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Abstract

This thesis deals with receptivity mechanisms of three-dimensional, crossflow-
dominated boundary layers. The receptivity of two model problems, a swept-
flat-plate and a swept-wing boundary layer, is investigated by solving the
parabolised stability equations (PSE) as well as by performing direct numeri-
cal simulations (DNS). Both flow cases are known to exhibit strong inflectional
instabilities, the crossflow disturbances, whose excitation by external distur-
bances such as surface roughness or free-stream vorticity is studied. One focus
is on worst-case scenarios. This involves the determination of optimal condi-
tions, i.e. those disturbance environments yielding the largest possible response
inside the boundary layer.

A new method on the basis of the PSE is presented which allows to study
optimal disturbances of swept-flat-plate boundary layers. These take the form
of tilted streamwise vortices. While convected downstream they develop into
streamwise streaks experiencing strong non-modal growth. Eventually, they
turn into crossflow disturbances and undergo exponential growth. Non-modal
growth is thus found to optimally excite crossflow disturbances and can be re-
lated to a receptivity mechanism of three-dimensional boundary layers. Eval-
uating effects of compressibility reveals that the potential for both non-modal
and modal growth increases for higher Mach numbers. It is shown that wall
cooling has diverse effects on disturbances of non-modal and modal nature.
While destabilising the former it attenuates the growth of modal disturbances.
Concave curvature on the other hand is found to be equally destabilising for
both types of disturbances.

The adjoint of the linearised Navier-Stokes equations is solved for a swept-
wing boundary layer by means of DNS. The adjoint solution of a steady cross-
flow disturbance is computed in the boundary layer as well as in the free-stream
upstream of the leading edge. This allows to determine receptivity to incoming
free-stream disturbances and surface roughness as well as the corresponding
worst-case scenarios. Upstream of a swept wing the optimal initial free-stream
disturbance is found to be of streak-type which convects downstream towards
the leading edge. It entrains the boundary layer a short distance downstream
of the stagnation line. While minor streamwise vorticity is present the streak
component is dominant all the way into the boundary layer where the optimal
disturbance turns into a crossflow mode. Futher, the worst-case surface rough-
ness is determined. It takes a wavy shape and is distributed in the chordwise
direction. It is shown that, under such optimal conditions, the swept-wing
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boundary layer is more receptive to surface roughness than to free-stream dist-
urbances.

Another focus of this work has been the development and evaluation of
tools for receptivity prediction. Both DNS and direct and adjoint solutions of
the PSE are used to predict the receptivity of a swept-wing boundary layer to
localised surface roughness. The configuration conforms to wind tunnel experi-
ments performed by Saric and coworkers at the Arizona State University. Both
the DNS and the PSE are found to predict receptivity amplitudes which are in
excellent agreement with each other. Though the predicted disturbance ampli-
tudes are slightly lower than experimental measurements the overall agreement
with experimental results is very satisfactory.

Finally, a DNS of the stabilisation of a transitional swept-wing bound-
ary layer by means of discrete roughness elements is presented. This control
approach is found to completely suppress transition to turbulence within the
domain studied and confirms experimental results by Saric & coworkers.

Descriptors: Receptivity, crossflow instability, optimal disturbances, non-
modal growth, three-dimensional boundary layer, swept-wing flow, parabolised
stability equations, adjoint solutions



Preface

This thesis in fluid mechanics consists of two parts. The first part is writ-
ten as an introduction into stability characteristics and receptivity mechanisms
of three-dimensional, crossflow-dominated boundary layers. Using the exam-
ple of a swept-flat-plate boundary layer all methods that have been employed
throughout this work are introduced in an illustrative manner. The second
part contains the following papers. These are presented in the published or
submitted form except for minor corrections.

Paper 1. D. TEMPELMANN, A. HANIFI & D. S. HENNINGSON, 2010 Spatial
optimal growth in three-dimensional boundary layers. J. Fluid Mech. 646,
5-37.

Paper 2. D. TEMPELMANN, A. HANIFI & D. S. HENNINGSON, 2011 Spatial
optimal growth in three-dimensional compressible boundary layers. Submitted
to J. Fluid Mech.

Paper 3. D. TEMPELMANN, L.-U. SCHRADER, A. HANIFI, L. BRANDT &
D. S. HENNINGSON, 2011 Swept-wing boundary-layer receptivity to localised
surface roughness. Submitted to J. Fluid Mech.

Paper 4. D. TEMPELMANN, A. HANIFI & D. S. HENNINGSON, 2011 Swept-
wing boundary-layer receptivity. Submitted to J. Fluid Mech.

Paper 5. D. TEMPELMANN, S. M. HOSSEINI, A. HANIFI & D. S. HENNING-

SON, 2011 Stabilisation of a swept-wing boundary layer by localised surface
roughness. Internal report
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Part 1

Introduction






CHAPTER 1

Introduction

Reducing carbon dioxide emissions to attenuate global warming is one of the
biggest challenges engineers are facing today. Potentials for reduction may
be found over a wide range of technical applications. Many of these are, to
a greater or lesser extent, connected to fluid mechanics. Increasing the use
of natural resources like wind and water for energy production while at the
same time reducing the use of fossil fuels constitutes one example. A major
potential however, is to significantly increase the efficiency of those technical
applications which exist and are in use already today. In particular the trans-
port sector which is responsible for a great part of carbon dioxide emissions
needs to be considered. Aviation plays an important role in this sector and
the work presented in this thesis is related to the efforts of improving aircraft
efficiency.

A large part (about 20 %) of the aerodynamic drag of modern airplanes is
attributed to skin friction acting on the wing surface. Skin friction originates
from a thin flow layer around solid bodies where viscosity plays an important,
non-negligible role. This thin region is known as the boundary layer and its
concept was introduced by Ludwig Prandtl in 1904. Boundary layers are known
to adopt two principally different flow states. Laminar boundary layers are
characterised by a smooth and well ordered flow while chaotic and random
fluid motion governs turbulent boundary layers. The transition from laminar
to turbulent flow is accompanied by a strong increase in skin friction.

One approach to increase aircraft efficiency is thus to reduce the aerody-
namic drag of airplanes through the use of so-called natural laminar flow wings.
Since surface friction is significantly increased in turbulent flow the profiles of
such wings are chosen so as to obtain laminar flow over the largest possible
area of the wing. In order to design wings optimised for these needs engineers
require tools which reliably predict aircraft performance and accordingly the
onset of transition from laminar to turbulent flow. Other approaches involve
the use of passive or active control attenuating the growth of dominant dist-
urbances in order to shift the transition location further downstream. Either
approach requires an understanding of the fundamental mechanisms leading to
transition.

The aim of the work presented in this thesis has been both to develop a
better understanding of transition mechanisms and to develop efficient tools for
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transition prediction. The focus is on boundary layers which are characteristic
for swept-wing flows.



CHAPTER 2
Transition in three-dimensional boundary layers

2.1. Three-dimensional boundary layers

Modern aircraft are usually equipped with swept-wing configurations. Bound-
ary layers developing on swept wings are principally different from their two-
dimensional counterparts in that they exhibit a crossflow profile. This crossflow
profile results from the combined effect of pressure gradient and sweep angle
which leads to a curved streamline in the outer inviscid flow. Inside the bound-
ary layer the pressure gradient remains constant while the streamwise velocity
reduces to zero at the wall. This leads to an imbalance of centrifugal and pres-
sure forces which in turn creates a crossflow inside the boundary layer towards
the concave side of the external streamline. Such a crossflow profile is illus-
trated in figure 2.1. It has important implications on boundary-layer stability
as will become clear in §2.2.1. Two model problems have been investigated in
this thesis, a swept-flat-plate boundary layer and the boundary layer forming
on an infinite swept wing. Both cases represent good models for generic swept-
wing flows since they comprise the effect of a pressure gradient as well as a
sweep angle causing the crossflow profile. Hence, they allow detailed studies of
the effect of crossflow on stability and transition.

Boundary layer

Inflection point

FicUre 2.1. Illustration of a three-dimensional boundary
layer forming on a swept wing which is invariant in the span-
wise direction. Qo denotes the total incoming velocity and ¢
is the sweep angle.
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growth
receptivity break-down

e

laminar region turbulent region

F1GURE 2.2. The basic stages of laminar-turbulent transition
in a swept-flat-plate boundary layer. Courtesy of Schrader
et al. (2010a).

2.2. Stages of transition

An instructive illustration of the main stages of transition from laminar to tur-
bulent flow of a swept flat plate boundary layer subject to a favourable pressure
gradient is given by Schrader et al. (2010a) (see figure 2.2). The first stage of
transition is characterised by external disturbances penetrating the boundary
layer. Free-stream turbulence, surface roughness or acoustic disturbances rep-
resent such external disturbances. These are filtered by the boundary layer
which results in the emergence of instability waves inside the boundary layer.
This process is referred to as receptivity. Depending on the disturbance envi-
ronment various disturbance, exhibiting different time and length scales, are
excited in the receptivity stage. While evolving downstream, some become
unstable and grow while others decay. Initially this spatial evolution may of-
ten be described by linear theory. At some position though, the disturbance
amplitudes become sufficiently large to interact non-linearly. This leads to a
redistribution of energy among the disturbances and may eventually result in a
complex flow state involving amplitude saturation. At this stage the boundary
layer becomes unstable to so-called secondary instabilities which evolve on top
of the primary ones. These secondary instabilities exhibit high frequencies and
rapidly lead to a break-down from laminar to turbulent flow. This break-down
stage is led in by the emergence of localised regions of turbulent flow, the tur-
bulent spots, which are nicely depicted in figure 2.2. Eventually, these spots
grow in size, merge and lead to a fully turbulent flow. The breakdown stage is
accompanied by a strong increase of skin friction.

These main stages are shared among various types of boundary layers ex-
posed to different external disturbance environments. However, the specific
receptivity and instability mechanisms dominating the transition process may
differ strongly. In the following those mechanisms are introduced which have
been found to dominate swept-wing boundary-layer transition.

2.2.1. Instability mechanisms

Several instability mechanisms have been identified in swept-wing boundary
layers. Each of these instabilities is characteristic for specific conditions. On
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Gortler instability

FicUure 2.3. Illustration of instability mechanisms that are
characteristic for three-dimensional swept-wing boundary lay-
ers. (Red: positive velocities, Blue: negative velocities)

swept wings such conditions are related to different regions where the boundary
layer is governed by effects such as surface curvature or acceleration. Figure 2.3
illustrates instability mechanisms and the respective characteristic regions on a
swept wing. The following list represents a brief description of each instability
mechanism. Comprehensive reviews are provided by Bippes (1999); Arnal &
Casalis (2000) and Saric et al. (2003). Note, however, that realistic disturbance
fields may consist of a superposition of several types of instabilities.

Crossflow disturbances develop in three-dimensional boundary layers,
e.g. on swept wings and rotating disks, because of a crossflow profile. The
latter is an exclusive feature of three-dimensional boundary layers (cf. §2.1).
Since the crossflow tends to zero in the free-stream its profile exhibits an in-
flection point. Rayleigh (1880) found such an inflection point to be a necessary
condition for inviscid instabilities to arise. In the case of three-dimensional
boundary layers it gives rise to the crossflow instability. Crossflow disturbances
therefore represent an instability of inviscid type. They were first identified
theoretically by Gregory et al. (1955). Early experimental work revealed
that crossflow disturbances appear as boundary layer streaks closely aligned
with the external streamline (a brief review is given by Mack 1984). Hence,
their lines of constant phase are approximately parallel with the external
streamline (see figure 2.3). They exist as both, stationary and travelling
waves and are destabilised in boundary layers subject to negative pressure
gradients and concave surface curvature. It should be noted that crossflow
instabilities appear as co-rotating vortices when presented superposed on to the
meanflow and are thus commonly referred to as crossflow vortices. However,
the disturbance itself takes the form of counter-rotating vortices while the



6 2. TRANSITION IN THREE-DIMENSIONAL BOUNDARY LAYERS

dominant velocity component is in the streamwise direction. Some nice ex-
perimental visualisations of the crossflow instability are given in Bippes (1999).

Tollmien-Schlichting (TS) waves were first predicted to exist theoreti-
cally by Tollmien (1929) and Schlichting (1933) for the Blasius boundary layer.
Experimentally they were observed first by Schubauer & Skramstad (1947).
TS disturbances are travelling waves and represent a viscous instability (i.e.
they are stable in the inviscid limit). These waves also exist in a swept-wing
boundary layer where they are sometimes called streamwise instabilities. The
latter expression results from the fact that the line of constant phase of TS
waves is approximately perpendicular to the external streamline. Hence, the
wave vector and the direction of propagation are closely aligned with the
streamline direction (cf. figure 2.3). Negative pressure gradients stabilise TS
waves while positive pressure gradients have a destabilising effect.

Gortler vortices are also present in both two- and three-dimensional
boundary layers over concave surfaces. For such surfaces centrifugal forces
destabilise the flow and lead to a stationary instability in the form of
counter-rotating vortices. For three-dimensional boundary layers Hall (1985)
found that the Gortler mechanism is unimportant if the sweep angle is large
compared with Re% where Re is the Reynolds number of the flow. This is
the case for most realistic swept-wing configurations. A review on Gortler vor-
tices, sometimes also called centrifugal instabilities, is provided by Saric (1994).

Attachment-line instabilities may be found in the boundary layer
forming along the attachment line of a swept wing. Theoretically and
numerically this instability mechanism has been studied for the swept Hiemenz
flow (see e.g. Hall et al. 1984; Lin & Malik 1996), which represents a common
model of the attachment-line boundary layer of a swept wing. These studies
show that the least stable instability wave is a two-dimensional travelling wave
of Tollmien-Schlichting type. A swept-wing flow can be stabilised with respect
to the attachment-line instability by choosing a small leading-edge radius. A
connection between attachment-line instabilities and crossflow disturbances
was found by Mack et al. (2008) who computed global modes of a compressible
boundary layer forming on a swept parabolic leading edge.

Non-modal growth represents an instability mechanism which is
principally different from the ones mentioned above. Mathematically, all
previously described disturbances can be found as eigenmodes of the governing
linear operator. For that reason they are called modal disturbances. A stable
boundary layer is governed by exponentially decaying eigenmodes. However,
a superposition of various decaying eigenmodes can lead to transient growth
representing another instability mechanism in boundary layers. Accordingly
such disturbances are referred to as non-modal disturbances. An extensive
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discussion on transient growth is given in Schmid & Henningson (2001) and
Schmid (2007). Studies on spatial non-modal growth in three-dimensional
boundary layers are presented in papers 1 & 2.

Crossflow and the related modal and non-modal disturbances (e.g. crossflow
modes) are a specific feature of three-dimensional boundary layers and the
work presented herein is entirely related to instabilities and their excitation in
crossflow-dominated boundary layers.

2.2.2. Receptivity

The term ‘receptivity’ denotes the part of the transition process that links ex-
ternal disturbance environments to the excitation of the previously described
boundary layer disturbances. This process was devoted a lot of attention in
the 80’s and 90’s after several experiments with three-dimensional boundary
layers provided diverse observations with respect to transition scenarios. Care-
ful experiments were carried out by Bippes & coworkers (see e.g. Bippes 1999)
and Saric & coworkers (see e.g. Saric et al. 2003) in order to shed light on the
receptivity process in three-dimensional boundary layers and its consequences
for transition.

Deyhle & Bippes (1996) performed experimental investigations of a
crossflow-dominated three-dimensional boundary layer forming on a swept flat
plate. They performed tests on the same model in systematically varied dis-
turbance environments and observed a complex dependence of the flow on the
environmental conditions. It was found that travelling crossflow modes, which
according to linear theory are less stable than their stationary counterparts,
only dominate for turbulence levels Tu > 0.2%. For lower turbulence levels
stationary crossflow modes were found to dominate and to lead to transition.
Surface roughness was thus identified as a key mechanism for the initiation
of stationary crossflow vortices. Further Deyhle & Bippes (1996) found the
receptivity to sound to be very weak.

Similar results were obtained by Radeztsky et al. (1999) who studied the
transition to turbulence in the boundary layer of a swept wing and the effect
of localised surface roughness. These authors found that surface roughness has
a strong influence on crossflow-dominated transition in that it leads to a domi-
nation of stationary crossflow disturbances. It was observed that the transition
location is very sensitive to the roughness position. The most effective rough-
ness location regarding triggering transition was found to be the first location
of neutral stability of the excited crossflow mode.

Schrader et al. (2010a) reproduced the experimental results qualitatively
for a swept-flat-plate boundary layer by means of large-eddy simulations.
Hence, experimental and numerical investigations exemplify the importance
of including receptivity into transition prediction models. Without being able
to account for the effect of free-stream turbulence on boundary-layer stability,
results from wind tunnel tests may be difficult to interpret. This is because the
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turbulence level in free-flight is assumed to be significantly lower than in most
wind tunnels. Stationary vortices excited by surface irregularities are therefore
assumed to dominate in free-flight while travelling disturbances could lead to
transition in wind tunnels which exhibit high levels of free-stream turbulence.

2.2.3. Non-linear effects and breakdown to turbulence

Once disturbances have been excited through a receptivity process those be-
ing unstable will grow while evolving downstream. As long as disturbance
amplitudes are low their spatial evolution can be predicted on the basis of lin-
ear theory. However, early onset of nonlinear effects in crossflow dominated
three-dimensional boundary layers was observed in several experiments (see
e.g. Deyhle & Bippes 1996; Saric et al. 1998b). The streaky nature of steady
crossflow disturbances leads to complex flow states which may involve satu-
ration of the primary disturbances and which favour the growth of secondary
instabilities. In experiments as well as numerical studies (¢f. Deyhle & Bippes
1996; Hogberg & Henningson 1998; Wassermann & Kloker 2002, 2003; White &
Saric 2005) high-frequency secondary instabilities have been observed to grow
strongly prior to transition. Malik et al. (1999) found the growth of these to
be correlated with the transition location.

These observations point to the importance of considering receptivity when
aiming to predict transition since these determine the initial modal amplitudes
and thus the position at which nonlinear effects and subsequent secondary
instabilities will set in.



CHAPTER 3

The Falkner—Skan—Cooke Boundary Layer

Swept-flat-plate flows which include the combined effect of a pressure gradi-
ent and a sweep angle represent an excellent model problem for studying the
receptivity and stability of crossflow-dominated boundary layers. An illustra-
tion, outlining the evolution of the external streamline as well as the inflectional
crossflow profile is presented in figure 3.1. The depicted coordinate system de-
noting chordwise (z), wall-normal (y) and spanwise (z) directions is adopted
in this introductory part. Under certain conditions a similarity solution to

FIGure 3.1. Illustration of a three-dimensional boundary
layer forming above a swept flat plate under pressure gradi-
ent which is infinitely elongated in spanwise direction.

the governing boundary layer equations can be found. For incompressible flow
these solutions belong to the family of Falkner-Skan-Cooke (FSC) boundary
layers (cf. Falkner & Skan 1931; Cooke 1950). For compressible flow no exact
similarity solution exists. However, approximate solutions may be obtained
and one such example is described in paper 2.

The FSC similarity solution for a swept flat plate boundary layer is ob-
tained by solving the coupled system of ordinary differential equations

f/l/+ffl/+ﬂH(1_f/2) = 0 (3.1&)
g +fd =0 (3.1b)

if the chordwise and spanwise velocities U, and W, of the external inviscid flow
obey a power law of the form

U, = <£>m We = Ue(xy,) tan ¢y,. (3.2)

Tn

9
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(a) 8

=ah

Us

FIGURE 3.2. (a) Boundary layer profiles Us and W projected
in the local streamwise and cross-stream direction respectively
(denoted by the subscript ‘s’) at z = z,, = 167. (b) Displace-
ment thickness §* (—) and momentum loss thickness © (---)
versus chordwise distance x.

Equations (3.1) are solved subject to boundary conditions f = f' = g =
0 at the wall (y = 0) and f/ = g = 1 in the free-stream (y = o0). The
subscripts ‘¢’ and ‘n’ denote the outer inviscid flow and a chosen normalisation
position respectively. The sweep angle defined at z,, is denoted ¢,,. The Hartree
parameter g is related to m through m = By /(2 — By) and determines the
pressure gradient. The FSC baseflow profiles are then obtained as

Uy) =Uef'(n) W(y) = Weg(n) (3.3)

with 7(y) being the similarity variable. For a detailed derivation of the FSC
similarity solution the reader is referred to Cooke (1950); Schlichting (1979).

3.1. A reference case

The FSC boundary layer shall be used as a reference and example case in
the remainder of this introductory part. All stability and receptivity tools
presented in the following are employed to the FSC boundary layer studied by
Schrader et al. (2009, 2010a). These authors chose a pressure gradient such as
to obtain a flow which resembles swept-wing experiments by Reibert (1996).
Accordingly, the respective parameters are chosen as z,, = 167, ¢(z,) = 45°
and m = 0.2. The Reynolds number is Re = U.(x,,)0*(xy,)/v = 220. The
kinematic viscosity is represented by v. Note that velocities and lengths will be
presented in non-dimensional form in the following based on U, (z,,) and 6*(z,)
respectively. Some boundary layer characteristics as well as streamwise and
crossflow velocity profiles are shown in figure 3.2. The crossflow profile shown
in figure 3.2(a) clearly exhibits the inflection point mentioned previously which
significantly determines the stability characteristics of the underlying boundary
layer.



CHAPTER 4

Stability theory

The governing equations of fluid flow are the Navier-Stokes equations which for
incompressible flow take the form
ou

o tw-Vju = —Vp+

1
EVQE (4.1a)

V-u = 0. (4.1b)

Here u = (u,v,w)T represents instantaneous chordwise, wall-normal and span-
wise velocity components while p denotes the pressure. All methods presented
in this introductory part are introduced for incompressible flow. For a study
on optimal growth in compressible flow the reader is referred to paper 2.

When studying receptivity and stability it is the excitation and evolution of
perturbations upon a steady baseflow that are of interest. It is thus convenient
to decompose the instantaneous velocity and pressure fields (u, p) into a mean
(U,P) and a perturbation part (u’,p’) such that

u=U+u" and p=P+p. (4.2)

Both the receptivity process as well as the early evolution phase of perturba-
tions are usually characterised by small amplitude disturbances. It thus makes
sense to linearise the NS equations about a steady baseflow. Accordingly, the
decomposition (4.2) is introduced into the NS equations. Then the equations
governing the steady baseflow are subtracted and products of perturbation
quantities are neglected. This yields the linearised Navier-Stokes equations
(LNSE) of the form

!
1
ou’ +(U-V)u' +@W-V)U = —Vp + §V2u' (4.3a)

ot
vV-u = 0. (4.3b)

Assuming the baseflow to be invariant in the spanwise direction (which is
true for all cases considered in this thesis) perturbations can be represented
as Fourier modes of the form

d(z,y,2,t) = Qe +cec (4.4)

where q' = [u/,v,w’,p']T denotes the Fourier amplitudes and c.c. represents
complex conjugate terms. Further, the LNSE (4.3) are recast in operator form

11
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as
=0, with (4.5a)
02 02 0
Ls=A B — 4+ — | +D—. 4.5b
* (a ) oz (4.5b)
The individual operators become
0 0 zﬂ 0 0 1 0 0
A Uy, + 2 vV o0 0 0
- Ve Vy + Z 0 o v o 1]’
Wa w, Z 0 0 V o0
(4.6a)
0 0 0 0 1 0 0 O
—Re™! 0 0 0 U 0 0 1
€= 0 —Re™ ! 0 (. D= 0 U 0 0
0 0 —Re™ ! 0 0 0 U 0
(4.6b)

with Z = —iw + iW + Re~'32.

Solving the system of equations (4.5) for a given steady baseflow (U,P)
allows to study its stability by monitoring growth or decay of disturbances.
The latter need to be introduced artificially. In the case of boundary layers
the perturbations are subject to boundary conditions at the wall and in the
free-stream, i.e.

u=v=w=0 at y=0 (4.7a)
u—0,v—=0,w—0 as y— oo. (4.7b)

Solutions of the LNSE presented in the following have been obtained by using
the ‘Nek5000° code developed by Fischer et al. (2008). This code is based on
the spectral element method (SEM) which was introduced by Patera (1984). Tt
provides spectral accuracy in space while allowing for the geometrical flexibility
of finite element methods. It is therefore well-suited for the study of more
complex geometries, e.g. a swept wing, as performed in papers 3, 4 & 5.

Another approach to study stability - not considered in this work - is to
reformulate equations (4.5) such as to obtain iwu = Au and to compute the
eigenvalues w and eigenmodes of the linear operator A. These eigenmodes are
commonly referred to as global modes and more details on this topic can be
found in Theofilis et al. (2002); Akervik et al. (2008); Theofilis (2011). Global
modes of a swept-wing boundary layer have been computed by Mack et al.
(2008).

To study the stability of three-dimensional boundary layers both ap-
proaches require rather extensive computational resources. However, for certain
assumptions the system (4.5) may be simplified, allowing for more efficient solu-
tion procedures. Two such approaches are presented in the following. Both are
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employed in order to gain insight into the stability characteristics of the FSC
boundary layer introduced in §3. In order to evaluate the accuracy and perfor-
mance of these simplified methods results will be compared to corresponding
solutions of the LNSE.

4.1. Local stability theory

Local stability theory is based on the assumption of a locally parallel baseflow.
At each position x the baseflow velocities U and W are assumed to be a function
of the y-direction only. The variation of the baseflow in the z direction is
neglected as is the wall-normal velocity component V. This allows to represent
perturbations as Fourier modes in both the z- and the x-direction for spanwise
homogeneous baseflows. The corresponding ansatz for the disturbances reads

d'(z,y,2,t) = q(y)e Tty ee, (4.8)
where o now represents the chordwise wavenumber and §(x,y) = q(y)e™®.
Introducing (4.8) into (4.3) we obtain the local stability equations (LSE) as

Liq=0, with (4.9a)

7] 0?
Li=A+B—+C—. 4.9b
l + 3y + 7 ( )

The individual operators become

ia 0 B 0 0100
|z U, 0 ia oo oo
A=lo 2z o o | B=loo0 01
0o w, Z i 000 0

0 0 0 0

—Re™t 0 0 0

C= 0 —Re! 0 0 (4.10)
0 0 —Re! 0

with Z = —iw+iaU+iBW+Re™ ' (a?432%). Together with boundary conditions
(4.7) the system of equations (4.9) represents either a temporal or a spatial
eigenvalue problem. A temporal eigenvalue problem is obtained if both o and
[ are prescribed as real numbers. Then w will represent a complex-valued
eigenvalue whose real part specifies the angular frequency and whose imaginary
part represents the temporal growth of the corresponding eigenmode. On the
other hand, a spatial eigenvalue problem is obtained if w and 3 are prescribed
as real-valued numbers. Then the real part of the eigenvalue o denotes the
chordwise wavenumber while the imaginary part specifies the spatial growth
in the chordwise direction. In general, the wavenumber «, 3 and the angular
frequency w are related through a dispersion relation

D(a,@w) =0 (411)

which is obtained by solving (4.9). Explicit forms of (4.11) are only available
for some special cases.
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In the following only the spatial problem is considered. Hence, the task
is to compute the spatial eigenvalues « of the system (4.9) for some given w
and . However, this is a nonlinear eigenvalue problem since o appears up to
the second power in equations (4.9). In order to obtain a generalised linear
eigenvalue problem (4.9) is recast into

iaM® = NP, (4.12)
where ® = (u, v, w, p, iau, iaw, iaw)’ and
-1 0 0 0 0 0 0
-U 0 0 -1 Re' 0 0
0o -U 0 0 0 Re™! 0
M= 0o 0 -U 0 0 0 Re ! |, (4.13a)
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 9/dy iB 0 0 0 0
Z U, 0 0 000
0 Z 0 8/dy 0 0 0
N=|o w, 2 i 00 0|, (4.13b)
0 0 0 0 1 0 0
0 0 0 0 01 0
0 0 0 0 0 0 1

with Z = —iw +iW + Re~ (3% — 8%/0y?). The solution of (4.12), which - un-
der the assumption of locally parallel flow - may be obtained for each position x
separately, provides a spectrum of spatial eigenvalues a together with the cor-
responding eigenmodes ®. A numerical solution for the FSC boundary layer
presented in §3 is presented in figure 4.1 for = 0.19 and w = 0. The solution
was obtained with MATLAB employing Chebyshev discretisation routines pro-
vided by Weideman & Reddy (2000). Two discrete eigenvalues as well as the
discrete representation of three continuous spectrum branches become appar-
ent. In what follows the discrete spectrum is discussed first. In section 4.1.2
some aspects of the continuous spectrum are studied.

4.1.1. The discrete spectrum - Crossflow mode

Two discrete eigenmodes become apparent in figure 4.1. The least stable one
represents a crossflow disturbance while the second one is a Squire mode. Squire
modes have zero wall-normal velocity components, i.e. they represent distur-
bances of vertical vorticity. The eigenfunction of the crossflow mode is shown in
figure 4.2. The subscript ‘s’ denotes velocities projected into the local direction
of the external stream line, i.e. us is the velocity component in the streamline
direction while v remains the wall-normal component. Figure 4.2 reveals the
characteristic vortical structure of the crossflow mode. Note that, although
counter-rotating, the vortices appear to be co-rotating if the meanflow is su-
perposed. However, the streamwise velocity component u is clearly dominant
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FI1GURE 4.1. Spectrum of the spatial eigenvalues «v in the FSC
boundary layer at = 67 for § = 0.19 and w = 0. The shaded
region denotes the unstable region. Black circles denote the
numerical solution of the discretised eigenvalue problem (4.12).
The red filled circles represent eigenvalues of the discrete spec-

trum.
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FIGURE 4.2. Crossflow mode eigenfunctions for the FSC
boundary layer at x = 67 with § = 0.19, w = 0 and
a = —0.2+0.012i. (a) Absolute values of the velocity compo-
nents. (b) Pseudocolors of ug. Vectors denote (vs, w).

indicating a streaky structure aligned with the external inviscid flow. If the
local stability analysis presented in figure 4.2 is repeated for positions x farther
downstream it is possible to follow the evolution of the crossflow mode. Figure
4.3(a) presents the local directions of the respective line of constant phase, i.e.
¢ = —arctan(a/3), as well as the external streamline where ¢ = arctan W/U.
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FIGURE 4.3. Spatial evolution of the crossflow mode detected
in figure 4.1. (a) Local angle of both the line of constant phase
and the external streamline with respect to the x-direction. (b)
Growth rate o = —«; and N-factor N, = In(ju/u(x,)|).
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FIGURE 4.4. Neutral curve of the FSC boundary layer for
steady crossflow disturbances with 8 € [0.07,0.5].

Here, ¢ defines the local angle between the direction of either the line of con-
stant phase or the external streamline and the x-direction. It is apparent that
the line of constant phase predicted by local theory does not exactly coincide
with the external streamline. They are close though, explaining the experimen-
tal observations previously mentioned.

At some position x the eigenvalue which is related to the crossflow mode
will have o; = 0 and the disturbance will thus be neutrally stable. Moving
even farther downstream it will flip into the unstable region; the crossflow
mode grows. The spatial growth of the crossflow mode is depicted in figure
4.3(b). The neutral point of the steady crossflow mode studied here is located
at x = 200. Downstream of the neutral point the crossflow mode grows and
reaches an N-Factor of almost 2 at = 1000. If the growth rates o of various
steady crossflow modes with 8 € [0.07,0.5] are computed it is possible to draw
the neutral curve in figure 4.4 by considering the contour of zero growth. Hence,
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based on local theory, the first stationary mode that becomes unstable has
0 = 0.35. For z < 146 and 8 > 0.45 stationary crossflow disturbances are
stable and thus decay exponentially.

4.1.2. The continuous spectrum

The spatial domain of a boundary layer flow is semi-infinite. A Fourier rep-
resentation of a solution to the governing differential equations thus requires
a continuous set of modes (¢f. Schmid & Henningson 2001), i.e. the continu-
ous spectrum modes. Initially, the continuous spectrum of the local stability
problem was studied by Grosch & Salwen (1978). Further comprehensive in-
formation on the continuous spectrum and how it may be used to represent
general solutions may be found in Ashpis & Reshotko (1990); Schmid & Hen-
ningson (2001) and various publications by Tumin & coworkers (see e.g. Tumin
2003).The discrete representation of the continuous spectrum shown in fig-
ure 4.1 was obtained numerically for a finite number of modes. It therefore
depends on the numerical method as well as the domain size and resolution
chosen. However, it is possible to give an explicit expression for the eigenvalues
of the continuous spectrum. These are derived in the following by considering
asymptotic solutions at y — oo (see also Mack 1984, who provides similar as-
ymptotic solutions for three-dimensional boundary layers).

For y — oo the baseflow derivatives with respect to y vanish and the operator
L; consists of constant coefficients only. Explicit solutions in the free-stream
are obtained by recasting the equation system (4.9) into

o
—=H 4.14
L (4.14)
with ¥ = (u, v, w, p, uy, wy)T. At y — co, H becomes
0 0 0 0 1 0
—iQ 0 —if3 0 0 0
0 0 0 0 0 1
H=1 0o -z 0 0 —Relia ReYg (4.15)
ReZ 0 0 Reia 0 0
0 0 ReZ Reifs 0 0

with Z = —iw+iBW +ialU + Re~(a? + 4?). In the free-stream, the solutions
of (4.14) will then take the form
Piy) = WM, (4.16)

where \; denotes the characteristic value of the jt* fundamental solution ;.
The six characteristic values are readily obtained as

)\172 = :|:\/ Ol2 —|—ﬂ2 (417&)

A4 = +v/Re(—iw+ifW +ial) + a? + 32 (4.17D)
As6 = Asu (4.17¢)
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together with the fundamental solutions

o 1. 0

—i\1 2 b —,\156
_ B _ 0 _ 1
Wyo= w—all — BW y W34 = 0 y W56 = 0
a>\1,2 )\3’4 0

BA1,2 0 5.6

(4.18)

Here, A1, A3 and A5 are chosen to have negative real parts. By inspection of
these fundamental solutions one may classify continuous spectrum modes as
vortical and pressure waves. Computing the vorticity components of W} , =
Wy pelertifz—ivt "¢ g the wall-normal vorticity component

o' ou vriB—i

— — —— = (@12 — (—iA2)iq) e tifmiwt — 4.19

ar oy (ad12 = (=i 2)iq) : (4.19)
it is clear that the continuous spectrum modes associated with A2 do not
exhibit vorticity and are thus classified as pressure modes. The other four
fundamental solutions W3_¢ do not comprise a pressure component but have
non-zero vorticity and are thus referred to as vorticity modes.

As opposed to modes belonging to the discrete spectrum, continuous spec-

trum modes are not required to decay in the free-stream but to be bounded.
Hence, in order to obtain eigenvalues of the continuous spectrum branches as-
sociated with the pressure modes, « is computed from (4.17a) with A\; o = +iry.
Here, v can be seen as a wall-normal wavenumber. Accordingly, A\34 = X556 =
+iy are chosen in (4.17b), (4.17c) to obtain eigenvalues « corresponding to
the vorticity mode branch. This results in four continuous spectrum branches.
Three of them, one vorticity mode branch and two pressure mode branches, are
shown in figure 4.5 together with the discrete representation presented earlier.
Those continuous modes having $(a) < 0, i.e. one pressure mode branch and
the second vorticity branch not shown in figure 4.1, describe the flow response
upstream of any disturbance source (cf. Ashpis & Reshotko 1990). Those modes
located in the upper half plane of figure 4.5 are associated with the downstream
response of the flow.
Downstream vortical modes of the continuous spectrum will be used later to
model receptivity to free-stream disturbances. In the free-stream, the associ-
ated full eigenfunctions are a linear combination of four fundamental solutions
(4.18). In the case of vortical modes there exist two linear independent solutions
which are referred to as ‘Mode A’ and ‘Mode B’. Their respective definition is
given by Tumin (2003) as

Ya = aaW1+0aP3+caWy+daPs (4.20)
Yp = ap¥, +bp¥y+cp¥s5+ dp¥Ps, (4.21)

where the respective coefficients a, b, ¢ and d can be determined numerically
based on no-slip boundary conditions at the wall, i.e. u = v = w = 0, and
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FIGURE 4.5. Spectrum of the spatial eigenvalues «v in the FSC
boundary layer at © = 67 for § = 0.19 and w = 0. The shaded
region denotes the unstable region. Black circles denote the
numerical solution of the discretised eigenvalue problem (4.12)
whereas the asymptotic solution of the continuous spectrum is
represented by the red lines.
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FIGURE 4.6. Vorticity mode (Mode A) associated with the
continuous spectrum of the FSC boundary layer at x = 67 for
=019, w=0,v=—1and o = 0.37740.016¢. (a) Real and
imaginary part of the velocity component us. (b) Pseudocolors
of us. Vectors denote (vs, w).

one normalisation condition, e.g. du/dy = 1 at the wall. An example of one
continuous vorticity mode (Mode A) in the FSC boundary layer is shown in
figure 4.6. One can clearly see the oscillatory behaviour of the mode outside
the boundary layer. The vectors in figure 4.6 nicely visualise the vortical
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behaviour of these modes in the free-stream.

In this work continuous modes were solely used as inflow conditions in or-
der to study the receptivity to free-stream disturbances. However, they form a
complete basis for general solutions of the local stability problem. As such they
may be used to compute spatial optimal disturbances (c¢f. Tumin & Reshotko
2001) or to decompose flow fields obtained from numerical simulations or ex-
periments (¢f. Tumin 2003).

4.2. Nonlocal stability theory

The assumption of a locally parallel baseflow allows to efficiently study the
physical instability mechanisms of boundary layers. However, especially in
crossflow-dominated boundary layers, the spatial evolution of disturbances is
significantly affected by baseflow nonparallelism. Several simplifications of the
full stability equations (4.5) accounting for nonparallelism have been developed.
The parabolised stability equations (PSE) have been the basis of several papers
presented in this thesis and are introduced in this section.

4.2.1. Linear PSE

For convectively unstable flows a spatial nonlocal stability theory commonly
known as the parabolised stability equations was independently developed by
Herbert & Bertolotti (Bertolotti 1991; Bertolotti et al. 1992; Herbert 1997) and
by Simen & Dallmann (Simen 1992). The fundamental idea behind the PSE is
to decompose the disturbance into a slowly varying and a fast oscillatory part.
Accordingly the following modal ansatz is made where the disturbance q’ is
decomposed into a shape function q and a phase function © according to

Ay 5t) = a@y)0@)e™ + . (1.22a)
Oz) = e'faoo@)de’ (4.22D)

where q = (u,v,w,p)” and q = qO. In (4.22a) the shape function is assumed
to be slowly varying in the chordwise direction x while the exponential part is
assumed to capture the disturbance oscillations. However, the solution ansatz
(4.22a) causes an ambiguity since both the shape function q and the chordwise
phase function © are functions of the chordwise coordinate x. This ambiguity
is resolved by choosing « such that the assumption of a slowly varying shape
function is valid. Two different approaches are chosen in the following depend-
ing on the type of disturbance studied. A classical approach is used to study
the evolution of modal disturbances while a modified approach is employed
to compute the evolution of more general disturbances. Both approaches are
explained in section 4.2.2.

Further, a scale separation between variations in chordwise and wall-normal
direction is introduced. It is assumed that variations in chordwise direction are
much slower than variations in wall-normal direction. Hence, after introduc-
ing (4.22a) into (4.5) chordwise derivatives and the wall-normal mean velocity
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component are assumed to be of order O(Re™1), i.e.
O v O(Re™) (4.23)
—, V- . .
ox’
Identifying and neglecting all terms which are of order O(Re~2) and higher
leads to a quasi-parabolic equation system of the form
L,q=0 (4.24)
with £, being the linear operator
0 0? 0
L, =A+B—+C— +D—. 4.25
R T R P (4.25)

For a simple non-curved geometry the operators A, B, C and D become

i 0 B 0 0 1 0 0
| v.+z U, 0 ia v o oo
A= 0o v,4z 0 o |© BTl o v oo 1| ®%
W, w, Z i 0 0 V o0
0 0 0 0 1 0 0 0
| —Rer 0 0 0 U o 0o @
C= 0o —re' o o PTlouvo o |
0 0  —Re' 0 00 U 0
(4.26D)
where )
Z = —iw +iaU +ifW + R—(a2 + 6%). (4.27)
(&

Introducing an initial disturbance qg at a chordwise position zy the PSE
(4.24) can be solved by simply marching downstream while solutions subject
to boundary conditions

u=v=w=0 at z=0, (4.28a)
u—0,v—-0,w—0 as z—o (4.28Db)

are required. The system (4.24) is only quasi-parabolic in that it exhibits an
inherent ellipticity which can cause numerical instabilities at small stepsizes Ax
(see e.g. Li & Malik 1996, 1997; Andersson et al. 1998). In order to relax this
numerical instability the disturbance pressure gradient p, (term (1) in 4.26b) is
omitted in the chordwise momentum equation as was proposed by Haj-Hariri
(1994). By comparing to DNS results, it is shown in papers 1 & 2 that, in
the case of crossflow-dominated boundary layers, this term has only negligible
effects on the computed results.

4.2.2. Closure €& Choice of a

As discussed previously, the disturbance ansatz (4.22) does not imply a unique
definition of a chordwise wavenumber «. A choice has to be made for « such
that the shape function q may be assumed to be slowly varying. Within the
framework of local stability theory the wavenumber « is well defined. Based
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on the local ansatz (4.8), it could be retained from the solution q’ as the
logarithmic derivative
O(nq) 1 0q
- — =2 4.29
@ " ox Zq’ ox’ (4.29)
while « is independent of the wall-normal position or the disturbance quantity
chosen. Following Bertolotti et al. (1992) and Hanifi et al. (1994) a physical
complex wavenumber & may be defined similarly in the nonlocal framework
based on (4.22) as

d(lnq’

a(z,y) = —i (gxq) =a(@) ~i 5 (4.30)

However, (4.30) is a vector function of the wall-normal position. According

to Herbert (1994) a scalar quantity independent of y is obtained if (4.30) is

multiplied with qq, integrated over y and divided by the integral of qq
yielding

Joaqqdy o(e) i o a(9q/0z) dy
Jo aady Jo afady
On the basis of (4.31) a classical choice, ensuring minimal streamwise changes
of q across y, is represented by the Norm

/ qH% dy = 0. (4.32)
0

Hence, if q satisfies the Norm (4.32) both the growth and the periodic oscilla-
tions of g’ are captured by the phase function (4.22b) while both dq/dz and
Oa/ Oz remain small.

The PSE equations (4.25) together with norm (4.32) build a coupled
nonlinear system which, on the basis of the preceding upstream solutions, can
be solved locally at each chordwise position x employing iterative techniques
such as Newton’s or related methods. The required initial guess is provided by
the solution obtained for the respective previous position. Initially, the latter
is represented by the solution of the local stability problem.

(4.31)

However, if no initial guess for the complex chordwise wavenumber is
known, which is the case for more general, non-modal disturbances, a differ-
ent approach has been chosen here. Again, the aim is to choose a such that
the variation of q in the streamwise direction is small. In order to fulfil this
requirement it is considered sufficient in the following to remove only periodic
oscillations from the shape function q. Hence, « is chosen as a real number and
the growth of ' will be absorbed by q. Starting again from the definition of
a nonlocal physical wavenumber (4.30), a well-defined, real- and scalar-valued
wavenumber « is obtained by the choice

dza—%(il%). (4.33)
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R and § represent real and imaginary parts of a complex number respectively
and A(x) represents a complex amplitude such that q(x,y) = A(x)q(z,y).
Here, q denotes the normalised disturbance quantities. There is no unique
choice for A(z). However, it makes sense to consider the dominant disturbance
velocity component. In a crossflow dominated boundary layer the latter is usu-
ally represented by u., which is the disturbance velocity component tangential
to the line of constant phase of the disturbance wave of interest. Hence, in the
following A is chosen as

A(I) = ucp(a; ymax); (434)

where Yy,qe denotes the wall-normal position at which |ucp| reaches its maxi-
mum. Requiring all periodic oscillations of @’ to be captured by the exponential
part of (4.22) implies

1 0A

%(—zz %) =0. (4.35)

In practice, the latter condition can be satisfied approximately by determining
« iteratively on the basis of (4.33). As an initial guess « is obtained based on
the observation that crossflow and non-modal disturbances are closely aligned
with the outer streamline in crossflow-dominated boundary layers (cf. §4.1.1).
In the next iteration step o = & is chosen. The latter step is repeated until the
energy growth has converged.

Compared to the first, classical approach described above this approach is
more robust with respect to the initial guess of @. The normalisation (4.35) is
only enforced approximately in a global sense as opposed to the more restrictive
norm (4.32) which is enforced locally. A good robustness is needed to be able
to compute the spatial evolution of general non-modal disturbances for which a
wavenumber based on the external streamline is just a rough first estimate, yet
the best available. Further, the choice of a real-valued wavenumber does not
require an initial guess for the growth of the disturbance. While it is certainly
possible to also capture the growth of @’ in the phase function O, i.e. choosing
a to be complex-valued with an imaginary part

S@) =S <a _ ii%) (4.36)

on the basis of previous iterations, such a choice was found to degrade the
convergence characteristics for general, non-modal disturbances.

Applications of this second approach for closure can be found in §5.2.3 and
86 as well as in papers 1 & 2. Note that the methods employed in paper 1
and by Tempelmann et al. (2010) are identical but described from a different
viewpoint.

4.2.3. Nonlinear PSE

A nonlinear extension of the PSE exists and shall be briefly introduced here.
It allows for predicting the nonlinear evolution of modal instabilities. It is
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obtained by introducing the disturbance ansatz

.00 = 33 me:0) 50 [ [ 07 i — i

xr
zo
(4.37)
into the nonlinear equivalent of equation (4.3), i.e. the nonlinear disturbance
equations. The subscripts m and n denote modal disturbances with (mw, nf3).
This leads to a coupled nonlinear system of quasi-parabolic equations of the
form

for the Fourier component q,,,. The operator L,,, is identical to its linear
counterpart £, but depends nonlinearly on c,,. The forcing term f,,,, repre-
sents the Fourier transform of the nonlinear terms. Numerically, the nonlinear
PSE are solved by marching downstream starting with a solution to the local
stability problem for a certain number of modes. At each position x the non-
linear system of equations (4.38) together with a normalisation for each mode,
e.g. (4.32), is solved iteratively, where new harmonics are introduced when
forced by the right-hand side of (4.38). More information about the nonlinear
PSE can be found in Bertolotti et al. (1992), Hein et al. (2000) and Schmid &
Henningson (2001).

4.2.4. PSE results for the FSC boundary layer

A few results obtained by employing the linear PSE to the FSC boundary
layer introduced in §3 are presented in this section. To highlight nonparallel
effects the PSE solutions are compared with those of the local stability analysis
presented in the previous section. Further, results are compared with DNS
solutions of the LNSE (4.5) in order to evaluate the validity of assumptions
accompanying the PSE.

The spatial evolution of a disturbance as predicted by nonlocal theory is

commonly presented in the form of growth rates and N-factors. These are
defined as

o, = —S(a) (4.39)
N, = ln(%)7 (4.40)

where the subscript ‘v’ denotes a disturbance amplitude A which represents
the wall-normal maximum of the chordwise disturbance velocity component.
PSE results obtained for the steady crossflow are presented in figure 4.7 and
compared to solutions of the LNSE as well as to the local stability results
presented in the previous section. The spatial evolution predicted by solving the
PSE is in excellent agreement with the DNS results. The comparison presented
in figure 4.7 thus provides an impressive validation of the PSE method. Further
it is shown that, in terms of quantitative predictions, results obtained from local
theory are not satisfactory. While the growth predicted based on local theory
gets close to DNS and PSE results towards the end of the domain a significant
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FI1GURE 4.7. Spatial evolution of a crossflow mode with § =
0.19 and w = 0. Growth rate o, (a) and the corresponding
N-factor N,, (b) as predicted by PSE, DNS and local theory.
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FicURE 4.8. Comparison of PSE solutions with those ob-
tained from local theory. (a) Local angle of the line of constant
phase for a crossflow mode with § = 0.19 and w = 0.0 com-
pared with the angle of the external streamline. (b) Neutral
curve of the FSC boundary layer for steady crossflow modes
with # € [0.07,0.5].

discrepancy is observed in the vicinity of the neutral point, i.e. where o,, = 0.
However, it is exactly this region where disturbances are known to be most
sensitive to e.g. inhomogeneous boundary conditions (¢f. Crouch 1993; Pralits
et al. 2000) and which is thus important for receptivity analyses. A similar
trend is found when comparing the wavevectors resulting from the PSE as well
as the local solution (see figure 4.8 a). These are principally similar. However, a
significant discrepancy is apparent in the region of the neutral point. While the
line of constant phase predicted by PSE follows the external streamline more
closely than that predicted by local theory it is still not perfectly aligned. The
neutral curve obtained by solving the PSE for different steady crossflow modes
is shown in figure 4.8. Again, local theory is found to yield similar results
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FicURE 4.9. PSE solutions of crossflow modes in a FSC
boundary layer with w € [0.0,0.1] and 3 € [0.07,0.5]. (a) Fre-
quency and wavenumber corresponding to the most dominant
mode at each position x. (b) N-factors of all considered modes.
The red line represents the envelope providing the N-factor of
the dominant mode at each position x. The red dashed line
denotes the respective envelope of the stationary disturbances.

in a qualitative sense as the trend of both neutral curves shown is similar.
However, the chordwise locations of branch 1 and branch 2 are significantly
different especially for the lower and higher spanwise wavenumbers considered.
Note, that the neutral curve predicted by nonlocal theories will depend on
the position of initialisation. If the modes would have been initiated farther
upstream, the neutral curve would also have shifted slightly upstream. For
more details the reader is referred to paper 1.

So far, only steady disturbances have been considered. These are not the
most unstable ones though as can be seen in figure 4.9 where the PSE have
been solved for both stationary and non-stationary crossflow modes. All modes
were initialised at the same position zo = 67. It is apparent from figure 4.9
(a) that the dominant scales inside the boundary layer become larger. Both
the frequency and the spanwise wavenumber of the dominant mode decrease
with . The maximum N-factor that can be obtained at each position z when
both stationary and non-stationary modes are accounted for is larger than that
obtained for stationary modes only. Hence, if both types of modes would be
initiated with similar amplitudes, non-stationary disturbances would dominate
the boundary layer. However, the receptivity mechanisms of steady and un-
steady disturbances are different. It is not possible to predict the dominant
disturbances inside a boundary layer without a comprehensive and quantita-
tive receptivity analysis. The latter will be the topic of the following sections.

Once an initial amplitude is known from such a receptivity study the non-

linear PSE can be employed to predict the spatial evolution of crossflow modes
even at higher amplitudes when nonlinear effects become important. One such



4.2. NONLOCAL STABILITY THEORY 27

FIGURE 4.10. Disturbance amplitude A obtained from exper-
iments by Kurian et al. (2011) (o) for a FSC-like boundary
layer. Linear evolution of the dominant unsteady crossflow
mode as predicted by linear PSE (---) and nonlinear PSE (—).
The nonlinear PSE were initialised at x = 0.65 with an ampli-
tude extracted from the experimental measurements.

example is given in figure 4.10. The disturbance amplitudes shown were mea-
sured by Kurian et al. (2011) for a FSC-like swept-flat-plate boundary layer.
The linear growth of a crossflow mode is found to match the experimental
measurements only in a short region downstream of x = 0.65. Upstream of
that position the disturbance field is dominated by non-modal growth (for
details the reader is referred to Tempelmann 2009). If the nonlinear PSE
are initialised with an amplitude extracted from the experiments at x = 0.65
the predicted evolution farther downstream perfectly matches the experimental
measurements. The final aim of a receptivity analysis is to provide the initial
modal amplitude solely based on knowledge about the external disturbance
environment which in this case was free-stream turbulence.



CHAPTER 5
Receptivity

As demonstrated in the previous section, it is important to determine initial
amplitudes of boundary-layer disturbances in order to identify dominant modes.
These initial amplitudes are governed by the external disturbance environment,
e.g. by free-stream turbulence, surface roughness or acoustic noise. The aim of
any receptivity analysis therefore is to provide initial disturbance amplitudes
inside the boundary layer on the basis of a specific external disturbances en-
vironment. The methods for receptivity prediction presented in the following
may be classified into direct and indirect methods.

5.1. Direct receptivity computations

Here, it shall be referred to direct receptivity methods if the external distur-
bance environment is directly accounted for when solving the LNSE or PSE.
For example, receptivity to surface roughness may be studied by inserting the
roughness elements into the computational grid. Receptivity to free-stream
turbulence, on the other hand, could be studied by triggering turbulence in the
free-stream.

5.1.1. Receptivity to surface roughness

In the following the receptivity to surface roughness is studied by solving the
LNSE. The roughness is not inserted into the computational grid but modelled
as inhomogeneous wall-boundary conditions. This can be accomplished by pro-
jecting the no-slip conditions on the surface of the roughness to the undisturbed
wall using Taylor-series expansions. Accordingly the inhomogeneous boundary
conditions for a disturbance of spanwise wavenumber 3 become

w(z,y=0) = —Hg(m)g—[y] (5.1a)
o(z,y=0) = 0 (5.1b)
w(z,y=0) = —Hg(m)%—zf (5.1c)

where the roughness shape h(x,z) is represented by discrete Fourier modes
Hp(x). These boundary conditions can be easily imposed at the wall in direct
numerical simulations of the LNSE and there is no need to modify the com-
putational grid. In paper 3 it is shown that the performance of this roughness

28
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model is excellent up to roughness heights of about 10% of the displacement
thickness. For larger roughness heights, receptivity becomes nonlinear.

While it is certainly possible to allow for inhomogeneous boundary condi-
tions in the PSE it is not straightforward to quantitatively predict the recep-
tivity to boundary conditions of the type (5.1). This is because the latter will
excite many different modes leading to a strong transient and thus inherently
nonparallel behaviour of the disturbance which may not be captured correctly
by the PSE. Nonetheless, Herbert (1993) studied the excitation of crossflow
vortices to wall blowing/suction and obtained results which were in qualitative
agreement to experiments with surface roughness. An idea on how to resolve
the mentioned problem was given by Bertolotti (2000). He suggested to apply
a bandpass filter to the wall forcing (5.1) centred at the wavenumber « of the
eigenmode of interest. Such a filter would remove energy from those modes
decaying in the farfield and thus all the initial transient effects that would re-
quire highly resolved DNSs. However, in this thesis well-resolved direct LNSE
computations have been performed to study receptivity to surface roughness.

The shape of surface roughness considered for the FSC boundary layer is
chosen according to Schrader et al. (2009). It is defined as

Iz, z) = epHg(x)sin(Brz), (5.2)
where e, denotes the height of the roughness, 8 = 27/L, the spanwise

wavenumber and L, the width of the computational domain. The chordwise
shape Hpg is provided by

Hs(z) = [s (”’ ;h) ~5 (”” ;fhe + 1)] : (5.3)

where S is a smooth step function defined in Schrader et al. (2009) and hs, he
define the position and the extension of the roughness element. The roughness
position x, may be defined as hs+ (he —h)/2. The parameters hy, h, affect the
shape of the element and have been chosen constant for all considered rough-
ness positions. The roughness shape chosen throughout this study is depicted
in figure 5.1(a) for z, = 185.4. The response of the FSC boundary layer to
this roughness element as obtained from a solution of the LNSE is shown in
figure 5.1(b) for two different roughness positions. A strong peak of the distur-
bance amplitude becomes apparent at the respective roughness position. Just
downstream of the peak the disturbance evolution is characterised by expo-
nential growth. This indicates that all excited modal disturbances except the
crossflow mode decay quickly. No transient growth is observed. Receptivity to
the roughness element located farther downstream is weaker. A more general
discussion on the dependence of receptivity on the roughness location is given
in §5.2.

5.1.2. Receptivity to free-stream disturbances

The receptivity of a boundary layer to free-stream disturbances can be studied
prescribing inhomogeneous inflow boundary conditions. Vortical free-stream
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FIGURE 5.1. (a) Shape function Hg(z) of the roughness ele-
ment for hy = 171.6, he = 199.2, h, = hy = 11.5. Hence, the
depicted roughness position is x,, = 185.4. The height of the
roughness element is chosen as €, = 0.021. (b) Boundary layer
response to surface roughness for 5 = 0.19 and two different
roughness positions. The amplitude is defined as A, =
max,, |ul.

disturbances of type ‘Mode A’, stemming from the continuous spectrum of the
local stability operator (c¢f. §4.1.2), are chosen in the following. These are con-
sidered to represent an appropriate basis for modelling free-stream turbulence
(¢f. Jacobs & Durbin 2001; Brandt et al. 2004). By solving the LNSE, Schrader
et al. (2009) were the first to study receptivity of three-dimensional boundary
layers to this type of disturbances. Employing PSE, the receptivity to contin-
uous spectrum modes was only computed for two-dimensional boundary layers
by Lin et al. (1995).

Figure 5.2 (a) shows the response of the FSC boundary layer to a steady
vortical continuous spectrum mode. Here, the continuous mode is prescribed
at xp = 67 and the disturbance evolution is computed by solving the PSE.
Note that the wavenumber « is determined locally based on Norm (4.32). The
boundary layer response is characterised by comparing with the PSE solution
of the corresponding clean crossflow disturbance. Receptivity to free-stream
disturbances is quantified by a normalised receptivity amplitude
maxy [u(z)|

A (z) = (5.4)

max, |u(zo)|’
where u(xg) represents the vortical free-stream mode. Initially, the boundary
layer response is characterised by non-modal behaviour until, for x > 500,
the crossflow mode becomes dominant. Since free-stream turbulence involves
vortical flow structures of various different scales, it makes sense to study the
receptivity to vortical free-stream modes of different scales. Figure 5.2 depicts
the receptivity amplitude of the boundary layer response to continuous spec-
trum modes with different wall-normal wave numbers . It is apparent that
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FIGURE 5.2. Receptivity to vortical free-stream disturbances
as predicted by solving the direct PSE. (a) Response of the
FSC boundary layer to a vortical free-stream mode (Mode A)
with 8 =0.19, v = 0.3 and w = 0. (b) Receptivity amplitudes
for vortical free-stream modes with v € [0.165, 1.65].

strongest receptivity is obtained for vorticity modes with large wall-normal
length scales. However, the receptivity amplitude does not decrease monoton-
ically with increasing v but increases again for v > 1.2. This observation is
consistent with results by Schrader et al. (2009). By solving the LNSE, these
authors performed an extensive parametric study on this receptivity mecha-
nism. They found the efficiency of the receptivity mechanism to increase for
small wall-normal length scales due to deep penetration of the corresponding
continuous modes into the boundary layer.

5.2. Receptivity modelling using adjoint solutions

Adjoint solutions represent a very efficient tool for predicting receptivity. The
following two citations illustrate how adjoint solutions may be used for recep-
tivity modelling. In his article “A ‘receptive’ boundary layer” Bottaro (2010)
writes

Receptivity is the process which describes how environmental dist-
urbances (such as gusts, acoustic waves or wall roughness) are
filtered by a boundary layer and turned into downstream-growing
waves.

Hill (1995) writes in his paper on receptivity modelling

[...] adjoint eigensolutions act as a filter on a general disturbance
field enabling to identify the amplitude of the corresponding eigen-
mode.

Combining the essences of both citations one might describe the boundary
layer as a filter while the adjoint solution acts as its transfer function. Hence,
projecting some given external disturbance field onto the adjoint solution of a
certain eigenmode will yield its effective amplitude. This property, originally
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demonstrated by Salwen & Grosch (1981), makes the adjoint solutions a pow-
erful tool for receptivity prediction. Fedorov (1988) used adjoint solutions at
finite Reynolds numbers to predict the receptivity of swept-wing boundary lay-
ers to surface roughness. An extensive study on how solutions to the adjoint
Orr-Sommerfeld equations may be used to predict forced and natural receptiv-
ity in two-dimensional boundary layers was provided by Hill (1995). Later, he
extended this technique and employed direct & adjoint PSE to account for non-
parallel effects (Hill 1997). Similar methods were employed by Luchini & Bot-
taro (1998) to study the receptivity of Gortler vortices to free-stream and wall
disturbances and by Airiau (2000) to describe acoustic scattering in a Blasius
boundary layer. Pralits et al. (2000) employed the adjoint PSE for sensitivity
analysis of compressible boundary layers. Dobrinsky & Collis (2000) and Do-
brinsky (2002) considered direct & adjoint LNSE solutions as well as those of
the PSE to predict the receptivity of various two- and three-dimensional bound-
ary layers. Finally, Giannetti & Luchini (2006) combined adjoint solutions with
an asymptotic approach to study the generation of Tollmien-Schlichting waves
in the leading-edge region of an incompressible flat-plate boundary layer.

In order to predict the receptivity of crossflow modes in the swept-wing
boundary layer we follow these works and define the adjoint through a La-
grange identity. The following derivation is performed for simple flat-plate
geometries and based on direct and adjoint PSE solutions only. The corre-
sponding derivation for general, spanwise invariant geometries on the basis of
direct and adjoint LNSE solutions is presented in paper 4. Some results for a
swept-wing boundary layer are shown in §5.3.

In order to be able to account for the receptivity to sources of mass and
momentum, the PSE (4.24) are extended and become

£,q=S, (5.5)

where S = (S,,,S,)7 represents time- and spanwise-periodic sources of mass
S’ and momentum S/, respectively. The latter have the form S’ = S@e#*—iwt,
The Lagrange identity defining the adjoint PSE becomes

(@', L£,9-8) = (L;q",q) + //Q V-J(a,q") dady — (q",S), (5.6)

where the inner product ‘(-)” is defined as

{a,b) = //Q ab dzdy (5.7)

for some C"-valued functions a,b and € being an open bounded subset of R?
defined by the domain of interest. The superscript ‘*” denotes adjoint quanti-
ties. The term £,,q — S represents the direct inhomogeneous PSE. The adjoint
equations are then defined as

Lrq"=0 (5.8)

and J = (Jg, Jy)T is known as the bilinear concomitant. Both £* and J are
obtained by performing integration by parts on the leftmost inner product of
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(5.6). The adjoint operator of the PSE is then obtained as

0 0? 0
L,=A"+B"—~+C" > + D"~ 5.9
TP Y e T o (5:9)
with individual linear operators given by

oBH oD n o*cH

A* = AP 9 0w o (5.10a)
H

B* = —BH+2a§y (5.10b)

cr = cf (5.10¢)

D* = -Df. (5.10d)

A, B, C and D refer to the PSE operators given in (4.26). The bilinear
concomitant becomes

J. = (q")"Dq (5.11a)
o o(a* H
9a _9@)”
dy oy
If g and g* are solutions to the direct PSE and adjoint PSE respectively, i.e.
L,q -8 = L;q" = 0, and if the boundary conditions (u*,v*,w*) = 0 are
imposed at the wall and in the free-stream the Lagrange identity (5.6) becomes

%) xq *\H
0 :/ [Jalpe dy —/ [(q*)HBq— %Cq dz
0 @ Y y=0 (5.12)
—// (q")7'S dzdy.
Q

Here it was assumed, that the free-stream boundary is located far away from the
boundary layer such that p* as well as dq* /9y have decayed to zero. Further,
the function .J, is normalised such that

Jy = (@)"Ba+(q")fC (5.11b)

Ty =

Sk

(5.13)

while the complex amplitude A is defined as

A(.Z‘) = ﬁ(l‘, Ymaz)s (514)
and Ymae is the position where |u| takes its maximum value. Introducing q =
©71q and S = ©7!S the Lagrange identity can be recast into

A(l‘l/ J (z1) dy = xo)/ J (z0)

. o@)” .
—0—/% [(q )Bq —Tqu dz (5.15)

y=0
+// 0 H(q")S dz dy.
Q
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FIGURE 5.3. (a) The absolute value of J,, normalised with its
mean, versus x. (b) Adjoint solution for a crossflow mode with
8 =0.19, w = 0 obtained by solving the PSE (—) and by DNS
(o). Aj denotes the wall-normal maximum of either |u*| or
[w*].

This equation may be used to predict the receptivity to wall disturbances
4(y = 0), inflow disturbances (o) or mass and momentum sources S. As-
suming that neither inhomogeneous boundary conditions at the wall nor mass
or momentum sources change the shape of the mode of interest but just its
amplitude and phase, .J, (1) can be evaluated on the basis of the homogeneous
solution to the direct & adjoint PSE for the modal disturbance of interest.
The term ‘homogeneous’ here refers to solutions obtained for zero-slip wall-

boundary conditions and zero mass or momentum sources.

It is worth to note that J, represents a conserved quantity for the homoge-
neous case, i.e. when the second and third term of the right-hand-side of (5.15)
are zero. This property is useful when evaluating the accuracy of the direct
& adjoint PSE and can be related to the orthogonality of direct and adjoint
eigenmodes (see Dobrinsky 2002, for more details). Figure 5.3(a) shows J,, ver-
sus x for the current computations of a steady crossflow mode with g = 0.19.
It is apparent that J, is well conserved. The maximum difference from the
mean value of J, is about 0.2%. Solutions to the direct & adjoint PSE are
therefore found to be sufficiently accurate. This is confirmed by results shown
in figure 5.3(b). Respective solutions of the adjoint PSE and adjoint LNSE are
in perfect agreement.

5.2.1. Receptivity to surface roughness

Disregarding any mass or momentum sources the receptivity amplitude of the
disturbance at x; is given by

L e 2 ]
A = o [ e [<q> Ba- 2T cq| an (16)

o y=0
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FIGURE 5.4. (a) Boundary layer response to surface roughness
as predicted by DNS and the PSE-based receptivity model. (b)
Receptivity amplitudes at z = 500 as predicted by DNS and
the PSE-based receptivity model.

It is assumed that the amplitude of the incoming disturbance is A(zg) = 0.
Equation (5.16) allows to predict the receptivity of a boundary layer to inho-
mogeneous boundary conditions. Hence, considering the roughness model (5.1)
it is possible to predict the boundary layer response to surface roughness. In-
troducing the roughness model and evaluating the right-hand side (5.16) yields

1 /Il i, {au* oU  ow* oW

Alx = =, . - 5+t 5 —F—
(1) Re [~ Jo(21) dy 9y 9y~ Oy 9y ],

dz,
Zo

(5.17)
where an overbar means complex conjugate. The crossflow mode amplitudes
predicted on the basis of (5.17) are depicted in figure 5.4. The roughness shape
presented in §5.1.1 is considered and results are compared to the respective
direct LNSE solutions. The agreement between the PSE-based prediction and
the response obtained by solving the direct LNSE is excellent. The recep-
tivity amplitudes for arbitrary roughness positions can be easily obtained by
changing the roughness model in (5.17). Note, that no further direct & adjoint
PSE solutions are required as long as the receptivity amplitudes of the same
crossflow mode are to be determined. It is apparent from figure 5.4 that the
receptivity amplitude for a crossflow mode with 5 = 0.19 extracted at x = 500
decreases monotonically for roughness positions farther downstream. Again,
the comparison to the direct LNSE solutions shows perfect agreement. Hence,
PSE-based receptivity prediction employing direct and adjoint PSE solutions
is perfectly suited for modelling the boundary layer response to micron-sized,
localised surface roughness.

5.2.2. Receptivity to free-stream disturbances

The receptivity to initial free-stream disturbances q(zo) is studied by consider-
ing equation (5.15) for homogeneous wall-boundary conditions and zero sources.
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FIGURE 5.5. Receptivity amplitude of the boundary layer re-
sponse to initial vortical free-stream disturbances as predicted
by direct PSE and the PSE-based receptivity model. Steady
vorticity modes (Mode A) of the continuous spectrum with
~ € ]0.165,1.65] and 3 = 0.19 are considered.

The receptivity amplitude is then obtained as

]'000 jm (330) dy
Now, J,(zo) is evaluated on the basis of the initial free-stream disturbance
q(xo) while J,(x1) is known from the homogeneous solutions of the modal

disturbance. As in §5.1.2, receptivity is quantified by the normalised amplitude
A, which is defined as

A(z1)
A(zo)
The receptivity prediction obtained by evaluating (5.18) for those vortical free-
stream modes considered already in §5.1.2 is presented in figure 5.5. The pre-
dicted receptivity amplitudes are compared to the respective boundary layer
response obtained from the direct PSE solution (cf. figure 5.2 b). Again, the
performance of the PSE-based receptivity model is found to be very satisfying
as the predicted amplitudes are very close to those obtained from the direct
PSE computations.

A (z1) = . (5.19)

5.2.3. Optimal excitation of modal disturbances

If no information on the external disturbance environment is given, the receptiv-
ity of a boundary-layer flow may also be studied by considering the worst-case
scenario, i.e. the so-called optimal disturbance. The latter is defined through
maximum spatial growth. If the boundary layer exhibits a dominant mode
which the flow is always attracted to sufficiently far downstream, the optimal
initial disturbance of the flow will yield a maximum receptivity amplitude A,
of this dominant mode. Since jm (x1) is computed on the basis of the eigenmode
of interest, its optimal initial disturbance gt (o) is obtained by maximising
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I Jo (o) dy (¢f. equation 5.18). Recalling the definition of J, in (5.11), a
maximum receptivity coefficient is obtained by maximising the projection of q
on (DHq*). This is obtained by choosing

a(wo) =D | . (5.20)
o
which in detail reads
u(zg) = p"+ Uu*|z0 (5.21a)
v(zg) = Uv*‘z0 (5.21Db)
w(zg) = Uw'| (5.21c)
p(zo) = *|I0. (5.21d)

It becomes apparent that a choice according to (5.21) would not yield a physi-
cal disturbance though since the adjoint equations do not involve a boundary
condition for p* at the wall. Hence, (5.21a) would yield a non-physical optimal
disturbance component u(x). Here, we follow the approach outlined in paper
1, where p* is neglected in the sum (5.21a). Results presented in paper 1 show
that this does not have measurable effects on the optimal growth. Also the op-
timal choice for p(xo) does not necessarily yield a physical disturbance since no
constraints on the initial disturbance are imposed. However, since the pressure
gradient term dp/Ox is neglected in the PSE there is no need to prescribe an
initial pressure profile. Hence, the optimal initial disturbance is chosen as

u(xg) = Uu’"|gc0 (5.22a)
v(zg) = Uv*‘m0 (5.22Db)
w(zy) = Uw*|w0. (5.22¢)

The corresponding initial disturbance shape at xqg = 67 which optimally excites
a steady crossflow mode with 5 = 0.19 is shown in figure 5.6. It is apparent from
figure 5.6 (a) that the initial optimal disturbance is characterised by dominant
crossflow- and wall-normal disturbance velocity components ws and v. It takes
the form of streamwise tilted vortices. However, the streamwise component g,
though less in amplitude, is of similar order and thus not negligible as opposed
to the case of two-dimensional boundary layers. The receptivity amplitude at
x = 500 predicted based on equation (5.18) is A, = 64.17. This prediction
is compared with a direct PSE computation where (5.22) is chosen as the
initial disturbance at xy. Note that this direct PSE was solved employing the
second choice of closure with respect to o as described in §4.2.2. Hence, a was
determined globally on the basis of 4.33). The optimal boundary-layer response
predicted by the PSE-based receptivity model is in perfect agreement to the
result of the direct PSE (see figure 5.7). By comparing the spatial evolution of
the optimal disturbance with that of a clean crossflow mode an initial region
of strong non-modal growth becomes apparent. Farther downstream, i.e. for
x > 200, the optimal disturbance smoothly evolves into the dominant crossflow
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FIGURE 5.6. Optimal initial disturbance at zyg = 67 for a
crossflow mode with 3 = 0.19 and w = 0. (a) Shape functions
of disturbance velocity components projected onto a plane per-
pendicular to the external streamline direction. (b) Pseudo-
colors of ug and vectors denoting (v, wy).

107
<" N
10'
—direct PSE
® PSE-based receptivity pred.
10 ---CF mode

0 200 400 600 800 1000
X

F1GURE 5.7. Spatial evolution of steady optimal disturbance
with 6 = 0.19 compared with the evolution of a clean crossflow
mode as well as the PSE-based receptivity prediction at x =
500.

mode. Additional details on spatial optimal growth, in particular for regions
of the boundary layer where no dominant mode exists, are given in the next
chapter.

5.2.4. Receptivity to spanwise-periodic, time-harmonic sources

Finally, the receptivity to sources of mass and momentum is considered. As-
suming a smooth wall and no incoming disturbances, i.e. A(xg) = 0, equation
(5.15) becomes

1

. —1/ %\HQ& 33 )
A(xnifooojx(xl)dy//g@ (a")"'$ dedy (5.23)
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FIGuRE 5.8. Optimal distribution of sources of mass (a) and
x-,y- and z-momentum (b,c,d) for a steady crossflow mode with
[ = 0.19. Pseudocolors of the respective source amplitudes are

shown where S was normalised such that <S7 §> =

The optimal source distribution yielding a maximum receptivity amplitude of
the crossflow mode of interest is then obtained by maximising the integral term
in equation (5.23). Accordingly, the choice

S=6"1q" (5.24)

yields the optimal response of a boundary layer to distributed sources of mass
and momentum. The optimal sources presented in figure 5.8 are normalised
such that <S7 S> = 1. All sources have a maximum amplitude at the inflow.
Farther downstream the amplitude decreases monotonically. The wall-normal
position of the maximum amplitude is closely related to the wall-normal maxi-
mum of the corresponding crossflow mode shape. The optimal forced boundary
layer response may be quantified by a normalised amplitude of the form

|A(z1)|

(s:8)

In this case, for a steady crossflow mode with § = 0.19, the optimal forced
response amplitude at x = 500 predicted based on (5.23) is A, = 434.

A, = (5.25)
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FIGURE 5.9. Geometry of the swept wing (NLF(2)-0415 air-
foil, Somers & Horstmann 1985) which is at an angle of attack
of —4°. The sweep angle is ¢ = 45°. The coloured contours
denote the meanflow while blue lines represent the respective
streamlines.

5.3. Receptivity of a swept-wing boundary layer

The adjoint-based receptivity theory presented in the previous section can be
generalised to become applicable to more complex geometries such as a swept-
wing boundary layer. In particular, evaluating the Lagrange identity (5.6) on
the basis of the LNSE instead of the PSE allows to study additional recep-
tivity mechanisms, i.e. the receptivity to free-stream disturbances upstream
of a swept wing. Such generalisations are the topic of papers 3 & 4. Here,
the potentials of adjoint-based receptivity prediction shall be demonstrated
by presenting a few baseline results. The flow case is a swept-wing boundary
layer which conforms to experiments by Saric & coworkers at Arizona State
University in the 1990’s (see e.g. Reibert et al. 1996). The wing is at an an-
gle of attack of —4° while the sweep angle is ¢ = 45°. This choice yields a
favourable pressure gradient on the upper wing side and results in a strong
crossflow instability. The wing geometry, which is invariant in the spanwise
direction, is depicted in figure 5.9. In order to predict the receptivity of the
swept-wing boundary layer to localised surface roughness as well as steady free-
stream disturbances the adjoint LNSE are solved for the most unstable steady
crossflow mode. The adjoint solution, which is depicted in figure 5.10, has a
very interesting shape. Inside the boundary boundary layer it is strongest close
to the wall and increases in amplitude towards the stagnation region of the
meanflow. It exhibits very thin structures that require a high resolution. Upon
approaching the stagnation region the adjoint solution extends into the free-
stream upstream of the leading edge where it becomes strongly damped. In
the free-stream it is very localised and well aligned with the meanflow stream-
lines. A spanwise cut of the adjoint solution as well as its modal amplitudes
in the free-stream at x = —10 are shown in figure 5.11. It is important to
note the u}-component, which is in the direction of the incoming homogeneous
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FIGURE 5.10. Adjoint solution u* (blue: negative; red: posi-
tive) of a steady crossflow mode with 5 = 5.6523 in a swept-
wing boundary layer extending into the free-stream upstream
of the leading edge.

FIGURE 5.11. (a) Spanwise cut in the free-stream at z = —10
of the adjoint solution u* of a steady crossflow mode with
3 =5.6523. (b) The respective modal amplitudes of u*(—), v*
(—) and w¥ (—). The subscript ‘s’ denotes projection on to a
plane which is perpendicular to the direction of the incoming
free-stream. Hence u? is in the direction of Q (cf. figure 5.9).

flow, clearly dominates over v} and w}. Receptivity amplitudes of the steady
crossflow mode can now be obtained by projecting external disturbances on to
the adjoint solution. Paper 3 discusses the receptivity of this boundary layer to
localised, micron-sized circular roughness cylinders as depicted in 5.9. The lat-
ter may be modelled by inhomogeneous boundary conditions (cf. equation 5.1).
For a specific definition of the roughness it is referred to paper 3. Receptivity
amplitudes are then easily obtained by projecting the respective velocities at
the wall onto the adjoint solution (by employing a relation similar to equation
5.17). Receptivity amplitudes of the steady crossflow mode, which are obtained
for different roughness positions, are presented in figure 5.12. The predictions
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FI1GURE 5.12. Receptivity amplitudes predicted by projecting
external disturbances on to the adjoint solution of a steady
crossflow mode with § = 5.6523. (a) Receptivity to localised
circular roughness cylinders as predicted on the basis of the ad-
joint LNSE (—), the adjoint PSE (---) and direct solutions of
the LNSE where the roughness was meshed (¢). (b) Receptiv-
ity to streamwise (—) and vertical (—) free-stream vorticity.
Solid lines denote prediction based on the adjoint LNSE while
dashed lines represent a direct LNSE solution.

obtained on the basis of both adjoint LNSE and adjoint PSE agree perfectly
with the response, which is obtained from a direct LNSE solution. The latter
featured meshed roughness elements.

Something which is not possible with the PSE is to predict the receptivity to
free-stream disturbances upstream of the leading edge. However, by employing
the adjoint LNSE solution presented in figure 5.11 this becomes possible. Tem-
pelmann et al. (2011) studied the receptivity of the same swept-wing boundary
layer to free-stream vorticity by means of direct LNSE. Hence for each individ-
ual vorticity mode one simulation was needed. Based on the adjoint solution
presented here it is possible to accurately predict the receptivity amplitude of
the respective crossflow mode to any free-stream disturbance. This is demon-
strated in figure 5.12 (b) where the adjoint-based amplitude predictions are
compared with the direct LNSE results by Tempelmann et al. (2011). As in
the roughness case the agreement is perfect. The initial discrepancy is because
of the dominant free-stream disturbances present in the direct LNSE which cov-
ers the the present crossflow mode. Further downstream the crossflow mode
becomes dominant and perfectly agrees with the adjoint-based prediction. It
is apparent that vertical vorticity is more efficient in exciting steady crossflow
disturbances than streamwise vorticity. This observation is easily explained by
recalling the dominance of the u!-component of the adjoint solution. When
projecting on to the adjoint solution the streamwise us-component of the free-
stream disturbance is multiplied with u}. Since streamwise vorticity implies a
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FIGURE 5.13. Response of the swept-wing boundary layer to
(a) streamwise and (b) vertical vorticity as obtained by solving
the direct LNSE. Red and blue pseudocolors denote positive
and negative u-disturbance velocities respectively. For details
it is referred to Tempelmann et al. (2011).

zero streamwise velocity component the corresponding receptivity is found to
be weaker as compared with vertical vorticity.

The direct LNSE solutions are shown in figure 5.13. Most striking is the
influence of the stagnation region on the disturbance evolution in both cases.
While approaching the stagnation line, chordwise velocities become damped.
Hence, close to the stagnation line disturbances are mainly convected in the
spanwise direction. This results in stretching and tilting of the vorticity which
is nicely depicted in figure 5.13 (b). Farther downstream, close to the wall, the
crossflow mode becomes visible in both cases.



CHAPTER 6
Spatial non-modal & optimal growth

The receptivity analysis presented in the previous section deals with how to
optimally excite a certain eigenmode. If such a mode is dominant, i.e. the flow
is always attracted to it, it represents the optimal disturbance. However, in
those regions of the flow which are subcritical with respect to modal growth
all modal disturbances decay and no such dominant mode exists. Nonetheless,
transient disturbance growth may be observed. Mathematically, this is due to
the non-normality of the governing linear operator. A detailed discussion may
be found in Trefethen et al. (1993); Schmid & Henningson (2001) and Schmid
(2007). Non-modal disturbances in the form of streaks were first observed in
an experiment by Klebanoff (1971) who studied a two-dimensional boundary
layer subject to free-stream turbulence. Streaks are disturbances elongated
in streamwise direction which are characterised by alternating high and low
speed flow. The physical mechanism behind this phenomenon is the so-called
dift-up effect’” which was first formulated by Landahl (1980). Fluid particles
keeping their horizontal momentum when being displaced vertically because
of streamwise vorticity lead to the formation of streamwise perturbations; the
so-called streaks. The optimal spatial growth of these disturbances was first
studied by Andersson et al. (1999) and Luchini (2000) for the Blasius boundary
layer. In the following it is shown how spatial optimal growth may be studied in
the three-dimensional FSC boundary layer. As opposed to the method in §5.2.3
the presented method may be employed in the subcritical boundary layer, i.e.
where it is stable to crossflow disturbances.

By employing a temporal framework Corbett & Bottaro (2001) found non-
modal disturbances and crossflow modes to be of similar structure in three-
dimensional boundary layers. Hence, the PSE, which have been found to per-
fectly describe the spatial evolution of crossflow disturbances, are assumed to
also represent a valid approximation for the spatial growth of non-modal dist-
urbances. However, in order to be able to describe the evolution of general
disturbances in the FSC boundary layer the PSE are solved by determining
« globally based on (4.33). In this section, an optimal disturbance is associ-
ated with maximum spatial energy growth. Hence the objective function to be
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maximised takes the form
0 f
Jo a"Mq dy’m1
J, a Mq dy‘
o

with M = diag(1,1,1,0) and (zo,z1) denoting the initial position and the
position of maximum amplification respectively. Note, that in order for (6.1)
to represent disturbance energy growth a needs to be chosen real-valued. Then
the disturbance growth is captured by q instead of by the phase function (cf.
§4.2.2). Maximising J(q) represents a constrained optimisation problem since
q is required to satisfy the governing equations which in this case are the
PSE (4.24). Having chosen the objective function the method of Lagrange
multipliers can be employed and the Lagrange functional takes the form

Z(q,q") = J(a) —(q", Lpq) . (6.2)
Note, that in this section we redefine the inner product according to (-) =
() + c.c. to ensure a real-valued functional. The adjoint state vector q* here
takes the role of a Lagrange multiplier enforcing q to satisfy the governing
equations. The maximum of J(q) is now obtained by finding the stationary
points of (6.2) which are the roots of the first variation of .. Hence, it is
required that

J(a) (6.1)

0. = (Vg Z,0q") + (Vq.Z,0q) = 0, (6.3)
where V4 represents a gradient with respect to q. To obtain the roots both
inner products in (6.3) have to render zero independently. Setting the first
inner product to zero implies solving the PSE, i.e. £,q = 0. The second inner
product becomes zero if V4% = 0. This gradient is most easily obtained
by adopting the Lagrange identity (5.6) where S is considered to be zero in
this case. The adjoint state q* is assumed to be a solution of the adjoint
PSE L7q* = 0. Further, zero Dirichlet boundary conditions are imposed for
both (u*,v*,w*) and (u,v,w) at the wall and in the free-stream. Under these
conditions, only terms stemming from the gradient of the objective function,
VqJ, and the z-component of the bilinear concomitant (5.11a) are left in the
second inner product of (6.3). The first variation of . then turns into

D" qj — cxMqy, =0, (6.4)

where ¢ represents a normalisation coefficient and k denotes both boundaries
zo and x1. Equation (6.4) represents the so-called optimality conditions which
have to be fulfilled at either boundaries in order to maximise (6.1) and which,
at xg yield the optimal initial disturbance. As discussed in §5.2.3 the adjoint
pressure is neglected in (6.4) since it does not comprise a boundary condition
at the wall and leads to an unphysical initial disturbance. This leads to an
optimal initial disturbance of the form (5.22). The complete optimality system
is solved iteratively starting with an arbitrary initial guess for q(zo).

Employing the above described optimisation to the FSC boundary layer
optimal disturbances can be computed for various parameters. In figure 6.1
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FIGURE 6.1. (a) Pseudocolors of N-factors of steady optimal
disturbances impinging at xg = 67. The grey region denotes
the boundary layer regime which is unstable to modal cross-
flow disturbances (cf. figure 4.8). The dashed line denotes
the optimal spanwise wavenumber Gop¢(21). (b) N-factors of
energy growth of optimal disturbances with optimal 5, (21)
extracted from plot (a). Red circles denote the spatial optimal
growth J(z1) at the respective position of maximum amplifi-
cation.

the spatial growth of steady optimal disturbances is presented versus 3 and the
position of maximum amplification z1. Note that spatial growth is quantified
in terms of energy N-factors

N.=051In (gg;;) (6.5)

with F = (q, Mq). It is apparent that the maximum N-factors obtained reach
a value of N, =~ 6 at the downstream boundary of the domain of interest.
These are significantly higher than those N-factors obtained from the modal
PSE analysis presented in figure 4.9. Note also, that even in regions close to
and upstream of the neutral curve N-factors of N = 1 to Ne = 3 are obtained.
Hence, even if the boundary layer is stable to modal crossflow instabilities, sig-
nificant non-modal growth is observed. Based on the parametric data presented
in figure 6.1(a) one may extract the optimal spanwise wavenumber Gopt(z1) of
those disturbances exhibiting maximum optimal growth at each chordwise po-
sition 1. It becomes clear that the optimal spanwise length scales of the
corresponding disturbances increase with increasing 1. The N-factors of these
are shown in figure 6.1(b) versus the chordwise position z. Those disturbances
exhibiting maximum optimal growth at small x; experience strong initial non-
modal growth and decay further downstream as opposed to the perturbations
experiencing maximum growth at position farther downstream. The latter are
also characterised by initial non-modal growth but turn into strongly growing
crossflow modes farther downstream.
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FIGURE 6.2. Optimal disturbance with g =0.19, w =0, zg =
67 and x7 = 400 in physical space. For visualisation purposes
the horizontal slice is shifted from y = 1.3 to the wall.

Examining the spatial structure of optimal disturbances in three-
dimensional boundary layers reveals a dominant initial vortical structure (cf.
figure 6.2) as stated already in §5.2.3. These streamwise vortices are tilted
against the direction of the mean crossflow shear. While evolving downstream
the vortices rise up and turn into strongly growing boundary layer streaks.
These structures thus point to the presence of two physical mechanisms of non-
modal growth, namely the Orr-mechanism and the lift-up mechanism. The
Orr-mechanism, originally formulated by Orr (1907), describes how disturban-
ces which are tilted against the baseflow shear extract energy through the action
of a perturbation Reynolds stress while being erected. The lift-up mechanism
was initially described by Landahl (1980) and relates initial vortical disturban-
ces to the appearance of boundary layer streaks. The vortical motion displaces
fluid particles vertically and, because of the streamwise baseflow shear, leads
to horizontal perturbations in the form of streaks. In paper 1 it is shown that
these non-modal streaks strongly resemble the structure of crossflow distur-
bances. Farther downstream they smoothly turn into crossflow disturbances
as shown in figure 5.7. In conclusion, it is found that the FSC boundary layer
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shows a significant potential for growth of non-modal disturbances which may
be seen to initiate modal crossflow disturbances. Since both free-stream tur-
bulence and roughness elements may excite disturbances of similar structure,
non-modal growth can be related to a receptivity mechanism in 3D boundary
layers. A comprehensive parametric study on spatial optimal growth in both
incompressible and compressible swept-flat-plate boundary layers is presented
in papers 1 & 2.



CHAPTER 7
Stabilisation by localised roughness

All methods presented so far help to understand the physical mechanisms of dis-
turbance generation and their evolution in boundary layers and provide quan-
titative predictions. However, the ultimate goal is to control these disturbances
in such a way as to obtain a predominantly laminar boundary layer. The most
obvious approach might be to choose a geometry which favourably affects the
disturbance evolution. A systematic approach for such a shape optimisation has
been developed by Amoignon et al. (2006). However, since various disturbance
types react differently to changes in e.g. pressure gradient or surface curvature
while at the same time requirements with respect to e.g. lift have to be met, the
control parameters of this approach are limited. An active control approach
which has been studied experimentally by Bippes (1999) is to apply surface
suction. This mainly decreases the crossflow and thus attenuates the growth of
crossflow disturbances. However, the experimental investigations showed that
imperfections with respect to periodicity of the suction holes may lead to exci-
tation of unstable non-stationary instabilities. This was confirmed numerically
by Messing & Kloker (2010). Optimal spanwise homogeneous suction distribu-
tions for infinite swept wings were computed by Pralits & Hanifi (2003). Both
Tollmien-Schlichting and crossflow instability waves could be stabilised.

A rather simple passive control mechanism has been initially proposed and
studied by Saric et al. (1998a). These authors performed wind tunnel exper-
iments to study the transition of a swept wing boundary layer. They showed
that transition can be delayed significantly by artificially triggering a station-
ary crossflow disturbance which is subcritical with respect to transition. In the
experiments this subcritical disturbance was triggered by placing a periodic ar-
ray of circular roughness cylinders close to the leading edge. The spacing was
chosen to correspond to a wavelength smaller than that of the naturally most
unstable stationary crossflow disturbance. Such relatively small-scale distur-
bances are known to exhibit strong growth close to the leading edge and to
decay farther downstream as opposed to disturbances of larger spanwise length
scales. The latter are stable initially but grow strongly downstream.

Similar investigations were performed numerically by Wassermann &
Kloker (2002) for a swept-flat-plate boundary layer. In accordance with the
experimental observations by Saric & coworkers they found that the excitation
of crossflow disturbances, which are subcritical with respect to transition, leads
to nonlinear attenuation of the naturally most unstable disturbances. They
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further explain that nonlinear effects lead to a strong meanflow modification
that favourably affects the stability of the most unstable crossflow modes.

Here, the effects of subcritical forcing shall be briefly discussed using DNS
solutions' of the FSC boundary layer introduced in §3. Only effects on the
spatial evolution of stationary crossflow disturbances will be considered. Effects
on the transition of a swept-wing boundary layer, which corresponds to the
experiments by Saric et al. (1998a), is presented in paper 5.

In the FSC boundary layer the most unstable steady crossflow instabilities
exhibit wavenumbers  ~ 0.2 towards the end of the considered domain. It is
these crossflow disturbances that shall be damped in the following. Accordingly,
the mode with 8; = 0.2 is chosen to be the target mode. In order to make this
example more realistic a very simple model for natural roughness is introduced
by considering a roughness element localised in x having the form

6

h(x,2) = enHp(x) Y _ sin(kBoz + ¢r.k)- (7.1)
k=1

Here, Hg denotes the roughness shape defined in (5.3), 8y denotes the fun-
damental mode defined by the width of the computational box. The phase
¢rk is chosen randomly for each mode. Hence, this surface roughness will
excite multiple steady crossflow instabilities of random phase with spanwise
wavenumbers £y and k ranging from 1,2,...,6. The box width and thus the
fundamental mode are chosen such that both the target mode and the subcrit-
ical mode aimed at controlling the latter, denoted the ‘control’ mode, can be
considered. Saric et al. (1998a) chose the spanwise wavenumber of the control
mode to be 3/2 of the target mode wavenumber. Wassermann & Kloker (2002)
found this choice to be optimal. Accordingly, the fundamental wavenumber is
chosen as By = (3:/2 = 0.1 corresponding to a box size L, = 27/, = 62.83.
The control mode then has the wavenumber 5. = 0.3. The ‘natural’ roughness
is located at x, = 185.4 while ¢, = 0.0032. The control mode is triggered
farther downstream by a second row of roughness elements as shown in figure
7.1. This ‘control’ roughness is located at z, = 280.8 and is chosen to be a
hundred times higher than the ‘natural’ roughness in order to ensure a suffi-
ciently large amplitude of the control mode. Note that the roughness elements
are modelled by inhomogeneous wall boundary conditions (c¢f. equation 5.1).
Two DNS solutions are presented, one where only the “natural” roughness is
considered and a second one with both the “natural” and the control roughness.
The latter solution is presented in figure 7.2. The wavy structures that become
apparent and their tendency to ‘roll over’ are clear indicators of strong steady
crossflow instabilities. Similar structures have been identified in experiments
by Reibert et al. (1996) and Saric et al. (1998a). The structures which are
visible in the first spanwise plane shown in figure 7.2 are quite even and regular

IThe DNS was performed by Solmaz Akbaripour Sheijnai as part of a Master thesis
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150

FIGURE 7.1. Two spanwise arrays of roughness elements are
shown. The first is used to excite multiple steady crossflow
disturbances with wavenumbers kB3y with £ = 1,2,...,6 and
Bo = 0.1. The second array represents the ‘control” roughness
the height of which is scaled by a factor of 0.1 for visualisation
purposes. The spanwise wavenumber is chosen as 8 = 3.
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FIGURE 7.2. Total velocity component (U + u') of the con-
trolled case. The steady disturbances are excited by the rough-
ness elements shown in figure 7.1.

and thus denote the dominance of one single crossflow mode. However, farther
downstream a competition of several disturbance modes becomes apparent.

In order to identify the dominant modes and to illuminate the effect of the
control roughness as compared with the uncontrolled case amplitudes of the
individual crossflow modes are extracted by means of a Fast Fourier transfor-
mation with respect to the spanwise direction. It is apparent from figure 7.3
that the target mode chosen above represents the naturally most unstable wave
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FIGURE 7.3. (a) Amplitudes of the fundamental (---), target
(—) and control (---) mode in the uncontrolled (black lines)
and the controlled case (red lines). (b) Amplitude of the mean-
flow distortion in the uncontrolled (—) and controlled case

()

since it dominates the uncontrolled case. Towards the end of the computational
domain nonlinear effects lead to an amplitude saturation of the target mode
which, under natural conditions, would quickly lead to the onset of secondary
instabilities and to a breakdown to turbulent flow. This picture is principally
different in the controlled case. Initially the control mode dominates the dis-
turbance field exhibiting amplitudes which are almost two orders of magnitude
larger than those of all other modes. For x > 1000 it becomes stable and
decays. However, due to its large initial amplitude it has, through nonlinear
interactions, affected the target mode in a favourable way as is apparent in
figure 7.3(a). Compared to the uncontrolled case the target mode gets atten-
uated for z > 750. Towards the end of the domain it even decays resulting in
an amplitude difference of about one order of magnitude as compared to the
uncontrolled case. This effect is explained by the so-called meanflow distor-
tion. The large initial amplitude of the control mode leads to early nonlinear
interactions that significantly affect the meanflow (cf. figure 7.3 b). Figure 7.4
shows that this distortion leads to a meanflow which exhibits fuller profiles in
the near-wall region as compared to the undisturbed and uncontrolled cases
for x < 2200. Further, the distortion reduces the crossflow and consequently
stabilises crossflow disturbances. Both these observations resemble effects of
wall suction on the meanflow profiles which is known to stabilise the boundary
layer (c¢f. Wassermann & Kloker 2002). To conclude, this example has shown
that triggering subcritical forcing can be efficiently used to stabilise a three-
dimensional boundary layer with respect to stationary crossflow disturbances.
However, when applying this technique for transition control, also the effect on
secondary, non-stationary instabilities needs to be considered. This is discussed
in paper 5.
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FIGURE 7.4. Profiles of the undisturbed baseflow (—), the un-
controlled (—) and the controlled (—) case. From left to right
the profiles are extracted at x = 1167,1667,2167,2667,3167
and are shifted along the x-axes for visualisation purposes. (a)
Profiles of the streamwise velocity (b) Profiles of the crossflow
velocity



CHAPTER 8
Summary & Conclusions

The work presented in this thesis focuses on the study of receptivity mecha-
nisms in three-dimensional, crossflow-dominated boundary layers. Two model
problems, a swept-flat-plate and a swept-wing boundary layer are considered.
Furthermore, tools are presented and evaluated that allow to efficiently study
and predict both receptivity and stability of boundary-layer flows.

The PSE, which have been extensively employed throughout this work,
represent one such tool. Because of their parabolic nature they can be solved
very efficiently by simple marching techniques. A modification of the classical
PSE has been presented herein for crossflow-dominated boundary layers, which
allows for the study of more general and, in particular, non-modal disturbances.
In combination with their adjoint, the PSE have been used to determine opti-
mal initial disturbances as well as to predict receptivity to both surface rough-
ness and vortical disturbances. Results for swept-flat-plate boundary layers
demonstrate a significant potential for non-modal growth in three-dimensional
boundary layers. Optimal disturbances take the form of streamwise vortices
initially and experience extensive spatial growth even in regions where the flow
is stable with respect to modal disturbances. As optimal disturbances turn
into crossflow modes farther downstream, non-modal growth may be related to
a receptivity mechanism in crossflow-dominated boundary layers. By compar-
ing to respective DNS results, the adjoint-based PSE have been found to yield
excellent predictions of swept-wing boundary layer receptivity to micron-sized
surface roughness.

Direct numerical simulations of the LNSE, though much more costly than
solving the PSE, provide another means to study receptivity mechanisms.
While the PSE are restricted to slowly varying shear flows such as boundary
layers on simple geometries, DNS may be performed for complex configura-
tions and strongly non-parallel flows. Within the linear framework receptivity
can be studied by combining the solutions of the direct LNSE and its adjoint.
This approach is efficient in the sense that only two simulations, i.e. one direct
and one adjoint, are required to predict the receptivity amplitude of a certain
boundary-layer disturbance excited by any external disturbance environment.
In particular, it becomes possible to determine boundary-layer receptivity to
incoming free-stream disturbances upstream of the leading edge. This ulti-
mately allows to predict boundary-layer receptivity to free-stream turbulence
provided that the turbulent velocity field in the homogeneous free-stream is
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known. Herein, direct and adjoint solutions of the LNSE for a swept-wing
boundary layer are used to determine worst-case scenarios which lead to max-
imum receptivity amplitudes in the linear sense. Both the worst-case surface
roughness and the worst-case free-stream disturbance are presented. It is shown
that, under such optimal conditions, swept-wing boundary layers are more re-
ceptive to surface roughness than to incoming free-stream disturbances.

Furthermore, receptivity predictions on the basis of the PSE and DNS
have been compared to experimental results by Reibert et al. (1996). These
authors studied the excitation of crossflow disturbances by localised surface
roughness in a swept-wing boundary layer. The PSE and DNS results are
in perfect agreement. Although the predicted amplitudes are slightly below
those measured in the experiments, the overall agreement with experimental
results is very satisfactory. The stabilisation of the same boundary layer by
localised roughness elements is demonstrated by means of DNS. The results
confirm experiments by Saric et al. (1998a) and show that transition may be
completely suppressed.

Most models for transition prediction which are in use today disregard the
receptivity process. Such semi-empirical models, rely on correlations of distur-
bance growth with experimentally determined transition locations. However,
it is known that crossflow-dominated boundary layers exhibit a distinct depen-
dence on the external disturbance environment. A robust transition prediction
therefore has to account for the receptivity process which determines the initial
conditions of the boundary layer disturbances. The receptivity tools that are
presented in this thesis might be combined with other efficient methodologies,
such as the nonlinear PSE, which accurately predict the linear and nonlinear
growth of primary disturbances. The predicted flow state may then be used as
an input for secondary instability analyses. A correlation based on secondary
instabilities was shown to yield accurate and robust transition predictions (cf.
Malik et al. 1999). Hence, a combination of the presented tools with secondary
instability analysis has the potential for efficient and robust transition predic-
tion.
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