets that is
responsible for the disturbance growth. It is found that the latter mechanism
is dominant for the long computational domain and thus for the relatively
high Reynolds number considered here. Three-dimensional localised optimal
initial conditions are also computed and the corresponding wave-packets exam-
ined. For short optimisation times, the optimal disturbances consist of streaky
structures propagating and elongating in the downstream direction without
significant spreading in the lateral direction. For long optimisation times, we
find the optimal disturbances with the largest energy amplification. These are
wave-packets of TS-waves with low streamwise propagation speed and faster
spreading in the spanwise direction. The pseudo-spectrum of the system for
real frequencies is also computed with matrix-free methods. The spatial struc-
ture of the optimal forcing is similar to that of the optimal initial condition,
and the largest response to forcing is also associated with the Orr/oblique wave
mechanism, however less so than in the case of the optimal initial condition.
The lift-up mechanism is most efficient at zero frequency and degrades slowly
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for increasing frequencies. The response to localised upstream forcing is also
discussed.

1. Introduction

The flat-plate boundary layer is a classic example of convectively unstable flows;
these behave as broadband amplifiers of incoming disturbances. As a conse-
quence, a global stability analysis based on the asymptotic behaviour of single
eigenmodes of the system will not capture the relevant dynamics. From this
global perspective all the eigenmodes are damped, and one has to resort to an
input/output formulation in order to obtain the initial conditions yielding the
largest possible disturbance growth at any given time and the optimal harmonic
forcing. To do this, an optimisation procedure is adopted. The aim of this work
is to investigate the global stability of the flow over a flat plate subject to ex-
ternal perturbations and forcing and to examine the relative importance of the
different instability mechanisms at work, see discussion below. The approach
adopted here can be extended to any complex flow provided a numerical solver
for the direct and adjoint linearised Navier-Stokes equations is available.

Recently, the global stability of the spatially-evolving Blasius flow subject
to two-dimensional disturbances has been studied within an optimisation frame-
work by projecting the system onto a low-dimensional subspace consisting of
damped Tollmien-Schlichting (TS) eigenmodes (Ehrenstein & Gallaire 2005).
These results were extended by Akervik et al. (2008), who found that by not
restricting the spanned space to include only TS modes, the optimally grow-
ing structures could exploit both the Orr and TS wave packet mechanism and
yield a substantially higher energy growth. The Orr mechanism (Orr 1907) was
studied in the context of parallel shear flows using the Orr—Sommerfeld /Squire
equations by Butler & Farrell (1992), who termed it the Reynolds stress mech-
anism. This instability extracts energy from the mean shear by transporting
momentum down the mean momentum gradient through the action of the per-
turbation Reynolds stress. In other words disturbances that are tilted against
the shear can borrow momentum from the mean flow while rotating with the
shear until they are aligned with it. This mechanism is also referred to as
wall-normal non-normality.

From the local point of view the TS waves appear as unstable eigenval-
ues of the Orr—Sommerfeld equation. In the global framework however the
global eigenmodes belonging to the TS branch are damped (Ehrenstein &
Gallaire 2005), and the evolution of TS waves consist of cooperating global
modes that produce wave packets. Considering the model problem provided
by the Ginzburg-Landau equation with spatially varying coefficients, Cossu &
Chomaz (1997) demonstrated that the non-normality of the streamwise eigen-
modes resulting from the local convective instabilities leads to substantial tran-
sient growth. This non-normality is revealed by the streamwise separation of
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the direct and adjoint global modes induced by the basic flow advection; it is
therefore also termed streamwise non-normality (Chomaz 2005).

It is now well established that when incoming disturbances exceed a certain
amplitude threshold the flat-plate boundary layer is likely to undergo transition
due to three-dimensional instabilities arising via the lift-up effect (Ellingsen &
Palm 1975; Landahl 1980). This transient growth scenario, where streamwise
vortices induce streamwise streaks by the transport of the streamwise momen-
tum of the mean flow, was studied for a variety of shear flows in the locally
parallel assumption (c.f. Butler & Farrell 1992; Reddy & Henningson 1993;
Trefethen et al. 1993). The extension to the non-parallel flat plate boundary
layer was performed at the same time by Andersson et al. (1999) and Luchini
(2000) by considering the steady linear boundary-layer equations parabolic in
the streamwise direction. In these investigations the optimal upstream dist-
urbances are located at the plate leading edge and a Reynolds number inde-
pendent growth was found for the evolution of streaks at large downstream
distances. Levin & Henningson (2003) examined variations of the position at
which disturbances are introduced and found the optimal location to be down-
stream of the leading edge. In this study, also low-frequency perturbations were
considered, still within the boundary layer approximation. In the global frame-
work an interpretation of the lift-up mechanism is presented e.g. in Marquet
et al. (2008): Whereas the TS mechanism is governed by a transport of the
disturbances by the base flow, the lift-up mechanism is governed by a trans-
port of the base flow by the disturbances. Inherent to the lift up mechanism
is the component-wise transfer of momentum from the two cross-stream to the
streamwise velocity component (component-wise non-normality).

The standard way of solving the optimisation problems involved in the
determination of optimal initial condition (or forcing) is to directly calculate
the matrix norm of the discretised evolution operator (or the pseudo-spectrum
of the resolvent) of the system. In the local approach, where the evolution
is governed by the Orr-Sommerfeld/Squire equations it is clearly feasible to
directly evaluate the matrix exponential or to invert the relevant matrix. In
the global approach it is in general difficult and in some cases impossible to
build the discretised system matrix. One possible remedy is to compute a
set of global eigenmodes with iterative methods and project the flow system
onto the subspace spanned by these eigenvectors. The optimisation is then
performed in a low dimensional model of the flow: results for the flat-plate
boundary layer can be found in Ehrenstein & Gallaire (2005); Akervik et al.
(2008) while two-dimensional and three-dimensional studies on separated flows
were performed e.g. by Akervik, Heepffner, Ehrenstein & Henningson (2007);
Gallaire, Marquillie & Ehrenstein (2007); Ehrenstein & Gallaire (2008); Alizard,
Cherubini & Robinet (2009)

However, the direct matriz-free approach followed here is preferable, if not
indispensable, for more complicated flows. This amounts to solving eigenvalue
problems using only Direct Numerical Simulations of the evolution operators.
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This approach is commonly referred to as a time-stepper technique (Tucker-
man & Barkley 2000); one of its first applications was to the linear stability
analysis of a spherical Couette flow (Marcus & Tuckerman 1987a,b; Mamun
& Tuckerman 1995). The time-stepper technique was then generalised to op-
timal growth calculations by introducing the adjoint evolution operator and
solving the eigenvalue problem of the composite operator (Blackburn et al.
2008; Barkley et al. 2008) for backward facing step flow; it was subsequently
applied to separation bubbles (Marquet et al. 2008, 2009) and to the flat-plate
boundary-layer flow subject to two-dimensional disturbances (Bagheri et al.
2009a).

Thus, in this paper we study the stability of the flat-plate boundary-layer
flow subject to three-dimensional disturbances from a global perspective us-
ing a time-stepper technique. The base flow has two inhomogeneous direc-
tions, namely the wall-normal and streamwise, thereby allowing a decoupling
of Fourier modes in the spanwise direction only. Both optimal initial condition
and optimal forcing are therefore first considered for a range of spanwise wave-
numbers, seeking to find the spanwise scale of the most amplified disturbances.
In the case of optimal initial conditions, we optimise over a range of final times,
while time-periodic optimal forcing are computed for a range of frequencies. In
addition, we compute for the first time optimal initial conditions localised in
space. The evolution of the resulting wave-packet is analysed in terms of flow
structures and propagation speed.

Whereas the computation of optimal initial condition is known in the global
time-stepper context (see references above), the formulation of the optimal forc-
ing problem in this framework is novel. This enables us to compute the pseudo-
spectrum of the non-normal governing operator with a matrix-free method. The
latter type of analysis can have direct implications for flow control as well: The
optimisation procedure allows us to determine the location and frequency of
the forcing to which the flow under consideration is most sensitive.

The paper is organised as follows. Section 2 is devoted to the description of
the base flow and the governing linearised equations. Section 3 and 4 describe
the Lagrange approach to solving the optimisation problems defined by the op-
timal initial conditions and optimal forcing, respectively. The main results are
presented in section 5; the paper ends with a summary of the main conclusions.

2. Basic steady flow, governing equations and adjoint system

We investigate the stability of the classical spatially-evolving two-dimensional
flat-plate boundary-layer flow subject to three-dimensional disturbances. The
computational domain starts at a distance x from the leading edge defined by
the Reynolds number Re, = Usz/v = 3.38 - 10° or Res- = 1.72/Re, =
Usdg/v = 10%. Here U, is the uniform free stream velocity, §* is the
local displacement thickness and v is the kinematic viscosity. We denote
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the displacement thickness at the inflow position d;. All variables are non-
dimensionalised by U and ;. We solve the linearised Navier-Stokes equa-
tions using a spectral DNS code described in Chevalier et al. (2007) on a domain
Q=10,L;]x[0,L,] %[0, L.]. The non-dimensional height of the computational
box is L, = 30 and the length is L, = 1000, while the spanwise width is
L. = 502.6 for the case of localised initial conditions or defined in each simula-
tion by the Fourier mode under investigation. In the wall-normal direction, y, a
Chebyshev-tau technique with n, = 101 polynomials is used along with homo-
geneous Dirichlet conditions at the wall and the free-stream boundary. In the
streamwise and spanwise directions we assume periodic behaviour, hence allow-
ing for a Fourier transformation of all variables. For the simulations presented
here, the continuous variables are approximated by n, = 768 and n, = 128
Fourier modes in the streamwise and spanwise direction respectively, whereas
we solve for each wave-number separately in the spanwise direction when con-
sidering spanwise periodic disturbances, a decoupling justified by the spanwise
homogeneity of the base flow. Since the boundary layer flow is spatially evolv-
ing a fringe region technique is used to ensure that the flow is forced back to
the laminar inflow profile at = 0 (Nordstréom et al. 1999). The fringe forcing
quenches the incoming perturbations and is active at the downstream end of
the computational domain, x € [800,1000], so that 2 = 800 can be consid-
ered as the effective outflow location, corresponding to Re, = 1.138 - 10°. The
steady state used in the linearisation is obtained by marching the nonlinear
Navier—Stokes equations in time until the norm of the time derivative of the
solution is numerically zero. Thus the two-dimensional steady state with ve-
locities U = (U(x,y), V(z,y),0)” and pressure II(x, y) differs slightly from the
well-known Blasius similarity solution.

2.1. The linearised Navier—Stokes equations

We investigate the growth of small amplitude three-dimensional disturbances
on a two-dimensional base flow. The stability characteristics of the base flow
U to small perturbations u = (u(x,t),v(x,t), w(x,t))T are determined by the
linearized Navier—Stokes equations

du+(U-VIu+(u-V)U = —Vr+Re 'Au+g, (1)
V-u = 0, (2)

subject to initial condition u(x,t = 0) = ug(x). Note that we have included a
divergence-free forcing term g = g(x,t) to enable us to also study the response
to forcing as well as to initial condition. In the expression above, the fringe
forcing term is omitted for simplicity (see Bagheri et al. 2009b).

When performing systematic analysis of the linearized Navier—Stokes equa-
tions we are interested in the initial condition u(0) and in the features of the
flow states u(t) at times t > 0. We will also consider the spatial structure
of the time-periodic forcing g that creates the largest response at large times,
that is when all transients effects have died out. Our analysis will therefore



48 A. Monokrousos, E. fikervik, L. Brandt & D. S. Henningson

consider flow states induced by forcing or initial conditions, where a flow state
is defined by the three-dimensional velocity vector field throughout the com-
putational domain € at time t. To this end, it is preferable to re-write the
equations in a more compact form. In order to do so we define the velocities
as our state variable, i.e. u = (u,v,w)”. Following Kreiss et al. (1994) the
pressure can be formally written in terms of the velocity field 7 = Ku solution
of equation 3

Ar ==V -((U-V)u+ (u-V)U). (3)
The resulting state space formulation of equation (1) reads
(8t - A)u — 8= 07 U(O) =g, (4)

Alternatively A may also be defined using semi-group theory, where it is re-
ferred to as the infinitesimal generator of the evolution operator 7 (¢). 7 defined
as the operator that maps a solution at time tg to time tg + .

u(t +to) = T (H)u(to) - (5)

For further explanation we refer to Trefethen & Embree (2005). In what follows
we use the evolution operator 7 to study both the response to initial condi-
tion and the regime response to forcing, i.e. we look at the long term periodic
response. Indeed for practical numerical calculations the variables are often
discretised, so that the governing operator becomes a matrix of size n x n, with
n = 3ngznyn, for general three-dimensional disturbances. When considering
spanwise periodic disturbances we can focus on one wave number at a time and
the dimension of the system matrix is reduced to n = 3n,n,. However, even
in this case the evaluation of the discretised evolution operator 7 = exp(.At)
is computationally not feasible. The complete stability analysis, including the
optimisation, can be efficiently performed by marching in time the linearised
Navier—Stokes equations using a numerical code. This so called time stepper
technique has indeed become increasingly popular in stability analysis (Tuck-
erman & Barkley 2000).

2.2. Choice of norm and the adjoint equations

In order to measure the departure from the base flow we use the kinetic energy
of the perturbations

2 H
[a(®)[I* = (u(t),u(t)) = /Qu u d6. (6)
Since transition in shear flows is initiated by secondary instabilities induced
by local gradients in the flow, one could alternatively use an infinity norm or
maximise directly the shear or vorticity. Using the above inner product we may
define the action of the adjoint evolution operator as

(v, exp(At)u) = (exp(ATt)v, u), (7)
where A" is defined by the initial value problem
—0v=Alv=(U-V)v— (VU v+ R 'Av+VZv, v(T)=vr. (8)
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The adjoint system (8) is derived using the inner product in time space domain
¥ =10,T] x Q. The operator Z is the counterpart of the operator K for the
adjoint pressure: ¢ = Zv. This initial value problem has stable integration
direction backwards in time so we may define the adjoint solution at time T'—¢
for the forward running time ¢ as

v(T —t) = exp(ATt)vy, t€[0,T]. (9)

It is important to note that the addition of the forcing term g in (1) has no
effect on the derivation of the adjoint equations. In particular, the fringe forcing
term is self-adjoint since proportional to the velocity u.

3. Optimal initial conditions

In this section, we derive the system whose solution yields initial conditions
which optimally excite flow disturbances. When seeking the optimal initial
condition we assume that the forcing term g in (4) is zero. We wish to determine
the unit norm initial condition u(0) yielding the maximum possible energy
(u(T'),u(T)) at a prescribed time T'. A common way of obtaining the optimal
initial condition is to recognise that the condition

C max [u(D)I* i (u(0), exp(ATT) exp(AT)u(0))
a0 [[w(0)[|2  Jju()i0 (u(0),u(0))

(10)

defines the Rayleigh quotient of the composite operator exp(A'T)exp(AT).
The optimisation problem to be solved is hence the eigenvalue problem

yu(0) = exp(A'T) exp(AT)u(0). (11)

In the case of a large system matrix, as in fluid-flow systems, this eigenvalue
problem can be efficiently solved by matrix-free methods using a time-stepper
(DNS) and performing power-iterations or the more advanced Arnoldi method
(c.f. Nayar & Ortega 1993; Lehoucq et al. 1997); both methods only need a
random initial guess for u(0) and a numerical solver to determine the action of
exp(AT) and exp(ATT) (Barkley et al. 2008).

One alternative approach relies on the Lagrange multiplier technique which
we believe allows for more flexibility in defining different objective functions as
well as in enforcing additional constrains. Here, we show how this approach is
used to compute the unit norm initial condition u(0) non-zero only within a
fixed region in space, A C 2, i.e. the localised optimal initial condition. The
objective is still maximising the kinetic energy at final time T

J = (u(T),u(T)). (12)

The following constraints need to be enforced: the flow needs to satisfy the
governing linearized Navier—Stokes equations (4) (without forcing) and the ini-
tial condition must have unit norm and exist only inside A. Additionally the
optimal perturbation must be divergence-free condition. Hence the Lagrange
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function reads

T
L(u,v,v) = (u(T),u(T)) — /0 (v, (0 — A)u) dr

=7 ((u(0),u(0))a = 1) = (4, V- u(0))a (13)

where v, and v are the Lagrange multipliers. The inner product defined by
(+,-)a corresponds to an integral in A. Note that the normalisation condition
selects a unique solution of the eigenvalue problem and thus enable the numer-
ical procedure to converge. We need to determine u,u(0), u(T"),v and « such
that £ is stationary, necessary condition for first order optimality. This can be
achieved by requiring that the variation of L is zero,

oL oL oL oL
5 — <au,§u) N (8V,5V> + (m) 5y + (w) 56 =0.  (14)

This is only fulfilled when all terms are zero simultaneously. The variation
with respect to the costate variable (or adjoint state variable) yields directly
the state equation

(9 — Au=0, (15)

and similarly the variation with respect to multiplier v yields a normalisation
criterion

(f;f,(w) = (u(0), u(0)r = 1. (16)

In order to take the variations with respect to the other variables we perform
integration by parts on the second term of £ in (13) to obtain

T
L= (u(T),u(T)) - /O (u, (=0 — AT) v) d7 — (v(T), u(T))
+ (v(0),u(0)) =y ((u(0),u(0))a =1) = (¥, V-u(0)a.  (17)

The variation of this expression with respect to the state variable u yields an
equation for the adjoint variable as well as two optimality conditions

oL g ;
—,0u| = —/ (0u, (=0, — A")v)+ (du, v—~u) =0+ (du,u—v)|;=r = 0.
0

ou’
(18)
The simplest choice to satisfy this condition is each of this terms being sepa-
rately zero so finally we get

(=9, — Ah)yv =0, (19)
and
u(0) = 7"'v(0),
v(T)=u(T). (20)
Variations with respect to the initial velocity field give the following condition

(0u(0), v(0)) = 7(6u(0), u(0))s — (6u(0), Vih)x = 0. (21)
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The expression above can be re-written in integral form

/WA(‘S“ /5‘1 —yu(0) = Vi) = 0. (22)

The first integral is zero for Ju(0) = 0, which implies that the initial condition
is not updated outside A. Therefore the new guess for the localised initial
condition u(0) is

u(0) =771 (v(0) = V) a. (23)
In the above, the scalar field ¢ is obtained by combining (23) with
oL
—_— = . = . 24
5 = ¥ u(0) =0 (21)

This gives a projection to a divergence free space where the pressure-like scalar
field is solution of a Poisson equation. It can be proven that this is a unique
projection. In our numerical implementation the projection is actually per-
formed by transforming in the velocity-vorticity formulation adopted for the
computations (Chevalier et al. 2007).

The procedure described above solves an eigenvalue problem similar to
(11) with the addition of an operator PC that localises in space and projects
to divergence-free space

yu(0) = PCexp(A'T) exp(AT)u(0). (25)

The optimality system to be solved is hence composed of equations
15),(16),(19) and (20) along with the projection to divergence-free space
23). From (16) and the first relation in (20), it can readily be seen that
~v = (v(0),v(0)). The remaining equations are solved iteratively as follows.
Starting with an initial guess u(0)™:

(i) we integrate (15) forward in time and obtain u(T);

(ii) v(T') = u(T) is used as an initial condition at ¢ = T for the adjoint system
(19), which integrated backward in time gives v(0);

(iil) we determine a new initial guess by localising v(0), casting it to divergence-
free space and normalising it to unit norm, u(0) = vy~ 1(v(0) — V¥))|a;

(iv) if Ju(0)"™! — u(0)"| is larger than a given tolerance, the procedure is
repeated.

Before convergence is obtained u(0) and v(0) are not aligned. At conver-
gence, u(0) is an eigenfunction of (25). The iteration scheme above can be
seen as a power iteration scheme finding the largest eigenvalue of the problem
(25). Since the composite operator is symmetric its eigenvalues are real and
its eigenvectors form an orthogonal basis. The eigenvalues of the system rank
the set of optimal initial conditions according to the output energy at time 7.
If several optimals are sought, e.g. to build a reduced order model of the flow,
the sequence of u(0)” produced in the iteration can be used to build a Krylov
subspace suitable for the Arnoldi method.
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4. Optimal forcing

This section will focus on the regime response of the system to time-periodic
forcing. Thus we assume zero initial conditions, u(0) = 0, and periodic be-
haviour of the forcing function, i.e.

g = R(f(x)exp(iwt)), feC, weR, (26)

where f defines the spatial structure of the forcing, w is its circular frequency
and R denotes the real part. With these assumptions, the governing equations
become

(0 — A)u — R (fexp(iwt)) =0, u(0) =0. (27)

In this case, we wish to determine the spatial structure and relative strength
of the components of the forcing f that maximise the response of the flow at
the frequency w in the limit of large times, i.e. the regime response of the flow.
The measure of the optimum is also here based on the energy norm. Note that
for this method to converge and for the regime response to be observed, the
operator A must be globally stable. In the spatial framework this requirement
is always satisfied.

In order to formulate the optimisation problem it is convenient to work in
the frequency domain, thereby removing the time dependence. By assuming
time periodic behaviour, u is replaced by the complex field u so that

u = R (hexp(iwt)) . (28)
The resulting governing equations can then be written
(iwZ — A)u—f=0. (29)

Note that the operator A, containing only spatial derivatives, remains un-
changed. The Lagrange function for the present optimisation problem is simi-
lar in structure to that used to determine the optimal initial condition and is
formulated as follows

L(a,v,v,f)=(a,a) — (v, (I — Aua—1f)—~((f,f)—1). (30)

The objective function is the disturbance kinetic energy of the regime response,
(@1, ) where the complex variable @ requires the use of the Hermitian transpose.
The additional constrains require the flow to be solution of the linearised forced
Navier—Stokes equations and introduce a normalisation condition for the forcing
amplitude. Since the state variable u is a solution of the time independent
system (29), the inner product used in the definition of the adjoint involves only
spatial integrals. The time behaviour of the costate or adjoint variable is indeed
assumed to be also periodic v = R (Vexp(iwt)). Thus in the derivation of the
adjoint the time derivative is replaced by the term iwu, with adjoint —iwv. As
for the computation of the optimal initial condition, we take variations with
respect to u, v, f and ~

oL . oL . oL oL
0L = (aﬁ,éu> + (3‘7,5V> + (8f’6f) + (87) 07y. (31)
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The first order optimality condition requires all of the terms to be simultane-
ously zero. By taking variations with respect to the costate variable (or adjoint
variable) we again obtain the state equation (29). Similarly the variation with
respect to the multiplier v yields the normalisation criterion (f,f) —1 = 0.
In order to take the variations with respect to the other variables we perform
integration by parts on the second term of £ in (30) to obtain

L(0,v,7,f) = (@,0) - (&, (~iwZ — AN) + (£,9) =7 ((£.£) =1).  (32)
No initial-final condition terms appear during this integration by parts since
here the inner product is only in space (in contrast to the optimal initial condi-

tion). Variations with respect to the state variable @ and to the forcing function
f yield

oL
(&J = - (—iwI — A"V =0, (33)
oL
—= f=~"17. 4
(%) == (34)
Equations (29) and (33) are the two equations we have to solve with the time-
stepper. The normalisation condition (f,f) = 1 and equation (34) provide

the optimality condition that is used to calculate the new forcing field after
each iteration of the optimisation loop. A similar approach is used to com-
pute the localised optimal forcing. The corresponding results are presented in
section 5.2.2.

Next, we show the equivalence between the Lagrange multiplier technique
and the corresponding standard matrix method when the resolvent norm is
considered. The formal solution of equation (27) can be written as

4= (iwl — A)'f. (35)
The corresponding solution for the adjoint system
v = (—iwl — AN ta. (36)
Combining the two equations above and using (34)
1
f = —(—iwl — AN (iwl — A)7'f. (37)
Y

This is a new eigenvalue problem defining the spatial structure of the optimal
forcing at frequency w that is solved iteratively; the largest eigenvalue corre-
sponds to the square of the resolvent norm

7 = llwl — A) 72 (38)

Note that the actual implementation uses a slightly different formulation,
since the available time-stepper does not solve directly (29) and (33). In prac-
tice, the governing equations are integrated in time long enough that the tran-
sient behaviour related to the system operator A has died out. The regime
response for the direct and adjoint system is extracted by performing a Fourier
transform of the velocity field during one period of the forcing.

The steps of the optimisation algorithm therefore are:
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FI1GURE 1. Comparison of results from the adjoint iteration
scheme (shown as circles) and direct solution in terms of SVD
of the OSS resolvent (shown as solid lines) for optimal forcing
to the parallel Blasius flow at Re = 1000. a) Zero spanwise
wave-number ( for different frequencies w and for streamwise
wave-number a = 0.1. b) Streamwise wave-number a = 0.1
for different spanwise wave-numbers (3 subject to forcing with
frequency w = 0.05. Both plots show excellent agreement be-
tween the two methods. Note that in order to obtain a regime
response in the parallel case the wave-numbers are chosen so
that the system operator is stable.

(i) Integrate (27) forward in time and obtain the Fourier transform response a
at the frequency of the forcing.
(ii) @ is used as a forcing for the adjoint system which in time domain is written

(=0 — AN)v — R (wexp(iwt)) = 0. (39)

(iii) A new forcing function is determined by normalising "1 = v /7.

(iv) If [f7+1 — £7] is larger than a given tolerance, the procedure is repeated.
Additionally, we study the case of localised optimal forcing. The relevant for-
mulation is similar to that presented for spatially localised perturbations in
section 3.

A validation of the method is presented in figure 1, where the results from
the present adjoint-based iteration procedure are compared to those obtained
by the standard method of performing a singular value decomposition (SVD)
of the resolvent of the Orr—Sommerfeld and Squire equations for the parallel
Blasius flow (c.f. Schmid & Henningson 2001). In figure la) the response to
forcing with spanwise wave-number g = 0 is shown for different frequencies,
whereas the response to steady forcing with streamwise wave-number « is shown
in figure 1b). In the latter case, variations of the spanwise wave-numbers are
considered. In both cases, excellent agreement between the two methods is
observed.
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5. Results

The flat plate boundary layer flow is globally stable, i.e. there are no eigenval-
ues of A located in the unstable half plane. Hence we do not expect to observe
the evolution of single eigenmodes. In Akervik et al. (2008) the non-modal
stability of this flow subject to two-dimensional disturbances was studied by
considering optimal superposition of eigenmodes. These authors found that the
optimal initial condition exploits the well known Orr mechanism to efficiently
trigger the propagating Tollmien-Schlichting wave packet. In Bagheri et al.
(2009a), the stability of the same flow was studied using forward and adjoint
iteration scheme together with the Arnoldi method to reproduce the same mech-
anism. By allowing for three-dimensional disturbances, it is expected that in
addition to the instability mechanisms mentioned above (convective Tollmien-
Schlichting instability and the Reynolds stress mechanism of Orr) the lift-up
mechanism will be relevant in the system.

This has been well understood both using the Orr—Sommerfeld/Squire
equations  (Butler & Farrell 1992; Reddy & Henningson 1993) in the par-
allel temporal framework and using the Parabolized Stability Equations in the
spatial non-parallel framework (Andersson et al. 1999; Luchini 2000; Levin &
Henningson 2003). In the former formulation, the base flow is assumed to be
parallel. At the Reynolds number Re = 1000, the inflow Reynolds number of
the present investigation, it is found that for spanwise wave-numbers 3 larger
than = 0.3 there is no exponential instability of T'S/oblique waves. The largest
non-modal growth due to the lift-up mechanism is observed at the wave-number
pair (a, 5) = (0,0.7). In the present work we do not restrict ourselves to zero
streamwise wave-number o = 0, but instead we take into account the develop-
ing base flow. Indeed the spatially developing base flow allows for transfer of
energy between different wave-numbers through the convective terms.

5.1. Optimal initial condition
5.1.1. Spanwise periodic flows

We investigate the potential for growth of initial conditions with different span-
wise wave-numbers [ by solving the eigenvalue problem (11) for a range of
instances of time T'. This amounts to performing a series of direct and adjoint
numerical simulations until convergence towards the largest eigenvalues of (11)
at time T is obtained. If only the largest eigenvalue of (11) is desired it suffices
to use a power iteration scheme, whereas if several of the leading eigenvalues
are needed, one has to resort to a Krylov/Arnoldi procedure (c.f. Nayar & Or-
tega 1993; Lehoucq et al. 1997). Both of these approaches are matrix-free and
rely on the repeated action of exp(A'T)exp(AT) on an initial velocity field
u(0). In other words, it is not necessary to store matrices in order to obtain
the eigenvalues but to time-integrate the governing equations.

Figure 2a) shows the energy evolution when optimising for different times
and for spanwise wave-number § = 0.55. It is at this wave number that the
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FIGURE 2. a) Energy evolution of the optimal initial condi-
tions for different times T" at the wave-number 3 = 0.55, where
the optimal streak growth is obtained. The largest growth is
obtained at time T' = 720. The maximum at each time in
this figure defines the envelope growth. b) Component-wise
rms-values when optimising for time 7" = 720. A transfer
of energy from the wall-normal and spanwise component to
the streamwise velocity is observed during the time evolution,
clearly showing that the lift-up mechanism is active.

maximum growth due to the lift-up mechanism is found for the configuration
under consideration. From figure 2b) it is evident that the disturbance leading
to the maximum streak growth at time 7" = 720 exploits the component-wise
transfer between velocity components, inherent to the lift-up mechanism. The
initial condition is in fact characterised by strong wall-normal v and spanwise w
perturbation velocity while the flow at later times is perturbed in its streamwise
velocity component.

An important feature of this high Reynolds number flat-plate boundary-
layer flow with length L, = 800 is that the combined Orr/Tollmien-Schlichting
mechanism is very strong with a growth potential of 7; = 2.35 - 10* (see also
Bagheri et al. 2009a) for time 7" = 1800. If, however, the streaks induced by
the lift-up mechanism have reached sufficiently large amplitudes to trigger sig-
nificant non-linear effects, the T'S wave transition scenario will be by-passed. In
figure 3 a contour map of the maximum growth versus optimisation time and
spanwise wave-numbers (3 is shown. Note that local maxima are obtained in two
regions; (I) a low spanwise wave-number regime dominated by the TS/oblique
waves where the growth is the largest but slow. (II) For high spanwise wave-
number it is the fast lift-up mechanism that is dominating. The TS/oblique
mechanism can be seen to yield one order of magnitude larger growth than
the lift-up instability. The global maximum growth is obtained at the wave-
number § = 0.05 and not for § = 0. This somewhat surprising result can be
explained by the larger initial transient growth of spanwise-dependent pertur-
bations which initiates the TS-waves. The growth rate of the latter is almost
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Energy amplification

1500 2000

F1GURE 3. Contour map of optimal growth due to initial con-
dition in the time spanwise wave-number domain. The con-
tour levels span three orders of magnitude and thus we use a
logarithmic scale. The value on the contours indicate the en-
ergy growth corresponding to that line. The maximum streak
growth is obtained for # = 0.55 at time 7" = 720 and the am-
plification factor is G = 2.63 - 103. The global maximum is
obtained for 8 = 0.05 at time 7" = 1820, with the streamwise
exponential amplification of oblique waves combined with the
Orr-mechanism. The amplification factor is G = 2.71 - 10%.

independent of 3 for the low values under consideration (see e.g. figure 3.10 in
Schmid & Henningson 2001).

The competition between the exponential and algebraic growth was also
studied using local theory by Corbett & Bottaro (2000). These authors have
shown that as the Reynolds number increases, the growth due to modal in-
stability becomes more pronounced. The results presented in that work for
Rey = 386 (equivalent to Res» = 1000 in our scaling) indicate that TS in-
stability becomes dominant for final times 7" > 2000. Our results show that
in a spatially evolving boundary layer with local Reynolds number Regs« rang-
ing between 1000 and 1800 the exponential growth dominates at times larger
than about 1250. In the following we study in more detail the disturbances
corresponding to the two local maxima mentioned above.

The evolution of the most dangerous initial condition is shown in figure 4.
The streamwise velocity component of the optimal initial condition leading to
the maximum growth at time 7" = 1820 is depicted together with the flow
response at various times. The initial disturbance is as in the two-dimensional
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FIGURE 4. Isosurfaces of streamwise component of disturban-
ces at the spanwise wave-number § = 0.05. Red/blue colour
signifies isosurfaces corresponding to positive/negative veloc-
ities at 10 percent of the maximum. a) Streamwise compo-
nent of optimal initial condition leading to the global optimal
growth at time 7' = 1820. b), ¢) and d) Corresponding flow
responses at times T' = 400, 1000 and 1600

case leaning against the shear of the base flow (see figure 4a). The resulting
instability exploits the Orr-mechanism to efficiently initialise the wave packet
propagation, eventually giving the disturbance shown in figures 4 b), ¢) and d).

Figure 5 shows the space-time diagram for the evolution of the three ve-
locity components of the disturbance. Isocontours of the integrated, in span-
wise and wall-normal direction, rms-values associated to each component are
plotted versus the streamwise direction and time. Since this is a global view of
local modal instability there is no significant component-wise transfer of energy
and thus the different components of the disturbance evolve (grow) in a similar
manner. Weak interactions between the components can be due to non-parallel
effects. Additionally, the propagation velocity of the disturbance is estimated
from the space-time diagrams by tracking the edges of the disturbance. These
edges are defined as the point where the rms-values have amplitude 1%. All
the propagation velocities presented will be measured in this way. The lead-
ing edge of the wave-packet travels at ¢ = 0.51 while the trailing edge has a
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FIGURE 5. Spatio-temporal diagram of the three velocity com-
ponents of the perturbation for the T'S-wave case optimisation
time is T = 720) ((a) streamwise, (b) wall-normal and (c)
spanwise). The propagation velocity of the leading edge of the
disturbance is ¢;e = 0.51 while of the trailing edge is ¢ = 0.33.

velocity cie = 0.33. These values shows remarkable agreement with the clas-
sic results on the propagation of wave-packets by Gaster (1975) and Gaster &
Grant (1975).

The optimal initial condition leading to the maximum growth at time 7' =
720 for spanwise wave-number § = 0.55 and the corresponding flow response
at various times are shown in figure 6. The initial disturbance is an elongated
perturbation with most of its energy (99.94%) in the wall-normal and spanwise
velocity components (figure 6a). The resulting instability exploits the lift-up
eventually giving the disturbance shown in figures 6 b), ¢), d) and e). This
is a result of local non-modal instability characterised by the strong transfer
of energy from the wall-normal and spanwise towards the streamwise velocity
component. The wall-normal velocity component is shown in figure 6 b) to
suggest that the Orr mechanism is active here as well; it delays the final decay
of the streamwise vortices so that they can induce streaks more effectively.
Already at time ¢ = 100 more than 99% of the kinetic energy of the perturbation
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FIGURE 6. Evolution of streamwise velocity when initialising
the system with the optimal initial condition at 8 = 0.55. a)
The wall-normal velocity of the optimal initial condition. b)
The wall-normal velocity at ¢ = 200 with surface levels at ten
percent of its maximum value, ¢) The streamwise velocity at
t = 200, d) at time t = 400 and e) at time ¢ = 600. The
optimisation time is 1" = 720.

is in the streamwise component. As can be seen, the disturbance evolves into
alternating slow and fast moving streaks that are tilted so that the leading edge
is higher than the trailing edge as observed in the experimental investigation
by Lundell & Alfredsson (2004).

It is also interesting to note that, while the optimal initial condition is
streamwise independent for parallel flows, it is localised in the streamwise di-
rection for a spatially growing boundary layer. This indicates that it is most
efficient to extract energy from the mean flow further upstream where non par-
allel effects are stronger. For optimisation times longer than that of the peak
value, still with 5 = 0.55, the initial perturbation is located further upstream
and is shorter. This is to compensate for the downstream propagation of per-
turbations out of the control domain. Conversely, for optimisation times lower
than T = 720, the initial conditions assumes more and more the form of a
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FIGURE 7. Spatio-temporal diagram of the three velocity com-
ponents of the perturbation for the streak case (optimisation
time is T = 720) ((a) streamwise, (b) wall-normal and (c)
spanwise). The propagation velocity of the leading edge of the
disturbance is ¢;e = 0.87 while of the trailing edge is ¢, = 0.44.
The two speeds are measured in the second half of the time
domain after the initial transient phase.

packet of vortices aligned in the streamwise direction and tilted upstream. The
growth is then due to a combined Orr and lift-up mechanism.

The space-time diagram for each velocity component of the streaky optimal
perturbation is presented in figure 7. The non-modal nature of the instability
and the component wise transfer of energy are seen in the plots. The streamwise
component is for large times several orders of magnitude larger that the other
two. The propagation velocity of the disturbance is calculated: the leading edge
velocity of the “streak-packet” is ¢;c = 0.87 while the trailing edge travels at
velocity ¢;e = 0.44. Note that these values are based on the streamwise velocity
component. The propagation velocities of the non-modal streaks are larger
than those of modal disturbances. This can be explained by the fact that the
disturbances are located in the upper part of the boundary layer, especially the
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FIGURE 8. Energy spectra along the streamwise direction for
the optimal initial condition at for that case T = 1820, 8 =
0.05 (TS-wave) and T' = 720, 3 = 0.55 (Streak).

downstream part of it, as deduced also from the three-dimensional visualisation
in figure 6. Note finally in the plot for the spanwise velocity component a kink
around ¢ = 400 and = = 400. In this region, the main contribution to the
trailing edge of the disturbance changes from streamwise vortices to streamwise
streaks. The propagation velocity of the former is thus larger than that of the
streaks as confirmed by the reduced slope of the peak contours in figures 7(a)
and (b).

To further interpret the present results, we perform a Fourier transform
along the streamwise direction of the two disturbances investigated above and
compute the energy distribution in the various streamwise wave-numbers « (the
energy density is first integrated in wall-normal and spanwise direction). The
result shown in figure 8 demonstrates that the TS-wave disturbance has a peak
at a relatively higher a ~ 0.17, a value in agreement with predictions from
local parallel stability calculations. The streak mode, conversely, has most of
its energy at the lowest wave-numbers.

Four different optimal initial conditions for 3 = 0.55 and T' = 720 are shown
in figure 9. The wall-normal velocity component of the eigenvector leading to
the maximum growth is reported in 9a). Since the base flow is uniform in
the spanwise direction, the second eigenvector has the exact same shape as
the first, only shifted half a wavelength in z as shown in figure 9b). These
eigenvectors correspond to the same eigenvalue v o = 2.6 - 103, and they may
be combined linearly to obtain a disturbance located at any spanwise position.
In figure 9c)-d) the third eigenvector associated with v3 = 2.2-10% and the fifth
associated with 5 = 1.6 - 10® are shown respectively. These eigenvectors also
come in pairs with matching eigenvalues. It is thus possible with the Arnoldi
method to obtain several optimals for a single parameter combination. This
has not been done previously for the Blasius flow, while Blackburn et al. (2008)
computed several optimals for the flow past a backward-facing step.
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FI1GURE 9. Wall-normal component of the leading four eigen-
vectors for the optimisation problem at g = 0.55, t = 720 and
the corresponding responses. The structures are plotted over
one wavelength in the spanwise direction. Red/blue colour in-
dicate isosurfaces corresponding to positive/negative velocities
at 10 percent of the maximum. a) The initial condition with
largest growth. b) Flow structures corresponding to the second
eigenvalue. This is a spanwise shifted version of the first eigen-
vector. ¢) Third eigenvector associated to the same eigenvalue
as the fourth eigenvector (not shown). d) Fifth eigenvector.
In e), f), g) and i) the corresponding responses are shown, in
particular the streamwise component. Note that the axes are
not at the actual aspect ratio: the structures are far more
elongated.

The responses to each of these initial conditions are shown in figures (9e-
i). One can see that the sub-optimal initial conditions reproduce structures
of shorter extension and with low- and high-speed streaks alternating in the
streamwise direction. Figure (10) shows the energy evolution versus time for
each of the sub-optimals. The energy growth is similar in the beginning, how-
ever later on, faster decay is observed with decreasing order of optimality.
Optimal perturbations form an orthogonal basis; this fact may be exploited to
project incoming disturbances and predict their evolution.

5.1.2. Localised optimal initial condition

In this section, we look into the general case of three-dimensional initial dist-
urbances. Using the method described in section 3, along with the necessary
modifications explained in section 3, spatially localised optimal initial condi-
tions are sought. A large domain is chosen to allow for a fully three-dimensional



64 A. Monokrousos, E. /ikervik, L. Brandt & D. S. Henningson

3000

—optimal 1

2500} —sub-optimal 3
- - -sub-optimal 5
20001 =~ sub—optimal 7 fam—.

w 1500 .
1000

500

% 200 400 600
t

FIGURE 10. The evolution of the energy of the perturbation
in time for each of the initial conditions in figure 9. The sub-
optimals denoted by even number give the same evolution as
the corresponding perturbation with odd number.

disturbance to propagate and expand in all directions without interacting with
the boundaries. The spanwise width is chosen to be Lz = 502.6 (corresponding
to the fundamental wave-number § = 0.0125) for the cases with longest opti-
misation time and Lz = 251.3 (§ = 0.025) for the shorter optimisation times.
Furthermore n, = 128 Fourier modes were used in the spanwise direction, in-
stead of 4 for the spanwise periodic cases. This increases the total number of
degrees of freedom in our optimisation problem from approximately 1 to 30
millions.

The initial condition is placed near the inflow of the computational domain
and power iterations are used to compute the optimal shape of the disturbance
inside a fixed region. The area to which the initial condition is limited is
3005 long and 4005 wide and it is centred around the location z = 2543 and
z = 0. Along the wall-normal direction the optimisation process restricts the
perturbation near the wall, inside the boundary layer, hence no additional
localisation is adopted. The cases presented here correspond to the two physical
mechanisms found to be relevant in the previous section, the Orr/TS-wave
scenario and the lift-up process. To excite the two separately, the corresponding
optimisation times are chosen to be T' = 1820 and T" = 720. In addition, one
intermediate case, T" = 900, where both these two mechanisms are active, is
presented.

For the longest optimisation time considered, see figure 11, the TS-wave sce-
nario completely dominates the dynamics. The characteristic upstream tilted
structures are present in the initial condition and all the velocity components
achieve a significant growth. The wave-packet grows while travelling down-
stream and it consists of structures almost aligned in the spanwise direction,
forming symmetric arches. The three-dimensional nature of this wave-packet is
noticeable in the spanwise velocity component of the response, accounting for
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FicURE 11. Optimal localised initial condition and corre-
sponding response at time 7' = 1820, the optimal TS wave-
packet. The amplitudes of each velocity component are re-
ported in table 1.

Time | Comp. | Initial condition | Response | Total growth
u 0.00398 275.42913

720 v 0.36452 0.02334 | 275.76202
w 0.63149 0.30954
u 0.74441 1012.39550

1820 v 0.00314 278.58122 | 1763.75695
w 0.25244 472.78022

TABLE 1. Energy of each component of the tree-dimensional
optimal initial condition and the corresponding response. The
total energy amplification is reported in the last column. All
the values are normalised with the total energy of the initial
condition.

the spreading of the disturbance normal to the propagation direction and to the
presence of unstable oblique waves. As in the case of the spanwise periodic dist-
urbances, the total energy growth due to the streamwise normality (TS-waves
for T' = 1820) is about of one order magnitude larger than the amplification
triggered by the lift-up effect at 7' = 720 (component-wise non-normality).
Table 1 compiles the energy amplifications for the cases under investigation
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FicURE 12. Optimal localised initial condition and corre-
sponding response at time 7' = 720, the optimal streaky wave-
packet. The amplitudes of each velocity component are re-
ported in table 1.

and reports the value of the energy content in each velocity component for the
initial and final conditions.

The flow structures shown in figure 12, with corresponding amplitudes in
table 1, document the optimal initial conditions for 7' = 720. The lift-up effect
with the formation of streamwise elongated streaks is evident in this case. The
initial condition is characterised by strong streamwise vorticity, wall-normal
and spanwise velocity components, while the response is predominantly in the
streamwise velocity component. Interestingly, we note weak TS-waves prop-
agating behind the streaks (visible in the wall-normal and spanwise velocity
components). Since the optimisation time is short, TS-waves will not have the
opportunity to grow and their contribution to the initial condition is there-
fore limited. However, this cannot be zero for a localised initial perturbation.
Note further that the spanwise component is found to be weak and hence the
spreading of the disturbance in this direction is limited.

The characteristics of the optimal wave-packets are analysed by the space-
time diagrams in figure 13 and 14. Here, the propagation of the disturbance
in the streamwise direction is determined by considering the integral of the en-
ergy associated with each velocity component in the wall-normal and spanwise
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FIGURE 13. Spatio-temporal diagram of the integrated in the
wall-normal direction of the rms-values of three velocity com-
ponents of the perturbation for the optimal TS wave-packet
(optimisation time 7' = 1820). Top line shows the spreading
of the disturbance in the streamwise direction where the distur-
bance velocity is integrated in the spanwise and wall-normal
direction: (a) streamwise, (b) wall-normal and (c) spanwise
velocity component, respectively. (d), (e) and (f) show the
evolution in the spanwise direction of the perturbations in-
tegrated in the streamwise and wall-normal direction. The
propagation velocity of the leading edge of the disturbance is
cle = 0.47 while the trailing edge travels at ¢;e = 0.32. The
spanwise spreading speed at sufficiently large times is ¢, =
0.084.

direction. Similarly, the lateral spreading is computed by integrating the per-
turbation velocities in the streamwise and wall-normal direction. Comparing
the two cases we see that the TS wave-packet expands faster in the spanwise
direction while travelling downstream more slowly than the optimal streaky
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wave-packet. The propagation velocity of the leading edge of the TS-like dis-
turbance is ¢ = 0.47 while the trailing edge travels at ¢;e = 0.32. The spanwise
spreading speed is ¢, = 0.084, corresponding to an angle of 6 = 11.46°. These
values can be compared to those observed experimentally by Gaster (1975);
Gaster & Grant (1975) and to the theoretical analysis in Koch (2002). The lat-
ter author determined the propagation speed of the leading edge of a localised
wave-packet to be 0.5 and the trailing edge velocity to be 0.36 by computing
the group velocity of three-dimensional neutral waves. The largest spanwise
group velocity was found to be approximately 0.085, a value very close to those
reported here. The agreement is remarkable even though the results in Koch
(2002) are obtained at a lower Reynolds number, i.e. Re = 580.

The difference between leading and trailing edge of the optimal streaky
wave-packet, ¢ = 0.90 and ¢;. = 0.36, explains the larger extension of the
latter; while the front travels at the speeds typical of the upper part of the
boundary layer where the streaks are located, the trailing edge velocity is that
of the unstable waves seen on the rear. The spanwise spreading speed is ¢, =
0.0098, corresponding to an angle of = 0.89°. It should be mentioned that this
spreading rate is that of the energetically dominant velocity component, i.e. the
streamwise component. The slow lateral diffusion is most likely only due to the
effect of viscosity; the growing streaky structures are therefore characterised by
zero spanwise propagation velocity.

Figure 14b) and c) clearly demonstrates the short and slower packet of
waves following the main streaky structures. As mentioned above, the spanwise
propagation of the streamwise vortices and streaks is limited; conversely, the
sequence of waves on the rear part of the wave-packet has a spanwise spreading
rate comparable to that of the TS wave packet, in particular the value ¢, =
0.073 is obtained by considering the energy of the spanwise velocity component.

Finally, we computed optimal disturbances for intermediate optimisation
times and the amplifications were generally lower than in the two previous cases.
However it was interesting to notice that for times around 800 to 900 pertur-
bations containing both streaky and wavy structures emerge. The spectrum of
the initial conditions contains a broad range of disturbances. Interestingly, the
flow response is again characterised by short-wavelength instability waves fol-
lowing elongated streaks, apparent only in the streamwise velocity component.
The TS wave-packet becomes more and more relevant as the optimisation time
increases.

5.2. Optimal forcing
5.2.1. Global forcing

Since boundary layers are convectively unstable, thereby acting as noise ampli-
fiers, a prominent role is played by the response to forcing, rather than by the
detailed time-evolution of the initial condition; The optimal forcing is therefore
a relevant measure of the maximum possible growth that may be observed in
the computational domain. Analysis of the frequency response can also have
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FIGURE 14. Spatio-temporal diagram of the integrated in the
wall-normal direction of the rms-values of three velocity com-
ponents of the perturbation for the optimal streaky wave-
packet (optimisation time 7' = 720). Top line shows the prop-
agation of the disturbance in the streamwise direction where
the disturbance velocity is integrated in the spanwise and wall-
normal direction: (a) streamwise, (b) wall-normal and (c)
spanwise velocity component, respectively. (d), (e) and (f)
show the evolution in the spanwise direction of the perturba-
tions integrated in the streamwise and wall-normal direction.
The propagation velocity of the leading edge of the disturbance
is ¢ = 0.90 while the trailing edge travels at ¢, = 0.36. The
spanwise spreading speed is ¢, = 0.0098 (based on the u-
component).

implications for control revealing the forcing location and frequencies to which
the flow is most sensitive. While the evolution of the optimal initial condi-
tion consists of the propagation and amplification of a wave packet, eventually
leaving the computational box (or measurement section), the response of the
flow to periodic forcing will consist of structures with a fixed amplitude at
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FIGURE 15. a) Frequency response for zero spanwise wave-
number i.e. two-dimensional disturbances. The optimal re-
sponse is obtained for the frequency w = 0.055. b) Response
to zero frequency forcing w = 0 for different spanwise wave-
numbers. The maximum response is obtained at 5 = 0.6

each streamwise station, oscillating around the mean flow. We investigate the
structure of the optimal forcing and the corresponding response for a range
of spanwise wave-numbers and frequencies. Thus, for each wave number we
examine a number of temporal frequencies. Ideally we would like to solve the
linearized Navier—Stokes equations for very large times, ensuring that we are
only considering the regime (long-time) response at the specific frequency un-
der investigation. In practice however we are restricted to a finite final time
by the computational cost of solving the direct and adjoint equations involved
in the iteration scheme. Using power iterations to find the largest eigenpair
typically requires from approximately 15 iterations to about 100 for the most
stable frequencies; in other words we need to integrate the governing equations
at least 30 times. As can be deduced from the results in the previous section,
transiently growing perturbations of small spanwise scale leave our domain at
time ¢ & 2000, while locally unstable T'S-waves propagates at a speed of about
0.3 Uy . This observation, along with several convergence tests using different
integration intervals to extract the flow regime response lead to the conclusion
that integration to 7" = 5000 is long enough to observe the pure frequency
response.

Figure 15 shows the square of the resolvent norm, i.e. the response to forc-
ing for the two limiting cases § = 0 and w = 0. In figure 15a) the response to
two-dimensional forcing, inducing perturbations with 3 = 0, is displayed. The
maximum response is observed for the frequency w = 0.055. This maximum
is obtained at the frequency where the least stable TS eigenvalue is located
(see Bagheri et al. 2009a). Indeed it is known that by projecting the dynam-
ics of the flow onto the basis of eigenmodes, the response to forcing is given
by the combination of resonant effects (distance in the complex plane from
forcing frequency to eigenvalue) and non-modal effects, i.e. the cooperating
non-orthogonal eigenvectors (Schmid & Henningson 2001). In Akervik et al.



Optimal disturbances with iterative methods 71

(2008) it was shown for a similar flow that non-normal eigenvectors could in-
duce a response about twenty times larger than that induced only by resonant
effects.

The response to zero temporal frequency for different spanwise wave-
numbers [ is shown in figure 15b), where according to local theory the max-
imum response is expected for spanwise periodic excitations. The maximum
growth may be observed for the wave-number 3 = 0.6, a slightly larger value
than for the optimal initial condition case. Notice that in the case of opti-
mal forcing there is a smaller difference in the maximum gain between the two
different dominating mechanisms (TS-waves vs. streaks).

A full parameter study has been carried out in the frequency—spanwise
wave-number (w,3) plane. A contour map showing the regime response to
optimal forcing is displayed in figure 16. As in the case of the optimal initial
condition, the global maximum response to forcing is observed for g = 0.05. It
reaches this maximum for the frequency w = 0.055. A second region of strong
amplification is found for low frequencies and high spanwise wave-numbers.
Here the most amplified structures consist of streamwise elongated streaks in-
duced by cross-stream forcing. At the largest spanwise wave-numbers, we also
observe that the decay of the amplification when increasing the forcing fre-
quencies is rather slow. Conversely, the peak corresponding to excitation of
the T'S-waves is more pronounced.

A visualisation of the overall maximum amplification, found for the span-
wise wave-number of S = 0.05 and for the same frequency w = 0.55 yielding
the optimal two-dimensional forcing, is presented next. The optimal forcing in
the streamwise momentum equation and the streamwise velocity component of
the optimal response are shown in figure 17. The optimal forcing structures
lean against the shear (see figure 17a) to optimally trigger the Orr mechanism;
the regime long-time response of the flow, shown in figure 17b), reveals the ap-
pearance of amplified TS-waves at the downstream end of the computational
domain.

The optimal forcing structure at 8 = 0.6 and the zero frequency has almost
all its energy in the spanwise and wall normal components, that is the flow is
forced optimally in the wall-normal and spanwise direction as shown among
others by Jovanovic & Bamieh (2005) for channel flows. The wall-normal and
spanwise components of the forcing are displayed in figure 18a) and b). The
rms values of the streamwise component of the forcing is only two percent of
that of its spanwise and wall-normal counterparts. The lift-up effect transfers
momentum into the streamwise component (shown in figure 18c¢), which con-
tains 99.99 percent of the energy of the flow response. The streak amplitude
increases in the streamwise direction until the fringe region is encountered.

The Fourier transform along the streamwise direction of the two disturban-
ces investigated above is shown in figure 19. As in the case of the optimal initial
conditions in figure 8, the energy density is first integrated in the wall-normal
and spanwise direction. The results indicate that the TS-wave disturbance has
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FI1GURE 16. Contour map of response to forcing with fre-
quency w versus spanwise wave-number 3. The contour levels
span three orders of magnitude and thus we use a logarithmic
scale. The value on the contours indicate the energy growth
corresponding to that line. The maximum response to forcing
is observed for # = 0.05 and for the frequency w = 0.055. The
amplification factor is G = 1.01 - 10°. The maximum growth
due to the streak mechanism is found for the spanwise wave-
number # = 0.6 at w = 0 where the amplification factor is
G = 3.45-10%
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FIGURE 17. Isosurfaces of optimal forcing and response for
the streamwise wave-number 3 = 0.05 subject to forcing at
the frequency w = 0.055. Red/blue colour signifies isosurfaces
corresponding to positive/negative velocities at 10 percent of
the maximum. a) Streamwise component of optimal forcing
structure. b) Streamwise velocity component of the response.
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FIGURE 18. Isosurfaces of optimal forcing and response for
the streamwise wave-number § = 0.6 subject to steady forc-
ing. Red/blue colour indicates isosurfaces corresponding to
positive/negative velocities at 10 percent of the maximum. a)
Wall-normal component of optimal forcing structure. b) Span-
wise component of optimal forcing. ¢) Streamwise velocity
component of the flow response. Both the forcing structures
and the response are highly elongated in the streamwise direc-
tion.
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FIGURE 19. Energy spectra along the streamwise direction for
the optimal forcing at for that case w = 0.055, § = 0.05 (TS-
wave) and w = 0, § = 0.6 (Streak).

a peak at a relatively high a = 0.17 while the zero-frequency forcing is concen-
trated at the lowest wave-numbers. The peak at the wave-number of the most
unstable TS-waves is more evident in the case of forcing than in the case of the

optimal initial condition (see figure 8).
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FicURE 20. Downstream evolution of the kinetic energy of
the flow integrated over cross-stream planes. In a) blue and
green lines are used to indicate the response to steady forcing
active everywhere in the domain (“Full forcing”) and in a short
region near the inflow (“Localised forcing”) respectively. The
data are scaled with the magnitude of the forcing computed as
integral over the whole domain. In b) the blue line corresponds
to the case of localised forcing in a) while green (“Parab. Eq.
Final Point”) indicates the evolution of the optimal initial con-
dition yielding the largest possible kinetic energy at the down-
stream location 66205 (Levin & Henningson 2003), and the
red line ("Parab. Eq. Integral”) the evolution of optimal ini-
tial condition yielding the largest integral over the streamwise
domain. In order to make a physically relevant comparison
we have scaled the data pertaining to the “Localised Forcing”
with the value of the response just downstream of the forcing
region. The centre of the forcing is at the location x = 32.34;
corresponding to the optimal upstream location in Levin &
Henningson (2003).

5.2.2. Localised forcing

In this section we present results obtained by restricting the forcing to a small
region near the inflow of the computational domain. The formulation presented
in section 4 is altered by multiplying the forcing f with a function A(z) which is
non zero only in a short streamwise region. The edges of this region are defined
by two smooth step functions rising from zero to one over a distance of about
16g. The centre of the forcing is chosen to be at « = 236§ with width of 44 if
not otherwise stated.

This problem is physically closer to the case when disturbances are gen-
erated upstream, closer to the leading edge, and their evolution is monitored
as they are convected downstream. Initially a comparison with optimal up-
stream disturbances calculated by means of the Parabolized equations is thus
presented (see results in Levin & Henningson 2003).
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To this aim, we compute the optimal localised steady forcing for spanwise
wave-number 3 = 0.53 at z = 32.365. These were found to be the location and
spanwise scale of the overall optimal in Levin & Henningson (2003); in their
scalings they correspond to X = 0.37 and § = 0.53 for an initial perturbation
downstream of the leading edge with Reynolds-number independent evolution,
here assumed to be Re, = 105.

In figure 20 the streamwise growth of the energy of the perturbation ob-
tained with four different approaches is shown. In figure 20a we compare the
flow regime response to steady forcing active everywhere in the domain with
the response to forcing localised upstream. Further, the latter is compared
in figure 20b with the evolution of the optimal initial conditions yielding the
largest possible kinetic energy at the downstream location 66265 and with the
evolution of the optimal upstream velocity profile yielding the largest integral
of the perturbation energy over the whole streamwise domain (see also Cathali-
faud & Luchini 2000). The two latter are computed with the parabolic stability
equations (David Tempelmann, private communication); the case having as ob-
jective function the integral of the perturbation energy is indeed more relevant
for comparison with the present results. It can be seen that the growth is
faster when the forcing is active everywhere in our control domain since the
component-wise transfer of energy is at work at every streamwise position. The
two curves obtained with the parabolic equations (figure 20a) are similar: faster
growth is observed when the control optimises over the whole domain, while
a larger final level is reached when the objective is limited to the last down-
stream station. The comparison between the response to “localised forcing” and
the “parabolic equations” cases reveals good agreement. The main differences
between the two methods are the different set of equations and the way the
disturbance is introduced. In Levin & Henningson (2003) and Cathalifaud &
Luchini (2000) the linearised boundary-layer equations are used, whereas we
use the Navier—Stokes equations. In addition, an optimal upstream bound-
ary condition is computed in Levin & Henningson (2003), whereas an optimal
forcing is sought here.

Figure 21a) displays the structure of the optimal forcing function for the
case of localised excitation. The wall-normal profiles shown in the plot are
obtained by integrating the forcing in the streamwise direction. Figure 21b)
and c¢) depict instead the optimal initial condition obtained with the para-
bolic boundary-layer equations, i.e. a streamwise vortex pair. The structure
of the disturbances are remarkably similar; in the case of the optimal forcing
(figure 21a), the action is located closer to the wall with a relatively weaker
wall-normal component. When comparing the cases in b) and ¢) one can note
that the vortices leading to the largest possible energy downstream are located
further up into the free-stream. Conversely, when the perturbations are re-
quired to grow over the whole domain, the disturbance needs to be located
in the shear layer so that its effect can be readily felt (cf. figure 21a and c).
The results in the figure indicate that forcing the momentum equation is less
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FicURE 21. Wall-normal profiles of the streamwise, spanwise
and wall-normal components of a) the optimal localised forcing
(integrated in the streamwise direction), b) the initial condi-
tion yielding the largest possible kinetic energy at the down-
stream location 66247; c) the initial condition yielding the
largest integral of the disturbance energy over the streamwise
domain.

effective in the free stream: optimal forcing thus induces streaks which grow
for a shorter downstream distance.

A parameter study is conducted to examine the effect of frequency and
spanwise scale of the localised forcing. First the results obtained when varying
the spanwise wave-number are shown (figure 22). The downstream evolution
originating from optimal localised disturbances of zero frequency are displayed
for the spanwise wave-numbers investigated. A slower energy growth is ob-
served for the lower wave-numbers owing to the lower forcing to the streaks
(proportional to f3); the wave-number giving the largest peak response for
the present configuration is 6 = 0.8. Forcing of smaller scales induce streaks
rapidly, but viscous dissipation causes earlier decay.

As shown by Andersson et al. (2001), among others, in the range of valid-
ity of the boundary layer equations there is a coupling between the streamwise
and spanwise length scale of the disturbance. It is in fact possible to show
that a streak family u(x,y, z), defined by the spanwise wave-number [y, is in-
dependent of the Reynolds number. This results in a scaling property that
couples the streamwise and spanwise scales, implying that the same solution is
valid for every combination of the streamwise location x + zy (distance from
the leading edge) and of 8 such that their product stays constant. In other
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FIGURE 22. a) Streamwise evolution of the response to steady
localised forcing for different spanwise wave-numbers 5. The
arrow indicates increasing . b) Maximum response versus
spanwise wave-numbers.

FIGURE 23. Streamwise evolution of the response to localised
forcing for different spanwise wave-numbers (3 where the
streamwise position x is scaled with (. The distance from
the leading edge is considered to re-scale the data.

words, this amounts to moving along the plate and varying the spanwise wave-
number so that the local spanwise wave-number (5y6*/d§ remains constant (see
also Brandt et al. 2003). To further examine this scaling property, the stream-
wise coordinate in figure 22a) is multiplied by the spanwise wave-number of
the disturbance and the result shown in figure 23. Despite the fact that the
streamwise extent of each curve is different, the curves indicating the evolution
of the streaky disturbance collapse notably, thus confirming the similarity of
the boundary-layer streaks.
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Responce to 2-D localised forcing
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FIGURE 24. a) Streamwise evolution of the response to lo-
calised forcing for different temporal frequencies w. The arrow
indicates increasing w. b) Maximum growth with respect to
w. The spanwise wavenumber is 3 = 0.

Finally we investigate the case of zero spanwise number (pure two-
dimensional disturbances) and vary the temporal frequency. The results are
shown in figure 24. The growth observed here is due to the combined Orr and
TS-wave mechanism and thus the value of the optimal frequency is close to
that obtained when forcing over the whole domain, w = 0.055. The structure
of the optimal forcing for the frequency with largest amplification is displayed
in figure 25. The excitation is localised closer to the wall, well inside the
boundary layer, when compared to the forcing forming streamwise streaks, see
figure 21. Forcing the streamwise momentum equation is significantly more
efficient at triggering the Orr mechanism and the subsequent wave packet of
two-dimensional TS waves.

6. Conclusions

We have used a Lagrange multiplier technique in conjunction with direct and
adjoint linearized Navier—Stokes equations in order to quantify the growth po-
tential in the spatially developing flat-plate boundary-layer flow at moderately
high Reynolds. Spanwise periodic and fully three-dimensional disturbances are
investigated. We consider both the initial conditions leading to the largest
possible energy amplification at time 7" and the optimal spatial structure of
time-periodic forcing. To the best of our knowledge, the pseudo-spectrum of
the governing operator along real frequencies is computed here for the first
time with matrix-free methods. The optimisation framework adopted does not
restrict us to assume slow variation of the base flow in the streamwise direc-
tion, common to both the first order approximation of the OSS formulation
and the more advanced PSE approximation. Specifically we do not, as in the
PSE framework, need different equations to describe the lift-up instability and
the wave packet propagation.
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F1GURE 25. Localised forcing with frequency. We plot the
streamwise and wall-normal components of the forcing func-
tion. The quantities are integrated in the streamwise direction.
Note that this is a 2D structure thus the spanwise component
is zero.
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FIGURE 26. Evolution of the kinetic energy of the two opti-
mal initial perturbations for t=720 (streaks) and t=1820 (TS-
waves) versus the current spatial position. The position of the
disturbance is computed by tracking its 'centre of mass’ using
the kinetic energy as density. The numbers beside the markers
correspond to time instances.

For the optimal initial condition we find that the largest potential for
growth is found at small spanwise wave-numbers and consists of upstream tilted
structures, enabling the subsequent disturbances to exploit the Orr mechanism
and the local convective instability of the oblique wave packet of Tollmien-
Schlichting waves. The length and position of the initial disturbance is re-
lated to the final time of the optimisation: short time evolution requires the
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wave-packet to be initiated further downstream in the region of largest local
instability and vice-versa for longer optimisation times. The lift-up instabil-
ity mechanism inherent to spanwise wavelengths of the order of the bound-
ary layer thickness is faster than the Orr/oblique instability; for the present
configuration the streaks reach their maximum energy earlier; conversely, the
TS-wave instability needs more time to extract the same amount of energy, at
the same time travelling a shorter distance. The evolution of the kinetic energy
of these two perturbations in time and space is displayed in figure 26. The
results indicate that streamwise vortices of finite length become optimal once a
spatially-evolving boundary layer with inflow/outflow conditions is considered.
As concerns the optimal response to periodic forcing, the difference in the two
instabilities is less pronounced. In this case, the Orr/oblique wave instability
only manages to gain a factor of two in energy more than the streak mechanism.
The largest amplification of the local convective instability over the non-modal
streak generation can be explained by the long computational box examined
and the relatively high inflow Reynolds number. Starting closer to the leading
edge, one can expect streaks to dominate the transition scenario.

Three-dimensional localised optimal initial conditions are also computed
and the corresponding wave-packets examined. For short optimisation times,
the optimal disturbances consist of streaky structures propagating and elon-
gating downstream without any significant spreading in the lateral direction.
For long optimisation times, conversely, the optimal disturbances are charac-
terised by wave-packets of TS-waves. These travel at lower streamwise speed
and with faster spreading in the spanwise direction. The latter can achieve
the largest possible energy amplification. Intermediate optimisation times are
also considered where both the TS- and streak-mechanism are relevant. The
wave-packet has therefore features from both scenarios previously considered:
It consists of elongated streaks in the streamwise velocity component, followed
by short-wavelength instability waves, mainly evident in the cross-stream ve-
locities.

Finally, we examine the effect of upstream disturbances on the boundary
layer flow. Thus we introduce a localised forcing near the inflow of the com-
putational box and compute the forcing structure that provides the largest
response over our control domain. First, we compare with results based on
the solution of the parabolized Navier-Stokes equations: good agreement is
obtained, despite the differences between the two methods. Secondly, we inves-
tigate zero-frequency upstream forcing and show a maximum for perturbations
with spanwise wave-number larger than that obtained when the forcing location
is not constrained. Thirdly, analysis of time-periodic two-dimensional forcing
is considered: the findings agree with those obtained with distributed forc-
ing since the flow response corresponds in both cases to exponentially growing
Tollmien-Schlichting waves at the forcing frequency.

Three different destabilising mechanisms are considered in this study, all at
work in the boundary layer flow. Although these could be explained using the
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OSS equations, they are analysed without any simplifying assumptions. The
present work is of a more general character. By choosing an objective function
and using the full linearized Navier—Stokes equations as constraints we are not
limiting ourselves to simple geometries. Whenever a DNS code is available to
accurately describe a flow, all that is needed in order to investigate the stability
characteristics is a linearised version of the code and the implementation of the
corresponding adjoint equations along with a wrapper built around these two
simulations ensuring the correct optimisation scheme. The method used here
is therefore applicable to any geometrical configuration.
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Adjoint-based iterative methods are employed in order to compute linear
optimal disturbances in a spatially growing boundary layer around an elliptic
leading edge. The Lagrangian approach is used where an objective function
is chosen and constraints are assigned. The optimisation problem is solved
using power iterations combined with a matrix-free formulation, where the
state is marched forward in time with a standard DNS solver and backward
with the adjoint solver until a chosen convergence criterion is fulfilled. We
consider the global and the upstream localised optimal initial condition leading
to the largest possible energy amplification at time 7. We found that the two-
dimensional initial condition with the largest potential for growth is a Tolmien-
Schlichting-like wave packet that includes the Orr mechanism and is located
inside the boundary layer, downstream of the leading edge. Three-dimensional
disturbances induce streaks by the lift-up mechanism. Localised optimal initial
condition enables us to better study the effects of the leading edge; with this
approach we propose a new method to study receptivity. Two-dimensional
upstream disturbances, are inefficient at triggering an unstable eigenmode. The
three-dimensional disturbances instead induce elongated streamwise streaks;
both the global and upstream localised disturbances give significant growth.
This advocates for high receptivity to three-dimensional disturbances.

1. Introduction

The flat plate boundary layer has been a test-bed for various approaches when
studying hydrodynamic stability. Its relevance arises from the fact that, even if
is a fairly simple flow, it contains features of many external flows; thus it is good
model for them. In stability studies further simplified versions of the general
case are often used with approximations like the locally-parallel assumption
with a Fourier decomposition in the streamwise direction (Butler & Farrell
1992; Reddy & Henningson 1993) or slowly varying flow, with parabolized
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equations (Andersson et al. 1999; Luchini 2000; Levin & Henningson 2003;
Tempelmann et al. 2010)). Two and three-dimensional disturbances have been
studied using global modes, and offer an accurate representation of the stability
of the growing boundary layer (Akervik et al. 2008). However the effect of the
leading edge has not been considered so far.

Recently, with the development of the time-stepper technique, it has be-
come possible to tackle more complicated flow cases with two and three-
dimensional disturbances. Essentially stability studies are possible for any type
of flow case and/or geometry for which a direct numerical simulation is feasi-
ble. The only requirement is a numerical solver of the time-dependent linearised
Navier-Stokes equations and the corresponding adjoint problem. This the ap-
proach first adopted by Tuckerman & Barkley (2000) and later by Barkley et al.
(2008), Blackburn et al. (2008) and Theofilis (2011) to cite a few names.

This project is an extension to previous work by Monokrousos et al. (2010)
where optimal disturbances were computed for the case of the flat plate bound-
ary layer. Here we take a step further and include the leading edge of the plate
while we still retain a fairly high Reynolds number where typically transitional
or even turbulent flow is observed. In particular we focus on the effect of the
leading edge, how it can change the optimal disturbances and how the boundary
layer can be optimally excited by disturbances coming from the outside.

The flow case, for the chosen parameters is classified as noise amplifier, in
contrast to an oscillator. It is characterised by convectively instabilities when
studied with the local approach. From the global point of view the flow is
asymptotically stable to linear disturbances. Hence it is more relevant to look
at the transient growth problem or non-modal analysis.

2. Formulation

The equations to be solved are the linearised Navier-Stokes in the incompress-
ible regime:

du+(U-V)u+ (u-V)U = —Vp+ Re 'Au+g, (1)
V-u = 0.

The Lagrangian approach is used where an objective function is chosen and
constraints are assigned. We are looking for stationary points of the Lagrange
functional with respect to the different design variables where optimality is
fulfilled. The method is equivalent to finding the leading eigenpair of composite
direct and adjoint Navier-Stokes evolution operator. The quantity we choose
to maximise, i.e. the objective function, is the disturbance kinetic energy at
the final time

J(u) = (u(T),u(T)). (2)

The chosen constrains are the demand for u to satisfy the linearised Navies-
Stokes and, since we work in the linear framework, we force our initial condition
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to unit energy. Hence the Lagrangian functional is written as:

T
L(u,u’,v) = J*/O (u”, (9 — A)u) dt =7 ((u(0),u(0)) —=1).  (3)

To solve the optimisation problem a matrix-free method is employed, where
the state is marched forward in time with a standard direct numerical solver
and backward with the corresponding adjoint solver until a chosen convergence
criterion is fulfilled.

The problem is initialised with a random field, usually noise. The governing
equations are iterated until the action of the combined forward and backward
time marching corresponds to pure stretching of the initial condition, i.e. pg =
Aqo, with go being the initial perturbation, py the final field from the adjoint
solution and X a scalar. At convergence ¢q is the optimal disturbance and also
an eigenvector of the operator H1H where H corresponds to the direct operator
and H' to the adjoint: H1Hqgy = Ago. The action of H therefore amounts to
integrating the linearised Navier-Stokes equations to final time T, where T
becomes a parameter of the optimisation.

A similar procedure is applied to find the optimal initial condition localised
upstream of the leading edge that undergoes the largest possible amplification
as it travels downstream, penetrating the boundary layer. With this approach,
we propose a systematic and direct method to compute the receptivity of the
boundary layer to external disturbances as the computed optimal modes can
be used as a projection basis to quantify the ability of incoming free-stream
disturbances to initiate perturbations in the boundary layer. The formulation
for localised optimal disturbances was first developed by Monokrousos et al.
(2010). The optimisation problem is slightly different from the one described
above. The new Lagrangian reads

T
£(u,u*,7) = ((T), u(T)) - / (u*, (0 — A)u) dt
o (a(0), u(0))x — 1) — (1,7 - u(0)) (4)

where the initial condition must exist only inside the sub-domain A. Addi-
tionally the optimal perturbation must be divergence-free. The inner product
defined by (-,-)a corresponds to an integral in A. For the full derivation we
refer to Monokrousos et al. (2010).

3. Numerical approach
3.1. Numerical code

The governing equations are solved with the spectral element code Nek5000,
developed by Tufo & Fischer (2001). The equations are solved by a weighted
residual spectral element method (Patera 1984), which allows multi-domain
decomposition while preserving high order accuracy. Inside each sub-domain,
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refereed to as spectral element, the fields are represented by a spectral decom-
position to Legendre polynomials and the grid points follow the Gauss-Lobatto
Legendre distribution. For further details see Fischer et al. (2008).

The optimisation problem for the optimal initial condition is validated
against previous results from Monokrousos et al. (2010).

3.2. Flow case

We consider a flow around a flat plate with an elliptic leading edge. The leading
edge is a modified super-ellipse:

(4) =1 (222) where p=2+(£)". )

that has zero curvature at the juncture with the flat section so that no distur-
bances are introduced by the plate itself. The ratio § defines the bluntness and
is chosen here § = 6 which corresponds to a relatively blunt shape, Schrader
et al. (2010). The Reynolds number of the flow is Re = 22 based on the half
thickness of the plate (b), the free-stream velocity (U) and the kinematic vis-
cosity of the fluid (v). Most of the results presented correspond to Reynolds
number Re = 3000. We also include few results for a case of lower Reynolds
number, Re = 1000. In some cases we also provide the Reynolds number based
on the distance from the leading edge Re, = % where x is the distance from

the leading edge.

In figure la) and 1b) the two velocity components of the base flow are
shown. Since the flow is globally stable, the base flow is computed marching in
time the full non-linear Navier-Stokes equations until a steady state is obtained.
The boundary conditions are computed by solving the Euler equations in a
domain much larger than our computational domain. A strong deceleration
of the flow is observed near the stagnation point, immediately downstream a
strong vertical velocity component. Further downstream a thin boundary layer
is developing. The computational box extends downstream up to 100 — 200
units (plate half-with b) depending on the case. For a validation of the base
flow see Schrader et al. (2010).

3.3. Resolution

Since we are using the spectral element method, we decompose our domain
in several, relatively large elements. In particular, we used polynomial order
10, which implies 100 points per element for the 2D case and 1000 for the
3D. The total number of elements depends on the length of the box. We run
the 2D cases in a longer box (in order to be able to observe an unstable wave
packet) using 3040 elements, 19 in the direction normal to the plate and 160
along the plate. The total number of points is 304000. In the 3D cases the
computational box was typically shorter and thus we used 124 elements in the
streamwise direction. However we needed 3 elements in the spanwise direction
to resolve the modulation of the Fourier modes and this gives a total number of
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FIGURE 1. Contours of the streamwise (a) and wall-normal
(b) velocity components of the base flow for Re = 3000. The
plot has equal scaling in the two directions. c) Element grid
(without the Gauss-Lobatto Legendre points)

elements of 7068. For 3D elements the total number of points is thus 7068000.
In both cases we cluster the elements both in the wall-normal direction near
the wall and along the plate near the area of the leading edge. A section of the
computational grid located around the leading edge is shown in figure 1c).

4. Results

We investigate the disturbances that give the largest transient energy growth.
In order to determine the structure in question we loop over different optimi-
sation times. Additionally since the base flow is homogeneous in the spanwise
direction, disturbances of different spanwise periodicity are considered sepa-
rately. Owing to the cost of each optimisation loop, relatively few cases are
considered. However, we are confident that the optimal structures are captured
and the essential physical mechanisms are included.
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FIGURE 2. Disturbance energy vs optimisation times for Re =
1000 (a) and Re = 3000 (b) and 2D disturbances.

4.1. Optimal initial conditions

First we consider optimal initial condition where no assumptions are made
about the location. Two and three dimensional cases are studied.

4.1.1. Two-dimensional optimal initial conditions

Two different cases are investigated for the two-dimensional disturbances, one
that corresponding to high (Re = 3000) and low (Re = 1000) Reynolds number.

In figure 2 the disturbance energy growth is shown for the two cases for
various optimisation times. The red line is the energy envelope. Figure 2a)
shows results for low Reynolds number (Re = 1000) where the boundary layer
is locally stable all the way down to the outflow. Here the Reynolds number
based on the distance to the leading edge is Re, = 10°. Hence the only way
to have energy growth is through the Orr-mechanism. Anything that acts on
a longer time scale will only give energy decay.

Figure 2b) reports results for the higher Reynolds number (Re = 3000).
In this case we observe that locally unstable Tolmien-Schlichting (TS) wave
packets are generated and amplify exponentially as they are convected down-
stream. The maximum time for energy growth is here governed by the down-
stream extension of the computational box; indeed a longer box would allow
longer optimisation times and more space for the exponential instability to
grow. Additionally, we note a local maximum for short optimisation times
which corresponds again to a pure Orr-mechanism which is active on small
time scales. The energy decay seen for large optimisation time is due to the
fact that these disturbances gradually exit our computational domain and thus
their measurable energy decay.

In figure 3 the spatial structures of the optimal disturbances are shown for
the two Reynolds numbers where the optimal times are T' = 12 (Re = 1000) and
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FIGURE 3. Spatial structures for optimal initial condition
and the corresponding responses. Re = 1000, initial condi-
tion: a) streamwise component, b) wall-normal component;
response: c¢) streamwise component, d) wall-normal compo-
nent. Re = 3000, initial condition: e) streamwise component,
f) wall-normal component; response: g) streamwise compo-
nent, h) wall-normal component.

T = 300 (Re = 3000). The structures look rather similar, Orr-structures gen-
erating wave-packets, in both cases (also seen by Monokrousos et al. (2010) and
Akervik et al. (2008)). However, in the low-Reynolds number case, the energy
of the wave-packet decays after the initial increase. Additionally the distur-
bance is initiated further downstream (relative to the high-Reynolds number
case) close to the outflow, exploiting the higher Reynolds number.

4.1.2. Three-dimensional optimal initial conditions

Considering three dimensional disturbances, one additional parameter enters
the problem, namely the spanwise wavenumber . To determine the optimal
(G we need to loop over an additional parameter, as we do for the optimisation
time. This leads to a two-dimensional parameter space we need to explore.

In figure (4) we plot iso-contours of energy growth for different optimisation
times T and spanwise wavenumbers (3. We see a clear peak at T' = 90 and
6 = 2.0. To understand the physical mechanisms behind it we consider the
spatial distribution of the disturbance velocities. The three components of the
optimal initial condition are shown in figure 5a) and the corresponding response
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FIGURE 4. Contours of energy gain for different final times
and spanwise wavenumbers. The Reynolds number is Re =

3000.
Initial disturbance Response
Streamwise 6.3 % 91.3%
Wall-normal 28.6% 1.8 %
Spanwise 65.1% 6.9%

TABLE 1. The table shows the component-wise energy content
of each component for the initial and final condition. The
energy growth was G = 1.3 - 103

in 5b) while the component-wise energy content is shown in table 1. The time
evolution of the three components of the disturbance energy of the perturbation
is shown in figure 6.

In table 1 we can see the strong component-wise energy transfer which im-
plies that the lift-up mechanism is active: streamwise vortices induce stream-
wise streaks inside the boundary layer. Similar results were obtained by Ander-
sson et al. (1999) using the boundary layer equations and by Monokrousos et al.
(2010) in the global framework without the leading edge. The flow structures
are plotted in figure 5b). Additionally we can see that the Orr-mechanism with
the characteristic upstream leaning structures contribute to some energy gain.

For longer optimisation times a rapid decay of the amplification is observed
due to the limited box size, as seen in figure (4). As we increase the optimisation
time, the disturbance is forced to move upstream in order to avoid leaving the
domain within that time and at some point it goes upstream from the plate,
towards the area of the flow where there is not shear. On the other hand for
short times, the lift-up mechanism does not have enough time to fully exploit
the shear of the boundary layer.
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FIGURE 5. Optimal initial condition (a) and the correspond-
ing flow response (b). Streamwise, wall-normal and spanwise
velocities are shown from the top to bottom. The energy
growth is G = 1.3 - 103, the Reynolds number, Re = 3000.
The Reynolds number at the outflow based on the distance
from the leading edge is Re, = 300000.

As mentioned above the reported Reynolds number is defined using the
free-stream velocity, the half-width of the plate and the fluid viscosity. This
implies that all lengths and wavenumbers are scaled with the half-width of
the plate. In order to compare with the results from previous studies like
Monokrousos et al. (2010), where the wavenumber is scaled with the displace-
ment thickness, the length is multiplied with the ratio of the two Reynolds
numbers since the free-stream velocity and the viscosity are equal in both cases.
In those units the optimal wavenumber is 8* = 0.67 which is comparable to
the value retrieved by Monokrousos et al. (2010) (5* = 0.55). We should also
mention that a variation is to be expected due to the inclusion of the leading
edge in the computation.

4.2. Localised optimal initial conditions

We study optimal initial conditions that are forced to be localised in space.
The used method is extensively described in Monokrousos et al. (2010). These
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FIGURE 6. Disturbance energy versus time for the optimal ini-
tial condition. Three velocity components are shown, stream-
wise (blue), spanwise (red) and wall-normal (green). The Rey-
nolds number is Re = 3000. The Reynolds number as the
outflow based on the distance from the leading edge is Re, =
300000.

type of optimals allow us to study how a disturbance optimally penetrates the
boundary layer around the curved leading edge and subsequently generates a
perturbation that can have a strong growth downstream inside the boundary
layer.

4.2.1. Two-dimensional disturbances

First we study two-dimensional disturbances. We enforce the initial perturba-
tions to exist in a sub-domain upstream from the leading edge, and thereafter
the optimisation procedure gives the optimal spatial distribution inside the
sub-domain. In this way we can specifically study the receptivity features.
The results we obtained for this case were much in line with Schrader et al.
(2010). The upstream-localised disturbances are proven to be rather ineffi-
cient in penetrating the boundary layer. They loose a lot of energy during the
initial phase and furthermore, the disturbance generated inside the boundary
layer consists of a wavepacket characterised by a relatively high streamwise
wavenumber larger than that corresponding to the unstable TS-wave. Conse-
quently the exponential instability is not efficiently initiated resulting a weak
growth in the process.

It appears that the optimisation procedure favours a stable wave-packet
over the unstable since it probably has better penetration properties (for this
bluntness). In other words, waves of spatial scale of the unstable modes pene-
trate inefficiently the boundary layer.

To enhance the growth of the wave-packet we would need a much longer
computational domain with sufficient space for it to grow exponentially but
this would render this computation very expensive.
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FicURE 7. Contours of energy gain for different final times
and spanwise wavenumbers (localised initial condition). The
Reynolds number is Re = 3000.

4.2.2. Three-dimensional disturbances

As before, we perform a parametric study to find the optimal time and span-
wise wavenumber 3. In figure (4) iso-contours of energy growth for different
optimisation times and spanwise wavenumbers are shown for the case of the up-
stream localised disturbance. The red dot corresponds to the maximum. The
optimal disturbance occurs for T'= 125 and § = 2.8. Comparing the values to
the non-localised optimal we see two main differences. First the optimisation
time is longer and also 3 is higher. The increased time was expected since the
perturbation spends some time upstream from the leading edge and during the
penetration phase.

We have seen already that the receptivity to purely two-dimensional distur-
bances is very weak. That can possibly explain why the optimal § is increased
for the upstream localised case, it may become less optimal with respect to the
lift-up mechanism but at the same time is less damped by the presence of the
leading edge. The two trends seem to balance at § = 2.8 (8* = 0.93).

The physical mechanisms pertaining the energy growth appear to be the
same with the exception that the Orr-mechanism is not present. This is at-
tributed to the fact that there is no shear where the perturbation is initiated
hence no energy can be gained from an upstream leaning structure.

The spatial distribution of the upstream localised optimal initial condition
is shown in figure 8a) and the corresponding response in 8b); in figure 9 we
plot the full time evolution of the three components of the energy of the per-
turbation. We can see that most of the energy of the perturbation lays on the
plane normal to the streamwise direction and also the streamwise structure is
almost constant implying streamwise vortices that generate streaks inside the
boundary layer.
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FIGURE 8. Localised optimal initial condition (a) and the cor-
responding flow response (b). The three components are shown
in the vertical order streamwise, wall-normal and spanwise.
The energy growth was G = 1.2 - 102. The Reynolds number
is Re = 3000. The Reynolds number as the outflow based on
the distance from the leading edge is Re, = 300000.

Initial disturbance Response
Streamwise 17.7 % 93.6%
Wall-normal 36.7% 1.8 %
Spanwise 45.6% 4.6%

TABLE 2. The table shows the component-wise energy content
of each component for the initial and final condition. The
energy growth was G = 1.2 - 102

We note that as the vortices convect downstream in front of the leading
edge slowly decay without much happening in the dynamics, similar to what
is observed in decaying turbulence. However once they reach the area with
strong shear, near the stagnation point (7" & 20), they quickly start to trans-
form energy from the streamwise vortices to the streamwise streaks and through
the lift-up effect to extract energy from the mean shear. It is thus important
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FIGURE 9. Disturbance energy versus time for the optimal lo-
calised initial condition. Three velocity components are shown,
streamwise (blue), spanwise (red) and wall-normal (green).
The Reynolds number is Re = 3000. The Reynolds number
as the outflow based on the distance from the leading edge is
Re, = 300000.

to include the leading-edge effect in receptivity. The total energy growth is
substantially weaker relative to the non-localised optimals. This can be at-
tributed to a few reasons. In this case the Orr-mechanisms can not contribute
and secondarily the lift-up effect is happening further upstream relative to the
non-localised case which corresponds to lower Reynolds number and thus lower
transient growth potential, see Andersson et al. (1999).

5. Conclusions

We have applied a Lagrange multiplier technique using the direct and adjoint
linearised Navier-Stokes equations in order to quantify the disturbance growth
potential in a flow around a flat plate with an elliptic leading edge at moder-
ately high Reynolds. We consider the optimal initial condition leading to the
largest possible energy amplification at time 7. Additionally we compute the
localised optimal disturbance upstream from the leading edge. This method
can be used to create modal basis and project free-stream disturbances i.e. a
direct method for computing receptivity coefficients for externally excited flows.
The optimisation framework adopted does not restrict us to assume slow vari-
ation of the base flow in the streamwise direction, common to both the first
order approximation of the Orr-Sommerfeld-Squire formulation and the more
advanced Parabolized Stability Equations approximation; moreover, it allows
us to include curved geometries and fully three dimensional configurations.

We found that the two-dimensional initial condition with the largest po-
tential for growth is a TS-like wave packet that includes the Orr mechanism in
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their initial phase and is located inside the boundary layer, downstream from
the leading edge. Its growth is linked to the exponentially unstable eigenmodes
of the Blasius boundary layer and it is limited by the streamwise extent of the
computational box. The three dimensional case shows a peak in the energy
much earlier in time (and space) for spanwise wavenumber § = 2.0, relevant
to the well understood lift-up mechanism. This number is in close agreement
with earlier studies of similar nature.

The localised optimal initial conditions are more interesting since they allow
for better understanding of the effects of the leading edge and its receptivity
properties. Disturbances are placed upstream in the free-stream. We found that
the two-dimensional upstream disturbances are rather inefficient at triggering
an unstable wave-packet which can exploit the convective instability of the
boundary layer. The flow around the leading edge has a strong effect on these
type of disturbances, i.e. it has a strong damping effect and the later evolution
of the disturbance is dominated by this effect. In particular a stable wave-
packet is generated and its energy just decays as it propagates downstream
inside the boundary layer. This indicates that an unstable wave-packet would
be so strongly damped by the leading edge flow that is never favoured by the
optimisation.

The three-dimensional disturbances though are exploiting the lift up mech-
anism very efficiently at a very early stage. The generated streaks are located
further from the wall than the TS-wave and thus do not suffer from the loss
of energy due to diffusion close to the wall. Additionally their streamwise
wavenumber is very low and does not seem to be heavily affected by the low
local Reynolds number in the area. This mechanism is proven to be very robust.
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We determine the initial condition on the laminar/turbulent boundary clos-
est to the laminar state using nonlinear optimization for plane Couette flow.
Resorting to the general evolution criterion of non-equilibrium systems we op-
timize the route to the statistically steady turbulent state, i.e. the state char-
acterized by the largest entropy production. This is the first time information
from the fully turbulent state is included in the optimization procedure. We
demonstrate that the optimal initial condition is localized in space for realistic
flow domains.

The transition from laminar to turbulent flow is still a challenging problem
despite the fact that our understanding has increased significantly in the last
years Hof et al. (2004); Eckhardt (2007); Mullin (2011). In canonical shear
flows (pipe, channel and Couette flows) transition is typically subcritical and
initial perturbations of finite amplitudes are necessary.

This paper is about the computation and nature of the smallest disturban-
ces that most quickly trigger turbulence in linearly stable shear flows. This is
relevant both for our understanding of the flow physics as well as to design effec-
tive control strategies Kawahara (2005). To do this, we optimize the trajectory
of the system with respect to the General Evolution Criterion Glansdorff &
Prigogine (1964) of non-equilibrium thermodynamics. The criterion has been
used successfully in a wide range of applications, shock-waves Rebhan (1990),
biology Juretic & Zupanovic (2003), climate research Paltridge (1979); Ozawa
et al. (2003) and nuclear fusion DiVita & Brusati (1995), although never, thus
far, in the search for optimal turbulence-triggering disturbances.

Recent progress in the understanding of subcritical transition to turbulence
in shear flows was made using the nonlinear concept of edge state, originating
from dynamical systems’ theory. Edge state refers to the flow regime reached
asymptotically by phase-space trajectories visiting neither the turbulent nor the
laminar state. It is an unstable flow state, yet embedded exact coherent states
have been identified numerically: steady states, traveling waves and periodic
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orbits (see Hof et al. (2004); Eckhardt (2007); Mullin (2011) and references
therein).

Here, we wish to determine the most dangerous perturbation leading to
the turbulent state. Two concepts are key to our analysis: i) optimal initial
condition and ii) the target final state of the flow. Optimally growing pertur-
bations (in energy norm) have been considered extensively within the linear
framework Schmid & Henningson (2001). This non-modal approach has been
able to explain the physical mechanisms responsible for energy growth in shear
flows and, together with weakly nonlinear models such as secondary instability
analysis, contributed to drawing a plausible picture of the early stages of the
transition process. However, the later stages are inherently non-linear and lin-
ear theory fails. Nonlinear optimization in reduced-order subspaces has been
presented before Reddy & Henningson (1993); Viswanath & Cvitanovic (2009);
Duguet et al. (2010), while only very recently researchers considered fully non-
linear optimization, without targeting the turbulent state Pringle & Kerswell
(2010); Cherubini et al. (2010). In the former study Pringle & Kerswell (2010),
the authors use the full Navier—Stokes equations to show how nonlinearity can
change the optimal which emerges from a linear transient growth analysis in
pipe flow at subcritical condition. The optimal initial condition obtained is
three-dimensional and shows signs of localization. As reported in Pringle &
Kerswell (2010), a more extensive optimization adopting larger flow domains
would provide confirmation and formidable extension of the results in that
work. Here, we take this step further and confirm the prediction that the op-
timal is fully localized in extended flow domains. Furthermore we include the
fully turbulent state into the optimization procedure and manage to bridge
the gap between the optimization initial amplitude and the actual transition
threshold Pringle & Kerswell (2010).

To take this step, it is crucial to select a metric for the definition of the
final flow state. Here we resort to thermodynamics considerations to select the
objective of our optimization, unlike previous studies where the disturbance
kinetic energy has been used. The theory is tested on the simple case of plane
Couette flow, a flow stable for all values of the Reynolds Re = UT}’, where £U
and h are the velocity at each wall and the channel half-width, with v the
kinematic viscosity. Time is therefore reported in units of h/U.

All shear flows by definition are not in equilibrium with their environ-
ment since there is continuous energy exchange through the walls. However,
the Navier-Stokes equations can be viewed as a special case of the Boltzmann
equation for systems for which the local thermodynamic equilibrium assump-
tion is valid Di Vita (2010). Glansdorff and Prigogine Glansdorff & Prigogine
(1964) demonstrated that for time invariant boundary conditions the system
eventually reaches a statistically steady state. When dissipation is dominant
(low Reynolds number) the system goes back to the laminar state, while when
inertia dominates (high values of Re) the turbulent state ensues. A fully de-
veloped flow, from the stand point of thermodynamics, is a statistically steady
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state. A chaotic turbulent flow is indeed characterized by steady values of
time-averaged quantities, like fluctuations and dissipation. The approach of
the fluid system to a statistically steady state is central to the theory presented
here Malkus (1956).

The general evolution criterion implies that certain quantities obtain ex-
treme values once the statistically steady state is reached. It has been re-
cently demonstrated Di Vita (2010) that this leads to Malkus heuristic principle
Malkus (1956): a viscous, turbulent, incompressible Couette flow in statistically
steady state with assigned mean velocity maximizes the total rate of viscous
dissipation. To determine the optimal initial condition leading to turbulent
flow, we employ Lagrangian optimization where the functional £ to maximize
consist of an objective function and two constraints (the Navier-Stokes equa-
tions and the energy level of the initial disturbance), i.e.

T
L=g- /0 (0, NS(W)5 + (0", V - w)g] dt
—A([[u(0) — U[|% — €0), (1)

with the subscript E denoting the energy inner product, i.e. the integral over
the whole domain. In the above, u*, p* and \ are the Lagrange multipliers,
i.e. the adjoint variables, NS the nonlinear Navier—Stokes equations, and ¢
the kinetic energy of the perturbation at t = 0; u is the velocity vector and U
the Couette base flow. Since the system under consideration is chaotic we will
maximize the average value of the functional, integrating over a sufficiently long
time interval. As introduced above, the objective function is the time-averaged
dissipation

J L[ Vu: Vu)dt 2
~7 [ i (Vusvu) 2
with T the final observation time. Maximizing the time integral of the entropy
production implies that we also obtain the fastest route to turbulence for any
given value of the initial energy €y. Variations of the Lagrangian provide the
gradient of the objective function with respect to variation of the initial condi-
tion ug. The gradient V()£ = u*(0) is obtained by forward time integration
of the Navier-Stokes equations and backward integration of the adjoint sys-
tem, the latter containing —1/(T'Re)V?u a source term stemming from the
definition of J.

This forcing term is stochastic when the flow has become turbulent. It
can change significantly for very small variations of the initial conditions, as it
occurs typically in chaotic flows. As a consequence, the update of the initial
condition can be significant even in the proximity of an optimal. Therefore to
improve convergence we include a relaxation term for each update of the initial
guess

u(0)™! = (1 — o)u*(0)" + ou(0)". (3)
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FIGURE 1. (a) Energy threshold (eg,) to reach a turbulent
state and (b) viscous dissipation rate (objective function J)
versus the energy amplitude ¢y used to determine the shape
of the optimal initial condition. The energy for transition is
computed by applying bisection to each optimal initial condi-
tion to scale its amplitude. The square blue symbols pertain
to initial conditions determined with laminar flow at final time
T = 300. Data for Couette flow at Re = 1500, domain size
41 x 2 x 27w with resolution 128 x 73 x 64 grid points in the
streamwise, wall-normal and spanwise direction, respectively.

Close to convergence, the relaxation term gives an ensemble average of the
different initial conditions, since the values of the objective function (i.e. the
statistics of the turbulent state) are basically constant. A fully converged initial
condition can be obtained more easily for the smaller values of ¢y considered,
when the flow never becomes turbulent and just above the minimum value e
of the initial energy for which a turbulence state can be established. Larger
initial amplitudes yield a very noisy optimization. Indeed we first optimize for
large values of the initial energy and gradually reduce the value of ¢y to be sure
to target the final turbulent state. Typically we perform between 50 and 100
iterations for each level of initial energy.

In figure 1 the energy threshold necessary to reach a turbulent state is
displayed for each initial condition found by the optimization procedure in the
largest domain considered. Each of these initial conditions is defined by the
energy level ¢y used in the Lagrangian £ (see eq.1). The threshold level is
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FIGURE 2. Optimal initial condition at the minimum thresh-
old level ey for different values of the final optimization time:
a) T =250, b) T = 300, ¢) T = 350, d) T = 400. The plot
displays the streamwise velocity component in the wall-normal
(z,y) plane at z = w/2. The subplot e) shows the maximum
of the velocity amplitude in the whole domain versus the final
optimization time 7. The data pertains the largest box size
considered, Re = 1500.

determined by a classic bisection procedure with an accuracy of five digits.
The straight line is a guide to the eye and indicates equal values of the energy
on the axis. For the largest ¢y considered, one can reduce the amplitude of
the initial condition and still reach the turbulent state. When decreasing the
constraint on the initial energy, we reach a value, €y, below which the flow
remains laminar for any ¢ < 7. This is indeed the nonlinear optimal initial
condition of smallest amplitude leading to a statistically steady turbulent flow.

For values of the initial energy lower than epr, where turbulent flow is
not reached during the optimization procedure, the initial condition must be
scaled up by a factor of about 4 or 5 to trigger transition, similarly to what
was obtained in Pringle & Kerswell (2010). Previous optimizations Pringle &
Kerswell (2010); Cherubini et al. (2010) in fact considered highly distorted yet
laminar flows (in the latter work owing to the relatively short optimization
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FIGURE 3. (a): The solid line shows the edge trajectory for
minimum energy threshold ey at Re = 1500 and domain size
41 x 2 x 2mw. The dashed line indicates the edge trajectory at
Re = 500 with domain size 2w x 2 x w. The energy of the
wall-normal velocity perturbation is displayed. (b): Evolution
of the energy in time for the nonlinear optimal discussed in
figure 1 for €y = €pr.

interval). The threshold for transition is then computed with a bisection pro-
cedure to find the laminar/turbulent boundary. The initial condition of critical
energy €or obtained with the present procedure is just above the boundary
and its energy is lower than that obtained from nonlinear optimization of a
laminar flow. In addition, having a turbulent state as final target gives a lower
threshold for transition with optimals computed above ¢y than below egr. For
€p — 0 we would retrieve the linear optimals which cannot induce turbulence
alone. Therefore a fully nonlinear optimization, including information from
the fully turbulent state, is indeed indispensable if the target is the complete
transition process. Note that we have also performed a series of simulations
using the time integral of the disturbance kinetic energy as objective function.
Although the results are qualitatively the same, dissipation provides a lower
threshold amplitude for transition, about 5% smaller. More importantly, we
obtain better convergence with dissipation as objective function; for the lowest
Reynolds numbers considered we could not obtain converged results when using
the disturbance kinetic energy. Note also that previous studies used the kinetic
energy at final time rather then the time integral: this can explain improved
convergence with our approach.

We performed optimization for a combination of 4 different values of
the Reynolds numbers, Re = [500, 750, 1000, 1500], three difference box sizes,
27 x2x 7], [Am x 2 x 7], [47 x 2 x 27] and final optimization time T" € [200, 400].
It turned out to be more difficult to obtain converged solutions for the lowest
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a)

FIGURE 4. Optimal initial condition at the threshold level
€or, visualized through isosurfaces of positive and negative
streamwise velocity perturbation, shown with pale (yellow)
and dark (blue) color. Contour lines show positive and nega-
tive spanwise velocity at « = 1.5m. The base flow is indicated
by the arrows along the sides in (a). Re = 1500, domain
size 47 x 2 x 2w. The isosurface level is 65% of the maxi-

mum value of each component: (a) u2,,, = 2.89 x 107°, (b)
w2, = 2.89 x 1077, (c) u2,,, = 2.09 x 1073, (d) u2,,, =
2.07 x 1071,

Reynolds number considered. This is because the method relies on the con-
cept of statistically steady state which implies a well developed turbulent field.
This is not the case at lower values of the Reynolds number where turbulence
has a transient nature. Furthermore, sufficient time is needed to reach a final
turbulent flow. The optimal initial condition obtained with different optimiza-
tion times 7" is displayed in figure 2. The variations are marginal for the cases
considered here for final times beyond T' = 300, as quantified by the maximum
of the velocity amplitude in the whole domain in figure 2e). The results are
therefore independent of 7', the objective function has reached an asymptotic
value and we have indeed optimized the route to the turbulent state.

For smaller domains and lower Reynolds number the edge trajectories visit
some steady solution before the final breakdown to turbulence. This is not the
case for the largest domain and higher Re considered, where a chaotic behavior
is observed near the edge trajectory. Evidence for this is provided in figure 3(a)
where the evolution of the rms values of the wall-normal velocity perturbation
is displayed for two cases.
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The optimal trajectory to the turbulent state is visualized in physical space
in figure 4. The perturbation at ¢ = 0 is strongest in the cross-stream velocity
components and, most interestingly, it appears localized in all three spatial
directions. Nonlinearity is active where the amplitude is locally large and this
is not always reflected by the total energy, which is a global measure. The
initial evolution of the disturbance is reported in figures 4(b) and 4(c) while the
behavior of the integral energy is shown in figure 3(b). The initial disturbance
is inclined against the mean shear to extract more energy from the base flow
via the Orr-mechanism At time ¢ = 10 the disturbance is up-right and still
localized.

Transition is initiated by a pair of streamwise vortices that generate a single
bent streak Cossu et al. (2010), see figure 4(c). The slow growth of the streak
is associated to a decay of the cross-stream velocity components (see fig. 3b).
However, once the streak reaches a sufficient amplitude at ¢t &~ 70, secondary
instability sets in as spanwise oscillations induced by a staggered pattern of
vorticity. Rapid breakdown to turbulence is then observed to occur at ¢t ~ 130.

To determine the initial condition of minimum energy leading to lami-
nar/turbulent transition in plane Couette flow we have resorted to thermody-
namics considerations. Using the general evolution criterion we have optimized
the route to the statistically steady state the system wants to reach: this is the
state of maximum entropy production and coincides with the turbulent state
for large enough values of the Reynolds number and of the initial perturba-
tion energy. Nonlinear optimization is needed to determine this optimal initial
condition and the energy threshold below which turbulence cannot ensue. For
realistic domain sizes the optimal initial condition is localized in the three spa-
tial directions. The transition path is characterized by the occurrence of a
single bent velocity streak whose oscillations increase rapidly at breakdown.
Although computationally expensive, the approach proposed is not limited to
simple flows, and the next step is to extend the present results to flows that
are inhomogeneous in the streamwise direction.

The authors acknowledge Carlo Cossu for fruitful discussions. Computer
time provided by SNIC (Swedish National Infrastructure Centre) is gratefully
acknowledged.
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Transition to turbulence occurring in a flat-plate boundary-layer flow sub-
jected to high levels of free-stream turbulence is considered. This scenario,
denoted bypass transition, is characterised by the non-modal growth of stream-
wise elongated disturbances. These so-called streaks are regions of positive and
negative streamwise velocity alternating in the spanwise direction inside the
boundary layer. When they reach large enough amplitudes, breakdown into
turbulent spots occurs via their secondary instability. In this work the bypass-
transition process is simulated using direct numerical simulations (DNS) and
large-eddy simulations (LES). The ADM-RT subgrid-scale model turned out
to be particularly suited for transitional flows after a thorough validation.

Linear feedback control is applied in order to reduce the perturbation en-
ergy and consequently delay transition. This case represents therefore an ex-
tension of the linear approach (Chevalier et al. 2007a) to flows characterised
by strong nonlinearities. Control is applied by blowing and suction at the
wall and it is both based on the full knowledge of the instantaneous velocity
field (i.e. full information control) and on the velocity field estimated from wall
measurements.

The results show that the control is able to delay the growth of the streaks
in the region where it is active, which implies a delay of the whole transition
process. The flow field can be estimated from wall measurements alone: The
structures occurring in the “real” flow are reproduced correctly in the region
where the measurements are taken. Downstream of this region the estimated
field gradually diverges from the “real” flow, revealing the importance of the
continuous excitation of the boundary layer by the external free-stream tur-
bulence. Control based on estimation, termed compensator, is therefore less
effective than full information control.
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1. Introduction

The aim of this study is to perform numerical simulations to apply linear feed-
back control to transitional boundary-layer flows in the presence of free-stream
turbulence where bypass transition occurs. An efficient pseudo-spectral numeri-
cal discretization is used and tools from modern control theory are incorporated
into the controller design. Both large-eddy and direct numerical simulations
are performed for evaluating the control efficiency in a highly nonlinear config-
uration.

1.1. Flow Control

Control of wall-bounded transitional and turbulent flows is the object of the
present investigation owing to the high potential benefits. Any reduction of
the skin friction, for example, implies relevant savings of the operational cost
of commercial aircrafts and cargo ships. In particular the bypass transition
scenario considered here is relevant in turbomachinery where high levels of
free-stream turbulence are present.

Direct numerical simulations (DNS) have provided physical insight into the
phenomena of transitional and turbulent flows, despite the fact that they are
limited to simple and moderate Reynolds-number flows (Moin & Mahesh 1998).
The same tools are now adopted to investigate the feasibility and performance
of feedback control algorithms on a complex transitional flow case.

A linear model-based feedback control approach, that minimises an objec-
tive function which measures the perturbation energy, is formulated where the
Orr-Sommerfeld and Squire equations model the flow dynamics. The latter
equations describe the linear evolution of perturbations evolving in a parallel
base flow. The requirement implicit in this formulation is the need of complete
state information. However, the control problem can be combined with a state
estimator to relax this requirement. The information problem is a limiting
factor in the success of a control scheme, since, as a first step, it affects the
whole procedure. The so-called Kalman and extended Kalman filter have been
implemented in order to reconstruct the flow in an optimal manner by only
considering wall measurements (Kailath & Hassibi 2000).

Flow control has been the object of comprehensive investigation the past
years and recently, much effort has been put in the combination of computa-
tional fluid dynamics and control theory. While early attempts of flow control
were based on physical intuition or on a trial-and-error basis, more systematic
approaches are now followed. General reviews on flow control can be found in
Moin & Bewley (1994), Joslin et al. (1996), Bewley (2001) and Kim & Bewley
(2007) to mention a few.

Different control strategies have been attempted over the years for transi-
tional flows, for example, wave cancellation where Tollmien-Schlichting waves
are damped by applying anti-phase signals. Early reviews on the subject can
be found in Thomas (1990) and Metcalfe (1994). Wave-cancellation methods
for control were applied already in the 80es both experimentally (Thomas 1983)
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and numerically, see e.g. Laurien & Kleiser (1989). A more ’drastic’ control
strategy, also known as laminar flow control, consists in stabilising the flow by
applying strong suction on the boundary layer thus modifying the mean flow
profile. A review on this method can be found in Joslin (1998). Nonlinear
control methods have been studied as well and an overview of these methods is
given by Joslin et al. (1997). In many cases nonlinear control is applicable only
within the conditions and parameter range that it is designed for. An example
of a robust controller that addresses that problem is described by Bewley et al.
(2000). Other examples of application of nonlinear controllers are Berggren
(1998), Bewley et al. (2001) and Collis et al. (2000).

The use of linear feedback controllers has been investigated more recently.
This was motivated by the understanding on how the energy growth of fluc-
tuations in a turbulent flow is related to linear mechanisms. In particular,
Farrell & Ioannou (1996), Henningson (1996) and Kim & Lim (2000) showed
that linear mechanisms are important to sustain turbulence and thus linear
controllers can be applied for turbulence control. One early work on linear
feedback control schemes is Joshi et al. (1995). Results from the application of
linear optimal control theory also confirm the importance of linear mechanisms
in the nonlinear flows under consideration (Hogberg & Henningson 2002). Re-
laminarisation of turbulent channel flow was achieved by Hogberg et al. (2003a)
with this method and the controller and estimator were combined by Hogberg
et al. (2003b). The combined control and estimation problem is also known as
a “compensator”.

Recent studies from our group on the application of model-based linear
feedback control have shown the importance of physically relevant stochastic
models for the estimation problem which turns out to be crucial for fast con-
vergence (Hoepflner et al. 2005; Chevalier et al. 2006). Such stochastic noise
needs to describe accurately enough the unmodelled dynamics, like uncertain-
ties and nonlinearities. Based on these models the estimator is shown to work
for both infinitesimal as well as finite amplitude perturbations in numerical
simulations. The compensator has been applied to spatially developing bound-
ary layers and shown to reduce the perturbation energy of both modal and
non-modal disturbances (Chevalier et al. 2007a).

1.2. Bypass transition

Laminar-turbulent transition in a zero-pressure-gradient boundary layer sub-
ject to high levels of free-stream turbulence is considered. Such a scenario is
usually referred to as bypass since the transition occurs bypassing the expo-
nential growth of the Tollmien-Schlichting waves. It has indeed been shown
both experimentally and theoretically that the asymptotic solutions given by
the classical stability analysis are not always adequate to predict transition
in wall-bounded shear flows. In some cases significant energy growth can be
observed even when the flow is stable (Schmid & Henningson 2001). This can
be explained by the non-normality of the the linearised operator describing the
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FIGURE 1. Visualisation of the streamwise disturbance veloc-
ity component (dark colour is low velocity, light high velocity)
in a plane close to the wall showing the flow development un-
der the influence of free-stream turbulence. Streamwise extent
Re, = [32000, 570000], true aspect ratio. The streamwise ex-
tent corresponds to almost the full length of a typical turbine
blade.

flow dynamics and the associated non-orthogonal set of eigenmodes (Reddy &
Henningson 1993). If the state of the system has a strong projection on some of
these highly non-orthogonal eigenmodes the energy of the flow can experience
a significant transient growth. In the case of boundary layers, the upstream
perturbations which undergo the largest possible growth consist of streamwise
counter-rotating vortex pairs, see Andersson et al. (1999). These vortices lift
low-momentum fluid from the wall and push high-momentum fluid from the
outer parts towards the plate, thus creating elongated regions of alternating
accelerated and decelerated fluid, called streaks. This process of vortex tilting
is also known as lift-up effect (Landahl 1980).

After the primary energy growth due to the lift-up effect, the flow is in
a more complicated laminar state where strong nonlinear interactions can
come into play, leading to transition to turbulence. As the streaks grow in
strength, they become susceptible to high-frequency secondary instabilities due
to the presence of both wall-normal and spanwise inflectional velocity profiles
(Brandt & Henningson 2002; Brandt 2007). These secondary instabilities man-
ifest themselves in symmetric and antisymmetric streak oscillations, which are
precursors to the formation of localised regions of chaotic swirly motion, the so-
called turbulent spots (Brandt et al. 2004; Mans et al. 2007). The leading edge
of a spot travels at about the free-stream velocity Uy, while the trailing edge
at half this speed. The spots become therefore more elongated and eventually
merge: a fully-developed turbulent boundary layer is observed. A visualisation
of the transition under free-stream turbulence from the simulations presented
here is provided in figure 1. Streamwise streaks can be seen to form close to
the computational inlet, followed by streaks oscillations and turbulent spots.
The flow is turbulent in the second half of the domain.

The bypass transition scenario is observed when the boundary layer is
subject to free-stream turbulence levels higher than 0.5-1% (Matsubara & Al-
fredsson 2001). As described above, the flow reproduces, though on a larger
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scale, the near-wall dynamics of wall-bounded turbulence, see e.g. Robinson
(1991), and it is therefore and ideal test configuration in view of possible con-
trol of turbulent flows. This work represents therefore a natural extensions
of the flow control studies mentioned above (Hoepfiner et al. 2005; Chevalier
et al. 2007a) to flows characterised by strong nonlinear interactions. An ex-
perimental demonstration of reactive control of the same scenario was recently
presented by Lundell (2007). In this study, an ad-hoc threshold-and-delay con-
trol algorithm is evaluated and shown to inhibit the growth of the streamwise
velocity fluctuations for a distance downstream of the actuator position.

The paper is organised as follows. In section 2 the control approach is
presented while the numerical method, the large-eddy simulation and the free-
stream turbulence generation are introduced in section 3. The results are pre-
sented in section 4. First, the focus will be on the validation of the LES while in
the second part of section 4, linear feedback control applied to bypass transition
is considered. The paper ends with a summary of the main conclusions.

2. Feedback control

Linear analysis is commonly used to understand the energy growth mechanisms
of perturbations in shear flows (Schmid & Henningson 2001). However, it can
also be used as a tool to design controllers that actively reduce the pertur-
bation level and prevent or delay transition. The procedure adopted here is
linear feedback control based on noisy measurements within the Linear Qua-
dratic Gaussian (LQG) framework where a Linear Quadratic Regulator (LQR)
is combined with a Kalman filter (Friedland 1986).

Within this framework a set of linear equations is used as a model for the
physical process to be controlled along with a quadratic objective function. The
system is assumed to be subject to Gaussian random excitations which repre-
sent unmodelled dynamics, e.g. nonlinearities. The control requires knowledge
of the full state of the system. Therefore a state estimator, also called Kalman
filter, is used to reconstruct the flow field from noisy measurements taken at
the wall. To model uncertainties in the measurements, noise is assumed to
contaminate the output signals. The control and estimation problem can be
considered and solved separately and when combined it can be proven that
this is the optimal solution (Skogestad & Postlethwaite 2005). This is known
as the separation principle. Control can be applied both in the real and in
the estimated flow. The combination of an estimator and a full information
controller is called compensator.

The design of a controller aims at finding the optimal mapping between the
various inputs and outputs of the system in such a way that a certain objective
is obtained. In this case the system is the boundary layer flow, inputs are the
external disturbances from the free stream (unknown) and the blowing/suction
at the wall (known) while output is the wall measurements (known). The
objective here is to reduce the kinetic energy of the perturbations in the flow.
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2.1. Control

In this section the design process of the full information controller is presented.
Therefore it is assumed that the exact state of the system is known.

To model the flow, the linearised Navier-Stokes equations are employed

%;‘ +UVu+uVU = —V7r + Re'V?u (1a)

Vu=0, (1b)

where u = [u v w]T. The streamwise, wall-normal and spanwise directions are
denoted z, y and z respectively, with the corresponding velocity components
u, v and w and wavenumbers k., k, and k..

In equations 1 we consider small perturbations around the base flow
U = [UV W]T. To reduce the order of the system a parallel base flow is
assumed U = [U(y) 0 0]7 and under this assumption Fourier transform can be
applied along the wall-parallel directions. Thus we can treat each wavenumber
pair individually and instead of solving one problem with a large number of
degrees of freedom, we solve many smaller systems. For the channel flow this
assumption is exact, whereas for boundary layers, it is a good approximation
due to their slow viscous growth.

To eliminate the pressure the wall-normal velocity v and wall-normal vortic-
ity n formulation is adopted where the state is (v 7). The equations that de-
scribe the dynamics are the Orr-Sommerfeld/Squire (OSS) system (see Schmid
& Henningson (2001))

i ()= (% 2) () @

Los = [A] 7 ~ik,UA + ik, DU + L Al
Lo = —ik, DU 3
"gSQ = _Zsz + éA .

U is the mean-flow profile, the similarity Blasius solution, A is the Laplacian
operator A = D? — k? with k? = k2 + k? and D the wall-normal derivative.
The Reynolds number Re is defined using the free-stream velocity U, and the
local boundary-layer displacement thickness §*,

Uyod*

Re = - (4)

where

The control is applied through non-homogeneous boundary conditions as
a model for localised blowing and suction at the wall. To adopt the same
formulation as in classical control theory, the control signal is expressed in the
equations as a volume forcing by a lifting procedure (Hogberg & Henningson
2002). To account for non-modelled dynamics, such as non-parallel effects and
nonlinearities, external excitation is added such that two extra forcing terms
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appear in the equations

0
%ZWQ+@1W1+%Q¢, (5)

where q = [v 7 x]T, 1w, is the forcing due to external excitations w; of
stochastic nature and Ho1) is the forcing from the control signal ¢ and x is
the velocity at the wall. We thus have 0y /9t = ¥. The operator &/ governs
the dynamics of the augmented system (Chevalier et al. 2007a). Note that the
control signal is the time derivative of the blowing and suction at the wall. In
the case of full state-feedback control the signal is calculated directly from the
state q so $Bot) = PBo# q where J is the control gain.

The aim is to calculate the control gain % so that the kinetic energy of the
mean-flow disturbances is minimised while at the same time the control effort
is kept at low levels. To this end the following objective function is defined,

T
7= [ @ oq+vavar. (6)
0

where (-)* denotes the complex conjugate. The term q*2q corresponds to the
kinetic energy of the perturbations for the specific wavenumber pair under con-
sideration where 2 is the energy norm operator. The second term in equation
6 represents the control effort, # = I? where [ is the actuation penalty.

As a next step we discretise the problem so that it can be solved numeri-
cally. The control problem is now redefined as a set of one-dimensional partial
differential equations, one for each wavenumber pair. Along the wall-normal
direction y, Chebyshev polynomials are used. In the case of unbounded do-
mains the corresponding wall-parallel wavenumbers are a continuous set but
in a bounded domain this set becomes discrete and the corresponding Fourier
representation transforms from integrals into series. The series will be trun-
cated to a wavenumber that corresponds to the resolution of the numerical
simulation.

If ¢ is the discrete state vector the energy norm operator @ is defined in
such a way that the quantity ¢’ Qg approaches the kinetic energy of the system
as the resolution increases. ¢ is the Hermitian transpose of ¢.

The discretised system has a similar form as the continuous one

9q

5% Aq+ Biw + B¢, (7)

where the quantities g, A, By, w1, Bo and ¢ are the equivalent discrete coun-
terparts of q, &7, %1, wy, B and 1.

We use the Lagrange multipliers to find the optimal solution to our prob-
lem. We define the Lagrangian

dq

L‘,:/OT E(qHQq+¢HR¢)—p(at—Aq—quﬁ)}dt, (8)
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where p is the Lagrange multiplier and R is the discrete versions of %Z. Here we
have dropped the stochastic term Bjw; since we will use the deterministic ap-
proach in deriving the full information control. The variation of the Lagrangian
functional can be written as

(D (G (D)oo

Combining equations 8 and 9 and assuming £ = 0 leads to the set of
equations

oc  Op I B

3~ o AP Q=0 (10a)

oL 0q B

F i A Ag+ B2p=0 (10b)
% =Ré+Bip=0. (10c)

A linear time dependent relation is assumed between the forward solution
q and the Lagrange multiplier p = X¢. Inserting this assumption into equation
10a and adding equations 10a and 10c we arrive at the differential Riccati

equation
0X
E+AHX+XA7XB2R*1B§IX+Q:O. (11)
The optimal K is then given through the non-negative Hermitian solution
X of equation 11. A full derivation of the above equation is given by Lewis &
Syrmos (1995). A simplified version arises if an infinite time horizon is assumed,

yielding the steady-state Riccati equation

ARX + XA - XByR'BIX +Q=0. (12)
with the control gain computed from
K=-R'BHQX. (13)

The Riccati equation is solved for each streamwise and spanwise wavenumber
pair (k., k) separately and an inverse Fourier transform can be applied to visu-
alise the control gains in physical space. It is shown by Hoégberg & Henningson
(2002) that the control gains, relating the velocity perturbations to the con-
trol signal, are spatially localised: The control is thus dependent only on the
perturbations in a limited region located upstream of the actuator.

2.2. FEstimation

The duty of the estimator is to approximate the full three-dimensional velocity
field from wall measurements in real time. Measurements are taken from the
wall and the sensors responsible for the measurements include noise. The esti-
mator can be seen as a filter operator where the equations governing the flow
are used for the filtering process. Input is the measurements from the real flow
and output the estimated flow. This is often called Kalman filter.



Estimation and control of bypass transition in boundary layers 125

In the estimation problem two flow fields are considered: The ’real’ flow
and the estimated flow (see figure 2). All the quantities that correspond to the

estimated flow are marked with a hat ().
The estimated field is assumed to fulfill the following equation

%:AQ—L(T—P)—FBQ(;S, (14)

where L is the measurement gain and r indicates the measurements. The latter
are extracted through the measurement operator C' and since the measurements
process introduces noise, we write r = Cq + g and 7 = Cq, where g is the
measurement noise. The governing equation for the estimation error can be
written as
% =(A+LC)g+ Bywy + Lg = AcG+ Biwy + Lg. (15)
The aim of the estimation problem is to minimise the difference between
the real and the estimated flow, namely the estimation error § = ¢—¢. From the
equations above the mathematical similarity between the feedback control and
the estimation problem is evident. We are looking for the optimal L for which
the objective function F = 77 is minimised. However in this case we have to
use the stochastic approach instead of the deterministic, since the equation is
forced by stochastic inputs.

We assume that the external disturbances w; and g are zero-mean station-
ary white noise Gaussian processes (Chevalier et al. 2007a). Since the system is
forced by these stochastic processes, expected values of the relevant flow quan-
tities are examined. In particular for the estimation problem the covariance of
the estimation error P is considered and, as for the full information control,
a steady state is assumed. The covariance of the error satisfies the algebraic
Lyapunov equation

AP+ PA" + ByWBH + LGLY =0, 16
e 1

where W and G are the covariances of wy and g respectively. This along with
the objective function F form a new Lagrangian M where the traces of the co-
variance matrices are involved. The trace of covariance matrices correspond to
rms (root-mean-square) values of the quantity under consideration (Hoepfiner
et al. 2005).

M = trace(PQ) + trace[A(A.P + PAY + LGLY + ByWBH)] (17)

where A is the Lagrange multiplier. The first term in equation 17 is the objec-
tive function to be minimised and the second is the constraint coming from the
Lyapunov equation satisfied by the covariance error. At the stationary point

of M 5
%:Q+(A+LC)HA+AH(A+LC)=0 (182)
IM

Sh = (A+LOP+P(A+ LOYY + BBWBY + LGL" =0 (18b)
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%—/\L/l =2A(PCH + LG) =0. (18c)

The solution to this optimisation problem is given by the numerical solution

P of a Riccati equation similar to that arising in the feedback control problem

AP+ PAY —pcHGg-'cP+ BWBI =0, (19)

with the estimation feedback gain given by L = —PCHYG~!. For a similar
derivation see also Bagheri et al. (2007).

In the computations presented, three quantities are measured at the wall,
namely the streamwise and spanwise skin friction and the pressure

1 du

Ty = Txy|wall = E@ ; (203‘)
1 ow

z — Tzylwall — 55~ 43 20b

! i y‘ ! Re 6y wall ( )
1 03v

wail = A [ —— 20

Puoatt o <R66?/3> wall (200

where A ! denotes the formal inverse of the wall-parallel Laplacian.

The Kalman filter presented here is the optimal estimation in a linear
setting. To apply the above theory in a highly nonlinear case, one may use the
full (nonlinear) equations when solving the estimation problem 14 while the
gains used are computed with the linear theory. This is the extended Kalman
filter and it is expected to be more accurate than the standard Kalman filter.

2.3. Compensator

The compensator is the combination of full information control and state esti-
mation. The measurements taken from the real flow are communicated to the
estimator where they are used to compute the forcing needed to reproduce the
perturbations present in the real flow. The actuation signal is computed from
the estimated flow and it is applied to both the estimated and the real flow.
Although computed for linear systems, the control and estimation are applied
to the full nonlinear Navier-Stokes equations (Hogberg et al. 2003c).

The compensator problem as it was stated here accounts only for paral-
lel flows as there is no explicit streamwise dependence in the OSS operator.
Further, it assumes that measurements are taken and actuation is applied con-
tinuously over the whole domain. This theory is applied to a spatial boundary
layer and both measurements and actuation are available only on a part of the
domain (see figure 2). Two regions need to be specified, one for the control and
one for the estimator. For both regions, the local laminar velocity profile is used
as a base flow in the OSS operator. The flow is assumed to be locally parallel
around these locations in order to solve the control and estimation problems.
Once the control and estimation gains are calculated, the actuation forcing is
limited to the actuation region by a smooth transfer function in physical space
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FIGURE 2. A schematic drawing of the compensator. Wall
measurements are taken in the real flow and compared to those
from the estimator. The control signal is computed based on
the reconstructed velocity field and applied in the real flow.

with two smooth step functions around the chosen locations (Chevalier et al.
2007a).

3. Simulation approach
3.1. Numerical method

For the present computations, the three-dimensional, time dependent, incom-
pressible Navier-Stokes equations are solved using a spectral method (Chevalier
et al. 2007b). The algorithm uses Fourier representation in the streamwise and
spanwise directions and Chebyshev polynomials in the wall-normal direction,
together with a pseudo-spectral treatment of the nonlinear terms. Dealiasing
using the 3/2-rule is employed in the wall-parallel (Fourier) directions, whereas
a slightly increased resolution is used in the wall-normal direction to reduce
aliasing errors. The time is advanced with a four-step low-storage third-order
Runge-Kutta method for the nonlinear terms and all the forcing contributions,
and a second-order Crank-Nicolson scheme for the linear terms and boundary
conditions. To correctly account for the downstream boundary-layer growth
the spatial simulation approach is necessary. This requirement is combined
with the periodic streamwise boundary condition by the implementation of a
fringe region (Nordstrom et al. 1999; Lundbladh et al. 1999). In this region,
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positioned at the downstream end of the computational box occupying approx-
imately 10% of the flow domain, a volume forcing is smoothly raised from zero
to force the flow from the outflow to the desired inflow condition. The inflow
consists of the laminar Blasius boundary layer with superimposed spatially and
temporally varying disturbances, i.e. the free-stream turbulence in the present
case.

3.1.1. MPI implementation and performance

The numerical code described above is parallelised to run on distributed-
memory architectures (i.e. clusters) using the Message Passing Interface (MPI).
As detailed in section 2.3, the simulation of the estimator and compensator ac-
tually requires the time-advancement of two flow fields, i.e. the “real” flow field
and the estimated field. These two fields are coupled by the measurements
and the control actuation (in case of compensator), and feature different inflow
conditions and may have different spatial resolution and domain size. In the
present implementation this is achieved by having two simulations running si-
multaneously on a subset of the available processors; the two simulations have
two different executables, compiled with different options but running within
the same MPI environment. Information exchange is then accomplished using
distinct messages sent between the two codes. Details on the implementation
can be found in Seyed (2007).

To give an estimate of the computational cost, the details of a typical sim-
ulation are now outlined. The “real” flow is simulated via direct numerical
simulation (DNS) discretised on a domain with approximately 20 - 10° grid
points. The corresponding estimator simulation can be run as a large-eddy
simulation (LES) (see section 3.2 below) with a lower resolution of approxi-
mately 2.5 - 10° grid points. In this example, the DNS is run on 24 processors,
and the estimator LES on 6 processors, i.e. employing a total of 30 processors.
The necessary runtime in order to obtain fully converged statistics (simulated
time At = 4000) is about 300 hours on 30 processors corresponding to 9000
CPU hours.

3.2. Sub-grid scale modelling

The fine grids (and the corresponding small time steps) necessary in the DNS
of turbulent flows at moderate to high Reynolds numbers give rise to very
high computational costs. Therefore, other approaches based on large-eddy
simulations (LES) have been developed to be able to simulate transitional and
turbulent flows in large-enough domains and at high Re. In LES the mesh size
is chosen considerably larger than for DNS. This implies that the structures
present in the flow are only resolved above a certain size corresponding to the
cutoff wavenumber we 4ri¢. This length scale is chosen to be small enough to
capture well the structures that are involved in the physical phenomena under
investigation. On the other hand, the scales below the cutoff scale are not
resolved on the numerical grid, but their influence due to nonlinearity onto
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the resolved scales must be modelled by a subgrid-scale (SGS) model. For
flows with solid walls, the thin boundary layers adjacent to the walls need to
be resolved in both DNS and LES for accurate results. Therefore, even LES
requires a substantial computational effort, albeit lower than DNS: A typical
resolution for an LES is approximately 1-20% of a corresponding fully-resolved
DNS.

Formally, the solution in an LES calculation is obtained by applying a
generic low-pass filter G with a certain filter width A suitable for the problem
under consideration,

ai(z) == GF s u; := /VGP(m,x’,A)ui(x')dx' , (21)

where 1;(z) denotes the filtered quantity and V the computational domain. G¥
is referred to as the primary LES filter. The governing momentum equations
for the filtered quantities become

ou; aﬂiﬂj _ 6}3 B 37’1‘]‘ i 82111‘ (22>
ot Ox; T Oay Oxr;  Redx;0x;
together with filtered incompressibility constraint
o1y
=0. 23
oz, (23)

The interaction between the resolved and unresolved scales is given by the SGS
stresses,

Tij :W—ﬂiﬂj 5 (24)
which is an unclosed term and thus has to be modelled based on the filtered
velocity field w;. In most LES approaches the primary filter is not applied
explicitly, but rather given by the implicit filter due to the lower grid resolution.

The ADM-RT model used here acts on the velocity components directly.
The model employs the relaxation term proposed in the context of the approx-
imate deconvolution model (ADM) (Stolz & Adams 1999). It has been shown
in e.g. Schlatter et al. (2006a,b) that for spectral simulations the deconvolution

operation applied in the ADM approach is not necessary. Therefore, the SGS
force due to the ADM-RT model is given by (Schlatter et al. 2004)

with y being the model coefficient. Hy denotes a high-order three-dimensional
high-pass filter (Stolz et al. 2001), and the symbol x stands for convolution in
physical space, i.e. a multiplication with the respective transfer function Hy
in Fourier space.

The high-pass filter Hy used in the present work is obtained by the re-
peated application of a low-pass filter G according to

Hy=(T-G)N*, N>0. (26)
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Typically, G is chosen as the low-order low-pass filter suggested by Stolz et al.
(2001). The cutoff frequency is defined as G(w,) = 1/2 and can be adjusted.
For the present results, w. = 27/3 and N = 5. Hy is at least of order r(N +1)
with 7 being the order of G. The latter is at least » = 3 on non-equidistant
grids.

X is the model coefficient which is set to a constant value herein motivated
by previous studies showing little dependency of the results on the actual value
of the coefficient (see e.g. Schlatter et al. (2006b)). If the model coefficient x
is chosen inversely proportional to the time-step size the relaxation term has a
similar effect as a filtering of the velocities after every time step, as mentioned
in Stolz & Adams (1999).

The relaxation term yHy * @; is proportional to the small-scale velocity
fluctuations in the flow field. Therefore, it will damp out these oscillations
leading to a drain of kinetic energy from the smallest resolved scales.

The ADM-RT model proved to be accurate and robust in predicting tran-
sitional and turbulent incompressible flows with spectral methods (Schlatter
et al. 2004, 2006b). Note that the relaxation-term model is related to the spec-
tral vanishing viscosity approach (Karamanos & Karniadakis 2000). Due to the
high-order filter Hy with a cutoff frequency of w. ~ 0.867 only the smallest
represented eddies are affected, whereas the larger, energy-carrying scales are
not directly influenced by the model contributions.

3.3. Free-stream turbulence gemeration

The boundary layer considered here is subject to external disturbances, in
particular free-stream turbulence. To generate this inflow a superposition of
eigenmodes from the continuous spectrum of the OSS operator is used (Jacobs
& Durbin 2001; Brandt et al. 2004). In the present implementation disturbances
can be introduced in the flow in three different ways: forcing them in the fringe
region, with a body force as in the estimation problem, or via blowing and
suction at the wall by a non-homogeneous boundary condition as done in the
control problem. The free-stream turbulence is forced at the inflow by adding
the modes to the laminar base-flow profile in the fringe region.

Detailed description of the procedure adopted can be found in Brandt
et al. (2004). Here the free-stream generation is shortly outlined. A three-
dimensional wave vector k = (k, ky, k) is associated to each eigenfunction of
the continuous spectrum where, k, and k., are defined by the normal-mode ex-
pansion along the wall-parallel directions of the underlying linear problem while
the wall-normal wavelength is determined by the eigenvalue along the continu-
ous spectrum. If Taylor’s hypothesis is applied the streamwise wavenumber k.,
can be replaced by a frequency w = k, Uy, and the disturbance signal is written
as

Ugisr = Z AN&N(y)eikzz+ikxw7th ’ (27>
where the wall-normal wavenumber &, is implicit in the shape of the eigenfunc-
tion Uy (y) (Grosch & Salwen 1978). The complex wavenumber k. is determined
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by the dispersion relation once the real wall-normal wavenumber k, and the
real wavenumbers k., and w are selected according to the procedure described
below. The wavenumbers pertaining to the modes used in the expansion are
selected by defining a number of spherical shells of radius | k| in the wavenumber
space (w, ky, k.). 40 points are then placed at equal intervals on the surface of
these spheres. The coordinates of these points define the wavenumbers of the
modes used in the expansion above. The complex coefficients Ay provides ran-
dom phase but a given amplitude. The amplitude |Ay| is in fact the same for
all modes on each shell and is chosen to reproduce the Von Karman spectrum

2 a(kL1)4

E(k) = gWL, Tu. (28)

This spectrum is for large scales asymptotically proportional to k%, whereas
it matches the Kolmogorov-(5/3)-law for small scales. In the expression above,
Twu is the turbulence intensity, L is a characteristic integral length scale such
that kpee = 1.8/ L1 where kynq, is the wavenumber of maximum energy and a,
b two normalisation constants.

3.3.1. Free-stream turbulence generation in the LES

Due to the lower resolution employed for the LES runs, the imposed turbulence
spectrum at the inlet has to be adapted. To obtain results that are as close to
the DNS as possible, it was decided to use exactly the same set of modes and the
same random phases on all the various grids, without any modification of the
turbulence intensity level at the inlet. Modes with wavenumbers too large to be
resolved on a given coarser LES grid were discarded and consequently not forced
at the inlet. All the other parameters specifying the inlet spectrum, i.e. length
scale, choice of modes and the individual scaling of the modes, are the same on
all grids. This leads to the observation that the measured turbulence intensity
at the inlet is smaller for coarser grids, because less modes are actually forced.
To obtain the true Tu one had to also include the unresolved fluctuations, which
are however not available during an LES. The results show that the transition
process is not crucially influenced by that difference in inlet Tu. If, on the
other hand, the resolved T'u at the inlet is adapted to exactly match the level
on the finest (i.e. DNS) grid, premature transition corresponding to the higher
turbulence levels is observed. The explanation for this behaviour is that the
receptivity of the boundary layer is mainly dominated by low-frequency modes
of the free stream. The amplitudes of these modes, which are resolved on both
the DNS and LES grids, should therefore not be modified.

3.4. Simulation parameters

The parameters defining the problem are the Reynolds number, the intensity
and the integral length scale of the free-stream turbulence and the size of the
computational box. The inflow Reynolds number Res:, defined using the dis-
placement thickness of the boundary layer at the inflow of the computational
domain, was chosen to be 300 for all cases under consideration.
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TABLE 1. Different computational boxes used. Resolution for
each box dimensions and type of simulation. The box dimen-
sions include the fringe region and are non-dimensionalised
with respect to the displacement thickness d; at the inflow
(Res: = 300)

Box Method L, x Ly x L, Np x Ny x N,
5 (resolution)
Small DNS 1000 x 60 x 50 1024 x 121 x 72
Small LES 1000 x 60 x 50 256 x 121 x 36
Medium LES 2000 x 60 x 90 512 x 121 x 64

Large LES 2000 x 60 x 180 512 x 121 x 128
X-Large LES 4000 x 60 x 180 1024 x 121 x 128

The different computational boxes used are reported in table 1. Direct
numerical simulations were only performed in the small box, while the largest
boxes were used to allow the transition to turbulence to occur within the com-
putational domain. The latter computational domains are thus used for the
parametric study of bypass transition and its control. The medium-size box
was used when investigating the influence of limiting the control signal (see
section 4.2.1).

The code was run in four different modes, corresponding to four different
physical problems: no control (used as reference case), full information control,
estimation without control and compensator, i.e. control based on estimation.

4. Results

Based on the theory and numerical methods presented in the previous sections,
simulations of transition in a flat-plate boundary layer subject to free-stream
turbulence are performed. Linear feedback control is then applied to the flow
in order to delay transition. Both LES and DNS are presented here and all
the statistics presented are obtained by averaging in time and in the spanwise
direction.

In the following results the streamwise coordinate is indicated by the Rey-
nolds number based on the the distance from the leading edge

Usot  Reé3.

v 17208
where the value of §* for the laminar Blasius solution is used. All the quanti-
ties presented are non-dimensionalised with the free-stream velocity, U, the
viscosity, v and the displacement thickness at the inflow of the computational
domain 4.

Re, = (29)
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FIGURE 3. Integral quantities during bypass transition (Tu =
4.7%) for different SGS models. (a): skin-friction coefficient
¢y, (b): shape factor His. ADM-RT, ——; no-model LES,
-------- ; DNS, e (Brandt et al. 2004). The thin dashed lines
correspond to analytical correlations for both laminar and tur-
bulent boundary-layer flow.

4.1. LES wvalidation

In a first step, the possibility to reduce the numerical resolution and conse-
quently replacing the effect of the non-resolved scales by a subgrid-scale model
(see section 3.2) is explored. In particular, additional to fully-resolved DNS,
two different modelling approaches are considered: under-resolved DNS without
model where the interaction between the resolved and unresolved scales is es-
sentially neglected and the ADM-RT model. This SGS model has been shown
to perform particularly well with transitional wall-bounded flows (Schlatter
et al. 2006b). All the LES presented in this section are performed with a free-
stream turbulence intensity of Tu = 4.7% on the “Large LES” grid given in
table 1. The reference DNS data is taken from Brandt et al. (2004) using the
same numerical method and inflow turbulence generation algorithm.

Figure 3 shows the evolution of the statistically averaged skin friction co-
efficient ¢y and the shape factor H, as a function of the downstream distance
Re,. The skin friction coefficient gives a measure on how well the near-wall
flow structures can be represented, whereas the shape factor, being the ratio
between the boundary-layer displacement thickness and the momentum thick-
ness, describes the flow development and structural reordering of the boundary
layer during laminar-turbulent transition further away from the wall.

The evolution of the skin friction (figure 3a) clearly shows that the no-
model approach without employing a subgrid-scale model leads to inaccurate
results. This behaviour of under-resolved simulations is however well-known
from other studies: The reduced dissipation present in the flow leads to an
increased fluctuation level at the scales close to the numerical cutoff; in case
of flows undergoing transition this increased energy may be causing premature
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FIGURE 4. Instantaneous streamwise velocity in a plane par-
allel to the wall. (a): DNS. (b): LES using ADM-RT.
Light colour indicates low velocity, dark colour high velocity.
Streamwise extent Re, = [32000, 300000], spanwise extent
enlarged by a factor of 5.

breakdown. Usually, increased values of the wall-normal velocity gradient close
to the wall lead to a dominant overshoot of the skin friction, until the flow has
settled down to a new equilibrium state accounting for the missing dissipation
in the small scales. The ADM-RT model with a constant model coefficient
however is seen to provide an accurate prediction of the skin friction throughout
the laminar initial phase dominated by the streaky structures (Re, < 150000),
the stage dominated by the intermittent appearance and growth of turbulent
spots (Re, < 300000), and the fully-developed turbulent region thereafter.

The shape factor given in figure 3b confirms the previous findings: The
initial phase (Re, < 100000) characterised by only minor disturbances within
the boundary layer is predicted accurately also by the no-model LES. However,
as soon the boundary-layer distortion becomes too large, the under-resolved
DNS will immediately break down to turbulence. It is interesting to note
that the SGS model feature a slight departure from the reference level of Hio
between Re, = 100000 and Re, = 170000; however the final stages of transition
seem not to be influenced.

A comparison of an instantaneous visualisation of a wall-parallel plane at
y = 2605 from both DNS and ADM-RT is presented in figure 4. Note that for
both simulations the same amplitudes and phase shifts in the inlet free-stream
turbulence have been used (see section 3.3.1), consequently the flow structures
can be directly compared between DNS and LES. The most obvious feature
is that the LES data looks slightly blurred, which is a natural consequence of
the lower resolution. Nevertheless, many of the flow structures present in the
DNS flow field can also be detected in the LES field, and vice versa: the shape
and location of the dominant strong streaks, the intermittent breakdown to
localised turbulent spots, and a calm region even more downstream than the
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TABLE 2. Control penalties, estimation sensor noise,
measurement-strip position, actuation-strip position and lo-
cation of the base flow target profiles for the estimator and
the controller.

Estimation Control
Sensor noise P 50 penalties l 10°

7 | 0.07 2 |0

. | 0.07
Re,.,... 6.04 x 10* || Re,_,. , 1.95 x 10°
Re,, ., 1.50 x 105 || Rey,,, 2.85 x 10°
location of tar- 1.05 x 10°> || location of tar- 2.40 x 10°
get profile get profile

first turbulent patch. This figure clearly shows that — despite the lower resolu-
tion used in the LES — a good prediction of the dominating flow physics and
the processes leading to turbulent breakdown can be obtained via appropriate
subgrid-scale modelling. It can also be shown that the LES is able to capture
the instantaneous structures just prior to turbulent breakdown.

4.2. Full information control

Results on linear feedback control of a boundary layer subject to free-stream
turbulence are reported next. The design parameters for the compensator
problem are reported in table 2 and will be discussed when presenting the
results for each specific case.

The first step when applying control is to design a reasonably good full-
information controller. This can be used as reference for the compensation,
since the best possible performance is expected when the whole flow field is
known. This case is also used as a benchmark for LES: Since LES is used for
most of the simulations, it is considered important to evaluate the SGS model
against DNS data not only in the general case without control, but also in the
case of full information control. Further, in order to later compare these results
to those from the compensator, the blowing and suction strip are placed further
downstream, so that there will be enough space for the measurement region at
the beginning of the computational domain, see table 2. Note that in the
following figures the gray areas correspond to the regions where measurements
are taken, and blowing and suction is applied, respectively. The simulations
in the remaining part of this section are performed with a turbulence level
Tu = 3.0% except the results in figure 6 where Tu = 4.7%.

In figure 5 the wall-normal maximum of the streamwise velocity pertur-
bation is shown for both DNS and LES of the uncontrolled case as well as
for the two cases with full information control. This quantity is selected since
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rms,max

FiGure 5. Wall-normal maximum ,,s. no control DNS,
—— no control LES, ——; control DNS, ————; control
LES, ----.

it indicates the growth of the streaks inside the boundary layer. It can be
clearly seen that the control is able to inhibit the streak growth and that us-
ing LES-(ADM-RT) gives similar decrease of the streak amplitude as in the
fully-resolved DNS. Slight differences between LES and DNS can be noticed at
the inlet of the domain. This can be explained by noting that the wall-normal
maximum of the rms value is a very sensitive quantity, involving both the lo-
cation and the amplitude of the fluctuations. Indeed mean quantities, like the
skin friction, would not show any difference at all in such a plot.

A study to investigate the influence of the length of the control region on
the transition delay was also performed. The free-stream turbulence level was
chosen to be 4.7% to be able to reproduce the full transition process within
the small computational domain (Barri 2006). The initial and final locations
of the control region are reported in table 3, whereas the value of the wall-
normal maximum of the streamwise velocity fluctuations and the skin friction
are displayed in figure 6 for the three cases under consideration together with
the reference uncontrolled case. It can be noticed in figure 6a that with a longer
control domain, it is possible to reduce the streak growth even more. The effect
of the control is more pronounced when looking at the friction coefficient cy
as shown in figure 6b. By comparing the two plots it can be deduced that the
large values of streamwise velocity fluctuations at the end of the computational
domain are not associated to a fully turbulent flow. The results farther show
that for the longest control region the streak growth is indeed quenched for
a larger distance but the downstream recovery is faster and the differences
between the cases “Medium” and “Long” are attenuated further downstream.

In order to understand the physical mechanism behind the control, instan-
taneous features that appear in the controlled field are examined. In figure 7
the streamwise velocity component on a plane parallel to the wall at y = 2;
(figure 7a) along with the wall-normal velocity component at the wall (figure
7b) indicating the control actuation via wall blowing and suction is displayed.
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TABLE 3. Study on the influence of the control region length.
The initial and final location of the control region are given in
units of Re,.

Start End
(Req) (Rea)
No control — —
Short 5.3 x 10* 1.4 x 10°
Medium 5.3 x 10* 1.9 x 10°
Long 5.3 x 10* 2.3 x 10°

rms,max

x10°

FIGURE 6. Wall-normal maximum s (a) and skin friction
coefficient ¢y (b). no control, ——; short, === ; medium,
----; long, ——.

From these two instantaneous images of the flow one can see the correlation
between the flow state and the control signal. In the case of a high-speed streak
blowing is induced from the controller. This causes the flow downstream of the
actuation to settle in a more stable state since the fast moving fluid is forced to
move upwards away from the wall. The opposite action is happening for low-
speed streaks i.e. the controller is applying suction to move high-speed fluid
from the free stream to cancel the region of decelerated flow. One other aspect
to note from this figure is that most of the control effort is concentrated at the
beginning of the control region in agreement with the results by Chevalier et al.
(2007a).

4.2.1. Limiting of control signal

When extending the linear control to these highly nonlinear scenarios, prob-
lems may arise and ad hoc tuning may be necessary. For our case, Brandt &
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(b)

FIGURE 7. (a): Instantaneous streamwise velocity at y = 24.
(b): corresponding control signal. The levels of the contours
are u = [0.3U,0.6Uy] for (a) and v = [-2 x 1072U4,,5 x
1073Us] for (b). White corresponds to the minimum value
and black to the maximum.
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FIGURrE 8. Wall normal maximum u,,s. Control with clipping
of the blowing, ——; Control without the clipping blowing,

Henningson (2004) observed that, if too strong localised blowing is applied,
turbulent spots may be induced by local instabilities due to wall-normal in-
flectional profiles already inside the control region. An improvement of the
transition delay can therefore be expected by limiting the blowing at the wall.
This was implemented in the numerical code by imposing an artificial clipping
to the control signal

v(z,y, 2,t)|y=0 = min{v(z,y, 2,t)y=0, Umax }| - (30)

The clipping threshold vpay is set to 0.01U, for cases where the (unlimited)
maximum of the blowing at the wall occasionally reaches values of the order of
0.02U. The value of v,,,4, is chosen by examining the instantaneous values of
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the blowing in cases where transition was triggered by the wall actuation. The
comparison between the optimal linear control and control with limited blowing
is displayed in figure 8, where the evolution of the wall-normal maximum of
the streamwise velocity fluctuations is depicted for cases with and without
clipping. The performance of the control is on average improved by limiting
the blowing; analysis of the instantaneous velocity fields reveals that this is
due to the absence of the localised spots intermittently induced by the strong
control signals and not by an overall decrease of the streak amplitudes, or
increase of the actuation efficiency. The results presented in the following are
all obtained by limiting the blowing at the wall.

4.3. State estimation

The construction of the estimator involved extensive tuning of several parame-
ters associated with the theoretical tools described in section 2.2. In particular,
these parameters are: the covariance matrix as a model for the stochastic dist-
urbances involved in the estimation process, the sensor noise quantifying the
confidence in the measurements taken and the length of the estimation region.
The covariance matrix is essential for the estimator (see equation 19). In
the ideal case, the measurements indicated in equation 20 would uniquely iden-
tify the current state of the system (Bewley & Protas 2004). This is not the
case since there are unknown initial conditions, unknown external disturbances
and noise corrupting the measurements. To improve the estimation in the case
of free-stream turbulence, the variance of the external disturbances needed to
be extended further out in the free stream if compared to that used in Cheva-
lier et al. (2007a). A diagonal matrix was used as covariance matrix for the
external disturbances. For the covariance of the wall measurements a simple
function proportional to the boundary-layer velocity profile was selected.

The parameters that define the strength of the forcing that is applied to
the system are the sensor noise. The tuning of these parameters was also
performed by testing different sets of values; the set of values yielding the best
performance is reported in table 2. Note that a relatively large value of the
pressure sensor is needed to achieve good estimation. This limits the use of this
measurement and can be explained by the fact that the pressure at the wall
appears to be more sensitive to the free-stream turbulence than to the streaks
inside the boundary layer.

One would expect that the longer the measurement strip the better the
estimation since more information from the flow is available. However, since
the gains are computed for a parallel flow, this may not be the case and above a
certain length the quality of the estimation degrades. The optimal length was
found to be 500 approximately &G units. Further, it was found that at these
high levels of perturbation, estimation works better if the forcing is active only
on the scales that correspond to the streaks. Thus the gains where rescaled
in wavenumber space with a two-dimensional Gaussian function. The param-
eters of this function were determined by applying two-dimensional Fourier
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FIGURE 9. The Gaussian function scaling the estimation gains
in wavenumber space. The centre of the Gaussian is at k, =0
and k, = 0.4 in units of d; .

FIGURE 10. Instantancous streamwise velocity fields. (a):
real flow; (b): estimated flow. The measurement strip is
indicated with two vertical lines. Streamwise extent Re, =
[32000, 570000], spanwise extent enlarged by a factor of 5.

transforms along the wall-parallel directions to the flow fields to be estimated
and extracting the wavenumbers of richest energy content. One example of
this weighting function is shown in figure 9. The gains are focused around
wavenumber k, = 0.0 in the streamwise direction, which corresponds to infin-
itely long structures and around %k, = 0.4 which corresponds to the spanwise
width of the most energetic structures, namely the streaks.
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FicUrE 11. Estimation error according to equation 31.

Two different criteria were used to determine the performance of the esti-
mator. The first was visual inspection of the instantaneous velocity fields: One
example of this comparison can be seen in figure 10, where the streamwise ve-
locity in a plane parallel to the wall is displayed for the real and the estimated
flow. It can be seen in the figure that the main features of the incoming streaks
are well reproduced in the estimated field. A second, more systematic way, is
to calculate the estimation error given by

_ fﬂ(q - @)dQ

B fQ(Q)dQ ’

where 2 is the region selected to evaluate the estimation error. In figure 11
the estimation error is plotted as a function of time. In this case the error is
computed in a plane parallel to the wall, /0§ = 2, over the whole region where
the control will be applied. This is selected as the most relevant area in terms
of compensator performance since the flow in this region is used to compute
the control signal. It can be seen in the figure that the estimation is converging
toward values of € ~ 0.3 after an initial transient of about 400 time units.

(31)

The wall-normal maximum of the streamwise velocity perturbation is
shown for both the real and the estimated flow in figure 12. The perturba-
tions are weaker in the estimated flow, a strong estimation forcing leading
directly to transition in the estimator simulation. In the real flow, the streaks
are forming and growing also downstream of the estimation region, whereas in
the estimated flow the streaks decay downstream of the measurement region.
This can be explained by the fact that the free-stream turbulence is continu-
ously forcing the streaks all along the plate whereas the estimation forcing is
active only in a limited streamwise region, i.e. the gray area in the plot.

In figure 13 the wall-normal profiles of wu,ns at different streamwise lo-
cations are shown. Again it can be seen that the streaks are weaker in the
estimated flow than in the real flow, and that the difference between the two
fields increases further downstream. Perturbations in the free stream are not
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FiGure 12. Wall-normal maximum of u,,s. Real flow, ——;
Estimated flow, -—--. The shaded area indicates the measure-
ment region.
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F1GURE 13. Wall normal profile of u,,s at different streamwise
positions Re, = [0.6, 1.2, 2.1, 3.0, 3.9] x 10°. The values of
Urms are scaled with 9.0 x 10°. Real flow, ——; Estimated
flow, ----.

reproduced in the estimator and the estimation is more accurate close to the

wall.

4.4. Compensator

The final stage is combining the full information controller and the estimator
into the compensator. The procedure requires the estimator to run first with-
out the control until the estimated field approaches the real flow; afterwards
the control forcing is turned on. The control region is placed downstream of
the estimated field and an overlap between the two strips is avoided. At the
location where the actuation is active, the amplitude of the streaks is signifi-
cantly increased. The perturbations to be controlled are further downstream

i.e. in the region where non-linear effects are more important.
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A visualisation of the controlled and uncontrolled flow field is displayed in
figure 14 in a wall-parallel plane. The decrease of the streak amplitude in the
control region is clearly visible. A turbulent spot is appearing further down-
stream in the uncontrolled flow while the flow is laminar when blowing/suction
is applied. It can also be noticed that the control often changes an incom-
ing high-speed streak into a low-speed region and vice versa. Further, a rapid
increase in the streak amplitude is occurring after the end of the control region.

FIGURE 14. Instantaneous streamwise velocity fields. (a):
uncontrolled; (b): controlled. Streamwise extent Re, =
[32000, 382000], wall-normal distance 245, true aspect ratio.

In figure 15a the wall-normal maximum of the rms-value of the streamwise
velocity perturbation is shown for the uncontrolled case and for both full in-
formation control and compensation. As observed by the flow visualisation in
figure 15a, the growth of the the streaks is reduced within the control region.
However, downstream of the control region, velocity fluctuations continue to
grow. This can be explained by the presence of the free-stream turbulence
above the boundary layer that is able to induce new perturbations inside the
boundary layer.

The skin friction coefficient is shown in figure 15b. This plot quantifies the
transition delay which can be achieved in the case of boundary-layer transition
induced by free-stream turbulence. The transition delay obtained without es-
timation corresponds approximately to the length of the control region. The
delay is between 120000v/Us and corresponds to approximately 15 — 20% of
the full length of a typical turbine blade, resulting in a reduction of the total
friction drag of 5 — 10%. The loss of performance to be expected in the case
of control based on estimation from wall measurements is not severe. Thus,
a longer control region or alternatively a sequence of measurement and blow-
ing/suction strips may lead to further delay or even prevent the transition
process.
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FIGURE 15. (a): Wall normal maximum t,ms; (b): skin fric-
tion coefficient cf. No control, ——; Full information control,
; Compensator, -—--.

In figure 16, wall-normal profiles of the rms value of the streamwise velocity
perturbation are shown at different streamwise stations along the plate for the
three cases under consideration. The reduction of streak amplitude is evident in
the control region. Note also that where blowing/suction is applied the profiles
feature a double-peak structure: the lowest peak closest to the wall is due to
the local effect of the actuation, while the largest peak, representing the streak,
is moved away from the wall. The changeover from laminar to turbulent streaks
is occurring in the region 5 x 10° < Re, < 7 x 10°. The typical profiles for s
of a turbulent boundary layer are observed at the end of the computational
domain.
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FIGURE 16. Wall normal profiles of Upms
at different streamwise positions Re, =
(0.6,1.2, 2.1, 3.0, 3.9, 4.8, 5.7, 6.6, 7.5, 8.4] x 10°. The

values of u,ms are scaled with 8.5 x 10°. No control, —;
Full information control, ——; Compensator, ——--.
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The production of turbulent kinetic energy wodU/dy with the Reynolds
shear stress uo, is considered to characterise the effect of the blowing/suction
at the wall. The wall-normal profiles of the turbulent production at two stream-
wise positions are displayed in figure 17. It can be seen that the turbulence
production increases near the wall due to the blowing and suction while it
decreases farther up in the boundary layer, attaining negative values at the
beginning of the control region. In the compensator a reduction over the whole
profile is observed as well as a small peak near the wall.

(a) (b)
10 T T 10 T r
—no control —no control
— full information control — full information control
8 - - -estimation based control 8 - - -estimation based control ]
6 6 <
Xvoo S <o
> \ s
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2 of &
0 0 =
-2 0 05 1 15

Turbulent production at ReX:ZOOOOO x107 Turbulent production at Rex:240000 x107
F1GURE 17. Wall normal profiles of turbulent production at
(a) Re, = 2.0 x 105 and (b) Re, = 2.4 x 10°. No control,
——; Full information control, ; Compensator, ———-.

In order to study the performance of the control for higher streak ampli-
tudes, simulations with turbulence intensity Tu = 4.0% are also performed.
Owing to the larger turbulence intensity the growth of the streaks is faster,
the transition location is moved upstream and the amplitude of the streaks
within the control region are further increased. Overall, the performance of
the estimation is as in the case presented above, while the extension of the
transition delay is reduced. Even though the growth of the streaks is reduced
in the control region, the regeneration downstream is more rapid at this higher
free-stream turbulence levels. As shown by Barri (2006), for the control to be
more effective, maybe the actuation region should be placed further upstream.

From this project it was desiphed that transision delay can

5. Conclusions

Numerical simulations of the transition to turbulence occurring in a flat-plate
boundary-layer flow subjected to high levels of free-stream turbulence are per-
formed. This scenario, denoted bypass transition, is characterised by the non-
modal growth of streamwise elongated disturbances, so-called streaks. When
these streaks reach large enough amplitudes, breakdown into turbulent spots
occurs via their secondary instability. The scenario under consideration is
highly intermittent in nature, i.e. streaks appear randomly in the boundary
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layer, and therefore large computational domains and long integration times
are needed to obtain converged statistical data.

In order to reduce the computational cost, mostly large-eddy simulations
are performed. The ADM-RT subgrid-scale model is shown to be particularly
suited for transitional flows: It is thoroughly validated before examining the
effect on the transition process. The results indicate that the details of the
streak breakdown can and need to be captured by LES. The high-frequency
oscillations of the elongated streaks appearing as spot precursors define the grid
size on which the LES can be performed. The reduction in terms of number
of degrees of freedom compared to a full DNS is of the order of 10, while the
computational cost is reduced about 50 times.

Linear model-based feedback control is applied in order to delay transition,
where the linear parallel Orr-Sommerfeld/Squire system is used to design the
estimation and control laws. The method presented here was previously devel-
oped by Hoepflner et al. (2005); Chevalier et al. (2006, 2007a) and shown to
be successful in damping linear and weakly nonlinear perturbation in a variety
of wall-bounded shear flows. The method is now applied to flows with highly
nonlinear behaviour.

In practical situations, the full flow field is usually not accessible. The
control problem is therefore combined with an estimation procedure based on
wall measurements, the two wall-parallel components of the wall-shear stress
and the pressure at the wall being considered here. It is found that to achieve
an accurate estimation most of the confidence should be put in the shear-
stress data; the pressure measurements are in fact too affected by the high-level
fluctuations in the free stream.

The results presented show that the control is able to reduce the energy
of the streaks, which are responsible, through their secondary instabilities, for
the considered bypass-transition scenario and thus delay the whole process.
The delay achieved is of order of the streamwise extent of the area where
control is applied. For turbomachinery applications, this amounts to about
15 — 20% of the length of a typical turbine blade, resulting in a reduction
of the total friction drag of 5 — 10%. The control performance is limited by
the fast growth of the streaks just downstream of the region where blowing
and suction is applied. This recovery is similar to that observed when control
of turbulent flow is investigated and it can be explained by considering the
action of the control in these highly disturbed flow: When blowing/suction is
applied, the streamwise streaks are quenched close to the wall while the upper
part of the boundary layer is less affected. As a consequence, as soon as the
actuation is turned off, the streaks diffuse into the shear layer near the wall and
can again be amplified. The relatively fast recovery of the streamwise streaks
downstream of the control region was also observed in the recent experimental
work by Lundell (2007). This author considers the same transition scenario
but a different control strategy: reactive control is applied with sensors and
actuators placed in a staggered manner. A more direct comparison between
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the linear optimal control and the experiments appears therefore relevant and
it is the object of new investigations.

The streamwise streaks can be estimated from wall measurements alone;
however the structures occurring in the real flow are reproduced correctly
mainly in the region where the measurements are taken. Downstream of this
region the estimated field gradually diverges from the real field, revealing the
importance of the continuous excitation of the boundary layer by the exter-
nal free-stream turbulence (Westin et al. 1998). Control based on estimation
(termed compensator) is therefore less effective than full information control.
For actual implementations of feedback control the estimation process needs to
be improved, in particular by reducing its cost. With this aim, two directions
may be followed. First, model reduction can be introduced in the estimation
problem. Global modes of the flow can be used for this, as global eigenmodes
(Akervik et al. 2007) or balanced POD modes (Rowley 2005). The model based
on these two- or three-dimensional modes does not need to be linear, possibly
improving the estimation performance for this type of flows. Alternatively,
the relation between sensors and actuators may be deduced directly from flow
measurements, relaxing the need for a flow model, as suggested e.g. by Lundell
(2007). The latter option will be the object of future work, in the context of a
closer interplay between experiments and simulations.
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Two examples of experimental and numerical work on active control of tran-
sition induced by free-stream turbulence is reviewed and two extensions to
previous work are reported. Previously, an experimental setup with upstream
sensors and downstream actuators has been built. It has been demonstrated
that an ad-hoc control algorithm is able to give a considerable attenuation of
the disturbance amplitude downstream of the actuators. Furthermore, large-
eddy simulations (LES) of optimal feedback control have been performed for a
similar flow configuration. In the LES study, disturbance attenuation as well
as transition delay have been obtained. Here, the numerical and experimenta
efforts are used by side. First, an effort is made to match the disturbance
behavior in the experimental flow case and in the LES. Control is applied in
simulations of the matched system aiming at approaching the type of actuation
used in the experiments (localized suction). The control law is still computed
as optimal feedback of the linear system. As the actuation ability approaches
the experiments, so does the control effect.

1. Introduction
1.1. Objective and outline

Feedback manipulation (or control) of flows aiming to reduce the friction drag
is a promising way of using the knowledge and predicting ability provided by
supercomputers in the last decades. In order to go from computer simulations
to physical experiments, it is not sufficient to reproduce a physical configura-
tion. It is also necessary to use (and possible model) sensors and actuators. A
general review on the application of control theory to fluid dynamics is given
in Ref. . Studies on the application of model-based linear feedback control
have shown possibilities to delay transition. More recent efforts aim to build
reduced-order models for the flow enabling fast computation of the control
signal in large systems; .
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FIGURE 1. Visualisation of boundary layer transition induced
by free-stream turbulence.

Numerical studies of flow control usually show a large potential whereas
the experimental results are more modest. In this paper, however, we aim at
bridging the gap between experiments and simulations. The flow case under
study is bypass transition in a flat-plate boundary layer. We will first briefly
introduce our previous experimental and numerical work.. A LES (large-eddy
simulation) will then be matched to the experiments and control is applied in
the matched simulation. This work is performed in order to identify critical
technologies (sensor, controller, actuator) and possible benefits.

1.2. Bypass transition

The term boundary layer bypass transition denotes transition scenarios where
the dominant instability mechanism is not the exponential growth of two-
dimensional Tollmien-Schlichting waves. The most common example is proba-
bly transition induced by high levels of free-stream turbulence (typically above
0.5-1% of the free-stream velocity). A visualisation of the process, taken from
the present simulation, is shown in figure 1. Owing to the non-modal effect,
elongated streamwise streaks are induced inside the boundary layer by stream-
wise vortices. This process is known as the lift-up effect . These streaks grow
in strength and become susceptible to high-frequency secondary instabilities.
These form localised regions of chaotic swirly motion, turbulent spots. Subse-
quently spots grow, merge and a fully-developed turbulent flow is observed.

1.3. Experimental demonstration of feedback control

An experimental demonstration of feedback control of bypass transition has
been reported earlier. The data from this experiment will here be used as ref-
erence in a numerical study aiming at reproducing the disturbance conditions
in the experiment as well as the control performance. A schematic of the exper-
imental setup is shown in figure 2 (a). Free-stream turbulence was generated by
a grid upstream of the plate and the velocity was measured by a hot wire tra-
versed in the flow. One control unit is depicted in figure 2 (b). TwTurbulence
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FIGURE 2. (a) Setup and (b) close up of a control unit. Mea-
sures are in mm.

intensity xDistance from the leading edge Variations of the streamwise wall
shear stress were measured by the upstream wall wires. Control suction thr-
ough the actuator holes was turned on (with a time delay to account for the
disturbance propagation downstream) during periods when the shear was be-
low a preset threshold. The effect of the control is measured by studying the
attenuation of the maximum of u,.,s at different positions. The disturbance
attenuation is quantified as

Qrms —1_ Urms,maz,on , (1)
so that €., is the relative decrease of the disturbance level in the boundary
layer due to the control.

Urms,mazx,of f

Q. msDisturbance attenuation due to the control upms maee Wall-normal
maximum of the rms value of the streamwise disturbance velocity

2. Numerical simulations of feedback control

This transition scenario was simulated using direct numerical simulations
(DNS) and large-eddy simulations (LES). A thorough study on different LES
models was performed and the ADM-RT sub-grid-scale model turned out to be
particularly suited for this transitional flow. The simulation code employed uses
Fourier representation in the streamwise and spanwise directions and Cheby-
shev polynomials in the wall-normal direction. Resolution and domain size are
reported in table 1.

A linear feedback control scheme was employed in order to reduce the dis-
turbance growth and consequently delay transition. The case of bypass transi-
tion represents an extension of the linear approach to flows characterised by
strong nonlinearities. Control was applied by distributed blowing and suction
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TABLE 1. Computational box used. Resolution and box di-
mensions are shown. The box dimensions include the fringe
region and are non-dimensionalised with respect to the dis-
placement thickness d; at the inflow (Res: = 300)

L, xLyxL, Ng;xNy;xN,
oy (resolution)
2250 x 60 x 96 576 x 121 x 64

at a portion of the wall. Initially, the control signal was based on the full knowl-
edge of the instantaneous velocity field (i.e. full information control). In order
to relax this unphysical requirement possible only in a numerical simulation,
an estimator based on wall measurements was built.

Both the full information controller and the estimator are derived within
the Linear Quadratic Gaussian (LQG) framework where a Linear Quadratic
Regulator (LQR) is combined with a Kalman filter. The boundary layer flow is
modelled by the Orr-Sommerfeld and Squire system governing the evolution of
perturbations in parallel flows. The objective is to minimise the kinetic energy
of the perturbations.

The results showed that the control was able to delay the growth of the
streaks in the region where it is active. The flow field can be estimated from
wall measurements alone: the structures occurring in the “real” flow are repro-
duced correctly in the region where the measurements are taken. Downstream
of this region the estimated field gradually diverges from the “real” flow, re-
vealing the importance of the continuous excitation of the boundary layer by
the external stochastic free-stream turbulence. Control based on estimation,
termed compensator, was able to delay transition but less effective than the
full information control.

3. Matching of LES and experiments

In the following we will attempt to apply the control strategy described in
the previous section to a numerical simulation that resembles the experimental
conditions with Tu = 2.5%. Once agreement in the disturbance development
has been achieved, we will limit the actuation in the simulation to approach
the physical characteristics of the control implemented in the experiment.

3.1. Matching of the disturbance growth without control

dgDisplacement thickness at the inflow ReReynolds number

The first task is to set up a numerical simulation of the flow that repro-
duces as close as possible the actual flow of the experiment. However, there are
restrictions that make a perfect matching with the experiment virtually impos-
sible. The two main differences are that (i) the code we employ can not include
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the leading edge and therefore perturbations cannot penetrate the boundary
layer directly furthest upstream and (ii) the size of the computational domain
is smaller than the wind-tunnel test section and therefore only free-stream tur-
bulence with shorter integral length scale can be simulated. The difference in
length scales causes different decay rates of the external turbulence and thus
different effects upon the underlying boundary layer. However, a wider com-
putational domain would make the simulations too time-consuming and the
extensive parameter studies reported here would not be feasible. Thus we are
aiming at a simulation that reproduces the main features of the experimen-
tal data in terms of disturbance growth and subsequent transition. An exact
match is not possible due to the differences mentioned detailed above.

The matching is performed by varying the turbulence intensity and the
integral length scale of the inlet free-stream turbulence and compare the growth
of the wall-normal maximum of the streamwise velocity rms,maz. We tried
seven different length scales 1/d; = 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5 and three
turbulence intensities at the inlet, Tu = 3, 3.5 ,4%.

From figure 3 we see that the case with Tu = 3.5% and [ = 4.5§; is closest
to the experiment in terms of initial growth and transition location and this
is our reference case below. The parametric study confirms that transition is
enhanced when increasing the turbulence intensity and the integral length scale
of the turbulence (owing to slower decay). The turbulence level matching the
experimental data is therefore considerable higher than in the experiments.

3.2. Optimal control

In this study we are interested in the difference between distributed and lo-
calised actuation and in the effect of suction only; we therefore neglect the
estimation problem and only consider the full-information control. The time-
and-space varying control suction/blowing is applied in a stripe from x = 3504
to x = 5504;. In the figures to come, the uncontrolled reference case is shown
with blue and the full-information, full-actuation controlled case is shown with
green. The green line can indeed be seen as the best possible performance we
could achieve by tuning different control parameters (penalty in wave-number
space) and is thus our control reference case. Experimental data is shown as
dashed lines.

At this point it is useful to recall the differences between the actuator in
the experiment and in the simulations. These pertain (i) the way the control
signal is calculated and (ii) the area over which control is applied. In the ex-
periment opposition control is adopted where the (preset) suction velocity and
the time delay between the sensor and the actuator are varied. In the LES
an optimisation of the distributed and modulated control action is performed
and no further tuning is required. Note however that the control signal is com-
puted assuming linearly evolving disturbances and parallel base flow. Secondly,
it should be mentioned that the control is active over a large area of the plate
where relatively weak blowing/suction is applied in the case of the numerical
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F1GURE 3. Wall-normal maximum of the streamwise velocity
fluctuations u,.,,s. Levels of turbulence intensity from top to
bottom: 3%, 3.5% and 4%. Each line on the plots to corre-
sponds to a predefined integral length scale of the free-stream
turbulence at the inlet. The legend shows the length scale in
05 units. The dashed black line indicates the experimental
data.

simulations. On the contrary, small holes with strong suction velocity are used
in the experiment. Further, in the LES we apply control over the full spanwise
width of the domain while in the experiment the control units are positioned
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FIGURE 4. Control effect as a function of streamwise distance.
Solid lines are simulations: blue: reference case, green line:
control reference case, red line: control with only suction case,
light blue: control with spanwise cut , purple: control with
only suction and spanwise cut. Dashed lines as before. Top:
wall-normal maximum of u,.,,s. Bottom: disturbance attenu-
ation (2.

near the middle of the plate and have a spanwise width of about 20 mm through
four discrete 0.5 mm holes (for each control unit).

We will now try to wind down these differences. The control strategy in
terms of the way the control signal is calculated will not be changed. Instead,
we will focus on the geometrical /functioning aspects of the actuator itself. The
following restrictions will be used alone or in combination: (i) apply only suc-
tion, (ii) restrict the area of actuation to spanwise strips, (iii) decrease the
streamwise extension of the area where suction is applied ad increase the max-
imum suction amplitude. The amplitude increase is obtained by decreasing
the cost of the control in the overall cost function (referred to as a ”cheaper”
control).

In figure 4 we see three cases where the actuation characteristics are varied.
In particular, we first keep the actuation area the same but remove all the
blowing while maintaining the suction unchanged (red line in the figure); second
we keep the blowing and suction unchanged but apply it only in spanwise areas
of width 565 (light blue line) with a centre-to-centre distance of 1045; finally we
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FIGURE 5. Control effect as a function of streamwise distance.
Solid lines are simulations: blue: reference case, green line:
control reference case, black line: control with only suction,
spanwise and streamwise cut and stronger maximum suction
(cheaper control). Dashed lines as before. Top: wall-normal
maximum of u,.,s. Bottom: disturbance attenuation ).

combine the two cases above applying only suction and cutting the signal in the
spanwise direction (purple line). We see that the performance of the control in
the LES is gradually degrading, approaching the experimental results. However
a certain delay in the transition location remains.

12Control penalty

In figure 5 we see the results from the simulation where all the previous
restrictions on the actuator have been applied but also the streamwise extent
of the control has been reduced from 2004; to 204;. Additionally we reduce the
penalty put on the control during the design process from [? = 10 to [2 = 2 (see
Ref. ) resulting in stronger suction. In this last case the control effect is almost
the same for both the experiment and the simulation near the actuation region
but downstream there is a delay of transition only in the numerical study. This
can be explained by the fact that in the experiment control is applied near
the middle of the plate and where transition occurs fully developed turbulence
“invades” the controlled area from the uncontrolled sides.
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4. Conclusions

Feedback control of bypass transition has been studied. One experimental (suc-
tion through holes triggered by the varying wall shear stress via threshold and
delay) and one numerical (LQR with and without Kalman filter estimation)
study are described. A simulation giving a similar development of the distur-
bance amplitude as the experiment has been obtained and the LQR has been
applied to this simulation.

1. The LQR with time and space varying blowing/suction gives much larger
initial disturbance attenuation than the experiments (55% as compared
to 15%) and a considerable transition delay.

2. The initial disturbance attenuation in the simulations approaches the
one obtained in the experiments if the capability of the actuator coupled
to the LQR is limited towards the ability of the experimental ones (by
(i) using only suction, (ii) limiting the actuation to limited spanwise
positions and (iii) decreasing the streamwise length of the actuation
stripe).

3. Compared to the case with complete actuation, a smaller, but still dis-
tinct, transition delay is obtained as the actuation ability is decreased.

Based on these observations, we find it plausible that an experiment in which
the full span of the wind tunnel was controlled, would produce a transition
delay. The results clearly indicate the importance of a good model for the
actuators. This enables us to extract relevant information on the performance
of the control from numerical simulations.
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Control of a separating boundary layer with
travelling waves on the wall
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We perform numerical simulations of control of a separating laminar bound-
ary layer by means of blowing and suction at the wall in the form of travel-
ing waves. Separation is imposed by prescribing accelerating and decelerating
free-stream velocity for the flow over a flat plate. We find that downstream
traveling waves already at very low amplitudes are able to eliminate the sep-
aration and induce a turbulent but attached boundary layer flow. Upstream
traveling waves of relatively higher amplitudes only slightly reduce separation
while keeping the flow laminar. The amplitude of the blowing/suction needed
to achieve such significant effects are considerably smaller than those previously
considered for drag reduction and transition delay in plane geometries.

1. Introduction

Understanding the flow around solid bodies is a challenging task due to its high
complexity. The problem becomes substantially more complicated when we
study living creatures that fly in the air or swim in the water. Both experiments
and simulations are very difficult in this case. On the other hand, mimicking the
solutions that nature has chosen has proven to give substantial improvement
to similar engineering application on many instances.

One of the fluid mechanics problems of great potential applicability but
still unsolved is related to fish swimming. In particular, we cannot explain the
large gap between the estimated drag of the fish and the thrust it can provide,
the latter estimated considering its muscle mass (Rome & Swank 1992; Rome
et al. 1993; Coughlin et al. 1996). Indeed it has been calculated that a solid
body with the form of a fish would experience a drag too large for it to move
with the speeds that have been actually observed. This lead to the idea that
the fish must have a way to reduce its drag, either its form drag by cancelling
or delaying the separation or its friction drag by re-laminarising the boundary
layer close to the skin, or probably both. The potential benefits from using
some similar technique in man-made vehicles would be enormous. The concept
of actively modifying the flow in order to have some gain is known as flow
control.

167
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Some of the hypotheses suggested to explain the reduced drag are body
shape (Wehrmann 1965), flexible skin (Landahl 1962), active skin (Kendall
1970), riblets (Walsh 1982), to mention few. Active skin can be modelled
as small amplitude waves at the wall, much smaller than the boundary layer
thickness. In the case of flexible skin the wave amplitude is much larger than
the boundary layer (Taneda & Tomonari 1974; Anderson et al. 2001).

In this study, we apply blowing and suction at the wall in the form of up-
stream and downstream traveling waves and observe whether and how we can
modify laminar separation in a boundary-layer flow. Recent investigations in-
dicate that sensorless (open-loop) control of transition to turbulence and drag
reduction in turbulent flows is a feasible option. Inspired by the investigations
of Min et al. (2006), the influence on turbulent channel flow of traveling waves
induced at the wall by blowing/suction has been studied theoretically and by
means of numerical simulations. In the original publication by Min et al. (2006)
blowing/suction at the wall in the form of upstream traveling waves are applied
in a turbulent channel flow. Their two- and three-dimensional numerical sim-
ulations show that upstream traveling waves in turbulent channel flow reduce
the average friction coefficient to a (sub-)laminar level. This is explained by the
extra pumping provided by the wall-actuation (Hoepflner & Fukagata 2009),
leading to negative power savings for the proposed strategy. Recently, Bewley
(2009) has theoretically shown that for any boundary control, the power exerted
at the walls is always larger than the power saved by reducing to sub-laminar
drag. The net power gain is therefore always negative if the uncontrolled flow
is laminar. However, a positive gain can be achieved when the uncontrolled
flow becomes turbulent but the controlled flow remains laminar. The con-
clusion drawn in the complete analysis by Moarref & Jovanovié¢ (2010); Lieu
et al. (2010) is that the optimal control solution is to relaminarize the flow
and transition control a viable approach. To this aim, control in the form of
downstream-traveling waves is more promising as we show here and as previ-
ously suggested also by Lee et al. (2008). These authors examine the linear
stability of channel flow modulated by upstream-traveling and downstream-
traveling waves and show that downstream traveling waves can have stabilizing
effect on the flow, while upstream-traveling waves are destabilizing. It is now
understood that the physical mechanisms behind travelling waves in channels
with moving walls and waves of blowing and suction are rather different. In
particular the moving walls are producing streaming near the wall in the same
direction of the travelling waves while in the case of actuation by blowing and
suction, flow is induced in the opposite direction (see Hoepftner & Fukagata
2009).

A logical extension of the upstream-traveling and downstream-traveling
waves is the application of spanwise-traveling, blowing-and-suction waves.
These waves sustain streaky structures which are not optimal for transition or
to sustain turbulence and could thus reduce the drag. Du & Karniadakis (2000)
showed drag reduction for spanstream-traveling waves in turbulent channel flow
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FIGURE 1. Stream-wise velocity, imposed at the top boundary,
at y = 6005 versus the streamwise coordinate x, also in units
of 3, the boundary layer thickness at the inflow.

using volume forcing. More recently, Quadrio et al. (2009) examined the drag
reduction in turbulent channel flow by wall actuation in the form of streamwise
traveling waves of spanwise velocity perturbations. In these investigations a
more feasible actuation is considered.

The effect on boundary-layer transition of traveling waves induced at the
wall by blowing/suction over a finite length region is studied numerically in
de Lange & Brandt (2010). Up- and downstream traveling waves are applied
over a limited wall-region in an attempt to reduce the friction drag of boundary
layer flows subjected to high-levels of free-stream turbulence (4.7%). It is found
that the introduction of upstream traveling waves promotes the transition. On
the other hand, downstream traveling waves can be used to delay transition and
reduce the drag. For moderate wave amplitudes, it is observed that turbulent
production is damped.

None of the previous studies considered the effect on a separating flow,
such as a boundary layer exposed to adverse pressure gradient. Here we carry
out numerical simulations as a first attempt to anticipate and capture some
of the essential dynamics of a separating flow on a flat plate when control is
applied at the wall; hence far from a realistic model for active skin. However,
we also hope to identify some potential benefits for engineering type of flows
where our model could be closer to realistic implementations.

2. Flow configuration
2.1. Free-stream bounary condition

We consider a flat plate with the Blasius boundary layer as inflow profile and
impose a varying pressure gradient by prescribing the velocity at the top bound-
ary via a Dirichlet boundary condition. The streamwise dependence of the free-
stream velocity is shown in figure 1. Initially, the slow increase of the velocity
implies an accelerated boundary layer, followed by a fast decrease downstream,
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FiGUurEe 2. Wall-normal velocity, imposed at the wall in order
to control the boundary, at y = 604.

associated to deceleration. The accelerated-decelerated boundary layer is used
here as a model for the flow around an obstacle with a curved solid surface.
The external pressure distribution applied on the laminar boundary layer leads
to unsteady separation and a recirculation bubble. The strong shear region
generated between the back flow and the separated boundary layer becomes
unstable and shedding is observed downstream. An instantaneous visualiza-
tion of the flow is reported in figure 3a). The Reynolds number at the inflow
is Res: = @ = 400, based on the inflow free-stream velocity U§°, inflow
displacement thickness d; and kinematic viscosity v . Even though it is a rela-
tively low Reynolds number, the flow is globally unstable due to the separated
region. Nevertheless, we add a small amount (~ 1%) of free-stream turbulence
in order to better model a realistic flow environment where the background
flow is never fully laminar.

2.2. Wall actuation

Blowing and suction is applied in the form of travelling waves at the wall. The
wall-normal velocity at the boundary is defined as

vy =0,t) = ¢ f(x)cosa(z —ct) = ¢ f(x) cos(ax — wt), (1)

where f a smooth function rising from 0 to 1 in the control region, o = i—: the
streamwise wavenumber of the actuation. In figure 2 we show the wall-normal
velocity at the wall to document the wave-like behavior as well as the smooth
ramping. For the results presented here control is applied for a finite length,
200 < x < 500, corresponding to the region of decelerating free-stream velocity
and separated flow, (see fig. 3a). We consider both downstream-traveling and
upstream-travelling waves, differing for the sign of the phase speed c.

The type of the control is open-loop; we run through the available param-
eters to find an optimal choice. In this case we have as control parameters the
wavenumber («), temporal frequency (w) and amplitude (¢) of the wave, with



Control of a separating boundary layer 171

the phase speed defined as ¢ = £. We note that the phenomenon is strongly
non-linear and unsteady thus it is very difficult to a priory guess the correct
parameters. The flow is fully three dimensional, however there is no mean
spanwise component hence we only considered two dimensional waves i.e. zero
spanwise wavenumber.

2.3. Simulation parameters

The numerical code employed is based on a pseudo-spectral method and it
is described in detail in Chevalier et al. (2007). The algorithm uses Fourier
representation in the streamwise and spanwise directions and Chebyshev poly-
nomials in the wall-normal direction. To correctly account for the downstream
boundary layer growth a spatial technique is necessary. This requirement is
combined with the periodic boundary condition in the streamwise direction by
the implementation of a “fringe region”. In this region, the flow is smoothly
forced to the prescribed inflow velocity vector. This is normally a boundary
layer profile, but can also contain a disturbance.

The simulation is a well resolved large eddy simulation with the ADM-RT
subgrid-scale model (Schlatter et al. 2006a,b). The dimensions of the computa-
tional box are 1200 x 60 x 50 in units of §g in the streamwise, wall-normal and
spanwise directions. The resolution is 512 x 48 Fourier modes in the streamwise
and spanwise directions and 121 Chebyshev polynomials in the wall-normal di-
rection. Free-stream turbulence is forced at the inflow by a superposition of
modes of the continuous spectra of the Orr-Sommerfeld and Squire operators.
See Brandt et al. (2004); Monokrousos et al. (2008) for further details.

3. Results

We will show here that downstream-traveling waves can be used to delay or
cancel separation of the boundary layer while the upstream-traveling waves are
suitable to attenuate the shedding produced by the shear layer associated with
the re-circulation bubble, thus delay the transition or even fully re-laminarise
the flow. In order to evaluate the efficiency of the control, we run the sim-
ulations for long time and gather statistics by averaging in time and in the
homogeneous spanwise direction. We first run without any wall actuation until
a fully developed separating flow is established and then we turn on the control.
We start to collect statistics after 3000 time units the control has been active,
when all the transient effects have been washed away. Typically we collect
statistics for about 15000 time units.

We display instantaneous flow visualizations pertaining to the uncontrolled
case and to two of the most characteristic results obtained for downstream
and upstream traveling waves in figure 3. From these instantaneous pictures
we observe already a very distinct behavior for the two types of actuation
considered. The downstream-traveling waves promote transition but eliminate
the separation thus leading to a reduction to the form drag in the case of bluff
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FIGURE 3. Flow visualisation of (a) the uncontrolled flow
and the controlled flow with (b) downstream (¢ = 5 x 1075,
a=0.25, w = 0.08) and (c) upstream (¢ = 3x 1072, a = 0.35,
w = 0.2) traveling waves. The streamwise velocity component
is shown. The black isocontours mark negative velocities im-
plying the existence of a back-flow.

bodies; the upstream-traveling waves still may reduce the separation but mainly
eliminate the shedding (turbulent wake) leading a reduction in the friction drag.

The mean flow for the cases considered above is displayed in figure 4. The
results confirm the impression given in figure 3. Re-attachment is triggered by
downstream-traveling waves while upstream-traveling waves delay transition.
A thicker boundary layer is seen in the case of downstream waves, while the
slower growth of the boundary-layer thickness in the case of upstream waves
documents the transition delay (lower mixing).

To quantify the efficiency of the control, we introduce two different criteria.
The first relates to the effect on the separation and the length of the recircula-
tion bubble. We consider the integral of the mean streamwise velocity U along
a plane near the wall (y = 0.01) taken only over negative values

Ss:/ U(x, y)|y=o.01dw (2)
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FIGURE 4. Mean streamwise velocity for (a) the uncontrolled
flow and the controlled flow with (b) downstream (¢ = 5 x
107, @ = 0.25, w = 0.08) and (c) upstream (¢ = 3 x 1072,
a =0.35, w = 0.2) traveling waves.

where x1 is the first location where U becomes negative and xo where it becomes
positive again. When this integral is zero (U > 0 for all z) separation is
suppressed and the control is considered successful. Note that larger negative
values of U can be associated to higher bubbles.

The second criterion relates to delay of transition to turbulence. We choose
the integral along the streamwise direction of the skin friction coefficient in the
second half of the plate, where transition typically occurs for the uncontrolled
case

L,
S, = /0 ¢/ () da. 3)

In the expression above, c; is the skin friction coefficient. In this case, lower
values of S; imply better control performance, laminar flow, although there is
no strict bound in the value of S;. However, typically values below 1 imply a
laminar flow.

We first present results for downstream-traveling waves. After running
several simulations varying the control parameters «, w and ¢, we find this
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FIGURE 5. Isocontours of S, the control efficiency based on
mitigation of the back-flow (negative streamwise velocity) near
the wall. Longer and stronger separation appears as larger
negative values, whereas no back-flow implies S; = 0 and it is
indicated by the black isocontours. Each subplot corresponds
to different amplitudes of the wall waves, normalized by the
free-stream velocity.

approach to be useful to reduce separation; hence we will display the results in
terms of the observable Sj.

In figure 5 we plot isocontours of the control efficiency S for different
amplitudes of the waves in the (o, w) plane. The control is effective for almost
all values of « tested but in a relatively narrow band of w. We also note that the
higher the amplitude, the broader the set of parameters for which we find that
separation is suppressed. A snapshot of the instantaneous streamwise velocity
for the case of control with downstream-traveling wavesis shown in figure 3b).
As noted above, the control manages to completely eliminate the separation
bubble by igniting a turbulent boundary layer, early on in the separated region.
It is also important to note that the amplitude of the wall blowing and suction
is relatively low, about 3 orders of magnitudes lower that that necessary to
affect a zero-pressure-gradient transitional boundary layer. Indeed in de Lange
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FIGURE 6. Isocontours of Sy, the control efficiency based
on mitigating transition to turbulence (integrated skin fric-
tion coefficient). Lower values imply longer part of the do-
main with laminar flow. Values bellow 1 imply complete re-
laminarisation. The actuation amplitude is only in the wall-
normal component and is normalised with the free stream ve-
locity.

& Brandt (2010), the blowing and suction needed to delay the turbulence onset
was 0.15.

The picture is rather different for upstream-traveling waves. In this case,
the wall actuation do not significantly delay separation but rather cancel the
shedding and re-laminarize the flow. In figure 6 we plot isocontours of the
control efficiency S; for different amplitudes of the upstream waves. First,
notice that a larger amplitude is necessary for the control to have any effect.
The flow stays laminar only for the highest amplitudes and a narrow band
of @ and w. A snapshot of instantaneous streamwise velocity for the case
of control with upstream-traveling waveswas reported in figure 3c), where a
completely laminar flow is displayed. Note that it is not possible to argue that
a laminar flow would be observed also for pressure gradients stronger than that
considered here. However, based on our observations, we can speculate that
higher amplitudes of the actuation would be necessary to delay transition when
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FIGURE 7. a) Mean pressure at the wall, and b) Skin-friction
coefficient versus the streamwise location for best choice of
downstream-traveling waves and upstream-traveling waves.

increasing the flow deceleration; above a certain threshold upstream-traveling
waves would no more be able to keep the flow laminar.

Finally, we consider the two cases that, based on the two criteria introduced
above, performed best. In particular, for downstream-traveling waves , when
the separation was suppressed for a broad set of parameters and amplitudes, we
choose the case of lowest amplitude since this implies the least effort, ¢ = 5 x
10~°. The wave parameters are o = 0.25 and w = 0.08. As concerns upstream-
traveling waves where we may aim to delay transition, we will consider ¢ =
3x 1072, a@ = 0.35 and w = 0.2. These values have been chosen within the
rather limited range of values for which the flow is kept laminar.

In figure 7 we plot the time-averaged pressure on the wall and skin friction
coeflicient for three cases: uncontrolled, controlled with downstream waves and
controlled with upstream waves. Considering the pressure, we notice that the
downstream waves are able to fully recover the pressure drop associated to
separation. This suggests that the form drag associated to the lack of pres-
sure recovery behind a bluff object would be reduced. Conversely, control by
upstream waves leave the pressure recovery almost unchanged with respect to
the uncontrolled case. The downstream waves strongly promote transition to
turbulence as shown by the skin friction coefficient, while the upstream waves
completely suppress it. Transition moves from = =~ 700 in the uncontrolled
case to & ~ 500 when blowing/suction takes the form of downstream-traveling
waves; the skin friction is still around laminar values for waves with negative
phase speed. As a consequence, upstream-traveling waves can induce a reduc-
tion of friction drag around moving bodies.

To explain our observations on the effect of waves of blowing and suction on
a separating laminar boundary layer we suggest the following. The separating
flow is highly unstable and the presence of free-stream turbulence (background
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noise) triggers unstable modes which distort the laminar flow and induce shed-
ding from the separation bubble. When adding disturbances in the form of
downstream-traveling waves, we introduce weak disturbances of the right fre-
quency to enhance and accelerate the transition process. Indeed, control is
effective for a limited range of frequencies and the amplitudes of the actuation
is very low. Downstream-traveling waves therefore increase time-dependent
fluctuations and momentum mixing; the latter clearly affects separation.

The mechanisms is quite different when the control takes the form of
upstream-traveling waves. First we observe a reduction of the recirculation
length; together with the larger level of actuation this implies that the control
alters the base flow by nonlinear effects. The upstream waves can be shown to
create downstream streaming (Hoepffner & Fukagata 2009) and hence possibly
to reduce the shear associated to the separation. This is causing the flow to be
more stable.

4. Conclusions

We apply control on a separating laminar boundary layer in the form of travel-
ing waves of blowing and suction at the wall. We perform a parametric analysis
of the influence of the control parameters characterizing the waves (wavenum-
ber, frequency and amplitude) as well as their direction (downstream and up-
stream).

We find that for specific values of the wave frequency the downstream-
traveling waves are able to suppress separation. This may result into a potential
reduction of the form drag for objects moving through a fluid even for very small
amplitude of the waves. Our results suggest that the downstream-traveling
waves in phase with naturally occurring instabilities, enhance the latter and
trigger early transition. This, in turn, promotes faster re-attachment of the
boundary layer. This effect could explain drag reduction associated to fish
swimming (Triantafyllou et al. 2002).

On the other hand, control in the form of upstream-traveling waves is
mitigating the instability arising in the shear layer associated to flow separation,
such that laminar flow can be seen downstream of separation. For this control
to work the wave amplitude needs to be much higher than the amplitudes used
to suppress separation by downstream-traveling waves. The stabilizing effects
is therefore most likely associated to modifications of the mean shear.

The reduction of skin friction associated to the stabilizing effect of
upstream-traveling waves is probably less important than the reduction of
form drag induced by the downstream-traveling waves. The latter strategy
seems therefore more promising for application to moving bluff body. How-
ever, before any final conclusion on the practical feasibility of such a control
approach can be drawn one needs to consider the effect of waves of blowing and
suction on turbulence separation and on boundary layer with stronger pressure
gradients. This is the object of current and future research.
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