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Abstract
A new parallelisation of the existing fully spectral research code has been imple-
mented and validated, and is used to perform simulations on massively parallel
computer architectures with O(1000) cores. Using the parallelised code, direct
numerical simulations (DNS) and large-eddy simulations (LES) of a spatially
developing turbulent boundary layer with and without passive scalars over
a flat plate under zero-pressure gradient (ZPG) have been carried out. The
Navier-Stokes equations are solved employing a spectral method with up to 7
billion grid points. The Reynolds numbers obtained are the highest for a tur-
bulent boundary layer obtained to date for the various setups considered. An
extensive number of turbulence statistics for both flow and scalar fields are com-
puted and compared to the well-established experimental/numerical database.
In general, good agreement for all considered quantities with existing literature
results, both experimentally and numerically is found. Premultiplied spanwise
and temporal spectra are also used to identify the large-scale motions in the
outer part of the boundary layer. The similarities shared by the streamwise
velocity and the scalar with Pr = 0.71 indicate that they might be generated
by the same mechanism. The effects from the different Prandtl numbers and
wall boundary conditions are also discussed in detail. Furthermore, the effects
of the free-stream turbulence (FST) on the heat transfer on the wall are ex-
amined. This problem is of great interest in industrial applications as such
boundary layers are rarely developing below clean ambient free streams. The
momentum and heat transfer on the wall is compared with those obtained with
a clean free stream and augmentations of both momentum and heat transfer
in the turbulent region are found. In addition, the boundary layer structures
are studied and a change of the structures in the outer region are found due to
the presence of the free-stream turbulence. By examining the one-dimensional
spanwise spectrum, it is speculated that the increase of the momentum and
heat transfer are associated with the large-scale motions in the outer layer. In
addition, rare events occuring in the viscous sublayer, i.e. isolated regions of
flow reversal and high intermittent values of the wall-normal velocity fluctua-
tions leading to high flatness values, are studied, and an attempt to quantify
their occurance and origin is given. In a similar spirit, a recent DNS database
has been postprocessed in an effort to educe the dominant vortical structures
found in the near-wall region. It is found that hairpin vortices are reminiscent
of the transition process and tend to disappear in the fully turbulent region.
Finally, statistics of a turbulent boundary layer have also been studied with
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the concept of SED (structural ensemble dynamics), and comparisons to chan-
nel flows are made. Furthermore, closure models are proposed for both mean
velocity profile and also energy budget terms.

Descriptors: direct numerical simulation (DNS), large-eddy simulation (LES),
turbulent boundary layer, passive scalar, coherent structures,
free-stream turbulence (FST), structure ensemble dynamics (SED), massively
parallel simulations
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Preface

This thesis can be considered as a review of my PhD project which deals with
turbulence in spatially evolving flat-plate boundary-layer flows including heat
transfer. I feel very lucky to have such a research project concerning funde-
mental problems since nowadays, many projects tend to be more application-
oriented. On the other hand, being such a well-developed subject which has
been studied for more than a hundred years, any groud-breaking results are
not likely to happen, not like those in the newly-born fields. But thrilling mo-
ments do exist when something new is discovered since one small step towards
our understanding of turbulence will results in a big step in technology in the
future1.
The present thesis contains two parts: a brief introduction on the basic con-
cepts and methods together with few selected results are presented in the first
part; the second part is a collection of the following articles. All the papers
included in this theis are recompiled according to the thesis format used at the
Department of Mechanics at KTH for consistency. The PDF file of the present
thesis is also available at KTH library or from me directly. Here the selected
papers are listed:

Paper 1. Q. Li, P. Schlatter, L. Brandt, & D. S. Henningson,
Direct numerical simulation of a spatially developing turbulent boundary layer
with passive scalar transport. Published in Int. J. Heat Fluid Flow, 30(5), pp.
916-929, 2009

Paper 2. Q. Li & P. Schlatter,
Large-eddy simulation of a spatially developing turbulent boundary layer with
passive scalar transport: Part I-flow statistics. Submitted to Int. J. Heat Fluid
Flow

Paper 3. Q. Li & P. Schlatter,
Large-eddy simulation of a spatially developing turbulent boundary layer with
passive scalar transport: Part II-turbulence structures. Submitted to Int. J.
Heat Fluid Flow

Paper 4. Q. Li, P. Schlatter & D. S. Henningson,
Simulations of heat transfer in a boundary layer subject to free-stream turbu-
lence. Published in J. Turbulence, 11(45), pp. 1-33, 2010

Paper 5. Q. Li, P. Schlatter & D. S. Henningson,
Comparison of SGS models for passive scalar mixing in turbulent channel flows.
Proc. of Direct and Large-Eddy Simulation VIII (DLES8), Eindhoven, The
Netherlands, 2010

1No matter you believe it or not, I do.
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Paper 6. P. Schlatter, R. Örlü, Q. Li, G. Brethouwer, J. H. M.
Fransson, A. V. Johansson, P. H. Alfredsson & D. S. Henningson,
Turbulent boundary layers up to Reθ = 2500 studied through numerical simu-
lation and experiments. Published in Phys. Fluids 21, 051702 (2009)

Paper 7. P. Schlatter, Q. Li, G. Brethouwer, A. V. Johansson
& D. S. Henningson,
Simulations of spatially evolving turbulent boundary layers up to Reθ = 4300.
Published in Int. J. Heat Fluid Flow, 31(3), pp. 251-261, 2010

Paper 8. P. Lenaers, Q. Li, G. Brethouwer, P. Schlatter, & R.
Örlü,
Negative streamwise velocities and other rare events near the wall in turbulent
channel flow. Proc. of 13th European Turbulence Conference (ETC13), War-
saw, Poland, 2011

Paper 9. P. Schlatter, Q. Li, F. Hussain & D. S. Henningson,
On the vortical structures of a turbulent boundary layer at high Reynolds num-
ber. Technical Report, 2011

Paper 10. Q. Li, X. Chen, Y. Wu, Z-S. She, P. Schlatter, D. S.
Henningson, & F. Hussain,
Understanding wall turbulence, Part II: analysis of turbulent boundary layer.
Technical Report, 2011

Due to various reasons, the following papers are not included in the present
thesis:

Paper 11. Q. Li, P. Schlatter & D. S. Henningson,
Spectral simulations of wall-bounded flows on massively-parallel computers. In-
ternal report, included in Licentiate thesis, 2008

Paper 12. P. Schlatter, Q. Li, G. Brethouwer, A. V. Johansson,
& D. S. Henningson,
Structure of a turbulent boundary layer studied by DNS. Proc. of Direct and
Large-Eddy Simulation VIII (DLES8), Eindhoven, The Netherlands, 2010

Paper 13. P. Schlatter, R. Örlü, Q. Li, G. Brethouwer, A. V.
Johansson, P. H. Alfredsson & D. S. Henningson,
Progress in simulations of turbulent boundary layers. Proc. of Seventh Inter-
national Symposium on Turbulence and Shear Flow Phenomena (TSFP-7),
invited lecture, Ottawa, Canada, 2011
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Paper 14. A. Rasam, G. Brethouwer, P. Schlatter, Q. Li & A.
V. Johansson,
Effects of modelling, resolution and anisotropy of subgrid-scales on large eddy
simulations of channel flow. Published in J. Turbulence 12(10), pp. 1-20, 2011
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Summary of the papers

Paper 1

DNS of a spatially developing turbulent boundary layer with passive scalar
transport.
A turbulent boundary layer is simulated as a direct numerical simulation (DNS)
together with five different passive scalars upto Reθ = 830. The focus is on the
outer region behaviour of the scalar statistics which is distinct from channel
flows. The influences of the different boundary conditions and Prandtl numbers
are also discussed. In some sense, this paper and the corresponding implemen-
tation of scalars and their statistics can be considered as the basis of most
following papers in this thesis. Note that the new parallelisation developed in
conjunction with this paper is further discussed in the technical report by Li
et al. (2008).

Paper 2

LES of a spatially developing turbulent boundary layer with passive scalar trans-
port: Part I-flow statistics.
This paper is a continuation of the previous work of a flat-plate turbulent
boundary layer with passive scalar transport presented in Paper 1 using LES
technique reaching the high Reθ = 2500. This part (Part I) is focused on
the basic statstics pertaining to scalar field. Comparisions of various statstics
with the previous DNS are satsfactory at all Reynolds numbers. The influ-
ences of the different Prandtl numbers are also discussed. With such a variety
of scalars, the Reynolds number reached in this study is the highest in the
current literature.

Paper 3

LES of a spatially developing turbulent boundary layer with passive scalar trans-
port: Part II-turbulence structures.
This paper is a continuation of the previous work of a flat-plate turbulent
boundary layer with passive scalar transport presented in Paper 1 using LES
technique reaching the high Reθ = 2500. This part (Part II) is mainly focused
on the structures pertaining to scalar field, and the influences of the Prandtl
numbers are also highlighted.

Paper 4

Simulations of heat transfer in a boundary layer subject to free-stream turbu-
lence.
In this paper, a flat-plate boundary layer is studied under the influence of a
turbulent free stream. It has been long time that researchers have observed
that in the presence of free-stream turbulence, the heat transfer on solid walls
increases dramatically. Since there are difficulties in experiments to measure
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very close to the wall, numerical simulations become a good alternative to shed
light on the physical mechanisms. The present study summarises the previous
experimental and simulation results, and furthermore attributes the increase of
the heat transfer on the wall to the large-scale structures residing in the outer
region of the boundary layer. Due to the requirements of large simulation
domains, large-eddy simulation techniques have been used.

Paper 5

Comparison of SGS models for passive scalar mixing in turbulent channel flows.
This conference paper is a extension of the previous work by Winckelmans et al.
(2002). It is well known that for instance to compare the Reynolds stress ob-
tained by LES with DNS or experimental data, the SGS contribution needs
to be added. However, if only traceless SGS models are used, e.g. dynamic
Smagorinsky model, then the comparison should be restricted to only the de-
viatoric part. The present contribution extends several existing SGS models
to also include their corresponding models for the scalar field, and compares
the statistics with the previous DNS data, demonstrating the weakness of the
eddy-diffusivity assumption. Moreover, the present contribution also discussed
how to compare the energy budget terms.

Paper 6

Turbulent boundary layers up to Reθ = 2500 studied through simulation and
experiment.
Twenty years passed since the first numerical simulation of turbulent boundary
layer was done. However, the Reynolds number achieved then is still among
the highest despite the rapid development of super computers and algorithms.
This article is about a joint experimental/DNS work of a flat-plate turbulent
boundary layer aiming at providing the research community with reliable data
for a truly spatially developing flow. It is the fist time that the Reynolds
number is high enough to compare DNS to carefully obtained experimental
data. On the other hand, it is also a big challenge for the experimentalists to
conduct an experiment at such a low Reynolds number with good quality. The
excellent match of the data obtained from both simulation and experiments
indicates that quantities of interest are not sensitive to the experimental and
numerical limitations.

Paper 7

Simulations of spatially evolving turbulent boundary layers up to Reθ = 4300.
This paper is a continuation of the previous work of a flat-plate turbulent
boundary layer by Schlatter et al. (2009) using LES technique reaching the
high Reθ = 4300. A promising LES model is used with comparably good reso-
lution and the results obtained at lower Reynolds number Reθ = 2500 compare
very well with the previous DNS data. With the high Reynolds number reached
in this study, the scale separation is much more clearer and the outer structures
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are studied through one-dimensional spanwise and temporal premultiplied spec-
tra. The coherent structures observed in the simulation compare very well with
previous experimental studies at similar Reynolds number. One of the major
conclusions of this paper is that one indeed can perform high-fidelity simula-
tions of turbulent wall-bounded flows using LES techniques. This is used in
the ongoing new simulations presented in Section 3.7.

Paper 8

Negative streamwise velocities and other rare events near the wall in turbulent
channel flow.
This conference paper focusses on two separate rare events in wall turbulence,
namely the negative streamwise velocity and the high kurtosis values of the
wall-normal velocity fluctuation close to the wall. Data from fully resolved
turbulent channel flow simulations are used to investigate the problem. It is
observed that the negative streamwise velocity exists at all Reynolds number
and such events only happens in the viscous sublayer, under an oblique vor-
tex. The results concerning the high kurtosis values of the wall-normal velocity
fluctuation are consistent with the previous studies. The region where the
extremely high kurtosis values appears are always below certain spanwise vor-
ticies and may be caused by sweep-type motions. It is further found that these
two rare events are not correlated at all.

Paper 9

On the vortical structures of a turbulent boundary layer at high Reynolds num-
ber.
This paper is discussing the vortical structures in the near-wall region in wall-
bounded flows using the newly performed DNS data at high Reynolds number
Reθ = 4000. Dominance of hairpin like structures is reported by the previ-
ous DNS study by Wu & Moin (2009). However, from the present simula-
tion at much higher Reynolds number, hairpin vortices are rarely observable.
It is shown that the dominance of the hairpin structures observed in Wu’s
simulation is mainly due to the post-transitional effects. Using the eduction
scheme based on ensumble averaged velocity field, the educed structure is only
a quasi-streamwise vortex which is similar to the previous turbulent channel
flow results.

Paper 10

Understanding wall turbulence, Part II: analysis of turbulent boundary layer.
This paper is dedicated to analysing the turbulent boundary layer results thr-
ough the newly introduced statistical measures, i.e. order functions, which are
defined in terms of mean strain rate, turbulent Reynolds stress, kinetic energy,
and dissipation, etc. It is shown that these order functions are effective in
quantifying statistical structures in turbulent boundary layers. In the end, us-
ing the order functions as a bridge, a closure description of turbulent boundary
layer of the mean flow and energy budget terms are proposed.
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Division of work between authors
The research project was initiated by Dr. Philipp Schlatter (PS) who has acted
as the main advisor together with Prof. Dan S. Henningson (DH).

Paper 1
The simulations and the implementation of the statistics, correlations and time
series, the two-dimensional parallelisation of the SIMSON code, and the data
analysis were performed by Qiang Li (QL) and the paper has been written by
QL with input from PS, Dr. Luca Brandt and DH.

Paper 2 & 3
The simulation setup, model implementations, calculations and data analysis
were performed by QL and the paper was written by QL with input from PS.

Paper 4
The code adaptation, simulation setup, computations and data analysis were
performed by QL and the paper was written by QL with input from PS and
DH.

Paper 5
The SGS model implementation, computations and data analysis were per-
formed by QL and the paper was written by QL with input from PS and DH.

Paper 6
The simulation code validation, problem setup and the performance and opti-
misation tuning was performed by QL and PS. The simulations were performed
by PS and the paper was written by PS with input from the co-authors.

Paper 7
The simulation code validation, problem setup and the performance and opti-
misation was performed by PS and QL. The computations were performed by
PS and the paper was written by PS with input from QL, Dr. Geert Brethouwer
(GB), Prof. Arne V. Johansson and DH.

Paper 8
The computations and post-processing implementations were performed by Pe-
ter Lenaers (PL) and QL, and the paper was written by PL and QL with input
from PS, GB and Dr. Ramis Örlü.
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The computations used as database were originally performed by PS. The new
post-processing implementations were performed by QL, and the paper was
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Paper 10
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new evaluations were performed by QL. The paper was written by QL and X.
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Disclaimers and warnings

• I intend to write the thesis in a way that it is readable, but it turns out
to be unreadable. For those who has to read this thesis, I offer my greatest
sympathy.
• For those who want to find the ultimate answers to turbulence problem, you
can close the thesis and go back to work now.
• About the references in the introduction part of the thesis, I must appologies
to those papers which I have either not read, forgotten, ignored, used without
citation or cited without realising the origin. Because: i) I do not have time
to read everything since there are many other important things than reading.
ii) For some of the papers I read, I do not understanding anything or I misun-
derstood everything. Sometimes it is my fault, while on other occasions, some
authors write the paper in such a way as the Italians say “tutto fumo e niente
arrosto”. iii) I forget the origins of some papers that I read which is due to the
fact that I am getting older and older.
• No doubt, this thesis contains certain amount of mistakes and typos which
are unavoidable. I would greatly appreciate your criticism.
• It is very difficult to describe something completely “chaotic” with complete
logical order.
• For the quotations appeared in the thesis, one should read the original source
to fully understand what they mean. Intentional misuse by deliberately con-
centrating contents can be misleading, harmful or fatal, and it is the reader’s
responsibility NOT to do that.
• For the quotation in Chinese, even a Chinese guy will not understand it un-
less he/she knows where it comes from.
• Any resemblance of the text to other sources without citation is purely a
coincidence.
• This is a curse. If you do NOT recommend this thesis to your friends within
ten days after obtaining this thesis, you will NOT suffer any misfortune or
other nasty things.
• You should stop reading this part and jump to the Acknowledgement or go
back to work.
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CHAPTER 1

Introduction

“Are you sitting comfortably, let’s start”

– anonymous

“If you are going to make a mistake, make a big one”

– anonymous

1.1. Basic concepts

The place on Earth’s surface where life dwells is surrounded by gases and liq-
uids. A substance in the liquid or gas phase is referred as a fluid1. Therefore,
everyone must have some experiences of observing the fluid motions in everyday
activities, e.g. mixing the coffee/tea with milk, water running out of the plumb-
ing systems in household, the smoke from a chimney or a cigarettes, etc. Some
other fluid motions are not directly observable but also common in daily life,
e.g. the blood is pumped to all parts of the human body through veins and ar-
teries, various gas/oil pipe-lines are buried underground, mixing of fuel and air
happens in the combustion and they are purged in exhaust pipes, various flows
in nature, such as meandering clouds, etc. The scientific discipline concerns
about the fluid motion is called fluid dynamics. Usually, the fluid motion can
be defined as laminar or turbulent. A laminar2 flow has ordered, predictable,
and layered characteristics while a turbulent one is exhibiting properties on
the opposite. Since the flow motion can not change from laminar to turbulent
abruptly, usually a laminar-turbulent transitional phase exists.

The most famous experiment, showing different flow regimes, namely lam-
inar, transitional and turbulent status, is carried out by Osborne Reynolds in
1883. The experimental apparatus is still standing at the University of Manch-
ester. Reynolds studied the flow of water in a glass tube, rendering the flow
motions visible by means of colour bands, i.e. injecting a dye. For low flow
rates, a steady stream was observed to follow a straight path through the tube.
As the flow rate was increased, at some point, the colour band would all at once

1Recall that under normal conditions, there are three primary phases of a substance: solid,
liquid and gas.
2From Latin word “lamina”: layer, sheet, leaf.
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2 1. INTRODUCTION

mix up with the surrounding water, and fill the rest of the tube with a mass
of coloured water, see also Figure 1.1. In order to quantify these experimen-
tal results, he introduced a non-dimensional number Re = UL/ν, now known
as the Reynolds number, in his classic paper published later (Reynolds 1883).
Here U denotes the velocity scale (e.g. the mean flow velocity), L the length
scale (e.g. the pipe diameter) and ν is the kinematic viscosity. The flow will
become turbulent if the Reynolds number exceeds a critical value O(2000). The
Reynolds number is by far one of the most important dimensionless numbers
in fluid mechanics.

Figure 1.1. Sketch of Osborne Reynolds (1883) famous dye
experiment. From top to bottom: laminar, transitional and
turbulent flows.

Most of the fluid motions in nature and practical applications of primary
interest are actually turbulent, which means by definition occuring at large
Reynolds numbers. A strong argument is made by Moin & Kim (1997) :“Tur-
bulence is the rule, not the exception, in fluid dynamics”3. In addition, the

3Such a statement does not imply that the laminar flow and transitional flow are not inter-
esting. But one can think in this way, “All the flows are interesting, but some flows are more
interesting than the others”.



1.1. BASIC CONCEPTS 3

turbulent flows in most situations belong to the family of shear layers which
are strongly inhomogeneous, i.e. variant under translations of the reference
frame, and with the presence of velocity gradient. Shear layers can be divided
into two categories: free shear flow4 (such as jets, wakes and mixing layers)
and wall-bounded (shear) flow (such as pipe, channel and flat-plate boundary
layer5). The inhomogeneity in the former category comes from the spreading of
turbulent fluids into the ambient non-turbulent fluids, while in the latter case
it is caused by the restriction of the solid boundary (Townsend 1976). The
differences between free shear flows and wall-bounded flows are clearly due to
the presence of the wall in the latter case. In free shear flows, as the Reynolds
number increases sufficiently, the flow is nearly inviscid (free from viscous ef-
fects) which implies that the flow is Reynolds number independent. However,
in wall-bounded flows, no matter how large the Reynolds number is, there is
always a layer (no matter how thin it is) above the solid wall in which viscous
effects must be taken into account. Such a thin layer above the solid surface
where effects of viscosity of the fluid need to be considered is called boundary
layer which is first postulated by Prandtl (1904). Prandtl proposed that an
effect of friction is to retard the fluids immediately above the solid surface6

and such frictional effects are only experienced in the so-called boundary layer.
Outside the boundary layer, the flow is essentially inviscid, see also the article
by Anderson (2005). Though geometrically not important, many interesting
parameters of the aerodynamic property of the body are determined in the
viscous boundary layer, e.g. the drag coefficient, thus it is of great engineering
significance in many applications.

Among the three wall-bounded flow types, i.e. pipe, channel, flat-plate
boundary layer, the flat-plate boundary layer is different from the other two due
to its semi-confinement of the wall. In fact, the near wall region is qualitatively
similar to those of the channel and pipe flows, while the outer region of the
flat-plate boundary layer is similar to those observed in the free shear flows
(Gad-el Hak and Bandyopadhyay 1994). Usually pipe and channel flows are
classified as internal flows while the flat-plate boundary layer is an external
flow.

Despite that the phenomena of turbulent flows vary from one case to the
other, the governing equations describing the motion are always the same.
These equations are the so-called Navier-Stokes (NS) equations, named after
Claude-Louis Navier and George Gabriel Stokes who first formulated them in
the 19th century (Navier 1823; Stokes 1845). The equations express the prin-
ciple of conservation of momentum for a continuum fluid7 with viscous stress
directly proportional to the rate of strain (velocity gradient), that is to say, only

4Here “free” means free from walls not from the shear!
5These three types of flows are considered as the canonical wall-bounded flows.
6This is the so-called “no-slip” condition.
7One should not think of turbulence as molecular motions, e.g. in dilute gases, where the
momentum is transferred via collisions between molecules and one solves the so-called Boltz-
mann equation.



4 1. INTRODUCTION

Newtonian fluids is considered8. “The governing equations are the simplest that
can be imagined, however the solutions, even for simple flow geometries, are
too complicated to be comprehended by human mind” (Bradshaw 1976), and
partially it is due to its “Nonlinear, Nonlocal, Nonequilibrium” characteristics
in turbulence9.

Many attempts are made to define what turbulence is, but none of them
is succeeded in the sense that there is no such a definition the whole commu-
nity agrees on10. I am inclined to the definition favoured by Prof. Bradshaw:
“Turbulence is the general solution of the Navier-Stokes equation.”11 Due to
a lack of satisfactory definition, usually turbulence is described by its charac-
teristics or “syndromes” a word borrowed from pathology12. Usual syndromes
of turbulent flows are chaotic (irregularity), diffusive, non-local, consisting of
three-dimensional vorticities, dissipative, continuum. Some of these syndromes
need a little bit more discussions here.

1.1.1. Cascade

One of the most important characteristic of turbulence is the energy cascade.
Turbulent flows involve eddies13 which are of various sizes, containing energy
and additionally the larger eddy contains also smaller ones. The largest eddies
are generated by forces driving the flow and they are unstable and produce
eddies of a smaller size. Meanwhile the kinetic energy are transferred to the
smaller eddies. These smaller eddies then undergo a similar breaking-up process
and generate even smaller eddies together with the energy transferred to these
even smaller eddies. This process continues successively until the eddies are
so small that they are “killed” by molecular viscosity14. Such a process is
known as (energy) cascade, the concept which probably owes its origin to Lewis
Richardson (1922), who obtained the idea of cascade by observation of the
clouds and summarised the idea in the often-cited verse15:

8The consideration of non-Newtonian fluids is out of the scope of the thesis.
9These words come from a seminar entitled “Some ‘Non’s in Turbulence - Nonlinear, Nonlo-
cal, Nonequilibrium” given by Prof. Kaneda.
10One thing about turbulence that people agreed on is that it is the most complicated kind
of fluid motion.
11“It is brief, it is entirely true, and it adds nothing to what was known already.” – Prof.
Bradshaw
12The word is actually borrowed from Prof. Stewart who borrowed it from pathology.
13There is no definition for “eddy”, but it is conceived to be a region of correlated swirling
motion. One can think it as a typical swirling flow pattern identifiable in a flow visualisation
(Bradshaw 1996).
14Scientifically speaking, the viscous shear stress performs deformation work which converts
the turbulent kinetic energy into heat, i.e. internal energy of the fluid. Therefore, a continuous
energy supply is needed to account for the viscous dissipation.
15The verse written by Richardson is inspired by the verse written by Jonathan Swift (1733):

So, naturalists observe, a flea

Has smaller fleas that on him prey;

And these have smaller still to bite ’em,

And so proceed ad infinitum.
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Big whorls have little whorls,
Which feed on their velocity;

And little whorls have lesser whorls,
And so on to viscosity.

Note that occasionally the energy could transfer from smaller eddies to larger
ones, i.e. the so-called “back-scatter”. However, the net transfer is always from
larger eddies to smaller ones.

The physical mechanism of cascade can be understood via “vortex stretch-
ing”16. One of the character of turbulence is rotational, i.e. containing a great
number of three-dimensional vorticities. The flow can be thought as composed
of vortex lines analogous to magnetic lines of forces. Due to the presence of
the shear, the vortex tubes (a finite-thickness version of vortex lines) can be
stretched which leads to an increasing of both rate of rotation (vorticity) and
rotational kinetic energy but a decreasing of diameter of the vortex tube which
is implied by conservation of angular momentum. On the other hand, vor-
tex tubes can also be contracted/squeezed such that the opposite occurs, i.e.
an decrease of both vorticity and rotational kinetic energy but an increase of
diameter of the vortex. The vortex stretching implies that kinetic energy trans-
fers from large scales (i.e. large vortex tube diameters) to small scales which is
nothing but “energy cascade”. The “back-scatter” is a consequence of vortex
contraction since the vortex lines are not stretched monotonically (Tennekes &
Lumley 1972; Bradshaw 1997).

1.1.2. Nonlocality

Another characteristic of turbulence is its nonlocality. The cause of the non-
local behaviour can be understood via the pressure field which is a global
quantity. The pressure field is governed by the Poisson equation17, whose
right-hand-side (RHS) is a combination of squares of velocity gradients, with
appropriate boundary conditions (Bradshaw & Koh 1981; Adrian 1982). That
is to say, the pressure in each point in space is calculated based on the whole
velocity field. Nonlocality does not only exist in space, but also in time which
is closely related to the “memory effects” of turbulence, e.g. the sensitivity of
the results to the initial/inlet/inflow conditions (Bevilaqua & Lykoudis 1978;
Zhou & Antonia 1995; George & Davidson 2004; Dimotakis 2005; Schlatter
et al. 2010c; Cimbala et al. 1988)18. Such memory effects are present largely in

16There is no accepted definition about “vortex”, and I am inclined to the definition by
Lugt (1979): “A vortex is the rotating motion of a multitude of material particles around a
common centre.”
17For incompressible flows, it reads ∂

2p

∂x2
k

= −ρ ∂ui
∂xj

∂uj
∂xi

where ρ is the density.
18Note that the reference Cimbala et al. (1988) shows that the memory effects also exist in
passive tracers.
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free shear flows (e.g. jets, mixing layers, wakes) and flat-plate boundary layer
flows19, but much weaker in internal flows, e.g. channels and pipes.

1.1.3. Diffusivity

The third feature of turbulence discussed here is the diffusivity which has great
importance in engineering applications. Turbulence causes enhanced mixing
and therefore increased rates of momentum transfer. This can be described
with the help of the so-called “eddy viscosity”, the concept of which is first
introduced by Boussinesq (1877) and later developed by Prandtl. The eddy
viscosity assumption is based on an analogy with molecular viscosity. “By
the late 19th century, it is understood that molecular motion has macroscopic
consequences. The existance of transport coefficents, which relate the trans-
port coefficient, or flux, of some quantity such as heat to the gradient of the
mean value of that quantity, is an example of the macroscopic manifestation
of molecular motion. [. . . ] the principal effects of the molecular motions on
the large hydrodynamic scales is to cause the dynamics to be diffusive. An
example is the momentum diffusion, which smooths velocity gradients on the
hydrodynamic scales” (Frisch & Orszag 1990). Later, inspired by the molecular
motion, Prandtl came up with idea that the small-scale eddies could act on the
large eddies in a diffusive manner and introduced the idea of “eddy viscosity”
20. Therefore, a much more rapidly smoothed mean velocity in a turbulent flow
than that in a laminar flow is a consequence due to the enhanced momentum
transport in the former. Furthermore, the ratio of the eddy viscosity over the
molecular viscosity can be estimated and is on the order of the Reynolds num-
ber (Frisch & Orszag 1990). The eddy viscosity concept has a huge impact on
many of the turbulence models used in engineering applications and even some
analytical theories.

1.2. Reynolds number effects

Though the definition of the Reynolds number is simple, i.e. Re = UL
ν , it con-

tains important properties. Firstly, no matter how U,L, ν or their combination
changes, as long as the Reynolds number stays invariant, the flow solution
remains the same given similar geometry and boundary conditions21. This
property e.g. allows to compare data generated by different methods (either
experimental or numerical), from different groups and from different time. An-
other property is that the effects of changing any one or combination of U,L, ν
only reflects in the change of the Reynolds number alone.

19A common feature of these flows (i.e. free shear flow and flat-plate boundary layer) is
that there is a coexistence of both irrotational and rotational fluids, and the transition from
potential flow to turbulent one is via the entrainment process (Tsinober 2009). Does this
cause the much more influence of the results on the initial conditions?
20One has to be careful, since such a concept tends to treat turbulence as a property of
the fluid rather than a property of the flow, and this is conceptually/fundamentally wrong
(Tennekes & Lumley 1972).
21This is the concept of dynamic similarity, see e.g. Gad-el Hak and Bandyopadhyay (1994).
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Note that the first property requires strict similarities in geometry and
boundary conditions. If some of the assumptions are violated, the similarity
will break. This may explain the differences observed among pipe, channel and
zero-pressure-gradient flat-plate boundary layer flows from various experimen-
tal/numerical data at the same Reynolds number (Buschmann & Gad-el Hak
2010), simply because the geometrical similarity is not achieved.

One always hopes that at sufficiently high Reynolds number, the effects
of the viscosity can be neglected, therefore, the flow characteristics are Rey-
nolds number independent. However, the results obtained from laboratory or
computers show clearly Reynolds number effects on e.g. velocities profiles, tur-
bulence structures, etc. So if the Reynolds number obtained will never be high
enough to meet the requirement for the flow characteristics to be invariant, it
is very important to understand the Reynolds number effects on the results
within the Reynolds number range one can obtain.

(a) (b)

Figure 1.2. (a) A water drop falling into a pool of water.
The Reynolds number is on the order of several hundred. (b)
A nuclear test in Nevada in 1957 by US department of energy.
The Reynolds number is LARGE! These pictures are taken
from the book by Samimy et al. (2003). Fore more information
about the picture (a), one can refer to the original paper by
Peck & Sigurdson (1994).

The effects of the Reynolds number on the scales of turbulence are easily
understood with the help of energy spectrum. As the Reynolds number in-
creases, more and more smaller scales are excited while the size of the larger
scales stays approximately constant. In addition, the separation between the
large and small scales is much more clear. It is not difficult to imagine that
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the size of the large eddies are strongly influenced by the geometry of the flow,
e.g. the diameter of the pipe, the width of the channel or the boundary layer
thickness, and the boundary conditions. Furthermore, in shear flows, the orien-
tation of the large eddies is determined by the direction of the shear and usually
they are anisotropic22. Indeed, the large scale motions are weakly dependent
on Reynolds number (Townsend 1976), and this feature is further illustrated
in Figure 1.2. The Reynolds number difference in the two cases is on the order
of O(10X), however, as long as the large-scale motions are concerned, the Rey-
nolds number effects (effects of the viscosity) are of very little importance. This
feature is widely used in the movie industry, e.g. especially in the films with
explosions of buildings, cars, etc, where usually small-scale-models are used
instead of destroying the real things. When the audience watches the movie,
he/she barely observes the difference and this is because the very weak influ-
ences of Reynolds number on large-scale motions. Of course, if one watches in
details (the small scales), one will definitely find subtle differences, therefore,
in some cases, real explosions of buildings or cars are made to achieve a correct
representation23.

A natural question is what are influences of Reynolds number on the small-
est eddies? This leads to the introduction of one of the greatest theories about
turbulence in the twentieth century by Kolmogorov (1941) (hereafter named
K41). Here it is summarised in short: At sufficiently high Reynolds number, the
small-scale turbulent motions ("" "0) are statistically isotropic. The statistics
of such small-scale motions (" " "EI) have a universal form that is uniquely
determined by the kinematic viscosity ν and dissipation rate ε. The statistics
of the motions of scales with medium size have a universal form that is uniquely
determined by dissipation rate, independent of the kinematic viscosity ν24.

Note that the smallest scales in a flow are usually called Kolmogorov scales
η, and simple dimensional analysis gives that η = (ν3ε)1/4. One important
conclusion made from the K41 theory is that in the so-called inertial subrange
(where the motions are of medium size and only determined by the dissipation
rate), the energy spectrum has a power-law behaviour, i.e. E(κ) ∼ κ−5/3 where
κ is the wavenumber. It took almost 20 years to test this theory convincingly
by a field experiment, i.e. a tidal channel in the wake of an island, by Grant
et al. (1962) in which the energy spectrum shows κ−5/3 law for more than three
decades of wavenumber.

1.3. Scalar transport

If examining all those engineering applications mentioned in the previous sec-
tions more carefully, soon one will realise that apart from the momentum trans-
port, there are other transport phenomena happening at the same time, the

22Variant under rotation of the framework.
23Unfortunately, the correct representation usually comes with a higher cost.
24Here " is the eddy size, "0 represents the energy containing range, " < "EI is referred to as
the universal equilibrium range.
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most common ones are e.g. heat transfer and mass transfer. “In fact, the oc-
currence of any single transport process by itself is the exception rather than
the rule” (Bird et al. 2002). If the concentration of the heat or the mass is
so small that they do not have influence on the fluid motion, then they could
be considered as a passive scalar25. Recall the famous Reynolds’ experiments
discussed in Section 1.1, it is actually a very nice example of transport of pas-
sive scalar (i.e. the colour band). Due to its passive nature, the colour band
was used to represent the flow motion (which itself is transparent). An un-
derstanding and prediction of the passive scalar behaviour in a turbulent flow
is crucial (apart from being used as a “tracer” for the flow motion) since the
turbulent scalar transport play a key role in many engineering applications:
meteorology, biology, chemistry, material and especially in global environmen-
tal problems (Kasagi & Iida 1999). For example, in the gas turbine industry,
it is necessary to predict the turbine blade temperature accurately which is
crucial to the engine efficiency, safety and hardware designs. Another example
is the prediction of the composition of combustion products which is essential
in meeting environmental regulations (Bradshaw 1996).

1.3.1. Prandtl and Schmidt number

The introduction of scalar transport leads to the new critical dimensionless
parameter: Prandtl number (Pr) for heat transfer problems or Schmidt number
(Sc) for mass transfer (e.g. molecular species) problems. Sometimes, the Péclet
number (Pe) is recognised as the product of Reynolds number and Prandtl
(Schmidt) number. The Prandtl/Schmidt number is a material property and
defined by the ratio between the viscous diffusion and the thermal/molecular
diffusion coefficients. Typical values of Pr are 0.71 for air and many other gases,
around 7 for water, between 100 and 40,000 for engine oil and around 0.025
for liquid metal like mercury (White 2006). A superficial conclusion can be
made that for low Prandtl/Schmidt numbers, i.e. Pr " 1, Sc " 1, the scalar
transfer is mainly via conduction and in this case the scalar boundary layer
grows much faster than the momentum boundary layer. On the other hand,
for large Prandtl/Schmidt numbers, i.e. Pr $ 1, Sc $ 1, the scalar transfer
is mainly dominated by convection. In this case, the scalar boundary layer
formed on the solid surface becomes extremely thin, in which the conductive
effects are important since conduction is the only mechanism for the near wall
scalar transfer (Leal 2007). From now on, no difference between a heat transfer
and mass transfer problem will be made and only Prandtl number will be used
to denote the scalar property.

A direct effect of the Prandtl number is to alter the smallest scales in the
scalar fluctuations, i.e. the so-called Batchelor scale ηθ = η/Pr1/2 (Batchelor
1959) where η is the Kolmogorov scale. The Batchelor scale decreases with

25The counterpart is the active scalar, in which case interactions exist between the velocity
field and scalar field. The consideration of an active scalar is out of the scope of the thesis.
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increasing Pr. For large Pr numbers, i.e. Pr $ 1, this makes the representation
of these small scales on the numerical grid much more expansive.

1.3.2. Reynolds analogy

The reason to discuss the scalar transport after the flow field is not because the
scalar transport is less important than the momentum transport, but because
i) one need the information of the flow field to calculate the scalar field26,
ii) the transport phenomenon due to turbulence between the momentum and
scalar field is roughly the same (Bradshaw 1996). Therefore, the scalar transfer
problem is usually studied in analogous way as the velocity field, based on the
idea of the so-called Reynolds analogy. The basic equations that govern the
transport of a passive scalar are indeed closely related to those govern the
momentum transport. If assuming similar boundary conditions, the similarity
of the governing equations provides the basis for solving the scalar transport
“by analogy” (Bird et al. 2002).

The first study about the analogy between momentum and heat transfer
is reported in a short and farsighted paper27 by Reynolds (1874). Almost
half a century later, these ideas were taken up and extended by authors such
as Prandtl, Taylor and von Kármán (Prandtl 1910; Taylor 1919; von Kármán
1939). In most industry applications, the Reynolds analogy is extremely useful,
e.g. a first approximation for heat transfer on the solid surface quantified by the
so-called Stanton number St can be obtained via the skin-friction cf . It should
be noted that the Reynolds analogy is only a tool based on a hypothesis about
the mechanism of scalar transfer and momentum transfer but not a physical
law. For Pr = 1 with certain simple boundary conditions28, the Reynolds
analogy is exact which leads to the relation St = cf

2
(Kays & Crawford 1993).

In practice, when the Prandtl number differs from unity, the analogy usually
does not hold any more and other correlations accounting Prandtl number
effects need to be used, e.g. the analogy correlation by Colbrun (1933), which is
based on experimental data of both laminar and turbulent flow. The Reynolds
analogy also breaks for non-canonical flow cases, e.g. in the presence of pressure
gradient or free-stream turbulence.

1.4. Analysis methods

Methods that can be used to study turbulent flows are usually divided into
theoretical and experimental ones, within which the latter are further divided
into laboratory/field experiments and numerical simulations29. However, being
such an extremely intricate problem involving non-local interactions, there is
no analytical solutions to the governing equations so far. All the early goals

26This is also why this thesis is so long, since I cannot directly describe the scalar fields
without introducing the velocity field.
27Nowadays, such a paper is termed a fast-track paper in JFM or letter in PoF.
28For instance, constant velocity in the free stream and constant scalar concentration differ-
ence between the free stream and the wall (Kays & Crawford 1993).
29Some authors prefer to name numerical simulation to be numerical experiments.
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of the statistical theory to obtain a finite, closed set of equations for average
quantities, including the mean velocity and the energy spectrum turns out to
be unrealistic (Frisch & Orszag 1990). In spite of the distinct physical and
mathematical approaches advocated by different researchers, none of the ex-
isting theories30 are completely satisfactory (Buschmann & Gad-el Hak 2007).
One possible reason for the absence of an analytical solution is associated with
the fact that adequate tools to handle both the mathematical problem and the
phenomenon of turbulence are not mature (Tsinober 2009). Therefore, most
work has been performed in physical experiments and since last 30 years also
in numerical experiments.

In a physical experiment, the flow can be traced either in a Lagrangian
way, i.e. one follows the history of the individual fluid particle, consequently, a
flow variable f (e.g. velocity) at time t can be expressed as f(&x0, t0, t) where
&x0 is the reference position at t = t0; or in an Eulerian way, i.e. in which what
happens at a position &x is focused on, so a flow variable f at this position at
time t is expressed as f = f(&x, t). In practice, measurements of Lagrangian
flow quantities are extremely difficult and Eulerian framework is often used31.

1.4.1. Averaging and Reynolds’ decomposition

Usually the time signals of certain instantaneous flow quantities are obtained
in experiments e.g. from hot-wires measurements. Due to the chaotic nature of
turbulence, usually certain (spatial, time or ensemble) average is performed on
the measured instantaneous flow variable f(&x, t) (which is a function of space
and time). On the other hand, one does not need to know every detail of
the instantaneous signal. The simplest kind of average is a time average at a
given point in space. For example, the time average of a flow variable f(&x, t)
is defined as

〈f〉(&x) = lim
T→∞

1
T

∫ t0+T

t0

f(&x, t)dt , (1.1)

where 〈·〉 denotes the averaged quantity, T is the averaging time and t0 is the
time when averaging is started. In principle the averaging depends on t0, but
usually the influence of t0 on the final averaged quantity is negligible assuming
long enough averaging and a statistically stationary process. Moreover, T →∞
means the averaging time should be large enough so that the averaged quantity
converges to acceptable accuracy. In practice, f(&x, t) is usually a digital output
either from experiment or computation at discrete times tn, n = 1, 2, 3 · · ·N ,
so equation (1.1) is replaced by

〈f〉(&x) = lim
N→∞

1
N

N∑

n=1

f(&x, tn) . (1.2)

30Moreover, they are by far too complicated to be understood, at least for me, therefore they
will not be mentioned and discussed here.
31With the advances of experimental techniques, more and more studies are performed in
Lagrangian framework.
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Note that tn does not necessarily have to be equally spaced and N → ∞
only means certain large number of samples is required for given accuracy of
the averaged quantity. If the samples are “independent”, e.g. if the time is
widely spaced between two successive measurements, that is to say, there is no
correlation of the behaviour of f(&x, t) between time instance at tn−1 and tn. In
such a case, the number of samples needed to reach certain given convergence
is minimum (Bradshaw 1996).

Another average is the so-called ensemble average, defined as,

〈f〉(&x, t0) = lim
N→∞

1
N

N∑

n=1

f(&x, t0) , (1.3)

here consider N as the number of realizations, e.g. runs of an experiment,
and the sample is taken at the same time t0 after the start of each run of an
experiment. Note the averaged quantity is a function of both space and time
when the measurements are taken, i.e. t0.

The majority of flows studies in a laboratory are statistically stationary
with respect to time, which implies that the time average is identical with the
ensemble average according to the ergodic hypothesis. In addition, the spatial
average can be performed on homogeneous directions, however in real world
complex flows, usually none of the three spatial directions is homogeneous,
hence this leads to a very long averaging time to get acceptable convergence.

Already in the early 16th century, the Italian genius Leonardo da Vinci
sketched the famous “Old Man with Water Studies” and the following obser-
vations are made (Piomelli 2001): “The water has eddying motions, one part
of which is due to the principal current, the other to the random and reverse
motion.” These pure observations may be seen as a precursor to the Reynolds’
decomposition which is a sophisticated way to study turbulence. In 1890s, Os-
borne Reynolds for the first time in his paper Reynolds (1895) introduced a
decomposition of the instantaneous velocity fields into a averaged (mean) part
and a fluctuating part, i.e. f(&x, t) = 〈f(&x, t)〉 + f ′(&x, t), nowadays known as
the Reynolds decomposition. The Reynolds decomposition has very important
status since almost all the statistical results (either experimental or numerical)
concerning turbulence rely on it.

1.4.2. Experiments & simulations

Being a long established technique, experiments have been used in fundamental
research but also practical problems. Though large parallel computer systems
develop fast during the last years, the Reynolds numbers reached by simu-
lations are still low compared to those obtained in experiments. Moreover,
many flows in complex geometries or with complex flow phenomena are still
only accessible to experiments (Tsinober 2009). Apart from these, the most
important advantage of experiments is that they are dealing with physically
“correct” flows. A lot of elaborate methods used/developed to study turbulent
flows are e.g. hot/cold-wire anemometry, laser Doppler anemometry, particle
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image velocimetry, particle tracking velocimetry32. The main drawback for
experimental measurements is that sometimes accurate measurements are im-
possible especially close to the solid surface due to the instrumental problems33

and the methods/probes for measuring certain quantities are not born yet.
As opposed to the experiments, numerical simulations are relatively young.

Most of the simulations are limited at moderate Reynolds numbers and simple
geometries compared to the experiments. However, by its nature, simulations
can be “designed” to accurately measure quantities, at any positions in the flow
which are not accessible in experiments or flows that are not reproducible in
the laboratory. Sometimes, even unphysical situations due to the choice of un-
realistic parameters can be simulated. One can perform the so-called “thought
experiments”34 using simulations tools. However, there are many doubts on
the simulation results due to the sensitivity on the initial/boundary condi-
tions together with issues of resolutions, computational box dimensions, etc.
Nevertheless, it is very difficult to overestimate the importance of numerical
simulations and a carefully designed simulation should be given as much credi-
bility as a carefully conducted experiment. The most commonly used methods
for simulations are direct numerical simulation (DNS), large-eddy simulation
(LES) and Reynolds-averaged Navier-Stokes (RANS), among which only the
DNS gives the correct answer to the governing equations. The other two, i.e.
LES and RANS, involve certain extent of modelling35 which might lead to in-
exact solutions and therefore they are not as trustful as DNS or experimental
results.

1.5. Scope of the thesis

The present thesis is mainly concerned with the canonical flat-plate boundary
layer including passive scalar transport. Here the word “canonical” means
the following simplified situations as opposed to the more complicated real
situations:
• Nominal zero-pressure-gradient. Neither adverse nor favourite pressure

gradient is considered along the streamwise direction far away from the wall.
• The wall is perfectly smooth and flat. Neither wall roughness nor wall

curvature is considered.
• Incompressibility. Any compressible effects are not considered, i.e. flow

is at low Mach number (Ma ≤ 0.3).
• Two-dimensional mean flow with homogeneous spanwise direction.
• Constant fluid property, e.g. viscosity and density do not vary with tem-

perature.
Some of the simplifications are justified here:

32There are definitely more methods than these.
33As a student doing numerical simulations, I even doubt my ability to judge numerical
techniques. It is certain that I am not qualified to judge on experimental techniques.
34The words probably comes from Ernst Mach in the science community.
35“that is to say, a cheap answer to an expensive problem.” – Prof. Bradshaw
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• Turbulence (fluctuation) is always three-dimensional, therefore even with
a two-dimensional mean flow, one will not observe qualitative differences in the
turbulence structures.
• Compressibility has no direct influence on turbulence if the density fluc-

tuations are small compared to the absolute density, i.e. Morkovin’s hypothesis
(Morkovin 1964). However, the density variation or extra velocity gradient
resulting from pressure gradients do affect turbulence.
• Viscosity’s dependence on the temperature should not directly influence

the flow except in the conductive sublayer where most temperature difference
occurs (Rannie 1956). Especially for high Prandtl number fluids, the conductive
sublayer becomes so thin that the outer part is approximately isothermal. In
general, an understanding of variable viscosity is always desirable.

The reason to conduct the thesis on such a simple setup is obvious, i.e.
the problem should be as simple as possible to exclude influences from other
complex/unknown factors. However, as suggested by Clauser (1956), the phys-
ical understanding of a canonical turbulent boundary layer can be improved
by observing the its response to different outside influences36. For the present
thesis, as an extension to more complex situations, the effects of free-stream
turbulence are considered in some cases in the hope that these “external dist-
urbances” could shed some light on the canonical flow case.

The thesis is arranged in such an order: Chapter 2 will provide the numer-
ical issues concerning the present study. Chapter 3 includes some of the results
pertaining to both velocity and scalar fields. Chapter 4 summarises and the
conclusions are drawn and outlooks are made.

36For more details about the behaviours of a perturbed boundary layer, one could refer to
the review by Smits & Wood (1985) and references therein.



CHAPTER 2

Numerical issues

“You don’t get what you don’t pay for”

– Peter Bradshaw

“You shouldn’t get what you don’t pay for”

– anonymous

This section gives a general view of different aspects of numerical simulations.
Starting from the governing equation, follows a discussion of the resolution
requirement for the various simulation methods. In addition, both the spatial
and temporal discretization schemes are discussed, followed by how to specify
proper inflow/outflow conditions and boundary conditions. In the end, some
general rules about code validation are given.

2.1. Governing equations

2.1.1. Direct numerical simulation (DNS)

The governing equations for the direct numerical simulation (DNS) of an in-
compressible (laminar, transitional or turbulent) flow with passive scalars are
the Navier-Stokes equations and the scalar transport equation, here written in
non-dimensional form and tensor notation as

∂ui
∂t

+ uj
∂ui
∂xj

= −
∂p

∂xi
+

1
Re

∂2ui
∂xj∂xj

,

∂ui
∂xi

= 0 ,

∂θ

∂t
+ ui

∂θ

∂xi
=

1
RePr

∂2θ

∂xi∂xi
,

(2.1)

where (x1, x2, x3) = (x, y, z) are the Cartesian coordinates in the streamwise,
wall-normal and spanwise direction, respectively. (u1, u2, u3) = (u, v, w) are the
corresponding instantaneous velocity fields, p is the pressure and θ the scalar
concentration. The Reynolds number Re is defined as

Re =
UrefLref

ν
,
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where Uref , Lref and ν are the dimensional reference velocity and
length and kinematic viscosity, respectively, which are also used for non-
dimensionalisation. Pr is the Prandtl number defined by

Pr =
ν

α
,

where α is the scalar diffusivity.
The summation convention is implied over repeated indices throughout this

thesis unless stated otherwise. The streamwise and spanwise directions will be
alternatively termed as the horizontal/wall-parallel directions.

2.1.2. Large-eddy simulation (LES)

The governing equations for large-eddy simulation (LES) are the spatially fil-
tered Navier-Stokes equations and the scalar transport equation which in di-
mensionless form read

∂ũi
∂t

+ ũj
∂ũi
∂xj

= −
∂p̃

∂xi
+

1
Re

∂2ũi
∂xj∂xj

−
∂τij
∂xj
,

∂ũi
∂xi

= 0 ,

∂θ̃

∂t
+ ũi

∂θ̃

∂xi
=

1
RePr

∂2θ̃

∂xi∂xi
−
∂σi
∂xi
,

(2.2)

where the so-called sub-grid scale (SGS) stresses τij = ũiuj − ũiũj and
σi = ũiθ − ũiθ̃ represent the impact of the unresolved velocities/scalar on the
resolved ones and have to be modelled. Mathematically, they arise from the
nonlinearity of the convection term which does not commute with the linear
filtering operation.

A filtered quantity f̃(x) in one dimension is defined by

f̃(x) = GP ∗ f =
∫

Ω

GP (x, x′,∆)f(x′)dx′ ,

where Ω is the computational domain, GP is the primary filter with ∆ being
the filter width. A three-dimensional filter can be easily formulated and the
common filters are the sharp cut-off filter, Gaussian filter and top-hat filter.
For more mathematical properties of these filters, one could refer to e.g. Pope
(2000). The filtering operation separates the large and small scales and the
filter function GP determines the size and structures of the large scales. For the
differentiation and the filtering operation to commute, GP has to be a function
of x − x′ only (Leonard 1974). A rough classification of the LES models can
be made depending on the primary filter GP : implicitly filtered models if the
primary filter GP is the grid filter, e.g. the ones used in the classical eddy-
viscosity models; explicitly filtered models where an explicit filter operation
is taken, e.g. the graded primary filter used in the approximate deconvolution
model (ADM) (Stolz & Adams 1999).
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2.2. Sub-grid scale (SGS) modelling

In LES, the effects of the unresolved scales on the resolved ones have to be
provided via the sub-grid scale (SGS) model. Therefore, a good SGS model
is generally desirable. Here the following SGS models, namely Smagorinsky
model (SM), high-pass filtered Smagorinsky model (HPF-SM) and relaxation-
term (RT) model are considered. Their counterpart account for passive scalar
transport are discussed in the following subsection. For the models presented
in the thesis, the formulations are taken from the thesis by Schlatter (2005).
For more detailed formulation/derivation, please refer to the original thesis or
papers therein. For other models, one could refer to the textbook by e.g. Sagaut
(2005).

2.2.1. SGS model for velocity field

For the Smagorinsky model, the SGS stresses are modelled by

τij −
δij
3
τkk = −2νtSij(ũ) ,

Sij(ũ) =
1
2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
,

νt = (Cs∆)2|S(ũ)| ,

|S(ũ)| =
√

2Sij(ũ)Sij(ũ) ,

where ∆ is a typical length scale of the primary filter usually computed from
the grid size as ∆ = (∆x∆y∆z)

1
3 (Deardorff 1970). The model coefficient Cs

known as the Smagorinsky constant is actually not a constant and has to be
determined a priori based on the flow case.

For HPF-SM model, the formulation is similar to that of the SM model,
and the only difference is that the SGS stresses are evaluated based on the
filtered velocity field instead of the resolved velocity field. The moldelled SGS
stress are given by

τij −
δij
3
τkk = −2νHPFt Sij(H ∗ ũ) ,

Sij(H ∗ ũ) =
1
2

(
∂H ∗ ũi
∂xj

+
∂H ∗ ũj
∂xi

)
,

νHPFt = (CHPFs ∆)2|S(H ∗ ũ)| ,

|S(H ∗ ũ)| =
√

2Sij(H ∗ ũ)Sij(H ∗ ũ) ,

where H is a high-pass filter, and CHPFs being the model coefficient.
Note that for both SM and HPF-SM models, the model coefficient can be

also computed dynamically. The same recipe will not be repeated here and
one may refer to Germano et al. (1991); Lilly (1992); Schlatter et al. (2006) for
more details.
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For RT model, the SGS forcing terms ∂τij∂xj are modelled by

∂τij
∂xj

= χHN ∗ ũi ,

where HN is a high-pass filter and χ is the model constant usually set to 0.2.
The constant χ can be determined dynamically, however, tests showed that the
results are rather insensitive to it (Stolz et al. 2001; Schlatter et al. 2006).

2.2.2. SGS model for scalar field

The sub-grid scale (SGS) model for the passive scalar corresponding to eddy-
viscosity models is the so-called eddy-diffusivity model. The SGS stress σi is
obtained by

σi = −
νt
Prt

∂θ̃

∂xi
or

σi = −
νHPFt

Prt

∂H ∗ θ̃

∂xi
for classic or high-pass filtered eddy-viscosity models and

σi = −
χ

Prt

∂HN ∗ θ̃

∂xi
for RT model. A constant turbulent Prandtl number Prt = 0.6 is usually
assumed. Note that all the drawbacks of the models for the velocity are present
in the scalar models as well. It should be noted that the literature on SGS
modelling of passive scalars is much less extensive than that for the velocities.
In particular high Péclet numbers (high Re or Pr) are seldomly addressed.

2.3. Resolution requirements

With the advances of the large-scales parallel computers, numerical simula-
tions are getting more and more involved in our understanding of turbulence.
In principle, the Navier-Stokes equations are discretised on the numerical grid
and integrated over time with appropriate boundary condition and initial condi-
tion. There should be no doubt that a carefully designed numerical simulation
is just an experiment equipped with “ghost sensing probes”, i.e. a sensing probe
without instrumental defects. Furthermore, there is no reason to expect the
numerical data to be less accurate than those obtained by experiments, see e.g.
a recent study of comparison of both simulation and experimental results in a
turbulent boundary layer by Schlatter et al. (2009). “When people regret that
we do not ‘understand’ turbulence they are really regretting that we are not
able to integrate the Navier-Stokes equations in our heads: for that, one would
need a Cray in the cranium.”(Bradshaw 1996). Unfortunately, even one could
put the most powerful Cray1 in the cranium, one could not solve the “mys-
terious” problem, simply because the Reynolds number reached by large-scale

1For those who do not like Cray, one could think of another vender as you like.
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computers nowadays is still too low even compared to the Reynolds number
range obtainable by wind-tunnel experiments, let alone those in industry appli-
cations or in nature. This is a major disadvantage of all the simulations. One
could always push the Reynolds number higher at the expense of accuracy, but
even in those cases, the obtained Reynolds number is still not high enough.

2.3.1. DNS

DNS provides the most accurate three-dimensional, time-dependent numeri-
cal solutions to the governing equations, i.e. the NS equations and the scalar
transport equation if passive scalar transport is considered. These equations
are solved without employing any turbulence models, i.e. no assumption for the
physics, hence the errors come only from the numerical approximations and do-
main truncation. Due to its requirement to accurately represent the flow field,
the most smallest eddies with the Kolmogorov/Batchelor length scales need to
be resolved on the numerical grid which then leads to billions of grid points or
spectral modes to be used for even a low laboratory Reynolds number.

Considering wall-bounded flows2, the number of grid points (resolution)
required can be estimated from the ratio L/η where L is the integral length-
scale (characterising the large eddies, e.g. the pipe radius, channel height or
the boundary layer thickness) and η is the Kolmogorov scale. Usually at least
two grid points are needed for each smallest scale η (Jiménez 2003), the nec-
essary number of grid N in each dimension is on the order of Reτ , which is a
certain measure of Reynolds number. The number of time steps needed for a
fluid particle to go through the computational box once, is on the order of N
(Jiménez 2003). A rule of thumb is that the fluid particles need to go through
at least 10 times the computational box to get converged low-order statistics,
e.g. the mean and second-order statistics. The total computational cost which
depends on the product of number of points by the number of time steps is
then on the order of Re4τ (Jiménez 2003) for a three-dimensional problem. It is
clear the high cost with increasing Reynolds number is restricting DNS only as
a research tool. A rule of thumb about the required resolutions in wall-parallel
directions for a DNS are of the order ∆x+ = 8,∆z+ = 4 (Kim et al. 1987)3.
Usually in the wall-normal direction, a non-equal distance grid is adopted, e.g.
Chebyshev polynomials used in the psedospectral simulations, or grid stretch-
ing in finite difference codes. So a general guideline is at least 10 grid points
are needed in the region y+ < 10 and three points below y+ = 1. In the outer
region e.g. near the boundary layer edge or channel/pipe centre line, ∆y+ = 10
can be used. Note that if considering also the scalar transport at Pr > 1, due
to a smaller Batchelor scale ηθ = η/Pr1/2 needs to be resolved, the resolution

2For flows without walls, the estimation for the computational cost is a little bit less and one
could find more detailed derivations/discussions in e.g. Pope (2000).

3Here grid spacing is scaled in wall (inner) units, i.e. ∆x+ = uτ∆x
ν

with uτ =

√
ν
∂〈u〉
∂y

∣∣∣
y=0

,

since the viscous wall unit is the wall equivalent of the Kolmogorov scale (Jiménez 2003).
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requirement is more severe and which usually leads to an over-resolved velocity
field.

2.3.2. LES

LES take advantage of the idea from K41 theory (see Section 1.2) that the small
eddies are statistically more isotropic4 at high enough Reynolds number and
the inertial range is independent of the dissipation mechanism. So the large
anisotropic eddies need to be resolved on the numerical grid while the effects
of the unresolved smaller eddies are modelled by the so-called sub-grid scales
(SGS) models which is working like an energy drain and in the hope that the
dynamics of the large scales would not be disturbed.

However, for wall-bounded flows as opposed to the free shear flows, all the
eddies are anisotropic as long as they have a size larger than something on the
order of the wall distance y and this trend continues until y is of the order of the
viscous wall unit which is equivalent to the Kolmogorov scales (Jiménez 2003).
Moreover, truncating the spectrum at certain chosen wavelength according to
the filter width (related to the grid resolution for implicit LES) will make e.g.
some part of an eddy in the resolved motion while the other part in the SGS
motion, since a turbulent eddy is not as simple as an Fourier mode (Bradshaw
1997). The overall performance of a LES calculation thus to a large extent
depends on the chosen SGS model assuming sufficient grid points to resolve
the relevant physics. The resolution requirement of a usual wall-resolved LES
calculation is that the number of grid points has to be sufficient to resolve
the wall layer (Piomelli 2001), i.e. to capture the energy-producing structures,
e.g. the so-called streaks. The cost of such LES calculations also depends
on the Reynolds number. An estimation of the total number of points (grid
resolution) is proportional to Re2τ (Jiménez 2003) which is indeed lower (but
not that much lower) than the case for DNS which is proportional to Re3τ . This
means that using LES one can obtain results at higher Reynolds number than
DNS for equivalent cost, but the Reynolds number reached is still not high
enough for practical engineering flows. Recent studies have shown especially
for wall-bounded turbulent flows, that a good LES is almost as expensive as
a DNS, e.g. see the discussion in Fröhlich & Rodi (2002). Therefore, one way
to reduce the computational cost in LES is to use the so-called wall models5

which enables the calculations to be finished in an acceptable time for practical
engineering applications. The idea of the wall model is to only resolve the outer
part of the boundary layer leaving the wall region being completely modelled by
specifying a correlation between the velocity in the outer region and the shear
stress at the wall. For more details about wall modelling, one can refer to the
review by Piomelli & Balaras (2002) and references therein. In general, the
resolution guidelines for LES are ∆x+ ≈ 50− 150, ∆z+ ≈ 15− 40 and the first

4Or put it differently as done by Prof. Stewart:“They don’t know which way is up”.
5Other alternatives include using hybrid LES/RANS or detached eddy simulation (DES)
(Spalart 2009), however, these methods in turn require a good RANS model.
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point is at y+ < 1. With the help of wall models, the resolution requirement
can be relaxed to ∆x+ ≈ 100 − 600, ∆z+ ≈ 100 − 300 and the first point in
wall-normal direction can be located at y+ ≈ 30− 150 (Piomelli 2001).

2.3.3. RANS

The cheapest solution to the NS equations is obtainable via a solution to the
Reynolds averaged Navier-Stokes (RANS) equations but with the lowest ac-
curacy. However, it is favoured by the industry since most of the cases only
the very basic mean statistics are needed6. Hybrid LES/RANS or LES with
wall models begin to be appreciated in the companies but only confined to a
small part for development. Due to the averaging, much information is lost and
therefore one or more equations with empirical coefficients (usually obtained
from experimental/simulation data) must be solved for compensation. For
those who are interested, one may refer to e.g. Pope (2000) for more detailed
discussions about RANS models and references therein.

2.4. Spatial & temporal discretisation

Due to the large resolution requirement, i.e. high computational cost, DNS
and LES are not used as a design tool in the industry where RANS simulations
are still dominant. Therefore, DNS and LES are still mainly dominant in
the research community for addressing basic questions regarding physics and
modelling. Regarding these issues, the numerical errors must be monitored
and controlled which is important for the successfully reproducing all the scales
present in the turbulent flows (Coleman & Sandberg 2010).

2.4.1. Spatial discretisation

So far, the solvers for turbulent flows in research community are dominated
by spectral and finite-difference schemes depending on the flow case at hand.
For canonical geometries, such as channel or flat-plate boundary layer, usually
highly accurate and efficient algorithms, i.e. spectral methods (Canuto et al.
1988) which have barely no dissipation and dispersion errors, can be employed.
Due to the global basis functions used in the spectral methods7, to compute
each single quantity at one grid point, information from all the other points in
the entire direction is needed. On the other hand, the disadvantages of spec-
tral methods contains the inability to be applied in complex flow geometries
and special treatments are required to enforce the inflow/outflow boundary
conditions8, see also discussions in Section 2.5. These shortcomings lead some
researchers to choose the high-order finite-difference schemes for non-canonical
cases, see e.g. discussions in Sandham (2002). Nowadays, simulations are usu-
ally performed on large memory-distributed systems, i.e. data is distributed on

6“One does not pay for what one does not need, no matter how good it is.”
7Usually high-order polynomials or Fourier series are chosen.
8Using spectral methods, the solid boundaries tend to give rise to stability problems which
are poorly understood and further restrict the time step (Trefethen 1996).
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different processors and at any given time, there is no single processor which
has access to all the data in the entire domain. To access the data belonging to
other processors, communication between different processors is needed. Such
communication intensive applications in general have lower performance since
the communication is not fully overlapping computation.

Compared to spectral methods, finite difference schemes are easier to im-
plement, and suitable for more complex geometry and parallelization since only
local information (information from neighbouring points) is needed for comput-
ing quantity at each grid point. However, a shortcoming for finite difference
schemes is its low order accuracy compared to the spectral method. This in
turn leads to an enormous amount of grid points to be spent to achieve the
same accuracy compared to the spectral method. Moreover, the dispersion er-
rors present in the finite difference method e.g. introduce unphysical behaviour
in acoustic field or evolution of the vortical structure of the turbulence (Cole-
man & Sandberg 2010). In the end, one always need to compromise between
the accuracy and complexity of the flow case.

One way to overcome this drawback is to use the so-called spectral-element
method first introduced by Patera (1984) and later developed by many others,
see e.g. Maday & Patera (1989); Karniadakis & Sherwin (2005). This method
combines the geometric generality/flexibility of the finite element method with
the accuracy of spectral methods, and is suitable for simulations in complex
geometries9.

2.4.2. Temporal discretisation

Since turbulence contains various spatial scales, there is a need to resolve their
associated parts in temporal space, i.e. accurate temporal discretisation is nec-
essary. The time integration schemes can be in general divided into two cate-
gories: i) explicit schemes: the state of a system at a later time is calculated
from the state of the system at the current time; ii) implicit schemes: the state
of a system at a later time is obtained by solving an equation involving both
the current state and the later state of the system. The explicit scheme can
be designed to have high order of accuracy, however, the restriction of explicit
scheme comes from the numerical instability. It is often the case that the max-
imum time step ensuring the scheme to be stable is well below the accuracy
threshold required to resolve all the relevant temporal scales. On the other
hand, implicit schemes are usually stable, but difficult to be designed to have
high order of accuracy and furthermore, they require extra computations.

Based on a one-dimensional linear model problem, i.e. convection-diffusion
equation: ∂θ∂t + c ∂θ∂x = ν ∂

2θ
∂x2 where c and ν are constant convection velocity and

viscosity coefficient. Following the derivation in Coleman & Sandberg (2010),
one can show that for a spectral method, the maximum time step ∆t has to

9For more details about the turbulence simulation using spectral-element methods, one could
refer to e.g. the very nice work performed on my neighbour’s desk (Ohlsson et al. 2010).
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fulfil the following condition10:

(1− π2 ν∆t
∆x2

)2 + (π
c∆t
∆x

) ≤ 1 . (2.3)

It is clear from this condition that the viscosity is extremely important to
keep the scheme stable. Moreover, the first term is usually called the vis-
cous condition which indicates that ∆tν ∼ ∆x2

ν ; The other one is the so-called
Courant-Friederichs-Lewy (CFL) condition (Courant et al. 1928) which requires
∆tc ∼ ∆x

c . For turbulence in wall-bounded flows, e.g. channel, pipe and bound-
ary layer flows, the near wall resolution usually is very fine (especially in the
wall-normal direction due to the Gauss-Lobatto distribution in spectral method
or grid stretching in finite difference schemes) which then leads to a prohib-
itively small viscous condition. Consequently, a combination of both explicit
and implicit schemes is usually adopted in most solvers for incompressible wall-
bounded flows: an explicit scheme (usually Runge-Kutta scheme) is applied for
non-linear (convective) terms and an implicit scheme (usually Crank-Nicolson
scheme (Crank & Nicolson 1947)) for linear (viscous) terms.

2.5. Inflow & outflow condition

For spatially developing flows, e.g. boundary layer flows, it is extremely chal-
lenging to impose the appropriate inflow/outflow which is the best model for a
boundary layer which grows in the downstream direction rather than in time.
The most “straight-forward” way to generate turbulent inflow would be through
laminar-turbulent transition as what is done in the laboratory. Usually in the
experiments, the flow is disturbed by tripping devices mounted near the leading
edge of the flat plate such that it becomes turbulent downstream. To mimic
these tripping wires effects, one could add a volume forcing close to the inlet
of the numerical domain which induces laminar-turbulent transition (Chevalier
et al. 2007). Another way to generate turbulence through laminar-turbulent
transition is to use free-stream turbulence. In this case, the disturbances in the
free steam penetrate the boundary layer and cause the so-called “bypass” tran-
sition, see e.g. Brandt et al. (2004). It is obvious that one disadvantage of these
two methods is that the flow in the initial part of the computational domain
are during transition and thus can not be used to study turbulence. To avoid
simulating laminar-turbulent transition, one could resort to the so-called “re-
cycling method” originally proposed by Lund et al. (1998). Using this method,
the turbulent inflow is synthesised by rescaling a reference downstream plane
of the simulation at each time step. However, one issue about the“recycling
method” is how to choose the rescaling parameters which are not clear. Fur-
thermore, appropriate turbulent inflow generally requires complete, physically
realistic, correct history for each variable at each grid point (Coleman & Sand-
berg 2010), therefore, though the synthesised inflow is turbulent, it still needs

10“Though the stability criteria is derived from one-dimensional linear model problem, in
practise, it usually provides reasonable estimate for nonlinear and three-dimensional prob-
lems” (Coleman & Sandberg 2010).
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certain downstream distance for the flow to evolve and adjust itself to have the
correct dynamics (Jiménez et al. 2008). Moreover, there are e.g. streamwise
correlations in the fluctuations when employed recycling method which is not
for the case using trip forcing. Another way of generating turbulent inflow
data is to run an auxiliary DNS and take the data from there, but again this
auxiliary DNS does have similar problems in its own setup and is thus not a
perfect solution.

For spectral methods, since it is required to have periodic boundary con-
dition in the streamwise, therefore some special treatments have to be done to
enforce the periodicity. The most common trick is to add the so-called “fringe
region” (Spalart 1988; Bertolotti et al. 1992; Nordström et al. 1999; Chevalier
et al. 2007), i.e. an extra region is added at the downstream end of the physical
domain. Within this region, to fulfil the periodic boundary conditions in the
streamwise direction, a volume force is added to the Navier–Stokes equations
and the boundary layer is brought back to the exact inflow condition, e.g. a
laminar Blasius profile. Note that the fringe forcing is also applied to the scalar
field in a similar fashion.

2.6. Boundary condition

Imposing approporiate boundary conditions is not at all trivial and correct
boundary conditions can easily make the computation successful, stable and
fast (Trefethen 1996)11.

The velocity and scalar fields are periodic in the horizontal directions
whereas specified boundary conditions at the wall and in the free-stream are
needed to solve the governing equations. For the boundary conditions on the
solid wall12, the most common one being used is the so-called no-slip boundary
condition, i.e. the velocity of the fluid at a solid surface must be equal to the
velocity of the surface. Another type of wall boundary condition is usually used
for scalar field which is a constant scalar flux condition at the wall.

Concerning the boundary condition in the free stream, physically the flow
is assumed to extend to an infinite distance perpendicular to the wall. How-
ever, in practise, the computational domain is always finite, so is the size of the
wind tunnel. Therefore, the flow domain is always truncated and an artificial
boundary condition needs to be applied in the free stream at a height of the
computational box yL. The requirement of such a free stream boundary con-
dition is that the solutions to the governing equations in the truncated domain
should approximate the correct solutions in an unbounded domain, i.e. what-
ever condition employed in the free stream should not propagate back into the
computational domain and contaminate the solutions (Trefethen 1996). The
most common idea is to use a so-called “sponge region”13 in which the same
governing equations are solved but with extra dissipative terms added to absorb

11Usually the problem is that correct boundary conditions are unknown.
12Here no blowing nor suction on the wall is considered.
13Similar to the idea of “fringe region” which forces the flow to a desired flow condition.
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energy or damp disturbances, and thus avoiding disturbances to reflect back
into the physical interesting domain. One drawback similar to the concept of
“fringe region” is that the “sponge region” is only used to prevent reflections
of fluctuations, and the disturbances should be “killed” smoothly, i.e. the ex-
tra dissipative term should not have large amplitude. As a consequence, the
region must be thick, and thus computationally expensive especially in three-
dimensional calculations.

Another way of imposing free stream boundary condition is to match the
solutions of the physical problem at the free stream. Apparently, imposing
such a boundary condition requires the knowledge of the physical problem at
far field. For the present simulations, both wall boundary condition and the
free stream boundary condition are implemented in the following way, see the
original report by Chevalier et al. (2007) for more detailed discussions.

2.6.1. Boundary conditions for flow field

At the wall, the no-slip boundary conditions are applied,

u
∣∣
y=0

= 0, v
∣∣
y=0

= 0, w
∣∣
y=0

= 0 (2.4)

and
∂v

∂y

∣∣∣
y=0

= 0 , (2.5)

which is derived from the continuity equation.
In the free stream, the simplest possible boundary condition is a Dirichlet

condition which is defined as

ui
∣∣
y=yL

= Ui
∣∣
y=yL

, (2.6)

where yL is the height of the solution domain in the wall-normal direction.
Ui(x, y) is a laminar base flow that is usually chosen as the Blasius flow for
a canonical zero-pressure-gradient turbulent boundary layer14. However, the
desired flow solution generally contains small disturbances which will be forced
to zero by the Dirichlet condition resulting in increased damping of disturbances
in the boundary layer. This introduces errors compared to the exact solution
for which the boundary condition is applied at an infinite distance from the
wall. Some improvement can be made by imposing a Neumann condition which
is defined as

∂ui
∂y

∣∣∣
y=yL

=
∂Ui
∂y

∣∣∣
y=yL

. (2.7)

The Neumann condition can be shown to be stable if the upper boundary is
placed on a sufficiently large distance from the wall15, so that the disturbance
velocity is small.

14For boundary layers with pressure gradient, one could choose Falkner-Skan-Cooke (FSC)
flow as the base flow.
15In the present simulations, the domain height is usually chosen at least twice as high as the
boundary layer thickness at the highest Reynolds number. A generalisation of the boundary
condition used by Malik et al. (1985) can be employed to place the upper boundary closer
to the wall.
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2.6.2. Boundary conditions for scalar field

In the present implementation for the scalar field, two types of wall boundary
conditions are available: an isoscalar wall or an isoflux wall which are given by

θ
∣∣
y=0

= 0 , for the isoscalar boundary condition

∂θ

∂y

∣∣∣
y=0

= 1 , for the isoflux boundary condition (2.8)

These two kinds of wall boundary conditions are actually two limiting cases of
the physical configuration. Considering θ to be the temperature concentration,
the isoscalar wall boundary condition corresponds to a situation where the fluid
with negligible density ρ, heat capacity cp and thermal conductivity k is heated
by an infinitely thick wall with large density ρw, heat capacity cpw and thermal

conductivity kw. Hence the thermal activity ratio K =
√

ρcpk
ρwcpwkw

is vanishing
in this case. The isoflux wall boundary condition, however, is an opposite
case. It signifies an extremely thin wall with small density, heat capacity and
thermal conductivity while the corresponding fluid properties are quite large.
This leads to a thermal activity ratio K of ∞ (Tiselj et al. 2001). In order to
reveal the details of the heat transfer near the wall for a more general case,
one has to solve the conjugate heat transfer problem with a given thickness,
material properties of the solid wall and the properties of the fluid. For more
details about conjugate heat transfer, see e.g. Kasagi et al. (1989).

The boundary condition in the free-stream is of Dirichlet type, i.e.

θ
∣∣
y=yL

= 1 . (2.9)

A Neumann condition was also tested, and the results turned out to be indis-
tinguishable to those obtained with the Dirichlet condition.

2.6.3. Free-stream turbulence generation

In some occasions, the boundary layer is subject to external distur-
bances, for instance free-stream turbulence (FST) which can be either
isotropic/homogeneous or anisotropic/inhomogeneous. To generate isotropic
and homogeneous free-stream turbulence, usually it is done by using a turbu-
lence grid in experiments. To synthesise free-stream turbulence in a simulation,
Jacobs & Durbin (2001) followed the methodology proposed by Grosch & Sal-
wen (1978), i.e. superimposing Fourier modes and the Orr-Sommerfeld modes
from the continuous spectrum. Later, Brandt et al. (2004) used a similar way to
generate FST by summing up both Orr-Sommerfeld modes and Squire modes.
It can be shown that far above the boundary layer, these continuous Orr-
Sommerfeld modes behave the same as the Fourier modes. Other possibilities,
e.g. followed by Péneau et al. (2000), generate the inflow free-stream turbulence
by composing random Oseen vortices. By using all these methods to generate
FST, one could avoid the inclusion of the leading edge of the flat plate which
saves considerable computational effort. On the other hand, possible history
effects of the FST cannot be considered, i.e. the FST effects only depend on
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the local turbulence intensity and the length scale, due to the lack of leading
edge effects. To investigate such history effects of the FST and better compare
with the experiments, one has to include the leading edge of the plate. Such
simulations have been performed previously by some authors, e.g. see references
by Péneau et al. (2000); Ovchinnikov et al. (2008). However, these studies are
mainly in an effort to study transition to turbulence, rather than a fully tur-
bulent boundary layer under FST. As opposed to the isotropic/homogeneous
FST, anisotropic/inhomogeneous FST can also be generated, and such cases
are more likely to happen in turbine industries. To generate these high inten-
sity, anisotropic FST, one could use the e.g. a turbulent jet as in Maciejewski &
Moffat (1992a,b). Apart from corresponding better to practical situations, the
jet-generated FST has an intensity more or less constant along large distance
downstream which is a nice property to distinguish the effects of free-stream
intensity from other possible factors (Kondjoyan et al. 2002).

The FST is usually characterised by its intensity Tu and its lengthscale.
The turbulence intensity Tu is defined by

Tu =

√
u2
rms + v2rms + w2

rms

3
. (2.10)

For the lengthscale, following Tennekes & Lumley (1972), an integral length
scale L characterising the FST16 is defined as

L =
1.8
κmax

, (2.11)

where κmax is the wavenumber where the maximum energy is located in the
spectrum. Another length scale Lu, based on the streamwise velocity fluctua-
tions usually employed in experiments, see e.g. Simonich & Bradshaw (1978),
is defined by

Lu =
〈u′2〉3/2

−U∞
d〈u′2〉

dx

, (2.12)

with 〈·〉 denoting a spanwise/temporal average, and the prime denoting fluctu-
ating quantities according to the Reynolds decomposition, u = 〈u〉+ u′.

2.7. Statistical convergence

Another important issue is related to collecting statistics. The rate at which
the statistics converge varies greatly, with low-order statistics (e.g. mean and
RMS of fluctuations) converge fast while higher-order statistics (e.g. skewness
and flatness factors) much slower. Moreover, statistics dominated by very
large-scale structures, i.e. involving fewer “eddy samples” within a given finite
domain, tend to converge slow, such as two-point correlations at large sepa-
ration or spectra at low wavenumbers (Coleman & Sandberg 2010). A rule
of thumb is that to obtain converged statistics, one needs about 10-20 flow

16The length scale L11 defined by the longitudinal two-point correlation can be related to L

via L11 =
∫∞

0

u′(x)u′(x+r)

(u′)2
dr = 3π

2q

∫∞
0

E(κ)
κ

dκ ≈ 1.286L (Schlatter 2001).
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though times. “From a practical point of view, an inadequate statistical sam-
ple is just as serious a problem as inadequate spatial or temporal resolution,
and can seriously limit the utility of the DNS results. The only remedy for
poorly converged statistics is to extend the computational resources needed to
gather more samples, by either increasing the averaging period for a time aver-
age, or the number of experiments entering the ensemble average” (Coleman &
Sandberg 2010). Last, one has to bear in mind that the averaged/mean quan-
tity which only depends on the local position is not adequate since turbulence
is non-local, i.e. the motion at any given point is influenced by other distant
points (Townsend 1976).

2.8. Validation & verification

One unique feature of numerical simulations is that they are able to simulate
“wrong” physics, such as spurious modes, wrong thresholds, incorrect reattach-
ment points, underestimated/overestimated functions due to under-resolved
simulations, irrelevant size of the computational box, not appropriate bound-
ary conditions or unrealistic parameters, etc. Thus, to generate simulation data
with good quality is not simple nor cheap at all. Therefore, the validation of
the results becomes relatively important. Suggestions made in Sandham (2002)
and Coleman & Sandberg (2010) for DNS calculations are summarised here:
• Validate the code against analytical solutions (if possible), asymptotic

limits and well-established database;
• Carry out systematic studies by varying the resolutions, box sizes, time

steps and numerical methods;
• The grid resolution ∆xi should be compared with the Kol-

mogorov/Batchelor length scale η = (ν3ε)1/4, ηθ = η/Pr1/2 and the time step
∆t with the Kolmogorov time scale tη = (ν/ε)1/2. The ratios of ∆xi/η and
∆t/tη should be on the order of unity;
• Budgets of statistical quantities should be evaluated and balance.
For LES, Geurts (1999) interpreted it as a balancing between different

sources of errors, i.e. modelling and numerical ones. This makes the validation
of LES results even more complicated. Therefore, to assess the quality of an
LES model, spectral methods are in general recommended. In addition to
the guidelines suggested for DNS, one should also follow the rules (Geurts &
Leonard 2002)
• Avoid dissipative numerical methods;
• Vary the filter width while fixing the resolution;
• Use dynamic modelling.
Moreover, to validate a given SGS model, one could conduct either a priori

or a posteriori tests during which accurate data from either DNS or experi-
ments are required. In a priori test, no actual simulations are carried out.
The SGS model is evaluated based on the available DNS or experimental data
and compared with the exact SGS stress. However, care has to be taken when
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interpreting the results since a successful a priori test does not guarantee good
results in an actual LES calculation; sometimes the simulations can be even
unstable (Vreman et al. 1995). On the other hand, a poor a priori test does not
necessarily lead to poor results in an actual run (Meneveau 1994). Therefore,
to judge whether a SGS model performs well or not, one has to run a simulation
with the correctly implemented model and then compare the results with DNS
or experimental data. This approach is known as a posteriori test (Piomelli
et al. 1988) in the LES community. To correctly compare the obtained LES
results with DNS or experimental database, one should add the SGS contribu-
tion to the resolved part and then compare to DNS data, e.g. when comparing
the RMS of the fluctuations. However, for certain SGS models, it is only pos-
sible to obtain partial SGS contribution, i.e. only the anisotropic part of SGS
contribution. Thus in these cases, only the anisotropic part of the statistics
should be compared (Winckelmans et al. 2002; Sagaut 2005).

2.9. Summary of the employed numerical method

The results presented in this thesis are obtained using the simulation code
SIMSON (Chevalier et al. 2007) developed at KTH Mechanics over many
years. The governing equations are discretised based on a standard spectral
method (Canuto et al. 1988). The discretization in the horizontal directions
uses Fourier expansions assuming periodic solutions. In the wall-normal direc-
tion, Chebyshev polynomials with the Chebyshev tau method (CTM) (Canuto
et al. 1988) to discretise the solution and the boundary condition. The time ad-
vancement used is a third-order Runge-Kutta method for the non-linear terms
and a second-order Crank-Nicolson method for the linear terms. Adaptive
time stepping is adopted to exploit the maximum stable time step. The non-
linear terms are calculated in physical space rather than spectral space (pseudo-
spectral method). Aliasing errors from the evaluation of the non-linear terms
are removed by the 3/2-rule (Canuto et al. 1988) when the horizontal FFTs are
performed17.

A sketch of the computational box is shown in Figure 2.1. The periodicity
in the wall parallel directions is fulfilled by adding a “fringe region” (Bertolotti
et al. 1992; Nordström et al. 1999) at the downstream end of the domain.
In addition, to trigger rapid (natural) laminar-turbulent transition, a random
volume forcing directed normal to the wall is located at a short distance down-
stream of the inlet.

The generation of the FST is by a superposition of eigenmodes of the
Orr-Sommerfeld/Squire operator with prescribed energy spectrum, i.e. the von
Kármán spectrum. For more details about the generation of FST, one could
refer to Brandt et al. (2004); Schlatter (2001); Jacobs & Durbin (2000). The
generated FST is homogeneous and isotropic, and satisfies the continuity con-
straint as well.

17In the wall-normal direction, no dealiasing is performed since the wall-normal resolution is
usually finer than required owing to the specific Gauss-Lobatto distribution.
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Figure 2.1. Sketch of the computational domain with free-
stream turbulence.
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Figure 2.2. The main structure of the code. Note that there
exist FFTs between calls to the subroutines getpxz_z and
getpxz_x and inverse FFTs between calls to putpxz_z and
putpxz_x.

The numerical code is written in FORTRAN 77/90 and consists of two
major parts: one linear part where the equations are solved in spectral
(Fourier/Chebyshev) space, and one non-linear part where the non-linear terms
are computed in physical space, see Figure 2.2 for the general code structure.
The main computational effort in these two parts is in the FFT which consumes
more than 55% of the total execution time for a typical serial run. Thanks to
the parallelisation, the expensive computation of the FFTs is not the main
problem; the communication between processors being the bottle neck. For
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the global communication needed in the subroutines getpxz and putpxz, two
different ways are currently implemented. On one hand, a self-written version
of the global transpose which is based on the explicit point to point communica-
tion using MPI commands MPI_ISEND, MPI_WAIT and MPI_RECV
is available. For more details about this implementation, see e.g. Alvelius &
Skote (2000). On the other hand, an alternative version is to adopt the standard
collective communication command, i.e. MPI_ALLTOALL as illustrated in
Figure 2.3. This standard MPI command transfers a subset of data from all

ip=0 ip=1 ip=2 ip=3 ip=0 ip=1 ip=2 ip=3

A0 A1 A2 A3

B0 B1 B2 B3

C0 C1 C2 C3

D0 D1 D2 D3

A0 B0 C0 D0

B3 C3 D3

A1 B1 C1 D1

A2

A3

B2 C2 D2

MPI_alltoall

Figure 2.3. The MPI_ALLTOALL command illustrated
for a group of four processors ip = 0, 1, 2, 3.

members to all members within a group. Each processor sends distinct data to
each of the other processor. As seen from the figure, the MPI_ALLTOALL
actually does a global transpose of the data among all the members in the
group. Both versions of implementation for the global communication essen-
tially perform approximately the same in terms of speed and memory require-
ment. However, if the collective communication version is used, the amount
of data stored on each processors is slightly larger and thus the amount of
communication compared to the hand-written version is marginally increased.

The present code has been highly parallelised either using OpenMP (Multi
Processing) on shared memory machines or MPI (Message Passing Interface)
on distributed memory machines. Recently, a new parallelisation has been
implemented (Li et al. 2008) in which the data is distributed in a “pencil-
based” 2D manner instead of the previous “slice-based” 1D manner, see also
Figure 2.4. The advantages are clear, for instance, in the present example,
with the 2D data decomposition, each processor only save one quarter of the
data as in the 1D case, so the requirement for the memory on each single
processor is greatly reduced. Moreover, one could use 4 times more processors
than the 1D case, which is more suitable for a modern clusters which are build
on processors on the order of 50000. One obvious disadvantage is that the
communication will become more severe in terms of performance. Figure 2.5
(a) shows a performance of the benchmark case (512×513×512) and very good
speedup of the code is obtained. In Figure 2.5 (b), the performance curves using
the 2D data decomposition are shown. With the new 2D implementation,
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the number of cores could be used is greatly increased as compared to the
1D implementation. For the largest case considered so far with SIMSON
(being part of an ongoing PRACE18 project), a total of 60 billion grid points is
considered, running on 16384 cores. It is amazing that a research code, having
many subroutines similar to the ones originally written around 1990, can still
be used on the latest computer architectures!
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Figure 2.4. Data distribution among all the processors. (a)
“Slice-based” data decomposition. (b) “Pencil-based” data de-
composition.
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Figure 2.5. Speedup curve for the benchmark case. (a) ◦ 1D
parallelisation, 2D parallelisation, linear speedup. (b)
Comparison among different cases.

18Partnership for advanced computing in Europe.



CHAPTER 3

Turbulent boundary layer

“Would you tell me, please, which law I ought to choose to fit
my mean velocity profile?”
“That depends a good deal on the accuracy you want to
achieve”, said the Cat
“I don’t much care what accuracy–”
“Then it doesn’t matter which law you choose” Said the Cat
’–so long as it fits the profile SOMEWHERE,’ I added as an
explanation
“Oh, you’re sure to do that,” Said the Cat, “if you simulate
large Reynolds number enough”

– A dialogue happened in my dream

“The wonderful thing about scaling is that you can get
everything right without understanding anything”

– anonymous

3.1. Boundary layer equations

Due to its importance in applications, research has been focused on the struc-
ture and scaling of the wall turbulence, among which the flat-plate turbulent
boundary layer is the most popular one being studied by experiments1. If
proper scaling of the experimental/numerical data can be obtained and this
will provide prediction at those Reynolds number in the industrial application
which is usually several orders of magnitude higher than those in the laboratory.
Therefore one of the main research activities in fluid dynamics community is to
find the coordinate transformation using different parameters (based on either
physical argument or intuitive argument) to collapse the data for turbulence
statistical quantities, e.g. mean velocity or fluctuations. However, none of the
scalings seems to be completely satisfactory even for the mean velocity profile,
and there seems to be no chance of finding such one even for the mean profile2.

1Which turns out to be relatively easy to be conducted in laboratory. However, it is the most
difficult one to be simulated.
2“Even the Blasius solution is a numerical one” Buschmann & Gad-el Hak (2007).

33
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In a statistically stationary and two-dimensional boundary layer, the gov-
erning equations for the mean flow can be obtained by taking the average of the
governing equations and assuming boundary layer approximations (Schlichting
1987):

∂〈u〉

∂x
+
∂〈v〉

∂y
= 0 , (3.1)

〈u〉
∂〈u〉

∂x
+ 〈v〉

∂〈u〉

∂y
= −

d〈p∞〉
dx

+
∂

∂y

(
1
Re

∂〈u〉

∂y
− 〈u′v′〉

)
−
∂

∂x
(〈u′u′〉−〈u′v′〉) ,

(3.2)

〈u〉
∂〈θ〉

∂x
+ 〈v〉

∂〈θ〉

∂y
=

∂

∂y

(
1
RePr

∂〈θ〉

∂y
− 〈v′θ′〉

)
. (3.3)

Note that p∞ is the pressure in the free stream and is a function of x only.
Furthermore, this pressure term can be replaced by U∞ dU∞

dx according to
Bernoulli’s equation where U∞ is the free-stream velocity. Under the con-
dition of zero-pressure gradient, the pressure term vanishes. The last term in
equation (3.2), namely ∂

∂x (〈u′u′〉 − 〈u′v′〉) can be also omitted since its con-
tribution is one order of magnitude smaller than the other leading terms, see
e.g. Schlatter et al. (2010) where it is shown that ∂

∂x (〈u′u′〉 − 〈u′v′〉) is about
O(50) times smaller than the leading order term in fully turbulent region. In-
tegrating equation (3.2)3 from the wall to the free stream yields the so-called
von Kármán integral momentum equation which reads

τw
ρ

=
d

dx

[
U2
∞

∫ ∞

0

〈u〉

U∞

(
1−
〈u〉

U∞

)
dy
]

+ U∞
dU∞
dx

∫ ∞

0

(
1−
〈u〉

U∞

)
dy (3.4)

where τw is the total shear stress4 at the wall. Introducing two commonly
used measures for boundary layer thickness5, i.e. displacement thickness δ∗

and momentum (loss) thickness θ (sometimes, they are also denoted as δ1 and
δ2, respectively) which are defined as

δ∗ =
∫ ∞

0

(
1−
〈u〉

U∞

)
dy (3.5)

and

θ =
∫ ∞

0

〈u〉

U∞

(
1−
〈u〉

U∞

)
dy . (3.6)

3Note that the term ∂
∂x

(〈u′u′〉−〈u′v′〉) is neglected and the pressure term d〈p∞〉
dx is expressed

in terms of free stream velocity as U∞ dU∞
dx as discussed.

4Total shear stress τ is defined as τ = µ∂〈u〉
∂y
− ρ〈u′v′〉, where the kinematic viscosity ν is

related to molecular viscosity µ by the relation ν = µ
ρ

.
5The usual measure for boundary layer thickness is the 99% boundary layer thickness δ99

which is defined as the distance from the wall where the velocity reaches 99% the free stream
velocity. However, this measure is an arbitrary measure and poorly conditioned (Örlü 2009).
Therefore, other measures are preferably used, e.g. displacement thickness δ∗ or momentum
(loss) thickness θ.
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Using the definition of displacement thickness δ∗ and momentum thickness θ
as well as the skin-friction coefficient cf , the von Kármán integral momentum
equation (3.4) can be rewritten as (see e.g. Örlü (2009))

cf ≡
τw

1
2
ρU2
∞

= 2
dθ
dx

+
4θ + 2δ∗

U∞

dU∞
dx

(3.7)

Note that the second term in equation (3.7) is identical to zero in the condition
of zero-pressure gradient. In laboratory experiments, the skin-friction coeffi-
cient can be calculated according to the equation (3.7) based on the measured
mean velocity profile alone, however, special care has to be paid to make sure
a well resolved mean velocity profile is obtained (Örlü 2009)6.
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Figure 3.1. Mean streamwise velocity profiles U at Reθ =
671, 1000, 1412, 2512. DNS by Schlatter et al. (2009),
• experimental data by Schlatter et al. (2009), DNS by
Spalart (1988). The thin lines indicate the linear and loga-
rithmic laws, using 1

κ ln y+ + 5.2 with κ = 0.41. A detailed
discussion of the figure is found in Paper 6.

3.2. Scalings for mean velocity field

A typical streamwise mean velocity profile from the present results at low
Reynolds number7 is shown in Figure 3.1. According to the classic theory,
the boundary layer is composed of two regions: a near-wall region (also called
viscous region) where viscosity is important and the outer region where the
viscous effects are negligible. Since is no sharp boundary between these two
regions, a overlap region is existing as a transitional region. The boundary
layer equations (3.2) can be further simplified in these regions.

6The only accurate way of measuring skin friction is to use the so-called oil-film interferometry
(OFI) (Rüedi et al. 2003; Örlü 2009).
7Here “low” is relative to the experimental ones.
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3.2.1. Inner region

The inner layer was first treated in the work by Ludwig Prandtl (Prandtl 1932).
Within the inner region where the viscous effects are dominant, the boundary
layer equation (3.2) reduces to

0 =
1
Re

∂2〈u〉

∂y2
−
∂

∂y
〈u′v′〉 . (3.8)

The governing law of the inner region is the so-called “law of the wall” which
is considered to be the cornerstones of fluid dynamics (Bradshaw and Huang
1995). The law of the wall assumes that in the vicinity of the wall, the flow
only depends on the distance of the wall y, the wall shear stress τw and the
fluid properties (density ρ and molecular viscosity µ) (Bradshaw and Huang
1995) and these arguments lead to the “law of the wall” after some dimensional
analysis:

〈u〉+ ≡
〈u〉

uτ
= Φ1(

y

"∗
) ≡ Φ1(y+) , (3.9)

and

〈u′v′〉+ ≡
〈u′v′〉

u2
τ

= Φ2(
y

"∗
) = Φ2(y+) , (3.10)

where uτ (the so-called “friction velocity”) and "∗ are a characteristic velocity
scale and a viscous length scale respectively for the near wall region (viscous
region). They are defined as

uτ ≡

√
τw
ρ

=

√

ν
∂〈u〉

∂y

∣∣∣
y=0

and "∗ =
ν

uτ
.

The superscript “+” denotes quantities in “viscous units”8, i.e. normalised by
viscous velocity and length scales. Φ1 and Φ2 will be the same mathematical
function for all flows at sufficiently high Reynolds number (Pope 2000).

Within the so-called viscous sub-layer, i.e. y+ ≤ 5 (Pope 2000), where the
flow is mainly dominant by the viscous effects, i.e. the Reynolds stress 〈u′v′〉
due to turbulence is negligible, a linear relation can be obtained:

〈u〉+ = y+ . (3.11)

3.2.2. Outer region

As opposed to the inner region, the outer region is considered to be “inviscid”,
therefore the governing equation reduces to

〈u〉
∂〈u〉

∂x
+ 〈v〉

∂〈u〉

∂y
= −

∂〈u′v′〉

∂y
. (3.12)

The large eddies transport turbulent energy from the outer part of the
inner region and are assumed not strongly affected by the viscosity, i.e. the
momentum transport is mainly due to turbulence. The appropriate character-
istic length scale is chosen as the 99% boundary layer thickness δ99 (boundary

8Some authors prefer to use the word “wall units”.
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layer thickness at which the velocity reaches 99% of the free stream velocity), or
pipe radius R or channel height h. Other outer length scales commonly used in
boundary layer flows could be e.g. displacement thickness δ∗, or Rotta-Clauser
length δRC ≡ U∞δ

∗

uτ
. The characteristic velocity scale is usually chosen as uτ ,

since one can think of the inner layer as being a boundary condition for the
outer flow. According to Townsend (1976), uτ is regarded as a “slip” velocity
seen by the motion in the outer part and hence appropriate velocity scale for
the deviation of mean velocity from the free-steam velocity in boundary layer
or centre line velocity as in pipe and channel flow. However, different veloc-
ity scales are proposed, e.g. see the previous work by George (2007), where
it is suggested that the only appropriate velocity scale for the outer part of a
zero-pressure-gradient turbulent boundary layer is the free-stream velocity U∞.

Once fixed the velocity (here the friction velocity is chosen) and length
scales, the so-called velocity defect law can be formulated:

〈u〉 − U∞
uτ

= Ψ1(
y

∆
) , (3.13)

and

〈u′v′〉

u2
τ

= Ψ2(
y

∆
) , (3.14)

where ∆ is denoted as the outer length scale which can be δ∗, δ99 or δRC .
Note that the inner region for pipe/channel and boundary layer flows are

similar, but the outer regions are different. For the internal flows, the flow
is not intermittent and there is no free stream, but there are influences from
the opposite wall in the channel and even more complicated in the case of
the circular pipe. Intermittency and entrainment present in the boundary
layer flow give rise to the wake region of the outer part of the flow, which
is sensitive to pressure gradient and free stream turbulence (Gad-el Hak and
Bandyopadhyay 1994). Moreover, the probability distribution of the interface
between the turbulent and irrotational fluid in a boundary layer is roughly
Gaussian with a mean value about 0.85 δ99. Occasionally, the interface extends
as deep as 0.4 δ99 or as far out as 1.2 δ99 (Klebanoff 1954; Kline et al. 1967;
Bradshaw 1972), see also Figure 3.2.

3.2.3. Overlap region

Outside the buffer layer starting at about y+ = 100 or so up to y
δ99
≈ 0.2 is the

so-called overlap region. This region is maybe one of the topic in turbulence re-
search that has the most controversial debates. Most of the research is devoted
to determine the scalings law of the mean profile and associated coefficients.
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Figure 3.2. Instantaneous field of vorticity magnitude |ω| in
the x−y section plane showing the intermittent characteristics
in the outer region Reθ = 2300− 2500. The wall-normal cut
only shows half of the domain in the wall-normal direction.
The solid line indicate the 99% boundary layer thickness at
Reθ = 2500. The grey bar is from 0 (grey) to 0.1 (black). A
detailed discussion of the figure is found in Paper 3.

3.2.3.1. Logarithmic law & power law

The velocity distribution in the overlap region is also called logarithmic law or
log-law for short. There are various ways to derive the logarithmic law9 which
reads

〈u〉+ =
1
κ

ln(y+) +A , (3.15)

where κ is a universal constant and called von Kármán constant10. The con-
stant κ ≈ 0.41, and additive constant A ≈ 5.2 can be determined from the
experiments. For flat-plate zero-pressure-gradient turbulent boundary layer,
Österlund et al. (2000) proposed a value for the Kármán constant of 0.38 for
large Reynolds number. However, Spalart (1988) has shown that the traditional
value of 0.41 gives good agreement for lower Reynolds numbers11.

As an alternative to the logarithmic profile, the power law is favoured by
some researchers, for more detailed discussion, one could refer to e.g. Baren-
blatt (1993); Barenblatt & Prostokishin (1993); Barenblatt et al. (1997b,a);
George & Castillo (1997).

The fundamental difference between the log-law and power law is choos-
ing whether mean velocity 〈u〉 or its derivative ∂〈u〉

∂y to enter the inner-outer
matching process as commented by Millikan. In other word, it is a difference

9For the derivation, see e.g. Millikan (1938) or Landau (1944) or any modern text book about
fluid dynamics.
10Experimental data shows that Kármán constant is actually not constant among different
canonical wall-bounded flows (Nagib & Chauhan 2008).
11This discrepancy of values can easily be understood by looking at the proposed composite
profiles by Monkewitz et al. (2007), which show an initial dip in the log-law indicator function
Ξ before settling to a lower κ for higher Reynolds numbers.
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of position on Galilean invariance12 as noted by Spalart (2011). For this rea-
son, all modern turbulence models based on Galilean invariant equations prefer
log-law over the power law.

3.3. Scalings for mean scalar field

3.3.1. Law of the wall for scalar field

By analogy, a law of the wall and log law are existing for the scalar field. By
the same reasoning as above for the velocity, the law of the wall, the defect law
and the log-law for scalar field read:

〈θ〉+ ≡
θw − 〈θ〉

θτ
= Φθ(y+, P r) ,

〈θ〉 − θ∞
θτ

= Ψθ(
y

∆
, P r) ,

Φθ(y+, P r) =
θw − 〈θ〉

θτ
=

1
κθ

ln(y+) +Aθ(Pr) ,

(3.16)

where κθ is the von Kármán constant for the scalar field, function Φθ is a
universal function which is dependent on y+ and the molecular Prandtl number
Pr. Aθ and Bθ are addictive constants which are functions of Pr. θw is the
scalar concentration at the wall and θ∞ the concentration in the free stream.
θτ is called friction scalar or friction temperature for a heat transfer problem.
According to Cebeci & Bradshaw (1984), the friction temperature is analogous
to the friction velocity uτ and defined by

θτ ≡
qw
ρcpuτ

, (3.17)

where ρ is the density of the fluid, cp is the scalar capacity of the fluid, uτ is
the friction velocity and qw is the rate of the scalar transfer from the wall to
the flow which is defined by

qw = −k
d〈θ〉

dy

∣∣∣
y=0
, (3.18)

where k is the scalar conductivity and this equation is referred as the Fourier’s
law for the heat transfer problem or Fick’s law for a mass transfer problem.

Analogously, very close to the wall, a conductive sub-layer exists for the
scalar field as a viscous sub-layer for the velocity field which is governed by

〈θ〉+ = Pr y+ . (3.19)

This linear relation is found to be valid for Pr y+ < 3 (Cebeci & Bradshaw
1984).

One should always bear in mind that to obtain equations (3.16), it is as-
sumed that the diffusion term 1

RePr
∂2〈θ〉
∂xi∂xi

in equation (3.3) is dominant in
the inner region while turbulence convection is dominant in the outer region.

12Galilean invariance stats that the fundamental laws of physics are the same in all inertial
frames.
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However this might not be true since 1
RePr

∂2〈θ〉
∂xi∂xi

can vary tremendously with
the molecular Prandtl number which depends on the particular fluid. Prandtl
numbers for viscous fluids like oils can easily exceed 100, while those for liquid
metals can be as low as 0.001. By choosing a different Prandtl number, the
situation may be reversed. For the present study, it is restricted to Pr = O(1).
The use of the Φθ in equation (3.16) which is a function of y+ and Pr is a way
of compensating for this effect (Kays & Crawford 1993).

3.3.2. Fragility of the log-law for scalar field
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Figure 3.3. Mean velocity and temperature fields with FST
at Reθ ≈ 850. (a) 〈u〉, (b) 〈θ〉 with Pr = 0.71. no
FST, Tu = 4.7% at the inlet, Tu = 40% at the inlet,

log-law. A detailed discussion of the figure is found in
Paper 4.

Due to the analogy to the velocity field, the law of the wall for the scalar
field is supposed to have the same range of validity as for the law of the wall
for the flow field under complex situations (Bradshaw and Huang 1995), e.g.
in the presence of pressure gradient, or free-stream turbulence.

The influence of the free-stream turbulence on the mean flow is shown in
Figure 3.3. It is clearly shown that the profiles below the logarithmic region are
insensitive to the FST for both velocity and scalar fields whereas in the wake
region significant depression of the boundary-layer wake starts appearing with
increasing free stream intensity Tu. Especially for the highest intensity case
of locally Tu = 7%, the wake region even vanishes for both fields. Consistent
results are reported by the previous experimental work (Blair 1983a,b). The
reason for the depressing wake region is due to that with increasing intensity of
FST, the outer region becomes less and less intermittent, i.e. the outer region is
more and more similar to the internal flows. However, the results from an LES
simulation by Péneau et al. (2000) show that the slope of the logarithmic region
varies significantly with Tu for the temperature profile but not for the velocity,
which is similar to what was observed by Maciejewski & Moffat (1992a,b) in
which they showed that the law-of-the-wall for the scalar field is also fragile in
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the presence of anisotropic free-stream turbulence. Apart from the influence of
the free-stream turbulence, the law-of-the-wall for the scalar field also fails in
the presence of pressure gradient, e.g. see discussions in Bradshaw and Huang
(1995). It is observed that different pressure gradient gave rise to different slope
in the log region for the temperature profile but not for the velocity profile.
Moreover, the sensitivity of the scalar profile to the pressure gradient is difficult
to understand since the the governing equation of the scalar transport does not
even have the pressure term (Bradshaw and Huang 1995).

3.4. Turbulence intensities

The intensity of the turbulent fluctuations is usually quantified via its root-
mean-square (RMS) value. Most experiments only measure the streamwise
component due to the fact that to measure the other two component requires
two hot wires either in X-shape or V-shape. Very close to the wall, reliable mea-
surements becomes extremely difficult and it is also very difficult to construct
small X-shape or V-shape probes.

3.4.1. Turbulence intensities for velocity field

From the law of the wall, the turbulence intensities should have a constant value
within the overlap region. However, experimental results from zero-pressure
gradient turbulent boundary layer show that the streamwise intensity actually
decreases in the log region. Furthermore, early experiments of a zero-pressure
gradient boundary layer by Purtell et al. (1981) suggest that the Reynolds
number effects penetrate much deeper into the boundary layer for the stream-
wise turbulent intensity than that for the mean velocity profile. A systematic
decrease of the turbulence intensity is observed with decreasing Reynolds num-
ber and the authors attribute this to the stronger suppression of all but the
largest scales in the turbulence at lower Reynolds number. Later the DNS by
Spalart (1988) in a turbulent boundary layer confirmed the same trend in the
streamwise component and spanwise component but not in the wall-normal
and shear component. In channel flows, similar observations are also reported,
see e.g. Jiménez & Hoyas (2008).

Even though, increasing peak value of urms in channel and boundary layers
with increasing Reynolds number is shown convincingly in simulations, see
e.g. Jiménez & Hoyas (2008); Schlatter & Örlü (2010) and experiments by
De Graaff & Eaton (2000); Marusic & Kunkel (2003), surveys of experiments
by Mochizuki & Nieuwstadt (1996); Fernholz & Finley (1996) based on earlier
studies concluded that there was a weak/no Reynolds number dependence on
the peak value of urms, and this is related to the insufficient spatial resolution
of the measuring probe. Though the spatial averaging of the sensor probe
is well-known, see e.g. Johansson & Alfredsson (1983); Ligrani & Bradshaw
(1987), it is either ignored or is thought that the effects are limited. Until
recently, Hutchins et al. (2009) showed explicitly that the near-wall peak of the
streamwise velocity fluctuation is directly coupled to the effects of the spatial
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resolution of the hot-wire. Later, Örlü & Alfredsson (2011) extend the work
by Hutchins et al. (2009) to the mean and higher-order moments. DNS/LES
data can be used to “simulate” such instrumental errors by averaging in the
spanwise direction, i.e. only consider scales which are larger than the sensor
length, and the results are shown in Figure 3.4. It is clearly seen that with
more spanwise averaging which is equivalent to a larger hot-wire resolution
L+, the peak of urms decreases. Considering scales larger than 40 plus units,
one can already observe a significant difference, while averaging scales smaller
than 250 plus units, the outer peak becomes more dominant than the inner
one (Hutchins et al. 2009). Recently, a method to evaluate the streamwise
turbulence intensity was proposed by Segalini et al. (2011). The new method
is based on combining the measurements from two sensors with different wire
lengths and a compensation scheme for probe resolution effects. Results showed
that very good agreement with DNS data can be obtained (Segalini et al. 2011).

Once fully understanding the effects from the probe, the increasing peak
value of the turbulence intensity can only come from the Reynolds number
effects, indicating a growing outer-region influence on the near-wall motions.
One possible explanation for the increasing of the peak value of urms with Rey-
nolds number is that the motion near the solid wall though mainly influenced
by eddies near the wall, but also affected by eddies from the outer part of the
flow whose length scales are on the order of the boundary layer thickness or
channel height. Such influences from the outer part of the flow are from pres-
sure fluctuation which is the most obvious quantity which interact between the
inner and outer regions (Townsend 1976; Bradshaw 1967). Equivalently, the
so-called “splatting” mechanism also provides an explanation. When the large
eddies move towards the solid surface from the outer region of the boundary
layer, the wall-normal component is gradually reduced due to the “imperme-
ability” condition at the wall. Especially close the wall, almost all the energy
is transferred from the wall-normal component to the horizontal (streamwise
and spanwise) components by pressure fluctuations. This phenomenon was
observed by Daly & Harlow (1970) and later termed by Moin & Kim (1982)
as the splatting or impingement effects13. The splatting effect is an important
property of the flow in the vicinity of the wall and should be taken into account
in the modelling of the near wall turbulence (Moin & Kim 1982). Since the
influences come from the motions in the outer region where the length scales
are much longer compared to those near the wall, the increase of the peak value
of urms is mainly due to the large-wavelength components. This is confirmed
in a recent study by Marusic et al. (2010a) where urms profile is filtered us-
ing certain spatial filter to separate large and small scales. It is shown that
the increase of Reynolds number only influences the profile with large length
scales while those with smaller length scales are essentially unchanged. How-
ever, inconsistent results for the behaviour of peak value of urms with Reynolds

13Some authors argue that the term is first introduced into literature by Wood (1980).
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number are reported in pipe flow experiments by Hultmark et al. (2010) where
no increase of the inner peak of urms with increasing Reynolds number is shown.
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Figure 3.4. Dependence of resolved urms fluctuations on the
range of spanwise scales included at Reθ = 4307. urms

with full LES resolution ∆z+ = 10.8, in direction of
arrow: scales ≥ 2000+, ≥ 250+, ≥ 100+, ≥ 40+. A detailed
discussion of the figure is found in Paper 7.

3.4.2. Turbulence intensities for scalar field

 y+

 u
rm

s
+

100 1020

0.5

1

1.5

2

2.5

3

 y+

 θ
rm

s
+

100 1020

0.5

1

1.5

2

 y+

 θ
rm

s
+

100 1020

0.5

1

1.5

2

2.5

3

 y+

 θ
rm

s
+

100 1020

1

2

3

4

Figure 3.5. (a) urms, (b) θrms, P r = 0.2, (c) θrms, P r =
0.71, (d) θrms, P r = 2.0. Reθ = 670, Reθ = 1410,
Reθ = 2526. A detailed discussion of the figure is found

in Paper 2.

In Figure 3.5, the RMS of scalars and streamwise velocity fluctuations are
shown at three different Reynolds number Reθ = 800, 1410, 2526. As expected,
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the peak value of the intensity of the scalar fluctuation also increases with
Reynolds number for Prandtl number being 0.71. However, large differences
are observed when compared among the cases with different Prandtl numbers,
i.e. Pr = 0.2 and Pr = 2.0. With increasing Pr, the RMS values increase and
the peak positions move towards the wall. For the highest Prandtl number
case (Pr = 2.0), the increase of the near-wall peak value is barely observable
while for the lowest Prandtl number case (Pr = 0.2), a substantial increase
is observed. Only the case with Pr = 0.71 has a similar behaviour as that
of the streamwise velocity as shown in Figure 3.5 (a). These results indicate
that for the lower Prandtl number case (Pr = 0.2), the structures in the outer
region are somewhat much stronger (similar to what is observed in the high
Reynolds number flow case) while the opposite for the higher Prandtl number
case which leads to much weaker increase of the peak value. Furthermore, these
results indirectly confirmed what is observed by Marusic et al. (2010a) that the
increase of the near wall peak is due to the structures in the outer region. The
Prandtl number effects on the scalar variance are surprising considering that
0.2 and 2.0 are both O(1).

In addition, the influences of different wall-boundary conditions, i.e.
isoscalar and isoflux boundary conditions, are shown in Figure 3.6. Due to
isoflux wall boundary condition, the RMS values remain constant near the wall
while the ones with isoscalar wall boundary condition decrease to zero. Away
from the wall, say y+ > 200 or so, the influences from different boundary con-
dition are negligible, which is consistent with the previous study by Kong et al.
(2000).
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Figure 3.6. Profiles of the RMS values of the scalar fluctu-
ation θrms at Reθ = 830. + θ1 with Pr = 0.2, θ2 with
Pr = 0.71, θ3 with Pr = 0.71, θ4 with Pr = 2.0,

θ5 with Pr = 2.0. Isoscalar wall: θ1, θ2 and θ4. Isoflux
wall: θ3 and θ5. A detailed discussion of the figure is found in
Paper 1.
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3.5. High-order statistics

The high-order moments of a quantity also contains important statistical in-
formation. Usually the skewness and flatness (kurtosis) factor of a statistically
stationary variable a(x, y, z, t) are defined as

S(a) =
〈a′3〉

〈a′2〉
3
2

(3.20)

and

F (a) =
〈a′4〉

〈a′2〉2
. (3.21)

where a(x, y, z, t) could be any quantity, such as velocity components, pressure,
scalar concentration or their temporal/spatial derivative etc. For a quantity
which has a Gaussian distribution, the skewness and flatness are 0 and 3,
respectively. Departure from zero of the skewness indicates asymmetry of the
fluctuations. Flatness factor larger than 3 is associated with a peaky signal
with long tails which indicates rare events far away from the mean.
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Figure 3.7. Skewness factor distributions of the velocity and
pressure at Reθ = 2500. Streamwise velocity, Wall-
normal velocity, Spanwise velocity, Pressure. (a)
Skewness factor, (b) Zoom. The 99% boundary-layer thick-
ness at Reθ = 2500 is about y+ ≈ 840. A detailed discussion
of the figure is found in Paper 2.

3.5.1. High-order statistics for velocity field

The distribution of velocity components14 are shown in Figures 3.7 and 3.8.
High values of both skewness and flatness near the wall15 and in the wake
region indicate the intermittent nature in these regions, see e.g. Österlund &

14In channel flow, the spanwise component of the skewness should be zero since it reflects
the geometrical symmetry of the solutions to NS equations, and usually used as an indication
for convergence of the statistics (Kim et al. 1987).
15The large values of high-order statistics close to the wall should be accepted with some
reservation, since both the denominator and the numerator of the skewness and flatness
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Figure 3.8. Flatness factor distributions of the velocity and
pressure at Reθ = 2500. Streamwise velocity, Wall-
normal velocity, Spanwise velocity, Pressure. (a)
Flatness factor, (b) Zoom. The 99% boundary-layer thickness
at Reθ = 2500 is about y+ ≈ 840. A detailed discussion of the
figure is found in Paper 2.

Johansson (1999); Li et al. (2009). The Reynolds number effects are also strong
in these regions, i.e. differences are noticeable in the viscous/buffer layer and
much stronger in the outer region (Gad-el Hak and Bandyopadhyay 1994).
High positive values of Su in the viscous sublayer indicate that the region is
dominated by positive fluctuations as a result of the sweep events which bring
high-speed fluids from regions away from the wall. Further away from the wall
as in the log region, the skewness factor remains only slightly different from
a Gaussian distribution. In the outer region, the skewness is negative which
is consistent with the arrival of the low-speed fluid coming from the near wall
region by the ejection event (Gad-el Hak and Bandyopadhyay 1994). To be
consistent with the streamwise component (since quadrant analysis shows that
u′ and v′ are anti-correlated), the skewness of the wall-normal component is
expected to be negative near the wall and positive in the outer region with
nearly Gaussian distribution in the log region, and results show that this is
indeed the case.

Earlier experiments of boundary layer flows by Andreopoulos et al. (1984)
showed that for low Reynolds number (i.e. Reθ = 3624), the Su changes the sign
at about y+ ≈ 15 where the streamwise fluctuations peaks locate. At the same
position, Fu reaches a minimum and Sv obtains its maximum positive value.
As the Reynolds number increase, those positions continue to move towards
the outer part of the flow, e.g. the Su changes the sign at about y+ ≈ 150 when
Reθ = 15406, and there seems no sign of reaching an asymptote which is an
indication of the progressive spreading viscous effects to the outer part of the
boundary layer (Gad-el Hak and Bandyopadhyay 1994).

factors become zero as the wall is approached, and any inaccuracy in its measurement (or
computation) could be excessively amplified (Kim et al. 1987).
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3.5.2. High-order statistics for scalar field
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Figure 3.9. Skewness factor distributions of the scalar with
isoscalar wall-boundary condition at Reθ = 2500. Pr =
0.2, Pr = 0.71, Pr = 2.0. (a) Skewness factor, (b)
Zoom. The 99% boundary-layer thickness at Reθ = 2500 is
about y+ ≈ 840. A detailed discussion of the figure is found
in Paper 2.
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Figure 3.10. Flatness factor distributions of the scalar with
isoscalar wall-boundary condition at Reθ = 2500. Pr =
0.2, Pr = 0.71, Pr = 2.0. (a) Flatness factor, (b)
Zoom. The 99% boundary-layer thickness at Reθ = 2500 is
about y+ ≈ 840. A detailed discussion of the figure is found
in Paper 2.

The distributions of the high-order statistics pertaining to the scalar fields
as shown in Figures 3.9 and 3.10 look qualitatively the same as for the stream-
wise velocity. Within the sub-layer, S(θ) are positive which is consistent with
the positive values of S(u) and see also previous experimental study by Antonia
and Danh (1977). At y+ ≈ 30, S(θ) with Pr = 0.71 changes the sign. This
wall-normal position is about twice as large as the one for the streamwise ve-
locity and it becomes larger as Pr decreases. The wall-normal positions where
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the minimum of Fθ are also different among the different Pr cases. The lower
Prandtl number case has a profile similar to the profile of streamwise velocity
component at much high Reynolds number, e.g. Sθ with Pr = 0.2 changes the
sign at a position about y+ ≈ 300. These behaviours in the low Prandtl num-
ber case are thought to be due to the structural changes in the outer region. In
addition, the maximum peak values of S(θ) and F (θ) near the boundary layer
edge are much higher than those of the S(u) and F (u) which is also observed in
previous experiments by Antonia and Danh (1977). Moreover, the wall values
of both the S(θ) and F (θ) for the isoscalar boundary condition seem to be
Prandtl number independent.

3.5.3. Influence of FST on high-order statistics

The influence of the free-stream turbulence on the high-order statistics is shown
in Figure 3.11. With FST being present, the structures near the boundary layer
edge are changed. The high peak near the boundary layer edge becomes less
and less prominent indicating increased turbulent mixing of the free-stream
and the flows inside the boundary layer. This loss of intermittency leads to
the depression and vanishing of the wake region, see also the mean profiles
as shown in Figures 3.3. The less prominent peak values of the high order
statistics with increasing free-stream intensities are also observed in a recent
experimental study by Sharp et al. (2009). However, for the high FST cases,
the skewness factor becomes even positive as reported by Sharp et al. (2009)
while for the present case it is still negative within the boundary layer.
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Figure 3.11. Skewness and flatness-factor distributions of
the streamwise velocity at Reτ = 250. Present LES
results with inlet Tu = 20% and L = 5, Present LES
results with inlet Tu = 4.7% and L = 5, ◦ No FST case. (a)
Skewness factor S(u′), (b) Flatness factor F (u′). The 99%
boundary-layer thickness of the present data for the no FST
case is about y+ ≈ 350 at Reτ = 250. A detailed discussion of
the figure is found in Paper 4.
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3.6. Coherent structures

Apart from the scaling of mean and fluctuating quantities, a lot of research
efforts are put into the study of the turbulent structures. Even though wall-
bounded turbulence is characterised by chaotic and irregular motions, there
are actually recurrent and well-organised features, i.e. coherent structures (co-
herent motions) present in the flow. In addition, it is believed that these struc-
tures are the building blocks for the turbulent field, and an understanding of
these structures is of fundamental importance to improve our knowledge of the
boundary-layer dynamics (Robinson 1991). Unfortunately, there is no consen-
sus reached by the community on the exact definition of coherent structure. In
general, coherent structure can be regarded as organised motions which are per-
sistent in both space and time, and more important contribute to the transport
of heat, mass and momentum significantly. The current view on the turbulent
structures consists three principal element structures, namely the near-wall
streaks (Kline et al. 1967), hairpin/horseshoe vortices (Theodorsen 1952) and
large-scale motions (LSM) (Kim & Adrian 1999; del Álamo & Jiménez 2003;
Abe et al. 2004; Hutchins & Marusic 2007; Schlatter et al. 2009).

It is very difficult to measure the organised motion partially due to that it is
difficult to isolate them and subsequently average. Therefore, flow visualisation
is usually used thanks to the advances in electronical and optical instrumen-
tations and computer hardwares. There is no doubt that visualisation can
play a vital role in improving our understanding of the complicated turbulent
motions. However, sometimes the turbulent phenomena is too complex and
even a flow visualisation does not translate immediately into “understanding”
(Leal 2007). Furthermore, care has to be taken when using passive scalars (e.g.
smoke or dye) for flow visualisation since the structures can be different in the
scalar field and flow field due to missing pressure influences in the scalar field,
see e.g. Guezennec et al. (1990); Bradshaw and Huang (1995). Nevertheless,
visualisation using passive tracers has been extensively used for identifying new
flow structures, improving our physical understanding and even become a new
branch of research.

3.6.1. Near-wall streaks

The most widely studied structures in wall-bounded flow are the so-called near-
wall streaks which are alternating high- (positive fluctuation) and low-speed
(negative fluctuation) regions elongated in the streamwise direction. The im-
portance of near-wall streaks was identified by Kline et al. (1967) who showed
streaky structures near the wall in a water channel using tiny hydrogen bubbles
released periodically from a thin platinum wire. These streaky structures have
a spanwise spacing of about ∆z+ ≈ 100, and a streamwise spacing ∆x+ ≈ 1000
(Smith & Metzler 1983). However, recent simulations (Li et al. 2009; Schlatter
et al. 2009) and experiments (Lin et al. 2008) reported a value around 120 for
the spanwise spacing of the streaks. To further consider the spanwise organisa-
tion of the structures near the wall, one can calculate the spanwise two-point
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correlations, see e.g. early studies by Deardorff (1970); Moin & Kim (1982).
The spanwise two-point correlation coefficient of a statistically stationary vari-
able a(x, y, z, t) is defined by

Raa(x, y,∆z) =
〈a′(x, y, z, t)a′(x, y, z + ∆z, t)〉

〈a′(x, y, z, t)2〉
, (3.22)

where ∆z is the spanwise separation. The spanwise two-point correlations for
the three velocity components and pressure at y+ = 4.9 are plotted in Figure
3.12. For each of the velocity correlations, a minimum is observed. The stream-
wise correlation Ruu becomes negative and reaches a minimum at ∆z+ ≈ 60.
The separation at which the minimum occurs is an estimate of the distance
between a high speed streak and a low speed streak, so the mean spacing of
streaks should be roughly twice this distance. The negative excursion attains
its minimum at the wall-normal position where the urms has a maximum, i.e.
y+ ≈ 15. The presence of the minimum of Rvv at ∆z+ ≈ 25 is consistent
with the numerical results by Kim et al. (1987) in turbulent channel. This
separation is a measure of the mean diameter of the streamwise vortices in the
near wall region. The minimum of Rww appears at ∆z+ ≈ 60 and indicates
the existence of the counter-rotating vortex pairs. According to Moser & Moin
(1984), the minimum of Rww does not exist for y+ > 30 and is more likely
due to the splatting effect which can be caused by a single vortex. One thing
to notice is that the spanwise two-point correlation coefficient of the pressure
does not have the negative excursion which is also observed previously by Kim
(1989). This indicates that the pressure fluctuation is a global quantity which
correlate at even infinite separations. With increasing Reynolds number, the
first minimum of Ruu, and Rww weakens and gradually diminishing and mean-
while a second minimum starts to appear at large separation, i.e. ∆z = O(δ99)
(Österlund 1999; Schlatter et al. 2010). On the contrary, Rvv seems to be Rey-
nolds number independent, which is consistent with the previous results that
the v fluctuations are essentially an inviscid phenomenon (Sreenivasan 1989).
Note that the less pronounced first minimum does not indicate the absence of
the near-wall streaks. It is due to the fact that at high Reynolds number, the
contributions from the large-scale motions in the outer region have concealed
the contributions from the streaks (Gupta et al. 1971; Österlund 1999; Abe
et al. 2004), i.e. the small scales streaky structures are modulated by the larger
outer structures (Mathis et al. 2009; Schlatter and Örlü 2010; Bernardini and
Pirozzoli 2011). To recover the minimum at high Reynolds number, Österlund
(1999) applied a high-pass filter to the signals before calculating the correlation
coefficient. The cut-off wavelength was chosen to be the 99% boundary layer
thickness such that structures which have a wavelength larger than the bound-
ary layer thickness are damped. This filtering procedure produces a distribution
of the correlation coefficient similar to those at low Reynolds numbers.

Similarly, the streaky structure also exist for scalar fields with the case of
Pr = 0.71 being almost identical to the velocity structures, similar behaviours
are also observed previously by Kim and Moin (1989); Bell and Ferziger (1993);
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Figure 3.12. Spanwise two-point correlation coefficients of
the velocity and pressure fluctuations at y+ = 4.9 with Reθ =
830. Ruu, Rvv, Rww, Rpp.

Kong et al. (2000). Kim and Moin (1989) reported that the correlation coef-
ficient between the streamwise velocity and the scalar of Pr = 0.71 and 2.0 is
as high as 0.95 in the wall region. Due to this high correlation, the spanwise
spacing of the scalar streaks is also about 120 in wall units. The spanwise
two-point correlations of the different scalars at y+ = 10 are shown in Fig-
ure 3.13. It is seen that almost no difference exists between Rθθ, P r = 0.71
and Rθθ, P r = 2.0 with isoscalar wall boundary condition. However, an obvi-
ous deviation of Rθθ at low Pr = 0.2 is found, see also similar behaviours in
turbulent channel simulation by Kim and Moin (1989). It is noted that the dis-
tribution of Rθθ, P r = 0.2 is similar to Ruu at a much higher Reynolds number
which is due to a dominance of outer-layer structures. On the contrary, the
scalars of the isoflux boundary condition seem to be much more affected by the
Prandtl number and have larger spanwise spacings than those of the isoscalar
boundary condition. As expected, with increasing Reynolds number, the first
minimum will become less prominent due to a larger-scale modulation as for
the streamwise velocity component.

The spanwise streak spacing for both velocity and scalar fields varying with
Reynolds numbers is shown in Figure 3.14. Apart from the general increase
with increasing Reynolds number for all Prandtl number cases, the mean scalar
streak spacings are larger for smaller Pr at the same Reynolds number.

The streaky structures are relatively quiescent most of the time. However,
the low-speed fluid near the wall occasionally erupts violently into the outer re-
gion of the boundary layer (ejection motion). Kline et al. (1967) and Kim et al.
(1971) were among the first to name this process as “bursting” which was later
used by Wallace et al. (1972), Willmarth & Lu (1972) and Lu & Willmarth
(1973) among others. During a bursting process, as described by Kim et al.
(1971), the low-speed streaks were observed first to lift up slowly away from
the wall, then start a growing oscillation and finally break up into more chaotic
motion. The most probable wall-normal position is around y+ = 15 where the
turbulence intensity reaches maximum, see Figure 3.5 for more discussioins.
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Figure 3.13. Spanwise two-point correlation coefficients of
the scalar fluctuations at y+ = 9.8 with Reθ = 830.
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Figure 3.14. Streamwise variation of the mean spanwise
streaks spacing at y+ ≈ 7. u, ◦ θ1, 1 θ2, ∇ θ3, ! θ4, "

θ5. A detailed discussion of the figure is found in Paper 1.

Intermittently, the high-speed fluid also rushes in toward the wall at a shal-
low angle (sweep motion). Together with the ejection motion, these two events
contribute to most of the production of the turbulence and are considered to be
a self-sustained and quasi-cyclic sequence (Robinson 1991). Blackwelder & Ko-
vasznay (1972) confirmed other observations that the disturbances associated
with the bursting process extends to across the boundary layer.

Note that the position where the streaks break down (y+ ≈ 15) is also the
same position where the skewness factor of streamwise velocity changes the sign
for low Reynolds number. As noted by Andreopoulos et al. (1984), this position
continues to extend to the outer region of the boundary layer with increasing
Reynolds number which indicates that changes in the velocity structure of the
flow are likely to occur. However, there is no evidence deduced from the data



3.6. COHERENT STRUCTURES 53

 R
τ wτ

w

 Δ z+
0 200 400 600 800

−0.2

−0.1

0

0.1

0.2

0.3

0.4(a)

 R
q wq w

 Δ z+
0 200 400 600 800

−0.2

−0.1

0

0.1

0.2

0.3

0.4(b)

Figure 3.15. Spanwise two-point correlation of the wall shear
stress Rτwτw and the wall heat flux Rqwqw at Reτ = 300. −◦−
No FST Case, L = 2.5, Tu = 40% at inlet, L = 7.5,
Tu = 40% at inlet, L = 15. (a) Rτwτw , (b) Rqwqw . A

detailed discussion of the figure is found in Paper 4.

that the intermittent coherent flow structures, i.e. the near-wall streaks, have
disappeared. According to Kline (1967), the skewness factor is associated with
width of the streaks. By examining the results from DNS by Li et al. (2009) as
shown in Figure 3.14, there is a trend for the spanwise spacing of the near-wall
streaks to grow with increasing Reynolds number.

For the case with FST, the spanwise two-point correlation coefficient is
“elevated” and this leads to the local positive maximum as shown in Figure
3.15. These plots are very similar to the ones presented by Schlatter et al.
(2009a) for a boundary layer with much higher Reynolds number, suggesting
that the outer part of the boundary layer is changed due to the free stream
turbulence.

3.6.2. Large-scale motions (LSM)

Besides the near-wall streaks, there are also structures existing in the outer
region of the boundary layer (Kim & Adrian 1999; del Álamo & Jiménez 2003;
Abe et al. 2004; Hutchins & Marusic 2007; Schlatter et al. 2009). These struc-
tures are related to the “inactive” motion by Townsend (1976) and usually scale
with outer units, e.g. the channel height h or the boundary-layer thickness δ99.

The spanwise premultiplied energy spectra pertaining to both velocity and
scalar field is shown in Figure 3.16. A two-peak structure is usually observed
assuming high enough Reynolds number, see Figure 3.16 (a) for the spectrum of
streamwise velocity. These two peaks are associated with the near-wall streaks
and the outer layer structures, respectively. The inner peak is consistently
located at a wall-normal position about y+ ≈ 15 which is also consistent with
the channel flow simulation by del Álamo & Jiménez (2003), while the outer
peak scales in outer units and locates at y ≈ 0.4δ99 (Schlatter et al. 2010).
Again as expected, the case for Pr = 0.71 is similar to the spectrum of the
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(a) (b)

(c) (d)

Figure 3.16. One-dimensional premultiplied spanwise spec-
tra of the kzΦuu(λz)/u2

τ and kzΦθθ(λz)/θ2
τ at Reθ = 2500. (a)

Spectrum of u; Spectrum of θ: (b) Pr = 0.2; (c) Pr = 0.71;
(d) Pr = 2.0. A detailed discussion of the figure is found in
Paper 3.

velocity. For case of Pr = 0.2, a one-peak structure (only the outer peak) is
observed indicating that the low Pr case is dominant by the larger scales in
the outer region. On the other hand, the case for Pr = 2.0 shows a two-peak
structure, but with the outer peak being much weaker compared to the peak
in the velocity spectrum at the same Reynolds number. It is expected that the
outer peak will eventually vanish for certain high enough Prandtl number.

With the free-stream turbulence, the energy spectra and in particular the
outer peaks are changed, see Figure 3.17. The inner peaks essentially are not
changed while the wall-normal position of the outer peak moves from O(0.5δ95)
to O(δ95). Meanwhile, the spanwise scale of the outer structures increase from
O(1.2δ95) to O(3.5δ95) for a local turbulence intensity about 7%. The recent
experimental study by Sharp et al. (2009) reported also such two-peak struc-
tures. Due to the difficulty to measure the spanwise scales in the experiments,
they reported that the streamwise scale changes from 6δ99 to 15δ99 due to FST
of about 10%.

Note that in experiments, VLSM or super-structures are identified, however
many doubts are put on these giant structures. The first comes with problem
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(a) (b)

(c) (d)

Figure 3.17. Premultiplied spanwise energy spectra of
Φuu(λz)/u2

rms and Φθθ(λz)/θ2
rms with Pr = 0.71 at Reθ ≈

900. (a) Φuu(λz)/u2
rms with no FST at inlet, (b) Φθθ(λz)/θ2

rms

with no FST at inlet, (c) Φuu(λz)/u2
rms with Tu = 40% at in-

let, (d) Φθθ(λz)/θ2
rms with Tu = 40% at inlet. A detailed

discussion of the figure is found in Paper 4.

of the identification. At these length scales, e.g. low frequency fluctuations
from the facility itself may have an important influence (Marusic et al. 2010b).
Furthermore, the close lateral packing of structures might be interpreted as
a single structure which leads to an overestimation of the length (Marusic
et al. 2010b). Third, a considerable amount of data on VLSM is obtained
from the temporal signals and to convert temporal spectra to streamwise ones,
usually the Taylor’s hypothesis is employed. However, the validity of Taylor’s
hypothesis remains an open question, and inappropriate usage will lead to
inaccurate results, e.g. the recent challenges to the k−1

x energy spectrum as
pointed out in del Álamo and Jiménez (2009).

3.6.3. Hairpin vortices

Horseshoe/hairpin vortices were first polustrated by the aerodynamicist
Theodorsen (1952), and they are commonly defined as an Ω-shaped vortical
structure with two legs (streamwise vortices) connected via a raised spanwise-
oriented head/arch. They reach up from the wall to transport fluid and produce
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Reynolds shear stress. As the hairpin vortices are convected downstream, the
legs elongate and become quasi-streamwise vortices which give birth to near-
wall streaks. However, though being proposed as one of the primary structure
of wall turbulence, the importance and even the presence of hairpin vortices
have long been debated, see e.g. Cantwell (1981). Since the indirect evidence of
the presence of hairpin vortices from a smoke visualisation by Head & Bandy-
opadhyay (1981), a number of studies have postulated the existence of hairpin
structures in turbulent shear flows, see e.g. Perry & Chong (1982); Adrian
et al. (2000), however, no direct evidence of existence of hairpin vortices in
fully turbulent flow has been shown.

Experimental technique is still not mature enough to provide the detailed
information of the time evolution of the vortical structures, therefore DNS
seems to be the ideal tool for this kind of study (Marusic et al. 2010b). By
examining the DNS data of the turbulent boundary layer by Spalart (1988),
Robinson (1991b) (after dividing the hairpin vortices into three parts: leg, neck
and head) found that the majority of the hairpin vortices are only one-legged,
and complete two-sided hairpin vortices are rarely observable in instantaneous
realisations, similar observations are also made by Brooke & Hanratty (1993).
Jeong et al. (1997) performed DNS simulation in turbulent channel flow and
found there are no complete hairpin vortices in the ensemble-averaged struc-
ture. Additionally, in the study by Zhou et al. (1999), it is observed that the
asymmetric hairpins, i.e. cane- or hook-like hairpin vortices with only one leg,
are formed more readily in rapid succession and their streamwise separation
is in better comparison with the experiments than the two-legged symmetric
ones. However, recent DNS by Wu & Moin (2009) in a spatially developing
turbulent boundary layer reported a predominance of hairpin vortices, but it
can be argued that those hairpin vortices seen in the simulation by Wu & Moin
(2009) are due to a post-transitional effects16. Further downstream where the
flow is fully developed and far from the transitional region, no clear hairpin
vortices are observable. However, some authors (Wu & Moin 2009; Gad-el Hak
& Buschmann 2011) argue that the quasi-streamwise vortices17 observed in
the recent simulation by Schlatter & Örlü (2010) and earlier simulations e.g.
Schoppa & Hussain (2002); Spalart (1988) are mainly due to the streamwise
periodic boundary condition employed in those simulations which leads to the
distortion of the vortical structures. However, this is most probably not true
since in the simulation by Schlatter & Örlü (2010), the inflow is laminar, i.e.
Blasius profile, and does not contain any vortical structures.

16The Reynolds number in the simulation reached by Wu & Moin (2009) is too low to be free
from transitional effects, i.e. the flow is not fully turbulent. It is not surprising that one can
observe a predominance of hairpin vortices. What is more surprising was how quickly this
view was adopted by the research community as an example of a fully turbulent boundary
layer.
17The “one-legged freak” as named in Gad-el Hak & Buschmann (2011).
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(a) (b)

Figure 3.18. Averaged educed structure. (a) In the early
transitional region (Reθ ≈ 200 ∼ 300) over 14 clear hairpin
structures. Isocontour level of λ+

2 = −0.0035, calculated based
on shear stress at Reθ = 650. The total number of educed
vortices in the same region is 189. (b) In the turbulent region at
contour level λ+

2 = −0.003. Black: turbulent boundary layer
at Reθ = 4200, grey: turbulent boundary layer at Reθ = 2500,
white: turbulent channel at Reτ = 590. A detailed discussion
of the figure is found in Paper 9.

The educed averaged structure from the present data is shown in Figure
3.18. In the early transitional region as shown in Figure 3.18 (a), the aver-
aged structure is a hairpin vortex which has a clear head, neck and two legs.
Whereas in the fully turbulent region as shown in Figure 3.18 (b), the aver-
aged structure is nothing but a quasi-streamwise vortex, i.e. no head neither
neck, which is similar to that is found in turbulent channel flow (Jeong et al.
1997). In addition, Robinson (1991b) also concluded that streamwise vortices
populate the inner region of the boundary layer and strong asymmetries are
the rule, rather than the exception which dismissed the existence of hairpin
vortices which feature a symmetric pattern. The eduction scheme used here
for identifying streamwise vortices is similar to what is that used by Jeong et al.
(1997) which is based on the λ2 criterion Jeong & Hussain (1995)18.

3.6.4. Inner/outer interactions

Even though the near-wall cycle seems to be self-sustained, it is believed that
the outer structures have at least a modulating influence on the near-wall events
(Robinson 1991). This has been observed both in simulation and experiments,
see e.g. Hutchins & Marusic (2007b); Schlatter et al. (2009). One such example
is shown in Figure 3.19 (a) where the spanwise two-point correlation of the
wall-shear stress τw is shown as a function of Reynolds number. Except for the

18Other methods for identify vortex are e.g. low-pressure region which coincides roughly with
the vortex core (Robinson 1991b), Q criterion by Chong et al. (1990). It is thought that both
λ2 and Q criterion give qualitatively the same results.
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(a) (b)

(c) (d)

Figure 3.19. Spanwise two-point correlation of the wall
scalar flux Rqwqw . (a) Pr = 0.2; (b) Pr = 2.0. Colour bar
is [-0.6:0.6], 0.85δ99 and 120 plus units. A detailed dis-
cussion of the figure is found in Paper 3.

near-wall peak at 2∆z+ ≈ 120 (dash line) showing the existence of the streaks,
a second peak (solid line) is clearly visible for Reθ > 1500 which indicates the
footprints of the large-scale structure onto the fluctuating wall-shear stress.
Compared to the distribution of the wall shear stress, the wall scalar flux with
Pr = 0.71 is similar as expected. For the other two cases, i.e. Pr = 0.2 and 2.0,
the distributions are clearly different from the wall-shear stress. For the lower
Prandtl numbers, a much stronger outer peak, i.e. footprint of the dominant
larger scales can be observed while the inner peak is completely missing. For
the higher Pr case, the inner peak is dominant with outer peak barely visible.
These results suggest that the inner and outer structures of the velocity/scalar
field are not dependent on each other, i.e. they can self-sustain independently.

To further quantify the influence of the large scale energy-containing mo-
tions on the small scales, i.e. amplitude modulation, Mathis et al. (2009) em-
ployed the Hilbert transformation to small-scale fluctuating velocity signals
after filtering in spectral space. It is conjectured that a nonlinear amplitude
modulation indeed takes place of the small scale by the large scales motions
in the log region. Though the natural approach would be to use a two-point
correlation coefficient for studying the modulation influence, however, due to
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(a) (b)

(c) (d)

Figure 3.20. Two-point amplitude modulation covariance
C2p map at Reθ = 2520. (a) u, (b) θ with Pr = 0.2, (c) θ
with Pr = 0.71, (d) θ with Pr = 2.0. A detailed discussion of
the figure is found in Paper 3.

experimental difficulties in systematically performing two-point synchronised
measurements, Mathis et al. (2009) considered the single-point correlation co-
efficient which provides reasonable estimate for a two-point correlation coeffi-
cient. Later, a note of caution concerning the interpretation of the amplitude-
modulation correlation coefficient is made by Schlatter and Örlü (2010) in
which they demonstrated that the correlation coefficient used to quantify the
amplitude modulation is proportional to the skewness of the original signal
irrespective of any modulation. Hence, it is not sufficient to unambiguously
detect or quantify the large scale amplitude modulation on the small scales.
Recently, the analysis of Mathis et al. (2009) is extended by Bernardini and
Pirozzoli (2011) using again the two-point amplitude modulation correlation
coefficient. They showed that this new two-point correlation does not appear
to be proportional to the skewness of the original signal and therefore it pro-
vides a refined quantification of the amplitude modulation effects and truly
reflects the top-down interaction.

Here the method suggested by Bernardini and Pirozzoli (2011) is chosen
to study the amplitude modulation of the large scales onto the small scales
as shown in Figure 3.20. Following the notation in Bernardini and Pirozzoli
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(2011), the modulating influence of an wall-normal position at y1 on another
position y2 is quantified by the covariance C2p(y1, y2) = 〈uL(y1)uEL(y2)〉. uL
the the large scale component of the raw signal after a spanwise filter with cut-
off wavelength λz = 0.4δ99. The spanwise filter wavelength is chosen according
to approximately the wavelength which separates the inner and outer peak
in the energy spectrum. Note that a wavelength of λz = 0.5δ99 is chosen
by Bernardini and Pirozzoli (2011), however, the effect of varying the filter
width has no qualitative effects on the results. uEL(y2) is the low-pass filtered
envelope of the small-scale component of the raw signal. For more details of
the decoupling procedure, one should refer to original work by Mathis et al.
(2009).

The resulting map for the streamwise velocity component as shown in Fig-
ure 3.20 (a) is consistent with the results by Bernardini and Pirozzoli (2011),
i.e. a strong positive peak is observed lying on the diagonal in the left corner and
a distinct second weaker positive peak emerges next to the dominant one. This
second peak located at y+ ≈ (100, 8), will increase in strength with Reynolds
number and represents the signature of the large-scale amplitude modulation
on the small scales. The results pertaining to the scalars fields are shown in
Figure 3.20 (b)− (d). As expected, the correlation map of Pr = 0.71 is similar
to that of the streamwise velocity. The second peak in the map of the higher
Prandtl number, Pr = 2.0, is much weaker, almost invisible, which indicates
a weak large-scale modulation. This is in agreement with the spectra shown
in Figure 3.16 (d). On the contrary, the low Prandtl case Pr = 0.2, due to
dominant outer structures, the correlation map only shows this one peak which
indicates the strong influence of the amplitude modulation.

3.7. Ongoing work

Table 3.1. List of resolution for the ongoing LES (calculated
without dealiasing i.e. in spectral space; add a factor of 1.5
in the two wall-parallel direction to obtain the resolution in
physical space). δ∗0 is the displacement thickness at the inlet.

box dimension grid resolution Reynolds number
9216× 513× 768

13500δ∗0 × 400δ∗0 × 540δ∗0 ∆x+ = 25.5,∆z+ = 10.9 Reθ = 188-8400
∆y+ = 0.12− 14.2

A new series of simulation of spatially developing turbulent boudnary lay-
ers via LES is ongoing at the moment. The sub-grid scale (SGS) stresses are
modelled by the ADM-RT model (Schlatter et al. 2004) which is shown to
be accurate in transitional and turbulent flow at a low cost (Schlatter et al.
2010). The ongoing work is a similar study as the previous one by Schlatter
et al. (2010), i.e. employing the same numerical methods, grid resolution, SGS
model, etc, but reaching a higher Reynolds number at Reθ = 8400. The grid
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information is shown in Table 3.1. These Reynolds numbers are clearly the
highest to be reached via well-resolved transient numerical simulations. At
this Reynolds number, a first approach to an asymptotic state of the mean
velocity and thus the emergence of a true “overlap" region can be expected.
Some prelimenary results are shown here to illustrate the quality of the ex-
pected results. The highest Reynolds number obtained is about Reθ = 8400
which is twice the one reached by the previous work (Schlatter et al. 2010).
The numerical setup is similar to the previous study by Schlatter et al. (2010)
and a total number of 10 bilion grid points is required. In Figure 3.21 (a),
the downstream evolution of the skin-friction coefficient is compared with the
previous DNS by Schlatter & Örlü (2010), empirical relation by Nagib et al.
(2007) and experimental data by Örlü (2009), and the agreement is fairly good
especially at higher Reynolds numbers. The mean velocity profile and the RMS
of the fluctuations are shown in Figures 3.21 (b) and (c). Again the agreement
with the previous DNS and experimental data is exellent at higher Reynolds
numbers; Potential sources of small differences at lower Reynolds numbers are
currently under investigation. For the urms, the Reynolds number dependence
of the peak value is clearly visible, i.e. an increasing peak with increasing Rey-
nolds number. In Figure 3.21 (d), the log-law indicator function Ξ = y+ d〈u〉+

dy+

for velocity field is shown. Monkewitz et al. (2007) proposed a functional form
for Ξ up to the logarithmic region, featuring a maximum at y+ ≈ 10 and a
local minimum around y+ ≈ 70. After the minimum, the indicator function is
supposed to asymptote to 1/κ in the log-region at sufficiently high Reynolds
number. The highest Reynolds number reached in the present LES data is
still on the lower end to develop an asymptotical logarithmic region with the
proposed κ = 0.38 by (Österlund et al. 2000), the log-law indicator function
closely follows the correlation developed by Monkewitz et al. (2007) and just
reached about the plateau before increasing again in the wake region.



62 3. TURBULENT BOUNDARY LAYER

 Re
θ

 c
f

 

 

0 2000 4000 6000 8000
2

3

4

5

6

7 x 10−3

(a)

 y+

 <
u>

+

 

 

100 101 102 103 1040

5

10

15

20

25

30(b)

 y+

 u
rm

s
+

 

 

100 101 102 103 1040

0.5

1

1.5

2

2.5

3(c)

 y+

 Ξ

100 101 102 1030

1

2

3

4

5

6(d)

Figure 3.21. Preliminary results for the ongoing LES upto
Reθ = 8000. LES at Reθ = 1000, 2500, 4000, 5844, 7545,

DNS at Reθ = 1000, 2500, 4000, ◦ experimental data by
Örlü (2009) at Reθ = 2526, 4070, 5844, 7545, correlation
by Nagib et al. (2007) 2( 1

0.384
ln(Reθ) + 4.127)−2. (a) cf , (b)

〈u〉, (c) urms, (d) Ξ.



CHAPTER 4

Conclusions and outlook

“There is always an easy solution to every human problem –
neat, plausible, and wrong.”

– H. L. Mencken (1880 – 1956)

“You can always count on the Americans to do the right thing
after they’ve tried everything else.”

– Sir Winston S. Churchill (1874 – 1965)

In the present thesis, spatially evolving turbulent boundary layers together
with passive scalars are investigated numerically. The parallelised research
code together with the large-scale computer system make the study of wall
turbulence at numerically very high Reynolds numbers possible.

The basic flow statistics and energy budgets pertaining to both flow and
scalar fields are in close agreement with available high quality experimental
and DNS data in literature at comparable Reynolds numbers. Furthermore,
the good agreement at high Reynolds number Reθ > 2000 indicates that the re-
sults are insensitive to the details of the experimental and numerical setup, e.g.
the surface roughness, tripping device, streamwise pressure gradients, bound-
ary conditions. By analysing the spanwise and temporal spectra, a two-peak
structure is merged. The inner peak reflects the existance of the near-wall
streaks, while the outer peak indicates the presence of the larger-scale motions.
Furthermore, the large-scale structure is found to be about 0.85δ99 in width
and persists for about 10δ99/U∞ time units. It is found that a nonlinear am-
plitude modulation indeed takes place of the small scale by the large scales
motions in the log region. Concerning the vortical structures in the flow field,
it is found that no hairpin like structures exist in the averaged field in the near-
wall region of the turbulent boundary layer, instead, only the quasi-streamwise
vortex survives. This is consistent with previous results in turbulent channel
flow, which again reflects the similarities in the near-wall region for both types
of flow geometry.

For the results pertaining to scalar field, the mean scalar profiles are inde-
pendent of the different boundary conditions whereas the effects on the scalar
variances and high-order statistics are obvious in the near-wall region. The
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scalar (Pr = 0.71) with isoscalar boundary condition is highly correlated with
the streamwise velocity component in the near-wall region. However, near the
boundary-layer edge, only a mild correlation between these two quantities was
observed. The Prandtl number effects are clearly shown via the energy spectra
and the two-point correlations. There are much more prominent outer-layer
structures for scalar fields with lower Pr, while for higher Pr, only the spectral
peaks pertaining to small scales are observable. Similar to the velocity field,
the amplitude modulation of the outer structures on the small scales close to
the wall also exists for the scalar field.

As an extension to the non-canonical case, the influences of the free-stream
turbulence is considered. With the presence of free-stream turbulence, a more
prominent depression of the wake region can be observed with increasing tur-
bulence intensity for both the mean velocity and temperature profiles. As much
as 30% increases of both the skin-friction coefficient and the Stanton number
are found for a local turbulence intensity of 7%. The temperature field seems to
be more affected by the presence of the free-stream turbulence which is shown
by the increasing Reynolds analogy factor with increasing turbulence intensity.
By employing the spanwise premultiplied energy spectra, it is found that the
original two-peak structure in the calm free stream case is altered. The inner
peak stays the same while a new peak emerges at approximately the height of
the boundary layer thickness with a spanwise scale of about O(3 ∼ 4δ95). The
outer peak originally located in the overlap region in the no-FST case vanishes
or at least becomes much less dominant. It is believed that these newly for-
med large-scale structures due to the free-stream turbulence penetrate through
the boundary layer down to the wall and cause the observed increase of both
skin friction and heat transfer on the wall. In addition, it is suggested that a
turbulent boundary layer at moderate Reynolds number under the influence of
free-stream turbulence appears similar to a boundary layer at higher Reynolds
number without FST. Detailed analysis on the statistics obtained from high-
Reynolds-number simulations and at moderate Reynolds number with FST
could be interesting as also suggested by Sharp et al. (2009).

An extension of the present work is to simulate such canonical flows at even
higher Reynolds numbers since most engineering applications happen at very
high Reynolds numbers, so there is always a need for well-resolved simulations
at high Reynolds number. With the present increasing speed of the computer
power, by the middle of 21 century, it is expected that to simulate the wing of an
airplane will be possible. A series simulations via LES is already ongoing. The
Reynolds number is twice as much as the previous DNS study by Schlatter &
Örlü (2010), reaching a Reynolds number Reθ = 8400. The preliminary results
are in good agreement with the previous simulations.

For the free-stream case, the future simulation should consider fewer con-
figurations, but with increased numerical resolution to further quantitatively
study the various effects of FST. To critically compare with the experiments,
the length scales used in the simulation should be further increased, and this
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in turn will require a large number of grid points and very large computational
domain to comfortably accommodate the large scale structures present in the
free stream.

Other possible extensions include considering the effects of streamline cur-
vature and buoyancy in turbulence. Ealier studies showed that there is a qual-
itatively analogy between the flows over curved boundaries and flows with
buoyancy. It is definitely interesting to study the buoyancy and curvature ef-
fects on the structural changes in turbulent shear flows, and possible influences
on heat transfer problems.
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Papers

“I’m gonna make him an offer he can’t refuse”

– The Godfather (1972)




