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Abstract

The spectral-element method (SEM) is used to study wall-bounded turbulent
flows in moderately complex geometries. The first part of the thesis is devoted
to simulations of canonical flow cases, such as temporal K-type transition and
turbulent channel flow, to investigate general resolution requirements and com-
putational efficiency of the numerical code nek5000. Large-eddy simulation
(LES) is further performed of a plane asymmetric diffuser flow with an open-
ing angle of 8.5°, featuring turbulent flow separation. Good agreement with
numerical studies of Herbst et al. (2007) is obtained, and it is concluded that
the use of a high-order method is advantageous for flows featuring pressure-
induced separation. Moreover, it is shown, both a priori on simpler model
problems and a posterior: using the full Navier—Stokes equations, that the nu-
merical instability associated with SEM at high Reynolds numbers is cured
either by employing over-integration (dealiasing) or a filter-based stabilisation,
thus rendering simulations of moderate to high Reynolds number flows possible.

The second part of the thesis is devoted to the first direct numerical simula-
tion (DNS) of a truly three-dimensional, turbulent and separated diffuser flow
at Re = 10 000 (based on bulk velocity and inflow-duct height), experimen-
tally investigated by Cherry et al. (2008). The massively parallel capabilities
of the spectral-element method are exploited by running the simulations on
up to 32 768 processors. Very good agreement with experimental mean flow
data is obtained and it is thus shown that well-resolved simulations of complex
turbulent flows with high accuracy are possible at realistic Reynolds numbers
even in complicated geometries. An explanation for the discovered asymmetry
of the mean separated flow is provided and it is demonstrated that a large-scale
quasi-periodic motion is present in the diffuser.

In addition, a new diagnostic measure, based on the maximum vorticity
stretching component in every spatial point, is designed and tested in a num-
ber of turbulent and transitional flows. Finally, Koopman mode decomposition
is performed of a minimal channel flow and compared to classical proper or-
thogonal decomposition (POD).

Descriptors: spectral-element method, direct numerical simulation (DNS),
large-eddy simulation (LES), turbulence, transition, over-integration, three-
dimensional separation, massively parallel simulations, proper orthogonal de-
composition (POD), Koopman modes, vorticity stretching, coherence.
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Preface

This doctoral thesis is concerned with the topic of fluid mechanics, which has
been studied through numerical simulations. It is divided into two parts, where
the first one is an introduction to the field and a summary of the present work.
This summary makes no pretension to be complete, but is instead intended to
make the material in the papers accessible to a wider audience by putting the
work into a historic perspective. The second part is a collection of the papers
listed below. Please note that ‘Ohlsson’ was my previous name before year
2010, and therefore refers to me. A summary of the papers together with a list
of the conferences where the work was presented is given at the end of Part
I, where also the division of work among the authors is stated. Note that the
published papers have been adjusted to comply with the present thesis format
for consistency, but their content is unchanged except for minor corrections.

The research project was initiated by Dr. Philipp Schlatter who has acted
as co-advisor and Prof. Dan S. Henningson who has been the main supervisor.
The following collaborators have moreover contributed to the work: Prof. Paul
F. Fischer, Prof. Catherine Mavriplis, Prof. Neil D. Sandham and Dr. Shervin
Bagheri.

Stockholm, November 2011
Johan Malm
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“The whole of science is nothing more than a refinement
of everyday thinking.”

Albert Einstein (1879-1955)
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Summary






CHAPTER 1
Introduction

1.1. The unsolved problem of classical physics

The intricate nature of turbulent fluid' flows has for centuries puzzled re-
searchers. In times when modern physics successfully discovered new areas
such as relativity theory and quantum mechanics, the influential fluid mechan-
ics researcher Sir Horace Lamb (1849-1934) stated that,

“I am an old man now, and when I die and go to heaven
there are two matters on which I hope for enlightenment.
One is quantum electrodynamics, and the other is the
turbulent motion of fluids. And about the former I am
rather optimaistic.”

Almost a century later, a complete theory to predict the motion of a tur-
bulent flow is still lacking. It is considered to be one of the unsolved problems
of physics? of the same dignity as the existence of dark matter and the un-
known future of our universe. For a novice in the field, it may indeed seem
a bit odd that it is possible to develop a theory for the motion on scales of
10735 m and determine the compound of stars in distant galaxies, whereas it is
impossible to determine the exact path of a bark boat on a river or a hurricane
over the Atlantic ocean. It appears even more surprising given that the equa-
tions governing the fluid motion have been known for more than two centuries.
These are based on classical, elementary mechanics and are obtained by apply-
ing Newton’s second law of motion to a fluid element, thereby arriving at the
Navier—Stokes equations, independently derived by G. G. Stokes and M. Navier
in the early 1800’s (see Chapter 2.1). The Navier—Stokes equations constitute
a set of non-linear, time dependent, partial differential equations (PDEs), to
which analytical solutions exist in rare special cases but most commonly are
out of reach. Not only solutions are difficult to find. The Clay Mathematics
Institute offers $1,000,000 to the mathematician who can prove the ezistence

LA fluid is a substance which will deform under infinitely small shear stresses. Typical fluids
include gases, liquids and plasmas.

2Richard Feynman, the winner of the Nobel Prize in physics 1965 (quantum electrodynamics),
once said that turbulence is “the most important unsolved problem of classical physics”, which
indeed gives some justice to the statement by Sir Horace Lamb.
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2 1. INTRODUCTION

of a smooth and unique solution to the Navier—Stokes equations in three di-
mensions®. One of the main source of difficulties is the non-linearity of the
equations, which makes them chaotic under certain conditions. While still de-
terministic, this means that the solution is highly sensitive to initial conditions.
In other words, a disturbed initial condition (no matter how little) will after
a sufficiently long time change the solution completely. Therefore, trying to
predict the weather next year is (and will most likely continue to be) an im-
possible task. Another problem is the non-locality of the equations, which is
due to the fact that the pressure in one point in space depends on the velocity
field in all other points. The implication is that all scales in a turbulent flow
depends on each other — from the largest (which can be of, say, the size of
an entire airplane) down to the smallest (on the order of millimetres). This
poses difficulties, not only for the analytical, but also for the numerical treat-
ment of the equations (these issues are further discussed in Chapter 2.2). Many
peculiarities are hidden in the equations, of which one is the occurrence of tur-
bulence itself. Although described by the same set of equations, a fluid flow in
general can be classified either as laminar (ordered and regular) or turbulent
(random, chaotic and highly time dependent). The transition between these
two states depends principally on the dimensionless Reynolds number (Re) re-
lating the amount of inertia to the viscous forces in the flow, but also on the
amplitude of disturbances active in the flow and the flow geometry. For every
flow, there exist a critical Reynolds number, Re., above which the flow is likely
to be turbulent.

Although being an unresolved problem, turbulence is of major importance
for engineering and geophysical applications. FEliminating turbulence on air-
plane wings could save up to 15 % fuel consumption (Schrauf 2005), since tur-
bulence leads to a larger friction drag. Increasing turbulence in engines would
enhance the mixing of fuel and oxygen and therefore lead to a more efficient
combustion process. The reason for both phenomena above is simply that tur-
bulence is a consequence of the fundamental principle, in which nature wants
to reduce gradients (i.e. even out and mix). It follows that the transport heat,
contaminants and momentum in a turbulent flow occurs at a much higher rate
than for the laminar counterpart where transport relies on diffusion, which is
a slow process on the molecular level. Typically, this difference is 10'° times in
the oceans (see e.g. Pond & Pickard 1983). Finally, understanding turbulence
per se could for instance help to predict severe weather events more accurately
(at least in the short term) and thus save lives and property to a larger extent.

1.2. Numerics as a promising tool to study turbulence

So what can we do to in order to gain further knowledge of the dynamics of
turbulent flows? As we have seen, we are still far from a theoretical solution
to the turbulence problem. Asymptotic analysis, in which one studies the
limiting behaviour of a flow when a parameter (e.g. the Reynolds number)

3See rules and problem description at http://www.claymath.org/millennium/



1.2. NUMERICS AS A PROMISING TOOL TO STUDY TURBULENCE 3

becomes very large (or small), can in some cases provide useful information
(see e.g. Cousteix & Mauss 2007). Experiments in a controlled environment
such as a wind tunnel was for a long time the only option, and continues to be
of major importance. Its advantages consist in the obvious fact that a ‘real’
flow is observed. Moreover, relatively high Reynolds numbers can be reached.
However, precautions must be taken. For instance, since the viscosity of a
fluid is temperature dependent?, the temperature of the working fluid must
be accurately controlled, such that the Reynolds number is not modified. In
addition, the disturbances within and around the wind tunnel (e.g. noise from
the engine driving the flow or traffic outside the laboratory) or unexpected
roughness at the walls need to be controlled. Beside that, there are problems
related to the measurements. In particular, there are difficulties involved in
measuring the flow velocity sufficiently close (typically a few micrometers) to
a solid wall. Tt is even hard to know where the wall is (see Orlii et al. 2010, for
an excellent review). In addition, the measurement devices need to be small
enough to be able to measure the velocity field without disturbing the flow
and to truly respond to scales smaller than its own dimensions (see e.g. Orlii
& Alfredsson 2010). Measuring pressure fluctuations is another problem (see
Tsuji et al. 2007). A more general review regarding issues in experimental fluid
mechanics can be found in Tropea et al. (2007).

With the advent of faster computers it has become feasible to solve the
Navier—Stokes equations numerically in a discretized form, thereby finding so-
lutions to the equations in cases where analytical solutions do not exist. The
study of fluid mechanics by numerical means is usually referred to as compu-
tational fluid dynamics (CFD), and is considered to be a science in its own
right. Assuming that (i) the Navier—-Stokes equations constitute a good model
for fluid flows (which they generally do given that the fluid is considered to
be a continuum and not a rarefied gas®, and that relativistic velocities are
not reached); (ii) proper boundary conditions are imposed (this is usually the
most difficult part), and (iii) high enough spatial and temporal resolutions are
used, this approach compares very well to experimental data. A fourth point
to consider is the numerical discretization errors, to be discussed further in
Chapter 2.3. One of the key attractions of a numerical simulation is that it
produces well-resolved data in time and space. The data do not only need to be
velocity or pressure fields, since all kinds of exotic quantities can be computed
on the fly or in successive post-processing steps. Especially quantities based on
pressure are notoriously difficult to obtain via experiments. Moreover, when
dealing with high temperatures and pressures (such as the environment in a
combustion chamber) experiments can be cumbersome, while simulations have
no difficulties. Finally, the ability to simulate ‘wrong’ physics should not be
underestimated as a great tool to understand flow physics. For instance, this

4For ideal gases, p ~ VT, where 1 is the dynamic viscosity and T is the temperature (Kundu
& Cohen 2008).
5Formally, this is true if the Knudsen number, Kn < 1 (see e.g. Gombosi 1994).



4 1. INTRODUCTION

can be accomplished by studying the effects of imposing artificial boundary and
initial conditions on the flow. An example is the concept of ‘minimal flow unit’
introduced by Jiménez & Moin (1991). The basic idea is to simulate a turbulent
flow in a channel (or any other canonical flow) and successively decrease the do-
main size until the point just before the flow relaminarises, but turbulence still
can be sustained. The observed turbulence in such a small domain contains less
degrees of freedom and thus facilitates understanding of the basic dynamics.
The same idea is used in Paper 5 to investigate the basic properties of vorticity
stretching in near-wall turbulence, and in Paper 4 to investigate the Koopman
mode decomposition (see Chapter 4). Another example by Jiménez & Pinelli
(1999) is to explicitly filter the turbulent scales above a certain distance from
the wall in order to examine the dependence of the near-wall turbulence on the
outer flow structures.

Solving the Navier—Stokes equations numerically without averaging and
modelling is referred to as direct numerical simulation (DNS) (used in Papers
1,2,4,5,6 and 7.). As point (iii) above suggests (and which holds true for
all numerical techniques solving PDEs in general) enough resolution in time
as well as space has to be used. The implication for a turbulent flow simu-
lation, where the spatial resolution scales as Re®* in each direction and the
temporal resolution scales as Re'/? (e.g. Pope 2000; Moin & Kim 1997), is that
this leads to a computational impossibility for high Reynolds numbers. As a
consequence, DNS has traditionally been obliged to reside in the low Reynolds
number regime, far from the ones at which experiments are performed. The
early numerical flow simulations focused on weather prediction, where simpler
forms of the Navier—Stokes equations where solved. In a first attempt by L. F.
Richardson around 1922, the result of a 6 hours weather forecast took 6 weeks
to compute by hand and did not give very realistic results (see the historical
review by Lynch 2008). Around 25 years later Charney et al. (1950) performed
the first correct weather forecast on ENTIAC (Electronic Numerical Integrator
And Computer), one of the very first electronic computers. The early simula-
tions of the full Navier-Stokes equations were mainly focused on the laminar
flow regime (Fromm & Harlow 1963). The first direct computation of turbu-
lence was performed by Orszag & Patterson (1972), who studied homogeneous
isotropic turbulence. A milestone in the simulation of wall-bounded turbulence
and the most cited paper® in the Journal of Fluid Mechanics was performed by
Kim et al. (1987), involving a computer engineer to change broken processors
during the simulation! The achieved Reynolds number of that simulation is
today considered to be relatively low, but nevertheless it greatly contributed to
understanding some properties of wall-bounded turbulence. More importantly,
it made numerical simulations qualify as an equally valid option to study fluid
mechanics besides experiments and theory. An example showing the possibility

SMost-cited ranking at Cambridge Journals Online - Journal of Fluid Mechanics, as given
in November 2011.
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FIGURE 1.1. Two equally valid ways to study flow dynamics:
(a) through experiments (cigarette smoke) and (b) by solv-
ing the Navier—Stokes equations numerically (reaction flame,
courtesy of Stefan Kerkemeier).

of simulations to mimic real flows can be seen in figure 1.1, where two transi-
tional flows are depicted. In (a) an instantaneous picture of cigarette smoke
(i.e. the ‘experiment’) is shown, whereas (b) shows a reaction flame obtained
by solving the Navier—Stokes equations numerically.

From the 1970’s until the present, computing hardware has followed the
so-called Moore’s law (Moore 1965), which states that the number of transistors
that can be placed on a chip doubles every two years, i.e. featuring exponential
growth. For many years, this could be directly related to an increase in proces-
sor clock-frequency and thus the number of floating point operations (FLOPS)
that could be completed in every second. In recent years, the clock frequency
for a given processor has almost reached its limit, and due to cooling issues ven-
dors instead favour multi-core chip design in order to keep up with Moore’s law.
Nevertheless, these rapid developments in computer hardware (and software)
have made simulations of turbulence, by means of DNS, approach experiments
in terms of Reynolds number. In this context, the term ‘numerical experiment’
has recently been adopted, see e.g. Schlatter et al. (2011b); Kasagi (1998). One
such example is the turbulent diffuser flow, which constitutes the main topic
of the present thesis (Chapter 5 and Papers 6, 7), where the Reynolds number
of Re = 10 000 exactly matched the experiment conducted by Cherry et al.
(2008). For this, a spatial resolution of approximately 220 million grid points
was employed.

For yet higher Reynolds number flows, large-eddy simulation (LES) (used
in Paper 3) has in recent years evolved into a promising tool for flow predic-
tions. Here, the evolution of the large scale structures of the flow (i.e. the large
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eddies) are solved for, whereas the smaller structures, not resolved by the nu-
merical grid, are modelled. Consequently, compared to DNS, LES reduces the
computational burden significantly. The drawback, however, is that the models
involved in LES are at the present not universal, and special care has to be
taken as new flow cases are being studied (see e.g. Sagaut 2006). Finally, the nu-
merical technique which can seriously deal with really high Reynolds numbers
are the so-called Reynolds-averaged Navier—Stokes equations (RANS), where
an ensemble average of the Navier-Stokes equations is solved for. The averag-
ing process gives rise to unclosed terms which have to be modelled. Although
RANS may be a rather crude way to describe a highly time-dependent flow, it
may in many situations be sufficient to compute the mean flow characteristics,
e.g. to get approximations of mean lift and drag forces on an airplane wing.
The drawback is that the validity of the results strongly depends on the given
closure term and that the fluctuating flow is small compared to the mean flow.
In particular, flows experiencing adverse pressure gradients and separation are
very hard to predict due to rapid changes in mean flow properties (Jakirli¢ et al.
2010b). Still, it is the most widely used approach for complex engineering flows,
where typical Reynolds numbers can be on the order of millions. Due to its
dependence on the modelling, this technique is of limited value for fundamental
studies in fluid mechanics and not considered within this thesis. The interested
reader is referred to e.g. Wilcox (1998).

1.3. Aim and outline of the present thesis

This thesis deals with the numerical solution of turbulent wall-bounded flows
including transition and separation. ‘Wall-bounded” means that the flow is
close to a solid surface, at which the fluid velocity is zero (a so-called ‘no-slip’?
boundary condition). In fact, all flows considered are internal, meaning that
the flow is either surrounded by walls or an infinite direction is assumed to ex-
ist by introducing periodic boundary conditions. These two types of boundary
conditions are generally better defined than the ones used for open or exter-
nal flows, such as the flow around a golf ball or an airplane wing, where the
computational domain has to be artificially truncated. The ‘transitional’ flows,
i.e. flows that during the course of the simulation go through laminar-turbulent
transition, have mainly served as validation cases and no new physics has been
investigated (see Chapter 3.2). ‘Separation’ relates to the phenomenon when
a flow departures from the surface, leading to reversed flow, which is com-
monly occurring behind blunt bodies (as opposed to streamlined bodies), such
as a football. A brief background concerning this topic and some results are
contained in Chapter 3.3 and 5. The tool used to solve the flow equations
numerically in a discretized form is the spectral-element method (SEM). Tt is
a high-order and accurate numerical method suited to solve non-linear, time-
dependent PDEs such as the Navier—Stokes equations. Its ability to build more

"Mathematically speaking, this means u = w = 0, where u,w denote the streamwise and
spanwise velocities, respectively. In addition, v = 0, where v is the wall-normal velocity, if
the walls are impermeable.
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complex geometries than traditional spectral methods and still maintain high
accuracy makes the spectral-element method attractive to research purposes
and, perhaps later on, industry.

The main goal throughout the work has been to accurately simulate ‘real’
turbulent flows on massively parallel computers, thereby matching the Rey-
nolds numbers employed in experiments. For this, work regarding numerical
stability and computational efficiency as well as detailed validations has been
an important part.

The thesis is organised as follows. The rest of Part I continues to introduce
concepts used in the present research project, with the help of some illustrative
results. Thus, Chapter 2 introduces the governing equations and how to solve
them using the spectral-element method. In Chapter 3 simulations of turbu-
lence, transition and separation using the spectral-element method are briefly
discussed. Chapter 4 deals with a few techniques used for the flow analysis,
whereas Chapter 5 is devoted to the physics of a complex three-dimensional
separated flow. Chapter 6 contains the conclusions and outlook. Finally, in
Chapter 7, one finds summaries of the papers together with author contribu-
tions and a list of conferences where the work was presented. Part II contains
seven papers on numerical stability, turbulent separation, vortex stretching and
Koopman mode decomposition.



CHAPTER 2
Flow simulations using high-order methods

Continuing the route embarked in the last chapter, where we introduced the
concept of numerically solving the equations of motion governing a fluid flow,
we will here on a more technical level outline how to proceed. We will start by
introducing the equations which are solved when we deal with direct numerical
simulations (DNS) and how to arrive at a slightly different set of equations
when using large-eddy simulation (LES). Then, in section 2.2, some of the
difficulties in solving these equations will be recapitulated and the concept of
high-order numerical methods (section 2.3) is introduced. In particular, we
will advocate for the use of these in flow simulations. The pseudo-spectral and
the spectral-element methods, which are the high-order methods used in this
thesis, are mentioned. The rest of the chapter (sections 2.4-2.6) is devoted to
the spectral-element method, which is the method responsible for the bulk of
the results in this thesis. In particular, the discretization and implementation
are outlined as well as some central issues regarding the stability of the method.

2.1. Governing equations

The governing equations for an incompressible and Newtonian' fluid flow are
given by the Navier—Stokes equations, here written in non-dimensional form,

Gu +u-Vu = —-Vp+ év% (2.1a)

ot
V-u = 0, (2.1b)

where u(z,t) = (u1,uz,u3)T = (u,v,w)T is the velocity field and p(z,t) is the
pressure field in space, z = (z1,22,73)T = (2,9,2)T, and time, t. Through-
out the thesis the convention will be used that x denotes the streamwise, y
the wall-normal and z the spanwise directions, respectively. The incompress-
ibility of the considered flow reduces the continuity equation (conservation of
mass), equation (2.1b), to the constraint that the velocity field is solenoidal.
The Reynolds number, Re = UL /v, governing the state of the flow (laminar,
transitional or turbulent) is based on characteristic velocity and length scales,
U and L respectively, together with the kinematic viscosity v. These character-
istic scales are used to non-dimensionalise the variables appearing in equation

n a Newtonian fluid (such as most gases and liquids), the shear stress, T, is proportional to
the strain rate, du/dy, with the proportionality constant being the fluid’s dynamic viscosity,
1, i.e. for a simple shear flow 7 = ug—z.
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(2.1). In this process, the time is normalised by L/U, whereas the pressure is
normalised by pU?/2, where p is the constant density. The evolution of the
large-scale structures, denoted by w(x,t) and p(«,t), are obtained by spatially
filtering the Navier—Stokes equations, thereby giving the governing equations
for LES,

%q; +a-Va = —-Vp+ évzﬁ -Vt (2.2a)
V-u = 0. (2.2b)
The filtering procedure gives rise to the so-called subgrid stresses (SGS) 7 =
uu — uu, which have to be modelled, since they cannot be expressed solely in
the known field, w. However, there exist several procedures where the subgrid
stresses are estimated from the resolved field, thus closing equation (2.2). The
simplest but also one of the most successful and widely used closure is the
Smagorinsky eddy-viscosity model, where the subgrid stress depends on the
resolved strain rate as
T=-2uS. (2.3)
S = %(V'E, + Va'T) is here the strain rate tensor and the eddy viscosity is
computed by
v, = CA?|S]|, (2.4)

(Smagorinsky 1963) where |S| is defined as |S| = V258 and A is the filter
width, usually computed from the local grid spacing. In the case of the dynamic
Smagorinsky model, the model coefficient, C', is computed according to the
dynamic procedure proposed by Germano et al. (1991) and Lilly (1992), where
a test filter is used to model the behaviour of the largest unresolved scales.
In the framework of SEM, the test filter is implemented in Legendre space
(see also Blackburn & Schmidt 2003). To limit the fluctuation of the model
coefficient, spatial averaging is used along the homogeneous spanwise direction
(see Lilly 1992) together with clipping of the model coefficient (negative values
are discarded).

2.2. Numerical and computational challenges

When we discuss numerical solutions to PDEs, such as the Navier—Stokes equa-
tions in the previous section, we are concerned with finding an appropriate dis-
cretization in time and space. In one space dimension this amounts to partition
the continuous domain x € [zg, ZTena] and t € [to, T to a set of points {x;}, {t;}
and solve the governing discretized equations on these points. This leads to a
discretization error (which is usually much larger than the round-off error due
to finite precision). Depending on the method of choice (the numerical analysis
part) and the given resolution (the computing part), the difference between the
numerical solution and the true solution will vary?.

2However, due to Laz equivalence theorem, for a well-posed problem and a consistent and
stable numerical method, the numerical solution is guaranteed to converge to the true solution
— at least for linear problems (see e.g. Leveque 2002).
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Over the last decades, much research has been devoted to the numerical
solution of the Navier—Stokes equations. There are three main difficulties which
contribute to make the problem one of the most challenging in numerical anal-
ysis. First, the importance of accurate discretizations is particularly evident
due to the non-linearity. Discretization errors are easily amplified and will lead
to inaccurate results or even numerical instabilities. From a given initial condi-
tion of some typical spatial scale, a non-linear term has the ability to produce
smaller and smaller scales (depending on the given forcing and boundary con-
ditions), which easily can lead to regions in the flow with insufficient spatial
resolution.

Secondly, the nature of the equations are singularly-perturbed, which means
that they are governed by a small parameter which cannot be set to zero. This
parameter is nothing but the inverse of the Reynolds number multiplying the
second derivative term. Thus, setting it to zero would change the number of
boundary conditions and therefore drastically the dynamics of the system. In
that case, we would arrive at the Euler equations, which is a purely hyperbolic
system. The implication of this parameter being nonzero is the presence of
boundary layers, which get thinner with increasing Re. The solution will there-
fore contain dynamics simultaneously present at several different scales, which
calls for demanding resolution requirements.

Thirdly, the incompressible Navier-Stokes equations are of a mized
parabolic-hyperbolic type, which implies that efficient numerical methods for
purely parabolic problems (e.g. explicit marching methods) or hyperbolic prob-
lems (e.g. based on characteristics) are excluded. Conversely, in the case of a
pure parabolic or hyperbolic problem, the algorithms employed can be more
specialised and thus more efficient.

The two first points above lead to the presence of small scales in time and
space. The major challenge for simulations of flows by means of DNS is there-
fore that the total resolution requirements scale as n ~ Re''/* (e.g. Pope 2000;
Moin & Kim 1997). The use of parallel computers is thus unavoidable. One
of the advantages of the incompressible formulation of the Navier—Stokes equa-
tions in equation (2.1) is that the equation governing the internal energy, e, of
the fluid is decoupled from the system of equations. This approach enables the
internal energy to be converted into temperature?, which can then be treated as
a passive scalar. In that case, one solves the heat equation as a complementary
equation, which is not needed to advance the flow. While this approach re-
duces the number of independent variables from 6 (u,p, e, p) to 4 (u,p), it also
leads to the second challenge in flow simulations, namely the necessity to solve
an elliptic problem for the pressure (see section 2.5 for further details). Since
elliptic problems involve a global coupling, i.e. a dependence of one variable
(in this case the pressure) on another variable (velocity) and vice versa in the
entire domain, this will complicate the parallelisation of the numerical method.

3This is accomplished through the relation T = e/C,, where C, is the specific heat at
constant volume and 7' is the temperature.
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From a physical point of view this means that pressure waves, i.e. the speed
of sound, travel with infinite speed throughout the domain and are therefore
‘sensed’ in all other points. This is in contrast to compressible flows, where the
speed of sound has a finite value. Practically, the processors involved in the
computation need to communicate with each other in every time step.

Facing the above challenges seems indeed as a difficult task. A promising
approach, which has gained interest in the past few years, are the lattice Boltz-
mann methods (LBM), which instead of solving the discrete Navier—Stokes
equations solve a discrete variant of the more general Boltzmann equation.
Their main strengths are computational speed, due to good parallel efficiency,
together with their ability to handle complex geometries. There are however
open issues regarding the accuracy at high Reynolds and Mach numbers. Fur-
ther, most of the LBMs require the lattice structure to be uniform throughout
the domain and therefore unnecessary resolution in certain regions is a conse-
quence (Succi 2001). Holding on to the discrete Navier-Stokes equations, the
best we can do is to choose a high-order numerical method — to be investigated
in the next section.

2.3. High-order numerical methods

When solving a PDE, the solution is typically approximated by continuous
functions, often polynomials, whose derivatives need to satisfy the governing
equations at discrete (grid) points. The notion of ‘order’ for a numerical method
refers to the order of these polynomials. This applies both to time and space
discretizations, but in the following we shall focus on the space discretization.
Let us for the sake of illustration consider an arbitrary (smooth) function f(z)
in one space dimension, approximated by f (z). Based on the approximated
solution, we can define the derivative, f'(z) ~ f’(z). Local methods, such
as most finite difference- (FD), finite volume- (FV), and finite element (FE)
methods used in commercial CFD packages are of low order and approximate
the derivatives based on the local solution, i.e. data values in the immediate
neighbourhood. To be more specific, for a finite difference approximation,
where the derivative and corresponding discretization error are derived from a
Taylor expansion around point x;, this implies
f(@i +h) — f(z:)

! —

f (xl) - h
where h defines the distance between two adjacent grid points. Equation (2.5)
thus states that the discretization error is proportional to the grid size, and
by doubling the number of points, the error is reduced by a factor two. If the
polynomial is of higher order, we can use not only neighbouring points to define
the derivative at point x;, but also points further away, which will enhance the
accuracy and decrease the error of the approximation. Indeed, if we instead of
the above one-sided finite difference employ a central finite difference, we get

+O(h), (2.5)

z flzi+h) = flz; —h)

Piai) = o + o), (2.6)
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which means that the error decreases quadratically with the grid size and we
would arrive at the same error as before by using /2 (instead of 2) times
more grid points. Thus, the order of the approximated solution will be directly
related to the number of grid points needed for a certain numerical error.

If we take this idea one step further, we can define derivatives based on
polynomials that live on the entire interval. Consequently, they are not any-
more local but instead we denote them as global. Such polynomials can be
interpolants based on equidistant points, as in the finite difference example
above, or more exotic polynomials such as Chebyshev or Legendre polynomials
with a non-equidistant point distribution. The latter category is the preferred
choice in problems with inhomogeneous boundary conditions, where the former
has problems?. In fact, the global functions do not need to be polynomials at
all. Perhaps the most obvious option one may think of are the trigonometric
functions. By using these, we will arrive at Fourier spectral methods, further
discussed below.

For sufficiently smooth problems, numerical methods based on global func-
tions display a so-called spectral convergence or spectral accuracy, which is no
longer an algebraic error decay as O(h™), where m = 1,2, ... depending on the
order of the method, but rather an exponential one, O(c"), where N is the
total number of points and 0 < ¢ < 1. Having such a rapid convergence of the
solution implies that the discretization (or truncation) error in principle goes
to zero and one is left with the round-off error, which is on the order of 10716,
Other desirable properties, which are connected to the high level of accuracy,
are the low amounts of numerical (i.e. artificial) viscosity and dispersion errors
which yield particularly satisfactory results at high Re, where flow structures
are not easily dissipated but rather convected for long distances and times.
Coincidentally, the lack of numerical viscosity could also be a source of trou-
bles. Especially at high Re, when the actual viscosity contributes with little
damping in the system, high-order methods might suffer from stability issues.
This is further discussed in section 2.6.

As the previous examples have shown, the resolution requirements for
a given discretization error relaxes when employing higher-order methods.
Clearly, this is computationally beneficial. However, the solution strategies
used do also play a crucial role (see e.g. Vos et al. 2010, for an in-depth anal-
ysis of the issue). This will be further touched upon in section 2.5. A final
reason to choose a high-order method, which may seem trivial but is becom-
ing increasingly important, is the saving, transferring and post-processing of
simulation data. As a high-order method can suffice to use much less resolu-
tion for a given accuracy compared to a low-order method, the data files will
consequently be much smaller.

While the key to success for high-order methods is the global representation
of the approximated functions, it is also their limitation. Troubles appear

4The Runge phenomenon (Runge 1901) will cause large oscillations of the approximated
solution near the edge of the interval when an equidistant point distribution is employed.
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whenever the geometrical complexity increases. Local methods, on the other
hand, can be made geometrically very flexible, which is of particular importance
when considering engineering applications. As we will soon see, the spectral-
element method can handle moderately complex geometries, while maintaining
high order.

Finally, a remark regarding the time discretization. The so-called CFL con-
dition, which defines the maximum allowed time step given a particular grid size
(C = umaxAt/Az, C < 1) usually gives a time step so small that a relatively
low order (typically 2 — 3) is sufficient for the solution to be well converged in
time. Note, however, that care must be taken in order to perform the time dis-
cretization accurately. For the Navier—Stokes equations, usually a semi-implicit
time advancement is employed, with explicit treatment of the non-linear terms
and implicit treatment of the viscous and pressure/incompressibility terms, see
e.g. the review by Moin & Mahesh (1998).

In the following, we will review the two high-order methods used in the
present thesis.

2.3.1. The pseudo-spectral method

As mentioned above, a (Fourier) spectral method is obtained when we wish to
approximate the solution to the governing equations by a sum of trigonometric
functions, i.e.

u(z,t) = Zem'mﬂ(kz,t), (2.7)

where Kk are the wavenumbers and @ are the Fourier modes. The lowest
wavenumber (in the a-direction) is |kg| = 27/L,, assuming L, is the size of
the domain in the z-direction; whereas the highest is given by |Kmax| = 27/Ax,
where z is the grid spacing. Upon substituting equation (2.7) into the govern-
ing equations, this amounts to a transformation of the Navier—Stokes equations
into Fourier spectral space. Hence, the unknowns are the Fourier modes. The
non-linear terms in the Navier—Stokes equations turns into a convolution sum
when transformed into spectral space. To avoid the large number of opera-
tions involved in evaluating this sum, Orszag (1972) introduced the pseudo-
spectral methods, where the solution is transformed into physical space prior
to evaluating the non-linear terms, which then consists in performing simple
multiplications. This reduces the cost from ~ N operations in each time step,
where N is the total resolution, to ~ N3loglNV, given that the fast Fourier
transform (FFT) is used. Virtually no method can compete with a pseudo-
spectral method regarding accuracy and speed in canonical flow cases, such as
channel flows (shown in Paper 1) or boundary layers. Thus, the largest direct
numerical simulations so far have made use of pseudo-spectral methods; for in-
stance the simulation of homogeneous isotropic turbulence in a triple-periodic
box using ~ 69 billion points by Kaneda et al. (2003), or the boundary-layer
simulation using ~ 7.5 billion points by Schlatter & Orlii (2010). However,
their superiority also leads to the restriction that they only work efficiently for
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these very simple geometries (Canuto et al. 1988). For instance, the expansion
in Fourier series requires the solution to be periodic. For a growing boundary
layer this can be circumvented by the use of a ‘fringe’ (Nordstrom et al. 1999)
in the streamwise direction and expansion in Chebyshev polynomials in the
wall-normal direction. This is however, at the limit of its complexity. Further
details about the particular spectral code simson used in this thesis can be
found in Chevalier et al. (2007).

2.3.2. The spectral-element method

A method that is capable of combining the accuracy of the Fourier spectral
methods and the flexibility of methods based on low-order local approaches
is the spectral-element method (SEM), introduced by Patera (1984). It is a
high-order weighted residual technique similar to FEM, but based on orthog-
onal polynomials and highly accurate numerical quadrature. The original im-
plementation by Patera (1984) was based on Chebyshev polynomials, but later
implementations have rather been utilising Legendre polynomials. The method
exhibits several favourable computational properties, such as the use of tensor
products and naturally diagonal mass matrices, which makes it suitable for
parallel implementations and large calculations.

In the following section, we will discuss how the discretization by the
spectral-element method can be accomplished. Whereas the main steps are
outlined here, the reader is referred to Fischer (1997); Tufo & Fischer (2001);
Deville et al. (2002) for a more detailed description of the spatial discretization
and time integration. Key concepts are the ‘weak form’ and ‘Galerkin pro-
jection’ together with ‘high-order basis functions’. Then, in section (2.5), the
practical implementation is sketched and the importance of efficient solution
techniques by means of scalable coarse-grid solvers is highlighted.

2.4. Discretization by the spectral-element method

Assuming we are solving equation (2.1) in a domain 2, the starting point
for a SEM discretization, as in the case for FEM, is to cast the problem in
the weak formulation, in which equation (2.1) is multiplied by a test function
(v,q) € H}(2) and integrated over Q. Here, H{ () denotes the space of
functions in L%(2) (the space of square integrable functions defined on )
vanishing on the boundaries and whose first derivative is also in L?(2). The
viscous term is integrated by parts, such that the highest existent derivative is
of first order. The problem (2.1) then becomes: Find (u,p) € H/} , such that

d 1

3w+ (0w V) = (p,Vv) - o

g (Vo,Vu), (V-u,q) =0, Y(v,q) € H}

(2.8)
where the inner products (-, -) are defined as

(v,0) = /Q vu da. (2.9)
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The discretization proceeds by the Galerkin approximation, where the test and
trial spaces are restricted to the velocity and pressure spaces X C H} and
YN C L? respectively following the Py — Py _o SEM discretization by Maday &
Patera (1989), where the pressure is associated with polynomials of two degrees
lower than the velocities. This staggered approach was originally reasoned to
avoid spurious pressure modes. However, more recent discretizations of SEM
utilising Py — Py shows that this does not have to be the case (Tomboulides
et al. 1997). The FEM and SEM differ by the choice of X~. While linear
functions are commonly employed in FEM, for SEM this is typically a space of
Nth-order Lagrange polynomial interpolants, hl¥ (), based on tensor-product
arrays of Gauss-Lobatto-Legendre (GLL) quadrature points in a local element,
Q¢ e = 1,..., E, satisfying hfv(fjv) = 0;;. Here, €]N € [-1,1] denotes one of
the N 4+ 1 GLL quadrature points and ;; is the Kronecker delta. For a single
element in R? the representation of u € X% is

N N N

w(@(r,s,t))lae = > Y Y ufh ()b (s)hy (1), (2.10)

i=0 j=0 k=0

where «¢ is the coordinate mapping from the reference element Q) to the local
element 2 and ug;, is the nodal basis coefficient. Inserting the SEM approxi-
mation equation (2.10) into equation (2.8) and employing Gaussian quadrature
for the integrals, yields the semi-discretized equation

du 1
B—=DT — — Ku, Du= 2.11
v p—Cuwu 7o lfw, Du=0, (2.11)

where B and K are the spectral-element mass and stiffness matrices respec-
tively, C'(u) denotes the non-linear operator and D, D™ are the discrete diver-
gence and gradient operators, respectively. Temporal discretization of equation
(2.11) is based on high-order splitting techniques, described in Maday et al.
(1990). In this way, the non-linear convective terms are allowed to be treated
explicitly by second or third-order extrapolation (EXT2/3), in order to re-
duce computational cost, whereas the viscous terms are treated implicitly by
a second or third-order backward differentiation scheme (BDF2/3) to ensure
stability. This eventually leads to a linear symmetric Stokes system for the
basis coefficient vectors u™ and p" to be solved at every time step, n

Hu" — D™p" = Bf", Du" =0. (2.12)

Here, H = (1/Re)K + (3/2At)B is the discrete equivalent of the Helmholtz
operator —(1/Re)V?2 + 3/2At (in the case EXT2/BDF2 is used). In the RHS,
f™ accounts for the non-linear terms and for the cases we have external forcing
in the Navier-Stokes equations.

2.5. Implementation

To be able to solve large flow problems involving millions of unknowns on thou-
sands of processors, the final problem, equation (2.12), has to be treated with
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special care. A detailed description of the linear solvers used in the spectral-
element code nek5000, developed and maintained by Fischer et al. (2008b)
and employed for the Navier—Stokes simulations in this thesis, can be found in
Lottes & Fischer (2005) and Tufo & Fischer (2001). Here, the main steps are
sketched.

The general idea is to decouple velocity and pressure by the operator split-
ting technique described in Maday et al. (1990) and Perot (1993), where first a
Helmholtz equation is solved based on the pressure field from the previous time
step, thereby giving an approximate, non-divergence free velocity field, @™,

Ha" = Bf"+ D p" !, (2.13)
followed by a pressure correction step
Eop™ = —-Da", (2.14)

where E = (2At/3)DB~!D" (assuming BDF2) is the Stokes Schur comple-
ment and consistent Poisson operator for the pressure (Couzy 1995; Fischer
1997), introduced to avoid the slow convergence associated with the Uzawa
algorithm (Arrow et al. 1958). The splitting error is of O(At?) (Deville et al.
2002), i.e. not larger than the temporal discretization errors. Finally, the ve-
locities and the pressure are updated

2At
u" =a" + TB*lDTapn, (2.15)
pr=p" T+ op" (2.16)

For large Re and small At, the Helmholtz operator is symmetric and strongly
diagonally dominant, thus the d Helmholtz problems (equation 2.13), where
d denotes the space dimension, are well conditioned and solved iteratively us-
ing conjugate gradients with a Jacobi preconditioner. In contrary, the Poisson
problem, equation (2.14), is stiff, and the operator E is ill-conditioned. The
reason for the stiffness is the infinite wave speed of the pressure caused by
incompressibility, as discussed in Chapter (2.2). Thus, the bulk of the com-
putational effort is spent here. Equation (2.14) is solved via spectral-element
multigrid (SEMG) methods, where GMRES is accelerated by a preconditioner
based on two overlapping Schwarz solves, typically on levels N and N/2 (Lottes
& Fischer 2005) and a coarse grid solution. The global coarse-grid problem is
based on linear finite elements on the element vertices and solved either using
the direct and highly parallel so-called X X T-solver or by using the iterative
AMG (algebraic multigrid) approach, which is more communication intensive
but gets relatively more efficient for larger problems (see Tufo & Fischer 2001;
Lottes & Fischer 2005, respectively). The scalability of these solvers is a key
issue in an efficient and massively parallel implementation, as this step intro-
duces the global communication. The local problems (on element level) are
solved using the fast diagnonalisation method (Lynch et al. 1964), which is
based on decomposing the local operator as

E.=E,®@I+1®E,=D,B'D] ®I+1®D,B "Dy, (2.17)
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where I is the identity matrix and using the definition of E above (except
for 2At/3). The " denotes the one-dimensional matrix operators defined on a
reference element, in particular ﬁy and D, denote the derivative matrices, re-
spectively; and ® is the Kronecker product. For simplicity we ignore boundary
conditions and different meshes associated with the Schwarz procedure. If E,
and Ey are diagonalisable with

E, = S,A, ST, B, = S,A,Sy), (2.18)

where S, and S, consists (columnwise) of the eigenvectors of E, and E'y respec-
tively, and A, and A, are diagonal matrices with the respective eigenvalues,
then F° may be diagonalised as

Ee=(Sy ® So)(Ay @ I +1® M) (S, ®S;), (2.19)
giving the inverse as
E;l = (8 ®8:)(Ay®T+T@A,)" (S @ST), (2.20)

which can be easily computed since (Ay ® I + 1 ® A,) is diagonal.

It is the tensor-product structure of the approximation (2.10), which gives
rise to the expressions above, e.g. equation (2.19), for the local operators. To ac-
tually evaluate these operators, the naive approach for a matrix of size n, would
mean a total of O(n*) operations in 2D and large amount of memory storage.
However, by employing matriz-matriz products the evaluation can be done in
an order of magnitude fewer operations and in a much more cache efficient way.
In essence, it exploits the following relationships (see e.g. Deville et al. 2002, for
more details): Assuming we want to apply the combined operator C' = AB to a
two-dimensional field, u of size N x M, where u = (ugg, U10, .., UNQ, -y UNDL) -
Then, the usual matrix-vector product would be

v = Cu, (2.21)

where C' = AB = (A®I)(I ® B) = (AI ® IB) = (A® B). By instead putting
the entries of u;; and v;; into a rectangular matrix U;; and V;; of size N x M it
can easily be verified that the following form is equivalent to equation (2.21),

V = BUAT, (2.22)

which consists of two matrix multiplications with complexity O(n?), assuming
M ~ N = n. Thus, factorisations of tensor products of this kind reduces the
total number of operations from O(n??) to O(n?*!) in d dimensions and also
reduces memory usage since no large matrices are explicitly formed. Last but
not least, it enables the use of highly optimised matrix-matrix routines (mxm)
to solve the final system of equations (see e.g. Fischer 1997).

In order to further speed up the convergence of the Poisson problem (2.14),
the fact that the pressure field is unlikely to change abruptly over a series of
successive time steps is utilised. The current solution is projected onto a space
of previous solutions (over the last ~ 20 time steps), and used as an initial
guess for the iterative solution of the equation (2.14), further outlined in Fischer
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(1998). Utilising all these methodologies altogether have resulted in very good
scaling properties on several different architectures, of which some are briefly
discussed below.

2.5.1. Scaling of the numerical code nek5000

This section provides some information about the efficiency and scaling prop-
erties of the spectral-element code nek5000. The specific hardwares utilised for
the various computations in this thesis were the Cray XE6, the AMD Opteron
cluster ‘Ekman’ at PDC (Stockholm) and the Blue Gene/P at ALCF (Argonne
National Laboratory, ANL). As outlined below, the machines have rather dif-
ferent architectures. The Cray XE6 computer has dual 12-core nodes connected
by a 3D-torus Gemini network. The actual CPUs are 2.1 GHz AMD Opteron
6100 series. Theoretical peak performance (TPP) on the maximum number of
cores (32 768) used is 275.2 TFlop/s and the total amount of memory is 42.6
TByte. ‘Ekman’ is a distributed memory cluster, where each node consists of
two AMD Opteron 2.2 GHz quad-cores, such that each node has effectively 8
cores. The interconnect is a full bisection bandwidth (FBB) InfiniBand fabric
with a multiple root tree structure. All links are 4xDDR making the per-link
bandwidth 2 GB/s. The Blue Gene/P has quad-core 450 PowerPC nodes at
a clock frequency of 850 MHz. The network consists of both a torus network
(6 GB/s) and a global collective network (2 GB/s). Here, the TPP is 222.8
TFlop/s and the memory is 65.5 TByte on the maximum number of cores used
(65 536). The curves in figure 2.1 show strong scaling on the Cray XE6 (x),
‘Ekman’ (o) and the Blue Gene/P (+) for exactly the flow case used for the
production runs presented in Papers 6 and 7, where a total resolution of ap-
proximately 220 million grid points was utilised by employing 127 750 spectral
elements with a polynomial order of 11, respectively. Ideal (linear) scaling is
included for reference (thin solid). In particular, we show the mean wall time
per time step, t,,, in seconds averaged over 200 time steps for increasing number
of cores. On all machines, we can observe a very good usage of the hardware
provided. More specifically, the scaling is essentially linear up to 16 384 cores
on the Cray XE6 and up to 32 768 cores on the Blue Gene/P, with a speedup
of 91 % and 84 %, respectively. It should be pointed out that for this large
number of cores (32 768) there are less than 4 elements (~ 6700 grid points)
present on each core, which puts high requirements on the efficiency of the
global communication. After this point, the curves departure from the linear
scaling, and we measure a speedup of 70 % on the Cray on 32 768 cores and 77
% on 65 536 cores. We note that the simulation on Blue Gene/P is in general
approximately a factor 2 times slower for the same number of cores, which is
mainly due to its ~ 2 times slower processors. On the other hand, the linear
scaling for Blue Gene/P is levelling off at a later point compared to Cray XE6.

2.6. Stabilisation at high Re

Due to the non-linearity of the advective term in the Navier-Stokes equations,
the numerical quadrature employed for the integrals in equation (2.8) cannot
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FiGure 2.1. Wall time per time step for a fixed problem size
(i.e. strong scaling) involving ~ 220 million grid points, as a
function of numbers of cores on Cray XE6, PDC (x), Blue
Gene/P, ANL (+4) and the AMD Opteron cluster ‘Ekman’,
PDC (o). Ideal scaling is included for reference ( ).

be integrated exactly. These numerical errors — similar to aliasing errors in
pseudo-spectral methods — are enhanced in turbulent flow simulations where
sharper gradients are present leading to more excited modes in the polynomial
expansion. At high Re, when little dissipation is provided, these errors are
known to affect the stability of the method (see e.g. Fischer & Mullen 2001;
Xu 2006; Wasberg et al. 2009) and some kind of stabilisation technique has
to be used, where e.g. over-integration (see e.g. Kirby & Karniadakis 2003;
Maday & Rgnquist 1990; Canuto et al. 1988), filter-based stabilisation (Fischer
& Mullen 2001) or the spectral vanishing viscosity (SVV) technique (Tadmor
1989; Pasquetti 2006; Karamanos & Karniadakis 2000) have been proposed.
Among these, the two former techniques are further investigated in Paper 2.
Over-integration is a way of performing dealiasing, where over-sampling is made
by a factor 3/2 in order to exactly evaluate the quadrature of the inner products
for the advective term. The other two techniques rather aim at reducing aliasing
errors by filtering and dissipation. The inaccuracy of the integration arising
from the weak form is realised by noting that Gaussian quadrature on the GLL
points, defined by

1 N
[ uwide =3 pates), (2.23)
-1 k=0

holds as long as the integrand u(x) is a polynomial of order 2N — 1. In SEM,
where the Galerkin projection is employed, the integration of a polynomial
u € Py is accompanied with the multiplication of a test function v € Py as
given by equation (2.9). This amounts to integrate ¢ = uv € Pay, which
can be done almost exactly with the resulting error being exponentially small.
This is e.g. the case for the du; /0t terms in the Navier—Stokes equations. The
viscous term in the Navier—Stokes equations is always treated correctly since
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here, ¢ = u/v" € Pyn_s, where prime denotes the differentiation. On the
other hand, the quadratic term in the Navier—-Stokes equations gives rise to a
polynomial ¢ = vuu’ € P3n_1, which exceeds the critical order and will fail to
be integrated correctly. However, if the original grid is extended with a factor of
3/2 times more points in each direction, such that the quadrature order is M =
3(N+1)/2—1, all polynomials up to order 2M —1 = 2(3(N+1)/2—1)—1=3N
— and hence ¢ — can be integrated exactly, and no errors are created.

The idea behind over-integration is to recover a true Galerkin method,
which amounts to do the following (here shown by a 1D example):

Ju ou

(v, uz v = (v, ug ), (2.24)

where (+,-)as denotes the inner product on the fine grid, which in practice is
accomplished by interpolating the functions involved to the fine grid by the
Lagrangian interpolation operator J defined as J;; = hZM (§JN ), which, by use
of equation (2.23) gives

M M

(%U%)M = v(&)prul€) Dau(r) =Y (Jv)epr(Ju)s D (Ju)y, =
k=0 k=0
= (Juv)" By diag(Ju) Dy Ju = v JT Byydiag(Ju) Das Ju =
_ QTCMQ, (225)

where By = diag(py) is the diagonal mass matrix with integration weights on
the fine grid, Dj; denotes the derivative matrix on the fine grid, and Cy; =
JT Byrdiag(Ju) Dy J finally denotes the N x N convective operator. This way
of removing aliasing errors was employed in the scalar transport equation in
Paper 2 as well as in the turbulent and transitional flow simulations throughout
this thesis.

Alternatively, the removal of aliasing errors could be done in the following
way, where the non-linear product is interpolated and collocated on the fine grid
and then projected back with a spectral cut-off operator to the coarse grid prior
to doing the integration. This method was considered for the Burgers’ equation
in Paper 2, where it indeed proved to remove aliasing errors. Symbolically, this
would read

ou N .
(’U,U%)N = kZ:OUkPkPNdlag(Ju)kDM(JU)k =
= v" By Pydiag(Ju)DarJu = v" Cyu, (2.26)

where Py is the N x M projection operator transforming a function into Le-
gendre spectral space, setting the M — N last modes to zero and then trans-
forming back to physical space. By = diag(pk) is the diagonal mass matrix
with integration weights on the coarse grid, D), is again the derivative matrix
on the fine grid, and Cy = By Pydiag(Ju)DyJ finally denotes the N x N
convective operator. For either method, setting equation (2.25) or equation
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(2.26) equal to some RHS (v, f) and testing with v; = hY (€)) gives finally a
linear system of equations to solve.

The filter-based stabilisation for SEM was first proposed by Fischer &
Mullen (2001), where also the efficiency and its good stabilisation properties
were shown. The filter works in the following way: By defining an explicit filter
operator, F, = ally_1 + (1 — a)I, and IlIy_1 : Pn(2) — Py—1(Q2) — Py (Q),
where Px () is the space of polynomials of maximum degree N defined on €,
« is a relaxation parameter such that 0 < v < 1 and I is the identity matrix,
one acts on the velocity vector at each time step, such that

"t = FLantt, (2.27)

where @"*! is the unfiltered field at the current time step. This allows for a
smooth damping of the highest mode with effectively no changes to the ex-
isting solver. The result is that spurious oscillations are removed and hence
the stability of the method is enhanced. In Paper 2, we show that turbulent
flow simulations, which are otherwise unstable, can be efficiently stabilised by
employing one of the tools described above.

+
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CHAPTER 3

Spectral-element simulations of turbulence,
transition and separation

Having introduced the high-order spectral-element method in the previous
chapter, we now turn to some of the flows studied in this work. This chap-
ter aims at placing the spectral-element method in relation to other methods,
which is put into practice by applying it to some well-known turbulent, transi-
tional and separated flow cases. In addition, we will investigate how to generate
realistic turbulent inflow conditions. As soon as this is done, we will explore
a more recent flow in Chapter 5. Again, it should be stressed that it is not
a complete overview. Rather, it is intended to be an essay introducing some
important concepts together with some interesting results encountered during
the course of this work.

3.1. Turbulence
3.1.1. FPundamentals

Over the past years, the spectral-element method has mainly been applied
to laminar and transitional flows (e.g. Tufo & Fischer 2001; Sherwin & Kar-
niadakis 1995; Tomboulides & Orszag 2000), but has in recent years gained
attention also for turbulent flow simulations (Wasberg et al. 2009; Blackburn
& Schmidt 2003; Iliescu & Fischer 2003; Bouffanais et al. 2006; Fischer et al.
2008¢a; Kirby & Karniadakis 2003), thanks to the stabilisation tools described
in section 2.6. Advantages, among others, are the method’s low numerical dis-
sipation and dispersion errors, which benefit investigation of individual flow
structures, and its parallel efficiency, as turbulent flow simulations tend to be
computationally challenging. Finally, the geometrical flexibility enables studies
of flow cases, which traditionally have been out of reach for high-order meth-
ods, e.g. the turbulent diffuser flow at Re = 10 000 (based on bulk velocity and
inflow-duct height) shown in figure 3.1(b).

In turbulent flows, one usually applies the Reynolds decomposition over
homogeneous directions, denoted by

u; = <Uj>hom + u; = Uj + u; (31)

such that (u}) = 0, with u; being the velocity in direction j for j = 1, 2, 3
and u; = u, us = v, u3 = w and () denoting an ensemble average. One of
the very first simulations of wall-bounded turbulence by Kim et al. (1987) was

23
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FIGURE 3.1. (a) Sketch of the plane channel flow configuration
used as a reference case in this thesis. The coordinates z; =
denote the streamwise, o = y the wall-normal and x3 = 2
the spanwise directions, respectively. (b) High-order numerical
simulation of a turbulent diffuser flow at Re = 10 000 studied
in the present work.

performed in a channel geometry, i.e. a flow between two walls and with periodic
boundary conditions in the spanwise and streamwise directions, here sketched
in figure 3.1(a). This case will frequently appear throughout this thesis (Papers
1,2,4,5), both when considering turbulent and transitional flows. When we are
interested in turbulent statistics, the channel has dimensions L, x L, x L, =
4drh x 2h x 2mh and L, x Ly x L, = 2wh x 2h x wh for the different Reynolds
numbers considered, inspired by Moser et al. (1999). Here, h is the channel half
width. When we investigate the properties of a ‘minimal flow unit’ (Chapter
4), a considerably smaller domain is chosen: L, x LyxL,=mhx2hx0.3rh,
similar to Webber et al. (1997). The channel flow’s main attraction is that it
is the most fundamental of all wall-bounded flows. It exhibits two statistically
homogeneous directions in space given by z, z along with time, ¢, which enables
good averaging of turbulent statistics. As time is a homogeneous direction, the
simulation is said to be temporal as opposed to spatial, i.e. the flow evolves
in time rather than in space. The fact that the flow is symmetric around
the channel centre is additionally exploited to increase the convergence rate
of the statistics. The rich homogeneity results in a sole dependence of all
turbulent quantities on the wall-normal direction in one channel half. During
the simulations, the mass flux is held constant by introducing a constant non-
dimensional bulk velocity in the streamwise direction as

1 [Lu/2
up = — U(y)dy = 1. (3.2)
Ly —Ly/2
The corresponding fixed Reynolds number is defined as

uph 2
Rey, = % = §R€CL|1am, (3.3)
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FiGure 3.2. Computed Re, as a function of number of de-
grees of freedom in each spatial direction for the pseudo-
spectral code (black) and different polynomial orders for the
spectral-element code (blue: 11th order, red: 7th order).
( ) DNS of Moser et al. (1999).

where ucrjlam = u(y = 0) = 3/2 for the laminar flow, h again being the
channel half width and v the viscosity. For simulations based on a fixed mass
flux, the skin-friction Reynolds number, defined as (written in non-dimensional
variables)

aU(y)

dy

where the ‘friction velocity’ in an incompressible flow is given by

Ur = \/Tu, (3.5)

, (3-4)

wall

and the wall shear stress,

_ 1 oUW
Tw = Rey | Oy

is not given a priori as would be the case in a simulation driven by a fixed
pressure gradient. Instead, it is computed and used to control the validity of a
turbulent channel flow simulation or to track when or where transition occurs
in a transitional flow simulation. An example of the former is shown in figure
3.2, where we compare the performance of the spectral-element method for two
different polynomial orders (blue: 11th order, red: 7th order) to the pseudo-
spectral method described in the previous section (black). The bulk Reynolds
number is prescribed to be Re, = 2800, which should give a Re, = 180 for
an accurate numerical simulation. The black horizontal line shows published
spectral DNS data by Moser et al. (1999). We note that the actual skin-friction
Reynolds number converges to the target Reynolds number with increased res-
olution. Here, dof = ‘degrees of freedom’ is defined as the resolution in one
spatial direction. Clearly, the underresolved simulations overpredict the skin-
friction. This well-known fact simply stems from a too steep velocity profile

: (3.6)

wall
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FIGURE 3.3. Turbulent channel flow simulations at Re, = 590
with polynomial order 15 (a resolution of 288 in the homoge-
neous directions and 192 in the wall-normal direction) show-
ing (a) mean velocity profile, (b) Reynolds stresses. (-------- )
Fourier pseudo-spectral DNS data by Moser et al. (1999),
(=-=) log law, ( ) SEM with filtering (5 %), (----) SEM
with over-integration + filtering (5 %).

close to the wall. We further observe that the convergence rate is similar for
all cases, which indicate that 7th order basis functions are sufficient to capture
one of the essential features in a turbulent flow.

Two other typical examples of flow quantities that need to be accurately
captured in a turbulent flow simulation are shown in figure 3.3 for a channel
flow conducted at the considerably higher Reynolds number Re, = 590. In
figure 3.3(a) the turbulent mean velocity profile is shown, whereas the mean
fluctuations (around this mean flow) are reported in figure 3.3(b). We observe
very good agreement between the results computed with the spectral-element
code to results pertaining to the Fourier pseudo-spectral DNS by Moser et al.
(1999) and the so-called ‘log law’ (see e.g. Pope 2000), given by

ut =gyt (3.7
1
ut = Elog(lﬁ) + B, (3.8)

where Kk = 0.41 and B = 5.2. The two spectral-element simulations differ
in the way they are stabilised. One of them makes use of the spectral filter
described in Chapter 2.6, whereas the other uses over-integration together with
the filtering. The difference can be seen to be minute. Note that quantities in
wall-bounded turbulent flows are conveniently expressed in ‘plus-units’, which
denotes a scaling in viscous units (see the axes in figure 3.3). Thus, based
on the friction velocity given by equation (3.5) one can define a length scale
as I* = v/u,. By applying this scaling, the wall-normal coordinate and the
velocity become y™ = y/I* and u™ = U/u,, respectively.

In practice, the time average is computed during the simulation, whereas
the spatial average is performed in a post-processing step. By saving not only
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(uj) but also (u3), the root-mean-square (r.m.s) can easily be computed as
(here shown for the streamwise component),

Urms =V (W?) =/ (0?) = (u)? = /(u?) - U2 (3.9)

In a similar fashion, the rest of the terms in the Reynolds stress budget are
computed.

3.1.2. Turbulent inflow conditions

This section is closed with a remark on boundary conditions for turbulent flow
simulations. In most practical applications, turbulent flows evolve spatially
rather than temporally, i.e. the statistics of the flow exhibit streamwise de-
pendence. This poses a greater challenge due to the requirement of specifying
proper turbulent inflow conditions, which strongly determine the downstream
evolution of the flow. Much work has been devoted to finding inflow conditions
that minimise the computational cost but still ensure a physically correct, fully
developed turbulent flow.

A popular class of methods for the generation of turbulent inflow data
consists of the so-called recycling techniques. One example are methods mak-
ing use of an auxiliary, statistically homogeneous temporal simulation from
which crossflow planes are extracted and transferred to the inlet boundary of
the main simulation. This technique was employed e.g. by Kaltenbach (1993);
Kaltenbach et al. (1999). In order to account for spatial growth of a boundary
layer, Spalart & Leonard (1985) proposed a method based on re-scaling of the
turbulent field at a certain downstream position and re-introducing the result
at the inflow plane. Lund et al. (1998) proposes a modification of this method,
which does not require periodic streamwise boundary conditions. Recently, this
technique was used for large boundary-layer simulations by Simens et al. (2009).
The advantage of the recycling methods is that they provide an accurate tur-
bulent field at the inlet at a relatively low cost. A severe disadvantage is, how-
ever, the introduction of low temporal frequencies correlated to the frequency
whereby the inflow planes are fed at the inlet, as pointed out by e.g. Spille-
Kohoff & Kaltenbach (2001) and Lygren & Andersson (1999). This may not be
noticeable in flows with favourable or zero pressure gradient. However, in flows
subject to an adverse pressure gradient exhibiting pressure-induced separation,
a certain periodicity of the inflow signal can trigger unsteady behaviour of the
detachment point of a separation bubble, noted by e.g. Herbst et al. (2007) and
Adams (2000).

The second class of methods aims at producing ‘synthetic turbulence’.
Here, the low-frequency correlations appearing for the recycling methods are
avoided by introducing some kind of randomness to the inflow signal. The
simplest approach is the superposition of random (white) noise on a desired
mean velocity profile. Apart from its randomness, white noise has little in
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common with natural turbulence regarding the Reynolds stresses and the en-
ergy spectrum. Moreover, the lack of mass conservation in the random fluc-
tuations will increase the computational burden for numerical codes based on
iterative techniques for continuity. The Reynolds stresses can be satisfied by
locally modifying the amplitudes of the fluctuations, as described in Lund et al.
(1998). Still, the fluctuations lack energy in the low wave number range, and it
is well-known and noted by several authors, e.g. Kempf et al. (2005) and Lund
et al. (1998), that these fluctuations will eventually be damped out by viscosity.
Lee et al. (1992) solve this problem by applying an inverse Fourier transform
to a natural turbulent energy spectrum with random phase angles between the
different modes. The method has been tested by Le & Moin (1994) in a direct
numerical simulation (DNS) of turbulent flow over a backward-facing step and
by Stanley et al. (2002) in a DNS of a planar turbulent jet. A drawback of
this technique is e.g. the need of knowing a priori the three-dimensional en-
ergy spectra of the turbulent flow under consideration. Kempf et al. (2005)
propose the use of so-called digital filters for the generation of synthetic tur-
bulence. These authors claim that their approach is more applicable than the
inverse Fourier-transform method by Lee et al. (1992), as it allows for the local
specification of a separate turbulent length scale for each coordinate direction.
They have later proposed a method being similar to the digital-filter technique,
but filtering of the random fluctuations is instead performed through diffusion
of the small scales, resulting in increasing applicability and simplicity. Even
though many of the methods based on random fluctuations have been claimed
to mimic true and physically correct turbulence, experience tells another story.
Rather long development sections are often needed for the flow to converge to
a correct state. It is reported by Le & Moin (1994) that a development section
corresponding to 20 boundary-layer thicknesses is required to recover the cor-
rect skin friction of the turbulent flow. Moreover, since non-physical transient
behaviour may take place in the development section, the parameters specifying
the synthetic turbulence at the inflow plane must be tuned to provide correct
values for skin friction, momentum thickness and other quantities of interest
in the downstream region of the development section. Keating et al. (2004)
compared the previous reviewed methods using LES in a spatially developing
channel at Re, = 400 and concluded, similar to Kempf et al. (2005) and Lund
et al. (1998), that synthetic turbulence generation methods that introduce re-
alistic length scales are more suitable than uncorrelated random noise but even
S0, a fairly long development section is needed, compared to recycling methods
based on auxiliary simulations.

A third class of methods circumventing the shortcomings of the previously
listed methods builds on the introduction of an upstream extension of the inlet
section, which allows for a natural transition process. This approach is seem-
ingly the simplest and cleanest of all methods, but it is surprisingly discarded
by most researchers due to the common opinion that it is computationally too
expensive. It is often claimed that extending the inlet section in the upstream
direction would not generally be feasible for turbulent simulations, since the
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FIGURE 3.4. (a) Snapshot showing the evolution of a laminar
plane Poiseuille inflow profile, leading to turbulent breakdown.
The flow is from left to right, with the maximum amplitude
of the force being located one channel-height downstream of
the computational inlet. (b) The same snapshot as in (a) high-
lighting the formation of hairpin vortices in the forcing region.
Tsosurfaces of Ay (Jeong & Hussain 1995) (red) and streamwise
velocity u/up = 1 (blue) are shown in the lower half of the
domain.

natural transition process is slow, which would make the full simulation includ-
ing the downstream flow of interest prohibitively expensive. This may be true
for small set-ups where the inlet section constitutes a significant fraction of the
total computational domain. However, for large simulations where the length
of the inlet section is small in comparison with the total size of the set-up, trig-
gering natural transition can very well be considered as an alternative. For the
spatially evolving flow simulations in this thesis — except for Paper 3 where
synthetic turbulence is used — a trip-forcing technique is employed. The tech-
nique is documented in Chevalier et al. (2007) and has been used with success
in e.g. Ohlsson et al. (2010); Schlatter et al. (2009); Schlatter & Orlii (2010).
The idea behind this forcing is the same as that behind experimental devices
such as vibrating ribbons, unsteady blowing/suction slits or trip wires. It is
based on randomness in time and space with prescribed length and time scales,
thus avoiding spurious frequencies and artificial turbulence. The force, applied
as a Gaussian in both the streamwise and wall-normal directions, points normal
to the wall to promote the lift-up effect and thereby create streaks, depicted for
a spatial channel flow simulation in figure 3.4. Note the formation of ‘hairpin
vortices’ (see next section), which indicates a natural transition scenario. In
figure 3.5 we display the skin-friction Reynolds number as a function of the
downstream coordinate z. The development of a turbulent (thin solid) and a
laminar Poiseuille (thick solid, thick dashed, thin dashed) velocity profile are
investigated. In the laminar case we are varying the temporal and spatial fre-
quency of the force, respectively. It can be concluded that irrespectively of the
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FIGURE 3.5. Streamwise evolution of Re,. (——) develop-
ment of the turbulent mean velocity profile, (——), (-——-),
(==--) development of the laminar velocity profile for differ-

ent length and time scales of the trip force. Horizontal line
indicates the target value, Re,. = 180.

velocity profile chosen, fully developed turbulence is obtained around 40 chan-
nel half-heights downstream of the inflow plane. Furthermore, the trip force
seems relatively robust with respect to the prescribed time and length scales.

3.2. Laminar-turbulent transition

The numerical simulation of transition to turbulence in moderately complex
geometries (Tufo & Fischer 2001; Tomboulides & Orszag 2000; Lee et al. 2008)
is particularly well-suited for the spectral-element method, where accuracy may
be the most important feature. Initial disturbances are very sensitive and need
correct treatment in order to break down to turbulence at the correct physical
time or location. The diffuser geometry shown in figure 3.6 gives an example of
a transitional flow in 2D at a low Reynolds number (Re, = 1000 based on bulk
velocity and channel half height). The laminar inflow profile becomes unstable
and a shear layer instability occurs around x = 15. The shear layer then rolls up
into vortices which are convected downstream. Since this simulation is strictly
two-dimensional, no real turbulence will appear since turbulence is inherently
three-dimensional. This particular geometry, where the opening angle is given
by 8.5°, is further discussed in a three-dimensional setting in the next section.
In order to facilitate comparison to other numerical schemes, however, a more
generic flow configuration is chosen for the study of transitional flow. Here, we
study so-called K-type transition at Re, = 3333 in a plane channel geometry
as the one in figure 3.1(a). This is a well-known transition scenario (see e.g.
Kachanov 1994), first studied numerically by Gilbert & Kleiser (1990). It
has turned into a canonical test case for transitional flow simulations (see e.g.
Schlatter et al. 2004). The initial disturbances consist of a two-dimensional
Tollmien-Schlichting (TS) wave with a streamwise wave number of o = 1.12
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FIGURE 3.6. Shear layer instability occurring at * = 15 in
a 2D diffuser flow at Re, = 1000 based on bulk velocity, up,
and channel half-height, h. Pseudocolour of spanwise vorticity
w, = (V xu)- ey is shown.
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FIGURE 3.7. (a) Snapshot showing the hairpin vortex emerge
at ¢t = 135, shortly before the turbulent breakdown. Isosur-
faces show Ay (green) (Jeong & Hussain 1995) and v = 0.3
(blue). Pseudocolours indicate streamwise velocity, ranging
from blue (low) to red (high). (b) Evolution of the skin-friction
Reynolds number, Re,, computed for a range of different reso-
lutions by the spectral-element code (nekl-nek5) and pseudo-
spectral code (sim1-sim5).

and an amplitude of 3 % of the laminar centre-line velocity; together with two
three-dimensional oblique waves with wave numbers o« = 1.12 and = 2.1 and
amplitudes of 0.05 % each. This wave, superimposed on a laminar Poiseuille
channel flow, experiences an exponential growth eventually leading to turbulent
breakdown. Around ¢t = 120 a so-called A-vortex appears, which develops into
a hairpin vortex at ¢ ~ 135 (Sandham & Kleiser 1992), depicted by green
isosurfaces (A2) in figure 3.7(a). The particular flow shown here was computed
by the pseudo-spectral code discussed earlier. Shortly thereafter (¢ ~ 160),
the highly fluctuating transitional phase sets in; and finally, at ¢ ~ 220, the
flow has reached a fully developed turbulent state. As mentioned above, of
primary importance for a numerical method when it comes to transitional flow
simulations is to predict the point (in time or space) where laminar-turbulent
transition occurs. Since the friction drag increases in turbulent flows, a suitable
quantity to demonstrate transition is the skin-friction Reynolds number, Re.,
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FIGURE 3.8. K-type transition at Re, = 3333 showing wall-
normal velocity in a wall-parallel plane at y = 0.4 at t =
155 close to the skin-friction peak and a partial breakdown is
observed. The initial disturbance is shifted (b) one fourth and
(¢) one half element width compared to the unshifted case in

(a).

shown in figure 3.7(b) as a function of time. The different curves correspond to
various spatial resolutions for the spectral-element code (nekl-nek5) and the
pseudo-spectral code (siml-sim5), ranging from the lowest (1) to the highest
(5) resolution. We note that the most underresolved cases lead to a premature
transition, also noted by other authors. This is followed by an overprediction
of the skin-friction in the fully turbulent phase. In line with the turbulent
channel flow results, the two methods converge to a correct skin-friction peak
(and corresponding time) for a similar degree of freedom (~ 128% points).
Since the grid-point distribution is non-equidistant in the spectral-element
method, simulations of localised flow structures may evolve differently depend-
ing on where they happen to be located in the computational domain. Here,
we investigate this in the K-type transition described above. Figure 3.8 shows
three cases where the same initial disturbance is shifted one fourth (figure 3.80)
and one half (figure 3.8¢) element width in the spanwise direction, and com-
pared to the unshifted case (figure 3.8a). What we see is a snapshot at ¢t = 155
close to the skin-friction peak (see figure 3.7b), showing the wall-normal veloc-
ity component in a wall-parallel plane at y = 0.4. Since the initial TS wave is
symmetric, symmetry should be preserved up until the turbulent breakdown.
This is observed to be the case in (a) and (c¢), whereas the structure is slightly
perturbed in (b). Indeed, the grid-point distributions for (a) and (¢) are sym-
metric around the centre of the structure, save that the resolution where the
structure is present is slightly higher in (a) compared to (¢). This, however,
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does not seem to have an impact on the solution, since the flow structures are
more or less identically up to the turbulent phase. In contrast, we see that the
symmetry is slightly broken in figure 3.8(b). Here, the surrounding grid is no
longer symmetric with respect to the disturbance, and the resolution on one
side is higher than on the other. However, with an increased resolution this
slight asymmetry will disappear. Statistical quantities, such as the skin-friction
Reynolds number in figure 3.7 are unaffected by this minor asymmetry seen in
figure 3.8(b). At last, note in figure 3.8, that the spectral-element method, due
to its non-dissipative nature, is capable of keeping the turbulent core clearly
distinguished from the laminar co-flow on both sides.

The two last sections are closed with a final remark on p and h-refinement,
referring to an increase of polynomial order or number of elements, respec-
tively. As we have seen so far, a polynomial order of 7 for the basis functions
is enough to capture integral quantities as well as instantaneous structures
correctly. Two reasons contribute to make a lower order (but not too low)
advantageous over a higher order. First, the CFL condition is less restrictive,
which may be an important factor in convection dominated flows. Secondly,
the work for the matrix-matrix products scale as O(K N9+1) (see previous sec-
tion or Tufo & Fischer 1999), advocating a lower order. On the other hand,
since the numerical error decreases as O(hP), choosing p too low would destroy
the exponential convergence rate, thereby increasing the iteration count for the
linear solvers and thus the total work. In addition, the fact that p-refinement
is controlled by a single parameter makes it easy to change the resolution with-
out re-building the mesh (as would be the case for h-refinement). This can be
exploited in turbulent flow simulations, where the first few flow-throughs typi-
cally are performed at a lower resolution and then used as an initial condition
when continuing the simulation at the p-refined target resolution.

3.3. Separation

Flow separation may be one of the most important problems in fluid mechanics,
due to its large impact on the performance of engineering applications, but also
since satisfactory understanding is still lacking. In three-dimensional, unsteady
flows even the definition of separation is disputed.

3.3.1. Geometry- and pressure-induced separation

According to Prandtl (1924) two necessary conditions have to be met in order
to encounter flow separation: A positive (adverse) pressure gradient in the di-
rection of the flow, e.g. due to a sudden expansion of a channel or deceleration
of the flow over the trailing edge of an airplane wing; together with viscosity
effects due to the presence of a boundary layer. If either of these two conditions
are eliminated (e.g. by accelerating the flow or removing the boundary layer by
suction at the wall, respectively), no separation will occur. The adverse pres-
sure gradient can be achieved in two different ways, thereby marking the border
between two important classes of separated flows. If the flow separates from
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FIGURE 3.9. Sketch of (a) geometry-induced and (b) pressure-
induced separation in typical two-dimensional configurations.

a sharp geometrical obstacle present in the flow, one generally speaks about
‘geometry-induced’ separation, schematically sketched in figure 3.9(a). Here,
the separation is fixed to the point of highest curvature. The discontinuous de-
rivative of the surface forces the flow to an infinite acceleration, which cannot be
met and hence a low pressure is created at the sharp corner, thereby inducing
backflow. An example of this flow is the backward facing step, where numerous
studies have been conducted e.g. experimentally by Etheridge & Kemp (1978)
and numerically by Le et al. (1997). When the adverse pressure gradient in-
creases slowly, e.g. due to a mildly diverging channel, such as in a diffuser, the
separation may take place (depending on the pressure gradient) over a smooth
surface, often called ‘pressure-induced’ separation. This scenario is shown in
figure 3.9(b). For an unsteady and turbulent flow, the latter case is the most
challenging, both numerically and experimentally, since the point of separa-
tion can vary in both time and space, which puts high requirements on the
experimental set-up and measurement technique as well as accurate numerical
discretizations. Correspondingly, this type of separation has been less studied
in the past but has recently gained some attention, e.g. experimentally by Obi
et al. (1993); Buice & Eaton (2000); Térnblom et al. (2009) and numerically
by Herbst et al. (2007); Kaltenbach et al. (1999); Na & Moin (1998); Skote &
Henningson (2002). In the former case, the point of separation is always fixed,
thus facilitating the treatment of the point of separation. However, the main
task in these studies is to predict the point of attachment correctly, which for
a turbulent flow may vary in time and space.

3.3.2. Two-dimensional separation

In a two-dimensional, laminar and steady flow, the point of separation may be
defined as the point at the wall where the shear stress vanishes, such that

ou
w = Jb— =0, 3.10
Tw =gy (3.10)
y=0

assuming u being in the streamwise direction and y in the wall-normal direction
(i.e. non-curved geometry). This leads to flow reversal near the wall and break-
ing away of the boundary layer from the surface. Purely two-dimensional and
steady separation is of limited practical interest, since separation is strongly
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FIGURE 3.10. LES of a turbulent diffuser flow at Re; = 9000
based on inflow channel half-height, h, and bulk velocity,
up, (see Paper 3). (a) Mean velocity profiles 10 - (u) + =
where ( ) indicates the present spectral-element code and
(==--) are results from Herbst et al. (2007). (b) Contours of
the stream function. Thick white contour levels indicate the
value 10~° of the stream function, thin white contours range
from —0.1 to 2.0 with spacing 0.2.

connected to unsteadiness which is likely to be of three-dimensional charac-
ter. However, for a steady two-dimensional freestream but an unsteady and
turbulent boundary layer, some definitions based on the flow reversal at some
fraction of the total time, 7,,, have been proposed (Simpson 1981). Here,
incipient detachment is defined as the point where 7,, = 0.99 and the flow
moves upstream 1 % of the time. Further, 7,, = 0.50 means that instanta-
neous backflow occurs 50 % of the time, which in most investigations coincides
with the time averaged wall shear stress, (7,,), being zero. In a turbulent but
statistically two-dimensional internal flow, such as in a plane asymmetric dif-
fuser in figure 3.10 and further discussed in Paper 3, there is a possibility to
compute the stream function, ¥(x,y)!, (figure 3.10b) from the mean velocity
field (averaged over time and in one statistically homogeneous direction). The
geometry and a few selected velocity profiles are shown in figure 3.10(a), where
a comparison to Herbst et al. (2007) is included. They used a 2nd order finite
difference code for the same computation. The inflow channel (not shown) con-
sists of fully developed turbulence at Re, = 9000 based on bulk velocity and
inflow channel half-height. Given the stream function, one may then define
the mean separated region, often called the ‘separation-bubble’, as the region
bounded by the mean dividing streamline. This is found by searching for the
regions where the stream function is zero, indicated by the thick white line in
figure 3.10(b). As mentioned previously, the instantaneous field within the sep-
arated region is highly three-dimensional and characterised by large energetic

IDefined such that u = 0V /dy, v = -0V /0.
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FIGURE 3.11. Snapshot showing isosurfaces of streamwise ve-
locity with magnitude u/u, = —0.01 and a plane with pseudo-
colours of streamwise velocity.

structures (much larger than the turbulent eddies upstream of the separation
point), exemplified by a snapshot in figure 3.11 of the same plane asymmet-
ric diffuser at Re, = 9000. Isosurfaces of streamwise velocity with magnitude
u/up = —0.01 are shown.

The topic of three-dimensional separation, i.e. when the time-averaged
mean flow possesses no spatial homogeneous directions, will be dealt with in
Chapter 5. First, in Chapter 4, we will introduce analysis tools that can cope
with such complex flows.



CHAPTER 4
Flow analysis

When observing a turbulent and complex flow, one is faced with an immense
amount of information in time and space. To be able to grasp this informa-
tion and understand the fundamental dynamics, some kind of data reduction
procedure is needed. In some communities, the prevailing view point is that
no coherence or order is associated to turbulence. Hence, turbulence is to such
extent random that tools from statistical physics can be used. Probability dis-
tribution functions are commonly studied and enlightenment is sought via the
study of mean quantities. This field has contributed with important concepts,
such as the ‘eddy viscosity’, nowadays used in turbulence modelling. In other,
more dynamical systems-oriented communities, the belief is that there are ‘at-
tractors’ in a turbulent flow, to which the flow tends to return. More specif-
ically, the flow is thought to be composed of typical or ‘coherent’ structures,
which can be observed instantaneously. Experimental evidence of such struc-
tures, among which the turbulent near-wall streaks and the quasi-streamwise
vortices are the most prominent ones in wall-bounded turbulence, have been
reported in numerous studies (e.g. Kline et al. 1967; Blackwelder & Eckelmann
1979, respectively). The idea of coherence has proven to be applicable when
constructing reduced-order systems. Compared to the full Navier—Stokes sys-
tem, which typically contains millions or even billions of degrees of freedom,
these systems consist of relatively few degrees of freedom, while retaining simi-
lar dynamics. Here, we shall adopt the latter of these two view points. First, in
Chapter 4.1, the concept of modal decompositions — one of the corner stones
in studies of coherence — is introduced. In particular, the proper orthogonal
decomposition (POD) and the Koopman mode decomposition are considered.
Then, in Chapter 4.2, we will define coherence simply by means of a scalar
measure, which locates high concentrations of vorticity stretching.

4.1. Modal decompositions

Generally speaking, considering the flow field w(x,t) with velocity vector
u = (u,v,w), defined in physical space * = (x,y,2) and time ¢, a modal
decomposition attempts to split the space and time dependence, such that

u(x,t) = Zaj(t)d)j(:c). (4.1)

37
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Since we are dealing with numerical simulations of flows, our velocity fields are
naturally truncated by the numerical simulation and the sum can without loss
of generality be taken up to some m < oco. The spatial modes ¢;(x) and the
temporal coefficients a;(t) remain to be determined. The decomposition (4.1)
is however not at all unique and depending on the flow and aim of the analy-
sis, different choices regarding ¢;(x) and a,(t) may be appropriate. For linear
problems, where w = Aw, a natural choice for the modes are the eigenfunc-
tions of the linear operator A, referred to as linear global eigenmodes. These
modes have traditionally been used in linear stability analysis (see e.g. Huerre
& Monkewitz 1990; Theofilis 2011; Henningson & Akervik 2008, for a review).
Here, the growth of small perturbations around a laminar base flow solution
are studied, and the modes are exponentially growing or decaying depending on
the sign of the imaginary part of the corresponding eigenvalue. For laminar and
transitional flows, which are dominated by self-sustained oscillations, e.g. the
shedding of a two-dimensional cylinder wake or a laminar separation bubble,
the linear unstable global eigenmode can in most cases capture the structure
responsible for the shedding (Akervik et al. 2007), and the flow can accordingly
be classified as globally unstable. However, self-sustained oscillations are also
frequently appearing in turbulent flows in which the flow state is far from the
laminar base flow. In those cases, it is not obvious how to quantify the insta-
bilities. In particular, if a a linear stability analysis is employed, which base
flow is to be chosen: the laminar steady-state solution or the time-averaged
mean flow? The former of these two was employed by Schlatter et al. (2011a)
for a linear stability analysis of a highly non-linear jet in crossflow. It was
concluded that the frequencies obtained from the global eigenvalue spectrum
approximately matches the ones directly observed in the non-linear DNS simu-
lation. Barkley (2006) instead used a weakly turbulent mean flow as base flow
for the stability analysis of a two-dimensional cylinder wake and was able to
match the documented shedding frequency very well. Pujals et al. (2009); del
Alamo & Jiménez (2006) even used a fully turbulent mean velocity profile in a
channel flow to predict the large scale structures with good precision. While the
first of these two choices is mathematically well-founded, it can be argued that
the laminar base flow is rather far from the turbulent flow under consideration
is rather, and hence that the obtained structures ought be more of academic
than practical interest. On the other hand, studying linear perturbations in a
highly non-linear flow around a turbulent mean flow, which is never realizable,
may be questionable.

This thesis considers two modal decompositions: the proper orthogonal
decomposition (Lumley 1967; Holmes et al. 1996) and the Koopman mode de-
composition (Rowley et al. 2009). Both circumvent the issue of which base flow
to use and therefore works for linear and non-linear flows. In addition, an eigen-
value decomposition of the full Navier—Stokes system is never performed, which
makes the techniques suitable also for experiments, where the full system is not
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known. Dominant frequencies in a flow can be detected using these approaches:
Schlatter et al. (2011a) matched approximately the dominant frequencies seen
in the DNS by employing POD, and Rowley et al. (2009) used Koopman mode
decomposition for the same flow to get good agreement between the obtained
frequencies and the ones observed in the DNS.

More specifically, given a sequence of flow fields or ‘snapshots’, saved at
m discrete times {w(t1),...,u(t,)}T, both approaches find modes spanning
this particular space. The POD is concerned with finding eigenfunctions of the
two-point spatial correlation tensor, which will give modes corresponding to the
most energetic structures in the flow. Koopman modes are eigenfunctions of
the approximated linear evolution operator between two successive snapshots,
and will provide modes that are clearly separated in spectral space, i.e. each
mode contains one specific frequency. More detailed discussions regarding the
two decompositions follow below.

Among other modal decompositions used in fluid mechanics are the so-
called balanced modes. They are used when constructing low-dimensional mod-
els for control purposes, e.g. transition delay (see Rowley 2005; Bagheri et al.
2009, and the references therein).

4.1.1. Proper orthogonal decomposition (POD)

Lumley (1967) outlined a mathematical technique, in which the flow is de-
composed into empirical eigenfunctions (i.e. ‘modes’) with random coefficients,
based on the two-point spatial correlation tensor. Hence, no assumption about
the nature of the flow state (linear or non-linear) or any a priori knowledge of
the flow is needed — only observations of the flow itself. Lumley’s idea, which
went under the name ‘proper orthogonal decomposition’ (POD), was however
not new and had existed for sixty years in data analysis of stochastic processes
under different names, such as principal component analysis (PCA) (Pearson
1901), Karhunen-Loéve transform (KLT) Karhunen (1946); Loeve (1955), em-
pirical orthogonal function (EOF) analysis (Lorenz 1956) and empirical eigen-
function analysis (EEF) (Sirovich 1987) to mention a few. The procedure is
widely used in data analysis in many fields, and the great achievement by
Lumley was to apply it in the field of fluid mechanics. POD has been applied
to numerous flows, e.g. Moin & Moser (1989); Sirovich (1989); Sirovich et al.
(1990) to name a few pioneering studies. It has also frequently been used for
model reduction, see Rowley et al. (2004); Ma & Karniadakis (2002); Noack
et al. (2010). It is often claimed that the main strength of the technique is
that the most energetic flow structures are provided, which are thought to be
the most relevant ones. In laminar, transitional and weakly turbulent flows,
a few dominant well-converged and smooth structures are typically obtained,
given that enough snapshots are used. In high Reynolds number turbulent
flows, where the energy spectrum is flatter, the modes are usually degenerate,
with no distinguished modes. However, as soon as some large-scale dynamics is
present, e.g. shedding, it will usually show up as a mode. No clear separation
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in spectral space is obtained using POD, i.e. the coefficient pertaining to one
specific mode contains a broad range of frequencies. Such a separation is in-
stead obtained using the Koopman mode decomposition, discussed in Chapter
4.1.2.

Mathematical background

Generally, the procedure is based on a given data, generated by some
known (as in the case of the Navier-Stokes equations) or unknown process.
Based on this data, the two-point spatial correlation matrix R(z,2’) =
7 Jpu(x, t)yu(x’, t)T dt, where T' denotes the total time over which the flow
is observed, can be constructed. The proper orthogonal decomposition will
decompose this matrix into eigenvectors and eigenvalues, which correspond to
orthogonal directions in the data where most of the variance is found. In other
words, the POD procedure finds deterministic, bi-orthogonal functions, ¢;(x),
which maximise the energy in the field u. A necessary condition for this to
hold is that ¢;(x) is an eigenfunction of the two-point spatial correlation ma-
trix (rigorously shown in Holmes et al. 1996). Finding the eigenvalues, A;, and
corresponding eigenfunctions, ¢,, of R(x,x’) amounts to solving,

///V Rz, z')pj(a’) da’ = \;¢; (). (4.2)

Equation (4.2) is the continuous and original definition of POD. In practice,
however, the discrete formulation is used. Therefore, the rest of this chapter is
devoted to the discrete derivation. For the continuous counterpart, the reader
is referred to Paper 7 or Manhart & Wengle (1993).

By letting U,, = [ug w1 us ... um]T be the sequence of m snapshots, the
discrete equivalent of the two-point spatial correlation matrix is now defined as
R = %UTUG, where G is a matrix containing the spatial integration weights.
Now, the analogy of equation (4.2) reads,

R®"T = ®TA, (4.3)

where @ = [g ¢1 @2 ... ¢,|T is the matrix of the spatial modes in equa-
tion (4.1), and A is the diagonal matrix with the corresponding eigenvalues
A1, A2, ..., Ay The m temporal coefficients at m discrete times in equation
(4.1), written in matrix form as A = [ag a1 ag ... @], can then in a successive
step be solved for by projecting the spatial modes onto the snapshots,

A =UGo". (4.4)

where we have used the bi-orthogonality in space, #G®T = I. Note that R
will be of size n x n, where n = 3 x n, X ny x n, and n,, ny, n, are the number
of grid points in the spatial directions, respectively. Therefore, for high spatial
resolutions, R can be very large and equation (4.3) is usually intractable to
solve. However, using the snapshot method (Sirovich 1987), equation (4.3)
can be circumvented by solving an eigenvalue problem of the generally smaller
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temporal two-point correlation matrix C = %UGUT of size n x m!'. Hence,
we are now instead solving
CA = AA. (4.5)
Then, as a second step, the spatial eigenfunctions are constructed as
1
&= —AT'ATU. (4.6)
m

Here, the division by the respective eigenvalue ensures that the modes are
normalised to unit energy. Once this is done, the temporal coefficients can be
computed according to equation (4.4), and the ones obtained from equation
(4.5) are disregarded.

In the following section, we will apply the procedure described above to a
minimal channel flow, briefly mentioned in Chapter 3.1.

Ezxample: POD of a minimal channel flow

Let us for simplicity consider the minimal channel flow, also exploited for this
purpose by Webber et al. (1997). Despite being fully turbulent and thus dis-
playing correct turbulent statistics (see Jiménez & Moin 1991), it contains less
degrees of freedom than a high Reynolds number flow. Therefore, as mentioned
above, POD is likely to deliver well converged structures pertaining to the most
energetic events in the flow. In this case, the mean flow — being the first mode
in the decomposition — takes up as much as 98.5 % of the total energy. Even
though being a small fraction of the total energy, the modes constituting the
fluctuating part of the flow may give important information about the dynam-
ics. In agreement with Webber et al. (1997), the most energetic POD modes
consist of structures with no streamwise dependence, shown by positive and
negative surfaces of constant streamwise velocity in figure 4.1(a). As men-
tioned earlier, this is one of the coherent structures observed in wall-bounded
turbulence, namely the near-wall streaks. The next type of structure provided
by the POD displays streamwise dependence and is tilted from the wall at an
angle, shown in figure 4.1(b). These can be identified as the quasi-streamwise
vortices, which together with the streaks play a crucial role in the self-sustained
turbulent ‘near-wall cycle’ (see Waleffe 1997).

As the decomposition (4.1) states, each one of these structures possesses a
time dependence, reported in figures 4.2(a-b). It shows the chaotic nature of
turbulence: one would never be able to predict the exact path of the signal in
figure 4.2(a) a priori. Even so, there exists a characteristic time scale pertaining
to each mode, with the mode in figure 4.1(a) having a much longer typical
period than the one in figure 4.1(b). This is confirmed by the power spectral
density (PSD) of the two signals shown in figure 4.2(¢). Each one of the spectra
is normalised with its own maximum. It can be seen that each mode has a
dominant peak in its spectrum, found at a Strouhal number St = fh/u, (h

LObviously, this is only true if m < n, which is most probably the case for a numerical
simulation. For experiments, however, m > n is the more common situation and hence C
would be larger than R.
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FIGURE 4.1. Isocontours (red: u/up = 0.3, blue: u/up = —0.3)
of streamwise velocity of POD mode (a) 1 and (b) 7.

being the channel half-height and wu, the bulk velocity) of ~ 0.0078 and ~ 0.28,
respectively. A comparison with the PSD of a signal obtained from a probe,
measuring the streamwise velocity component in the flow, shows that these
two frequencies are indeed the two dominant ones in the flow. But whereas
this signal contains both frequencies, they could be separated and identified
with a corresponding structure by the POD. It should be pointed out that each
structure is not assigned a specific, but rather a dominant frequency, since it
indeed contains all frequencies around the peak value.

4.1.2. Koopman mode decomposition

As noted in the example above, the most energetic events in the flow, provided
by the POD, are in general not fully separated in frequency space, i.e. one
spatial structure contains a range of different frequencies. A clear separation in
frequency space is instead provided by a Koopman mode decomposition. Here,
we outline the dynamic mode decomposition (DMD) by Schmid (2010), which
is a numerical technique to compute a discrete approximation to the Koopman
modes.

Mathematical background

As for the POD, our point of departure is the sequence of m snapshots. We
are interested in the properties of the linear operator A, which can propagate
one snapshot forward in time, such that

If the underlying equation that generated the snapshots were linear, then equa-
tion (4.7) would not involve any assumptions. However, if the snapshots would
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FIGURE 4.2. Temporal evolution of POD mode (a) 1 and (b)
7. (¢) Power spectral density (PSD) of the respective signals in
(a) ( ) and (b) (——) compared to the PSD of the time
signal probe (----). Each one of the spectra is normalised
with its own maximum.

stem from a non-linear process, then equation (4.7) would be the linear approx-
imation to this process. We will here investigate the assumed linear mapping
(4.7) by analysing the the eigenvalues and respective eigenvectors of A.

In fluid mechanics, the system matrix A is often very large and hence
iterative methods, such as the Arnoldi algorithm (see e.g. Trefethen & Bau
1997), are the methods of choice in order to find some dominant eigenvalues
and eigenvectors of A. The DMD builds on the Arnoldi algorithm, but the great
advantage of the DMD is that A need not to be known explicitly, as would be
the case for the Arnoldi method. Instead, the eigenvalues and eigenvectors can
be found solely by processing a sequence of snapshots, either velocity fields
generated from a numerical simulation (where the system matrix is in general
known) or measurement data (1D, 2D or 3D) from a physical experiment.
Briefly, the DMD algorithm works as follows, focusing on the procedure based
on the companion matrix, M, below (Ruhe 1984). Further details are found in
Schmid (2010).

Using the snapshots, we shall define two sequences, given by

Um = [U() u; uy ... um,1]7 (48)
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and
U1 = [ug w2 ug ... ). (4.9)
Our task is now to find the matrix M such that,
Upr1 =U,M +r, (4.10)

where r is a residual vector. This can be done by solving a least-square prob-
lem. Once M is found, eigenvectors and corresponding eigenvalues to M are
computed, i.e. we are solving

MT = TA. (4.11)

As for the Arnoldi algorithm, where the decomposition (4.10) also appear, the
eigenvalues A (called Ritz values) approximate some of the eigenvalues of A.
Now, the so-called dynamic modes, ® = [y ¢P1 ¢2 ... ¢r_1], are computed
analogous to expression (4.6) for the POD modes,

®=0,T. (4.12)

Ezample: Koopman mode decomposition of a minimal channel flow

Let us use the minimal channel flow also for the Koopman mode decomposition.
The same snapshots used for the POD are processed according to the procedure
above. A few selected dynamic modes are shown in figure 4.3(a-c). As noted
above, they correspond to the finite approximation of the Koopman modes,
rigorously shown by Rowley et al. (2009). In figure 4.3(d), the spectrum is

shown. Each one of the red bars corresponds to the amplitude ||¢;|| = quT(bj
of one particular mode. The eigenvalues come in complex conjugate pairs, but
for simplicity we only show St > 0. The dashed line again shows the PSD
from the time signal probe, which shows close agreement with the Koopman
mode spectrum, in which two dominant peaks can be observed. The first peak
(not fully visible in figure 4.3(d) due to cutting of the y-axis) has a Strouhal
number St; =~ 0.0078, which is exactly the same frequency compared to what
is obtained from the time probe and the POD analyses. A closer look at the
second peak in figure 4.3(d) reveals that it is a double peak, of which the
lower frequency is given by Sts, = 0.26, corresponding to a time period of
Ty, = 1/Sta, = 3.8. This frequency matches the second frequency peak from
the POD and analysis of the probe. The higher frequency is located at a
Strouhal number of Sto, = 0.33, which gives the slightly shorter time period of
Ty, = 3.0.

We observe that similar structures are found by the POD and Koopman
mode decomposition. In particular, the structures corresponding to the first
spectral peak, reported in figure 4.3(a), are similar to the modes obtained
from the POD analysis in figure 4.1(a). Secondly, shown in figure 4.3(¢), is the
mode with frequency Sts,, i.e. the peak frequency of the inclined POD mode in
figure 4.1(b). They compare well to each other, save that the Koopman mode
is somewhat more noisy. It should be pointed out that this is not a sign of
unconverged numerics, but rather inherent in the way the modes are separated
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FIGURE 4.3. Isocontours of streamwise velocity of Koopman
mode (a) 4 (red: u/up = 0.4, blue: u/up = —0.4), (b) 129 (red:
u/up = 0.2, blue: u/up = —0.2) and (¢) 140 (red: u/up = 0.2,
blue: u/up = —0.2). (d) Amplitudes of the modes as a function
of frequency (red), together with the PSD of the time signal
probe (-—--).

in spectral space. The main feature of the mode pertaining to Sts,, is that they
are alternating negative and positive and extend all the way from the wall, tilted
at an angle. However, the mode corresponding to Stgp, shown in 4.3(b), can
be seen to be located slightly further away from the wall. As the convection
velocity is higher in this region, this explains its higher frequency. The intrinsic
averaging in frequency space present in the POD makes it impossible to observe
this structure, and hence the Koopman mode decomposition adds something
to the analysis of this flow.

4.2. An alternative way to define ‘coherence’

The coherent structures we have encountered so far have been eigenfunctions
of some particular matrix. However, coherent structures can also be defined
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using some ‘measure’ or ‘criterion’, which can localise the structures in a given
instantaneous flow field. The question is, how can one define such a measure?

The term ‘coherence’ is intuitively clear. Loosely, it denotes a flow struc-
ture, where all parts move in a coherent fashion. A strict definition is more
difficult to obtain. Hussain (1986) makes the following: A coherent structure is
a connected turbulent fluid mass with instantaneously phase-correlated vorticity
over its spatial extent. Although, in principle, any quantity could be instan-
taneously phase-correlated over its spatial extent, coherence has traditionally
been connected to vortices in some way or another. For instance, much research
has been devoted to finding measures defining a ‘vortex’, among which the most
widely used are the Il-criterion and the As-criterion proposed by Hunt et al.
(1988) and Jeong & Hussain (1995), respectively. For incompressible flow, the
II-criterion is equivalent to the negative of the second tensor invariant, —(@,
discussed by Chong et al. (1990). Also the A-criterion introduced by Chong
et al. (1990) belongs to the same class of vortex identification methods. All
these measures are based on the velocity gradient tensor. Localising low pres-
sure areas in the flow can give a rough estimate of the orientation of vortices
(see e.g. Robinson 1991), but will in general favour larger structures and miss
the small vortices in the flow. A review and more thorough definitions of the
above measures together with an a posteriori analysis in turbulent flows can
be found in Dubief & Delcayre (2000) and Chakraborty et al. (2005).

The developed structures identified by these criteria are not necessarily the
areas in a flow of most dynamical interest, e.g. regions where instabilities are
growing. Generally, a vortex can be created (by some yet unspecified mech-
anism) after which it may be convected away from the active region of the
flow. Thus, locating the vortex itself does not directly help to position the
area of interest. On the other hand, by identifying the production of vorticity
the active region of the flow would instead be pinpointed. Among the vari-
ous production terms in the vorticity transport equation, vorticity stretching
is the one that can provide exponential growth, and is therefore the candidate
for developing dynamics. In Paper 5, a new diagnostic measure based on the
vorticity stretching terms is defined. The procedure is outlined below.

Consider the vorticity transport equation in an incompressible flow,

Duw; Ouy 1 0%w;
= w; — 4.13
Dt~ z; " Re dx;0x;’ (4.13)

where the terms (no summation on «)

Oug,

o Oxy’

are denoted worticity stretching terms, in each spatial direction respectively.
Vorticity stretching alone is a three-dimensional vector field, which in general
is difficult to visualise and interpret. A scalar field is more conceivable, since
it tells the observer where high ‘concentrations’ of the quantity in question
can be found. Therefore, we propose our measure as the maximum vorticity

a=1,23, (4.14)
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stretching component in every point in space, thus yielding a three-dimensional
scalar field.

In order to locate the largest occurrence of vorticity stretching in the flow,
we will formally define the scalar measure as:

Ip(z,y, 2,t) = max{ajwal, Blwsl, vlwy[}, (4.15)

where «, 8 and 7y are the eigenvalues of the strain tensor S;; = %(gg? + %) and
J i

Wa, wg and w4 are the vorticity components along the principal axes given by
the eigenvectors of S;;. The subscript ‘p’ indicates that we are in a principal axis
system, aligned with the direction of strain. Thus, this measure is a true scalar
quantity, since it is indeed independent of coordinate system. The procedure
of decomposing the strain tensor into its eigenvectors is commonly adopted in
studies of homogeneous turbulence where the usual spatial coordinate directions
have a subordinated meaning, (see e.g. She et al. 1991; Nomura & Post 1998).
We will compare this measure to the following definition:

Lo,y 2,8) = max{foal 5o | 5 ol 5, (4.16)
where the subscript ‘¢’ denotes ‘Cartesian’. Note that this measure, in contrast
to definition (4.15), is formally not a scalar quantity, since it is dependent on
the fixed Cartesian coordinate directions. However, the actual differences may
not be very large for simple wall-bounded flows where the streamwise, spanwise
and wall-normal directions are clearly defined and the flow is generally aligned
with one coordinate axis. In those cases, for the sake of implementation and
computational effort (since (4.15) involves solving an eigenvalue problem in
every point in space), definition (4.16) might be preferable, provided that the
corresponding results agree well with the more rigorous measure (4.15). To our
knowledge, this is generally the case. In some cases when the flow structures
are inclined, I', can miss and artificially cut the structures.

A sample result of T'. (red) together with Ay (green) in an asymptotic
suction boundary layer (ASBL) at Re = Us0* /v = Us / Voo = 750 (Uso being
the free-stream velocity, 6* the displacement thickness and V., the imposed
vertical velocity) is shown in figure 4.4. The combination of Re, box size
and amplitude of (random) initial condition are tuned such that a so-called
‘edge state’ is obtained, in which the flow neither becomes turbulent nor goes
laminar (Schneider et al. 2007). The result is a time-periodic orbit with a
period of T" = 3347. Under certain parts of the period, the flow consists of a
laminar low-speed streak (gray isosurface in figure 4.4a-b). This streak soon
goes unstable and breaks down (figure 4.4¢-d). In this fashion, the procedure
repeats itself. The edge state in the ASBL flow was first computed and studied
by Madré (2011) and discussed by B. Eckhardt (ETC-12, 2009, Marburg). The
aim of the present case is however not to study its state-space properties, in
the style of Schneider et al. (2007) and the references therein, but merely to
use the case as an alternative to minimal channel flows in an effort to simplify
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FIGURE 4.4. Evolution of T'. (red) and Ay (green) shown at
(a) t = tg, (b) t = to+ 0.16T, (¢) t = to + 0.307 and (d)
t = tg + 0.397, where T' denotes the period of the periodic
orbit. The levels of the corresponding isosurfaces are fixed.

The isosurface of streamwise velocity, u = 0.5 (gray), indicates
streaks and the crossflow plane is coloured by T'..

turbulent dynamics as much as possible?. We note, in figure 4.4, that during
the laminar phase of the cycle, I'. is present as flat ‘pancake’ structures in
the high-speed streak, where the highest occurrence is alternating from side to
side. Then, as the instability starts to grow on the low-speed streak, the highest
concentration of I'. can be found on top of the streak, still alternating from
side to side, such that the highest values are always found on the convex side
of the streak. The vortices identified with Ao are instead found on the concave
side of the streak (also noted in e.g. Jeong et al. 1997). An explanation for
this behaviour regarding I'. is given in figure 4.5. Due to the mean shear,
there are always high values of spanwise vorticity, w,, present close to the wall
(A). In the case of a straight streak (figure 4.5a) this vorticity is lifted by the

2For the relatively low Reynolds numbers studied, the turbulent structures on the two walls
of a minimal channel flow interact and will therefore complicate the dynamics.
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Convex

FIGURE 4.5. Explanation for the behaviour seen in figure
4.4(b): (a) straight streak, where high values of w, are lifted
from A and multiplied by spanwise strain in B. (b) Similar
mechanism for a bent streak in one of its outer positions. Thick
lines denote a contour of constant streamwise velocity, thin
lines show streamlines of in-plane flow and the dashed line
shows the opposite outer position of the streak.

streamwise vortices, due to the well-known lift-up effect (Landahl 1980). In the
braid region above the streak (B) the highest values of dw/0z are found, which
together with the lifted vorticity creates large spanwise vorticity stretching,
w,0w/0z. A similar situation is found to be present when the streak is bent
(figure 4.5b). Since the braid region has moved over to the convex side of the
streak (left in figure 4.5b), this is where we find high values of I'.. Similarly,
high values of I'. are found to the right as soon as the streak ‘wiggles’ over to
this side (the dashed line). It should be pointed out that the same mechanism
is responsible for the high values of spanwise stretching alternating from side
to side below the high-speed streak, given that the sketch in figure 4.5 in that
case would be upside down.

When approaching the turbulent breakdown in figure 4.4(¢), the structures
provided by I'. and Ay are mixed, but still on top of the low-speed streak.
Finally, as the flow reaches its most chaotic state, in figure 4.4(d), high values
of both quantities are found basically everywhere in the flow.



CHAPTER 5

Physics of a turbulent three-dimensional
separated diffuser flow

Now we have reached the point when we are ready to attack a complex flow at
a realistic Reynolds number. Our tool is a high-order, accurate code with good
scaling properties, which has proved to perform very well in turbulent, transi-
tional and separated flow simulations. In addition, we have implemented and
tested an inflow condition free from artificial turbulence and spurious temporal
frequencies.

5.1. Towards more realistic flows: A test case for
three-dimensional separated diffusers

The flow case we have chosen to consider is a diffuser flow, first investigated
by the experimental group at The Center for Turbulence Research (CTR),
Stanford University, under supervision of Prof. John Eaton. This diffuser differs
in one important respect to the many diffusers studied in the literature before:
it is truly three-dimensional, which means that not only the instantaneous
flow is three-dimensional as in the diffuser we have encountered so far, but
also the mean flow. This is achieved by constructing the diffuser such that
the flow is surrounded by walls in an asymmetric fashion, as can be seen in
figure 5.1, where the experimental set-up is shown. The working fluid is water,
which is triggered to turbulence by the use of a grid in the upstream region.
Subsequently, it develops to a fully turbulent state in a long duct of rectangular
cross section and eventually enters the diffuser. There, the flow undergoes
pressure-induced separation due an adverse pressure gradient. The diffuser
walls are deflected 11.3° in the y-direction and 2.56° in the z-direction, with
the resulting corners being smoothly rounded with a radius of 6.0 cm. The
Reynolds number based on inlet-duct height, h = 1 cm, and bulk velocity, u; &~
1 m/s, is Re = uph/v ~ 10 000. A pioneering experimental technique (Elkins
et al. 2003) called ‘magnetic resonance velocimetry’ (MRV) is used to collect
three-dimensional velocity data, which means that the entire experimental set-
up is placed into an MRI-tunnel. Experimental mean flow results have been
published in Cherry et al. (2008, 2009).

Originally, Prof. Eaton and his group investigated two three-dimensional
diffusers with the same developed inflow but slightly different diffuser opening
angles. Their motivation for this was threefold: (i) diffuser flows in practical
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development channel

grids diffuser

FIGURE 5.1. Experimental set-up of one of the geometries
(‘diffuser 1’) in Cherry et al. (2008) showing the develop-
ment region, diffuser expansion, converging section and outlet.
Courtesy of Erica M. Cherry.

applications, such as engines and turbines, are likely to be of three-dimensional
character and good benchmarking cases in the literature are rare; (ii) sepa-
rated flows can be very sensitive to geometrical changes, but this sensitivity
is not often studied; (iii) to facilitate comparison with numerical simulations
the use of walls instead of an assumed infinite spanwise direction is the pre-
ferred choice. For simulations, a periodic spanwise direction often results in an
insufficient spanwise width, which is known to influence the flow (see e.g. the
discussion in Kaltenbach et al. 1999). For experiments, 3D effects are very dif-
ficult to eliminate. Or, as expressed by Prof. Eaton himself: “Separation wants
to be three-dimensional” (14th ERCOFTAC SIG15 Workshop on Turbulence
Modelling, Rome, September 2009). In fact, it is often reported that credible
2D data is lacking due to 3D contamination. Therefore, the strategy to go
for a fully three-dimensional flow appears to be wise. In their examination,
Cherry et al. (2008) noted that the two diffusers (here, denoted by ‘diffuser 1’
and ‘diffuser 2’), although sharing identical inflow properties, experienced very
different separation behaviour.

It is well-known (see e.g. Wang et al. 2004, among others), that RANS clo-
sures have difficulties to predict separation, particularly of the pressure-induced
type, where the point of separation is not given a priori. Prior to separation,
the mean flow slows down and the flow typically experiences large fluctua-
tions and instationarity. Thus, the amplitude of the turbulent kinetic energy
is no longer small compared to the mean flow, and the modelled part becomes
not only more important, but also more difficult to predict. This in combi-
nation with point (i) above, and the fact that RANS is the most widely used
approach for complex engineering flows implies that more research is needed.
Therefore, the two diffuser flows are now selected as benchmarking cases in the
‘ATAAC test suite (Advanced Turbulence Simulation for Aerodynamic Ap-
plication Challenges). Likewise, ‘diffuser 1’ was used as test case in the 13th
ERCOFTAC SIG15 Workshop on Turbulence Modelling'. In the forthcoming

1Held at Graz University of Technology, Austria, September 25-26, 2008.
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FI1GURE 5.2. Computational grid of ‘diffuser 1’ in Cherry et al.
(2008) showing the development region, diffuser expansion,
converging section and outlet.

14th ERCOFTAC SIG15 Workshop on Turbulence Modelling® both ‘diffuser 1’
and ‘diffuser 2" were studied. It was concluded that many models had difficul-
ties in predicting the separated region, in particular models based on isotropic
eddy-viscosity assumptions. However, models including the anisotropy of the
Reynolds stresses improved the results significantly (Jakirlié et al. 20100). A
major improvement of the results could be noticed when using eddy-resolving
techniques compared to steady RANS, which proves the difficulties involved
in modelling such a complex, but yet realistic, flow. More specifically, Jakirli¢
et al. (2010a) showed promising results employing a hybrid RANS/LES scheme,
whereas Schneider et al. (2009) obtained very good results using LES.

Since the present flow case has turned into an established test case for tur-
bulence modelling, there exist a number of published RANS results e.g. Jeya-
paul & Durbin (2010); Cherry et al. (2006), and LES or hybrid RANS/LES
e.g. Abe & Ohtsuka (2010) in addition to the aforementioned LES and hy-
brid RANS/LES. However, results from a direct numerical simulation (DNS)
have up until now not been presented. Therefore, due to the lack of detailed
analyses of this important test case, we have chosen to perform a DNS of this
flow. Because of the computational expenses (see Chapter 2.2), the focus is on
one of the diffusers (‘diffuser 1’), rather than aiming at quantifying the differ-
ences between the two of them. Our intention is to understand the complex
physics and mechanisms leading to the particular separation behaviour seen in
the experiments. To succeed with this objective, the first step is to reproduce
the experimental results, which is undertaken by mimicking the experimental
set-up as closely as possible. The computational grid employed in the simu-
lations is depicted in figure 5.2. It consists of all the parts which can be seen
in figure 5.1, namely: the inflow development duct with a length of almost 63
duct heights, h, (starting at the non-dimensional coordinate z = —62.9); the

2Held at Universitd di Roma ‘La Sapienza’, Rome, September 18, 2009.
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FIGURE 5.3. Instantaneous snapshot showing streamwise ve-
locity in a side view of the entire flow domain, where one ob-
serves: the transitional region (A), the fully turbulent duct re-
gion (B), turbulent duct flow with some downstream influence
(C), initial deceleration and instantaneous separation (D), the
mean separated region (E) and finally the reattachment region
and outflow (F). Velocity ranges from —0.1 (blue) to 1.6 (red).

diffuser expansion located at = = 0; the straight section and finally the con-
verging section upstream of the outlet. The corners resulting from the diffuser
expansion are smoothly rounded with a radius of 6.0h in accordance with the
experimental set-up. The maximum dimensions are L, = 105.4h, L, = [h, 4h],
L. = [3.33h, 4h]. The fixed mass flux in the simulation enables the Reynolds
number based on bulk velocity and inflow-duct height to be kept exactly at Re
= 10 000, which matches the value reported in the experiment. The resolution
of approximately 220 million grid points is obtained by a total of 127 750 local
tensor product domains (elements) with a polynomial order of 11 respectively,
resulting in Azl .~ 11.6, Ayt ~ 13.2 and Az}, ~ 19.5 in the duct
centre and the first grid point off the wall being located at zt =~ 0.074 and
y+ ~ 0.37 respectively. This resolution is carefully verified to yield accurate re-
sults compared to the experimental findings. Unlike many other studies of this
flow, we have chosen to incorporate the entire inflow duct in the simulation.
Here, laminar flow undergoes natural transition by the use of the unsteady
and random trip force, described in Chapter 3.1. In figure 5.3, the resulting
transitional (A) and fully turbulent regions (B), can be seen in a side view
showing an instantaneous picture of the flow. Here, (C) denotes a region where
the flow starts to sense downstream influence from the separation. One may
argue that many grid points are ‘wasted’ far upstream of the area of interest.
However, when performing such a large simulation one would like to be certain
that no spurious frequencies (discussed in Chapter 3.1 in conjunction with in-
flow recycling methods) influences the separation. Secondly, incorporating the
laminar-turbulent transition in the same computational box as the separation,
further strengthens the similarities between simulation and experiment. The
regions where instantaneous (D) and mean (E) separation dominates the flow,
and where the flow has reattached (F), are further pointed out in figure 5.3.
A ‘sponge region’ is added at the end of the contraction in order to smoothly
damp out turbulent fluctuations by forcing the flow to a turbulent mean pro-
file, thereby eliminating spurious pressure waves back into the domain. It is
followed by a homogeneous Neumann condition for the velocities at the outflow
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boundary.

The simulation was performed on the Blue Gene/P at ALCF, Argonne
National Laboratory (32 768 cores and a total of ~ 10 million core hours), the
cluster ‘Ekman’ (2048 cores and a total of ~ 6.0 million core hours) and on the
Cray XE6 at PDC, Stockholm (32 768 cores and a total of ~ 0.33 million core
hours). The lack of homogeneous directions together with the fact that the
flow involves a wide range of scales, called for long integration time in order to
average the statistics.

5.2. Mean flow results

The quality of the flow in the inflow duct is carefully verified by several means,
such that it can be ensured that the flow is fully turbulent prior to reaching the
diffuser opening. The turbulent mean flow profile in the duct as a function of
both wall distances, reported in figure 5.4, has an established viscous sublayer,
a buffer region and the beginning of a log layer of approximately one decade.
In addition to the time average, the flow in figure 5.4 was averaged in space
over the two duct walls as well as over a streamwise distance of 9h between
xr = —13 and © = —4, where it was considered to be fully developed. Besides
the comparison to the standard law of the wall, a comparison to a periodic tur-
bulent duct flow simulation (i.e. a temporal flow configuration) conducted at
the same Reynolds number is included in figure 5.4 as a cross-validation. This
simulation has the same crossflow dimensions as the inflow duct: L, = h and
L, = 3.33h. The length is L, = 20h, based on the findings by Huser & Birin-
gen (1993). The resolution of the temporal duct flow is identical (in all spatial
directions) to the last part of the inflow duct. The initial condition consisted of
random noise, which eventually triggered transition to turbulence. Collection
of statistics started after approximately 55 flow-through times (tu;/L, = 55)
when a fully turbulent state was reached and continued over additionally 36
flow-through times. Spatial averaging was performed in the streamwise direc-
tion over the entire domain length and over the four quadrants. We observe
very good agreement between the temporal and spatial simulations, which gives
a strong indication that the flow in the last part of the inflow duct is in a fully
turbulent state.

Another indicator of the fully developed turbulent state is the presence
of secondary flow in the duct. Among all canonical turbulent wall-bounded
flows (pipes, channels, ducts and boundary layers) duct flows is namely the
only member where a secondary flow (i.e. a flow in the crossflow plane) is
part of the mean flow. The appearance of such secondary mean flow motions
were first documented in experiments by Nikuradse (1926). Numerous studies
of duct flow, e.g. numerically by Huser & Biringen (1993), have subsequently
confirmed that the role of the secondary flow is to drive high-speed fluid from
the centre of the duct towards the corners and thereby enhance mixing of
momentum. As opposed to secondary flow of the first kind, which is most
commonly present whenever there are curvature effects of the main flow, and
appears both in laminar and turbulent flows, secondary flow of the second
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FIGURE 5.4. Mean velocity profiles u*(y™) ( ) and
ut(2T) (----) extracted at L,/2 and L /2 in the inflow duct,
respectively. Comparison to the log law (—-—) with x = 0.41
and B = 5.2, and a periodic turbulent duct flow simulation
( and ——--).

kind occurs due to the presence of gradients in the Reynolds stresses (see e.g.
Piquet 1999). This generates forces in the crossflow plane and thus crossflow
velocities. Being dependent on the Reynolds stresses, this flow can only exist in
turbulent flows. The present flow case consists of turbulent flow in a rectangular
duct which eventually separates in the diffuser. Hence, secondary flow of the
second kind is present. In figure 5.5, it is visualised by means of streamwise
vorticity computed from the mean flow field, i.e. (w,) = 9(v)/Iz — O(w)/y.
We compare the secondary flow in the inflow duct (@) to the corresponding
flow in the periodic duct (b). Again, spatial averaging was performed in the
streamwise direction over the domain length of L, = 20h for the latter case,
while averaging was done over a streamwise distance of 9h between x = —13
and x = —4 in the former case. In both cases, the flow was averaged over the
four quadrants. We observe that the secondary flow in the inflow duct, visible
as positive (red) and negative (blue) streamwise vorticity, is in good agreement
with the temporal periodic duct simulation, which again certifies that the inflow
length is long enough. Since the duct is not a square, the two corner vortices
can be seen to be different in size.

An indication that this secondary flow might have an effect on the sepa-
ration behaviour were given by the several RANS predictions documented in
Steiner et al. (2009); Jakirli¢ et al. (2010b). There, it was observed that most
eddy-viscosity models, which assume isotropic conditions and hence no sec-
ondary flow in the duct, fail to predict the separation correctly. By contrast,
Reynolds-stress models which were able to compute the secondary flow in the
duct, were in general much better in their predictions. Indeed, as we will soon
see, although very week in magnitude (typically a few per cent of the bulk
velocity), this secondary flow plays an important role in the subsequent flow
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F1GURE 5.5. Crossflow planes of mean streamwise vorticity,
(wz), in the inflow duct (@) and in a periodic duct (b). In (a)
the flow is averaged over a streamwise distance of 9h between
x = —13 and * = —4, where the flow is in a fully turbulent
state, whereas spatial averaging in (b) is performed over the
domain length of L, = 20h. Vorticity ranges from —0.5 (blue)
t0 0.5 (red). Contour lines of mean streamwise velocity, spaced
0.05 up apart, as well as velocity vectors of mean crossflow
velocities are superimposed.

separation. This idea has recently been exploited by Schneider et al. (2011) as
an efficient method to control (and decrease) the separation in the diffuser.

The increased complexity of a three-dimensional flow, as compared to the
statistically two-dimensional flow in Chapter 3.3, has implications on the defi-
nition of separation itself. For instance, difficulties arise when we try define a
two-dimensional stream function and a corresponding mean dividing streamline
in a three-dimensional mean flow. Furthermore, in three-dimensional flows the
boundary layer can separate without the surface shear stress necessarily falling
to zero (Simpson 1989), which also rules out the definition given by equation
(3.10). Williams (1977) and Schetz & Fuhs (1999) have collected a few defini-
tions of three-dimensional separation, which are: (i) a line along which some
component of the skin friction vanishes, (ii) a line along which the solution to
the boundary layer equations is singular, (iii) an envelope of limiting stream-
lines, or (iv) a line which divides the flow coming from different regions. Schetz
& Fuhs (1999) further state that none of these definitions appear to be uni-
versally valid, but some of them may have some element of validity. Here, we
will follow Cherry et al. (2008) who used definition (i), since they defined the
separation bubble as the region where the streamwise component of the mean
flow is zero or below. The boundary of this region is the set of all points where
U = 0. A sample result is given by the thick black line in figure 5.6, where
a crossflow plane at x = 8 of mean streamwise velocity is shown. In general,
good agreement with the experimental data can be inferred (cf. figure 5.6a and
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FIGURE 5.6. Mean streamwise velocity in a crossflow plane 8h
downstream of the diffuser throat given by the present DNS
data (@) and the experimental data by Cherry et al. (2008) (b).
The arrow in (@) indicates the location of the so-called ‘bump’,
whereas the arrow in (b) shows a compression of the velocity
contours visible in the experimental data. The contour lines
are spaced 0.05 up apart. Note that the coordinate system for
figure (b) is unchanged with respect to the published data base.

figure 5.6b). In the very upstream region of the diffuser (not shown) the flow
first separates in the upper right corner where the adverse pressure gradient is
the strongest. At x &~ 5 the separated flow suddenly covers the top expanding
wall of the diffuser. Instead of highlighting all similarities, we shall focus on
one of the slight discrepancies found in the two data sets, reported in figure 5.6.
Attention should be pointed towards the position of the arrow in figure 5.6(a),
where the separated region extends somewhat from the top diffuser wall. This
particular shape of the separated region, a feature which we simply have called
the ‘bump’, is at first sight very different from the experimental counterpart in
figure 5.6(b). Here, a similar ‘bump’ is not observed — at least not in the zero
streamwise velocity contour (thick line). A closer look at the experimental data,
however, reveals that the same feature can be noticed in most velocity contours
except the zero velocity contour, pointed out by the arrow in figure 5.6(b) (note
the compression of the velocity contours), indicating that the actual discrep-
ancies between the experiments and our DNS are indeed small. An excellent
cross-validation and another strong verification of the existence of the ‘bump’
was established in Jakirli¢ et al. (2010b) and in Schneider et al. (2009) where
the latter authors show a strikingly similar ‘bump’ by employing a different
simulation technique (LES and wall-functions), numerical scheme (finite vol-
ume), inflow conditions (recycling) and slightly different domain configuration
(e.g. no converging section and sharp corners at the diffuser inlet).

Since the RANS closures, which are able to capture the secondary flow in
the inflow duct, tend to see a similar ‘bump’, we suspect that the secondary
flow is the main candidate for this phenomenon. Consequently, we investigate
the evolution of the secondary flow into the diffuser, as before, by means of the
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FIGURE 5.7. (a) Crossflow plane of mean streamwise vorticity,
(wz), 12h downstream of the diffuser throat, ranging from —0.5
(blue) to 0.5 (red). Contour lines of mean streamwise veloc-
ity, spaced 0.05 u; apart, as well as velocity vectors of mean
crossflow velocities are superimposed. The thick black line
corresponds to the zero velocity contour. (b) Mean streamwise
vorticity (w,) at z = 0.368 ( ) and —(w,) at z = 3.73
(==--) along y in the crossflow plane in (a) across the two
primary vortex centres (indicated by black arrows and dashed
lines) responsible for the maximum vorticity magnitude in the
upper left and right corners, respectively.

streamwise vorticity. (Due to slow variation of mean quantities in the stream-
wise direction, all quantities are averaged over a distance h in x. Moreover, a
smoothing in the yz-plane is performed by applying a mean filter over a rec-
tangle of size 2-by-2 points, which basically replaces point i by the mean of
the rectangle centred on i.) As discussed above, when entering the diffuser, the
flow separates first in the upper right corner. As an effect of the separation, the
turbulence intensity increases (values of ;.5 /up reaching 25 % were observed
by Cherry et al. (2008) and in Paper 6 in the shear layer bounding the separa-
tion bubble). The increased turbulent activity enhances the turbulent diffusion
in this region, and accordingly, the secondary flow is diffused and weakened —
in particular the negative vorticity, visible in a crossflow plane at x = 12 in
figure 5.7(a), to the upper right. In the upper left corner, on the other hand,
the secondary flow has a magnitude similar to that in the duct, as shown by
the similar colours in figures 5.5(a) and 5.7(a). Hence, we can conclude that
this flow persists. The appearance of the ‘bump’ can now be clarified by noting
the imbalance between the positive vorticity to the left and the negative vor-
ticity to the right in figure 5.7(a). The magnitude of the vorticity to the left
is greater than the magnitude of the vorticity to the right, quantified in figure
5.7(b), where the vorticity along y in the crossflow plane at = 12 is shown.
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FIGURE 5.8. Positive and negative circulation, I';, as a func-
tion of x in the four quadrants ¢; with ¢ = 1,...,4 be-
ing numbered clockwise starting from the upper left quad-
rant. Positive and negative circulation are defined as I'; =
qu (we)H ((wy)) dg; and T; = ffqi (wy)H(—{w,)) dg;, respec-
tively, H being the Heaviside function. (a) Positive and nega-
tive 'y ( ), Ty (---=), T3 (——=), T4 ( ), 01+ Ty +
s+ Ty ( ), ‘large vortex’ (------- ) and ‘small vortex’ (o)
in the periodic duct simulation.

Here, 2 = 0.368 and 2z = 3.73 denote the spanwise coordinates (indicated in
figure 5.7(a) by the black arrows and dashed lines) where the maximum magni-
tudes of positive vorticity in the upper left and negative vorticity in the upper
right corners are found, respectively. The primary vortices responsible for the
crossflow in the vicinity of the zero streamwise velocity contour are of main
focus, and hence the boundaries — where the vorticity locally can be very high
— are excluded. From figure 5.7(b), it is evident that the left vortex is stronger
(almost a factor two) than the one to the right. This is thought to be the basic
mechanism to create the observed asymmetry in the zero streamwise velocity
contour.

Finally, we perform a quantitative tracking of the individual corner vor-
tices. The axial dependence of the mean streamwise vorticity is examined by
computing the positive and negative circulation, I';, of the mean streamwise
vorticity as a function of x. Here, i = 1, ...,4 denote the circulation in the four
quadrants of the duct and the diffuser, numbered clockwise and starting from
the upper left. More specifically, the following integrals are computed:

- () d s T = I/ () (o)) s,

for the positive and negative circulation, respectively. Here, H is the Heaviside
function and ¢; are the regions of the four quadrants. The results are shown
in figure 5.8. We see that the action of the trip force (z < —60) provides
a strong initial increase of circulation in all four corners. In the following
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transitional region there is first a slight decrease and then a large increase of
circulation, indicating the late stages of transition. After this point, a fairly
extended development region follows, where the secondary flow in the four
corners approaches a fully developed equilibrium state, which is reached around
x = —13. Here, all eight corner vortices have an approximately equal strength.
Specifically, the ‘large’ vortices contain slightly more circulation (|I'| ~ 0.04)
than the ‘small’ vortices (|T'| &~ 0.03), confirmed by the counterparts computed
in the periodic duct. Interestingly, as the flow enters the diffuser (z = 0) there is
a sudden increase in magnitude of the circulation in all four corners. The peak is
reached where the diffuser stops expanding (z = 15). In the following straight
section, the magnitude of the circulation in the various corners again drops.
The sum of the total circulation (thick black line in figure 5.8) reveals that the
circulation is approximately conserved along the streamwise length of the duct
and the diffuser, i.e. the positive and negative circulation in all four quadrants
add up to zero. The approximate conservation stems from the smoothing and
averaging process prior to computing the circulation. As discussed earlier, the
weak secondary flow created in the inflow duct needs to be represented by
a turbulence model in order to get the correct separation prediction in the
diffuser. Having access to the evolution of the eight individual corner vortices,
provided in figure 5.8, will undoubtedly facilitate the validation of such a model.

5.3. Large-scale dynamics

The literature is sparse when it comes to large-scale quasi-periodic motions
detected in turbulent pressure-induced separated flows. Often a broad spectral
content is observed (Kaltenbach et al. 1999; Herbst et al. 2007; Térnblom et al.
2009; Na & Moin 1998). In geometry-induced separated flows, on the other
hand, dominant low frequencies have been reported in numerous studies (e.g.
Le et al. 1997; Eaton & Johnston 1980; Friedrich & Arnal 1990; Kiya & Sasaki
1985). Clearly, this phenomenon emerges more easily in the latter type of flow.
However, it might not be the pressure-induced separation per se that prevents
quasi-periodic motions to occur. In fact, most studies on pressure-induced sep-
arated flows have been performed in two-dimensional configurations. In such
a set-up, the flow never becomes ‘locked’, but can always move freely in the
homogeneous direction. If some sort of additional confinement is added to the
flow, as in the present set-up, recirculation zones (at least instantaneous) on
two or more sides of the flow will form. They will tend to influence the dynam-
ics to a greater extent than for unconfined flows. Moreover, if the Reynolds
number is high, then the diffuser shares many similarities with ‘confined jets’
which is a class of flows extensively studied. The experimental set-ups in these
studies differ slightly, but in essence they consist of a turbulent jet entering a
rectangular confinement of some variable or fixed size, and exits on the other
side. A generic set-up of such an experiment is shown in figure 5.9, where
the jet and recirculation zones are indicated. In some studies (e.g. Lawson
& Davidson 2001; Maurel et al. 1996; Villermaux & Hopfinger 1994; Moreno
et al. 2004), it has been noted that recirculation zones forming on each side of
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FIGURE 5.9. A typical flow configuration for a confined jet experiment.

the jet can, under particular circumstances, render the flow globally unstable.
Consequently, the flow is governed by a dominant frequency, which manifests
itself in shedding of some sort.

The first sign of large-scale motions in the present diffuser flow was observed
through instantaneous snapshots, indicating that the flow is subjected to a
motion that resembles the ‘flapping’ or meandering of an unstable jet. An
example is shown in figure 5.10, where the snapshots are separated in time by
Atuy/h = 10. From figure 5.10(a) we can estimate a streamwise wavelength of
roughly 10h. In the subsequent figures 5.10(b) and (c¢) we can observe this wave
propagating downstream. Quantitatively, this is studied by a set of time signal
probes placed in the flow domain and by proper orthogonal decomposition
(POD) of the flow. Three-dimensional visualisations of the first few fluctuating
POD modes (here 1 and 3) are given in figure 5.11. Their time dependence
(computed as outlined in Chapter 4.1) is shown in figure 5.12. As is often the
case in POD of inhomogeneous turbulent flows (see e.g. Manhart & Wengle
1993), a large fraction, here 86 %, of the energy resides in the mean flow (mode
0). The remaining 14 % belong to the fluctuating modes. Among these, mode
1 and 3 contain 4.8 % and 2.5 % of the fluctuating energy, respectively. Thus,
they do not contain a very large fraction of the total energy, but as we will see
they are important in order to explain the dynamics in the diffuser. From figure
5.11 one can deduce that the modes are large streaky structures with alternating
positive and negative streamwise fluctuation velocity. The combined effect of
these fluctuations is to bend the confined jet and create a wave. For mode 1,
these streaks are indicated by @ (positive) and @ (negative). Mode 3 displays
a very clear wave, whose oscillation mainly goes along z, since negative ® and
positive @ fluctuations are located side by side in the z-direction. Note that the
modes here are shown at one specific time and since each mode has a particular
time dependence given by the (nearly) sinusoidal variation in figure 5.12(a),
the wave has at some later time shifted its positive and negative side. We
observe approximately four periods in 5.12(a), whose length can be estimated
by T ~ 100h/uy, giving a non-dimensional period of T* = Tu,/h ~ 100.
The corresponding Strouhal number (non-dimensional frequency) is therefore
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FIGURE 5.10. Three snapshots in an xy-plane at z = 1.87
shown at (a) t = to, (b) t = to + 10h/uy, (¢) t = tg + 20h/us.
Thin contour lines of streamwise velocity are shown for u/u;, =
0,0.2 and 0.3, whereas the thick contour line is shown for
u/up = 0.4.

St = 1/T* ~ 0.01. This frequency compares well to the spectral peak in
the power spectral density (PSD) in figure 5.12(b), deduced from time signal
probes placed in the upper part of the flow domain at x = 5,8,12,15. The
structures shown in figure 5.11 resemble POD modes originating from a jet
with inherent low-frequency flapping (see e.g. Moreno et al. 2004), supporting
the fact that there is a sinusoidal motion present in the diffuser. Based on
figure 5.11, the streamwise wavelength is estimated to be A, ~ 10h, which is
consistent with the meandering visible in the instantaneous snapshots in figure
5.10. In the two cross-stream directions (y and z), the modes span the entire
cross section, such that Ay, = A\, =~ 4h, since L, = L, = 4h in the region
where the modes are active. These structures are thus the largest possible for
the given geometry. This is in agreement with Villermaux & Hopfinger (1994),
who concluded that for confined flapping jets in asymmetric configurations, the
largest confinement dimension will dominate the flow. It is interesting to note
that the modes pass through the mean separated region, which extends from
T~ T7tox =~ 20, suggesting a coherent movement of the flow inside and outside
the mean separated region. Higher modes (~ 7-20) have shorter wavelengths,
but still with a high degree of coherence. They do not extend into the mean
separated region as much as the first few mods (1-6), which indicates that
the separated zone shares its frequencies rather with the largest structures in
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FIGURE 5.11. Isosurfaces (dark gray: 0.1, light gray: —0.1) of
streamwise velocity pertaining to POD mode 1 (a) and 3 (b),
shown at two different angles. The arrows indicate specific
structures of the respective modes, further described in the
text.

the diffuser. At some point (2 mode 60) most of the coherence is lost and
small-scale turbulence remains.

Two modes shifted approximately 90 degrees in time are needed to define a
wave that moves downstream, i.e. a travelling wave. Testing for the existence of
such a wave can be undertaken by projecting the flow onto the two-dimensional
phase space spanned by the fluctuating POD modes at hand, i.e. the time
evolution of modes ¢ and j are drawn simultaneously. In the case of a travelling
wave, the two-dimensional phase portraits would correspond to a circle, i.e. a
periodic orbit: 7(t) = a;(t)¥;+a,;(t); = Acos(t)er+Asin(t)e,, where A is the
amplitude of the mode and ¢ is the time. If the time axis is included as a third
direction, the resulting parameterised curve would be a helix, mathematically
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FIGURE 5.12. (a) Temporal evolution of mode 1 (

) and
3 (==--), (b) power spectral density of time probes placed in
the upper part of the flow domain at z = 5 (——), z = 8

(

described by 7(t) = Acos(t)er + Asin(t)e, + te,. On the other hand, no
particular coherence would correspond to a joint probability density function
(PDF) of two random variables, uniformly distributed between —A/2 to A/2.
If the time signal were not exactly periodic, i.e. quasi-periodic, then the circle
would not be closed, but rather spiral either inwards or outwards. In figure
5.13(a), the two-dimensional projection for the fluctuating POD modes 1 and
2, i.e. the trajectory in the subspace (¢1,)2), is shown. Time is included as
a third direction and the start and end points of the trajectory are indicated
for clarity. It can be seen that the trajectory completes a bit more than three
revolutions, approximately taking the form of a helix. Considering the high
turbulence levels of the present flow (wms/up up to 25 %), this phase portrait
show a remarkable clarity. Finally, we study this low-dimensional motion in
terms of flow variables, here streamwise velocity, by following the procedure
previously employed in e.g. Cazemier et al. (1998) and the references therein,
where the most energetic modes are superimposed with their corresponding
temporal weight. Here, we use modes 0-6. Isosurfaces of constant streamwise
velocity are shown in figure 5.13(b) at two specific times (tup/h = 8 and tuy /h =
54) in figure 5.12(a). The travelling wave is now clearly seen to propagate
through the domain. In particular, in figure 5.13(b, upper), the sinusoidal shape
of the high-speed core of the flow has one of its minima located at x ~ 20 @.
As a consequence of the confinement of the flow, high velocity fluid is pushed
up on the sides, close to the side walls. One half period later, in figure 5.13(b,
lower), the minimum has propagated downstream (not visible anymore), and is
now replaced by a maximum at x = 20 @. Now, the confinement instead forces
flow in the crossflow plane downwards in the vicinity of the side walls. Another
half period later (not shown), the flow is back to its approximate original state.
It is noteworthy that an effect of this meandering seen in the diffuser is the
strong secondary flow (in the crossflow directions), superimposed on the weak
secondary flow inherent in the mean flow.

),z =12 (----)and x =15 (-——-).
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FIGURE 5.13. (a) Temporal orbit in the subspace (11, 2)
showing the quasi-periodic motion of the largest structures
present in the diffuser. Time is increasing along the vertical
axis. (b) Superposition of POD modes 0-6 shown at tuy/h = 8
(upper) and tup/h = 54 (lower) in figure 5.12(a). Gray isosur-
face show constant streamwise velocity, u/u, = 0.1. Crossflow
planes show streamwise velocity ranging from —0.1 (blue) to
0.5 (red). The arrows highlight the wave propagating through
the domain, further described in the text.



CHAPTER 6

Conclusions and outlook

Initially, turbulent flows were mainly simulated relying on fully spectral dis-
cretization methods. Also at KTH Mechanics, such a code was developed and
continuously extended (see the manual for the code simson Chevalier et al.
2007). This accurate and efficient code has over the past fifteen years led to an
extensive number of published articles in turbulent and transitional boundary-
layer research. Although there are many complex phenomena appearing in
boundary-layer flows, the time is now mature to proceed to more complex
flows. Four and a half years ago this new era started when Prof. Paul F.
Fischer kindly offered us to use and further develop his spectral-element code
nek5000.

This thesis focuses on turbulent wall-bounded flows in moderately complex
geometries. The work is of purely numerical nature and the tool for the numer-
ical simulations is the spectral-element method (SEM). A thorough validation
of the spectral-element code in canonical flow cases, involving turbulence and
transition in channels, has been carried out. In addition, a slightly more com-
plex case including separation, was used for the benchmarking. For these flows,
long experience and solid expertise concerning e.g. expected results, required
resolution and efficiency exist within our group. Through this, we have not only
been able to quantify the accuracy and resolution requirements, but also re-
alised that fully turbulent flows at moderate Reynolds numbers are well-suited
for the spectral-element method. To support this statement further and dis-
prove the long-standing fear of instability issues of the spectral-element method
in turbulent flow simulations, two stabilisation tools for the spectral-element
method were investigated on simpler test problems in 1D and 2D, with an a
posteriori analysis in transitional and turbulent channel flow simulations. It
was shown that the spectral-element method needs stabilisation as soon as the
flow transitions to turbulence, even in well-resolved simulations. The instabil-
ity is cured either by filter-based stabilisation or over-integration, where it was
found that the full 3/2-rule is not needed for stability.

Strengthened by the excellent outcome of the validation part of the thesis
and prepared with reliable turbulent inflow conditions involving an unsteady
trip-forcing technique, we were able to tackle the problem of three-dimensional
separation and perform the first direct numerical simulation of the experimental
diffuser set-up by Cherry et al. (2008). The problem involved ~ 220 million
grid points and was running on up to 32 768 processors. The agreement to the
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experimental data was close, in particular the sensitive separated region could
be captured with high accuracy. It also became clear that the presence of the
secondary flow, which arises in the inflow duct, has a profound effect upon
the separation behaviour. Moreover, the diffuser could be seen to share many
similarities with confined jets, where the separated zones under some conditions
can render the flow globally unstable. More specifically, a large-scale motion
with frequency St = fh/u, ~ 0.01 (h being the inflow-duct height and up the
bulk velocity) pertaining to the meandering of the incoming flow was detected.

The present thesis also reports some results regarding coherent structures
in canonical wall-bounded turbulent flows. To this extent, so-called Koopman
modes were used for the spectral analysis of a minimal channel flow. For this
particular flow, strongly dominated by two frequencies, it could be concluded
that classical proper orthogonal decomposition (POD) could suffice to pick up
the dominant frequencies. However, since the Koopman modes (as opposed
to the POD modes) are clearly separated in spectral space, a more detailed
analysis of the second peak in the spectrum pertaining to the ‘bursting’
phenomenon could be provided using these modes. Moreover, an alternative
measure used to locate coherent structures in turbulent and transitional flows
was proposed. Contrary to most other identification criterions suggested ear-
lier, the present one focuses on the production of vorticity, rather than vortices.

A natural continuation of the present work is to perform a more ‘classical” anal-
ysis of the turbulent three-dimensional diffuser flow, focusing on evaluation of
the Reynolds stress budgets. Other than contributing with enhanced under-
standing of the flow itself, it would benefit RANS modellers in the development
of new turbulence closures. For further spectral analysis of the flow, the use of
Koopman modes might be advantageous, as the flow in the diffuser could be
seen to be clearly separated in spectral space.

For the numerical part of this thesis, work on the skew-symmetric proper-
ties of the numerical discretization is ongoing. This is certainly an important
topic and is at the present not fully understood.

These years have shown what the spectral-element method is capable of.
The numerical code nek5000 is already involved in many other research projects
at KTH Mechanics and at other universities and research institutes world wide.
There are countless flows in complex geometries to be discovered, and in fif-
teen years nek5000 has probably generated as many articles in fluid mechanics
research at this department as the old spectral boundary-layer code.



CHAPTER 7

Summary of papers, author contributions
and presented work

Paper 1

OHLSSON, J., SCHLATTER, P., MaAvRrIPLIS, C., & HENNINGSON, D. S. 2011
The spectral-element and pseudo-spectral methods: A comparative study.
Spectral and High Order Methods for Partial Differential Equations, LNCSE
76, 459-468.

This paper compares the code nek5000 based on the spectral-element
method with the pseudo-spectral code simson in terms of computational speed
and accuracy in turbulent and transitional wall-bounded flows. It is found
that the pseudo-spectral code is approximately 4-6 times faster per time step
than the spectral-element code in fully developed turbulent flow simulations,
and up to 10-20 times faster when taking into account the more severe CFL
restriction in the spectral-element code. Mesh refinement studies show that
the two methods need similar amount of spatial resolution to capture the
relevant physics.

The simulations were performed by Johan Malm (JM). The paper was
written by JM with input from Dr. Philipp Schlatter (PS) and Prof. Catherine
Mavriplis (CM).

The work was presented at the 8th International Conference On
Spectral and High Order Methods (ICOSAHOM 8), June 22-26, 2009,
Trondheim, Norway.

Paper 2

OHLSSON, J., SCHLATTER, P., FISCHER, P. F. & HENNINGSON, D. S. 2011
Stabilization of the spectral-element method in turbulent flow simulations.
Spectral and High Order Methods for Partial Differential Equations, LNCSE
76, 449-458.

This paper deals with the numerical stability of the spectral-element
method at moderate to high Reynolds numbers. With the use of appropriate
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stabilisation tools (over-integration, i.e. dealiasing, or filter-based stabilisa-
tion), it is shown a priori on simpler model problems and a posteriori using
the full Navier-Stokes equations, that the method can be stabilised without
the need of the full 3/2 dealiasing rule.

A spectral-element solver for Burgers’ equation was implemented by JM
with feedback from PS. The implementation of a spectral-element solver for
the scalar transport equation was provided by Prof. Paul F. Fischer (PF). The
paper was written by JM with input from PF and PS.

The work was presented at the 8th International Conference On
Spectral and High Order Methods (ICOSAHOM 8), June 22-26, 2009,
Trondheim, Norway.

Paper 3

OHLSSON, J., SCHLATTER, P., FISCHER, P. F. & HENNINGSON, D. S. 2010
Large-eddy simulation of turbulent flow in a plane asymmetric diffuser by the
spectral-element method. Direct and Large-Eddy Simulation VII. 197-204.

In this paper, the ability of the spectral-element code to handle moder-
ately complex geometries is investigated by means of a large-eddy simulation
(LES) of a plane asymmetric diffuser with an opening angle of 8.5°, also
numerically investigated by Herbst et al. (2007). Two different Reynolds
numbers are studied: Re, = 4500,9000 based on bulk velocity and inflow
channel half-height. A dynamic Smagorinsky model is used as SGS model.
Good results compared to Herbst et al. (2007) are obtained, in particular it is
noticed that less grid points can be used to predict the separated flow with
similar accuracy, leading to the conclusion that the use of a high-order method
is advantageous for flows featuring pressure-induced separation.

The simulations were performed by JM. The SGS model for the LES
was implemented by PF. The paper was written by JM with input from PS.

The work was presented at the

e 7th ERCOFTAC Workshop On Direct and Large-Eddy Simu-
lations (DLES 7), September 8-10, 2008, Trieste, Italy,

e 61st Annual Meeting of the American Physical Society (APS),
Division of Fluid Dynamics, November 23-25, 2008, San Antonio,
Tezas.

Paper 4

MaArLMm, J., BAGHERI, S., SCHLATTER, P. & HENNINGSON, D. S. 2010
Koopman mode decomposition of a minimal channel flow. Internal report.
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The recent Koopman mode decomposition (Rowley et al. 2009) is ap-
plied to a turbulent and fully non-linear minimal channel flow. The modes
are computed according to the dynamic mode decomposition (DMD) outlined
in (Schmid 2010). The acquired modes and frequencies are compared to
classical proper orthogonal decomposition (POD) of the same flow. The two
decompositions identify similar structures, associated with the dynamics of
the single low-speed streak present in the flow. However, since the Koopman
mode decomposition provides a clear separation in spectral space, two separate
structures relating to the ‘bursting’ phenomenon could be identified.

The simulations were performed by JM. A snapshot based POD code
building on a code written by Dr. Shervin Bagheri (SB) was re-written by
JM for the present simulation code and extended by JM to account for the
computation of Koopman modes. The paper was written by JM with input
from PS and SB.

Paper 5

MALM, J., SCHLATTER, P. & SANDHAM, N. D. 2011 A vorticity stretching
diagnostic for turbulent and transitional flows. Theor. Comput. Fluid Dyn.
Accepted.

A new diagnostic measure, based on the maximum vorticity stretching
component in every spatial point, is designed. It is shown that the structures
associated with intense vorticity stretching in all investigated flow cases have
the shape of flat ‘pancake’ structures in the vicinity of high-speed streaks
and on top of unstable low-speed streaks. The largest occurrence of vorticity
stretching in a fully turbulent wall-bounded flow is present in the transition
between the viscous sublayer and buffer layer, with associated structures
having a streamwise length of ~ 200-300 wall units.

The simulations were performed by JM and PS. The theory was formu-
lated by JM, PS and Prof. Neil Sandham (NS). Implementations and
post-processing were performed by JM. The paper was written by JM with
input from PS and NS.

Parts of the work were presented at the 7th International Sympo-
sium On Turbulence and Shear Flow Phenomena (TSFP 7), July
28-31, 2011, Ottawa, Canada.

Paper 6

OHLSSON, J., SCHLATTER, P., FISCHER, P. F. & HENNINGSON, D. S. 2010
Direct numerical simulation of separated flow in a three-dimensional diffuser.

J. Fluid Mech. 650, 307-318.
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In this paper we perform the first direct numerical simulation (DNS) of
a truly three-dimensional, turbulent and separated diffuser flow at Re =
10 000 (based on bulk velocity and inflow-duct height), experimentally
investigated by Cherry et al. (2008). The massively parallel capabilities of the
spectral-element method are exploited by running the simulations on up to
32 768 processors. Very good agreement with experimental mean flow data
is obtained. In addition, an explanation for the discovered asymmetry of the
mean separated flow is provided.

The simulations and necessary implementations into the simulation code
were performed by JM with input from PF and PS. The paper was written by
JM with input from PS, Prof. Dan Henningson (DH) and PF.

Parts of the work were presented at the

e 13th ERCOFTAC Nordic Pilot Centre (NPC 13), June 89,
2009, Bergen, Norway,

e 12th EUROMECH European Turbulence Conference (ETC
12), September 7-10, 2009, Marburg, Germany,

e 14th ERCOFTAC SIG 15 Workshop on Refined Turbulence
Modelling, September 18, 2009, Rome, Italy.

Paper 7

MALM, J., SCHLATTER, P., FISCHER, P. F. & HENNINGSON, D. S. 2011

Coherent structures and dominant frequencies in a turbulent three-dimensional
diffuser. J. Fluid Mech. Under revision.

This paper is a continuation of Paper 6, focusing on a time-dependent
analysis, where dominant frequencies and coherent structures are investigated
and quantified. It is shown that the flow contains multiple phenomena, well
separated in frequency space. A dominant frequency St = fh/u, ~ 0.01
(based on bulk velocity and inflow-duct height) is detected by time signal
probes in the flow, and associated structures are identified by POD.

The simulations were performed by JM. A snapshot based POD code
building on a code written by SB was re-written by JM for the present
simulation code. The paper was written by JM with input from PS and DH.

Parts of the work were presented at the 88h EUROMECH Fluid Me-
chanics Conference (EFMC 8), September 13-16, 2010, Bad Reichenhall,
Germany.



Acknowledgements

The present thesis summarises four and a half years of research in Prof. Dan S.
Henningson’s group at the KTH Mechanics. I would like to thank my super-
visor Dan Henningson for his enthusiasm and skills in defining good research
projects. With his experience and confidence I have never feared that I am
walking on the wrong path. His generosity has given me opportunities to at-
tend conferences, workshops and going abroad. My co-advisor Philipp Schlatter
is especially acknowledged for sharing his vast knowledge and understanding
for flow physics, numerical analysis and computer science. Most importantly,
you have patiently taught me how to perform research in a disciplinary and
accurate! manner, which is what has made me develop as a researcher. Paul
F. Fischer is greatly acknowledged for providing us with his research code and
helping us along to get started in the very beginning, as well as for his support
during the large computer simulations. To cooperate with you has always been
a pleasure and you have inspired me in the curious and joyful way you approach
science. I am grateful to my other external collaborators Catherine Mavriplis
and Neil Sandham for their great ideas and tireless correcting of my written
English.

Outi Tammisola, Gabriele Bellani and Onofrio Semeraro are acknowledged
for sharing ideas and experience. Thanks to Stefan Wallin for suggesting me
to go to the SIG15 Workshop in Rome, where my data was used as reference.
There, I also had the great pleasure to meet Hayder Schneider and Dominic
von Terzi, with whom I had many valuable and interesting discussions. Thank
youl!

During these years I have had the opportunity to get to know many in-
teresting people and good friends at conferences and meetings, too many to
be mentioned here. I have truly enjoyed the friendly atmosphere at the De-
partment of Mechanics, which would not have been possible without my room-
mates Antonios Monokrousos, Espen Akervik, Onofrio Semeraro, Qiang Li and
Armin Hosseini, and the PhD students/post-docs Andreas Vallgren, Andreas
Carlson, David Tempelmann, Enrico Deusebio, Lailai Zhu, Lars-Uve Schrader,
Milos Ilak, Shervin Bagheri, Marit Berger, Stevin van Wyk, Peter Lenaers,
Florian von Stillfried, Reza Dadfar, Sasan Sarmast, Robert Pettersson, Zeinab

ITwo files are not the same until they are binary the same, i.e. every single bit is identical.

72



ACKNOWLEDGEMENTS 73

Pouransari, Amin Rasam, Outi Tammisola, Gabriele Bellani, Karl Hakansson,
Gaetano Sardina, Krishnagoud Manda, Azad Noorani and Iman Lashgari. The
‘seniors’ Luca Brandt, Yohann Duguet and Ardeshir Hanifi are acknowledged
for interesting and useful discussions as well as their happy appearance. Hanno
Essén?, Erik Lindborg, Nicholas Apazidis, Anders Dahlkild and Gunnar Maxe
have never failed to transform my lunches and coffee breaks into scientific jour-
neys. Without Carolina Eneqvist, Heide Hornk, Malin Landin, Nina Bauer,
Hans Silverhag, Gunnar Tibert, Karina Bellbrant and Bubba, this department
would have been a cold and dry place. Thanks for your enthusiasm and energy!

Thanks to Stefan Kerkemeier at ETH Ziirich for interesting and fruitful
discussions at our shared office at Argonne National Laboratory as well as his
help and expertise with the code nek5000. Of the friendly people I met at
Argonne National Laboratory, Aleksandr Obabko is especially acknowledged.
Philipp Schlatter, Paul F. Fischer, Stefan Kerkemeier and Susanna Malm are
further acknowledged for their valuable comments on the manuscript and Geert
Brethouwer for internally reviewing the material.

The Linné FLOW Centre, financed by the Swedish Research Council
(Vetenskapsradet), is gratefully acknowledged for funding of the project.
The Swedish National Infrastructure for Computing (SNIC), with a generous
grant by the Knut and Alice Wallenberg (KAW) Foundation, is acknowledged
for computer time at the Centre for Parallel Computers (PDC), Stockholm,
Sweden and the National Supercomputer Centre (NSC), Linképing, Sweden.
Argonne Leadership Computing Facility (ALCF) at Argonne National Labo-
ratory (ANL), Chicago, USA is acknowledged for computer time on the IBM
BG/P Intrepid.

Last, but not least, thanks to my good old friends, sister, mother and fa-
ther in Stockholm for distracting my thoughts away from science from time
to time. I am particularly grateful to my father for giving me, and always
supporting, my interest in science.

And finally, to those, who have the biggest share in this thesis. Susanna, your
desire to understand what I am doing has always impressed me and made me
feel that I am never alone. Margit, it will take some time until you can read
this, but nevertheless I want you to know that although being so small you have
added so much to my life. I love you both.

2Probably the most well-read person the department can offer.



Bibliography

ABE, K. & OHTSUKA, T. 2010 An investigation of LES and Hybrid LES/RANS
models for predicting 3-D diffuser flow. Int. J. Heat Fluid Flow 31 (5), 833-844.

Apams, N. A. 2000 Direct simulation of the turbulent boundary layer along a com-
pression ramp at M = 3 and Reg = 1685. J. Fluid Mech. 420, 47-83.

AKER\/IK, E., HEPFFNER, J., EHRENSTEIN, U. & HENNINGSON, D. S. 2007 Optimal
growth, model reduction and control in a separated boundary-layer flow using
global eigenmodes. J. Fluid Mech. 579, 305-314.

DEL Aramo, J. C. & JIMENEZ, J. 2006 Linear energy amplification in turbulent
channels. J. Fluid Mech. 559, 205-213.

Arrow, K., Hurwicz, L. & Uzawa, H. 1958 Studies in Nonlinear Programming.
Stanford University Press, Stanford, USA.

BAGHERI, S., BRANDT, L. & HENNINGSON, D. S. 2009 Input-output analysis, model
reduction and control of the flat-plate boundary layer. J. Fluid Mech. 620, 263—

298.
BARKLEY, D. 2006 Linear analysis of the cylinder wake mean flow. Furophys. Lett.
75, 750-756.

BLACKBURN, H. M. & ScHMIDT, S. 2003 Spectral element filtering techniques for
large-eddy simulation with dynamic estimation. J. Comput. Phys. 186 (2), 610
629.

BLACKWELDER, R. F. & ECKELMANN, H. 1979 Streamwise vortices associated with
the bursting phenomenon. J. Fluid Mech. 94, 577-594.

Bourranals, R., DEVILLE, M., FiscHER, P.F., LERICHE, E. & WEILL, D. 2006
Large-eddy simulation of the lid-driven cubic cavity flow by the spectral element
method. J. Sci. Comput. 27, 151-162.

Buicge, C. U. & EATON, J. K. 2000 Experimental investigation of flow through an
asymmetric plane diffuser. J. Fluids Engng. 122 (2), 433-435.

CanuTo, C., HussaINT, M.Y., QUARTERONI, A. & ZANG, T.A. 1988 Spectral Meth-
ods in Fluid Dynamics. Springer-Verlag, Berlin, Germany.

CAZEMIER, W., VERSTAPPEN, R. W. C. P. & VELDMAN, A. E. P. 1998 Proper
orthogonal decomposition and low-dimensional models for driven cavity flows.
Phys. Fluids 10 (7), 1685-1699.

CHAKRABORTY, P., BALACHANDAR, S. & ADRIAN, R. J. 2005 On the relationships
between local vortex identification schemes. J. Fluid Mech. 535, 189-214.

74



BIBLIOGRAPHY 75

CHARNEY, J. G., FIORTOFT, R. & VON NEUMANN, J. 1950 Numerical integration
of the barotropic vorticity equation. Tellus 2 (4), 237-254.

CHERRY, E. M., ELkiNns, C. J. & Eaton, J. K. 2008 Geometric sensitivity of three-
dimensional separated flows. Int. J. Heat Fluid Flow 29 (3), 803-811.

CHERRY, E. M., ELkINs, C. J. & EAToN, J. K. 2009 Pressure measurements in a
three-dimensional separated diffuser. Int. J. Heat Fluid Flow 30 (1), 1-2.
CHERRY, E. M., IAcCARINO, G., ELKINS, C. J. & EATON, J. K. 2006 Separated flow
in a three-dimensional diffuser: preliminary validation. CTR Annual Research

Briefs pp. 31-40.

CHEVALIER, M., SCHLATTER, P., LUNDBLADH, A. & HENNINGSON, D. S. 2007 A
Pseudo-Spectral Solver for Incompressible Boundary Layer Flows. Tech. Rep.
TRITA-MEK 2007:07. Royal Institute of Technology (KTH), Dept. of Mechanics,
Stockholm, Sweden.

CHONG, M. S., PERRY, A. E. & CANTWELL, B. J. 1990 A general classification of
three-dimensional flow fields. Phys. Fluids A 2 (5), 765-777.

CousTEIX, J. & Mauss, J. 2007 Asymptotic Analysis and Boundary Layers.
Springer-Verlag, Berlin, Germany.

Couzy, W. 1995 Spectral element discretization of the unsteady Navier—Stokes equa-
tions and its iterative solution on parallel computers. PhD thesis, Ecole Poly-
technique Fédérale de Lausanne, Switzerland.

DevILLE, M., FIsCHER, P. F. & Munp, E. 2002 High-Order Methods for Incom-
pressible Fluid Flow. Cambridge University Press, Cambridge, UK.

DuUBIEF, Y & DELCAYRE, F 2000 On coherent-vortex identification in turbulence. J.
Turbulence 1, 1-22.

Eaton, J. K. & JoHNsTON, J. P. 1980 Turbulent flow reattachment - an experimen-
tal study of the flow and structure behind a backward-facing step. Tech. Rep.
Rept MD-39. Thermosciences Division, Stanford Univ., USA.

Erkins, C. J., MARkL, M., PELc, N. & EaTon, J. K. 2003 4D magnetic resonance
velocimetry for mean velocity measurements in complex turbulent flows. Exp.
Fluids 34, 494-503.

ETHERIDGE, D. W. & KEMmpP, P. H. 1978 Measurements of turbulent flow downstream
of a rearward-facing step. J. Fluid Mech. 86, 545-566.

F1scHER, P. & MULLEN, J. 2001 Filter-based stabilization of spectral element meth-
ods. C.R. Acad. Sci. Paris t. 332, Serie I, p. 265-270.

FISCHER, P. F. 1997 An overlapping Schwarz method for spectral element solution of
the incompressible Navier—Stokes equations. J. Comput. Phys. 133 (1), 84-101.

FiscHER, P. F. 1998 Projection techniques for iterative solution of with successive
right-hand sides. Comput. Methods Appl. Mech. Eng. 163 (1-4), 193-204.

FISCHER, P. F., LOTTES, J., POINTER, D. & SIEGEL, A. 2008a Petascale algorithms
for reactor hydrodynamics. J. Phys. Conf. Series 125.

FiscHER, P. F., LoTTEs, J. W. & KERKEMEIER, S. G. 2008b nek5000 Web page.
http://nek5000.mcs.anl.gov.

FrIEDRICH, R. & ARNAL, M. 1990 Analysing turbulent backward-facing step flow
with the lowpass-filtered Navier-Stokes equations. J. Wind Engng. Indust. Aero-
dyn. 35, 101 — 128.

FromM, J. E. & HarrLow, F. H. 1963 Numerical solution of the problem of vortex
street development. Phys. Fluids 6 (7), 975-982.



76 BIBLIOGRAPHY

GERMANO, M., PioMELLI, U., MOIN, P. & CHABOT, W.H. 1991 A dynamic subgrid-
scale eddy viscosity model. Phys. Fluids 3(7), 1760-1765.

GILBERT, N. & KLEISER, L. 1990 Near-wall phenomena in transition to turbulence.
In Near-Wall Turbulence (ed. S.J. Kline & N.H. Afgan), pp. 7-27. 1988 Zoran
Zari¢ Memorial Conference, New York, USA.

GowmBost, T. 1. 1994 Gaskinetic Theory. Cambridge University Press, Cambridge,
UK.

HENNINGSON, D. S. & JOXKERVIK7 E. 2008 The use of global modes to understand
transition and perform flow control. Phys. Fluids 20 (3), 031302.

HERBST, A. H., SCHLATTER, P. & HENNINGSON, D. S. 2007 Simulations of turbulent
flow in a plane asymmetric diffuser. Flow Turbulence Combust. 79, 275-306.

HormEes, P., LuMLEY, J. & BERKOOZ, G. 1996 Turbulence, Coherent Structures,
Dynamical Systems and Symmetry. Cambridge University Press, Cambridge,
UK.

HUERRE, P & MoONKEWITZ, P. A. 1990 Local and global instabilities in spatially
developing flows. Annu. Rev. Fluid Mech. 22 (1), 473-537.

Hunt, J. C. R., WRAY, A. A. & MoiN, P. 1988 Eddies, streams, and convergence
zones in turbulent flows. In Proceedings of the 1988 CTR Summer Program, pp.
193-208.

HuseRr, A. & BIRINGEN, S. 1993 Direct numerical simulation of turbulent flow in a
square duct. J. Fluid Mech. 257, 65-95.

Hussain, A. K. M. F. 1986 Coherent structures and turbulence. J. Fluid Mech. 173,
303-356.

ILiescu, T. & FIScHER, P.F. 2003 Large eddy simulation of turbulent channel flows
by the rational large eddy simulation model. Phys. Fluids 15 (10), 3036-3047.

JAKIRLIC, S., KADAVELIL, G., KORNHAAS, M., SCHAFER, M., STERNEL, D.C.
& TroPEA, C. 2010a Numerical and physical aspects in LES and hybrid
LES/RANS of turbulent flow separation in a 3-D diffuser. Int. J. Heat Fluid
Flow 31 (5), 820 — 832.

JAKIRLIC, S., KADAVELIL, G., SIRBUBALO, E., BREUER, M., v. TERzI, D. &
BoreLLO, D. 2010b In 14th ERCOFTAC SIG15 Workshop on Refined Tur-
bulence Modelling: Turbulent Flow Separation in a 3-D Diffuser. ERCOFTAC
Bulletin. December Issue 85, case 13.2 (1). ERCOFTAC.

JEONG, J. & HussAIN, F. 1995 On the identification of a vortex. J. Fluid Mech. 285,
69-94.

JEONG, J., HussaIN, F., ScHorpa, W. & KiMm, J. 1997 Coherent structures near the
wall in a turbulent channel flow. J. Fluid Mech. 332, 185-214.

JEYAPAUL, E. & DURBIN, P. A. 2010 Three-dimensional turbulent flow separation
in diffusers. In 48th AIAA Aerospace Sciences Meeting. Orlando, Florida.

JIMENEZ, J. & MOIN, P. 1991 The minimal flow unit in near-wall turbulence. J. Fluid
Mech. 225, 213-240.

JIMENEZ, J. & PINELLI, A. 1999 The autonomous cycle of near-wall turbulence. J.
Fluid Mech. 389, 335-359.

KacHANOV, Y. S. 1994 Physical mechanisms of laminar-boundary-layer transition.
Annu. Rev. Fluid Mech. 26 (1), 411-482.

KarreEnNBAcH, H.-J. 1993 Large eddy simulation of flow in a plane, asymmetric dif-
fuser. CTR Annual Research Briefs pp. 101-109.



BIBLIOGRAPHY 77

KALTENBACH, H.-J., FATICA, M., MITTAL, R., LUND, T.S. & MOIN, P. 1999 Study
of flow in a planar asymmetric diffuser using large-eddy simulation. J. Fluid
Mech. 390, 151-185.

KANEDA, Y., IsHIHARA, T., YOKOKAWA, M., ITAKURA, K. & UNnO, A. 2003 En-
ergy dissipation rate and energy spectrum in high resolution direct numerical
simulations of turbulence in a periodic box. Phys. Fluids 15 (2), L21-1L24.

KaraMANOS, G-S. & KARNIADAKIS, G. E. 2000 A spectral vanishing viscosity
method for large-eddy simulations. J. Comput. Phys. 163 (1), 22-50.

KARHUNEN, K. 1946 Zur Spektraltheorie stochastischer Prozesse. Ann. Acad. Sci.
Finnicae, Ser. A 1, 34.

Kasaci, N. 1998 Progress in direct numerical simulation of turbulent transport and
its control. Int. J. Heat Fluid Flow 19 (2), 125-134.

KEeATING, A., PioMELLI, U., BALARAS, E. & KALTENBACH, H.-J. 2004 A priori
and a posteriori tests of inflow conditions for large-eddy simulation. Phys. Fluids
16 (12), 4696-4712.

KewmPF, A., KLEIN, M. & JANICKA, J. 2005 Efficient generation of initial- and inflow-
conditions for transient turbulent flows in arbitrary geometries. Flow Turbulence
Combust. 74 (1), 67-84.

Kim, J., MOIN, P. & MOSER, R. 1987 Turbulence statistics in fully developed channel
flow at low reynolds number. J. Fluid Mech. 177, 133-166.

KirBY, R. M. & KARNIADAKIS, G. E. 2003 De-alising on non-uniform grids: algo-
rithms and applications. J. Comput. Phys. 191, 249-264.

Kiva, M. & Sasaki, K. 1985 Structure of large-scale vortices and unsteady reverse
flow in the reattaching zone of a turbulent separation bubble. J. Fluid Mech.
154, 463-491.

Kung, S. J., REynoLps, W. C., SCHRAUB, F. A. & RUNSTADLER, P. W. 1967 The
structure of turbulent boundary layers. J. Fluid Mech. 30, 741-773.

Kunpu, P.K. & CoOHEN, .M. 2008 Fluid Mechanics. Academic Press, San Diego,
USA.

LanpAHL, M. T. 1980 A note on an algebraic instability of inviscid parallel shear
flow. J. Fluid Mech. 98, 243-251.

Lawson, N. J. & Davipson, M. R. 2001 Self-sustained oscillation of a submerged
jet in a thin rectangular cavity. J. Fluid Struct. 15 (1), 59 — 81.

Le, H. & MoiN, P. 1994 Direct numerical simulation of turbulent flow over a
backward-facing step. Tech. Rep. TF-58. Dept. Mech. Eng., Stanford Univer-
sity, USA.

LE, H., Moin, P. & Kim, J. 1997 Direct numerical simulation of turbulent flow over
a backward-facing step. J. Fluid Mech. 330, 349-374.

LEE, S., FIsCHER, P. F., Bassiouny, H. & LoTH, F. 2008 Direct numerical sim-
ulation of transitional flow in a stenosed carotid bifurcation. J. Biomech. 41,
2551-2561.

LEEg, S., LELE, S. & MOoIN, P. 1992 Simulation of spatially evolving turbulence and
the applicability of Taylor’s hypothesis in compressible flow. Phys. Fluids A4,
1521-1530.

LEVEQUE, R. J. 2002 Finite Volume Methods for Hyperbolic Problems. Cambridge
University Press, Cambridge, UK.



78 BIBLIOGRAPHY

Litty, D. K. 1992 A proposed modification of the Germano subgrid-scale closure
method. Phys. Fluids 4 (3), 633-635.

LoEVE, M. 1955 Probability Theory. Van Nostrand, Princeton, USA.

Lorenz, E. N. 1956 Empirical orthogonal functions and statistical weather predic-
tion. Tech. Rep. Statistical Forecasting Project. Dept. of Meteorology, MIT.
LoTTEs, J. W. & FISCHER, P. F. 2005 Hybrid multigrid/schwarz algorithms for

spectral element method. J. Sci. Comput. 24, 45-78.

LuMLEY, J. L. 1967 The structure of inhomogeneous turbulent flows. In Atm. Turb.
Radio Wave Prop. (ed. A. M. Yaglom & V. I. Tatarsky), pp. 166-178. Nauka,
Moscow, Russia.

Lunp, T. S., Wu, X. & SQUIRES, D. 1998 Generation of turbulent inflow data for
spatially-developing boundary layer simulations. J. Comput Phys. 140, 233.
LYGREN, M. & ANDERSSON, H. 1999 Influence of boundary conditions on the large
scale structures in turbulent plane couette flow. In Turbulence and Shear Flow
Phenomena 1 (ed. S. Banerjee & J. Eaton), pp. 15-20. Santa Barbara, California:

Begell House, New York, USA.

LyncH, P. 2008 The origins of computer weather prediction and climate modeling.
J. Comput. Phys. 227 (7), 3431 — 3444.

LyncH, R., RICE, J. & THOMAS, D. 1964 Direct solution of partial difference equa-
tions by tensor product methods. Numer. Math. 6, 185-199.

Ma, X. & KArNIADAKIS, G. E. 2002 A low-dimensional model for simulating three-
dimensional cylinder flow. J. Fluid Mech. 458, 181-190.

MADAY, Y. & PATERA, A. 1989 Spectral element methods for the Navier—Stokes
equations. In State of the Art Surveys in Computational Mechanics (ed. A.K.
Noor), pp. 71-143. ASME.

MaADAY, Y., PATERA, A. T. & RoNqQuisT, E. M. 1990 An operator-integration-factor
splitting method for time-dependent problems: application to incompressible
fluid flow. J. Sci. Comput. 5 (4), 263-292.

Mabpay, Y. & RonNqQuisT, E. M. 1990 Optimal error analysis of spectral methods
with emphasis on non-constant coefficients and deformed geometries. Comput.
Methods Appl. Mech. Eng. 80 (1-3), 91-115.

MADRE, T. K. 2011 Turbulence transition in the asymptotic suction boundary layer.
Diplomarbeit, Philipps-Universitdt, Marburg, Germany.

MANHART, M. & WENGLE, H. 1993 A spatiotemporal decomposition of a fully inho-
mogeneous turbulent flow field. Theor. Comput. Fluid Dyn. 5, 223-242.

MAUREL, A., ERN, P., ZIELINSKA, B. J. A. & WESFREID, J. E. 1996 Experimental
study of self-sustained oscillations in a confined jet. Phys. Rev. E 54 (4), 3643
3651.

Moin, P. & Kim, J. 1997 Tackling turbulence with supercomputers. Scientific Amer-
ican 276 (1), 62-68.

Moin, P. & MaHEsH, K. 1998 Direct numerical simulation: A tool in turbulence
research. Annu. Rev. Fluid Mech. 30 (1), 539-578.

Moin, P. & MOsER, R. 1989 Characteristic-eddy decomposition of turbulence in a
channel. J. Fluid Mech. 200, 471-509.

MOORE, G. E. 1965 Cramming more components onto integrated circuits. Electronics
38 (8), 114-117.



BIBLIOGRAPHY 79

MORENO, D., KROTHAPALLI, A., ALKISLAR, M. B. & LOURENCO, L. M. 2004 Low-
dimensional model of a supersonic rectangular jet. Phys. Rev. E 69 (2), 026304.

MOSER, R. D.; KM, J. & MANSOUR, N. 1999 Direct numerical simulation of turbu-
lent channel flow up to Re- = 590. Phys. Fluids 11 (4), 943-945.

Na, Y. & Moin, P. 1998 Direct numerical simulation of a separated turbulent bound-
ary layer. J. Fluid Mech. 374, 379-405.

NIKURADSE, J. 1926 Untersuchungen iiber die Geschwindigkeitsverteilung in turbu-
lenten Strémungen. PhD thesis, Gottingen, Germany.

Noack, B. R., SCHLEGEL, M., MORzYNSKI, M. & TADMOR, G. 2010 System re-
duction strategy for galerkin models of fluid flows. Int. J. Numer. Meth. Fluid
63 (2), 231-248.

Nomura, K.K. & Post, G.K. 1998 The structure and dynamics of vorticity and
rate of strain in incompressible homogeneous turbulence. J. Fluid Mech. 377,
65-97.

NORDSTROM, J., NORDIN, N. & HENNINGSON, D. S. 1999 The fringe region tech-
nique and the fourier method used in the direct numerical simulation of spatially
evolving viscous flows. SIAM J. Sci. Comput. 20, 1365-1393.

OBI, S., NIKAIDO, H. & Masupa, S. 1993 Experimental and computational study of
turbulent separating flow in an asymmetric diffuser. In Proceedings of the Ninth
Symposium on Turbulent Shear Flows, pp. 305.1-305.4.

OHLSSON, J., SCHLATTER, P., FISCHER, P. F. & HENNINGSON, D. S. 2010 Direct
numerical simulation of separated flow in a three-dimensional diffuser. J. Fluid
Mech. 650, 307-318.

ORLU, R. & ALFREDSSON, P. H. 2010 On spatial resolution issues related to time-
averaged quantities using hot-wire anemometry. Fxp. Fluids 49, 101-110.
ORLU, R., FRANSSON, J. H. M. & ALFREDSSON, P. H. 2010 On near wall measure-
ments of wall bounded flows—The necessity of an accurate determination of the

wall position. Prog. in Aeros. Sci. 46 (8), 353-387.

ORSZAG, S. A. 1972 Comparison of pseudospectral and spectral approximations. Stud.
Appl. Math. 51, 253-259.

ORsSzAG, S. A. & PATTERSON, G. S. 1972 Numerical simulation of three-dimensional
homogeneous isotropic turbulence. Phys. Rev. Lett. 28 (2), 76-79.

PAsQUETTI, R. 2006 Spectral vanishing viscosity method for large-eddy simulation of
turbulent flows. J. Sci. Comput. 27 (1-3), 365-375.

PATERA, A. T. 1984 A spectral element method for fluid dynamics: Laminar flow in
a channel expansion. J. Comput. Phys. 54, 468-488.

PEARSON, K. 1901 On lines and planes of closest fit to systems of points in space.
Philosophical Magazine 2 (6), 559-572.

PEROT, J. B. 1993 An analysis of the fractional step method. J. Comput. Phys. 108.

PiQuer, J. 1999 Turbulent Flows: Models and Physics. Springer-Verlag, Berlin, Ger-
many.

Ponp, S. & PickArD, G. L. 1983 Introductory Dynamical Oceanography, 2nd edn.
Pergamon, Oxford, UK.

Porg, S. 2000 Turbulent Flows. Cambridge University Press, New York, USA.

PRANDTL, L. 1924 The mechanics of viscous fluids. In Aerodynamic Theory (ed. W. F.
Durand), pp. 34-208. Springer, Berlin, Germany.



80 BIBLIOGRAPHY

PujaLs, G., GARCIA-VILLALBA, M., Cossu, C. & DEPARDON, S. 2009 A note on
optimal transient growth in turbulent channel flows. Phys. Fluids 21 (1), 015109.

RoBINSON, S. K 1991 Coherent motions in the turbulent boundary layer. Annu. Rev.
Fluid Mech. 23, 601-639.

RowLEY, C. W. 2005 Model reduction for fluids, using balanced proper orthogonal
decomposition. Int. J. Bifurc. Chaos 15 (3), 997-1013.

RowLEy, C. W., CoLonius, T. & MURRAY, R. M. 2004 Model reduction for com-
pressible flows using POD and Galerkin projection. Physica D: Nonlinear Phe-
nomena 189, 115-129.

RowLEY, C. W., MEZI¢, I, BAGHERI, S, SCHLATTER, P & HENNINGSON, D. S. 2009
Spectral analysis of nonlinear flows. J. Fluid Mech. 641, 115-127.

RUHE, A. 1984 Rational Krylov sequence methods for eigenvalue computation. Linear
Algebr. Appl. 58, 391-405.

RUNGE, C. 1901 Uber empirische Funktionen und die Interpolation zwischen dquidis-
tanten Ordinaten. Z. fir Math. Phys. 46, 224-243.

Sacaut, P. 2006 Large Eddy Simulation for Incompressible Fluid Flow. Springer-
Verlag Berlin, Germany.

SANDHAM, N. D. & KLEISER, L. 1992 The late stages of transition to turbulence in
channel flow. J. Fluid Mech. 245, 319-348.

SCHETZ, J. A. & Funs, A. E. 1999 Fundamentals of Fluid Mechanics. Wiley, Hobo-
ken, USA.

SCHLATTER, P., BAGHERI, S. & HENNINGSON, D. S. 2011a Self-sustained global
oscillations in a jet in crossflow. Theor. Comput. Fluid Dyn. 25, 129-146.
SCHLATTER, P., MALM, J., BRETHOUWER, G., JOHANSSON, A. V. & HENNING-
SON, D. S. 2011b Large-scale simulations of turbulence: HPC and numerical

experiments. In 7th IEEE Conference on e-Science. To appear.

SCHLATTER, P. & ORLU, R. 2010 Assessment of direct numerical simulation data of
turbulent boundary layers. J. Fluid Mech. 659, 116-126.

ScHLATTER, P., OrLU, R., L1, Q., BRETHOUWER, G., FrRANSSON, J. H. M., Jo-
HANSSON, A. V., ALFREDSSON, P. H. & HENNINGSON, D. S. 2009 Turbulent
boundary layers up to Rep = 2500 studied through numerical simulation and
experiments. Phys. Fluids 21 (5), 051702.

SCHLATTER, P., STOLZ, S. & KLEISER, L. 2004 LES of transitional flows using the
approximate deconvolution model. Int. J. Heat Fluid Flow 25 (3).

Scamip, P. J. 2010 Dynamic mode decomposition of numerical and experimental
data. J. Fluid Mech. 656, 5—28.

SCHNEIDER, H., TERzI, D. A., BAUER, H-J & Robi, W. 2011 A mechanism for
control of turbulent separated flow in rectangular diffusers. J. Fluid Mech. 687,
584-594.

SCHNEIDER, H., TERzI, D. A. & Robp1, W. 2009 Reliable and accurate prediction
of three-dimensional separation in asymmetric diffusers using large-eddy simula-
tion. In Proceedings of ASME Turbo Expo 2009: Power for Land, Sea and Air.
Orlando, USA.

SCHNEIDER, T. M., ECKHARDT, B. & YORKE, J. A. 2007 Turbulence transition and
the edge of chaos in pipe flow. Phys. Rev. Lett. 99 (3), 034502.

SCHRAUF, G. 2005 Status and perspectives of laminar flow. Aeronaut. J. 109 (1102),
639-644.



BIBLIOGRAPHY 81

SHE, Z.-S., JACKSON, E. & ORszAG, S. A. 1991 Structure and dynamics of homoge-
neous turbulence: Models and simulations. Proc. R. Soc. Lond. 434 (1890), pp.
101-124.

SHERWIN, S. & KARNIADAKIS, G. 1995 A triangular spectral element method; appli-
cations to the incompressible Navier—Stokes equations. Comput. Methods Appl.
Mech. Engng. 123, 189.

SIMENS, M. P., JIMENEZ, J., HovAs, S. & MizuNo, Y. 2009 A high-resolution code
for turbulent boundary layers. J. Comput. Phys. 228 (11), 4218-4231.

SiMPsSON, R. L. 1981 A review of some phenomena in turbulent flow separation. J.
Fluid Engng. 102, 520-533.

SiMPsON, R. L. 1989 Turbulent boundary-layer separation. Annu. Rev. Fluid Mech.
21 (1), 205-232.

SIROVICH, L. 1987 Turbulence and the dynamics of coherent structures, i-iii. Quart.
Appl. Math. 45, 561-590.

StrROVICH, L. 1989 Chaotic dynamics of coherent structures. Physica D: Nonlinear
Phenomena 37, 126-145.

StrovicH, L., KirBY, M. & WINTER, M. 1990 An eigenfunction approach to large
scale transitional structures in jet flow. Phys. Fluids 2 (2), 127-136.

SKOTE, M. & HENNINGSON, D. S. 2002 Direct numerical simulation of a separated
turbulent boundary layer. J. Fluid Mech. 471, 107-136.

SMAGORINSKY, J. 1963 General circulation experiments with the primitive equations:
I. The basic experiment. Mon. Weather Rev. 91, 99-164.

SPALART, P. R & LEONARD, A. 1985 Direct numerical simulation of equilibrium
turbulent boundary layers. In 5th Symp. on Turbulent Shear Flows. Ithaca, New
York, USA.

SPILLE-KOHOFF, A. & KALTENBACH, H.-J. 2001 Generation of turbulent inflow data
with a prescribed shear-stress profile. In DNS/LES Progress and Challenges (ed.
C. Liu, L. Sakell & T. Beutner). Third AFSOR conference on DNS and LES,
Arlington, Texas: Greyden Press, Columbus, USA.

STANLEY, S., SARKAR, S. & MELLADO, J. 2002 A study of the flow field evolution
and mixing in a planar turbulent jet using direct numerical simulations. J. Fluid
Mech. 450, 377-407.

STEINER, H., JAKIRLIC, S., KADAVELIL, G., MANCEAU, M., SARIC, S. & BRENN, G.
2009 In 18th ERCOFTAC SIG15 Workshop on Refined Turbulence Modelling:
Turbulent Flow Separation in a 3-D Diffuser. ERCOFTAC Bulletin. Issue 79,
case 13.2 (1). ERCOFTAC.

Succl, S. 2001 The lattice Boltzmann equation for fluid dynamics and beyond. Oxford
University Press, New York, USA.

TADMOR, E. 1989 Convergence of spectral methods for nonlinear conservation laws.
SIAM J. Numer. Anal. 26 (1), 30-44.

THEOFILIS, V. 2011 Global linear instability. Annu. Rev. Fluid Mech. 43 (1), 319-352.

TOMBOULIDES, A. & ORszAG, S. 2000 Numerical investigation of transitional and
weak turbulent flow past a sphere. J. Fluid Mech. 416, 45-73.

ToMBOULIDES, A. G., LEg, J. C. Y. & ORsSzAG, S. A. 1997 Numerical simulation
of low mach number reactive flows. J. Sci. Comput. 12 (2), 139-167.

TOrRNBLOM, O., LINDGREN, B. & JOHANSSON, A. V. 2009 The separating flow in



a plane asymmetric diffuser with 8.5° opening angle: mean flow and turbulence
statistics, temporal behaviour and flow structures. J. Fluid Mech. 636, 337-370.

TREFETHEN, L. N. & Bau, D. 1997 Numerical Linear Algebra. STAM, Philadelphia,
USA.

TROPEA, Y., YARIN, A. & F., Foss. J. 2007 Handbook of Experimental Fluid Me-
chanics. Springer-Verlag, Berlin, Germany.

TsuJi, Y., FranssoN, J. H. M., ALFREDSSON, P. H. & JonanssoN, A. V. 2007
Pressure statistics and their scaling in high-Reynolds-number turbulent bound-
ary layers. J. Fluid Mech. 585, 1-40.

Turo, H. & FIsSCHER, P.F. 1999 Terascale spectral element algorithms and imple-
mentations. In Proceedings of the ACM/IEEE SC99 Conference on High Perfor-
mance Networking and Computing, Portland, USA.

Turo, H. M. & FIscHER, P. F. 2001 Fast parallel direct solvers for coarse grid
problems. J. Parallel Distrib. Comput. 61 (2), 151-177.

VILLERMAUX, E. & HOPFINGER, E. J. 1994 Self-sustained oscillations of a confined
jet: a case study for the non-linear delayed saturation model. Physica D: Non-
linear Phenomena 72 (3), 230-243.

Vos, P. E. J., SHERWIN, S. J. & KIirBY, R. M. 2010 From h to p efficiently: Imple-
menting finite and spectral/hp element methods to achieve optimal performance
for low- and high-order discretisations. J. Comput. Phys. 229 (13), 5161 — 5181.

WALEFFE, F. 1997 On a self-sustaining process in shear flows. Phys. Fluids 9 (4),
883-900.

Wanag, C., JanG, Y.J. & LESCHZINER, M.A. 2004 Modelling two- and three-
dimensional separation from curved surfaces with anisotropy-resolving turbu-
lence closures. Int. J. Heat Fluid Flow 25 (3), 499-512.

WASBERG, C. E., GJESDAL, T., REIF, B. A. P. & ANDREASSEN, ). 2009 Variational
multiscale turbulence modelling in a high order spectral element method. J.
Comput. Phys. 228 (19), 7333-7356.

WEBBER, G. A., HANDLER, R. A. & SirRoVICH, L. 1997 The Karhunen—Loeve de-
composition of minimal channel flow. Phys. Fluids 9 (4), 1054-1066.

WiLcox, D. C. 1998 Turbulence Modeling for CFD. DCW Industries, La Canada,
USA.

WiLLiaMs, J. C. 1977 Incompressible boundary-layer separation. Annu. Rev. Fluid
Mech. 9 (1), 113-144.

Xu, C. 2006 Stabilization methods for spectral element computations of incompress-
ible flows. J. Sci. Comput. 27 (1-3), 495-505.



Part 11

Papers






Paper 1






The spectral-element and pseudo-spectral
methods: A comparative study

By Johan Ohlsson*, Philipp Schlatter®,
Catherine Mavriplis' and Dan S. Henningson*

*Linné FLOW Centre, Swedish e-Science Research Centre (SeRC)
KTH Mechanics, 100 44 Stockholm, Sweden

"Department of Mechanical Engineering, University of Ottawa, Ottawa, Canada

Spectral and High Order Methods for Partial
Differential Equations, LNCSE 76, 459-468, 2011

Turbulent and transitional channel flow simulations have been performed in
order to assess the differences concerning speed and accuracy in the pseudo-
spectral code simson and the spectral-element code nek5000. The results indi-
cate that the pseudo-spectral code is 4-6 times faster than the spectral-element
code in fully turbulent channel flow simulations, and up to 10-20 times faster
when taking into account the more severe CFL restriction in the spectral-
element code. No particular difference concerning accuracy could be noticed
neither in the turbulent nor the transitional cases, except for the pressure fluc-
tuations at the wall which converge slower for the spectral-element code.

1. Introduction

The simulation of fluid flows — sensitive and often complicated — puts large
requirements on the numerical method. Due to the nonlinear nature of the flow,
accuracy may be one of the most important ingredients. In particular for direct
simulation of complex multiscale flows, such as transitional and turbulent flows,
high order methods are preferred. However, the choice of methods, e.g. fully
spectral, multidomain spectral such as spectral-element, or compact differences,
is not clear as trade-offs exist between computational efficiency, geometrical
flexibility and accuracy. Proper comparisons in terms of speed and accuracy
are sorely needed. In order to quantify differences and similarities between
high-order methods in a more systematic way, we have chosen to compare two
well established codes based on the Chebyshev-Fourier pseudo-spectral method
(simson, Chevalier et al. 2007) and the spectral-element method (nek5000,
Fischer et al. 2008b). While the grid is essentially prescribed by the order for
the pseudo-spectral method, a more flexible point distribution is possible in the
spectral-element method. In order to concentrate the comparison on relative
efficiency, we have chosen canonical test cases like turbulent and transitional
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FIGURE 1. The canonical flow cases investigated: (a) snap-
shot of turbulent channel flow at Re, = 180 showing pseudo-
color of streamwise velocity and (b) temporal K-type transition
showing the hairpin vortex (isosurfaces of A\a, Jeong & Hussain
1995) emerging at t = 135

channel flow, in which the effect of the point distribution might be considerably
less crucial for achieving high accuracy.

2. Study setup

The study is divided into two parts: Part A is concerned with the computational
efficiency in terms of the wall-clock time per time step and part B deals with
accuracy, aiming at establishing a way to compare the number of grid points
needed to compute a given turbulent or transitional quantity with comparable
accuracy. In the first part of the study, turbulent channel flow simulations at
a Reynolds number of Re, = 180, based on friction velocity, u,, and channel
half height, h, were considered in a domain of size comparable to that by Moser
et al. (1999). Two different resolutions called r1 and r2 were simulated (~ 43
and 95 grid points in each direction respectively). For the spectral-element code
this was achieved by fixing the polynomial order (7th) and varying the number
of elements (6 and 12 in each direction). It was noted that by using polynomial
order 7 instead of 11 for the spectral-element simulations increases the speed
by ~ 15 % per time step. In order to make the comparison as fair as possible,
the order of the temporal scheme was synchronized so that a third order time
discretization was used in both codes. Also, the scalings were adapted so that
Re in both codes were based on Re, = uph/v = 2800, where wy, is the bulk
velocity and h is the channel half height. Timings were made in serial mode
(one core AMD 3.0 GHz) on the same computer. Dealiasing was used in both
codes.

In the second part of the study K-type transition similar to Schlatter et al.
(2004) and turbulent channel flow similar to Moser et al. (1999) at Re, = 180,
based on friction velocity, u,, and channel half height, h, were simulated for
a number of different resolutions, given in Table 2. It should be pointed out
that the two lowest resolution spectral-element cases had to be stabilized by a
filtering procedure described in Fischer & Mullen (2001).
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TABLE 1. Overview of the different resolutions in terms of
degrees of freedom (dof) used in the present study. Two dif-
ferent polynomial orders were used for the spectral-element
simulations. The number of degrees of freedom was matched
as closely as possible for all cases.

Fully spectral 243 40° 803 1283 1603

Spectral-element (7th/11th) 292 433/45% 853/78% 127%/1223 1553/1553

Snapshots from each of these two cases are shown in figure 1. Impor-
tant measures such as the time and amplitude for the skin-friction peak were
computed for the transitional cases, whereas mean velocity profile, Reynolds
stresses, pressure and pressure fluctuations together with integral quantities
such as Re,, shape factor and ‘point measures’, e.g. max(u,ms), were com-
puted and compared for the turbulent cases.

3. Results
3.1. Part A: Efficiency

The wall-clock time per iteration, i.e. one full time step using the largest possi-
ble time step for the spectral-element code and one full Runge Kutta time step
(containing four sub-steps) for the pseudo-spectral code, was measured and is
reported in figure 2(a) below. It can be seen that the lines diverge, i.e. the
spectral code gets relatively faster for larger problem sizes, due to the increas-
ingly efficient fast Fourier transforms (FFT). In particular, the spectral code is
4-6 times faster for these two problem sizes. In addition, we show wall-clock
time per unit time in figure 2(b), where it can be seen that the spectral code
is 10-20 times faster due to the more severe CFL restriction in the spectral-
element code, arising from the clustering of the Gauss-Lobatto-Legendre points
close to each element boundary.

3.2. Part B: Accuracy in transitional flow simulations

The Reynolds number based on friction velocity, Re,, was computed as a func-
tion of time, ¢, for all cases in Table 2 during K-type transition (Schlatter
et al. 2004) and shown in figure 3. We note that the most underresolved cases
lead to a premature transition, also noted by other authors, followed by an
overprediction of the skin-friction in the fully turbulent phase. This is more
pronounced in the fully spectral results, which is probably due to the fact that
the two most underresolved spectral-element cases had to be stabilized by the
filter, which in some sense acts like a simple subgrid scale (SGS) model. For
higher resolutions, the two codes converge (from below) to the correct Re, for
essentially the same number of degrees of freedom, as also seen in figure 4. This
behavior indicates that the initial stages of transition are essentially a low-order
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FIGURE 2. Comparison with respect to time advancement
in a turbulent channel flow simulation between the spectral-
element code (polynomial order 7) (----) and the pseudo-
spectral code ( ) for the two different resolutions rl and
2 (degrees of freedom in each direction). (a) Wall-clock time
per iteration, (b) wall-clock time per unit time.
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FIGURE 3. (a) Skin-friction Reynolds number Re, as a func-
tion of time, ¢, computed for all cases shown in Table 2, where
sim1-simb and nek1l-nek5 corresponds to increasing resolutions
of the pseudo-spectral and spectral-element codes respectively,
(b) close-up view of the peak in (a).

phenomenon, not requiring full resolution. Thus, the third highest resolution
(80?) yields accurate results.

3.3. Part B: Accuracy in turbulent flow simulations

The turbulent mean velocity profile at Re, = 180 is shown for all cases in figure
5. The most underresolved cases in both the fully spectral (a) and the spectral-
element (b) code show the same tendency to underpredict the velocity in the
log region, which is related mainly to the scaling given by an overpredicted
friction velocity, ., since indeed u* = (u)/u,. In a close-up view of the log
region (figure 5¢), where only the three highest resolution cases (802, 1283
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FIGURE 4. (a) Skin-friction peak as a function of number of
degrees of freedom (in each direction) for the spectral-element
code (----) and the pseudo-spectral code ( ). (b) Time
when the peak in (a) occurs.

160% and Tth order for the spectral-element code) are shown, convergence is
seen for the two codes for the same number of degrees of freedom (shown by an
arrow). The 1282 cases are converged and the 160 cases do not improve the
results further. The spatial distribution of the Reynolds stresses is examined
in figure 6. While the fully spectral results capture the peaks correctly when
compared to the direct numerical results (DNS) of Moser et al. (1999), even
for the most underresolved cases, the skin-friction Reynolds number is strongly
over-predicted as noted in the transitional simulations. This is in contrast to the
spectral-element results, where the peaks are overpredicted for all normal stress
components but the skin-friction Reynolds number is only mildly overpredicted.
A close-up view of the spectral-element results is shown in figure 6(c¢), where the
peak ., is shown to converge in a zig-zag pattern (indicated by arrows): first,
overpredicted for the lowest resolutions, then, underpredicted for intermediate
resolutions, and finally, converging to the reference data for the same number
of degrees of freedom. A similar but less pronounced zig-zag pattern is seen
for the spectral results. The pressure fluctuations (figure 7) from the spectral
simulations are fairly good at the wall, whereas those in the channel center
are overpredicted. The spectral-element results show the opposite behavior:
the fluctuations at the wall are overpredicted, whereas the those in the core
of the flow are in fairly good agreement with the reference data. A close-up
view reveals that the spectral-element code needs more points (roughly double)
than the fully spectral code to converge the pressure fluctuations at the wall
(figure 7(d)), which would make the spectral code around 40 times faster. The
reasons for this may be that in a Py — Py _o spectral-element method (Maday
& Patera 1989) the number of degrees of freedom for the pressure is less than
the velocities and thus less than for the corresponding pressure resolution in
the spectral simulation. Another reason may be the absence of a pressure node
at the wall in the spectral-element Py — Py _o formulation, leading to reduced
control of the pressure at the wall. Finally, we compare turbulent integral



92 J. Ohlsson, P. Schlatter, C. Mavriplis and D. S. Henningson

*210

FIGURE 5. Turbulent mean velocity profiles for (a) the spec-
tral code (green), (b) the spectral-element code (blue: 11th
order, red: 7th order) and (c¢) the three highest resolutions
of the spectral and spectral-element (7th order) simulations.
—*—(243), —x—(40%), (803), ----(1283), —-—(160%),
-------- direct numerical simulation (DNS) of Moser et al. (1999).

quantities such as actual Re, and ‘point measures’ such as max(tm,s). The
actual Re, (given as a simulation result when constant mass-flux is prescribed)
is shown in figure 8(a), where an overestimation of the Re, for the lowest
resolution cases in the fully spectral simulations already mentioned can be
seen. Similarly, the zig-zag pattern described in section 3.3 for the peak .,
is seen in figure 8(b). For both quantities, convergence seems to follow the
same ‘slope’ for the two codes, as well as for the two different orders in the
spectral-element simulations.

4. Conclusions

The present results indicate that the pseudo-spectral code is 4-6 times faster
than the spectral-element code in fully turbulent channel flow simulations. Tak-
ing into account the more severe CFL restriction in the spectral-element method
due to the clustering of the points near the element boundaries, this number
rises to 10-20. For higher resolutions, the spectral code is relatively faster,
due to the increasing efficiency of the FFTs as the order increases. Of all the
turbulent and transitional quantities computed, there seems to be no favor to
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FIGURE 6. Reynolds stresses for (a) the spectral code (green),
(b) the spectral-element code (blue: 11th order, red: 7th order),
(¢) close-up view of the w,.,s peak in (b) and (d) the three high-
est resolutions of the spectral and spectral-element (7th order)
simulations. —*—(243), — x—(40%), (80%), —---(1283),
—-—(1603), - DNS of Moser et al. (1999).

any particular method (or order in the spectral-element code) and quantities
such as shape factor, Re,, max(u,m,s) and skin-friction peak exhibit the same
‘convergence-rate’. The exception seems to be the pressure fluctuations close
to the wall which did converge faster in the spectral code. Taking this into
account the spectral code may be around 40 times faster. Moreover, by using
polynomial order 7 instead of 11 for the spectral-element simulations increases
the speed by ~ 15 % per time step which, in addition to the larger time step
that can be achieved with a lower order, seems to be a better choice in general.

Naturally, for canonical flows such as channel flows fully spectral methods
are superior due to their near optimal point distribution. But it should be noted
that being faster on one CPU does not necessarily mean a faster code. For ex-
ample, taking into account that a spectral-element code performs spectrally in
local elements, this method has an enormous parallel scalability and might be
faster than spectral codes for very large cases. Moreover, as we progress away
from canonical flows towards more complex geometry flows (see e.g. Fischer
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FIGURE 7. Pressure fluctuations for (a) the spectral code
(green), (b) the spectral-element code (blue: 11th order, red:
7th order), (¢) close-up view of (b) close to the wall and (d) the
three highest resolutions of the spectral and spectral-element
(7th order) simulations close to the wall. —*—(243), — x—(403),
(803), -—--(1283), —-— (1603), --+----- DNS of Moser et al.
(1999).
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FIGURE 8. (a) Computed Re, and (b) max(uyms) as a func-
tion of number of degrees of freedom for the pseudo-spectral
code (black) and and different polynomial orders for the
spectral-element code (blue: 11th order, red: T7th order).
DNS of Moser et al. (1999).
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et al. 2008a) such as real aircraft wing geometries, the geometrical flexibil-
ity of the spectral-element approach will be favored over the pseudo-spectral
approach.
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The effect of over-integration and filter-based stabilization in the spectral-
element method is investigated. There is a need to stabilize the SEM for flow
problems involving non-smooth solutions, e.g. turbulent flow simulations. In
model problems, such as the Burgers’ equation (similar to Kirby & Karniadakis
2003) and the scalar transport equation together with full Navier-Stokes simu-
lations it is noticed that over-integration with the full 3/2-rule is not required
for stability. The first additional over-integration nodes are the most efficient
to remove aliasing errors. Alternatively, filter-based stabilization can in many
cases alone help to stabilize the computation.

1. Introduction

The spectral-element method (SEM) has mainly been applied to relatively low
Reynolds numbers, with a focus on laminar and, to some extent, transitional
flows (see e.g. Sherwin & Karniadakis 1995; Tomboulides & Orszag 2000; Tufo
& Fischer 2001). However, for fully turbulent flows at moderate Reynolds
numbers (Re ~ 10% —10%), there has been less attention (Blackburn & Schmidt
2003; Chu & Karniadakis 1993; Dong et al. 2006; Wasberg et al. 2009), which
can probably be ascribed to the anxiety about the stability of the SEM at
these Reynolds numbers. The cause of this instability is thought to be the ac-
cumulation of aliasing errors, which are strongly enhanced in a turbulent flow
simulation. Our belief is that as soon as these errors are reduced or eliminated
in an appropriate way, the stability of the method can be fully assured for
all Re. The reduction or elimination of aliasing errors can be accomplished
either by so-called over-integration (see e.g. Canuto et al. 1988; Kirby & Kar-
niadakis 2003; Maday & Rgnquist 1990), spectral vanishing viscosity (SVV)
techniques (Karamanos & Karniadakis 2000; Pasquetti 2006; Schlatter et al.
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2003; Xu & Pasquetti 2004), or filter-based stabilization as proposed in Fischer
& Mullen (2001). In the framework of the weak form, the nonlinearity of the
governing Navier—Stokes equations gives rise to the integration of three poly-
nomials of order N. Using Gaussian quadrature, this requires approximately
M = 3/2N points in each direction in order to get an exact integration, which
is similar as the well-known 3/2-rule in pseudo-spectral methods. In this work,
we specifically consider the number of Gauss-Lobatto-Legendre (GLL) points,
M, needed for stability, which may be considerably less. This is examined
first by an eigenvalue analysis of the (linearized) viscous Burgers’ equation and
the linear scalar transport equation; then these ideas are applied to the full
Navier-Stokes equations and evaluated a posteriori.

2. Equations and discretization

Our interest lies in understanding the cause of the instability of SEM at high
Reynolds numbers. In order to achieve this, simpler model problems in R! and
R? will be analyzed, eventually leading to the full Navier-Stokes in R3. Fol-
lowing Kirby & Karniadakis (2003) we proceed in R* by analyzing the viscous

Burgers’ equation on the interval = [—1, 1], written here in non-conservative
form,

ou ou 0%u

— tu =V 1

ot * Ox Ox? ()
with initial condition u(0,z) = u%(z) = —sin(rx) and periodic boundary con-

ditions. To account for a nontrivial velocity field we need to consider a problem
in R2, here being the scalar transport equation,

dq
— -Vg=0 2
5 T¢ Ve (2)
where ¢ may be a scalar concentration of any kind convected by the velocity
field c. For simplicity, we assume that Q = [—1, 1]2. Finally, the incompressible
Navier-Stokes equations in R?,
0 1
af’l:—&-u-Vu:—Vp—&-ﬁVQu in Q, V-u=0 1in Q (3)

are considered, where u is the velocity, p is the pressure and Re = UL/v the
Reynolds number based on characteristic velocity and length scales, U and L
respectively. Discretization in space proceeds by the high-order weighted resid-
ual spectral-element technique, extensively described in Fischer (1997), whereas
temporal discretization is based on high-order splitting techniques (Maday et al.
1990).

3. Stabilization of turbulent flow simulations

The 3/2-rule in pseudo-spectral methods gives the criteria for the evaluation
of the nonlinear terms in the Navier-Stokes equations to be free from aliasing
errors. The corresponding over-integration in SEM follows the same idea, since
the polynomial expansion in Legendre space is indeed truncated at N. But since
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the SEM operates in physical space, it might be more straightforward to view
the over-integration as the action taken in order for the evaluation (Gaussian
quadrature) of the integrals arising from the weak formulation to be exact,
as pointed out in Kirby & Karniadakis (2003). Either view yields the same
conclusion: 3/2 times more points are needed for the nonlinear terms in order
to avoid aliasing errors. If additionally curvature is taken into account, even
more points are required depending on the polynomial order of the curvature.

The first sign of aliasing errors is the occurrence of ‘spectral blocking’,
i.e. the accumulation of energy in the highest modes. The filter-based stabi-
lization technique proposed in Fischer & Mullen (2001) has the property of
suppressing the highest mode, thereby preventing aliasing errors to occur. In
a well-resolved calculation, the solution will be smooth, and the amount of en-
ergy in the high wavenumber coefficients will be exponentially small. The filter,
which operates only on the highest wavenumbers, has the desirable property
of not influencing the well-resolved parts of the flow — it only impacts the
under-resolved regions, which is precisely what is needed for turbulence. The
success of the filter-based stabilization technique was demonstrated in Fischer
& Mullen (2001). Considering the one-dimensional case in a domain Q = [—1, 1]
and Py () is the space of polynomials of maximum degree N defined on €, the
filter operator, II_1, was originally proposed as the interpolation operator in
physical space, IIy_;1 : Py (2) = Pn_1(Q) — Py (Q2), but can alternatively and
formally equivalent be defined as a filter operator in modal space, (see Boyd
1998). With the use of a relaxation parameter a such that 0 < o < 1 the filter
operator I, is defined as

Fo=ally_1+(1—a)I 0<a<l1 (4)

with I being the identity matrix. Acting with F,, on the velocity vector at
each time step, such that "' = F, 4" where @ is the unfiltered field at
the current time step, allows for a smooth damping of the highest mode with
effectively no changes to the existing solver. As pointed out in Pasquetti & Xu
(2002), due to the opposite parity of the Legendre polynomials Ly_; and Ly
and the fact that IIy_1 preserves parity, the amplitude of the highest mode is
not dissipated but rather transferred to the third highest mode.

4. Analysis of model problems
4.1. 1D: Stabilization of the Burgers’ equation

In order to perform a quantitative analysis of the Burgers’ equation, the nonlin-
ear problem was transformed into a linear problem by defining the convective
operator based on a constant solution (in time) when the gradients are large,
mimicking the conditions in a highly fluctuating turbulent velocity field. The
distribution of the eigenvalues of the resulting problem, du/dt = Au, is shown
in figure 1(a) below for the unstabilized, filtered and over-integrated cases.
Here, M = N + 4 GLL points are used to compute the convective operator
(compared to M = N + 1 for the other terms), which apparently has a strong
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influence on the eigenvalues. In particular, the unstable eigenvalues (compare
to the unstabilized case) have been completely moved over to the real negative
half-plane. Hence, for a marginally resolved simulation subject to large velocity
fluctuations, adding only three extra points for the convective term can help
to stabilize the numerical method. The filtered case improves the situation
by moving the unstable eigenvalues slightly in the negative real direction. In
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FIGURE 1. (a) Eigenvalues of the right hand side operator of
the linear model problem for the (x) unstabilized, (+) filtered
and (e) over-integrated case with M = N + 4 points for the
convective operator. (b) Lo-error with respect to the ‘exact’
numerical solution, where the overall resolution is increased (o)
and the nonlinear term is computed with increased number of
points (e). ——--indicates where M /N = 3/2.

addition to rendering a simulation stable, one would also like to make sure that
the solution is not polluted by aliasing errors. Here, the error is investigated by
means of the Ly-error for a various number of extra points, M, for the nonlinear
term and reported in figure 1(b). M/N = 1 corresponds to equal number of
points for the viscous term and for the nonlinear term. As predicted by theory
and shown in Kirby & Karniadakis (2003), beyond M/N = 1.5 (indicated by
the dashed vertical line) the error stays constant. An increased resolution for
all terms yields an exponentially decrease of the error as expected. However,
the resolution has to be more than doubled in order to get the same error as
if 1.5 times more points is added only for the nonlinear term. Notice also that
by performing over-integration with only one extra point decreases the error
by one order of magnitude.

4.2. 2D: Recovery of skew-symmetry for the SEM convection operator in the
scalar transport equation

In high Reynolds number flows, structures are not readily dissipated but rather
convected over long distances and times, thus accurate integration of the con-
vective term is essential to obtain reliable results. Here, we investigate how
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this can be achieved in the scalar transport equation in RZ?, given by equa-
tion (2). In the case ¢ is solenoidal and the domain is closed or periodic, the
weak form predicts the convective term in equation (2) to be skew symmetric,
i.e. ¢(v,q) = —c(q,v). This is easily seen by casting the convective term in
equation (2) in the weak form by multiplying by a test function, v, integrating
over the domain, €2, and using integration by parts, so that

C(%Q):/UC'quw:/ Uq0~ﬁdA—/V-(vc)quc
Q Xe) Q

:/ vqc~ﬁdA—/qc~Vvdm—/V-cquaz
o0 Q Q

= —c(q,v).

()
The last equality holds as long as the first and the last term on the left hand side
are identically zero. The first term vanishes due to the boundary conditions on
v and ¢ (homogeneous Dirichlet, periodicity or symmetry) and the last because
of the incompressibility constraint, V-c = 0. The remaining equality states the
skew-symmetric property of the convective operator. In a discretized form this
can only be true if skew-symmetry of the involved matrices is preserved. As we
shall see, over-integration may play a crucial role to assure this property. Since
the eigenvalues of a skew-symmetric operator are purely imaginary, quadrature
errors are easily detected by eigenvalues of the discretized operator with real
part # 0. These errors are reduced by over-integration of the convective term
as described earlier. In the case M = 3(N + 1)/2 the numerical quadrature
is exact for all polynomials ¢ € Py. If, however, ¢ has a polynomial order
less than this, recovery of this skew-symmetry — and hence the elimination of
the quadrature errors — can be obtained by performing over-integration with
M < 3(N + 1)/2, shown by the following examples. We consider the case
c € P, shown in figure 2(a) as a vortical convective field given by ¢1 = (—y, z)
and in figure 2(b) as a stagnation point given by ¢z = (—x,y). Both cases
identically fulfil V - ¢ = 0. Although the convective field appears as a first
order polynomial in both cases, the particular tensor product structure of the
spectral-element method distinguishes between the vortical and the stagnation
point velocity fields. For both these cases, each component of the velocity field
is separable, i.e. ¢1 = (1-a(y),b(z)-1) and e = (a(z)-1,1-b(y)) and it follows
that the double integral in equation (5) can be separated (for both components,
2 and y) in one symmetric part and one skew-symmetric part. The symmetric
part will be symmetric regardless of exact integration, and does not contribute
to the skew-symmetric properties of the convective operator. In this respect,
it suffices to examine whether the skew-symmetric part is integrated correctly
or not. For ‘rotational’ velocity fields such as the vortex, the skew-symmetric
part will indeed be integrated exactly, since the integrand, p, is a polynomial
p=vVg¥~! € Pyy_1. The conclusion is thus that skew-symmetry (i.e. purely
imaginary eigenvalues) is obtained using the original M = N + 1 grid, which
is shown in figure 2(a). In the latter case the skew-symmetric part for both
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components, x and y, cannot be integrated exactly since the integrand, p, will
be a polynomial p = vNcl¢N~1 € Pyy. However, by adding one extra point for
the integration so that M = N + 2, skew-symmetry can again be recovered, as

can be seen in figure 2(b).

(a)

FIGURE 2. (Row a) Vortical convective field with associated
eigenvalue distribution of the operator when M = N + 1 and
when M = N + 2. (Row b) same as (row a) for a stagnation
convective field.

5. Application to the Navier—Stokes equations

In the following, numerical simulations of the incompressible Navier-Stokes
equations (3) are performed and evaluated a posteriori. equation (3) are solved
using the Legendre polynomial based SEM code nek5000 (Fischer et al. 2008).

5.1. 8D: Subcritical K-type transition simulations

Direct numerical simulations (DNS) of subcritical K-type transition at Re, =
3333 (similar to Schlatter et al. 2004) and a resolution of 913 grid points were
performed to further highlight the fact that it is indeed the appearance of inter-
mittent turbulence which might render a SEM simulation unstable. The initial
disturbances of this classical transition scenario consists of a two-dimensional
TS wave (streamwise wave number of a = 1.12 and amplitude 3%) together
with two three-dimensional oblique waves (wave numbers o = 1.12 and 8 =
2.1 and amplitude 0.05%) taken from the solution of the Orr-Sommerfeld equa-
tion and superimposed on a plane Poiseuille flow profile (see Gilbert & Kleiser
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1990; Schlatter et al. 2004). The disturbances grow in time, ¢, and eventually
lead to turbulent breakdown. The laminar stage up to ¢t ~ 160 is followed
by the highly fluctuating transitional stage with an overshoot in the skin fric-
tion and finally fully turbulent phase, seen in figure 3 showing the skin friction
Reynolds number, Re,, as a function of time. Unlike Kirby & Karniadakis
(2003), who were able to simulate transition in a triangular duct without any
stabilization, we found that performing the simulation without any filtering
or over-integration of the nonlinear term would yield a numerical instability
exactly at the time just before the skin friction peaks (¢ = 165). Adding one
extra point to compute the nonlinear term helped to continue the simulation
exactly to the skin-friction peak (¢ = 169). However, adding four more points
could stabilize the simulation through transition and continue stably in the
following fully turbulent stage. This is exactly half the number of points pre-
dicted by the 3/2-rule. It should be pointed out that an increase of the spatial
resolution (91 — 127 points in each direction) could not help to stabilize the
simulation, which would experience the instability at approximately the same
time, just before the peak of the skin-friction. The filtering alone was also able
to stabilize the simulation through the skin-friction peak and during the fully
turbulent phase.

100 150 ¢ 200 250

FIGURE 3. Evolution of Re, for the (stable) transitional chan-
nel flow simulation ( ). The arrow shows where the nu-
merical instability occurred. Comparison to DNS by Schlatter
et al. (2004) (-------- ).

5.2. 8D: Fully turbulent channel flow simulations at Re, = 590

Finally, fully turbulent flow simulations were performed at a friction Reynolds
number of Re, = 590 similar to Moser et al. (1999) in channel geometry in
order to see the effect of the stabilization tools in a moderate Re flow. All
statistical quantities were averaged over the homogeneous directions x, z and ¢
(for sufficiently long time) as well as over the two channel halves. An acceptable
resolution was chosen of approximately 75 % in each direction of the fine DNS
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resolution in Moser et al. (1999). Filtering or over-integration were needed
to stabilize the calculation. In one of the two cases shown in figure 4, the
full 3/2-rule (dashed) was used to stabilize the computation, whereas (solid)
could be rendered stable with only four extra points. No filtering was used for
either of these cases. The obtained mean flow results as well as fluctuations
show very good agreement with results obtained in Moser et al. (1999), and no
particular difference can be noticed between the two cases. As an alternative,
only filtering could be used to stabilize the computation, shown in figure 4 (thin
solid). Here, as little as 5 % filtering of the last mode could ensure a stable
computation and good results compared to the reference data. The obtained
shape factors, defined as,

A Y () L) I R ()
Hyp = 0 /,1 (1 UCLIam) dy//—l UCL\lam <1 UCL|lam> dy’ (6)

where ¢* is the displacement thickness, ¢ is the momentum thickness, Ucrj1am
is the laminar centerline velocity, U(y) is the mean velocity profile and the
integration is made between the two walls located at y = 1 were Hf’Q(NH)/Q =
1.583, HY 5 = 1.589 and H{p™/ ™ — 1.589 compared to the reference data Hio
= 1.574 (Schlatter et al. 2004). The obtained skin friction Reynolds number,
Re., based on friction velocity, u., and channel half height, h, were Rei(NH)/ 2
= 586.1, ReN*® = 585.7 and Re2™¥filt = 588.6 compared to the reference
data Re, = 587.2 (Moser et al. 1999; Schlatter et al. 2004). Thus, both these
turbulent quantities show a difference on the order of a few per mille, compared

to the reference data.

e

0 100 200 300 400 500 600
y

FIGURE 4. Turbulent channel flow simulations at Re, = 590
with polynomial order 15 (a resolution of 288 in the homoge-
neous directions and 192 in the wall-normal direction) show-
ing (a) mean velocity profile, (b) Reynolds stresses -------- DNS
data from Moser et al. (1999), —-—log law, M = N +5,
--——-M =3(N +1)/2, and only filtering (5 %).
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6. Conclusions

Stabilization techniques for the spectral-element method was investigated thr-
ough two model problems: Burgers’ equation in 1D similar to Kirby & Karni-
adakis (2003) and the scalar transport equation in 2D together with transitional
and turbulent Navier—Stokes channel flow simulations in 3D. The general re-
sults from the 1D problem show consistently with Kirby & Karniadakis (2003)
that applying over-integration with the full 3/2-rule to an equation with a
quadratic nonlinearity indeed enhances both the accuracy and stability of the
solution. In addition, it could be seen in both model problems and in the full
Navier—Stokes simulations that for such equations over-integration with the
full 3/2-rule is not needed for stability. Stability was achieved already with
< 25% more GLL points, with the first over-integration point being the most
efficient to remove aliasing errors. Filter-based stabilization can in most cases
alone help to stabilize the computation and is normally not needed together
with over-integration, although this combination can be essential for signifi-
cantly under-resolved cases. The present study suggests that by the use of
these techniques stability can be achieved at any Re.
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LES and no-model LES (coarse-grid DNS) have been performed of turbulent
flow in a plane asymmetric diffuser by the spectral-element method (SEM).
Mean profile and turbulent stresses compare well to LES results from Herbst
et al. (2007), however the SEM generally predicts a later (i.e. further down-
stream) separation. It can be concluded that the use of a high-order method
is advantageous for flows featuring pressure-induced separation.

1. Introduction

The spectral-element method (SEM), introduced by Patera (1984), is a high-
order numerical method with the ability to accurately simulate fluid flows in
complex geometries. SEM has opened the possibility to study — in great detail
— fluid phenomena known to be very sensitive to discretization errors, e.g. flows
exhibiting separation. Especially pressure-induced separation (as opposed to
separation where the separation is induced by sharp edges or obstacles) is known
to be particularly challenging, since the separation and reattachment points are
hard to predict and are generally very sensitive to disturbances that could stem
from an inaccurate numerical discretization. A typical engineering flow where
pressure-induced flow separation is dominant is the turbulent diffuser flow.
The specific planar asymmetric diffuser considered here has been investigated
experimentally by Obi et al. (1993) and Buice & Eaton (2000) and numerically
by Kaltenbach et al. (1999) (opening angle of 10°). A similar geometry with
an opening angle of 8.5° was studied by Herbst et al. (2007), who performed
LES at three different Reynolds numbers (Re, = 4500, 9000, 20000 based
on bulk velocity and channel half-height) with a hybrid second-order finite-
difference/spectral code. In the present work, a turbulent diffuser similar to
Herbst et al. (2007) is simulated by the SEM with large-eddy simulation (LES)
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and ‘no-model’ LES at Re, = 4500 and 9000. For the LES, a version of the
dynamic Smagorinsky model, specifically adapted for SEM, is used.

2. Numerical method and simulation set-up

The SEM code nek5000, developed by Paul F. Fischer, is used in the present
study. It solves the three-dimensional, unsteady, incompressible Navier—Stokes
equations by a Legendre-spectral element formulation and uses a rectangular
structured grid with the ability to handle curved elements boundaries. It is
massively parallelized and has shown a nearly linear speed-up for our com-
putations up to 2048 cores. Two different ways of stabilizing flows at high
Reynolds numbers are implemented in the code; over-integration (dealiasing)
and polynomial filtering (as proposed by Fischer & Mullen 2001). The combi-
nation of LES and SEM has only quite recently been explored, including the
Rational LES (RLES) of channel flow by Iliescu & Fischer (2003), the dynamic
Smagorinsky LES and the deconvolution based LES of the cubic cavity flow
by Bouffanais et al. (2006). Here, we use the dynamic Smagorinsky model,
where the model coefficient is computed according to the dynamic procedure
proposed by Germano et al. (1991). In the framework of SEM, the definition
of a test filter is implemented in Legendre space and constructed such that
approximately half of the modes are affected. To limit the fluctuation of the
model coefficient, spatial averaging is used along the homogeneous spanwise
(z) direction together with clipping of the model parameter (negative values
are discarded).

3. Validation by turbulent channel flow

An extensive validation of the simulation set-up was performed by means of
DNS of turbulent channel flow. The aim was to address the open questions
about the stability of SEM at moderate to high Reynolds numbers. Fully tur-
bulent periodic channel flow was simulated at two different Reynolds numbers,
Re, = 180 and 590. The results, shown in figure 1 for Re, = 590, show that
SEM is able to predict the mean velocity profile and the Reynolds stresses with
very good agreement to spectral DNS results at moderate Reynolds numbers
if one employs either polynomial filtering or over-integration as stabilization
technique. If neither over-integration nor polynomial filtering are used, the
calculation will experience a numerical instability after a small number of time
steps, even for a high resolution (also discussed by Fischer & Mullen 2001).
Both filtering and over-integration on their own are able to stabilize the calcu-
lation. This was also seen in transition simulations (K-type transition similar
to Schlatter et al. 2004), where it turned out to be essential to employ a stabi-
lization technique as soon as the turbulent state was reached.
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FIGURE 1. Turbulent channel flow at Re, = 590 (resolu-
tion: 288 x 192 x 288) showing (a) mean velocity profile and
(b) Reynolds stresses together with turbulent kinetic energy.
Comparison to DNS results (resolution: 384 x 257 x 384)
from Moser et al. (1999) ------- DNS data, ----Log Law,
nek5000.

4. Diffuser
4.1. Geometry and parameter settings

The geometry of the plane asymmetric diffuser is similar to Herbst et al. (2007).

The geometry, with visible element boundaries, is sketched in figure 2. The sim-
inflow sponge

N

60 80 100

FI1GURE 2. Sketch of the diffuser geometry and the grid used
for the Re, = 4500 case. Note that only the element bound-
aries are visible. The edges marked by arrows are rounded
with a radius of 20.0.

ulations, including both LES and no-model LES, were performed at a Reynolds
number of Re, = 4500 and 9000, corresponding to the lower and medium Rey-
nolds number of Herbst et al. (2007). The cases are summarized in Table 1,
with N; denoting the resolution in each direction respectively. The spanwise
width of L, = 8 is chosen in accordance with Kaltenbach et al. (1999). The in-
flow channel has a height of 2, which starts to expand at x = 0 with the diffuser
wall inclined at a diverging angle of 8.5°. The diffuser reaches its final height
of 9.4 at © = 49.6. The edges where the inclined wall is attached, are rounded
with a radius of 20.0. Spanwise (z) periodicity is used for both cases. The
aim was to have a fully developed turbulent flow entering the diffuser expan-
sion. This was achieved by an unsteady Dirichlet boundary condition, where
random noise was superimposed on a turbulent mean velocity profile. Having
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TABLE 1. Description of the diffuser cases

Rey, L, L, N, N, N, Order # Elements # Grid points

4500 121 8 260 43 64 7 1998 0.72 - 108
9000 131 8 346 61 91 15 552 1.92 - 10°

gone through transition to turbulence, the flow was allowed to evolve for suffi-
ciently long distance upstream of the diffuser throat, so that an approximately
fully developed turbulent state was reached just before the diffuser expansion.
At the outflow, a sponge region is added, where the flow is forced to a turbu-
lent mean flow profile in order to damp out oscillations prior to reaching the
zero-pressure outflow boundary.

4.2. Results

Selected turbulent statistics, including the evolution of the mean streamwise
velocity (@) and the Reynolds stress <ﬂ’6’ >, are shown in figure 3 at seven
streamwise positions at Re, = 4500 and 9000, respectively. The left column (a
- g) shows LES results and the right column (b - h) shows no-model LES results.
The results are compared with LES data from Herbst et al. (2007). Good
agreement is obtained for LES and no-model LES results at the two different
Reynolds numbers. Herbst et al. (2007) performed simulations at three different
resolutions. The number of degrees of freedom in our simulations correspond
(at both Reynolds numbers) to the lowest of the resolutions used in Herbst et al.
(2007). Tt should be pointed out, however, that the SEM results, although at
the lowest resolution, compares better to the second highest resolution data
from Herbst et al. (2007), in particular in the separated region. This justifies
the idea that a high-order method makes a better use of the grid points than
a low-order method. Contours of the stream function for a time and spanwise
averaged flow field are shown in figure 4, with (a - ¢) and without (b - d)
SGS model for Re, = 4500 and 9000, respectively. The trend of an increased
separated region for higher Reynolds number is obvious in our no-model LES
simulations (compare e.g. figure 4b and 4d) and further confirmed by numerical
results by Herbst et al. (2007) and experimental results by Obi et al. (1993).
More specific, the position of the separated region (indicated by the mean
diving streamline) almost coincides with data from Herbst et al. (2007) (shown
by arrows) for the lower Reynolds number (figure 4b). In the LES results,
however, the separation bubble is not visible. For the higher Reynolds number,
there is a general trend towards a later separation in our results compared
to Herbst et al. (2007). The no-model LES results show a relatively early
reattachment (figure 4d), whereas the LES results indicate a reattachment point
that coincides with Herbst et al. (2007) (figure 4¢). Clearly, the presence of the
LES model affects the size and the location of the separation bubble. In figure
5, the highly unsteady nature of pressure-induced separation is highlighted.
The instantaneous separated region, here visualized by an isosurface of —0.01
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FIGURE 3. Turbulent statistics for the diffuser at Re, = 4500
(a — d) and 9000 (e — h): a & € 10 - (u) +x (LES), b & £ 10
- (u) +x (no-model LES), ¢ & g 500 - (w'v') +z (LES),d & h
500 - (u/v') + x (no-model LES),
et al. (2007).

nek5000, ----Herbst

FIGURE 4. Contours of the stream function at Re, = 4500
(a—b) and 9000 (¢ —d): a & c LES, b & d no-model
LES. Thick white contour levels indicate the value 107° of
the stream function, thin white contours range from —0.1 to
2.0 with spacing 0.2. Black arrows show the streamwise extent
of the mean dividing streamline in Herbst et al. (2007)

for the streamwise velocity, show different separation and reattachment points
compared to the averaged equivalences.

5. Conclusion and outlook

LES and no-model LES have been performed of turbulent flow in a plane asym-
metric diffuser by the SEM. Turbulent statistics compare well to LES results by
Herbst et al. (2007). It can be concluded that the use of a high-order method
is advantageous, both in terms of the parallel efficiency of the method, but also
the fact that less grid points were needed to predict a result with the same
given accuracy compared to a low-order method. The influence of the SGS
model is hardly noticeable in the statistics, except close to the diffuser throat
where the SGS model might be slightly too dissipative (e.g. reduced turbu-
lent activity in that region) and close to the outlet where the model seems to
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(0)

FI1GURE 5. Isosurface of —0.01 for the streamwise velocity of
an instantaneous velocity field at Re, = 4500 (a — b) and 9000
(¢ —d), a & c LES, b & d no-model LES.

improve the results. Investigation of the location of the separation bubble re-
veals that the separation generally starts more downstream in the SEM results
compared to Herbst et al. (2007). Improved methods of treating the turbulent
inflow condition, e.g. the use of trip-forcing, will be considered and compared
to the present method. The dynamic Smagorinsky model will be compared to
other SGS models, in particular those based on high-pass filtering. Further,
as pointed out by Kaltenbach et al. (1999), it may be desirable to increase
the width of the domain in order decrease the presence of artificial coherent
structures, which seems to delay the reattachment.
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The recent Koopman mode decomposition (Rowley et al. 2009) is applied to
a turbulent and fully non-linear minimal channel flow. The acquired struc-
tures and frequencies are compared to classical proper orthogonal decompo-
sition (POD) of the same flow, also performed by Webber et al. (1997). In
addition, the frequencies are compared to spectral analysis based on a time sig-
nal probe placed in the flow domain. It is found that the POD and Koopman
mode decomposition are able to identify similar structures, associated with
the dynamics of the single low-speed streak present in the minimal flow unit.
These structures can be categorised into two different groups: One consisting
of structures with no streamwise dependence; the other with a streamwise de-
pendence of one wavelength (so-called ‘roll modes’ and ‘propagating modes’ in
Webber et al. 1997). Each one of these coherent structures are associated with
a specific frequency. For the Koopman mode analysis, these frequencies come
out naturally, whereas spectral analysis of the respective time coefficients has
to be performed for the POD. Both procedures find that the roll mode has a
time period of T,y = tuy,/h ~ 128, whereas the propagating mode has a time
period of T).op & 3.5, in agreement with the analysis of the time signal probe.
The former is thought to be the structure connected to the long intermittency
cycle identified by Jiménez & Moin (1991), whereas the latter can be directly
related to the imposed streamwise periodicity via the length of the flow domain
and a convection velocity. The structures obtained from the two procedures
are in general very similar, in particular the roll modes. However, the Koop-
man analysis could identify a double peak for the propagating modes, where
the structure pertaining to the lower frequency extends all the way to the wall.
The propagating mode with the slightly higher frequency (i.e. a faster moving
structure) is localised further out from the wall.
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1. Introduction

Turbulent flows have for centuries puzzled researchers due to their complicated
nature and apparent disorder. Many of the turbulent flows we find around us,
such as geophysical and engineering flows, are so complex that smaller subsys-
tems have to be chosen in order gain some understanding. Even so, one is often
limited to the study of mean properties without a proper knowledge of the time-
dependent dynamics. To include the effect of solid walls on the turbulence, the
study of turbulent flow in a spanwise and streamwise homogeneous channel is
one of the most popular test cases in turbulence research. Despite its geomet-
rical simplicity it involves rich physics far from being fully understood. The
minimal channel flow was first introduced by Jiménez & Moin (1991) in order
to reduce the complexity of an ordinary plane channel flow. Their objective was
to identify the minimal set of structures necessary to sustain turbulence with
correct statistical properties. They found the width of a minimal flow unit to
coincide with the sub-layer streak spacing, A} ~ 100, i.e. the minimal flow unit
enables the study of one isolated streak and its dynamics. They claimed that
this would give the streak a ‘dynamical rather than statistical significance’.

Another way to reduce the complexity of a turbulent flow is to decompose
it into typical, coherent, structures. Ever since the introduction of the proper
orthogonal decomposition (POD) into the field of turbulence by Lumley (1967)
(see also Holmes et al. 1996) this has greatly contributed to the understanding
of turbulence by facilitating a classification of the flow into typical events.
Given any sequence of flow fields or ‘snapshots’ (linear or non-linear) generated
either from a numerical simulation or an experiment, this procedure decomposes
the flow into its most energetic parts — thereby ranking the flow structures
according to their kinetic energy. The application of POD to a minimal channel
flow was explored by Webber et al. (1997). The identified structures were found
to have strong similarities to structures seen in experiments. They found the
most energetic modes identified by the POD to be two counter rotating vortices,
so-called ‘roll modes’, with no streamwise dependence, and with a spacing
spanning the entire channel width (A\J = 128). The second most energetic
mode were quasi-streamwise vortices tilted away from the wall at an angle,
so-called ‘propagating modes’ with a streamwise dependence. By tracking the
energy evolution of these respective modes, Webber et al. (1997) could conclude
that a turbulent burst was preceded by a rapid growth of the propagating modes
and corresponding decay of the roll modes. Moreover, they found that the roll
mode and propagating modes made independent contributions to the Reynolds
stress, with the roll modes being active near the wall and the propagating
modes closer to the channel centre.

The flow structures having most of the energy need not be the dynamically
most important ones. But since high frequency oscillations in a flow are damped
due to viscosity they will generally have a low energy content. These structures
are therefore ranked low and could easily be overlooked by POD. The Koopman
mode decomposition (Rowley et al. 2009) is instead associating each spatial flow
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structure with one frequency. Thus, given the same sequence of snapshots the
POD and Koopman modes are spanning the same space, but whereas each POD
mode contains many frequencies, each one of the Koopman modes are beating
with one distinct frequency. This makes it easier to locate high frequency
modes, although containing little energy.

To conclude, the concept of a minimal flow unit has introduced a sim-
pler system in which the dynamics of wall-bounded turbulence can be studied.
Proper orthogonal decomposition of this flow has been shown to give further in-
sight to the dynamics. However, this particular decomposition does not give the
full temporal understanding of the flow. Therefore, we here attempt to apply
a Koopman mode analysis to this flow in order to find the physically relevant
structures of wall-bounded turbulence having the most dominant frequencies.
The following outline of the paper is given. In section 2, the numerical method
and simulation set-up is presented. Then, in section 3, time probes from the
simulation are analysed. In section 4.1, the flow is decomposed into POD modes
and compared to the findings by Webber et al. (1997), after which a Koopman
mode analysis is presented and evaluated in section 4.2. Finally, in section 5,
the conclusions are given.

2. Numerical method and simulation set-up

The minimal channel flow is simulated by means of a direct numerical simu-
lation, where the incompressible Navier—Stokes equations are solved without
any modelling. Sufficiently high resolutions in time and space are used in order
to resolve all scales of motion. The equations are solved in a streamwise (z)
and spanwise (z) periodic domain, with no-slip conditions applied in the wall-
normal direction (y). The domain, shown in figure 1(a), is discretized using a
high-order spectral element method implemented in the code nek5000, devel-
oped by Fischer et al. (2008). Further details on space discretization and time
integration can be found in Fischer (1997). The size of the domain is chosen
in accordance with Webber et al. (1997), where the box lengths were set to
Ly = wh, Ly = 2h, L, = 0.37h, h being the channel half width. The spatial
resolution of (N, Ny, N,) = (48,129,24), similar to Webber et al. (1997), is
obtained using 6 x 16 x 3 elements, each having a polynomial order of 7, in
the streamwise, wall-normal and spanwise directions, respectively. A Reynolds
number of Re = uph/v = 2000, based on bulk velocity and channel half width,
was achieved through a constant mass flux. The corresponding friction Rey-
nolds number, Re, = u,;h/v based on friction velocity and channel half height,
was computed to be 133.6, in close agreement with Webber et al. (1997) who
reported a friction Reynolds number of 135.5.

3. Temporal analysis of the direct numerical simulation

Temporal information of the minimal channel flow was obtained by placing
a time signal probe in the flow at the position = (0,—0.75,0) and mea-
suring the streamwise velocity component. The recording started when the



126 J. Malm, S. Bagheri, P. Schlatter and D. S. Henningson

FIGURE 1. (a) Computational domain and spectral element
mesh employed in the present study. (b) Snapshot of the min-
imal channel at Re, = 133.6.

flow had reached a fully turbulent state and continued over a non-dimensional
time of tuy/h = 2451, corresponding to approximately 780 flow-through times,
i.e. tup/L, = 780. The obtained time signal is shown in figure 2(a), with its
power spectral density (PSD) shown to the right in figure 2(b). Note that in
the following all spectra are normalised with their own maximum. The two
first frequency peaks correspond to Strouhal numbers of St; = fh/u, = 0.0078
(giving a time period of T} = 128), Sty = 0.27 (Tp = 3.7). The third peak
is just a higher harmonic of Sts. Naturally, the peaks in the power spec-
trum vary slightly depending on the location of the probe. However, these
two frequency-ranges are undoubtedly dominant in the near-wall region. The
detected frequencies are thought to origin from the ‘wiggling’ of the low speed
streak, captured by the snapshot in figure 1(b) close to the lower wall (indicated
by the arrow), also supported by animations of the flow. Due to the imposed
streamwise periodicity on the flow, it seems plausible that the dominant fre-
quencies are connected to the length of the domain via a convection velocity.
Hence, using a convection velocity of ul , ~ 10 (Kim & Hussain 1993) —
which together with u, = gi; = % =~ 0.07 gives Ucony = 0.7 — this period
will be T, = L, /ucony = 7/0.7 = 4.5, which agrees roughly with 75 above. The
lowest frequency, whose time period is given by 77, corresponds to the findings
by Jiménez & Moin (1991), who were able to identify a very long intermittency
cycle of T' = u¢ jamt/h =~ 100 in their minimal flow configuration.

4. Modal decomposition

Consider the turbulent flow u(x,t) with velocity vector u = (u,v,w), defined
in physical space x = (z,y, z) and time ¢. A modal decomposition of this flow
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FIGURE 2. (a) Time signal from a probe located at & =
(0,—0.75,0), (b) power spectral density (PSD) of the time sig-
nal in (a).

attempts to split the space and time dependence, and is thus of the form,
o0
t)=> a;(t)g;(x). (1)
§=0

Since our velocity fields are truncated by the numerical simulation, this sum
can without loss of generality be taken up to some m < oo. The spatial
modes ¢;(x) and the temporal coefficients a;(t) remain to be determined. The
decomposition (1) is however not at all unique. For linear problems, where
4 = Aw, a natural choice for the modes are the eigenfunctions of the linear
operator A. For non-linear problems, however, one has to resort to other
techniques. Here, we shall discuss two techniques, which given a sequence of
flow fields or ‘snapshots’, saved at m discrete times {wu(t1), ..., w(t,,)}T, will find
modes spanning this particular space. The proper orthogonal decomposition
is concerned with finding eigenfunctions of the two-point spatial correlation
tensor, whereas Koopman modes are eigenfunctions of the approximated linear
evolution operator — both to be discussed in more detail in the next section.

4.1. Proper orthogonal decomposition

As mentioned above, the proper orthogonal decomposition amounts to finding
the eigenvalues and corresponding eigenvectors of the spatial two-point correla-
tion tensor R(x,x’) = & fT T dt. By letting U,,, = [up w1 ug ... up,|T
be the sequence of m snapbhots the above can in a discrete form be written
R = 7}L UTUG, where G contains the spatial integration weights. Thus, one is
interested in solving

R®"T = ®TA, (2)
where ® = [¢g P1 P2 ... |7 is the matrix of the spatial modes in equation (1),
and A is the diagonal matrix with the corresponding eigenvalues A1, Ao, ..., Ap,.
The m temporal coefficients at m discrete times in equation (1), written in
matrix form as A = [ag a1 ag ... ay,], can then in a successive step be solved
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for by projecting the spatial modes over the snapshots,
A =UGa". (3)

For high spatial resolutions R can be very large and equation (2) is usually
intractable to solve. However, using the snapshot method (Sirovich 1987),
equation (2) can be circumvented by solving an eigenvalue problem of the
generally smaller temporal two-point correlation tensor C = %UGUT, such
that

CA = AA. (4)
Then, as a second step, the spatial eigenfunctions are constructed as
1
&= _—A'ATU. (5)
m

Here, the division by the respective eigenvalue ensures that the modes are
normalised to unit energy. Once this is done, the temporal coefficients can
be computed according to equation (3). For the present POD analysis, a set
of m = 4903 snapshots, spanning a total time of tu,/h = 2451, is used. The
temporal resolution is thus given by Atuy,/h = 0.5. This data was generated by
the DNS and analysed in terms of time signal probes in section 3. The energy
of the respective modes are shown in figure 3(a), with the most energetic mode
— containing as much as 98.5 % of the total energy — being the mean flow,
from now on called ‘mode 0’. The spectrum falls initially rapidly and mode
number 100 has already five orders of magnitude less energy than the mean
flow. As one would expect for a turbulent flow, beyond this point the slope
of the spectrum levels off and the last 98 % of the modes contain a rather
similar amount of energy, also in agreement with Webber et al. (1997). Similar
conclusions can be drawn from the cumulative energy sum, s, = > ©_ i,
shown in figure 3(¢). A closer look at the energy of the 30 first modes in figure
3(b) shows that the first few modes seem to form a group of similar energy,
which might be a sign of a travelling structure. Then, however, the energy
in the respective modes decrease rather monotonically. The reason may be
that only the large anisotropic structures can be said to travel, whereas the
small-scale turbulence does not have any preferred direction. In agreement
with Webber et al. (1997) the most energetic POD modes consist of structures
with no streamwise dependence, shown by positive and negative surfaces of
constant streamwise velocity in figure 4(a). This structure (referred to as ‘roll
modes’ by Webber et al. 1997) corresponds to a high and a low speed streak,
with a spanwise width coinciding with the streak spacing of AT =~ 100 observed
in numerous wall-bounded turbulent flows (see e.g. Kline et al. 1967; Smith
& Metzler 1983). The next group of modes are structures with a streamwise
dependence of one wavelength (‘propagating modes’ in Webber et al. 1997),
exemplified by mode 7 in figure 4(b), which is the most energetic mode in this
family. They appear as quasi-streamwise vortices tilted away from the wall at
an angle. Note that the energy contained in mode 1 and mode 7 compared to the
total energy are tiny fractions only: 0.13 % and 0.021 %, respectively. Note also
that mode 7 has only 16 % of the energy compared to mode 1. Higher modes
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FIGURE 3. (a) The energy E; = (\;/ >, A;) x 100 of the POD
modes with j = 1,...,4903, (b) close-up view showing the en-
ergy of the first 30 POD modes, (¢) cumulative energy sum,
Sp = Z;Z‘D:O )\,L'.

are essentially similar structures (i.e. roll modes and propagating modes), but
shifted in the streamwise and spanwise directions.

These modes provide useful information about the typical structures found
in near-wall turbulence. Next, the respective time evolutions of one of the roll
modes (mode 1) and one of the propagating modes (mode 7) are shown in figure
5(a-b), with a close-up view provided in figure 5(¢). We observe a considerable
difference in terms of frequency between the two modes. The peaks in the PSD
(figure 5d) coincide well with the frequency peaks detected with the time signal
probe, indicated by the dashed line. More specifically, the roll mode has a peak
Strouhal number of St,.; = 0.0078 (T,,; = 128), whereas the propagating
mode has a peak Strouhal number of Stp.op = 0.28 (Tprop = 3.6). These
findings provide us with structures associated with the peaks in the PSD from
the DNS. In particular, a structure can be connected to the long intermittency
cycle identified by Jiménez & Moin (1991). No comparison regarding dominant
frequencies could be made with Webber et al. (1997), since no spectra were
provided therein.

Even though the frequency peaks in figure 5(d) are distinct and well-
defined, the flow structures given by the POD procedure will inevitable contain
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FIGURE 4. Isocontours (red: u/uy = 0.3, blue: u/u, = —0.3)
of streamwise velocity of POD mode (a) 1 and (b) 7.

a wide range of frequencies. In order to give a rigorous spectral analysis of the
flow, we now proceed with the Koopman mode analysis.

4.2. Koopman mode decomposition

The most probable events in the flow, provided by the POD, are in general
not separated in frequency space, i.e. one spatial structure contains a range of
different frequencies. A clear separation in frequency space is instead provided
by a Koopman mode decomposition. Here, we outline the ‘dynamic mode
decomposition’ (DMD) by Schmid (2010), which is a numerical technique to
compute a discrete approximation to the Koopman modes.

As for the POD, our point of departure is the sequence of m = 4903
snapshots. We are interested in the properties of the linear operator A, which
can propagate one snapshot forward in time, such that

Ui41 = Auz (6)

If the underlying equation that generated the snapshots were linear, then equa-
tion (6) would not involve any assumptions. However, if the snapshots would
stem from a non-linear process, then equation (6) would be the linear approx-
imation to this process. We will here investigate the assumed linear mapping
(6) by analysing the the eigenvalues and respective eigenvectors of A.

In fluid mechanics, the system matrix A is often very large and hence
iterative methods, such as the Arnoldi algorithm (see e.g. Trefethen & Bau
1997), are the methods of choice in order to find some dominant eigenvalues
and eigenvectors of A. The DMD builds on the Arnoldi algorithm, but the great
advantage of the DMD is that A need not to be known explicitly, as would be
the case for the Arnoldi method. Instead, the eigenvalues and eigenvectors can
be found solely by processing a sequence of snapshots, either velocity fields



Koopman mode decompisition of a minimal channel flow 131

(a) 0.2, (b) 0.15

0.1

0.05

~ ~

—0.2]
-03 -0.2
500 1000 1500 2000 0 500 1000 1500 2000
tu,/h tu,/h
b b
( C) 0.1
0.05]
~
S0
-0.05
-0.1
650 700 750 800 50 AL N=e2” SN - m = o m e e oo o

tu,Jh ( ; 04 S 06 08 |

FIGURE 5. Temporal evolution of POD mode (a) 1 and (b) 7.
(¢) Close-up view of (b) showing some of the higher frequencies.
(d) Power spectral density (PSD) of the respective signals in
(a) ( ) and (b) (——) compared to the PSD of the time
signal probe (----).

generated from a numerical simulation (where the system matrix is in general
known) or measurement data (1D, 2D or 3D) from a physical experiment.
Briefly, the DMD algorithm works as follows, focusing on the procedure based
on the companion matrix, M, below (Ruhe 1984). Further details are found in
Schmid (2010).

Using the snapshots, we shall define two sequences, given by

U, = [ug w1 U2 ... Upy_1] (7)
and
U1 = [ug ug ug .. ). (8)
Our task is now to find the matrix M such that,
U, =U,M+r, (9)

where r is a residual vector. This can be done by solving a least-square prob-
lem. Once M is found, eigenvectors and corresponding eigenvalues to M are
computed, i.e. we are solving

MT = TA. (10)
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FIGURE 6. (a) Koopman (Ritz) eigenvalues and (b) spectrum
obtained as w; = Im{log();)}/At and o; = Re{log()\;)},
where the amplitude of the respective modes vary smoothly
from red (high) to white (low). The first Koopman eigenvalue
(M\o) corresponding to the mean flow is shown in blue. (¢) Am-
plitudes of the modes as a function of frequency (red), together
with the PSD of the time signal probe (----).

As for the Arnoldi algorithm, where the decomposition (9) also appear, the
eigenvalues A (called Ritz values) approximate some of the eigenvalues of A.
Now, the so-called dynamic modes, ® = [¢pg ¢P1 ¢2 ... ¢r_1], are computed
analogous to expression (5) for the POD modes,

®=0,T. (11)

The dynamic modes and the Ritz values, of which the latter are shown for
the present case in figure 6(a), correspond to the finite approximation of the
Koopman modes and Koopman eigenvalues, rigorously shown by Rowley et al.
(2009). We observe that most of the eigenvalues lie on the unit circle (|A;| = 1),
which shows that the flow under consideration is in equilibrium, as no growth
or decay is present (Mezi¢ 2005; Rowley et al. 2009). This is also seen by
plotting the growth rate o; as a function of angular frequency w; (converted
into Strouhal numbers as St = wh/2muy) in figure 6(b). (Note that only part
of the spectrum is shown.) Since the Koopman eigenvalues \; € C characterise
the temporal behaviour of the Koopman modes in that the phase determines its
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frequency and the amplitude determines the growth rate, the angular frequency
is obtained by w; = Im{log(A;)}/At. Correspondingly, the growth rate is given
by o; = Re{log();)}. As for the POD modes, the zeroth Koopman mode
is the steady mean flow and indicated by the blue symbol in figures 6(a-b),
where indeed the phase and the frequency are zero, respectively. The rest of
the unsteady Koopman eigenvalues vary in colour from red to white, where
red denotes a mode with high amplitude and white a mode being weak in
amplitude. The amplitude is here defined as the global energy norm of the

eigenvectors, such that ||¢;|| = \/¢; " ¢;.

By plotting the amplitudes of the Koopman modes as a function of the
frequency of the corresponding eigenvalue (figure 6¢), we can directly compare
the result from the Koopman analysis to that from the time probe and the POD
analyses. The eigenvalues come in complex conjugate pairs, but for simplicity
we only show St > 0. The dashed line again shows the PSD from the time signal
probe. Two dominant peaks and higher harmonics of the second one can be
observed, in agreement with the PSD obtained from the time probe. The first
peak (not fully visible in figure 6(¢) due to cutting of the y-axis) has a Strouhal
number St; ~ 0.0078 (T} = 128), which is exactly the same frequency compared
to what is obtained from the time probe and the POD analyses. A closer look
at the second peak in figure 6(c¢) reveals that it is a double peak, of which
the lower frequency is given by Sta, = 0.26, corresponding to a time period of
Ty, = 3.8. This frequency matches the previously discussed frequencies. The
higher frequency is located at a Strouhal number of Sto, = 0.33, which gives
the slightly shorter time period of T, = 3.0. It is interesting to compare the
spatial structures connected to these peaks, depicted in figure 7. First of all, the
structures corresponding to the first peak, reported in figure 7(a), are similar
to the roll modes obtained from the POD analysis in figure 4(a). In fact, all
modes with a frequency less than the second peak in the spectra in figure 6(c)
correspond to these structures. Secondly, shown in figure 7(¢) is the mode with
frequency Sta,, i.e. the peak frequency of the propagating POD mode. They
compare well to each other, save that the Koopman mode is somewhat more
noisy. Their main feature is that they are alternating negative and positive
and extend all the way from the wall, tilted at an angle. However, the mode
corresponding to Stap, shown in 7(b), can be seen to be located slightly further
away from the wall. As the convection velocity is higher in this region, this
explains its somewhat higher frequency.

Overall, similar structures are found by the two techniques. However, com-
pared to the structures obtained from the POD in figure 4, it can be observed
that the Koopman modes in figure 7 are less smooth. It should be pointed out
that this is not a sign of unconverged numerics, but rather inherent in the way
the modes are separated in spectral space.
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FIGURE 7. Isocontours of streamwise velocity of Koopman
mode (a) 4 (red: u/up = 0.4, blue: u/uy = —0.4), (b) 129 (red:
w/up = 0.2, blue: u/up = —0.2) and (¢) 140 (red: u/u, = 0.2,
blue: u/up = —0.2).

5. Conclusions

A modal analysis has been performed on a fully non-linear minimal channel
flow using DNS data from a high-order spectral element code. In particular,
the classical proper orthogonal decomposition (POD) (Lumley 1967; Holmes
et al. 1996) was compared to the more recent Koopman mode decomposition
(Rowley et al. 2009), where we followed Schmid (2010) for the implementation.
In addition, spectral analysis was performed of a time signal probe placed
in the flow domain. It can be concluded that both the POD and Koopman
mode decomposition are able to identify coherent structures associated with
the dynamics of the single low-speed streak present in the minimal flow unit.
The structures found by both procedures can be categorised into two different
groups: One consisting of structures with no streamwise dependence, so-called
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‘roll modes’ (after Webber et al. 1997), which are the streamwise streaks ob-
served in wall-bounded turbulence. The other group contains structures with
a streamwise dependence of one wavelength, (termed ‘propagating modes’ in
Webber et al. 1997). They are tilted away from the wall at an angle and can be
related to quasi-streamwise vortices, commonly seen in physical experiments in
conjunction with turbulent bursts. Each one of the coherent structures found
can be associated with a specific frequency. More specifically, the roll mode has
a time period of T}, = tup/h ~ 128, whereas the propagating mode has a time
period of T},0p =~ 3.5. The latter can be directly related to the imposed stream-
wise periodicity via the length of the flow domain and a convection velocity.
The former is thought to be the structure connected to the long intermittency
cycle identified by Jiménez & Moin (1991). Both the POD and Koopman mode
decomposition are able to detect these two dominant frequencies. The struc-
tures from the two procedures pertaining to these frequencies are in general
very similar, in particular the roll modes. Concerning the propagating modes
there are small detectable differences. More specifically, the Koopman analy-
sis could identify a double peak in the spectra connected to the propagating
mode. For the lower frequency, a structure extending all the way to the wall
was found, whereas for the higher frequency a structure localised further out
from the wall could be identified.

Whereas for the POD the frequencies pertaining to the modes are found
through a spectral analysis of the time coefficient of the respective modes, these
frequencies come out naturally from the Koopman mode analysis. Moreover,
each one of the POD modes contain a wide range of frequencies centred around
the peak frequency, referred above to as the dominant frequency. The Koopman
modes, on the other hand, are clearly separated in spectral space, such that
each mode contains only one distinct frequency. In flow configurations which
are not as dominated by one frequency as the present one, this could serve
to locate parts of the flow where dominant frequencies occur. An excellent
example of this was shown by Rowley et al. (2009) on the jet in crossflow,
where structures connected to the high-frequency Kelvin-Helmholtz instability
on the jet could be separated from the low shedding of a von Karman-type
structure closer to the wall. However, when the dynamics are totally governed
by one forced frequency, as the present case clearly show, the POD can equally
well suffice to pick them up.

Finally, it was noticed that the Koopman modes are less smooth in space,
and it was pointed out that this is a cause of the separation in spectral space.
The POD modes, on the other hand, can be seen as an average of all the
Koopman modes around the peak frequency, and will hence appear smoother
in space. In time, however, the opposite is observed: the POD time signals in
figure 5 are not smooth at all, whereas the corresponding Koopman mode only
has one specific spectral component (i.e. a single sine wave) and will therefore
be smooth.
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Vorticity stretching in wall-bounded turbulent and transitional flows has been
investigated by means of a new diagnostic measure, denoted by I', designed to
pick up regions with large amounts of vorticity stretching. It is based on the
maximum vorticity stretching component in every spatial point, thus yielding
a three-dimensional scalar field. The measure was applied in four different
flows with increasing complexity: (a) the near-wall cycle in an asymptotic
suction boundary layer (ASBL), (b) K-type transition in a plane channel flow,
(c) fully turbulent channel flow at Re, = 180 and (d) a complex turbulent
three-dimensional separated flow. Instantaneous data shows that the coherent
structures associated with intense vorticity stretching in all four cases have the
shape of flat ‘pancake’ structures in the vicinity of high-speed streaks, here
denoted ‘h-type’ events. The other event found is of ‘I-type’, present on top
of an unstable low-speed streak. These events (I-type) are further thought
to be associated with the exponential growth of streamwise vorticity in the
turbulent near-wall cycle. It was found that the largest occurrence of vorticity
stretching in the fully turbulent wall-bounded flows is present at a wall-normal
distance of y™ = 6.5, i.e. in the transition between the viscous sublayer and
buffer layer. The associated structures have a streamwise length of ~ 200 — 300
wall units. In K-type transition, the I'-measure accurately locates the regions of
interest, in particular the formation of high speed streaks near the wall (h-type)
and the appearance of the hairpin vortex (I-type). In the turbulent separated
flow, the structures containing large amounts of vorticity stretching increase in
size and magnitude in the shear layer upstream of the separation bubble, but
vanish in the backflow region itself. Overall, the measure proved to be useful in
showing growing instabilities before they develop into structures, highlighting
the mechanisms creating high shear region on a wall and showing turbulence
creation associated with instantaneous separations.
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1. Introduction

A significant aspect of turbulence research over the last 40 years has been the
search for typical or ‘coherent’ structures, following for example the work of
Lumley (1967) (see also Holmes et al. 1996). This has greatly enhanced the
fundamental understanding for turbulence, since it has brought some order to
the otherwise chaotic picture of turbulence. Thus, in any recent introductory
book on turbulence one finds that turbulence is composed of ‘eddies’ or vortices,
and numerous studies have focused their attention on the dynamics of these.
Though conceptually clear, a strict definition of a vortex has never been fully
achieved. Consequently, there are a number of identification criteria available
in the literature, see e.g. the comparison by Chakraborty et al. (2005). The
various measures have their respective strengths and weaknesses, and are not
universally applicable. The most obvious way to locate vortices would be to
look for high values of vorticity. However, it is well-known (see e.g. Dubief &
Delcayre 2000) that close to a solid wall the high values of mean shear creates
vorticity which is usually significantly higher than the vorticity contained in
coherent structures elsewhere. Localising low pressure areas in the flow can
give a rough estimate of the orientation of vortices (see e.g. Robinson 1991),
but will in general favour larger structures and miss the small vortices in the
flow. Among the more sophisticated measures and nowadays the most widely
used are the IT-criterion and the Ag-criterion proposed by Hunt et al. (1988) and
Jeong & Hussain (1995), respectively. For incompressible flow, the II-criterion
is equivalent to the negative of the second tensor invariant, —Q), discussed by
Chong et al. (1990). Also the A-criterion introduced by Chong et al. (1990)
belongs to the same class of vortex identification methods. All these measures
are in one way or another based on the velocity gradient tensor. A review and
more thorough definitions of the above measures can be found in Dubief & Del-
cayre (2000), which also includes an a posteriori analysis of a series of turbulent
flows. The developed structures identified by these criteria are not necessarily
the areas in a flow of most dynamical interest, e.g. regions where instabilities
are growing. Generally, a vortex can be created (by some yet unspecified mech-
anism) after which it may be convected away from the active region of the flow.
Thus, locating the vortex itself does not directly help to position the area of in-
terest. On the other hand, by identifying the production of vorticity! the active
region of the flow would instead be pinpointed. Among the various production
terms in the vorticity transport equation, vorticity stretching is the one that
can provide exponential growth, evident when studying the vorticity transport
equation in an incompressible flow. Assume there is initially some vorticity,
ws, and strain, dug/ds, in the direction of s, where s is the strain elongation
axis. Assume further that the strain is negligible in the other spatial directions
so that the vorticity tilting terms vanish, then the vorticity transport equation

Worticity does not necessarily imply vortices, but conversely, vortices do in general imply
vorticity.
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reduces to
Duwg Oug

= Ws ) 1
Dt “ Jds (1)
provided the Reynolds number (Re) is high enough so that the damping term
V2w, is small. Solving for w, gives

o~ exp (G2, ©)
S

i.e. exponential growth of vorticity along s, assuming a constant strain rate
following the fluid element.

The fact that vorticity stretching plays a crucial role in turbulent flows is
clear, as the following examples will show. In wall-bounded turbulent flows,
streamwise velocity streaks (Kline et al. 1967) and quasi-streamwise vortices
(Smith & Metzler 1983) are known to dominate the near-wall region. It has
been shown in several studies (Hamilton et al. 1995; Jiménez & Pinelli 1999)
that these structures are tied together via a self-sustained cycle, where the
streamwise vortices create streaks and the streaks break down to create new
streamwise vortices. Minimal flow units (Jiménez & Moin 1991) were used to
show that if this cycle was broken at any point the flow is likely to relami-
narise. While the mechanism with which streaks are created by streamwise
vortices is fully understood and well documented (see e.g. Klebanoff et al.
1962; Landahl 1980), there has been less consensus on how the streaks break
down and the streamwise vortices are recreated. There are however indica-
tions (see e.g. Waleffe 1997) that the breakdown is preceded by exponential
growth of z-dependent disturbances. For the late stages of the streak instabil-
ity phase, Schoppa & Hussain (2002) elaborated on a mechanism responsible for
the formation of streamwise vortex sheets which eventually collapse due to the
stretching caused by the streamwise strain, du/dx. This shows that vorticity
stretching may be an important ingredient in the near-wall cycle. There is also
some evidence (Jones et al. 2009) that vorticity stretching plays an important
role in self-sustained transition processes, such as the unsteady vortex shedding
in a separated flow. In addition, during the end-stage of K-type transition, it
has been noted by Sandham & Kleiser (1992) that the stretching of vorticity
involved in the roll-up of detached shear layers leads to turbulence regeneration.

To conclude, the above mentioned examples indicate that vorticity stretch-
ing is dynamically important for the growth of instabilities in wall-bounded
flows. The importance of vorticity stretching in turbulence is well-documented,
but is often presented in a statistical context, exemplified in Tsinober et al.
(1995); Tsinober (2009). Similarly, extracting dynamically important regions
that correspond to active vortical parts of the flow, has been attempted a few
times, based on correlating negative Ay and e.g. TKE production and/or dis-
sipation, see e.g. Helgeland et al. (2007). In addition, criterions suggested to
identify coherent structures in turbulent flows have traditionally been focused
on vortices. Therefore, we will propose a measure facilitating the study the
local dynamics of the vorticity stretching mechanism. Thereby, one can locate



144 J. Malm, P. Schlatter, N. D. Sandham

coherent structures of more dynamical importance than vortices per se. By the
term ‘dynamical importance’, we mean a structure that can pinpoint regions
where growing instabilities are present, as opposed to the ones just convected
(and potentially diffused away) with the flow. The measure, proposed in the
next section, will be evaluated in four different flows with successively increas-
ing complexity: The near-wall cycle in an asymptotic suction boundary layer
(ASBL); K-type transition in a plane channel flow; fully turbulent channel flow;
and finally a fully three-dimensional separated flow. It will further be linked
to the birth of vortices by locating high concentration of Ay (Jeong & Hussain
1995) in the flow.

2. New diagnostic measure

Consider the vorticity transport equation in an incompressible flow,
Duw; ouy 1 0%w;

Dt oz " Re Oz ;0x;’ ®)
where the terms (no summation on «)
Oug,
T =1,2,3, 4
Wagy a (4)

are denoted worticity stretching terms, in each spatial direction respectively.
Vorticity stretching alone is a three-dimensional vector field, which in general
is difficult to visualise and interpret. A scalar field is more conceivable, since
it tells the observer where high ‘concentrations’ of the quantity in question
can be found. Therefore, we propose our measure as the maximum vorticity
stretching component in every point in space, thus yielding a three-dimensional
scalar field.

In order to locate the largest occurrence of vorticity stretching in the flow,
we will formally define the scalar measure as:

Tp(z,y, 2, 1) = max{alwal, Blwpl, vlwy}, ()

where a, 8 and 7y are the eigenvalues of the strain tensor S;; = %(g:ﬁ + g%) and
i s

Wa, wg and w, are the vorticity components along the principal axes given by
the eigenvectors of S;;. The subscript ‘p’ indicates that we are in a principal axis
system, aligned with the direction of strain. Thus, this measure is a true scalar
quantity, since it is indeed independent of coordinate system. The procedure
of decomposing the strain tensor into its eigenvectors is commonly adopted in
studies of homogeneous turbulence where the usual spatial coordinate directions
have a subordinated meaning, (see e.g. She et al. 1991; Nomura & Post 1998).
We will compare this measure to the following definition:
U v w

Lo, 2,8) = max{f 5 o 5 ol 52, ©
where the subscript ‘¢’ denotes ‘Cartesian’. Note that this measure, in contrast
to definition (5), is formally not a scalar quantity, since it is dependent on the
fixed Cartesian coordinate directions. However, the actual differences may not
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be very large for simple wall-bounded flows where the streamwise, spanwise and
wall-normal directions are clearly defined and the flow is generally aligned with
one coordinate axis. In those cases, for the sake of implementation and compu-
tational effort (since (5) involves solving an eigenvalue problem in every point
in space), definition (6) might be preferable, provided that the corresponding
results agree well with the more rigorous measure (5).

Alternatively, one could locate regions of high enstrophy production, which
is already a scalar, frame-invariant quantity. In the equation governing the
transport of enstrophy in an incompressible flow,

2
D& 8u2 1 82(‘: awi
=] e

Dt i Ox;  Re | 0x;0x; ox;
where the enstrophy is defined as £ = %wQ, the production terms are contained
in the first expression to the right of the equality sign. This procedure does
however not separate out the stretching process, which may be of particular
interest, i.e. a stretching (not tilting) mechanism that can potentially lead to
local exponential growth, as discussed above. The relative importance of the
stretching-to-tilting related terms in equation (7) is further discussed in section
4.3.

In the following, we will examine the two variants of the proposed measure
in four turbulent and transitional flows, mentioned above. In the next section
(section 3), the simulation set-ups together with the numerical methods are
introduced. In section 4, the measure is applied to the various flows and its
dynamical aspects are investigated. Finally, in section 5, the conclusions from
the present study are drawn.

3. Simulation set-up and methods

In this section, the four flow cases are introduced. We focus on three well-
known, canonical flow cases in order to analyse the basic vorticity stretching
mechanisms. In addition, one engineering flow featuring turbulent separation
is included in order to broaden the study. The solutions of the incompressible
Navier—Stokes equations were in the first three cases obtained by a Chebyshev-
Fourier pseudo-spectral code and in the last case by a Legendre spectral element
code described in Chevalier et al. (2007) and Fischer et al. (2008), respectively.
Each one of the four cases are described more in detail below.

3.1. Near-wall cycle in an asymptotic suction boundary layer (sinuous
instability)

The asymptotic suction boundary layer (ASBL) enables the study of an open
boundary layer in the temporal framework, 4.e. by employing suction at the wall
the spatial growth of the boundary layer is removed, which opens the possibility
of using a streamwise periodic domain. Hence, for the present simulation,
performed at a Reynolds number of Re = Uyd* /v = Usy /Vio = 750 (U being
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the free-stream velocity, 0* the displacement thickness and V. the imposed
vertical velocity) we used a computational domain with periodic boundary
conditions in the spanwise and streamwise directions. A Dirichlet condition
in the form of a constant velocity (V) in the negative vertical direction was
applied at the bottom of the domain. The dimensions of the domain (non-
dimensionalised by ¢*) were chosen as L, = 12, L, = 15 and L, = 6, such
that the flow would be a ‘minimal flow unit’ and the dynamics of a single
streak could be studied. A satisfactory spatial resolution was chosen to be
N, = 32, N, = 32 Fourier modes in the streamwise and spanwise directions
and N, = 129 Chebyshev modes in the wall-normal direction. The critical
trajectory (‘edge state’) was found by bisection where the amplitude of the
random initial condition was tuned such that the flow neither becomes turbulent
nor goes laminar (Schneider et al. 2007). The result is a time-periodic orbit
with a period of T = 3347. Note that since breakdown to full turbulence
never occurs, 32 Fourier modes in the streamwise and spanwise directions are
sufficient, as verified by considering energy spectra during various time instants.
The edge state in the ASBL flow was first computed and studied by Madré
(2011) and discussed by B. Eckhardt (ETC-12, 2009, Marburg). The aim of
the present case is however not to study its state-space properties, but merely
to use the case as an alternative to minimal channel flows in an effort to simplify
turbulent dynamics as much as possible. Some snapshots representative for the
streak instability phase, breakdown and streak regeneration are shown in figure
1. The initially straight low-speed streak at ¢ = to (figure la) is indicated
by the gray surface of constant streamwise velocity. Soon, around ¢t = ¢y +
0.16T, the low-speed streak experiences a sinuous instability (with the plane
of oscillation being wall-parallel) and z-dependent disturbances are amplified
(figure 1b). The sinusoidal shape is more clearly visible in the top view, shown
at approximately the same time, provided in figure 5(a). As the disturbance
growth has reached nonlinear amplitudes (¢ = to + 0.397, figure 1¢) the streak
breaks down into smaller scales. During this phase, streamwise vortices are
regenerated which leads to the growth of a new streak, displaced L. /2 to the
left. Thus, the flow at t = to +0.57 shown in figure 1(d), is an exact equivalent
to the flow in figure 1(a), translated by half the domain in z. 2

3.2. Subcritical K-type transition (varicose instability)

Direct numerical simulation (DNS) of subcritical K-type transition in a periodic
channel at Re, = 3333, based on bulk velocity and channel half height, h, were
performed in order to examine the role of vorticity stretching in a classical
transitional flow (Gilbert & Kleiser 1990). This flow has turned into a canonical
test case for transitional flow simulations (see Schlatter et al. (2004)). The
initial disturbances consist of a two-dimensional Tollmien-Schlichting (TS) wave
with a streamwise wave number of o = 1.12 and an amplitude of 3% of the
laminar centre-line velocity, together with two three-dimensional oblique waves

2In a dynamical systems sense, this is defined as a relative periodic orbit.
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FIGURE 1. Evolution of the low-speed streak indicated by a
surface of constant streamwise velocity, u = 0.6 (gray), at (a)
t =ty (b) t = tog+ 0.16T, (¢) t = to + 0.39T and (d) t =
to + 0.57", where T' denotes the period of the periodic orbit.
Vectors of crossflow velocities are shown in a crossflow plane.

with wave numbers @ = 1.12 and 8 = 2.1 and amplitudes of 0.05% each.
This wave, superimposed on a laminar Poiseuille channel flow, experiences an
exponential growth eventually leading to turbulent breakdown. Around ¢ = 120
a so-called A-vortex appears, which develops into a hairpin vortex at ¢t ~ 135
(Sandham & Kleiser 1992). Shortly thereafter (¢t ~ 160), the highly fluctuating
transitional phase sets in; and finally, at ¢ &~ 220, the flow has reached a fully
developed turbulent state. The box lengths were L, X Ly x L, = 2h/a x 2h x
2mh /B3 and the resolution used was N, x N, x N, = 128 x 129 x 128, similar
to Gilbert & Kleiser (1990).
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FiGure 2. Computational domain showing the inflow duct,
diffuser and outlet.

3.3. Turbulent channel flow at Re; = 180

Fully turbulent channel flow simulations were performed at a Reynolds number
of Re, = 180, based on friction velocity, u,, and channel half height, A, in order
to study the vorticity stretching diagnostics in a fully turbulent flow. The flow
is driven by a fixed bulk given by Re, = uyh/v = 2800. Periodic boundary
conditions in both the streamwise and spanwise directions were applied in a
domain of size L, x Ly x L, = 4whx2hx2rh and a resolution of N, x Ny x N, =
128 x 129 x 128, similar to Moser et al. (1999). (Note that in this reference,
the spanwise width was chosen to be 47h/3, i.e. slightly smaller than in the
present simulation.)

3.4. Turbulent 3D separation at Re = 10 000

As a last example, a separated flow in a three-dimensional diffuser at Re, =
10 000 (based on bulk velocity and inflow duct height, h) is considered. The
proposed measures are computed based on instantaneous velocity fields from
the DNS presented in Ohlsson et al. (2010). The computational domain of size
L, =105.4h, L, = [h, 4h], L, = [3.33h, 4h] is shown in figure 2. Laminar flow
transitions to turbulence in the long inflow duct of rectangular cross-section
through the action of an unsteady trip force applied in the very upstream
region. Thus, fully turbulent flow enters the diffuser where the separation
takes place. The diffuser is asymmetric, with two different opening angles in
the y and z-directions, respectively. As a consequence, the separation is fully
three-dimensional.

4. Application of the diagnostic measures

In the following, the evaluation of I'. and I', in the four flow cases described
in the previous section is presented.
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4.1. The effect of sinuous instabilities on vorticity stretching

In order to facilitate understanding, I'. (retaining component information more
obviously) is as a first step computed in the asymptotic suction boundary layer,
with its evolution shown together with Ay in figure 3 at similar instants as in
figure 1. What we observe (see also section 3.1) is approximately one quarter
of the time-periodic orbit with period T' = 3347, where the amplitude of the
initial condition was tuned such that the flow never becomes fully turbulent
nor goes completely laminar (a so-called ‘edge state’ Schueider et al. 2007).
Thus, figure 3 shows a low-speed streak experiencing a sinuous instability (a,b),
which reaches nonlinear amplitudes (¢) and finally breaks down (d). Shortly
thereafter (not shown), the flow approaches a more laminar-like state again
and the exact same process would start again, with a spanwise phase shift.
As long as the high- and low-speed streaks are (reasonably) straight, most of
the vorticity stretching activity resides in the high-speed streak, close to the
wall (figure 3a). Here, we observe that isosurfaces of constant I'. appear as
flat ‘pancake’ structures close to the wall. A closer investigation reveals that
T'. is dominated by |w,|0w/dz, i.e. vorticity is stretched most intensively in
the spanwise direction. As soon as the z-dependent disturbances are amplified
and the streak starts to ‘wiggle’, we instead observe the highest values of T,
on the top of the low-speed streak (figure 3b). Henceforth, we will refer to the
former event as ‘h-type’ (high-speed) and the latter as ‘I-type’ (low-speed). It is
found that for this case I'. is always given by the spanwise vorticity stretching
component, save that the sign is different due to the absolute value in the T'.-
measure. As for the high-speed streak, the appearance of vorticity stretching
alternates from side to side also on the low-speed streak, such that the highest
values are always found on the convex side of the streak. The reason for this
can be understood by studying the sketch in figure 4. Due to the mean shear,
there are always high values of spanwise vorticity, w,, present close to the wall
(A). In the case of a straight streak (figure 4a) this vorticity is lifted by the
streamwise vortices, due to the well-known lift-up effect (Landahl 1980). In the
braid region above the streak (B) the highest values of dw/dz are found, which
together with the lifted vorticity creates large spanwise vorticity stretching,
w,0w/dz. A similar situation is found to be present when the streak is bent
(figure 4b). Since the braid region has moved over to the convex side of the
streak (left in figure 4b), this is where we find high values of T'.. Similarly,
high values of I'. are found to the right as soon as the streak ‘wiggles’ over to
this side (the dashed line). It should be pointed out that the same mechanism
is responsible for the high values of spanwise stretching alternating from side
to side below the high-speed streak, given that the sketch in figure 4 in that
case would be upside down. The cartoon in figure 4 is confirmed by results
from the numerical simulation. In particular, a top view of a velocity field at
t = to + 0.187 is provided in figure 5(a), where the relation between I'c, T'p,
A2 and the low-speed streak can be seen. It shows that high values of I'; ,, are
indeed located on the convex side of the bent streak. Here, we also note that
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FIGURE 3. Evolution of T'. (red) and A2 (green) shown at (a)
t =tg, (b) t =19+ 0.16T, (¢) t =ty + 0.307 and (d) t =ty +
0.397", where T denotes the period of the periodic orbit. The
levels of the corresponding isosurfaces are fixed. The isosurface
of streamwise velocity, u = 0.5 (gray), indicates streaks and the
crossflow plane is coloured by T'..

the differences between I'c and I', are small. A more detailed comparison is
given in figure 5(b,c), where the isosurface level is decreased approximately by
a factor of two. Still, I'. and I',, are located in similar regions in the flow. More
specifically, they both pick up vorticity stretching on top of the low-speed streak
and beneath the high-speed streak near the wall associated with the creation of
drag (i.e. the ‘pancake’ structures). It is evident that, although being located
in the same regions, tilted at the same angle from the wall and being similarly
flat, larger pancake structures are present in the case of I'. as compared to
I'p. The main noteworthy difference is that, whereas I'. is decoupled from the
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FIGURE 4. Explanation for an l-type event: (a) straight
streak, where high values of w, are lifted from A and multi-
plied by spanwise strain in B; (b) similar mechanism for a bent
streak in one of its outer positions. Thick lines denote a con-
tour of constant streamwise velocity, thin lines show stream-
lines of in-plane flow and the dashed line shows the opposite
outer position of the streak.

quasi-streamwise vortices, I', is capable of picking up the associated vorticity
stretching, as shown in 5(b). The reason for this is thought to be the slight
tilting of the vortices in the flow, such that the vorticity stretching in the
streamwise direction is small. In a principal axis system, however, this tilting
is accounted for. Similar structures as the ones shown in figures 3 and 5 are
obtained when visualising the instantaneous enstrophy production. However,
as noted earlier in section 2, the enstrophy production does not allow for a
separation of the various vorticity production mechanisms (i.e. stretching and
tilting).

In order to see if I'; , can be linked to the existence of exponential growth,
we show the evolution of the vorticity components |w;| together with [\
and |T'c,| in figure 6. More specifically, at each time the maximum ab-
solute value over the domain, 2, is found, i.e. maxqo{| - |}. Note that in
the case of A2, only negative values isolate vortices (Jeong & Hussain 1995),
i.e. maxg{| min(Ag,0)|} would be the correct operation. However, we have
noted that the maximum absolute value always equals the absolute value of
the largest negative value, i.e. maxq{|A2|} = maxq{|min(A2,0)|}. The vari-
ables are scaled in outer units and ¢/7 = 0 corresponds to tg in figure 3. Due to
the mean shear, w, is the strongest vorticity component. The second strongest
component is w, due to the existence of high- and low-speed streaks and the
corresponding shear layer in between them. The first aspect to notice is that
there is a slight decrease of these two vorticity components before the nonlinear
breakdown (¢/T < 0.3). However, at the same time the weakest component,
wy, 1s increasing. As indicated by the straight dash-dotted line the growth is
weakly exponential. A similar growth rate is observed for Ay. As I'c ), involves
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(b)
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FIGURE 5. Isosurfaces of (a) I'c = I', = 0.0040 (red and yel-
low, respectively) in a top view (aligned with the coordinate
axes) and (b,c) I'. =T, = 0.0023 from behind at an angle, at
t =ty + 0.18T, together with u = 0.6 (gray) and A2 (green).
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FIGURE 6. Maximum absolute value over Q of w. (x), wy (e),
wy (o) together with As (7), T'c (¢), I'p () during the streak
instability phase and the nonlinear breakdown. Straight lines
indicating exponential growth are included for reference. Here,
t/T = 0 corresponds to ty in figure 3.

the large spanwise vorticity, its growth rate is higher than the former two, al-
beit still exponential. Furthermore, the two measures are observed to behave
very similarly. None of the w,-tilting terms (not shown) show any tendencies
to grow exponentially.
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FIGURE 7. Isosurfaces of A2 (green) and T'. (red) during K-
type transition at (a) an early stage (t = 125.5) and (b) at
t = 136.5 when the hairpin vortex has emerged in the peak
plane (Sandham & Kleiser 1992). Flow from right to left.

4.2. Vorticity stretching during K-type transition

As a second step, I'; ), is computed in K-type transition. This is a classical
modal transition scenario (Gilbert & Kleiser 1990), where a TS wave packet
superimposed on a laminar Poiseuille channel flow profile grows exponentially
in time before reaching nonlinear amplitudes and breaking down to turbulence.
The initial spanwise vortex is tilted in the streamwise direction and stretched as
the hairpin vortex emerges in the peak plane (Sandham & Kleiser 1992). The
reader is referred to section 3.2 for more details regarding the simulation and
flow physics. In figure 7 isosurfaces of T'. and Ay are plotted shortly before (a)
and after () the hairpin is created. Very similar results are obtained for I',,, and
are thus not shown separately. In the early stage (figure 7a) the I'-measure acts
as a precursor to the shear layer and the hairpin vortex formation. As for the
ASBL, it also identifies the role of vorticity stretching in generating high speed
streaks near the wall (h-type). Similarly, high values of vorticity stretching
are found slightly above and in between the legs of the A-vortex, where the
head of the hairpin vortex is about to appear (l-type). This mechanism is
similar to the one sketched in figure 4, due to the positive wall-normal velocity
induced by the legs of the A-vortex. In figure 7(b) we note that the I'-measure
is properly aligned with the hairpin vortex. As for the previous flow case,
we include the evolution of the maximum absolute values in figure 8 for a
more quantitative comparison. Again, it can be observed that the amplitude
of spanwise vorticity is nearly constant, while the streamwise and wall-normal
components grow exponentially. Previously having approximately twice the
growth rate compared to w, and As, both I'-measures are now observed to
grow at the exactly same rate as w, and w,. It is interesting to notice that A,
is constant for a long time, but starts to increase rapidly at ¢ = 80. This shows
that T' is capable of identifying the instabilities that later develop into vortices.
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FIGURE 8. Maximum absolute value over  of w, (%), wy (e),
wy (o) together with Ay (), I'c (¢), 'y () during the TS wave
growth stage and the subsequent laminar-turbulent transition.
Straight lines indicating exponential growth are included for
reference.

4.3. Vorticity stretching in a fully turbulent wall-bounded flow

Next, we investigate the role of the vorticity stretching diagnostics in a fully
turbulent wall-bounded flow. In particular, we are interested to see if similar
events (‘h’ and ‘1") can be observed as in the two previous ‘model’ flows. The
diagnostic measures are computed based on fully turbulent velocity fields from
a simulation performed with the Chebyshev-Fourier pseudo-spectral code de-
scribed in Chevalier et al. (2007), employed at a Reynolds number Re, = 180.
In figure 9 a snapshot of the flow in its fully developed state is shown in a top
view, depicting the near-wall region (y™ a 5). The axes are scaled in viscous
units, I* = v/u,. As before, streaks are indicated by an isosurface of streamwise
velocity (u = 0.3, gray) and isosurfaces of I'. are shown (red). Vortices are indi-
cated by Ao (green opacity). In figure 9(b) the absolute values of the thresholds
of T'. and A2 have been increased by 50 % with respect to their values in (a). It
can be seen that I'. (also true for I')) remain localised when changing the iso-
level, also in comparison to Az, indicating that the present measures are robust
in locating coherent structures. The relevant structures are indicated by arrows
in figure 9(a). It should be pointed out that I', gives quantitatively the same
results for the same iso-level, but is different in one particular respect, which
will be further discussed in connection with figure 10 below. Remaining with
figure 9, we note that the most prominent and most commonly occurring events
are the ‘pancake’ structures (h-type) adjacent to the high-speed streaks. It can
be observed that the typical length of these structures are roughly 200 wall
units, i.e. approximately 1/5 of the well-documented near-wall streak length
I ~ 1000 (see e.g. Klebanoff et al. 1962) and about the same as the streamwise
vortices connected to the streaks Jeong et al. (1997). A few l-type events can be
found in locations of strong low-speed streak activity. These areas seem to be
associated with a higher degree of disorder, compared to the high-speed areas
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FIGURE 9. Top view showing I'. (red), u = 0.3 (gray) and
X2 (green opacity) in a fully turbulent channel flow at y™ =~
5. The arrows indicate typical l-type and h-type events and
their respective sizes in wall units. The absolute values of the
thresholds in (b) have been increased by 50 % with respect to
the values in (a).

where the h-type structures are found. Furthermore, the l-type structures are
slightly longer in the streamwise direction (I} ~ 300) compared to the h-type
structures. Figure 10 shows I'. (a) and Iy, (b), together with \s, and highlights
the only significant difference between the two I'-measures. We note that the
‘pancake’ structures are essentially the same in both cases. The main difference
is highlighted by @ in figure 10(b), where the structure forms a ‘front’ in the
case of I', that is not present in the case of I'.. This difference is thought to
be of the same origin as the one in figure 5, namely that the region of intense
stretching is inclined and therefore artificially cut by I'. but shown to its full
extent by I'p. In some locations in figure 10(a,d) it can be seen that regions of
strong vorticity stretching give rise to quasi-streamwise vortices. As soon as a
vortex is created, it is convected away from the ‘active’ region of the flow. Many
of these ‘passive’ vortices are seen to be located far from the wall, where the
turbulent production is low. In that sense, the location of vorticity stretching
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Flow direction

F1GURE 10. Close-up view of the flow field in figure 9, where
I'. (a) is compared to I', (b) and shown together with Ao
(green) and a plane of streamwise velocity. The arrow shows
the ‘front’ of the l-type structure captured by I',.

(as opposed to vortices) pinpoints the regions in a flow that are dynamically
relevant.

Mean and root-mean-square (r.m.s) profiles of I'.,, and Ay are shown in
figure 11(a) and (b), respectively. The mean, (-), is taken over the homogeneous
directions z, z,t. We observe the peak of both I'-measures to be located at
yT = 6.5, i.e. in the transition between the viscous sublayer and the buffer
region. The peak of (I',) is around 50 % higher compared to (I'.), whereas the
r.m.s levels of I'. show a nearly identical behaviour compared to that of I'y,, with
its maximum located slightly closer to the wall, at y™ = 4.4. The fact that the
r.m.s levels peak at approximately the same wall-normal distance as the mean
suggests that the strongest vorticity stretching events are fluctuating the most,
and hence are part of a dynamical process. As also noted by Jeong et al. (1997),
since Ay > 0 for ™ < 10, no vortices are present in the viscous sublayer. These
authors further point out that the peak of \; (r.m.s) at y™ ~ 21 infers that the
prominence of vortical structures is located in the buffer region. This indicates
that, similar to the discussion above, vorticity stretching is most active in the
viscous sublayer and is part of the creation of vortical structures, which are
then convected outwards in the flow.

In order for the vorticity to grow exponentially, there should be a predom-
inance of stretching (i.e. small amounts of tilting) among the production terms
contained in the first expression to the right of the equality sign in the enstro-
phy transport equation, given by equation (7). This implies that ) wig%

should dominate over wiwj%, i # j. Therefore, we investigate the ratio
J
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r={>,w2 ggz \>/<|wiwj27“t|>, where (-) is taken over the homogeneous direc-
tions. The absolute sign ensures that r is a well-behaved quantity contained
in the interval [0,1]. The result after the averaging operation is a function
of wall-normal distance, shown in figure 11(¢) together with the numerator
and denominator separately. The ratio r can be interpreted as the enstro-
phy produced solely by stretching compared to the total enstrophy production
(i.e. stretching and tilting). The horizontal line drawn at » = 1/3 indicates the
degree of equipartition between stretching and tilting. The results suggested
by figure 11(¢) is that the enstrophy production is dominated by stretching
over tilting close to the wall, with the peak of r being attained at y™ =~ 3.5.
Further out in the log-region (y* = 70) it approaches the equipartitioned state
of 1/3. This demonstrates that the near-wall cycle contains the stretching of
vorticity as an important ingredient and confirms that stretching becomes less
important further away from the wall.

4.4. Vorticity stretching in a separated flow

Finally, a visualisation of I', in a separated flow is given in figure 12. The
computation of the diagnostic measure is based on instantaneous data taken
from the diffuser simulation presented in Ohlsson et al. (2010), where accurate
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representation of the solution was provided by the high-order spectral element
code described in Fischer et al. (2008). Since the set-up is fully asymmetric,
the mean flow is truly three-dimensional. Moreover, the separation is turbulent
and highly unsteady. A spanwise midplane showing I'. (gray) and five contours
of streamwise velocity ranging from 0 to 1.2 (blue to red) are provided in (a).
We see a part of the turbulent inflow duct and the diffuser opening. The mean
separated region starts close to the top expanding wall at x =~ 6. We note that
high values of vorticity stretching are found close to the walls in the turbulent
inflow duct, with structures similar to the turbulent channel flow described
in the section above. However, an even greater activity is found shortly after
the diffuser opening at around x = 2, within the strong shear layer separating
the forward and backward flowing streams. In addition to a higher activity,
the structures in this region are also larger compared to the structures in the
inflow duct. This shear layer is not separated in the mean, but experiences
instantaneous separation and the flow is consequently highly intermittent in this
region. In the backflow area, considerably less vorticity stretching is observed.
A top view is provided in figure 12(b), showing a wall-parallel plane selected
along the red dashed line in figure 12(a) at the approximate distance of 30 wall
units (based on Re, = 500). Similar conclusions can be drawn, namely that the
structures appear more frequently and are increasing in size as we approach the
shear layer. In the separated region (blue) the activity decreases. In relation
to the vortical structures identified by negative Ao (not shown) the vorticity
stretching-structures are in general larger. However, in the case of attached
turbulence in figure 10 the reverse situation occurred, i.e. the vortical structures
were in general larger than the structures containing vorticity stretching.

5. Conclusions

Vorticity stretching is known to provide a rapid (exponential) growth mecha-
nism, hence the location of vorticity stretching may reveal regions of dynamical
importance in a flow. To investigate this in more detail, we have defined a di-
agnostic measure which can precisely locate such areas. Two variants have
been defined, one of which is frame-independent and thus a true scalar quan-
tity (I'p), while the other is defined in a Cartesian framework (I'.), facilitating
implementation and understanding. It can be concluded that the two measures
do not differ from each other significantly. Generally, vorticity stretching was
found to be present in conjunction with the lift-up effect creating low-speed
streaks (and the equivalent effect creating high-speed streaks). In particular,
in both the ASBL (acting as a model for wall-bounded turbulence) and in the
fully turbulent channel flow at Re, = 180, large amounts of vorticity stretching
were found on the convex side of high-speed streaks (h-type events), taking the
form of large, flat ‘pancake’ structures. In locations of strong low-speed streak
activity a similar but reversed phenomenon was observed on top of the low-
speed streaks (l-type events), also occurring on the convex side of the streak.
In the case of fully developed wall-bounded turbulence, the streamwise length
of these structures was found to be approximately 200 — 300 wall units. During
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FIGURE 12. (a) A spanwise midplane in the diffuser showing
T'. (gray) and five contours of streamwise velocity ranging from
0 (blue) to 1.2 (red). (b) Top view showing a plane parallel to
the wall at the approximate distance of 30 wall units.

the streak instability phase, exponential growth of streamwise vorticity was
observed in the ASBL, while the other components decayed, in line with the
observations of Waleffe (1997). Moreover, the rotationally invariant measure
(T'p) could detect vorticity stretching located within the core of the streamwise
vortices, which gives some support for the mechanism suggested by Schoppa &
Hussain (2002), where streamwise vortex sheets break down due to stretching.

In K-type transition, the measures accurately located the regions of inter-
est, in particular the formation of high speed streaks near the wall (h-type)
and the appearance of the hairpin vortex (I-type). Here, the vorticity stretch-
ing diagnostics were noticed to appear and grow long before the vortices (\2)
developed. Shortly before the turbulent breakdown the growth of As rapidly
overtook the growth of any other quantity, which shows that I' is capable of
predicting growing instabilities. Statistics from the fully turbulent channel flow
showed that vorticity stretching is active in the near-wall region, with a peak in
the viscous sublayer (y* & 6.5), and dominates over vorticity tilting. Further
out, towards the outer region of the flow where the turbulence is more isotropic,
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the enstrophy produced solely by stretching compared to the total enstrophy
production attains a constant value of ~ 1/3.

In the turbulent separated flow, the diagnostic measures showed the largest
occurrence of vorticity stretching within the shear layer preceding the mean
separation bubble. This is in agreement with Jones et al. (2009), who noted
that vorticity stretching plays an important role in self-sustained transition
processes, such as the unsteady vortex shedding in a separated flow. The
structures in this area not only appeared more frequently compared to the
structures in the turbulent inflow duct, but the coherent structures could also
be seen to grow in size. In the backflow region, the activity decreased.

In summary, the proposed diagnostic applied to transitional and turbulent
flows identifies regions where high-speed streaks create drag or streak instabil-
ities are present (both sinuous and varicose). We have tracked the temporal
evolution of our measure in the ASBL and channel cases, and observed a similar
degree of spatial and temporal coherence as for the Ay measure. As opposed to
vortices, which are simply convected away from the ‘active’ region of the flow as
soon as they are created, high concentrations of vorticity stretching are mainly
found in regions where growing instabilities are present and hence dynamically
important.

The NORDITA Workshop on Turbulent Boundary Layers 2010 is acknowl-
edged for providing a forum for the present collaboration and thus making this
project possible.
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A direct numerical simulation (DNS) of turbulent flow in a three-dimensional
diffuser at Re = 10 000 (based on bulk velocity and inflow-duct height) was
performed with a massively parallel high-order spectral element method run-
ning on up to 32 768 processors. Accurate inflow condition is ensured through
unsteady trip forcing and a long development section. Mean flow results are
in good agreement with experimental data by Cherry, Elkins & Eaton (Intl J.
Heat Fluid Flow, vol. 29, 2008, pp. 803-811), in particular the separated region
starting from one corner and gradually spreading to the top expanding diffuser
wall. It is found that the corner vortices induced by the secondary flow in the
duct persist into the diffuser, where they give rise to a dominant low-speed
streak, due to a similar mechanism as the ‘lift-up effect’ in transitional shear
flows, thus governing the separation behaviour. Well-resolved simulations of
complex turbulent flows are thus possible even at realistic Reynolds numbers,
providing accurate and detailed information about the flow physics. The avail-
able Reynolds stress budgets provide valuable references for future development
of turbulence models.

1. Introduction

In many engineering flows, such as the flow over airplane wings or in turbo-
machinery applications, flow separation may lead to degradation of lift, pres-
sure losses, ‘hot spots’ or even engine failure. On the other hand, maximum
performance is often obtained close to separation, hence the design of flow de-
vices such as pumps, fans and compressors inevitably leads to situations where
flow separation is necessary to predict, see e.g. the review article by Simpson
(1989). In practical situations these flows are generally turbulent and fully
three-dimensional, hence prediction of highly unsteady, three-dimensional sep-
aration is of considerable importance. Often separation is caused by an adverse
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pressure gradient and may take place over a smooth surface (‘pressure-induced’
separation), as opposed to the case where the flow separates from a sharp geo-
metrical obstacle (‘geometry-induced’ separation). Since, in the latter case the
separation point, in principle, is given by the point of highest curvature and is
thus easy to predict, the former poses most uncertainties because the point of
separation can vary in both time and space.

Rapid developments in computer hardware over the last few years allow
predictions of complex flows to be made by numerical simulations. The most
widely used approach for complex engineering flows is based on the Reynolds-
averaged Navier-Stokes equations (RANS), where an ensemble average of the
Navier—Stokes equations is solved for. The averaging process gives rise to an
unclosed term, which has to be modelled. Although RANS may be a rather
crude way to describe a highly time-dependent flow phenomenon, it may, in
many situations, be sufficient to know the mean flow characteristics. However,
flows experiencing adverse pressure gradients and separation are very hard to
predict, in particular three-dimensional flows, due to rapid changes in mean
flow properties (e.g. Jakirli¢ et al. 2010). For a more detailed picture of the
flow, unsteadiness needs to be taken into account. The concept of large-eddy
simulation (LES), where the large scales of the flow are resolved and the small
scales are modelled by a subgrid-stress (SGS) model, has in recent years evolved
into a promising tool for flow predictions. The drawback, however, is that a
SGS model can never be universal, and special care has to be taken as new
flow cases are being studied. A numerically more appealing approach and also
the most computationally expensive, where the governing equations are solved
without averaging or filtering, is referred to as direct numerical simulation
(DNS). If proper boundary conditions are imposed and high-enough resolution
is used, this approach generally compares very well to experimental data. Nu-
merical schemes of high order, e.g. spectral methods, with low amounts of nu-
merical viscosity and dispersion yield particularly satisfactory results. While
traditional spectral methods only work efficiently for simple geometries, the
spectral-element method (SEM) introduced by Patera (1984), is a high-order
numerical method with the ability to accurately simulate fluid flows also in
complex geometries. Thus, SEM has opened the possibility to study, in great
detail, fluid phenomena known to be very sensitive to discretization errors,
e.g. flows undergoing pressure-induced separation (Ohlsson et al. 2010). SEM
has successfully been applied to mainly laminar and transitional flows (e.g. Tufo
& Fischer 2001; Tomboulides & Orszag 2000; Sherwin & Karniadakis 1995) and
also fully turbulent flows (Wasberg et al. 2009; Iliescu & Fischer 2003).

Pressure-induced separation has been considered extensively in two-
dimensional flow configurations, where the mean flow exhibits one homoge-
neous direction, e.g. Kaltenbach et al. (1999) who performed LES of a plane
asymmetric diffuser with 10° opening angle, experimentally also investigated
by Buice & Eaton (2000). Herbst et al. (2007) performed LES of a plane asym-
metric diffuser with 8.5° opening angle at higher Reynolds numbers. They
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all reported satisfactory agreement with the corresponding experimental data
concerning the bulk quantities. Herbst et al. (2007), however, found that em-
ploying a recycling technique to specify unsteady turbulent inflow conditions
may not be optimal for spatially developing flows exhibiting pressure-induced
separation, since it might trigger artificial frequencies. Few examples of LES of
fully three-dimensional, turbulent, pressure-induced separated flows are found
in the literature (Schneider et al. 2009) mainly due to the fact that one has to
rely solely on one homogeneous direction, time, to average turbulent statistics.

Even though RANS models are getting more sophisticated, many difficul-
ties remain among which some have already been pointed out. In order to
continue the development, there is a need for clearly-defined benchmark cases
and good quality reference data. Recently, experiments of such a reference case
were performed by Cherry et al. (2008). The experiments conducted consisted
of two three-dimensional diffusers with slightly different expansion angles at,
for simulation standards, a fairly high yet realistic Reynolds number of 10 000
based on bulk velocity and height of the inflow duct. It was found that the flow
was extremely sensitive to these slight changes in the geometrical set-up. Mag-
netic resonance velocimetry (MRV) (see Elkins et al. 2003) was used to collect
three-dimensional velocity data. Emphasis was put on defining a simple truly
three-dimensional geometry with well-defined boundary conditions (walls), in-
let conditions (fully-developed turbulence) and to avoid any symmetries leading
to long-period stall switches, hence facilitating for simulations to mimic the real
experiment. The three-dimensionality was reasoned to be a more relevant test
case for computational fluid dynamics (CFD), but it would also get rid of the
ambiguities a two-dimensional experiment may suffer from, such as dependence
on channel width. Here, we present a DNS of one of the diffuser cases (‘Diffuser
1’) in Cherry et al. (2008) at the same Reynolds number as in the experiments.
Focus is on accuracy, both in terms of discretization and boundary conditions.
The motivation for this is twofold: first, we are aiming at understanding the
flow physics involved in three-dimensional separation through a study of mean
flow features together with the identification of instantaneous flow structures.
Second, our data could be used as an important reference, suitable for further
development of turbulence models. A first step towards these goals must be to
validate the data against existing experimental data. Here, we focus on careful
analysis of mean flow results in order to assess the quality of the simulation
data. Mean flow, pressure recovery and turbulent fluctuations are compared to
the experimental data of Cherry et al. (2008). Further, a brief discussion will
be given on some of the new flow physics found in the diffuser.

2. Numerical method and simulation setup

The incompressible Navier—Stokes equations are solved using a Legendre-
polynomial-based spectral-element method, implemented in the code nek5000,
developed by Fischer et al. (2008). As in the case of the finite-element method
(FEM), the governing equations are cast into weak form and discretized in space
by the Galerkin approximation, where the test and trial spaces are restricted to
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FIGURE 1. Grid of one of the diffuser geometries (‘Diffuser
1’) in Cherry et al. (2008) showing the development region,
diffuser expansion, converging section and outlet.

certain (and different) velocity and pressure spaces, respectively, following the
Py —Py_o SEM discretization by Maday & Patera (1989). The velocity space is
typically a space of Nth-order Lagrange polynomial interpolants, A (z), based
on tensor-product arrays of Gauss-Lobatto-Legendre (GLL) quadrature points
in a local element, Q°¢, e = 1, ..., E, satisfying hfv(ij) = 0;;. Here, ij €[-1,1]
denotes one of the N +1 GLL quadrature points and d;; is the Kronecker delta.
For a single element in R? the representation of the velocity vector, u, is

N N N

w(@(r,s,t)lae = Y D> ufhl (A ()hy' (1), (1)

i=0 j=0 k=0

where x¢ is the coordinate mapping from the reference element Q) to the local
element Q¢ and Uy 1s the nodal basis coefficient. The tensor-product structure
enables the use of highly optimized matrix—matrix routines (mxm) to solve the
final system of equations (see e.g. Fischer 1997). The non-linear terms are
treated explicitly by second-order extrapolation (EXT2), whereas the viscous
terms are treated implicitly by a second-order backward differentiation scheme
(BDF2) leading to a linear symmetric Stokes system for the basis coefficient
vectors u” and p” to be solved at every time step:

Hu" — D™p" = Bf", Du" =0. (2)

Here, H = (1/Re)K + (3/2At)B is the discrete equivalent of the Helmholtz
operator (—(1/Re)V? + 3/2At). In the RHS, f" accounts for the non-linear
terms and for the cases we have external forcing in the Navier-Stokes equations.
To solve the final problem (see (2)), velocity and pressure are decoupled and
solved iteratively using conjugate gradients and GMRES with scalable Jacobi
and additive Schwarz preconditioners, respectively (Fischer 1997). For the
latter, fast parallel coarse-grid solvers scaling to ten thousands of processors
are used (Tufo & Fischer 2001).
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The computational domain shown in figure 1 is set up in close agreement
with the diffuser geometry in the experiment and consists of the inflow devel-
opment duct of almost 63 duct heights, h, (starting at the non-dimensional
coordinate z = —62.9), the diffuser expansion located at z = 0 and the con-
verging section upstream of the outlet. The corners resulting from the diffuser
expansion are smoothly rounded with a radius of 6.0 in accordance with the
experimental set-up. The maximum dimensions are L, = 105.4h, L, = [h,
4h], L, = [3.33h, 4h]. In the inflow duct, laminar flow undergoes natural tran-
sition by the use of an unsteady trip forcing (see e.g. Schlatter et al. 2009),
which avoids the use of artificial turbulence and eliminates artificial tempo-
ral frequencies which may arise from inflow recycling methods (Herbst et al.
2007). A ‘sponge region’ is added at the end of the contraction in order to
smoothly damp out turbulent fluctuations, thereby eliminating spurious pres-
sure waves. It is followed by a homogeneous Dirichlet condition for the pressure
and a homogeneous Neumann condition for the velocities. The resolution of
approximately 220 million grid points is obtained by a total of 127 750 local
tensor product domains (elements) with a polynomial order of 11, respectively,
resulting in Az~ 11.6, Ay}, ~13.2 and Az}, ~ 19.5 in the duct centre
and the first grid point being located at 2™ ~ 0.074 and y™ ~ 0.37, respectively.
It was verified that the present resolution yields accurate results in turbulent
channel flow simulations. In the diffuser, the grid is linearly stretched in both
directions, but since the mean resolution requirements decreases with the ve-
locity, which decreases linearly with the area expansion, the resolution in the
entire domain will hence be satisfactory. The simulation was performed on the
Blue Gene/P at ALCF, Argonne National Laboratory (32 768 cores and a total
of 8 million core hours) and on the cluster ‘Ekman’ at PDC, Stockholm (2048
cores and a total of 4 million core hours). Thirteen flow-through times, tu;/L
= 13, based on bulk velocity, up, and diffuser length, L = 15k, were simulated
in order to let the flow settle to an equilibrium state before turbulent statistics
were collected over approximately tu,/L = 21 additional flow-through times.
The lack of homogeneous directions together with the fact that the flow showed
pronounced instationarity with fluctuations on a wide range of scales, called
for long integration time in order to average the statistics.

3. Results
3.1. Inflow section

The inflow duct was studied in detail to ensure that a fully developed turbulent
flow is reached at the end of the development section described in section 2.
Mean velocity profiles as a function of y™ and 2z, respectively, taken from
a middle plane a short distance upstream of the diffuser opening are shown
in figure 2(a). Here, y™ and z" are the cross-stream directions in the duct
normalized with the respective viscous length scale in that direction. It can
be seen that the ‘law of the wall’ is captured with good accuracy. Monitoring
the streamwise development of the friction Reynolds number, Re,, figure 2(b),
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FIGURE 2. (a) Mean centerplane velocity profile 6h upstream
of the diffuser throat, where ut(yh), ----ut(z"),
—-—log law with x = 0.41 and B = 5.2, (b) evolution of
Re,, = u.yh/2v ( ), Rer. = u,.3.33h/2v (----) in
a midplane of constant z and y respectively in the inflow sec-
tion; solid horizontal lines showing Re, for a periodic duct and
vertical dashed line location of the selected velocity profile in
(a) and (c¢) stream function of the time-averaged flow field in a
cross-sectional plane 6k upstream of the diffuser throat show-
ing the secondary flow in one of the corners. Contour lines of
the stream function are spaced 2x10~* units apart. Dashed
contour lines, 0.2 u; apart, of streamwise velocity as well as
velocity vectors of mean crossflow velocities are superimposed.

provides a measure to detect where a fully turbulent flow is reached. Compared
to the value obtained from a periodic duct simulation at the same Re (indicated
by solid horizontal lines), this has occurred at @ > —15 as shown by the dashed
vertical line. The secondary flow in the corners of the duct shown in figure 2(c¢)
also gives a good indication on the development of the flow and, although weak
(a few percent of wy), is thought to be important for the correct separation
behaviour (Cherry et al. 2008). From the measures listed above, we conclude
that the flow has converged to a statistically stationary state well upstream of
the diffuser throat.

3.2. Diffuser

Turning to the flow in the actual diffuser, a qualitative analysis focusing on
identifying the size, shape, and location of the separated region is made by
selecting a number of crossflow planes, shown in figure 3. At every location
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FIGURE 3. Crossflow planes of streamwise velocity 2, 5, 8 and
15h downstream of the diffuser throat. Left: Computation by
nek5000. Right: Experiment by Cherry et al. (2008) Each
streamwise position has its own colour bar on the right. Con-
tour lines are spaced 0.1 up apart. Thick black lines correspond
to the zero velocity contour.

within the duct until the diffuser throat at x = 0, there is no sign of separation,
as expected. As soon as the diffuser starts to expand, the separation, as pointed
out by Cherry et al. (2008), increases rapidly due to the asymmetry of the
geometry in the uppermost right corner, where the two inclined walls meet. As
can be seen in figure 3(a), at © = 2, the agreement between the experimental
and simulation data is excellent, both considering the mean flow in general and
the separated region in particular. Very good agreement between the simulation
data and the experimental data persists for another three units downstream
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FIGURE 4. Crossflow planes of (¢) mean and (b) instantaneous
streamwise velocity 12 h downstream of the diffuser throat
with superimposed crossflow vectors (scaled so that vectors
in (a) are six times larger than vectors in (b)) showing the
corner vortices responsible for the bump. Thick black lines
correspond to the zero streamwise velocity contour. o refer to
(primary) vortex centres.

until z = 5, shown in figure 3(b), where the separation in the upper right
corner gradually starts to spread and eventually includes the whole top wall of
the diffuser. This spreading is present in both data sets, however, in slightly
different ways. Studying figure 3(c¢) it is obvious that the separation in the
experimental data advances like a wedge over to the top and uppermost left
corner of the diffuser. (Note the slight shift of the coordinate system in the
experimental data). The simulation data, on the other hand, indicates that at
x = 6 (not shown) the smaller separation from the left corner visible in figure
3(b) has grown, although with fixed streamwise magnitude (~ —0.025), into a
small, stretched localized region in the top of the diffuser. From here it rapidly
continues to grow down into the interior of the diffuser, finally taking the shape
of a small ‘bump’ hanging from the top wall at x = 8, figure 3(¢). Here, the
separation fills the entire top of the diffuser, consistent with the experiments.
Even though the bump is not present at * = 8 in the experimental data, its
presence can be noticed further downstream at x = 15 in figure 3(c¢), where
the bulk of the separated flow indeed is located to the left. But even so, the
origin of the discrepancy in figure 3(¢) is at present unknown. It should be
pointed out that the bump is not a transient effect and is thus an artefact of
a too short averaging time. Window averaging of the data has shown that it
is present at all times. This is also confirmed by Schneider et al. (2009), who
performed LES of the same diffuser geometry and Reynolds number and could
see the same extension of the separation bubble on the top expanding wall. The
physical reason for this particular behaviour becomes clear if we superimpose
vectors of crossflow velocity onto a crossflow plane, as shown in figure 4. We
see that a substantial downwash of slow velocity fluid is present within the
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FIGURE 5. Mean centerplane velocity 3(u) 4+ in the diffuser.
Velocity data: nek5000, o experiment by Cherry et al.
(2008). Separated region: nek5000, experiment by
Cherry et al. (2008).

bump, both in the mean (figure 4a) and instantaneously (figure 4b), governed
by vortical structures in the upper corners. Tracking the secondary flow in
the duct, one realizes that although weak in magnitude (a few per cent of the
streamwise bulk velocity), the vortices produced by the secondary flow persist
into the diffuser, where they give rise to a low-speed streak, because of a similar
mechanism as the ‘lift-up effect’ in transitional shear flows (Landahl 1980). In
the remaining part of the diffuser region, the area fraction of separated flow
(AFSF) in a cross section is in very good agreement with the experimental data,
including the maximum of 23 % AFSF occurring at x = 15, figure 3(d), where
the straight part of the geometry begins. Between x = 18-20 the AFSF is 2 %
larger in the simulation data. After x = 20 the separation is reduced to zero,
a result supported by both data sets. A more quantitative comparison is made
in figure 5, where mean velocity profiles are selected in a spanwise midplane.
Generally, good agreement is observed. In particular, the upward movement of
the velocity peak is well captured. The presence of the large separated region
on the upper inclined wall forces the flow upwards, however only slightly, due to
the originally high momentum content in the flow. The size and location of the
separated region (here defined as a region with negative velocity) in a spanwise
midplane, seen in figure 5, is in good agreement with the experimental data,
although the previously described extension of the separation in the simulation
data is clearly visible. The streamwise root mean square (r.m.s), Upms/Up,
given in figure 6 at the same streamwise locations as the mean flow in figure
3 shows consistency with the mean flow regarding the flow dynamics present
in the diffuser. In front of the entrance to the diffuser the fluctuations peak
(ut,s = 2.6) close to the walls (2 = 14.9) very much like in a turbulent channel
flow. The strong character of fully developed wall-bounded turbulence is further
confirmed by the typical streak spacing of Az~ 100 in the near-wall region.
Shortly after the diffuser throat, the fluctuations generally move out from the
walls. In particular, the most dominant fluctuations are found in the shear layer
bounding the separation bubble in the uppermost right corner (figure 6(a)),
reaching a magnitude of 22 % of the bulk inlet velocity, also confirmed by the
experimental data. Further downstream, at « = 5 (figure 6b), the peak moves
downward and increases in magnitude (up to 25 % of the bulk inlet velocity),
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FIGURE 6. Crossflow planes of streamwise velocity fluctua-
tions, (tpms/up) X 100, 2, 5, 8 and 15h downstream of the
diffuser throat. Left: Computation by nek5000. Right: Ex-
periment by Cherry et al. (2008). Each streamwise position
has its own colour bar on the right. Contour lines are spaced
2 (Wpms/up) X 100 apart. Thick black lines correspond to the
zero streamwise velocity contour.

indicating an intense turbulence activity in this area. At @ = 8 (figure 6¢) the
turbulent shear layer follows consistently the spreading of the separation to the
top wall of the diffuser, clearly seen in both data sets. The localized bump
present in the simulation data has a corresponding enhanced turbulent activity
around (z,y) = (1.2,1.6). Here, the agreement with the LES by Schuneider et al.
(2009) is again closer than with the experimental findings. At x = 15, shown
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in figure 6(d), both data sets suggest the turbulence to be more homogeneously
spread over the cross-sectional area, with a peak situated in the interior of the
diffuser of around 17 % of the bulk inlet velocity. The typical turbulent scales
are rapidly increasing in size as soon as the separated flow in the upper right
corner has become visible. In the duct, there are approximately ten adjacent
streaks in the z-direction close to the wall. This persists until the diffuser
throat and approximately 2h further downstream (xz = 2), where this number
is suddenly halved to approximately five streaks. Consequently, the typical
scales are approximately twice as large in this region compared to the scales in
the duct. Another 2h further downstream, at x = 4, the previously attached
boundary layers are dispersed and the flow is to a larger extent mixed over the
entire cross section. It should be pointed out that the flow experiences a highly
unsteady behaviour, characteristic of separated flow in general and enhanced
by the asymmetry in the geometry in particular. Time history data shows that
the fast core of the flow oscillates in one direction (i.e. y) for some time and then
suddenly changes into another direction (i.e. z). More specific, the shedding
of a low-velocity structure was detected in the bottom of the diffuser around x
= 14 with a Strouhal number of St = fh/u, = 1/50, i.e. at a comparably low
frequency. The separated flow was found to be laminar most of the time, as
opposed to the highly fluctuating flow further away from the walls, which will
contribute to a highly intermittent flow in this region, both in time and space.
Finally, we also compare to the pressure data (Cherry et al. 2009) conducted
for ‘Diffuser 1’ along the flat wall of the diffuser opposite of the top expanding
wall by means of static pressure taps. The dimensionless pressure recovery
coefficient, C, = (p — pres)/pu? is plotted against the streamwise coordinate
xzh/L in figure 7, where p,.s is the reference pressure at « = 0.045, L = 15h
is the length of the diffuser, p is the fluid density and wu; is the bulk velocity
at the inlet of the diffuser. A constant of —0.02 is added to the experimental
C)p in order to facilitate the comparison. The agreement is excellent, including
the rapid rise, the gradual reduction in the pressure gradient and the linear
part after x = 0.7. This result gives important information about the quality
of the computed pressure field, which plays an important role in the Reynolds
stress budgets. The effective pressure rise over the diffuser computed as AC),
= Cp(zh/L = 1.48) — Cp(xh/L = 0.045) is AC5"™= 0.569 for the simulation
and ACP™ = 0.587 for the experiment.

4. Conclusions

Diffuser flows are numerically hard to treat in general, not only due to their sen-
sitivity to discretization errors, but also as a consequence of the slow, separated
flow the need for long (and expensive) time integration to obtain converged
turbulent statistics. Nevertheless, their importance in technical applications
cannot be underestimated. Three-dimensional diffusers, in particular, are even
more challenging due to the lack of statistically homogeneous directions, and
hence the possibility to average over these. In this paper, we study one of the
diffuser geometries (‘Diffuser 1’) experimentally investigated by Cherry et al.
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0 0.5 L 15
FIGURE 7. Pressure recovery coefficient relative to the pres-
sure on the bottom wall of the diffuser inlet, where L = 15h

denotes the length of the diffuser. nek5000, e experi-
ment by Cherry et al. (2009).

(2008). In the present set-up, special care was taken to make the present com-
putation free from artificial inflow condition through an unsteady trip forcing
and a long development section. Taking the above difficulties into account
and adding the general resolution requirements of a flow at Re = 10 000, the
mean flow results presented here show very good agreement with experimental
studies. The complex flow and the realistic Reynolds number proves that nu-
merical simulations might qualify as a cheaper alternative to experiments. A
slight discrepancy in the separated region was found, supported by findings of
Schneider et al. (2009) and a physical explanation involving the secondary flow
was given. As the quality of the data is now assessed, the complex flow physics
in the three-dimensional separation will be further investigated. In addition,
as turbulence modelling in separated flows continues to be an active area of
research, this data will be available as a valuable reference database, where the
Reynolds stress budgets might be of particular interest.
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(ANL) on the IBM BG/P (ANL) and by SNIC (Swedish National Infrastruc-
ture for Computing) with a generous grant by the Knut and Alice Wallenberg
(KAW) Foundation at the Centre for Parallel Computers (PDC) at the Royal
Institute of Technology (KTH). The third author was supported by the US
Department of Energy under contract DE-AC02-06CH11357.
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Dominant frequencies and coherent structures are investigated in a turbulent,
three-dimensional and separated diffuser flow at Re = 10 000 (based on bulk ve-
locity and inflow-duct height), where mean flow characteristics were first stud-
ied experimentally by Cherry et al. (2008) and later numerically by Ohlsson
et al. (2010)*. Coherent structures are educed by proper orthogonal decompo-
sition (POD) of the flow, which together with time probes located in the flow
domain are used to extract frequency information. The present study shows
that the flow contains multiple phenomena, well separated in frequency space.
Dominant large-scale frequencies in a narrow band St = fh/u, € [0.0092,0.014]
(where h is the inflow-duct height and wy, is the bulk velocity), yielding time
periods T* = Ty /h € [70,110] are deduced from the time signal probes in the
upper separated part of the diffuser. The associated structures identified by
the POD, are large streaks arising from a sinusoidal oscillating motion in the
diffuser. Their individual contribution to the total kinetic energy, dominated
by the mean flow, is however small. The reason for the oscillating movement
in this low frequency range is concluded to be the confinement of the flow in
this particular geometric set-up in combination with the high Reynolds number
and the large separated zone on the top diffuser wall. Based on this analysis,
it is shown that the bulk of the streamwise root mean square (r.m.s) arise
due to large-scale motion, which in turn can explain the appearance of two
or more peaks in the streamwise r.m.s. The weak secondary flow present in
the inflow duct is shown to survive into the diffuser, where it experiences an
imbalance with respect to the upper expanding corners, thereby giving rise to
the asymmetry of the mean separated region in the diffuser.

1. Introduction

The topic of three-dimensional separation is difficult to attack, and despite its
importance in technical applications, relatively few studies have so far been
conducted. Rather than predicting three-dimensional separation, some inves-
tigations focus merely on interpreting the nature of it from an already given

1Due to a name change, ‘J. Ohlsson’ and ‘J. Malm’ refer to the same person.
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flow field, further discussed in the review by Délery (2001). Other authors
have tried to predict the separation by means of turbulence closure models,
among them the periodic hill configuration investigated by Wang et al. (2004).
These authors concluded that even though using an anisotropy-resolving clo-
sure on the simplest possible case involving separation in three dimensions,
the model misses important mechanisms responsible for e.g. multiple-vortex
structures in the wake. Even though engineering flows are practically always
fully three-dimensional, most common turbulence closures fail in predicting
three-dimensional separation correctly. In order to accelerate the development
of such models, the physical mechanisms involved in this type of separation
need to be well understood. A first step in this direction was taken by Cherry
et al. (2008), who experimentally investigated the turbulent flow in a three-
dimensional diffuser. Their idea was to create a truly three-dimensional flow
case with well-defined boundary conditions in order to simplify the set-up for
numerical simulations. The case has turned out to be an important test case for
RANS models, hybrid RANS-LES as well as, to some extent, validation of SGS
models (Jakirlié et al. 2010b). More specifically, Jakirlié¢ et al. (2010a) showed
promising results employing a hybrid RANS/LES scheme, whereas Schneider
et al. (2009) obtained very good results using LES. The major improvement of
the results using an eddy-resolving technique compared to steady RANS proves
the difficulties involved in modelling such a complex, but yet realistic, flow.

Although being a valuable reference for some of the mean flow quantities,
the experimental compilation by Cherry et al. (2008) gives little insight into the
presumably complex flow dynamics present in the diffuser, as time-resolved in-
formation is lacking. In an attempt to enhance the understanding of this flow, a
first direct numerical simulation (DNS) was performed by Ohlsson et al. (2010).
The good agreement between the experimental data and the numerical simu-
lation was established, thereby founding the validity of the numerical model
as a whole. As a next step, the rich data base — including not only turbu-
lence statistics but also temporal information — can now be accessed with high
fidelity. In order to obtain converged statistics, long time integration was re-
quired. This is not only due to the lack of statistically homogeneous directions
and the possibility to average over these, but also the long periods associated
with the unsteadiness of the flow. A re-examination of the data showed that
this unsteadiness contains regularities: quasi-periodic and coherent motions,
which motivated a further analysis.

One question of particular interest in flow analysis is whether there are
periodic or quasi-periodic motions with specific frequencies present in the flow.
Practical reasons in engineering applications may be that these motions lead to
unwanted vibrations, fatigue and possibly premature breakage. If heat transfer
is an issue, oscillations in the flow may lead to an uneven heat distribution with
decreased heat transfer as an effect. Separated flows, both laminar and turbu-
lent, are characterised by large velocity fluctuations and chaotic and irregular
unsteadiness. However, flows in which the separation is induced by an abrupt
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change in the geometry (i.e. geometry-induced separation) often show the ten-
dency of quasi-periodic motion. A well-studied example of this kind is the
turbulent flow over a backward-facing step, where dominant frequencies have
been reported in numerous studies. For instance, in a DNS, Le et al. (1997)
reported a periodic behaviour of the free shear layer with Strouhal number of
St = fh/Uy = 0.06, Uy being the free-stream velocity and h the step height. A
low frequency ‘flapping’ motion was also observed by Eaton & Johnston (1980)
in an experimental set-up of the backward-facing step. In a large-eddy simu-
lation (LES), Friedrich & Arnal (1990) noticed an oscillation of the free shear
layer, which in turn caused the location of the reattachment point to oscil-
late back and forth. Low-frequency periodic shedding have also been observed
in other configurations involving geometry-induced separation. Kiya & Sasaki
(1985) found periodic large-scale unsteadiness with some particular frequencies
in the turbulent separation bubble formed at the leading edge of a blunt flat
plate with right-angled corners.

Considering the experimental and numerical work performed on pressure-
induced separated flows, where the separation is induced not by the geometry
but rather by the action of the adverse pressure gradient, no such dominant
frequencies are to our knowledge reported in the literature. Often the contrary
is observed: the point of separation and reattachment varies in time and space
with no particular periodicity. Accordingly, in the DNS of a pressure-induced
separated turbulent boundary layer, Na & Moin (1998) noted that the shed-
ding of large structures in the separated region is not a periodic process, but
that there exists a characteristic Strouhal number St = f§* /Uy of the most
energetic structures which ranges between 0.0025 and 0.01, with ¢* being the
displacement thickness of the incoming flow and Uy is the free-stream veloc-
ity. Similar conclusions have been deduced in turbulent diffuser flows with
smooth rounded corners at the diffuser throat, thus belonging to the same
class of pressure-induced separated flows. This was reported to be the case
in the LES of the asymmetric diffuser with 10° opening angle by Kaltenbach
et al. (1999), with a two-dimensional geometry. They found that the separation
in the rear part of the expansion is a low-frequency unsteady process involv-
ing large scales of motion, but that the unsteadiness is broadband and cannot
be characterised through a single frequency. Similar findings are reported by
Herbst et al. (2007), who for a similar Reynolds number decreased the opening
angle to 8.5°. However, the incoming channel flow was observed to penetrate
in a ‘jet-like’ manner into the expanding diffuser section in this reference. Like-
wise, in the experimental set-up of the latter case, Térnblom et al. (2009) did
see a ‘jet-like’ high-velocity region emanating from the inlet channel, but no
temporal information on the properties of this jet in particular, or the separa-
tion bubble in general were provided, since no dominant frequencies could be
detected (Johansson, private communication).

From the above discussion it appears that pressure-induced separated flows
contain to a lesser degree quasi-periodic motions. However, up until now we
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have considered flows without any type of confinement in the spanwise direc-
tion. If some sort of additional confinement is added to the flow, e.g. solid
walls in the spanwise direction, the dynamics will inevitably change. This has
previously been shown by several authors including Lawson & Davidson (2001);
Maurel et al. (1996); Villermaux & Hopfinger (1994), here briefly summarised.
Lawson & Davidson (2001) investigated the oscillatory behaviour of a confined
jet in a rectangular cavity and reported that low Strouhal number oscillatory
jets (St < 1, where St is based on the nozzle diameter) may occur when
the confinement is such that the jet is bounded by one or two recirculation
zones, created due to the close presence of the walls. These zones can under
certain circumstances create a feedback mechanism which couples back to the
jet nozzle, thereby resulting in self-sustained oscillations. They note that, by
removing the recirculation zones, the feedback loop is broken and the regular
jet oscillation will not occur. On the contrary, oscillations with St ~ 1, relate
to the inherent instability of the jet shear layer and can thus be present also
without the confinement. They found the low frequency oscillation of the jet
to be independent of Re, and that the relevant parameter was the width-to-
length ratio of the cavity. A reduction of this ratio would lead to an increase in
St until the width coincided with the nozzle diameter and the jet would cease
to oscillate. However, a too large increase of this ratio would not allow the
recirculation zones to form and thus no oscillations of the jet were observed.
The implication is that there exist a peak of the amplitude of the oscillation
for some width-to-length ratio, e.g. a given shape of the confinement. Lawson
& Davidson (2001) found that this ratio corresponded to the same ratio giving
the highest crossflow disturbance velocities at the nozzle of the jet, caused by
the recirculation. The fact that the width of the cavity is one of the most
important parameters governing the presence of self-sustained oscillations was
earlier confirmed by Maurel et al. (1996), who also argued that the nozzle width
imposes the selected wavelengths within the values allowed by the boundary
conditions imposed by the length of the domain. Another study on confined
jets in a rectangular cavity at different Re by Villermaux & Hopfinger (1994),
resulted in similar conclusions. In particular, they concluded that a free jet does
not display low-frequency oscillations and that these oscillations are due to the
confinement. They further state that the role of the confinement is to estab-
lish recirculation zones adjacent to the jet, which then convect high-amplitude
perturbations upstream. These perturbations will interact with the shear in-
stability of the jet after a certain time lag, given by the upstream convection
velocity in the recirculation zone. They report that, for sufficiently high Re,
the mean reattachment length and likewise St becomes independent of Re, and
is found to be St ~ 0.01 (based on the nozzle diameter). For asymmetric con-
figurations, it was found that the largest confinement dimension will dominate
the flow.

The present flow case is both relevant and realistic from an engineering
point of view, since it combines many complex phenomena, which are not even
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FiGUurE 1. Computational grid of one of the diffuser geome-
tries (‘diffuser 1’) in Cherry et al. (2008) showing the develop-
ment region, diffuser expansion, converging section and outlet.

on their own fully understood but nevertheless exclusively present in most engi-
neering flows: turbulent separation and three-dimensionality of the mean flow
in conjunction with confinement. The aim of this paper is to provide an im-
proved physical understanding of this flow by describing the observed dynamics,
which up until now has not been described in detail. An extensive investigation
of the oscillatory behaviour is made. The search for dominant frequencies is
undertaken both by performing spectral analysis on a set of time signal probes
and by proper orthogonal decomposition (POD) of the flow. The latter is also
used to identify coherent structures associated with the dominant frequencies.
The significance of the large-scale structures on the mean fluctuations of the
flow is demonstrated by constructing a low-dimensional model of the flow based
on the first few energetic POD modes. In Ohlsson et al. (2010), a slight dis-
crepancy was found between the present DNS data and the experimental data
of Cherry et al. (2008) regarding a pronounced vortex (referred to as ‘bump’)
in the mean separated region. This finding gave a first indication that the rea-
sons for and the characteristics of the separation might be more complex than
expected. Here, this finding is more rigorously confirmed.

The paper is organised as follows. Section 2 briefly discusses the numerical
method and the simulation set-up. In section 3.1 the evolution of the sec-
ondary flow in the diffuser together with instantaneous separations are anal-
ysed, whereas section 3.2 is devoted to the observed large-scale dynamics seen
in the present DNS, investigated by means of time signal probes. Section 4
addresses the decomposition of the flow into POD modes as well as the low-
dimensional reconstruction of the flow using only a few energetic modes. In
particular, aspects of the global r.m.s distribution are addressed via POD. Fi-
nally, in section 5 the main conclusions of the present study are given.
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2. Numerical method and simulation set-up

The three-dimensional, unsteady and incompressible Navier—Stokes equations
are solved using a Legendre polynomial based spectral-element method, imple-
mented in the code nek5000, developed and maintained by Fischer et al. (2008).
For a detailed description of the spatial discretization and time integration, the
reader is referred to Fischer (1997) and Tufo & Fischer (2001), whereas the
main steps are outlined in Ohlsson et al. (2010). The computational domain,
shown in figure 1, is set up in close agreement with the diffuser geometry em-
ployed in the experiment and consists of the inflow development duct with a
length of almost 63 duct heights, h, (starting at the non-dimensional coordinate
x = —62.9); the diffuser expansion located at x = 0; the straight section and
finally the converging section upstream of the outlet. In the following, we mean
by ‘diffuser’ the region between x = 0 and z = 15. The three-dimensionality
arises from the asymmetry in the geometrical configuration: Whereas two of
the walls are straight, the other two walls are deflected 11.3° in the y-direction
and 2.56° in the z-direction (compare with the Cartesian box in figure 1).
The corners resulting from the diffuser expansion are smoothly rounded with
a radius of 6.0 in accordance with the experimental set-up. The maximum
dimensions are L, = 105.4h, L, = [h, 4h], L, = [3.33h, 4h]. The fixed mass
flux in the simulation enables the Reynolds number based on bulk velocity
and inflow-duct height to be kept exactly at Re = 10 000, which matches the
value reported in the experiment by Cherry et al. (2008). The resolution of
approximately 220 million grid points is obtained by a total of 127 750 local
tensor product domains (elements) with a polynomial order of 11 respectively,
resulting in Az} -~ 11.6, Ay~ 13.2 and Az}, ~ 19.5 in the duct centre
and the first grid point off the wall being located at 2™ ~ 0.074 and y* ~ 0.37
respectively. This resolution was carefully verified in Ohlsson et al. (2010) to
yield accurate results compared to the experimental findings of Cherry et al.
(2008). In the inflow duct, laminar flow undergoes natural transition by the
use of an unsteady and random trip force with a prescribed length and time
scale, successfully employed e.g. in the boundary layer simulation by Schlatter
et al. (2009). First of all, this avoids the use of artificial turbulence where ad
hoc parameters specifying the synthetic turbulence have to be set at the inflow
plane and tuned in order to provide correct turbulent statistics further down-
stream. It also eliminates the spurious frequencies which have been observed
in pressure-induced separated flow in conjunction with inflow recycling meth-
ods, discussed by Herbst et al. (2007) for the asymmetric diffuser flow. These
are typically low frequencies correlated to the frequency whereby the inflow
planes are fed at the inlet, also pointed out by e.g. Spille-Kohoff & Kaltenbach
(2001) and Lygren & Andersson (1999) and may not be noticeable in flows with
favourable or zero pressure gradient. In flows subject to an adverse pressure
gradient exhibiting pressure-induced separation, however, a certain periodicity
of the inflow signal can potentially trigger unsteady behaviour of the detach-
ment point of a separation bubble, also observed by Adams (2000). In Ohlsson
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TABLE 1. Overview of the time range pertaining to the present simulation

Time range (tup/h) Purpose Discussion
0-202 start-up —

202-636 statistics Ohlsson et al. (2010)
384-842 time probe data current
448-840 snapshots current
636-840 additional statistics current

et al. (2010), it was demonstrated that the trip forcing mentioned above yields
a fully developed flow well before the diffuser opening. Secondly, incorporating
the laminar-turbulent transition in the same box further strengthens the simi-
larities between simulation and experiments, since the flow in the experimental
set-up indeed undergoes transition. Finally, a ‘sponge region’ is added at the
end of the contraction in order to smoothly damp out turbulent fluctuations,
thereby eliminating spurious pressure waves back into the domain. It is fol-
lowed by a homogeneous Neumann condition for the velocities at the outflow
boundary.

The simulation was performed on the Blue Gene/P at ALCF, Argonne
National Laboratory (32 768 cores and a total of ~ 10 million core hours), the
cluster ‘Ekman’ (2048 cores and a total of ~ 6.0 million core hours) and on the
Cray XE6 at PDC, Stockholm (32 768 cores and a total of ~ 0.33 million core
hours). Approximately thirteen flow-through times, tu,/L = 13, based on bulk
velocity, up, and diffuser length, L = 15h were spent on the start-up phase in
order to let the flow settle to an equilibrium state. Then, turbulent statistics
for the mean flow results in Ohlsson et al. (2010) were collected over approx-
imately tu,/L = 29 additional flow-through times. During part of this time
instantaneous snapshots were saved and time probe data was recorded. For the
present work, the simulation has been extended with additionally tu,/L ~ 13
flow-through times to ensure convergence of the mean flow results and capture
the relevant dynamics in the instantaneous flow. This additional averaging
time was observed to have a minute influence on the quantities already shown
in Ohlsson et al. (2010). An overview of the various parts of the simulation
is given in table 1. Already in Ohlsson et al. (2010), the flow was observed
to be challenging: The three-dimensional configuration in combination with
the large separated zones made the flow under investigation very instation-
ary, which together with the lack of spatial homogeneous directions called for
long time integration in order to obtain converged statistics and to collect all
possible time scales in the flow.
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FIGURE 2. (a) Isosurface of (nearly) zero mean streamwise
velocity (U/u, = 107°). The dashed black line indicates zero
streamwise shear stress, VU - €x|wan = 0. () Isosurfaces (red)
of the streamwise velocity fluctuation level wp,s/up = 0.155,
with crossflow planes (z = —5,0,2,5,8,12,15.5, 20, 23) show-
Ing Upms/up with colours ranging from 0 (blue) to 0.25 (red).

3. Analysis of averaged and instantaneous flow features
3.1. Mean flow features

In order to give a comprehensive picture of the flow, three-dimensional visual-
isations of the time-averaged streamwise velocity component (u) = U and the
streamwise root mean square (r.m.s), Upms/Up, are shown in figure 2(a) and
(b), respectively. Here, (-) denotes an average over the (only) homogeneous
direction time. Two-dimensional visualisations (i.e. crossflow plots) were al-
ready given in Ohlsson et al. (2010), where the emphasis was on the mean flow
data and the comparison to the experiment by Cherry et al. (2008, 2009). An
isosurface of nearly zero streamwise velocity (U/u, = 107°) is shown in order
to demonstrate the extent of the separated flow while excluding the no-slip
boundaries. The dashed black line drawn at the wall indicates zero streamwise
shear stress, i.e. VU - €g|wan = 0, which here, as well as in Cherry et al. (2008),
defines the extent of the separation bubble. We can note that the mean sep-
arated region is large: it covers approximately half the streamwise length, the
entire spanwise length (in z) and the upper quarter of the diffuser. In addition,
it continues well into the straight section. As a consequence, the dynamics of
the flow is expected to be largely affected by the separation, with shear lay-
ers interacting with the incoming turbulence, thereby causing a complex flow
with a high degree of unsteadiness. Further, we can observe that shortly after
entering the diffuser, the flow separates in the upper right corner due to the
asymmetric geometrical configuration, as was also observed in Ohlsson et al.
(2010) and in agreement with the findings of Cherry et al. (2008). As we pro-
ceed downstream, the separated zone can be seen to broaden and move more
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towards the top expanding wall, which has the largest opening angle. Simul-
taneously, the flow separates to the left around x = 6, and this is where the
so-called ‘bump’ initially appears, first discussed in Ohlsson et al. (2010). The
name originated from the particular shape of the zero streamwise velocity con-
tour in a crossflow plane. In three dimensions, this structure (i.e. the ‘bump’)
takes the form of a long and relatively deep ‘valley’, visible to the left in figure
2(a). Together with the separated region to the right, this results in two valleys
on either side of a ‘ridge’, a feature which is most prominent between x = 8
and z = 12, but is nevertheless dominating the shape of the separation bubble
for the rest of its streamwise extent. The shape of the zero velocity surface,
including the just mentioned feature, and the dashed line are in good agree-
ment with LES of the same flow by Schneider et al. (2009), where a similar
three-dimensional visualisation is given. The major difference is that therein
the first sign of separation appears on the top expanding wall just after the
diffuser opening, across the entire spanwise extent of the diffuser and localised
to approximately 2h in the streamwise direction. However, this finding is sup-
ported neither by our DNS nor the experimental data set, but, as we shall
see later in this section, instantaneous backflow is present in this region. As
also evident from the streamwise fluctuations in figure 2(b), the flow changes
drastically from an attached turbulent flow in the duct where the bulk of the
fluctuations are present close to the wall, to the separated flow in the diffuser
where the highest fluctuations are found around the centre of the domain. As
noted in Ohlsson et al. (2010) and Cherry et al. (2008), when the flow has
entered the diffuser, the peak ;s is found in the shear layer bounding the
separated zone in the upper right corner. This is also where the highest overall
fluctuations occur in the flow. For the particular isosurface visualised in figure
2(b), there is a 'double peak’ appearing around = = 8. For lower levels of .,
this double peak emerges further downstream. The reasons for this behaviour
has up until now not been addressed in any study of this flow. Here, however,
this peculiar phenomenon will be further investigated and we will see that it is
connected to the large-scale motions found in the diffuser.

The present flow case consists of turbulent flow in a rectangular duct which
eventually separates in the diffuser. Hence, secondary flow of the second kind
is present due to crossflow gradients in the Reynolds stresses (see e.g. Piquet
1999). An indication that this flow has an effect on the separation behaviour is
given by the several RANS predictions documented in Jakirlié et al. (20100).
There, it was observed that most eddy-viscosity models, which assume isotropic
conditions and hence no secondary flow in the duct, would fail to predict the
separation correctly. On the other hand, Reynolds-stress models which were
able to compute the secondary flow in the duct, were in general much closer
in getting a correct separation behaviour. The finding of the ‘bump’ discussed
earlier initiated a further study on the reasons for this particular phenomenon.
It was conjectured that, although very weak in magnitude, the corner vor-
tices induced by the secondary flow in the inflow duct persist into the diffuser
(Ohlsson et al. 2010). There, they give rise to a dominant low-speed streak,
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due to a similar mechanism as the so-called ‘lift-up effect’ in transitional shear
flows (Landahl 1980), which in turn has a large influence on the separation
behaviour. To further confirm these conjectures, we track here the secondary
flow from the inflow duct into the diffuser by means of streamwise vorticity
computed from the mean flow field, i.e. (w,) = 9(v)/0z — d(w)/dy. Due to
slow variation of mean quantities in the streamwise direction, the vorticity (and
all other quantities, to be consistent) are averaged over a distance h in x. More-
over, a smoothing in the yz-plane is performed by applying a mean filter over
a rectangle of size 2-by-2 points, which basically replaces point ¢ by the mean
of the rectangle centred on i. A three-dimensional visualisation of the mean
streamwise vorticity is given in figure 3. Here, isosurfaces of positive vorticity
are shown to indicate the corner vortex to the upper left, whereas isosurfaces
of negative vorticity (of the same magnitude) show the evolution of the right
vortex. Crossflow planes with mean streamwise velocity are included with thin
black lines indicating the zero velocity contour. First of all, it is evident that
the mean secondary flow continues from the duct into the diffuser. Secondly,
one can observe that the right vortex is diffused rather quickly and is there-
fore less coherent than its left counterpart. (The definition of left and right
according to figure 3.) As discussed above, when entering the diffuser, the flow
separates first in the upper right corner. As an effect of the separated flow, the
turbulence intensity increases (values of s /up reaching 25 % were observed
by Cherry et al. (2008) in the shear layer bounding the separation bubble). The
increased turbulent activity enhances the turbulent diffusion in this region and,
accordingly, the secondary flow is weakened — in particular the negative vor-
ticity. This is further quantified in figure 4, where a crossflow plane at © = 12
is selected. The appearance of the ‘bump’ can now be clarified by noting the
imbalance between the positive vorticity to the left and the negative vorticity
to the right in figure 4(a). Thus, the magnitude of the vorticity to the left is
greater than the magnitude of the vorticity to the right, quantified in figure
4(b), where the vorticity along y in the crossflow plane at x = 12 is shown.
Here, z = 0.368 and z = 3.73 denote the spanwise coordinates where the maxi-
mum magnitudes of positive vorticity in the upper left and negative vorticity in
the upper right corners are found, respectively. The primary vortices respon-
sible for the crossflow in the vicinity of the zero streamwise velocity contour
are of main focus, and hence the boundaries, where the vorticity locally can be
very high, are excluded. From figure 4(b), it is evident that the left vortex is
stronger (almost by a factor two) than the one to the right. This is thought to
be the basic mechanism to create and maintain the observed asymmetry in the
zero streamwise velocity contour.

To conclude these considerations, due to the choice of delivering the inflow
through a duct, there is a secondary flow inherent to the mean flow. This flow
has been observed to persist into the diffuser. Evaluation of the magnitude
of the local vorticity shows that the left vortex is twice as strong as its right
counterpart, which creates an asymmetry in the zero velocity contour. Here it
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FIGURE 3. Isosurfaces of mean streamwise vorticity (wy) =
0.15 (red) and (w,) = —0.15 (dark gray) showing the evolu-
tion of the upper left and right corner vortices, respectively.
Crossflow planes of mean streamwise velocity are shown at
x = —7,-2,2,8 12,20 ranging from —0.1 (blue) to 1.2 (red).
Thin black lines indicate zero streamwise velocity contour.

can be in place to point out that due to the asymmetry of the geometrical set-
up, there is no reason to expect that the separated zone on the top expanding
wall should be symmetric with respect to the z-axis. Finally, it should be noted
that this weak secondary flow (a few percent of the bulk flow) which originates
from the inflow duct appears in the mean. Superimposed on this flow there
is momentary a stronger crossflow? caused by the large-scale oscillation in the
diffuser, to be discussed in the next section.

The mean flow shown in figure 2 does only provide information about
the mean separation. Sometimes, however, it can be useful to know to what
extent instantaneous separation occurs in the flow. Aiming at providing a
fuller picture of this flow, we end this section by investigating the fraction of
time that the flow moves in positive streamwise direction. Traditionally, this
fraction is denoted by « (after Simpson 1981), and amounts to the following
special cases; 7 = 1: never backflow and v = 0: always backflow. In the
classical review on separated flows by Simpson (1989), a few intermediate cases
are discussed in order to broaden the view on turbulent separated flows. More
specific, v = 0.99 is the so-called incipient detachment (ID) where backflow
occurs 1 % of the time; v = 0.80 is the intermittent transitory detachment
(ITD) and v = 0.50 is the transitory detachment (TD). In the present case,

2There is also an in-plane flow caused by the expansion, but it does however not contain
vortices.
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FIGURE 4. (a) Crossflow plane of mean streamwise vorticity,
(wz), 12 h downstream of the diffuser throat, ranging from
—0.5 (blue) to 0.5 (red). Contour lines of mean streamwise
velocity, spaced 0.05 u; apart, as well as velocity vectors of
mean crossflow velocities are superimposed. Thick black lines
correspond to the zero mean streamwise velocity contour. (b)
(wz) at 21 = 0.368 ( ) and —(w,) at zo = 3.73 (----)
along y in the crossflow plane in (a) across the two primary
vortex centres responsible for the maximum magnitude in the
upper left and right corners, respectively. Black arrows in (a)
indicate z; and zs.

a number of snapshots spanning a total time of Atu,/h = 392 were used. In
figure 5(a) v is computed at all z-locations between © = —5.15 and x = 35.6.
The y and z-positions for the thick black line corresponds to the upper history
points in figure 8 (i.e. at the same grid point from the wall and at a spanwise
midposition). We observe that backflow is never present (y = 1) until = ~ 4.
Then, there is a rapid increase of backflow until z ~ 15 when the flow is in the
positive z-direction only 10 % of the time, i.e. directed backwards 90 % of the
time. After this point, there is an almost symmetric recovery until x ~ 28, after
which the flow is seen to be attached again. The thin black line is computed
in a spanwise midposition and in the first y-point off the top expanding wall.
This is equivalent to the linear extrapolation of the corresponding fraction of
positive and negative streamwise shear stress at the wall. Incipient detachment
occurs already at a few places € [—5,0] in the turbulent duct. Then, at
the location of the diffuser opening (x = 0), v rapidly drops down to 0.8
(x = 0.4) and then increases to 0.5 (z = 0.58), after which it quickly recovers to
0.9. This behaviour approximately follows the development of the skin friction
coefficient in pressure-induced separated flows, discussed by e.g. Kaltenbach
et al. (1999); Herbst et al. (2007). Since three-dimensional velocity fields were
used to compute y(z), we are by no means restricted to the particular subset
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FIGURE 5. (a) Backflow ratio y(x) in y-coordinates corre-
sponding to the upper history points in figure 8 ( ) and in
the first y-point off the top expanding wall (——— ), both being
taken in a spanwise midplane. (b) Fraction of cross-sectional
area separated, G4(z): experimental data by Cherry et al.
(2008) (——), the present DNS data (----) together with
the ‘temporal backflow ratio’, Gr(z) ( ).

shown in figure 5(a). Thus, instead of choosing one specific trajectory through
the data set, we could at each streamwise location integrate v over a crossflow
plane, in order to get a more robust measure of the development of the backflow
through the diffuser. More specifically, we compute the following integral in

each plane,
1
G(x :—// Y(zx,y, z) dedy. 1
@ = 507 ], (1)

The function G(x) has a shape similar to v(x) (thick black) shown in figure
5(a). To be able to compare this measure to the fraction of cross-sectional area
separated, provided in Cherry et al. (2008), here called G 4(z), we will define a
new quantity based on G(z) called ‘temporal backflow ratio”: Gr(z) = 1-G(x).
In figure 5(b) these two integral quantities are compared, with G 4(x) based
on the experimental data included as a reference. First of all, the comparison
between G 4(x) in the DNS and the experiment agree reasonably well, especially
in most of the diffuser region (z = 0—10). Note also that the point of separation
is identical. At the end of the diffuser and in the following straight section, the
experiment show somewhat less separated flow compared to the DNS with the
peak separated flow (z = 15) being ~ 10 % less in the experiments. However, at
the very end (z = 20) the reattachment points coincide. Now, comparing G (z)
and G 4(x) based on the DNS, we notice that the correspondence is close early
on in the diffuser. Both peaks occur at the same streamwise location (z = 15),
but with G being approximately 10 % larger. In the straight section G
generally attains higher values. In particular, when G 4 is zero (x = 20), Gr is
nonzero for approximately 10h more. While this is not surprising, since indeed
the contribution to the former quantity is present even for small backflow ratios,
it gives important information about the dynamics. Thus, we can conclude
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that, in particular in the straight section, instantaneous backflow is to a large
extent present, while the mean flow is attached.

In figure 6 we show three-dimensional views of y(x), where = (z,v, 2).
Here, red means v = 1, yellowis v = 0.75, greenis v = 0.5 and blue denotes v =
0. In figure 6(a), v(x) is shown in the first point off the two expanding walls,
which again qualitatively behaves as the shear stress at the wall. The arrows
indicate where ID, ITD and TD occur for the first time in a spanwise midplane,
i.e. following the thin black line in figure 5(b). As pointed out in Simpson
(1989), v = 0.5 approximately correspond to the time-averaged streamwise skin
friction being zero (given that the streamwise velocity probability distribution
is symmetric about zero velocity), i.e. (Tyw - €z) = 0. Here, we can confirm
this finding by observing a quantitatively similar shape in the green contour in
figure 6(a) as in the dashed black line in figure 2(a). It is interesting to note
that on the upper wall the flow is attached at all times all the way to the diffuser
opening (red). Then, there is a short distance where instantaneous backflow
occurs (green), noted by Schneider et al. (2009) as a region with U/up = 0.
Such a region was not observed in our mean flow data. Shortly thereafter, the
flow is in a triangular region 75 — 90 % of the time (yellow-light red) aligned
with the forward direction. To the right of this region, we see an intensively
blue area filling the entire upper right edge. Thus, the flow is always oriented
in the negative streamwise direction along this edge. Series of instantaneous
visualisations of the flow confirm that separated flow further downstream tend
to end up in this edge of the diffuser. The triangular region on the upper
wall is around z = 7 approaching transitory detachment, where v = 0.5. This
value of v = 0.5 is kept in the middle of the upper wall, accompanied by
v =~ 0 on both sides, until around x = 15 where most of the top wall is
covered with backflow. This particular behaviour is due to the presence of the
‘bump’ underneath, clearly visible in figure 6(b) (the fifth plane shown), where
the same crossflow planes as in figure 2(b) are shown, with the colour scheme
being the same as in figure 6(a). Here, we also observe the small separated
‘triangle’ in the upper right corner early in the diffuser (the third plane shown),
previously seen in the streamwise mean flow. From both figure 6(a) and (b) we
can confirm that most backflow occurs around = = 15, as already concluded
from figure 5(a) and (b). Further downstream, the flow once again approaches
the transitory detachment, i.e. the end of the mean separated region. As soon
as the converging section starts, the flow can be seen to be attached 100 %
of the time. From an engineering point of view, this shows the efficiency of
such a region to counteract separation. Secondly, it points out the importance
to include this section for the simulation to mimic the experiment as close as
possible. Without this region, the flow would probably have required a much
longer development section in order to become fully attached duct flow again.
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FIGURE 6. (a) Pseudocolours of v(x) ranging from blue: v =0
to red: v = 1 shown in the first point off the two expanding
walls and (b) in the same crossflow planes as in figure 2(b).
Arrows indicate where ID, ITD and TD occur for the first
time in a spanwise midplane.

3.2. Observed large-scale oscillations

As the turbulent flow enters the diffuser, it will rapidly undergo pressure-
induced separation. Instantaneous snapshots, as the ones depicted in figure
7, indicate that the flow is subjected to a motion that resembles the ‘flapping’
or meandering of a jet. This feature is strong and has been observed at all
times during the simulation. A more quantitative analysis of this phenomenon
is made from a set of time signal probes placed in the flow domain. We have
chosen to study the time signal by placing one probe in the upper part and one
in the lower part of the diffuser at x = 5,8,12,15, where the latter three are
indicated in figure 8. These four placings correspond to locations studied for
the mean quantities in Cherry et al. (2008).

The recording of the time signal started well after the flow had reached
an equilibrium state and spans a total time of tu,/h = 458, which is enough
to capture a few periods of the large-scale oscillations observed in the flow.
The time signals are shown in figures 9 and 10, with their respective power
spectral density (PSD) shown in figure 11. Except for the close-up view in
figure 9(c¢), the interval on the ordinate is fixed to Au = 0.9uy in all figures
to facilitate comparisons. All spectra in the following were computed using
Welch’s method, where the signal is split into two overlapping segments, each
of which are windowed by a Hamming window, whose length is the same as
the segment. The spectral resolution in terms of non-dimensional frequency
St = fh/up is therefore St = 2/Ty; = 2/343.5 = 0.0058, where Ty, is
the length of the windowed signal. The PSD from each signal in figure 11
is normalised by the spectral peak in the time signal given by the upper probe
at z = 15.

In the symmetric duct (not shown), the flow is governed by rapid velocity
fluctuations and small-scale turbulence with a broad spectral content. As we
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F1GURE 7. Three snapshots in a zy-plane at z = 1.87 shown
at (a) t = to, (b) t =19+ 10h/ub, (C) t =19+ 20h/ub. Thin
contour lines of streamwise velocity are shown for u/u, = 0,0.2
and 0.3, whereas the thick contour line is shown for u/u;, = 0.4.
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FIGURE 8. Location of history points (red) and computational
grid at the streamwise positions (a) z = 8, (b) = 12 and (¢)
r = 15.

enter the diffuser, the flow quickly becomes different in the upper and the lower
parts, respectively. Whereas the flow in upper part rapidly looses its highest
frequencies, they continue to be present in the fully attached flow close to the
lower wall. This is exemplified in figure 9, where the streamwise velocity signal
at x = 8 in (a) can be seen to have less high spectral content than the signal in
(d), which is taken from x = 12, i.e. further downstream. At z =5 (only shown
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FIGURE 9. Time signals of streamwise velocity from probes
located at (a) x = 8 and (b) x = 12 in the upper part of the
diffuser. (¢) Close-up view of (b) showing the intermittent flow
in this region due to the presence of the separation. (d) Time
signal of streamwise velocity from a probe located at x = 12
in the lower part of the diffuser.

in terms of its spectrum in figure 11), a large-scale peak in the upper time signal
probe starts to emerge, and we note a peak at St = 0.044 besides the one at
St = 0.16. Still, the small-scale turbulence is significant, evident in figure 11(c¢),
where the PSD from the upper probes at © = 5 and = = 12 are compared in
a plot with frequencies and energies on a logarithmic scale. As we approach
the mean separated region (z = 8, figure 9a), the strength of the large-scale
peak has become significant. Here, the peak at St = 0.014 in figure 11(a) is
three times stronger than the peaks at x = 5. This trend continues further
downstream, and at = 12, where the time signal is shown in figure 9(b), the
same peak at St = 0.014 is 50 % stronger than it was at @ = 8. The location
of the upper probe at x = 12 coincides roughly with the edge of the mean
separation bubble as given in Cherry et al. (2008) and Ohlsson et al. (2010),
explaining why in figure 9(b) the fluctuations are evenly distributed around
zero. Note that the presence of the edge of the separated zone gives rise to a
highly intermittent flow, visible in the close-up view of figure 9(b) in figure 9(c).
At z = 15 the two walls are separated even further apart and the upper probe
is now located within the mean separated region. This manifests itself in long
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FIGURE 10. (a-b) Time signals of streamwise velocity from
probes located in the upper and lower regions of the diffuser
at x = 15, respectively.

periods with negative flow, but also relatively long periods of essentially zero
flow, as shown in figure 10(a). Still, the spectral peak in figure 11(a) is centred
around St =~ 0.01 (St = 0.0092), thus giving an estimate for the frequency of
the separated region. The time signal measured by the lower probe is similar
to the corresponding signal at x = 12, save that the magnitude of the mean
flow is slightly lower and the spectra in figure 11(b) contains somewhat fewer
high frequencies. The peak frequency is found at St =~ 0.1, i.e. a roughly ten
times higher frequency than the dominant frequency in the separated part of
the flow at this streamwise location, but only with approximately a fifth of its
magnitude.

To conclude, the analysis from the time probes shows that the flow in
the upper part of the diffuser contains large-scale dynamics with dominant
frequencies in a comparably narrow band St € [0.0092,0.014], yielding time
periods T* = 1/St € [70,110], where T* is a non-dimensional time. The fact
that there is a narrow band of dominant frequencies seen in the separated part
of the diffuser suggests that there may be self-sustained oscillations present,
since there is a possibility for disturbances to create a feedback mechanism via
the recirculated flow. This is supported by the findings of Lawson & Davidson
(2001) and Villermaux & Hopfinger (1994) who found self-sustained oscillations
to be present in confined jets in conjunction with adjacent separated zones. At
this point it is important to note that in studies of two-dimensional diffuser
geometries (Kaltenbach et al. 1999; Herbst et al. 2007) flat spectra without
any distinct peaks were observed.

4. Analysis of modal decomposition
4.1. Flow decomposition

The large-scale oscillations observed in the time probes indicate that there
might be large-scale energetic and coherent structures present in the flow. To
investigate this further, proper orthogonal decomposition (POD) is used to
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FIGURE 11. Power spectral density (PSD) of the time signals
at x =5 (——), x =8 ( ),z =12 (----) and = = 15
(-===-) for the (a) upper probe and (b) lower probe, normalised
with the maximum intensity of the upper probe at x = 15. (¢)
PSD computed from the upper time signal probe at z = 5
(black) and x = 12 (red).

decompose the flow in its most energetic three-dimensional parts (Lumley 1967;
Holmes et al. 1996). Considering the turbulent flow field u(x,t) with velocity
vector u = (u,v,w), defined in physical space = (z,y, z) and time ¢, a modal
decomposition of this kind attempts to split the space and time dependence,
and is thus of the form,

u(@,t) =) a;(t)y;(). (2)
j=0

Note that w(x,t) indeed is the full velocity field, i.e. the mean flow not being
subtracted. As we shall soon see, the implication for the POD is that the mean
flow will be part of the decomposition. Since our velocity fields are naturally
truncated by the numerical simulation, this sum can without loss of general-
ity be taken up to some m < oo. The POD procedure finds deterministic,
bi-orthogonal functions, t;(«), which maximise the energy in the field u. A
necessary condition for this to hold is that 4p;(x) is an eigenfunction of the
two-point spatial correlation tensor R(z, ') = + [, u(, t)u(z’,t) dt, where
T denotes the total time over which the flow is observed (rigorously shown in
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Holmes et al. 1996). Finding the eigenvalues, A;, and corresponding eigenfunc-
tions, %;, of R(x,x’) amounts to solving,

J[[ B ass @) aa’ = a0 3)

The m temporal coefficients at m discrete times in equation (2) can then in a
successive step be solved for by projecting the spatial modes onto the velocity

field,
= ///v u(z, )y, (x) de, (4)

where we have used the bi-orthogonality in space. Note that the discrete equiv-
alent of R will be a matrix of size n x n, where n = 3 X n, X ny X n, and n,,
ny, n, are the resolutions in the spatial directions, respectively. Therefore,
for high spatial resolutions, equation (3) is usually impossible to solve directly.
However, using the snapshot method (Sirovich 1987), equation (3) can be cir-
cumvented by solving an eigenvalue problem of the generally smaller temporal
two-point correlation tensor C(t,t') = 7 [[[,, u( x,t") dz, which is com-
puted using a sequence of ﬂow ﬁelds or snapshots saved at m discrete times
{u(t1),...,u(ty,)}. This yields a matrix of size n x m, which for numerical
simulations is typically smaller than n x n. We are now instead solving

/ C(t )y (t') dt = Mya; (t): (5)
T
Then, as a second step, the spatial eigenfunctions are constructed as
1
Y,(x) = T)\j/Taj(t)u(:c,t) dt. (6)

Here, the division by the respective eigenvalue ensures that the modes are
normalised to unit energy. Once this is done, the temporal coefficients can be
computed according to equation (4), and the ones obtained from equation (5)
are disregarded.

For the present POD analysis, a set of m = 196 snapshots spanning a time
of Atuy/h = 392 is used. The temporal resolution is set to Atup/h = 2. It has
been verified that the mean flow and the mean fluctuations of these snapshots
are in close agreement with the results in Ohlsson et al. (2010), and thus the
experimental data by Cherry et al. (2008). A discussion regarding convergence
of the POD modes is given at the end of the present section. To avoid equation
(5) to be prohibitively expensive to solve, the streamwise extent of the velocity
fields was reduced, such that only data between r = —0.15 and z = 23.85
was used for the POD analysis. After this operation, the resulting matrix
containing all snapshots has size n x m ~ 10, where n = 3 X n; X ny, X n, =
3 x 1152 x 120 x 420 ~ 1.74 - 10% and m = 196. Assuming each entry in the
matrix being of double precision accuracy, yields a matrix of size ~ 273 Gb.
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FIGURE 12. (a) The total kinetic energy E; = (A;/ lei% Ai) X
100 of the POD modes with j = 0,...,195. The mean flow
(j = 0) is indicated by the solid rectangle. (b) Cumulative
energy sum, s, = » -_qA;, for modes p = 0,1,...,195 in the
expansion.

The fraction of energy in the respective modes is given by F; =
(A;/ ZZ‘B Ai) x 100 with j = 0, ..., 195 and A; being the eigenvalues. The entire
energy spectrum is shown in figure 12(a). Since the mean was not subtracted
from the flow fields prior to the decomposition, the first mode in the expansion
containing most of the kinetic energy (indicated by the solid square), is the
mean flow, denoted by ‘mode 0’. The cumulative energy sum, s, = Zf:o A, 1S
shown in figure 12(b), from which we can conclude that the mean flow carries
the bulk, approximately 86 %, of the kinetic energy. This is close to what
was found for a POD of a fully inhomogeneous turbulent flow over a surface-
mounted obstacle by Manhart & Wengle (1993), who noted that 91.4 % of the
total kinetic energy was contained in the mean flow. In figure 12(b) we also
note that the last 90 % of the modes contribute as little as 10 % to the total
energy. Since the mean flow is not the main topic of the present section, the
discussion will from now on focus on the fluctuating modes. The fluctuating
energy, defined as Bt = (X;/ 37,77 \;) x 100 with j = 1, ...,195 is shown in
figure 13(a). The corresponding cumulative energy sum, sg““ = le Ai, is
shown in figure 13(b). From figure 13(a), we see that the first, second and third
mode contribute with 4.8 %, 3.1 % and 2.5 %, respectively, to the fluctuating
kinetic energy. Moreover, Efuct/plluct — 1.5 and Efluct/piluct — 1.2 which is
similar to Moin & Moser (1989) for their POD analysis of a turbulent chan-
nel flow. However, there, the first mode contained approximately 50 % of the
fluctuating energy. For the present case, the results are more in line with Man-
hart & Wengle (1993), where no dominant modes (in terms of energy) could be
found by the POD. Based on their typical frequencies and wavelengths (to be
discussed in a moment), the fluctuating modes are divided into three groups.
They are labelled A, B and C and listed in table 2. Further, they are indicated
in figure 13(a) by different symbols. We observe that this division roughly co-
incides with the change of slope of the spectrum, which happens approximately
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Ficure 13. (a) The fluctuating kinetic energy E]ﬂ“‘zt =
(/\j/zmi i) x 100 with j = 1, ...,195, where the groups A, B

=
and C in table 2 are indicated by (¢), (O) and (o), respectively.
(b) Cumulative energy sum of the fluctuating kinetic energy,
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TABLE 2. Characteristics of the various groups of POD modes.

Group Mode(s) E™ (%) St=fh/uy Ao Ay A

A 1-6 16.5 0.005-0.015  10h 4h 4h
B 7—16 11.7 0.01-0.04 2.5h 2h 2h
C 17 —195 TL.7 0.04-0.3 <25h <2h <2h

in the junction between group B and C. In group C, the energy distribution
is flatter and the modes are consequently less distinct and more related to
smaller-scale turbulence. Figure 13(b) suggests further that approximately 25
% (49 out of 195) of the fluctuating modes are needed to represent 50 % of
the fluctuating energy, which is typically observed to be the case for turbulent
flows (e.g. Manhart & Wengle 1993). From figure 13(a), it is evident that the
modes do not pairwise occupy exactly the same energy as would be the case
for a POD decomposition of a linear flow where pure travelling structures are
commonly present. As we shall see, however, this does not rule out the fact
that a travelling coherent structure exist in the present flow.
Three-dimensional visualisations of POD modes 1,2 and 3,8 are given in
figures 14 and 15, respectively. Modes 1,2,3 are representative for group A,
whereas mode 8 is characteristic for group B. In terms of energy, mode 1 and 8
are related as Efluct /pfluct — 3.3 A number of important observations can be
made: First of all, the structures corresponding to the first three fluctuating
modes are essentially two large streamwise streaks, with alternating positive
and negative streamwise fluctuation velocity. The magnitude of their stream-
wise velocity component is roughly 500 times the crossflow velocities. The
combined effect of these fluctuations is to bend the confined jet and create a
streamwise wave. The corresponding wavelength is estimated to be A\, ~ 10h.
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In the two cross-stream directions (y and z), the modes span the entire cross
section, such that A, = A, ~ 4h. These structures are thus the largest possible
for the given geometry, since L, = L. = 4h in the region where the modes
are active. This is in agreement with Villermaux & Hopfinger (1994) who con-
cluded that for confined flapping jets in asymmetric configurations, the largest
confinement dimension will dominate the flow. The streaks in figure 14 resem-
ble the POD modes originating from a jet with inherent low frequency flapping
(see Moreno et al. 2004), supporting the fact that there is indeed a sinusoidal
motion present in the diffuser. Note that the modes here are shown at one spe-
cific time and since each mode has a particular time dependence given by the
(approximately) sinusoidal variation (to be discussed shortly), the wave has at
some later time shifted its positive and negative side. Indeed, the streamwise
wavelength noted above is consistent with the meandering visible in the instan-
taneous snapshots in figure 7. One of the streaks pertaining to mode 1 (figure
14a) is filling the right lower corner @ (when facing in the positive a-direction).
The second streak in this mode is located above the first one and centred in the
domain with respect to z ®, implying a diagonal wave motion in this region.
Mode 2, on the other hand, appears to be located half a wavelength upstream
of mode 1. In particular, one of its streaks continues upstream of the recently
mentioned streak of mode 1 ®. Likewise, its second streak is somewhat up-
stream of the first described streak of mode 1 and situated very close to the
right wall in the diffuser @. Both modes extend into the mean separated region
(¢f. the mean flow in figure 2a), implying a coherent movement of the flow
inside and outside the mean separated region. Mode 3 (figure 15a) displays a
very clear wave, whose oscillation mainly goes along z, since negative ® and
positive ® fluctuations are located side by side in the z-direction.

Higher modes, e.g. mode 8 (see figure 15b) have wavelengths approximately
half that of the first four modes, both in terms of the streamwise and span-
wise (i.e. y and z) wavelengths, respectively. They are in general more spread
throughout the diffuser, but are mainly located upstream of the previous modes.
Correspondingly, mode 8 is observed to extend very little beyond x ~ 15 in fig-
ure 15(b). Due to the location of the positive @ and negative ® fluctuations, it
suggests a spanwise flapping mainly located within the diffuser region. In the
side-view in figure 15(b), we note that mode 8 does not extend into the mean
separated region as much as the previous modes, which indicates that the sep-
arated zone shares its dominant frequency rather with the largest structures in
the diffuser.

The time dependence of the POD modes is computed by Galerkin pro-
jection (equation 4) and shown in figure 16(a-c). Note that the time axes
have been redefined such that t'u;/h = 0 in these figures denote the actual
time tup/h = 448, when saving of instantaneous snapshots was initiated (see
table 1). At least for the largest structures (figure 16a-b), the behaviour is
nearly sinusoidal. We observe approximately four periods in 16(a), whose
length can be estimated by T' ~ 100h/u;p, giving a non-dimensional period
of T* = Tup/h ~ 100. The corresponding Strouhal number is therefore
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FIGURE 14. Isosurfaces (dark gray: 0.1, light gray: —0.1) of
streamwise velocity pertaining to POD mode 1 (a) and 2 (b),
shown at two different angles. The numbers indicate specific
structures of the respective modes; further described in the
text.

St = 1/T* ~ 0.01. This frequency compares well to the spectral peak of
the PSD in figure 11(a). Approximately the same period can be deduced from
the evolution pertaining to modes 3 and 4 in figure 16(d). Considerably more
revolutions (~ 12, i.e. 3 times more) are visible for modes 8 and 9 in figure
16(¢), which roughly corresponds to the spectral peaks with higher frequency
around St = 0.04 in figure 11(a).

A graphical representation of how the energy is distributed among the var-
ious fluctuating modes is given in figure 17. The colours show the logarithm of
the modal energy, with the maximum of the first fluctuating mode normalised
to unity. We see an accumulation of energy in the low frequency range, mainly
in a band around St = 0.01. Clearly, these first modes are lacking energy in
the high-frequency range. Higher modes, on the other hand, have little energy
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FIGURE 15. Isosurfaces (dark gray: 0.1, light gray: —0.1) of
streamwise velocity pertaining to POD mode 3 (a) and 8 (b),
shown at two different angles. The numbers indicate specific
structures of the respective modes; further described in the
text.

in the low-frequency range, which indicates that each of the different modes is
relatively localised in frequency space. This localisation typically benefits the
use of Koopman modes (see Rowley et al. 2009) for the flow analysis. This
approach enables one specific structure to be associated with one specific fre-
quency. However, we have chosen the more well-established POD route, since
it usually provide smoother structures in turbulent flows. Finally, as noted be-
fore, in conjunction with figure 13, we see that the energy in figure 17 is quite
well-distributed among the various scales, with roughly one order of magnitude
in energy from the largest to the smallest scales.

In order to reveal the existence of travelling waves in the diffuser we will
next project the flow onto the two-dimensional phase space spanned by the
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FIGURE 17. Energy distribution among the various fluctuat-
ing modes normalised by the peak value of the first fluctuating
mode. The colours show the logarithm of the power spectral
density of the respective modes.

fluctuating POD modes at hand, i.e. the time evolution of modes 7 and j (com-
puted by equation 4) are drawn simultaneously. A wave in its most simple form
may be completely characterised by two modes shifted 90 degrees in time. The
two-dimensional phase portraits would in this case correspond to a circle, i.e. a
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periodic orbit: 7(t) = a;(t)ys + a;(t); = Acos(t)es + Asin(t)e,, where A is
the amplitude of the mode and t is the time. If the time axis is included as a
third direction, the resulting parameterised curve would be a helix, mathemat-
ically described by r(t) = Acos(t)e, + Asin(t)e, +te,. On the other hand, no
particular coherence would correspond to a joint probability density function
(PDF) of two random variables, uniformly distributed between —A/2 to A/2.
If the time signal was not exactly periodic, i.e. quasi-periodic, the circle would
not be closed, but rather spiral either inwards or outwards. In figure 18, the
two-dimensional projection is shown for the fluctuating POD modes discussed
above. In particular, figures 18(a) and 18(b) show the trajectories in the sub-
spaces (1p1,2) and (s, Pg), respectively. Time is increasing counterclockwise
in all figures, starting at ¢y and ending at t.,q. In the right column the time
axis is included as a third direction. Considering the high turbulence levels of
the present flow (wms/up up to 25 %), these phase portraits show a remark-
able coherence. The trajectory in figure 18(a,left) completes slightly more than
three revolutions. The fact that the revolutions are not on top of each other
merely indicates that each oscillation is not exactly the same, but nevertheless
at least three cycles are present, more easily seen in figure 18(a,right). In fig-
ure 18(b,left), corresponding to modes 8 and 9, approximately 10 revolutions
are present, which are closely on top of each other. Including time as a third
direction in figure 18(b,right), we see that the motion approximately takes the
form of a helix, hence the revolutions are linear in ¢. The radius of the helix
can be seen to change somewhat, which is an effect of the modes not being
fully separated in frequency space and consequently containing some lower fre-
quencies. This finding gives a strong indication of the quasi-periodic motion
in the diffuser that gives rise to a travelling wave. Two typical frequencies of
approximately St = 0.01 and St = 0.04 have been shown to be active. The
convection velocities, v, of these waves can be computed approximately using
the wavelengths and frequencies given in table 1. Using the expression for phase
velocity we find v, = fA; ~ 0.01-10 ~ 0.04 - 2.5 ~ 0.1, which is of the same
order of magnitude as can be deduced from the snapshots in figure 7. Note
that the number of complete revolutions seen in figure 18(a) and the periods
derived from figure 16 are limited but nonetheless ensured to be correct, as the
same frequencies have been observed in the entire data set, including earlier
simulation times not shown here.

In summary, the POD analysis of the present data has not identified any
dominant structure, except for the mean flow, in terms of energy. In spite of
this, the first eigenfunctions are large structures with a high degree of spatial
coherence, which moreover display a quasi-periodic temporal behaviour. They
are consequently important in order to explain the dynamics in the diffuser.
Similar structures with similar time dependence were identified by Moreno et al.
(2004) in an experimental study of a turbulent jet. There, however, a larger
fraction of the total energy was contained in the first two modes.



208 J. Malm, P. Schlatter and D. S. Henningson

1 2 -1 -1 a,

FIGURE 18. Temporal orbits in the subspaces ()1, %2) (a) and
(s, 19) (b) showing the quasi-periodic motions of the largest
and second largest structures present in the diffuser, respec-
tively. Time is in the left column increasing counterclockwise.
In the right column, the motion is shown along the vertical
time axis.

A final remark on the convergence of the POD modes is in place. Ideally,
as more and more snapshots are included, the eigenvalues A; from problem
(5) and the eigenfunctions ;(x) from equation (6) should converge. For a
flat spectrum, as the one reported in figure 12, many thousands snapshots
are needed to converge the eigenvalues (see Manhart & Wengle 1993). The
first eigenfunctions of the POD, on the other hand, generally converge much
quicker. Since this study aims at quantifying the observed large-scale motion,
we limit ourselves to establishing convergence of the first few modes. This
can be undertaken by an orthogonality check between the modes. Since POD
modes are orthogonal to each other by construction, thus

/] [ (@) do =3, (7)

where ¢;; is the Kronecker delta, holds exactly. If we in equation (7) used
modes computed using 98 and 147 or 147 and 196 snapshots, we would get a
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FIGURE 19. Convergence of the POD modes. (a) The inner
product between the 30 first modes computed with 98 & 147

snapshots (----) and 147 & 196 snapshots ( ), respec-
tively. Only ¢ = j is shown, with 1 indicating parallel and 0
orthogonal vectors. (b) Time evolution of POD mode 1 com-
puted with 98 ( ), 147 (----) and 196 ( ) snapshots.

measure for the convergence, i.e.

///V 1/1;)8 snap5($)¢2_147 snapS(m) de = g};’ (8)
and

/] /V LT RS () 190 S () g — 62 (9)

respectively. Here, 5; denotes the approximate Kronecker delta. In figure

19(a), we compare 52»1j and 5%- for i = j. Clearly, 62 (no summation on repeated

1

indices) are closer to unity than 6}, indicating that the structures change less
by adding 49 more snapshots to 147 than to 98. Moreover, the inner product
between 1/1;47 S1APS and ijl- 96 snaps ohows a value of 0.7 for the first four modes,
suggesting that the modes do not change much, even if the data sets are spaced
49 snapshots apart, i.e. approximately one of the long periods discussed earlier.
A similar check is performed using the time series of mode 1, computed using
98, 147 and 196 snapshots, shown in figure 19(d). If the mode is unchanged,
then the time series is expected to be identical. We observe that the evolution
changes by employing 147 instead of 98 snapshots. However, the change is mi-
nor as 49 additional snapshots (i.e. a total of 196) are used. For inflow-outflow
problems, such as the present flow, the modes are not generally phase-shifted,
and consequently orthogonality in space is a valid measure of the convergence
of the structures. We therefore conclude that 196 snapshots are enough for the
proper orthogonal decomposition in order to get a correct representation of the
large-scale spatial structures.
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(0)

FIGURE 20. Superposition of POD modes 0-6 shown for one
period in figure 16(a) at times tu,/h = (a) 8 and (b) 54.
Gray isosurface show constant streamwise velocity, u/u, = 0.1.
Crossflow planes show streamwise velocity ranging from —0.1
(blue) to 0.5 (red).

4.2. Low-dimensional reconstruction

The scale separation provided by the POD suggests to study the large-scale
anisotropic dynamics without the influence of the small-scale turbulence in a
‘low-pass filtered” manner. Hence it facilitates the focus on the relevant dy-
namics and helps us in our physical understanding of the dominant dynamical
processes in the flow. To build the low-pass filtered (i.e. low-dimensional)
model, we follow the procedure previously employed in e.g. Cazemier et al.
(1998) and the references therein, by superimposing some of the first modes in
the expansion — here modes 0-6 — with their corresponding temporal weight
and studying the time evolution. Mode 0 is the mean flow, and contains most of
the energy in the diffuser, as discussed previously. Modes 1-6 belong to ‘group
A’ where the largest wavelengths and lowest frequencies are found. Therefore,
these modes are representative for the large-scale motion in the diffuser, and
thus the focus of the present study. Isosurfaces of constant streamwise velocity
are shown in figure 20 at two specific times (t'up/h = 8 and t'up/h = 54). The
travelling wave shown in the phase portraits is now clearly seen to propagate
through the domain. Starting from figure 20(a), the sinusoidal shape of the
high-speed core of the flow has one of its minima located at z ~ 20 @. As
a consequence of the confinement of the flow, high velocity fluid is pushed up
on the sides, close to the side walls. One half period later, in figure 20(b), the
minimum has propagated forward in the domain (not visible anymore), and is
now replaced by a maximum at x = 20 @. Again, the confinement forces the
flow in a crossflow plane downwards in the vicinity of the side walls. Another
half period later (not shown) the flow is back to its approximate original state.
To conclude, the low-dimensional model translates the quasi-periodic motion
exemplified in the phase portrait in figure 18(a) into flow variables, and the
travelling wave is clearly visible. An effect of this meandering is a strong sec-
ondary flow created in the crossflow directions. Thus, relating back to the mean
vorticity in figure 4, the unsteady jet motion will generate negative streamwise
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vorticity in the upper left corner during an up-sweep, and positive streamwise
vorticity during a corresponding down-sweep. In the mean, however, this vor-
ticity is averaged to zero and one is left with the mean streamwise vorticity
originating from the inflow duct.

Having access to the POD modes and thus knowledge about the most en-
ergetic and largest structures, the r.m.s originating from the low-dimensional
model of the flow can be computed. This allows us to investigate the origin
(e.g. the large or the small scales, respectively) of the contributions to the ob-
served, i.e. total, rm.s. The mean streamwise fluctuations ({tms/up} - 100)
given by the first six fluctuating modes are shown in figure 21 (middle row) and
compared to the fluctuations from the entire DNS flow field (upper row) and
the experimental results from Cherry et al. (2008) (lower row), at two different
downstream locations. It can be observed that the first six modes (i.e. struc-
tures spanning half the length and the entire width of the diffuser) contribute
almost entirely to the peaks of the total r.m.s. Elsewhere their fluctuations
are close to zero. More specifically, by comparing the respective peak values,
one can conclude that the r.m.s of these large-scale structures contribute with
60 — 80 % to the total r.m.s peaks. Their contribution increases towards the
rear of the diffuser due to their spatial distribution and will in the last part
of the straight section (not shown) constitute more than 90 % of the peaks
of the total r.m.s. This gives an indication that the bulk of the w,,,s in this
region originates from the large-scale oscillation present in the diffuser, rather
than fine-scale turbulence. Note that there is no contradiction herein regarding
their contribution to the total fluctuating energy, since we here only discuss
their local contribution in a crossflow plane.

In the DNS and the experimental u,,,s data in figure 21 one can see the
tendency of double peaks. Neither in Cherry et al. (2008) nor in Ohlsson
et al. (2010) a satisfactory explanation concerning this particular feature was
provided. However, by considering the fluctuations from the low-dimensional
reconstruction, the reason for this can be clarified. First, we note that the
Upms from the low-dimensional reconstructed model has even more pronounced
double peaks, suggesting that this feature most likely derives from the large-
scale motion. To get a better understanding of how this is connected to the
movement of the high-speed core of the flow, we will next turn to figure 22.
Here, a contour defining 95 % of the maximum streamwise velocity in the
low-dimensional reconstructed flow (modes 0-6) is shown (black) for the entire
evolution of the flow. Furthermore, the centre of gravity of the area enclosed by
the black contour is computed (white). Over the full snapshot time range this
gives rise to a trajectory solely based on the large-scale motion. Consequently,
the fluctuations of the peak velocity are greatly reduced as opposed to using
the original snapshots, which would be far too chaotic to draw any valuable
conclusions. The main directions, as given by this trajectory, are sketched by
the white arrows in figure 21 (middle row). By comparing figure 22 with figure
21 we note that the movement of the high-speed core of the flow is located
within the area where the minimum of the u,,,s is found. Around this area,
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F1GURE 21. Crossflow planes of streamwise velocity fluctua-
tions, Upms/up- 100, 12 b (left column) and 20 h (right column)
downstream of the diffuser throat. Upper row: Fluctuations
from entire flow field. Middle row: Fluctuations from low-
dimensional reconstruction employing the six first fluctuating
modes. Lower row: Experiment by Cherry et al. (2008). Con-
tour lines are spaced 2 -+ Upps/up - 100 apart. White arrows
indicate the large-scale movement.
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FIGURE 22. Crossflow planes, (a) 12 and (b) 20 h downstream
of the diffuser throat, coloured by streamwise mean velocity,
U/up. Thin black contours define 95 % of the max streamwise
velocity of the low-dimensional reconstruction using the six
first fluctuation modes. For each contour, its centre of gravity
is shown in white. Thick black line indicates zero velocity
contour.

the peaks of uy,s are found. At x = 12, we observe in figure 22(a) that the
core moves mainly along the z-direction, but with a slight angle to the y-axis,
in agreement with the r.m.s minima in figure 21 (left column). Further down-
stream at © = 20, in figure 22(b), the bulk of the motion goes along the same
diagonal as in figure 22(a), but with a significant number of excursions in the
y-direction. The corresponding minimum in the total r.m.s is as an effect not as
distinct as compared to the one at x = 12, but is clearly observed in the r.m.s
pertaining to the low-dimensional model. A plausible explanation for the phe-
nomenon that gives rise to the minimum in the u,,,s and the resulting peaks
(two or more) around this minimum is given in figure 23. If we assume the
flapping being entirely in z, a simple model for the flapping jet can be written
as

u(z,t) = e~ =) ¢ ¢ [0, 4n], 2 € [-m, 7). (10)

The time average and r.m.s of this function are shown in figure 23. We note
that the time average has a peak at z = 0, i.e. in the interior of the domain,
in agreement with the colour map in figure 22. Secondly, we note that the
r.m.s reaches its minimum where the maximum of the mean is located, i.e. at
z = 0 in this case. Around this minimum, at the turning points of the jet,
the r.m.s attains its highest values. This is also what is observed both in the
long average U, in the upper row of figure 21, as well as in the experimental
data in the lower row. In the low-dimensional reconstruction shown in the
middle row, this effect is strong with the motion indicated by the white arrows.
This is of course a simplified model, where we have not taken into account
e.g. the deformation of the jet. However, it seems probable that the double
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FIGURE 23. Time average (
function u(z, t) = e~({z=sin(®}*),

) and r.m.s (----) of the

peaks found in the u,,,s are a sign of a large-scale motion. It should be pointed
out that these conclusions are valid even if only modes 0, 1 and 2 are used for
the reconstruction.

5. Conclusions

The flow in a three-dimensional, turbulent and separated diffuser at Re =
10 000 is studied using numerical data from the direct numerical simulation
(DNS) described in Ohlsson et al. (2010), which closely mimics the experiment
of ‘diffuser 1’ by Cherry et al. (2008). To this extent, the existing DNS database
was extended to account for all possible time scales in the flow. The aim is
to elucidate some aspects of the complex physics involved in three-dimensional
separation in its own interest, as well as to provide a detailed description of this
flow, which has recently been established as a test case for turbulence closure
models.

We have more rigorously confirmed the findings in Ohlsson et al. (2010)
that the secondary flow in the inflow duct persist into the diffuser. Due to
the asymmetry of the geometrical set-up, the corner vortices close to the top
expanding wall are unequally distributed and diffused, which gives rise to an
imbalance of vorticity and causes the separated zone to experience the partic-
ular asymmetric behaviour. Using time-resolved information, we could deduce
that instantaneous backflow is to a large extent present in the straight section
after the diffuser, while the mean flow itself is attached.

Analysis from a set of time signal probes in the flow shows that there is
a quasi-periodic motion present in the low frequency range in a narrow band
St = fh/up € [0.0092,0.014], yielding time periods T* = Tuy,/h € [70,110].
The origin of this low frequency is the meandering of the incoming flow, as it
interacts with the separated flow in the diffuser. This finding is supported by
proper orthogonal decomposition (POD) of the flow, where large streamwise
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streaks spanning half the length and the entire width of the diffuser are iden-
tified. In agreement with Moreno et al. (2004) this manifests that large-scale
shedding is present in the flow. Unlike this study, no particular mode could be
identified as being dominant in terms of energy. Projections of the flow onto the
two-dimensional phase space spanned by the most energetic fluctuating POD
modes show evidence that the large scales of the flow behave quasi-periodically,
which results in a travelling wave with convection velocity v, ~ 0.1. Due to
the confinement of the flow, this wave creates a strong secondary flow in the
crossflow directions.

The root mean square (r.m.s) of the streamwise component, computed
from a low-dimensional POD model of the flow, shows that the first few modes
contribute with 60 — 80 % to the total u,.,,s peaks in the diffuser, but are close
to zero elsewhere. This finding indicates that the bulk w,,,s in the later part
of the diffuser derives from the large-scale oscillation present and provides an
explanation for the scattered r.m.s peaks with a minimum in the centre, seen
in both the DNS and the experiments. A trajectory of the high-speed core of
the flow solely based on a low-dimensional POD model shows that the core of
the flow, moves in preferred directions over a relatively long time scale.

Considering the literature on pressure-induced separated flows, most con-
figurations involve at least one homogeneous direction. Diffusers have com-
monly been studied in two-dimensional configurations, i.e. with a spanwise
homogeneous direction. In these flows, no such large-scale spatial coherence,
as detected in the present flow case, has to our knowledge been reported. On
the other hand, taking into account studies performed on confined jets, low-
frequency periodic shedding is frequently appearing, provided that the walls
are close enough to form recirculation zones adjacent to the jet. Due to the
comparably high Reynolds number (Re = 10 000, based on bulk velocity and
inflow-duct height) in the present diffuser flow, the momentum of the incom-
ing fluid is high and will, in combination with the large opening angle of the
diffuser, consequently share many properties with a turbulent jet bounded by
separated flow. We therefore conclude that the reason for the observed large-
scale quasi-periodic motion is the confinement in combination with the high
Reynolds number and the large separated zone on the top diffuser wall. The
dominant frequencies found in the present case coincide remarkably well with
the finding by Villermaux & Hopfinger (1994), who identified a low frequency
flapping of St ~ 0.01 in the jet. This is also confirmed by Lawson & Davidson
(2001), who in a similar set-up reported a very low Strouhal number (St < 1)
when the confinement is such that the jet is bounded by one or two recircu-
lation zones. The observed frequencies in the present flow are likely to be the
result of a self-sustained oscillation created by a feedback mechanism via the
recirculated flow, similar to what was reported by Lawson & Davidson (2001)
for the confined jet. To be able to fully confirm this statement, more analysis
is however needed.



216 J. Malm, P. Schlatter and D. S. Henningson

Computer time was provided by ALCF, Argonne National Laboratory
(ANL) on the IBM BG/P (ANL), and by SNIC (Swedish National Infrastruc-
ture for Computing) with a generous grant by the Knut and Alice Wallenberg
(KAW) Foundation at the Centre for Parallel Computers (PDC) at the Royal
Institute of Technology (KTH). Dr. Shervin Bagheri is acknowledged for pro-
viding a POD code skeleton. We are further grateful to Prof. Neil Sandham,
Dr. Milos Ilak, Onofrio Semeraro, Dr. Gabriele Bellani and Dr. Outi Tammisola
for fruitful discussions.



Coherent structures & dominant frequencies in a 3D diffuser 217

References

Apams, N. A. 2000 Direct simulation of the turbulent boundary layer along a com-
pression ramp at M = 3 and Reg = 1685. J. Fluid Mech. 420, 47-83.

CazeEMIER, W., VERSTAPPEN, R. W. C. P. & VELDMAN, A. E. P. 1998 Proper
orthogonal decomposition and low-dimensional models for driven cavity flows.
Phys. Fluids 10 (7), 1685-1699.

CHERRY, E. M., ELKINS, C. J. & EaToN, J. K. 2008 Geometric sensitivity of three-
dimensional separated flows. Int. J. Heat Fluid Flow 29 (3), 803-811.

CHERRY, E. M., ELkINs, C. J. & EatoN, J. K. 2009 Pressure measurements in a
three-dimensional separated diffuser. Int. J. Heat Fluid Flow 30 (1), 1-2.
DELERY, J. M. 2001 Robert Legendre and Henri Werlé: Toward the Elucidation of

Three-Dimensional Separation. Annu. Rev. Fluid Mech. 33 (1), 129-154.

Earon, J. K. & JounsToN, J. P. 1980 Turbulent flow reattachment - an experimen-
tal study of the flow and structure behind a backward-facing step. Tech. Rep.
Rept MD-39. Thermosciences Division, Stanford Univ., USA.

FISCHER, P. F. 1997 An overlapping Schwarz method for spectral element solution of
the incompressible Navier—Stokes equations. J. Comput. Phys. 133 (1), 84-101.

FiscHER, P. F., LoTTES, J. W. & KERKEMEIER, S. G. 2008 nek5000 Web page.
http://nek5000.mcs.anl.gov.

FrIEDRICH, R. & ARNAL, M. 1990 Analysing turbulent backward-facing step flow
with the lowpass-filtered Navier-Stokes equations. J. Wind Engng. Indust. Aero-
dyn. 35, 101 — 128.

HERBST, A. H., SCHLATTER, P. & HENNINGSON, D. S. 2007 Simulations of turbulent
flow in a plane asymmetric diffuser. Flow Turbulence Combust. 79, 275-306.

HoLwmEes, P., LuMLEY, J. & BERKOOZ, G. 1996 Turbulence, Coherent Structures,
Dynamical Systems and Symmetry. Cambridge University Press, Cambridge,
UK.

JAKIRLIC, S., KADAVELIL, G., KORNHAAS, M., SCHAFER, M., STERNEL, D.C.
& TROPEA, C. 2010a Numerical and physical aspects in LES and hybrid
LES/RANS of turbulent flow separation in a 3-D diffuser. Int. J. Heat Fluid
Flow 31 (5), 820 — 832.

JAKIRLIC, S., KADAVELIL, G., SIRBUBALO, E., BREUER, M., v. TERzI, D. &
BoreLLO, D. 20106 In 14th ERCOFTAC SIG15 Workshop on Refined Tur-
bulence Modelling: Turbulent Flow Separation in a 3-D Diffuser. ERCOFTAC
Bulletin. December Issue 85, case 13.2 (1). ERCOFTAC.

KALTENBACH, H.-J., FaTicA, M., MiTTAL, R., LUND, T.S. & MoIN, P. 1999 Study
of flow in a planar asymmetric diffuser using large-eddy simulation. J. Fluid
Mech. 390, 151-185.

Kiva, M. & Sasaki, K. 1985 Structure of large-scale vortices and unsteady reverse
flow in the reattaching zone of a turbulent separation bubble. J. Fluid Mech.
154, 463-491.

LanpAHL, M. T. 1980 A note on an algebraic instability of inviscid parallel shear
flow. J. Fluid Mech. 98, 243-251.

Lawson, N. J. & Davipson, M. R. 2001 Self-sustained oscillation of a submerged
jet in a thin rectangular cavity. J. Fluid Struct. 15 (1), 59 — 81.



218 J. Malm, P. Schlatter and D. S. Henningson

LE, H., MoiIn, P. & KiMm, J. 1997 Direct numerical simulation of turbulent flow over
a backward-facing step. J. Fluid Mech. 330, 349-374.

LuMLEY, J. L. 1967 The structure of inhomogeneous turbulent flows. In Atm. Turb.
Radio Wave Prop. (ed. A. M. Yaglom & V. I. Tatarsky), pp. 166-178. Nauka,
Moscow, Russia.

LYGREN, M. & ANDERSSON, H. 1999 Influence of boundary conditions on the large
scale structures in turbulent plane couette flow. In Turbulence and Shear Flow
Phenomena 1 (ed. S. Banerjee & J. Eaton), pp. 15-20. Santa Barbara, California:
Begell House, New York, USA.

MANHART, M. & WENGLE, H. 1993 A spatiotemporal decomposition of a fully inho-
mogeneous turbulent flow field. Theor. Comput. Fluid Dyn. 5, 223-242.

MAUREL, A., ErRN, P., ZIELINSKA, B. J. A. & WESFREID, J. E. 1996 Experimental
study of self-sustained oscillations in a confined jet. Phys. Rev. E 54 (4), 3643~
3651.

Moin, P. & MOosER, R. 1989 Characteristic-eddy decomposition of turbulence in a
channel. J. Fluid Mech. 200, 471-509.

MORENO, D., KROTHAPALLI, A., ALKISLAR, M. B. & LoURENCO, L. M. 2004 Low-
dimensional model of a supersonic rectangular jet. Phys. Rev. E 69 (2), 026304.

NA, Y. & Moin, P. 1998 Direct numerical simulation of a separated turbulent bound-
ary layer. J. Fluid Mech. 374, 379-405.

OHLSSON, J., SCHLATTER, P., FISCHER, P. F. & HENNINGSON, D. S. 2010 Direct
numerical simulation of separated flow in a three-dimensional diffuser. J. Fluid
Mech. 650, 307-318, note: change of name from J. Ohlsson to J. Malm.

P1QuEeT, J. 1999 Turbulent Flows: Models and Physics. Springer-Verlag, Berlin, Ger-
many.

RowLEY, C. W., MEZIC, I, BAGHERI, S, SCHLATTER, P & HENNINGSON, D. S. 2009
Spectral analysis of nonlinear flows. J. Fluid Mech. 641, 115-127.

SCHLATTER, P., OrLU, R., L1, Q., BRETHOUWER, G., FrRaNssoN, J. H. M., Jo-
HANSSON, A. V., ALFREDSSON, P. H. & HENNINGSON, D. S. 2009 Turbulent
boundary layers up to Rep = 2500 studied through numerical simulation and
experiments. Phys. Fluids 21 (5), 051702.

SCHNEIDER, H., TERzI, D. A. & Robi, W. 2009 Reliable and accurate prediction
of three-dimensional separation in asymmetric diffusers using large-eddy simula-
tion. In Proceedings of ASME Turbo Expo 2009: Power for Land, Sea and Air.
Orlando, USA.

SivMpsoN, R. L. 1981 A review of some phenomena in turbulent flow separation. J.
Fluid Engng. 102, 520-533.

SiMpPsoN, R. L. 1989 Turbulent boundary-layer separation. Annu. Rev. Fluid Mech.
21 (1), 205-232.

S1rROVICH, L. 1987 Turbulence and the dynamics of coherent structures, i-iii. Quart.
Appl. Math. 45, 561-590.

SPILLE-KOHOFF, A. & KALTENBACH, H.-J. 2001 Generation of turbulent inflow data
with a prescribed shear-stress profile. In DNS/LES Progress and Challenges (ed.
C. Liu, L. Sakell & T. Beutner). Third AFSOR conference on DNS and LES,
Arlington, Texas: Greyden Press, Columbus, USA.

TOrRNBLOM, O., LINDGREN, B. & JOHANSSON, A. V. 2009 The separating flow in



a plane asymmetric diffuser with 8.5° opening angle: mean flow and turbulence
statistics, temporal behaviour and flow structures. J. Fluid Mech. 636, 337-370.

Turo, H. M. & FiscHER, P. F. 2001 Fast parallel direct solvers for coarse grid
problems. J. Parallel Distrib. Comput. 61 (2), 151-177.

VILLERMAUX, E. & HOPFINGER, E. J. 1994 Self-sustained oscillations of a confined
jet: a case study for the non-linear delayed saturation model. Physica D: Non-
linear Phenomena 72 (3), 230-243.

Wanag, C., Jang, Y.J. & LESCHZINER, M.A. 2004 Modelling two- and three-
dimensional separation from curved surfaces with anisotropy-resolving turbu-
lence closures. Int. J. Heat Fluid Flow 25 (3), 499-512.



