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Linné FLOW Centre, KTH Mechanics, Royal Institute of Technology
SE–100 44 Stockholm, Sweden

Abstract

Rotating-disk flow has been investigated not only as a simple model of cross flow

instability to compare with swept-wing flow but also for industrial flow applications

with rotating configurations. However the exact nature of laminar-turbulent transi-

tion on the rotating-disk flow is still major problem and further research is required for

it to be fully understood, in particular, the laminar-turbulent transition process with

absolute instability. In addition the studies of the rotating-disk turbulent boundary-

layer flow are inadequate to understand the physics of three-dimensional turbulent

boundary-layer flow.

In present thesis, a rotating-rotating disk boundary-layer flow has been inves-

tigated experimentally using hot-wire anemometry. A glass disk with a flat surface

has been prepared to archieve low disturbance rotating-disk environment. Azimuthal

velocity measurements using a hot-wire probe have been taken for various conditions.

To get a better insight into the laminar-turbulent transition region, a new way to

describe the process is proposed using the probability density function (PDF) map

of azimuthal fluctuation velocity.

The effect of the edge of the disk on the laminar-turbulent transition process

has been investigated. The disturbance growth of azimuthal fluctuation velocity as

a function of Reynolds number has a similar trend irrespective of the various edge

conditions.

The behaviour of secondary instability and turbulent breakdown has been in-

vestigated. It has been found that the kinked azimuthal velocity associated with

secondary instability just before turbulent breakdown became less apparent at a cer-

tain wall normal heights. Furthermore the turbulent breakdown of the stationary

mode seems not to be triggered by its amplitude, however, depend on the appearance

of the travelling secondary instability.

Finally, the turbulent boundary layer on a rotating disk has been investigated.

An azimuthal friction velocity has been directly measured from the azimuthal velocity

profile in the viscous sub-layer. The turbulent statistics normalized by the inner and

outer sclaes are presented.

Descriptors: Fluid mechanics, boundary layer, rotating disk, laminar-turbulent

transition, convective instability, absolute instability, secondary instability, crossflow

instability, hot-wire anemometry.
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Preface

This licentiate thesis within the area of fluid mechanics deals with boundary-
layer flow on a rotating disk based on experimental work, including the insta-
bility, laminar-turbulent transition and fully developed turbulence. The thesis
is divided into two parts. The first part contains an introduction, an overview,
summary of the present study and an appendix giving the governing equa-
tions. Ths second part consists of four papers. One of them has already been
published however it is presented in a different format here to align with the
formatting of the thesis. In chapter 5 of the first part of the thesis, the authors’
contributions to the papers are stated.

May 2012, Stockholm

Shintaro Imayama
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Part I

Overview and summary





CHAPTER 1

Introduction

An incompressible boundary layer over a rotating disk without any imposed
flow is discussed in this study. The aim of this experimental work is to investi-
gate the laminar-turbulent transition process and turbulence on the rotating-
disk boundary-layer flow.

The flow is purely driven by the disk rotation. The laminar boundary
layer has a three-dimensional velocity profile with an inflection point in the
radial velocity component. This boundary layer is known as the ‘von Kármán
boundary layer’ and it belongs to a family of rotating boundary-layer flows,
including the so-called Bödewadt, Ekman and von Kármán boundary layers
(BEK boundary layers) that are exact solutions of the Navier-Stokes equations.
The differences between these flows are characterized by the Rossby number
Ro, which is written as

Ro =
Ω∗f − Ω∗d

Ω∗a
(1.1)

with Ω∗a = (Ω∗f + Ω∗d)/4 + ((Ω∗f + Ω∗d)
2/16 + (Ω∗f − Ω∗d)

2/2)1/2,

where Ω∗f and Ω∗d are the fluid angular velocity outside the boundary layer and

the disk angular velocity (Arco et al. 2005), respectively. Ro on this study is
−1 as Ω∗f = 0 and therefore Ω∗a = Ω∗d. The flow is also characterized by the
Reynolds number, which is the ratio of inertial forces to viscous forces. It is
defined as

R = r∗
√

Ω∗

ν∗
, (1.2)

where r∗ is the radius of the disk at the measurement position, Ω∗ is the angular
velocity of the disk, ν∗ is the kinematic viscosity of the fluid and * denotes a
dimensional quantity.

The radial velocity component with an inflection point satisfies Rayleigh’s
inflection-point criterion which relates to the existence of an inviscidly unstable
mode. The rotating-disk flow is therefore inviscidly unstable, namely it remains
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2 1. INTRODUCTION

unstable at infinite Reynolds number. Three-dimensional boundary layers that
have an inviscid instability such as this are said to have ‘crossflow instability’.

The rotating-disk boundary-layer flow has been used as a model for the
flow over a swept wing because of the similarity of the velocity profiles and
because both flows are susceptible to crossflow instability since the work by
Gregory et al. (1955). Furthermore there is an advantage in investigating the
crossflow instability of a rotating-disk flow rather than swept-wing flow. Be-
cause the rotating-disk flow is independent of a pressure-gradient parameter
or a variable sweep angle that are required for the boundary layer flow over
a swept wing. However, the flow over the rotating disk has Coriolis effects
in contrast to swept-wing boundary layers. Nevertheless, Lingwood (1995a)
found ‘local absolute instability’, attributed by an inviscid mechanism in the
rotating-disk boundary layer, linked to the onset of nonlinearity and transi-
tion and therefore the Coriolis and streamline curvature effects were shown not
to be of primary importance to the laminar-turbulent transition mechanism.
Lingwood (1997b) revealed that the flow over the swept wing could in certain
circumstances be absolutely unstable in the chordwise direction but because
the swept wing has no spanwise periodicity the laminar-turbulent transition
could still be a convective process.

The exact nature of the laminar-turbulent transition process for the rotating-
disk flow is still not well understood. In particular, to what extent the absolute
instability is involved in the transition process. This study helps us to under-
stand a nature of the absolutely-unstable crossflow instability. Flows driven
by one or more rotating disks have constituted a major field of study in fluid
mechanics since the last century. Many application areas, such as rotating
machinery, viscometry, computer storage devices and crystal growth processes,
require the study of rotating flows (Brady 1987). Thus, this study will help the
understanding of flows in more complicated applications.

The thesis is organised as follows: Part I, chapter 2, will continue describing
the basis of the work, including the aims of the study, application examples,
previous authors’ work and the governing equations; chapter 3 describes the
experimental set-up and measurement method including the calibrations. Part
I ends with a summary of results and a list of publications as well as describing
the author’s contribution to the papers in chapter 4 and 5, respectively. Part
II contains four papers on various aspects of the rotating-disk flow.



CHAPTER 2

Rotating-disk flow studies

This chapter will introduce, first of all, the basic equations govering rotating-
disk flow. Then an overview of the rotating-disk flow following previous au-
thours’ studies since the derivation of the von Kármán (1921) similarity solu-
tion for an infinite disk rotating in otherwise quiscent fluid is described. Thus
overview of recent studies of laminar-turbulent transition of the rotating-disk
boundary-layer flow is discussed. Then application examples of the rotating-
disk flow are introduced to specify the importance of this study for an industrial
applications. Finally, the concepts of convective instability and absolute insta-
bility are discussed.

2.1. The governing equations

Figure 2.1. A sketch of the von Kármán boundary layer
on a rotating-disk showing the mean velocity profiles (in a
stationary laboratory frame).
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4 2. ROTATING-DISK FLOW STUDIES

The rotating-disk flow system is modelled in a cylindrical coordinate sys-
tem as an infinite planar disk with a constant angular speed Ω∗. The position
vector is given as r = (r∗ cos θ, r∗ sin θ, z∗). The instantaneous velocity vector is
represented by v = (ũ∗, ṽ∗, w̃∗). The rotation vector is given by ω = (0, 0,Ω∗).
The continuity equation and Navier-Stokes equation (NSE) in a uniformly ro-
tating co-ordinate system are written as

∇ · v = 0, (2.1)

∂v

∂t∗
+ (v · ∇)v + 2ω × v + ω × (ω × r) = − 1

ρ∗
∇p̃∗ + ν∗∇2v, (2.2)

where 2ω× v is the Coriolis acceleration term and ω× (ω× r) is a centrifugal
acceleration term, p̃∗ is an instantaneous pressure and ρ∗ and ν∗ are density and
kinematic viscosity of a Newtonian fluid, respectively, and ∇ and ∇2 are the
gradient and Laplace operators respectively, in cylindrical coordinates. The
continuity equation and the NSE can be decomposed radial, azimuthal and
axial components and are written as

Continuity equation:

∂ũ∗

∂r∗
+

1

r∗
∂ṽ∗

∂θ
+
∂w̃∗

∂z∗
+
ũ∗

r∗
= 0, (2.3)

Radial component of NSE:

∂ũ∗

∂t∗
+

(
ũ∗
∂ũ∗

∂r∗
+
ṽ∗

r∗
∂ũ∗

∂θ
+ w̃∗

∂ũ∗

∂z∗

)
− ṽ∗2

r∗
− 2ṽ∗Ω∗ − r∗Ω∗2

= − 1

ρ∗
∂p̃∗

∂r∗
+ ν∗

[(
∂2ũ∗

∂r∗2
+

1

r∗2
∂2ũ∗

∂θ2
+
∂2ũ∗

∂z∗2

)
+

1

r∗
∂ũ∗

∂r∗
− ũ∗

r∗2
− 2

r∗2
∂ṽ∗

∂θ

]
,

(2.4)

Azimuthal component of NSE:

∂ṽ∗

∂t∗
+

(
ũ∗
∂ṽ∗

∂r∗
+
ṽ∗

r∗
∂ṽ∗

∂θ
+ w̃∗

∂ṽ∗

∂z∗

)
+
ũ∗ṽ∗

r∗
+ 2ũ∗Ω∗

= − 1

ρ∗r∗
∂p̃∗

∂θ
+ ν∗

[(
∂2ṽ∗

∂r∗2
+

1

r∗2
∂2ṽ∗

∂θ2
+
∂2ṽ∗

∂z∗2

)
+

1

r∗
∂ṽ∗

∂r∗
− ṽ∗

r∗2
+

2

r∗2
∂ũ∗

∂θ

]
,

(2.5)

Axial component of NSE:

∂w̃∗

∂t∗
+

(
ũ∗
∂w̃∗

∂r∗
+
ṽ∗

r∗
∂w̃∗

∂θ
+ w̃∗

∂w̃∗

∂z∗

)
= − 1

ρ∗
∂p̃∗

∂z∗
+ ν∗

[(
∂2w̃∗

∂r∗2
+

1

r∗2
∂2w̃∗

∂θ2
+
∂2w̃∗

∂z∗2

)
+

1

r∗
∂w̃∗

∂r∗

]
.

(2.6)



2.1. THE GOVERNING EQUATIONS 5

2.1.1. Mean velocity profile

The instantaneous velocity (ũ∗, ṽ∗, w̃∗) and instantaneous pressure (p̃∗) are
decomposed into mean (time-independent) and fluctuation (time-dependent)
components, namely

ũ∗ = U∗ + u∗,

ṽ∗ = V ∗ + v∗,

w̃∗ = W ∗ + w∗,

p̃∗ = P ∗ + p∗,

(2.7)

where U∗, V ∗,W ∗ are the mean radial, azimuthal and axial velocities, P ∗ is
the mean pressure, u∗, v∗, w∗ are fluctuating velocities in the radial, azimuthal
and axial directions, and p∗ is the fluctuating pressure. This operation is
called Reynolds decomposition. Kármán (1921) derived an exact axi-symmetric
similarity solution of the Navier-Stokes equation for the (time-independent)
base flow. Then velocity and pressure similarity variables are defined by

U(z) =
U∗

r∗Ω∗
, V (z) =

V ∗

r∗Ω∗
, W (z) =

W ∗

(ν∗Ω∗)1/2
, P (z) =

P ∗

ρ∗ν∗Ω∗
, (2.8)

where U, V,W are nondimensional radial, azimuthal and axial mean velocity
components, P is the nondimensional mean pressure. z is the wall normal
position from the disk surface normalized by the characteristic length L∗ =
(ν∗/Ω∗)1/2, namely written as

z = z∗/L∗. (2.9)

The mean basic flow equations are derived from equations (2.3–2.6), with
time-independence and axi-symmetry, which yields nonlinear ordinary differ-
ential equations written as:

2U +W ′ = 0, (2.10)

U2 − V 2 + U ′W − U ′′ = 0, (2.11)

2UV + V ′W − V ′′ = 0, (2.12)

P ′ +WW ′ −W ′′ = 0, (2.13)

where the prime denotes differentiation with respect to z. The boundary con-
ditions on a rotating-disk flow are no-slip conditions at the wall, and no radial
or azimuthal velocity at z =∞, so in the laboratory frame they become:

U(0) = 0, V (0) = 1, W (0) = 0,

U(∞) = 0, V (∞) = 0.
(2.14)
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The solutions of the differential equations in equations (2.10–2.13) are plot-
ted in figure 2.2. And the flow direction between azimuthal and radial compo-
nents is also plotted in figure 2.3.
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Figure 2.2. Laminar mean velocity profiles U (dash line),
V (solid line) and W (chain line), respectively, in a stationary
frame.
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Figure 2.3. A laminar mean velocity angle profile of U and V .
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2.1.2. Reynolds averaged equations

To derive the governing equations for turbulent flow over the rotating disk,
Reynolds averaged continuity equation and Navier-Stokes equations (RANS)
are derived from equations (2.3–2.6) with some assumptions. The detail of
these derivations are described in Apendix A. To derive Reynolds averaged
continuity equation, the decomposed velocity and pressure components given
in equation (2.7) are substituted into equation (2.3), and time averages taken.
Then derivaties with respect to the θ direction are neglected due to the axisym-
metry of the mean flow. Therefore, the Reynolds averaged continuity equation
becomes

∂U∗

∂r∗
+
∂W ∗

∂z∗
+
U∗

r∗
= 0. (2.15)

The RANS equations are derived by substituting equation (2.7) into equa-
tion (2.4), equation (2.5) and equation (2.6) and taking time averages (denoted
with an overscore). With the usual assumptions and assuming axisymmetry,
the resulting RANS equations for the incompressible turbulent rotating-disk
boundary-layer flow are given as

Radial component:

U∗
∂U∗

∂r∗
+W ∗

∂U∗

∂z∗
− V ∗2

r
− 2V ∗Ω∗

= − 1

ρ∗
∂P ∗

∂r∗
+ r∗Ω∗2 +

1

ρ∗
∂

∂z∗

(
µ∗
∂U∗

∂z∗
− ρ∗u∗w∗

)
,

(2.16)

Azimuthal component:

U∗
∂V ∗

∂r∗
+W ∗

∂V ∗

∂z∗
+
U∗V ∗

r∗
+ 2U∗Ω∗

=
1

ρ∗
∂

∂z∗

(
µ∗
∂V ∗

∂z∗
− ρ∗v∗w∗

)
,

(2.17)

Axial component:

∂w∗w∗

∂z∗
= − 1

ρ∗
∂P ∗

∂z∗
. (2.18)
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2.2. Overview of previous studies

2.2.1. Instabilities and laminar-turbulent transition process

The laminar boundary-layer flow on the rotating disk has a three-dimensional
profile with an inflection point in the radial direction and the exact similarity
solution, which corresponds to the von Kármán similarity solution (1921) for
an infinite disk rotating in an otherwise quiescent fluid. The instability and
transition on the rotating-disk flow has been investigated since Theodorsen &
Regier (1944) and Smith (1947) who noticed fluctuations in the boundary layer
on the rotating disk using a hot-wire probe. Local stability analysis1 (e.g. Ling-
wood 1995a) reveals that the flow can be inviscidly unstable and the critical
Reynolds number (RCC) for the onset of instability of the stationary mode,
i.e. for disturbances that are fixed with respect to the rotating disk, is about
RCC = 290. This inviscidly unstable mode is called Type I. There is another
unstable mode which is called Type II and is due to viscous effect. However
for Type II stationary disturbances have smaller growth rates. Travelling dist-
urbances can also be unstable. Hussain et al. (2011) showed growth rates of
travelling disturbances with different frequencies. The maximum growth rates
were observed for a mode travelling slowly with respect to the disk and grow-
ing at a rate larger than the stationary mode. Note also that disturbances
travelling faster than the disk can have a critical Reynolds number for Type II
that is lower than that for Type I. However, flow visualisation of the rotating-
disk flow, e.g. by Kohama (1984), shows 31 or 32 stationary spiral vortices.
The predominance of the stationary disturbances observed in experiments may
be because of unavoidable roughness(es) on the surface that cause repeatable
excitation of the stationry mode rather than travelling modes.

Early studies of laminar-turbulent transition of the rotating-disk flow had
only considered convective instability (e.g. Huerre & Monkewitz 1990). Con-
vective instability is descrived, for example, the linear impulse response goes
to zero at infinite time at the excited position, while the disturbunce grows as
it is convected downstream.

More recently the work done by Lingwood (1995a, 1997a) using Briggs’
method (Briggs 1964) found that for certaing travelling waves above RCA = 507
the flow becomes absolutely unstable.2 This is caused by a stable upstream-
travelling mode, henceforth called Type III, coaliscing with an unstable down-
stream travelling Type I mode. Here RCA is the critical Reynolds number

1In order to render the perturbation equations separable, variations in R with respect to,
r are neglected and this results in a ‘local’ stability analysis, which is often referred to as

a ‘parallel-flow’ approximation (as it is for other boundary-layer flows) even though for the

rotating-disk laminar boundary layer the boundary-layer thickness is in fact constant.
2Absolute instability is where the linear impulse response goes to infinity at infinite time at
the excited position.
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for onset of local absolute instability. Furthermore, she revealed the abso-
lute instability of the rotating-disk flow is an inviscid mechanism and sug-
gested that the absolute instability triggers nonlinearity what is the start of the
laminar-turbulent transition process. By introducing impulsive excitation to
the rotating-disk boundary-layer flow, Lingwood (1996) confirmed experimen-
tally the absolute instability (above about R = 507) by tracking the trajectory
of the excited wavepacket. Furthermore, she showed the onset of nonlinearity
appeared at Reynolds numbers above 502 and below 514, see Lingwood (1995b)
and the development of the laminar-turbulent transition process from there, re-
sulting in a fully turbulent flow at about R = 600− 650. She performed these
experiments with a ‘clean’ disk to minimize the excitation of stationary dist-
urbances and the amplitude of the primary disturbance was small enough that
the peak amplitude of disturbances were 3% of the local disk speed at R = 500
(smaller than Balachandar et al.’s (1992) threshold where the root-mean-square
amplitude of the primary disturbance reaches about 9% at R = 500). Based
on these results and because she did not see clear evidence of kinks in the
timeseries indicative of secondary instabilities Lingwood (1996) stated “the
stationary disturbances are sufficiently small, even close to the onset of tran-
sition, for the boundary layer stability to be governed by the mean velocity
profiles rather than secondary instabilities”.

Davies & Carpenter (2003) performed direct numerical simulations solv-
ing the linearized Navier-Stokes equations and suggested that the convective
behaviour eventually dominates even for strongly locally absolutely unstable
regions and concluded that the absolute instability does not produce a linear
amplified global mode. Othman & Corke (2006) performed experiments simi-
lar to Lingwood (1996) but using a low-amplitude and a high-amplitude initial
pulse-jet excitation to create the wavepacket disturbances in the boundary-
layer flow. Contrary to Lingwood (1996) the trailing edge of the wavepacket
did not become fixed at RCA with the low amplitude initial disturbance, and
that result agrees well with the linearlized DNS of Davies & Carpenter (2003).
On the other hand, the amplitude of the wavepacket with the high-amplitude
initial disturbance compares better with Lingwood’s (1996) results although it
is not certain that the trailing edge of the wavepacket becomes fixed at RCA,
which would be indicative of the absolute instability.

In contrast to Lingwood’s (1996) experimental observation, Kobayashi
et al. (1980), Kohama (1984) and Wilkinson & Malik (1985) observed signs
associated with secondary instability at the final stage of laminar-turbulent
transition, namely just before the turbulent breakdown region. Kobayashi
et al. (1980) who performed the flow visualization on the rotating-disk flow
captured “a new striped flow pattern originating along the axis of a spiral vor-
tex”. Kohama (1984) who also carried out the visualization study suggested
“ring-like vortices which occur on the surfaces of each spiral vortices [sic]”.
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Reynolds number The description

R Local Reynolds number.
RCC Critical Reynolds number of Type I

instability for stationary mode.
RCA Critical Reynolds number of

absolute instability.
Rt Transition Reynolds number.
Redge Edge Reynolds number.

Table 1. Descriptions of various Reynolds numbers.

Furthermore both Kobayashi et al. (1980) and Wilkinson & Malik (1985) ob-
served kinked velocity fluctuations just before the turbulent breakdown region.
Then Wilkinson & Malik (1985) concluded that “stationary, secondary instabil-
ities between the primary vortices were observed”. From a theoretical analysis
Balachandar et al. (1992) suggested that the travelling secondary instability
appears as a pair of counter-rotating vortices. Pier (2003) suggested that a
nonlinear approach is required to explain the self-sustained behaviour of the
rotating-disk flow. He suggested that the rotating-disk boundary layer has a
primary nonlinear global mode fixed by the local absolute instability, found
by Lingwood (1995a), which has itself a secondary absolute instability that
triggers the transition to turbulence.

In addition to the studies described above, Healey (2010) suggested that the
proximity of the edge of the disk to the transition region is important; an effect
not captured by standard analyses, which assume an infinite disk radius. He
recognized the scatter of experimentally-observed transition Reynolds number
Rt reported by some previous authors who performed hot-wire measurements
as shown in table 2. He argued that, based on investigations of the linearized
complex Ginzburg-Landau equation, the transition Reynolds number should
depend on the Reynolds number at the edge of the disk, Redge, where Redge =

r∗d(Ω∗/ν∗)1/2, r∗d is the actual radius of the disk, with the assumption that
the transition to turbulence is related to the appearance of a steep-fronted
nonlinear global mode. Figure 7(b) of Healey (2010) shows the variance of the
experimentally-observed transition Reynolds number depending on the edge
Reynolds number compared with his theoretical prediction.

As mentioned above, the exact nature of the laminar-turbulent transition
process is not yet fully understood. In particular, the behaviour of the sec-
ondary instability and its relation to its primary absolute instability, and the
effects of the edge Reynolds number and edge conditions of the disk should also
be investigated.



2.2. OVERVIEW OF PREVIOUS STUDIES 11

Authors Rt Method

Theodorsen & Regier (1944) 557 Hot-wire
Gregory, Stuart & Walker (1955) 533 Visual, China-clay
Cobb & Saunders (1956) 490 Heat transfer
Gregory & Walker (1960) 524 Pressure probe
Chin & Litt (1972) 510 Mass transfer
Fedorov et al. (1976) 515 Visual, napthalene
Clarkson, Chin & Shacter (1980) 562 Visual, dye
Kobayashi, Kohama & Takamadate (1980) 566 Hot-wire
Malik, Wilkinson & Orszag (1981) 520 Hot-wire
Wilkinson & Malik (1985) 550 Hot-wire
Lingwood (1996) 508 Hot-wire
Othman & Corke (2006) 539 Hot-wire

Table 2. Experimental Rt (differently defined) given in pre-
vious studies.

2.2.2. Turbulent boundary-layer flow

In contrast to the many studies of the laminar-turbulent transition process, as
mentioned in the previous section, experimental results of turbulent boundary-
layer flow on a rotating disk are still limited (Littell & Eaton 1994), despite
many industrial applications (e.g. rotor-stator systems (Arco et al. 2005)).
The turbulent boundary layer on a rotating disk is three-dimensional due to
the crossflow driven by the centrifugal force and at the most skewed position
in the boundary layer the mean crossflow velocity component reaches 11% of
the local disk velocity (e.g. Littell & Eaton 1994). The early work on the
turbulent rotating-disk flow was done by Goldstein (1935) who did a torque
measurement. Theodorsen & Regier (1944) measured the azimuthal turbulent
velocity profile using a hot-wire probe up to R = 2646. The velocity profile
agreed well with the 1/7 power law in the measurement range. Cham & Head
(1969) performed turbulent radial and azimuthal velocity profile measurements
using Pitot and entrainment measurement techniques and concluded that both
of azimuthal and radial velocity profiles are well fitted by Thompson’s (1965)
two-dimensional family and Mager’s (1952) cross flow expression, respectively.
They also estimated the azimuthal local skin friction coefficient using a Clauser
(1954) plot, resulting in “realistic” values. Erian & Tong (1971) performed
experimental turbulent statistics measurements on a rotating-disk flow and
concluded that “the eddy viscosity in the turbulent boundary layer generated
by the disk rotation is substantially larger than that of the turbulent boundary
layer over a flat plate”. Littell & Eaton’s (1994) azimuthal velocity profile
normalized by an inner scale acquired by a conventional two-dimensional law
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of the wall, shows that compared with the two-dimensional turbulent boundary
layer the rotating-disk boundary layer lacks a wake component. They suggested
that the reason for the absence of a wake region was not understood because
for the two-dimensional turbulent boundary layer the wake would be missing if
there was a streamwise favourable pressure gradient, but this could not explain
the rotating-disk case where there is no azimuthal pressure gradient.

Inner variables (e.g. friction velocity) used in these previous are obtained
by classical empirical methods. However, Nagib & Chauhan (2008) show that
the von Kármán constant, κ, which is one of overlap coefficients for the log-
arithmic law in the turbulent boundary layer is no longer constant, but that
it can change depending not only on Reynolds number but also on the flow
systems (e.g. boundary layers, pipes and channels). To evaluate accurately the
turbulent statistics normalized by the inner variables, measurement of these
inner variables is required for the turbulent boundary layer on a rotating disk.

2.3. The application examples for a rotating-disk flow

The investigation of rotating-disk flow is useful not only for understanding
crossflow instability as a fundamental element of three dimensional boundary
layers but also for industrial flow applications with rotating configurations.
Flows driven by rotating disks have constituted a major field of study in fluid
mechanics since the twentieth century. The rotating-disk flow in this study is
purely driven by a single rotating disk, however in more applied studies several
geometrical configurations and flow conditions are taken into account.

Chemical vapour deposition (CVD) reactors often used in the semicon-
ductor industry to deposite thin films of electrical and optical materials on
substrates are one of the applications of the rotating-disk flow, see Hussain
et al. (2011); Chen, K. Mortazavi (1986); Vanka et al. (2004). In the CVD re-
actor a disk-like rotor is mounted horizontally in the flow. A substrate placed
on the disk-like supporter rotates to generate the homogeneous axial flow over
the substrate to ged rid of any non-uniformity of the incident flow (Hussain
et al. 2011). Then the flow containing the reactive molecules attaches to the
substrate and homogeneous thin film is deposited. Hussain et al. (2011) inves-
tigated the instability of the boundary layer over a rotating disk in an enforced
axial flow to model the flow situation inside CVD reactors. They found the
relative importance of the type II modes increases with axial flow.

The flow between rotating disks enclosed by a stationary sidewall has sim-
ilar geometry to rotor-stator configurations, and is therefore geometry that
is related to many industrial applications. The review paper about stability,
transition and turbulence in rotating cavities written by Arco et al. (2005) de-
scribes this flow well showing that the flow instabilities with this configuration
are strongly dependent on the aspect ratio of a diameter of the disk and height
between two disks.
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2.4. Convective instability and absolute instability

The concept of convective and absolute instability was introduced in the study
of plasma physics by Briggs (1964).

Convective and absolute instability both relate to growth of disturbances
in space and time and are distinguished by the different linear impulse response
given at a certain spatial location. Figure 2.4 shows a sketch of impulse re-
sponses at nondimensional time t = t1 for different instability conditions, where
the linear impulse is introduced at a nondimensional position xs = 0 and at
t = 0. Figure 2.4(a) shows a stable condition; the introduced impulce decays
in time and at t = t1 the sytem reverts back to the initial condition. Fig-
ure 2.4(b) shows the behaviour of the linear impulse in a convective unstable
region; the introduced impulse is exponentially amplified within the chain lines
as the resulting wavepacket convects downstream. At infinite time the system
reverts back to the initial condition at the location where initial impulse was
introduced. Figure 2.4(c) shows the response in an absolutely unstable region;
the introduced impulse is exponentially amplified within the chain lines at the
introduced location. At a infinite time the system has a growing response at
the location where the initial impulse was introduced.

These differences between convective instability and absolute instability
shown in figure 2.4 can also be described mathmatically. A general dispersion
relation is given (Schmid & Henningson 2001) as

D(α, ω;R) = 0, (2.19)

where α is the wave number of the streamwise direction and ω is the frequency,
and both are in general complex for the necessary spatio-temporal analysis
R is the control parameter, namely Reynolds number here. Combining equa-
tion (2.19) with fluctuations v(x, t) into the linear system satisfies the following
condition:

D

(
−i ∂
∂x
, i
∂

∂x

)
v(x, t) = 0, (2.20)

where x is the streamwise position, i =
√
−1 is the imaginary unit. To investi-

gate the response to a linear impulse into the linear system, the Green’s function
G(x, t) is introduced into equation (2.20) with the linear impulse introduced as
a Kronecker delta functions δ(x)δ(t) so that equation (2.20) satisfies

D

(
−i ∂
∂x
, i
∂

∂x

)
G(x, t) = δ(x)δ(t). (2.21)

Then the response G(x, t) to the linear impulse δ(x)δ(t) is defined as follows
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to distinguish between linearly stable and linearly unstable and between con-
vectively unstable and absolutely unstable responses. The system is linearly
stable if

lim
t→∞

G(x, t) = 0 along all rays
x

t
= constant. (2.22)

On the otherhand, the system is linearly unstable if

lim
t→∞

G(x, t)→∞ along at least one ray
x

t
= constant. (2.23)

If the system is linearly unstable, the convective instability and absolute insta-
bility are distinguished mathematically as follows. The system is convectively
unstable if

0

0

t

0

x

(a)
t
1

(b)

t
1

(c)

t
1

 x
s

Figure 2.4. The concept of a linear impulse response to
distinguish between convective and absolute instability in the
x−t plane: (a) stable, (b) convectively unstable, (c) absolutely
unstable. The linear impulse is introduced at x = xs at t = 0
for all cases.
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lim
t→∞

G(x, t) = 0 along the ray
x

t
= 0. (2.24)

The system is absolutely unstable if

lim
t→∞

G(x, t)→∞ along the ray
x

t
= 0. (2.25)

These definitions are compatible with the sketches of the growth of the impulse
in time and space shown in figure 2.4.



CHAPTER 3

Experimental methods

3.1. Experimental set-up of rotating-disk system

In this chapter, first of all, the experimental apparatus used in this study
is described in some detail. Secondly, the measurement procedure of the fluid
velocity by hot-wire anemometry is introduced and the typical calibration result
is shown. Thirdly the measurement procedures of other relevant quantities are
explained.

(a) (b)

Figure 3.1. (a) The experimental set-up of the rotating disk
with plate edge condition. (b) The horizontal and inclined
traverses and mounted hot-wire over the disk with open edge
condition.

16
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3.1.1. Rotating apparatus

The rotating disk experimental set-up is a modified version of the one used by
Lingwood (1996), see figure 3.1. In the present study a float glass is selected as
a surface material of the rotating disk. The detail of the glass disk is stated in
the following section. The glass disk is connected to the aluminum alloy disk
constricted by 8 aluminum components. The iron disk with diameter of 270 mm
is an adaptor to connect between alluminum alloy disk and a vertical shaft
which is mounted vertically on a shaft driven by a d.c. servo-motor (Mavilor
MS6). The d.c. servo-motor to operate the rotating disk is controlled by a
main motor control inverter (Infranor SMVE 1510). These components of the
rotating objects are sustained by an air-bearing spindle operated by pressurized
air with 5.5 bar supplied by an air compressor through an air filter (HPC,
DomnickHunter AO-0013G) and air dryer (KAESER KMM3 Compressed Air
Dryer). Then this air bearing makes the operation with lower acoustic noise
and vibration possible to the rotating system compared with a ball bearing.
This system helps to bring in low initial noise environment into flow which
is baisically refered to an instability measurement. The rotating system is
supported by a basement box made of steel that is filled with sandbags. The
total weight of the system is approx 250 kg.

3.1.2. Glass disk

Lingwood (1996) used an aluminum alloy disk that was polished by a single-
crystal diamond cutting tool as a surface of the rotating system. However the
new float glass plate polished to get near optical quality is prepared for this
experimental work instead of the aluminum alloy disk and it has an advantage
that it is harder to make scratches on the surface than for metal materials.
This selection is also proper in hot-wire anemometry point of view to limit
heat conduction effect close to the disk wall that the surface absorbs the heat
of hot-wire and the higher velocity speed than actual value is observed. The
diameter of the glass disk D∗ is 474 mm to mount on the preveious used
alluminuim alloy disk which has same diameter. At the edge of the disk the
glass disk is ground down approximately 1.5 mm with a 45◦ angle. This is why
the actual radius of this glass is r∗d = 233.5 mm. The thickness of the glass is
24 mm.

The glass disk is required to have an as small imbalance and roughness as
possible to avoid the possibility that enough large initial disturbance excited
by them causes the bypass transition before the appearance of the absolute
instability, namely the flow changes to turbulence in the completry convective
route. Then the surface of the glass disk used in this study is polished and the
imbalance measurement by mechanical test indicator is shown in figure 3.2. The
figure 3.2 shows the azimuthal imbalance variation and the radial imbalance
variation is neglected because it is hard to measure by the mechanical test
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indicator. The maximum imbalance is observed at the edge of the disk and it
is maximum 10 µm. The typical surface roughness is less than 1 µm.

To avoid the break of the glass disk during the operation, the maximum
operation rotational speed is estimated by the following procedure. The relation
between the failure stress σ∗f and the maximum angular velocity, Ω∗max, of the

rotating disk (Ashby 2005; Lingwood 1995b) is given as

D∗

2
Ω∗max =

(
8σ∗f

Sfρ∗glass(3 + νPo)

)1/2

, (3.1)

where νPo is Poisson’s ratio, which has an approximately constant value of 1/3
for all solids and Sf is an appropriate safety factor so that Sf = 10 is selected
in this study. As the result, the maximum rotational speed of the glass disk is
given using parameters in table. 1 as Ω∗max = 2553 rpm.

3.1.3. Edge conditions

To investigate the effect on the transition process caused by the disk edge
condition, different conditions have been considered. Figure 3.3 shows the three
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Figure 3.2. The azimuthal imbalance measured by a me-
chanical test indicator up to r∗ = 230 mm. The colour contour
indicates the surface height variation ∆I from the reference
position (-2 µm (Blue) < ∆I < +7 µm (Red)) with 1 µm step.
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σ∗f [MPa] νPo ρ∗glass [kg/m3]

41 0.23 2.53× 103

Table 1. Float glass parameters, where σ∗f is the failure
stress, νPo is the Poisson’s ratio and ρ∗glass is the density of the

glass (Source: http://www.industrialglasstech.com/pdf/soda
limeproperties.pdf).

(a) Open Type (b) Ring Type

(c) Plate Type

Figure 3.3. Three edge conditions.

edge conditions. Figure 3.3(a) shows the ‘open type’, which has no extended
plate or cover, figure 3.3(b) shows the ‘ring type’, where there is a steel ring
mounted below the surface of the disk covering eight aluminum clamps fixing
the glass disk to the aluminum-alloy disk. These components on the vertical
edge of the glass disk generate a disturbances field with eight oscillations per
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rotation of the disk as measured in the laboratory frame of reference. The ring
is mounted around them to eliminate their contribution to the flow disturbance
field. The ring itself does not rotate and the horizontal gap between the ring
and glass disk is less than 1 mm. The edge of the glass disk is still exposed in
a similar way to the open-type edge condition because the top of the ring is
located 11 mm vertically below the disk surface. The third case, figure 3.3(c)
is called ‘plate type’, which consists of a non-rotational extended annular plate
made of wood with an outside diameter of 900 mm mounted around the glass
disk. This extended plate eliminates the effects of the eight aluminum fixing
components and also reduces the effects of noise coming from the air bearing
and DC-servo motor. The horizontal gap between the disk and plate is less
than 1 mm and vertically the disk surface and plate are approximately flush.
These differences of the edge conditions to the laminar-turbulent transition
process on the rotating-disk flow are discussed in paper 2.

3.1.4. Traverse system

A traverse system with two axes is connected to a basement steel box thr-
ough aluminum and steel beams (see figure 3.1(a)). One of the traverse moves
in the horizontal (radial) direction, and the other traverse is mounted on the
horizontal traverse at a 45◦ inclination not to disturb the axial flow which ap-
proaches the rotating-disk from above. The horizontal traverse and inclined
traverse are operated by absolute encorders (AVAGO AEAS-7000 and Mitsu-
toyo ID-C125B) and d.c. motors (micro motors E192.24.67 and RH158 510:1),
respectively. These traverses archieved resolution of 5 µm for horizontal tra-
verse and 3 µm for inclined traverse, respectively. They can operate all the
way to the radius of the glass disk for the horizontal direction and beyond the
boundary layer thickness of the rotating-disk flow for the vertical direction. At
the edge of the inclined traverse a hot-wire holder directed so that the sensor
is radial oriented and hence is predominately sensitive to the azimuthal ve-
locity component. The traverse system is operated by the computer sampling
signal wtih the software of LabVIEW8.6 through a controller board (National
Instruments USB-6216).

3.2. Measurement techniques

3.2.1. Hot-wire anemometry

A hot-wire probe operational with a constant temperature anemometer (CTA)
is used to measure the fluid velocity. The advantage of hot-wire anemometry
compared to the other methods (e.g. Laser Doppler Velocimetry (LDV) or
Particle Image Velocimetry (PIV)) is that it can sample flow velocity at a
small localised position with high temporal resolution. In the present study,
hot-wire probes with a single sensor made of platinum, with a diameter of 5 µm
and 1 mm (laminar-turbulent transition measurement) and 1 µm and 0.3 mm
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(turbulence measurement) are prepared, respectively, which are operated by
CTA system (DANTEC StreamLine) with an overheat ratio (αR) of 0.8, where
it is defined as

αR =
R∗(T ∗h )−R∗(T ∗ref )

R∗(T ∗ref )
, (3.2)

where R∗(T ∗h ) is the resistance of the sensor at the operation temperature of
T ∗h and R∗(T ∗ref ) is the resistance of the sensor at the reference ambient tem-
perature of T ∗ref . The typical example of the probe used in laminar-turbulent

transition measurement is shown in figure 3.4(a). The sensing element of the
hot-wire is oriented in the radial direction (figure 3.4(b)), making it mainly
sensitive to the azimuthal velocity. A low pass filter with 30 kHz (laminar-
turbulent transition measurement) or 100 kHz turbulent measurement) is ap-
plied to the CTA circuit. The output voltage from the CTA is digitalized using
a 16-bit A/D converter (National Instruments USB-6216) at a specific sampling
rate and sampling time and recorded by the same computer on the software of
LabVIEW8.6.

(a) (b)

Figure 3.4. Hot-wire setup. (a) The typical edge of the hot-
wire probe used in laminar-turbulent transition measurement.
(b) The hot-wire probe mounted on the traverse through an
fixing adapter. The hot-wire probe is oriented to the azimuthal
direction.
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3.2.2. Hot-wire calibration

Here the hot-wire calibration method for instability and laminar-turbulent tran-
sition measurement is stated. The calibration for turbulent boundary-layer flow
is discussed the detail in Paper 4.

The calibration of the hot-wire probe is generally performed in the free-
stream with a reference velocity meter (e.g. Prandtl tube). However this
procedure can be problem for the rotating-disk boundary layer measurement,
because, first of all, the boundary layer of the rotating-disk flow does not have a
free-stream region. Therefore another calibration method is performed for this
study which is comparing the laminar velocity profile. This calibration requires
the absolute wall-normal position from the wall of the hot-wire sensitive area.
Then the height of the hot-wire sensitive area is determined by the photograph
taken with a precision gauge block with 1.000 mm thickness. The typical set-
up to determine the hot-wire position is shown in figure 3.5. The reference
precision gauge block is put next to the hot-wire probe. The height of the hot-
wire sensitive area and the gauge block is captured from the front by a micro
lens (Nikon Micro-Nikkor AF 200mm f/4 D ED) and a camera (Canon EOS
7D) through a mirror located between its optical path. A typical photograph
of the wall position determination is shown in figure 3.6. In Fig 3.6 1 pixel
of the image is equivalent to 2.4 µm. By this method, the probe height from
the wall is determined with an accuracy of 10 − 15 µm. This error is caused
mainly by resolution of the micro lens and quality of the mirror in the path
which makes the image blur.

In hot-wire anemometry CTA outputs in principle the correct voltage re-
lated to fluid velocity if the physical properties of flow field are constant during
the operation. However the measurements in this study observed maximum 1
◦C temperature deviation basically depending on a rotational speed of a d.c.
servo-motor. To compensate this temperature variance in hot-wire anemometry
the output voltage is corrected by the following equation (e.g. Bruun 1995):

E∗2
(
T ∗ref

)
= E∗2 (T ∗)

(
1−

T ∗ − T ∗ref
αR/αel

)−1

, (3.3)

where E∗(T ∗ref ) is a corrected output voltage from CTA, T ∗ref is a reference
ambient temperature, namely an ambient temperature in hot-wire calibration,
E∗(T ∗) is the output voltage in the measurement, T ∗ is an ambient temperature
in the measurement and αel is temperature coeficient of resistivity, which is
αel = 0.0038 K−1 for platinum (Bruun 1995).

The hot-wire calibration is performed using a azimuthal laminar velocity
profile by varying rotational speed, radial position and axial height. Figure 3.7
shows typical calibration results with laminar velocity profile. The calibrated
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Figure 3.5. The typical hot-wire calibration set-up. The
hot-wire sensitive area with a precision gauge block put next
to the hot-wire probe is captured by a digital camera with a
micro lens through the mirror put in the optical path.

Figure 3.6. Photograph showing the hot-wire probe for an
instability measurement during the wall position determina-
tion using a precision gauge block with 1.000 mm thickness.
The above half-plane shows the real objects and the objects
below half-plane are due to reflections on the glass surface.
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data points are fitted by modified King’s law (for better accuracy at low veloc-
ities, see Johansson & Alfredsson 1982) given as

V ∗ = k1(E∗2 − E∗20 )1/n + k2E
∗ − E∗0

1/2, (3.4)

where E∗ and E∗0 are the mean anemometer output voltages at mean velocities
V ∗ and zero, respectively, and k1,2 and n are constants to be determined by a
linear least-squares fit of the calibration data. Figure 3.8 shows the deviation
of the calibration data points from the fitted equation (3.4). The deviations
are within ±1.5 % except at low speed region (V ∗ 5 0.5 m/sec). The effect
of a radial velocity component on the hot-wire reading depends on the rota-
tional speed and axial position, see figure 2.3. However figure 3.8 shows that
its effect is negligible because the deviations of calibration data points from
theoretical laminar profile in different rotational speeds are small. The axial
velocity component is also negligible.

3.2.3. Rotational speed of disk

The rotational speed of the disk Ω∗ is measured by photo-micro sensor (EE-SX
498). A brass disk with 30 slits at regular intervals in the azimuthal direction
is mounted below the iron disk. The slits of the brass disk is sandwiched by
the photo-micro sensor, then the sensor outputs the corresponding voltage (4
or 0 V) which depends whether the slit is located between the sensor or not.
The frequency of the output voltage from the sensor is recorded with 80MHz
sample clock timebase (National Instruments USB-6216) and converted to the
rotational speed. This photo-micro sensor is able to measure the rotational
speed up to 3000 rpm. The measured rotational speed of the disk is shown
in figure 3.9. It shows that the disk rotates in steady rotational speed within
±1.5 rpm.

3.2.4. Ambient temperature and pressure

The ambient temperature is measured by a platinum resistance thermometer
(PT100). The accuracy of this sensor is checked by a mercury thermometer
with 0.01◦C resolution shown in figure 3.10. The deviations of the PT100 used
in present study from the mercury thermometer is ±0.15◦C in the measurement
range.

The kinematic viscosity ν∗ of the fluid is given as

ν∗ =
µ∗

ρ∗
, (3.5)

where µ∗ is the viscosity of fluid and ρ∗ is the density. Here µ∗ is calculated
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Figure 3.7. Hot-wire calibration using the laminar velocity
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using Sutherland law which is written as

µ∗ =
1.4578× 10−6 × T ∗3/2

T ∗ + 110.4
, (3.6)

where T ∗ is a atmospheric temperature measured by the PT100 in Kelvin. The
ρ∗ for dry air is calculated using gas law which is written as

ρ∗ =
P ∗atm

287.0× T ∗
, (3.7)

where P ∗atm is an atmospheric pressure in Pascal unit measured by a precision
barometer.
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1000 rpm (Red), 1500 rpm (Black), respectively.
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CHAPTER 4

Main contribution and conclusions

The following chapter summarizes the main contributions and conclusions from
the papers constituting Part II of the thesis. For details on the results the reader
is referred to the appended papers.

4.1. Laminar-turbulent transition process of the a
rotating-disk boundary-layer flow.

• To investigate laminar-turbulent transition process of the rotating-disk
flow azimuthal velocities are measured using a hot-wire probe which
is calibrated using the laminar mean velocity profile. The measured
mean azimuthal velocity profile at R = 430 − 510 corresponds well to
its theoretical laminar profile except far away from the disk where the
smallness of the azimuthal velocity makes the hot-wire measurements
inaccurate. Lingwood (1995a) showed there is a local absolute above
RCA = 507, and suggested that this triggers nonlinearity behaviour.
Then the present results show the onset of nonlinearity at R = 510 in
the frequency spectrum as a harmonic of the primary vortices. The
laminar-turbulent transition observed in the present study includes the
effects not only of convective instability but also absolute instability.

• The growth of azimuthal fluctuation velocities captures its exponen-
tial growth up to R = 580. The slope of the exponential growth for
475 < R < 530 corresponds approximately to the maximum spatial
growth rate for stationary linear disturbances, see e.g. figure 6a in
Hussain et al. (2011). The change in slope at around R = 545 could
correspond to Viaud et al.’s so-called ‘secondary front’. If so, then the
present results may represent the first experimental validation of Viaud
et al.’s (2011) DNS results and Pier’s (2003) theoretical predictions of
absolute instability of the primary global instability.

• To give a better understanding of the laminar-transition on the rotating-
disk flow, probability density function (PDF) maps of azimuthal fluctua-
tion velocity normalized by the local disk speed are presented. The PDF
map measured at z = 1.3 over a range of Reynolds nubers dramatically

28
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shows the change in distribution at R = 550 from exponential growth to
a strongly skewed distribution. This change in PDF corresponds to the
change of the slope of the disturbances growth. At around R = 600, the
skewed PDF starts to disappear and the positive deviation of v has its
maximum. The almost symmetric PDF above R = 650 indicates that
the flow has reached a fully-developed turbulent state. These charac-
teristics are not obvious in the spectral distributions.

• The application of PDF maps to velocity-profile measurements reveals
the structure normal to the wall. In particular, at R = 570 peaks in the
PDF may be associated with a secondary instability.

• Effects that the edge of the disk may have on laminar-turbulent tran-
sition have been investigated. Healey (2010) suggested, using the lin-
earized complex Ginzburg-Landau equation, that the transition Rey-
nolds number for the rotating-disk flow can be affected by the Reynolds
number at the edge of the disk. He compared his suggestion with pre-
vious experimental results, which seemed to confirm his hypothesis. In
this study three different edge conditions are considered and the results
do not show such a behaviour in the measurement range; the differences
in transition Reynolds numbers stated by previous authors are explained
by the different definitions of the transition Reynolds number used in
each case, rather than the effect of the edge Reynolds number (or edge
condition).

• The secondary instability and turbulent breakdown of the rotating-disk
flow are investigated using hot-wire anemometry. The kinked azimuthal
velocity fluctuations associated with secondary instability are observed
in single-realization timeseries at the final stage of the laminar-turbulent
transition. It is found that the appearance of kinked timeseries be-
comes less apparent at certain wall-normal heights. On the other hand,
ensemble-averaged fluctuation-velocity timeseries do not seem to feature
kinks, indicating that the secondary instability is a travelling wave.

• The turbulent breakdown of the stationary mode has been investigated
as a function of Reynolds number. It is found that the exponential
growth shown by ensemble-averaged velocity fluctuations saturates at
R = 550, plateaus for R = 580 − 585, and is followed by the turbulent
breakdown of the stationary mode beyond that Reynolds number. To
investigate more details of the stationary mode, normalized peak am-
plitudes of each stationary vortex are plotted as a function of Reynolds
number. Each stationary vortex grows exponentially but with different
amplitudes up to R = 550, showing a convective behaviour. However
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the turbulent breakdown of each stationary vortex seems to be inde-
pendent of its amplitude, which suggests that the turbulent breakdown
process is not due to its convective behaviour but due to the appearance
of the travelling secondary instability observed at R = 570.

• Based on the almost constant transition Reynolds number reported in
the literature, the amplitude independence of turbulent breakdown of
stationary vortex and the appearance of the travelling secondary insta-
bility at the final stage of the laminar-turbulent transition, we hypoth-
esise that the secondary instability could be triggered by the primary
absolute instability (Lingwood 1995a) and could be absolute unstable
itself as suggested by Pier (2003).

4.2. Turbulent boundary-layer flow on a rotating disk.

• The turbulent boundary layer on the rotating disk has been studied and
compared with two-dimensional flat-plate turbulent boundary layer with
resopect to the mean-flow distributions as well as the higher moments.

• A methodology to determine the wall shear stress was developed, in-
cluding a new idea to calibrate the hot-wire sensor against the laminar
profile and extrapolating to higher velocities, a procedure that could be
tested a posteriori.

• The results show that the statistics in the near-wall region are similar
to the two-dimensional boundary layer, whereas the outer regions differ.

• The spectral map of the streamwise/azimuthal velocity show clear differ-
ences between the two cases, possibly because of the three-dimensional
character of the rotating-disk boundary layer, which may change the
inclination of the near wall structures with respect to the hot wire.



CHAPTER 5

Papers and authors’ contributions

Paper 1

A new way to describe the transition characteristics of a rotating-disk boundary-
layer flow
Shintaro Imayama (SI), P. Henrik Alfredsson (HAL) & R. J. Lingwood (RL).
Phys. Fluids 24, 031701.

The laminar-turbulent transition of the rotating-disk flow has been investi-
gated. The original apparatus was borrowed from the University of Cambridge
Department of Engineering and was modified and put into operation by SI.
The experimental investigations were performed by SI under the supervision
of HAL and RL, and the writing was jointly done by SI, HAL and RL. Part of
these results have been presented at EUROMECH Colloquium 525 Instabili-
ties and transition in three-dimensional flows with rotation, 21 – 23 June 2011,
Lyon, France.

Paper 2

An experimental study of edge effects on rotating-disk transition
Shintaro Imayama (SI), P. Henrik Alfredsson (HAL) & R. J. Lingwood (RL).

The effects of the finite radius of the disk on the laminar-turbulent transition
of the rotating-disk flow have been investigated experimentally. The exper-
imental investigations were performed by SI using the same facility used in
Paper 1 under supervision of HAL and RL, and the writing was jointly done
by SI, HAL and RL. Some of these results have been prese nted at the Annual
Meeting of the American Physical Society’s Division of Fluid Dynamics, 20 –
22 November 2011, Baltimore, Maryland, USA.
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Paper 3

Secondary instability and turbulent breakdown of the rotating-disk flow
Shintaro Imayama (SI).

This paper focusses on the transition process and especially the role of sec-
ondary instability on the primary stationary vortices, through separating the
stationary and travelling modes by comparison of ensemble-averaged and single-
realization measurements of the fluctuating velocity.

Paper 4

An experimental study of a rotating-disk turbulent boundary-layer flow Shin-
taro Imayama (SI), R. J. Lingwood (RL) & P. Henrik Alfredsson (HAL).

The turbulent boundary layer on the rotating disk flow has been investigated.
The azimuthal friction velocity is determined using hot-wire measurement di-
rectly and turbulence statistics normalized by the inner scales are represented.
The experiments were performed by SI using the same facility used in Paper 1
under the supervision of RL and HAL, and the writing was jointly done by SI,
RL and HAL. Some of these results have been presented at EUROMECH Collo-
quium 525 Instabilities and transition in three-dimensional flows with rotation,
21 – 23 June 2011, Lyon, France.
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APPENDIX A

Derivations of governing equations

A.1. Introduction

This appendix shows the derivation in detail of the governing equations for
the incompressible rotating disk flow in cylindrical coordinates (Cham & Head
1969; Hsu 2002; Kundu & Cohen 2008). First general definitions of the cylin-
drical coordinates, the continuity equation and Navier-Stokes equations (NSE)
are derived. Secondly taking a Reynolds decomposition and ensemble average,
Reynolds Averaged Navier-Stokes equation (RANS) is derived. Finally making
some assumptions about the magnitude of various terms the RANS for turbu-
lent flow on the rotating-disk is derived. The dimensional mark ‘ ∗ ’ used in
the introduction parts and papers of this thesis is taken away in the appendix.

Figure A.1. A sketch of the von Kármán boundary layer on
a rotating disk showing the mean velocity profiles (in a station-
ary laboratory frame), where UN = U/(rΩ), VN = V/(rΩ),
WN = W/(νΩ)1/2.
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A.2. Cylindrical frame system in a rotating-disk flow

The system of incompressible rotating-disk flow is modeled as an infinite disk
rotating at a constant speed Ω in cylindrical coordinate frame. Figure A.1
shows a sketch of the rotating-disk flow system. The position vector r, velocity
vector v and rotation vector ω are given as

r =

r cos θ
r sin θ
z

 , (A.1)

v =

ũṽ
w̃

 , (A.2)

ω =

0
0
Ω

 , (A.3)

where r is the radius, θ is the angle and z is a wall normal coordinate, ũ, ṽ, w̃
are radial, azimuthal and axial velocity components respectively, and Ω is the
constant angular rotational speed of the disk.

To confirm the independence relation between the orthogonal coordinate
system and the cylindrical frame system, a Jacobian matrix of positions in both
coordinate systems can be written as

J =
∂(x, y, z)

∂(r, θ, z)
=

∣∣∣∣∣∣
∂rx ∂θx ∂zx
∂ry ∂θy ∂zy
∂rz ∂θz ∂zz

∣∣∣∣∣∣
=

∣∣∣∣∣∣
cos θ −r sin θ 0
sin θ r cos θ 0

0 0 1

∣∣∣∣∣∣
= r

(
cos2 θ + sin2 θ

)
= r 6= 0 (except r = 0),

(A.4)

where (x, y, z) is a position vector in the orthogonal coordinate system and
∂r, ∂θ, ∂z are derivatives in the radial, azimuthal and axial directions, respec-
tively. The relation of the position vector between the orthogonal coordinate
system and the cylindrical coordinate system is written as

x = r cos θ, y = r sin θ, z = z. (A.5)

The Jacobian matrix is nonzero except r = 0, which indicates that the positions
in orthogonal coordinate system and cylindrical coordinate system have one-
on-one relations except at r = 0.
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A.3. Continuity equation

The divergence operator ∇ is in the cylindrical coordinate system written as

∇ =
1

hrhθhz

∂r(hθhz)∂θ(hzhr)
∂z(hrhθ)

 (A.6)

where hr, hθ, hz are given as

hr =

∣∣∣∣∂r

∂r

∣∣∣∣ =
(
cos2 θ + sin2 θ

)1/2
= 1,

hθ =

∣∣∣∣∂r

∂θ

∣∣∣∣ =
[
(−r sin θ)2 + (r cos θ)2

]1/2
= r,

hz =

∣∣∣∣∂r

∂z

∣∣∣∣ = 1.

(A.7)

Then the divergence of the velocity vector is

∇ · v =
1

r

∂(rũ)

∂r
+

1

r

∂ṽ

∂θ
+
∂w̃

∂z
. (A.8)

The continuity equation in incompressible flow is

∇ · v = 0. (A.9)

Then equation (A.2) and equation (A.6) are substituted into equation (A.9),
giving

∂ũ

∂r
+

1

r

∂ṽ

∂θ
+
∂w̃

∂z
+
ũ

r
= 0. (A.10)

A.4. Navier-Stokes equation (NSE)

The Navier-Stokes equation (NSE) in a uniformly rotating co-ordinate system
is written as

∂v

∂t
+ (v · ∇)v︸ ︷︷ ︸

1○

+ 2ω × v︸ ︷︷ ︸
2○

+ω × (ω × r)︸ ︷︷ ︸
3○

= −1

ρ
∇p︸ ︷︷ ︸

4○

+ ν∇2v︸ ︷︷ ︸
5○

, (A.11)

where 1○ is the material differential term, where (v · ∇)v is defined as

(v · ∇)v =

(
ũ
∂

∂r
+
ṽ

r

∂

∂θ
+ w̃

∂

∂z

)
v +

1

r

−ṽṽũṽ
0

 , (A.12)
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the Coriolis force term ( 2○) is

2ω × v = 2

0
0
Ω

×
ũṽ
w̃

 =

−2ṽΩ
2ũΩ

0

 , (A.13)

the centrifugal force term ( 3○) is

ω × (ω × r) = −Ω2

r0
0

 , (A.14)

the pressure term ( 4○) is

−1

ρ
∇p̃ = −1

ρ

 ∂rp̃
(∂θp̃)/r
∂z p̃

 , (A.15)

and viscous term ( 5○) is

ν∇2v = ν

∇2ũ
∇2ṽ
∇2w̃

+
1

r2

−ũ− 2∂θṽ
−ṽ + 2∂θũ

0

 , (A.16)

respectively, where ρ is a density, p̃ is a pressure and ν is the kinematic viscosity
and the Laplace operator ∇2 in a cylindrical coordinate system is defined as

∇2 =
∂2

∂r2
+

1

r2

∂2

∂θ2
+

∂2

∂z2
+

1

r

∂

∂r
. (A.17)

Therefore the viscous term can be written

ν∇2v = ν

( ∂2

∂r2
+

1

r2

∂2

∂θ2
+

∂2

∂z2

)ũṽ
w̃

+
1

r

∂

∂r

ũṽ
w̃

+
1

r2

−ũ− 2∂θṽ
−ṽ + 2∂θũ

0

 .
(A.18)
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Then in a cylindrical coordinate system,the three components of the Navier-
Stokes equations become

Radial component:

∂ũ

∂t
+

(
ũ
∂ũ

∂r
+
ṽ

r

∂ũ

∂θ
+ w̃

∂ũ

∂z

)
− ṽṽ

r
− 2ṽΩ− rΩ2

= −1

ρ

∂p̃

∂r
+ ν

[(
∂2ũ

∂r2
+

1

r2

∂2ũ

∂θ2
+
∂2ũ

∂z2

)
+

1

r

∂ũ

∂r
− ũ

r2
− 2

r2

∂ṽ

∂θ

]
,

(A.19)

Azimuthal component:

∂ṽ

∂t
+

(
ũ
∂ṽ

∂r
+
ṽ

r

∂ṽ

∂θ
+ w̃

∂ṽ

∂z

)
+
ũṽ

r
+ 2ũΩ

= − 1

ρr

∂p̃

∂θ
+ ν

[(
∂2ṽ

∂r2
+

1

r2

∂2ṽ

∂θ2
+
∂2ṽ

∂z2

)
+

1

r

∂ṽ

∂r
− ṽ

r2
+

2

r2

∂ũ

∂θ

]
,

(A.20)

Axial component:

∂w̃

∂t
+

(
ũ
∂w̃

∂r
+
ṽ

r

∂w̃

∂θ
+ w̃

∂w̃

∂z

)
= −1

ρ

∂p̃

∂z
+ ν

[(
∂2w̃

∂r2
+

1

r2

∂2w̃

∂θ2
+
∂2w̃

∂z2

)
+

1

r

∂w̃

∂r

]
.

(A.21)

A.5. Reynolds average

In this section the Reynolds averaged continuity equation and Navier-Stokes
equations (RANS) are derived, respectively. The instantaneous velocity (ũ, ṽ, w̃)
and instantaneous pressure (p̃) are decomposed in their mean and fluctuations
(time-dependence), through an operation called Reynolds decomposition, giv-
ing

ũ = U + u,

ṽ = V + v,

w̃ = W + w,

p̃ = P + p,

(A.22)

where U, V,W,P are mean components of the radial, azimuthal and axial veloc-
ities and pressure, and u, v, w, p are fluctuation components of radial, azimuthal
and axial velocities and pressure, respectively.
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A.5.1. Reynolds averaged continuity equation

The continuity equation is given from equation (A.10) as

∂ũ

∂r
+

1

r

∂ṽ

∂θ
+
∂w̃

∂z
+
ũ

r
= 0. (A.23)

The decomposed components (equation (A.22)) are substituted into equation (A.23),
whereafter an ensemble averages is taken here (denoted with an overscore), re-
sulting in

∂U

∂r
+
�
��1

r

∂u

∂r
+
�
�
�1

r

∂V

∂θ
+
�
��1

r

∂v

∂θ
+
∂W

∂z
+
�
��∂w

∂z
+
U

r
+

�
��u

r
= 0. (A.24)

The derivation with respect to the θ direction is neglected due to that the
mean flow is independent of the azimuthal direction. Therefore, the Reynolds
averaged continuity equation becomes

∂U

∂r
+
∂W

∂z
+
U

r
= 0. (A.25)

A.5.2. The radial component of the RANS

The radial component of NSE the is given by equation (A.19) and decomposed
components (equation (A.22)) are substituted into equation (A.19). Then the
left-hand side (LHS) of equation (A.19) becomes

LHS(A.19) =
∂U

∂t
+

�
��∂u

∂t
+ U

∂U

∂r
+
�
��u
∂U

∂r
+
�
��U
∂u

∂r
+ u

∂u

∂r

+
V

r

∂U

∂θ
+
�

�
�v

r

∂U

∂θ
+
�
�
�V

r

∂u

∂θ
+
v

r

∂u

∂θ

+W
∂U

∂z
+
�

�
�

w
∂U

∂z
+
�

�
�

W
∂u

∂z
+ w

∂u

∂z

− V 2

r
−
�

��2
V v

r
− vv

r
− 2V Ω−��2vΩ− rΩ2

=
∂U

∂t
+ U

∂U

∂r
+
V

r

∂U

∂θ
+W

∂U

∂z
+ u

∂u

∂r
+
v

r

∂u

∂θ
+ w

∂u

∂z︸ ︷︷ ︸
Ar

− V 2

r
− vv

r
− 2V Ω− rΩ2,

(A.26)

where Ar is
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Ar =
∂uu

∂r
− u∂u

∂r
+

1

r

∂uv

∂θ
− u

r

∂v

∂θ
+
∂uw

∂z
− u∂w

∂z

=
∂uu

∂r
+

1

r

∂uv

∂θ
+
∂uw

∂z
− u
(
∂u

∂r
+

1

r

∂v

∂θ
+
∂w

∂z︸ ︷︷ ︸
=−u/r

)

=
∂uu

∂r
+

1

r

∂uv

∂θ
+
∂uw

∂z
+
uu

r
.

(A.27)

The right-hand side (RHS) of equation (A.19) becomes

RHS(A.19) = −1

ρ

∂P

∂r
−

�
�
�1

ρ

∂p

∂r
+ ν

[
∂2U

∂r2
+
�
�
�∂2u

∂r2
+

1

r2

∂2U

∂θ2
+
�

�
��1

r2

∂2u

∂θ2

+
∂2U

∂z2
+
�
�
�∂2u

∂z2
+

1

r

∂U

∂r
+
�
��1

r

∂u

∂r
− U

r2
−

�
��u

r2
− 2

r2

∂V

∂θ
−
�

�
�2

r2

∂v

∂θ

]

= −1

ρ

∂P

∂r
+ ν

[
∂2U

∂r2
+

1

r2

∂2U

∂θ2
+
∂2U

∂z2
+

1

r

∂U

∂r
− U

r2
− 2

r2

∂V

∂θ

]
.

(A.28)

Then the RANS of the radial component is given as

∂U

∂t
+ U

∂U

∂r
+
V

r

∂U

∂θ
+W

∂U

∂z
+
∂uu

∂r
+

1

r

∂uv

∂θ
+
∂uw

∂z

+
uu

r
− V 2

r
− vv

r
− 2V Ω− rΩ2

= −1

ρ

∂P

∂r
+ ν

[
∂2U

∂r2
+

1

r2

∂2U

∂θ2
+
∂2U

∂z2
+

1

r

∂U

∂r
− U

r2
− 2

r2

∂V

∂θ

]
.

(A.29)

A.5.3. The azimuthal component of the RANS

The azimuthal component of the NSE is given from equation (A.20) and decom-
posed components from equation (A.22) are substituted into equation (A.20).
Then the LHS of equation (A.20) becomes
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LHS(A.20) =
∂V

∂t
+

�
��∂v

∂t
+ U

∂V

∂r
+
�
��u
∂V

∂r
+
�
��U
∂v

∂r
+ u

∂v

∂r

+
V

r

∂V

∂θ
+
�

�
�v

r

∂V

∂θ
+
�
�
�V

r

∂v

∂θ
+
v

r

∂v

∂θ

+W
∂V

∂z
+
�
�
�

w
∂V

∂z
+
�

�
�

W
∂v

∂z
+ w

∂v

∂z

+
UV

r
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The RHS of equation (A.20) becomes
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Then the RANS of the azimuthal component is written as
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A.5.4. The axial component of the RANS

The axial direction of the NSE is given from equation (A.21) and decomposed
components from equation (A.22) are substituted into equation (A.21). Then
the LHS of equation (A.21) is given as
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where Az is
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The RHS of equation (A.21) becomes
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Then the axial component of the RANS is written as
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A.5.5. RANS for incompressible turbulent rotating-disk flow

RANS for incompressible turbulent rotating-disk flow are derived applying the
boundary-layer approximation and some other assumptions. The order of each
term is estimated as r ∼ L, z ∼ δ, U and V ∼ V ′, W ∼ (δ/L)V ′, u, v and
w ∼ v′, V ∼ rΩ, namely Ω ∼ V ′/L and P ∼ ρV ′2, where L is characteristic
length, δ is boundary layer thickness, V ′ is characteristic mean velocity and v′

is characteristic fluctuation velocity.

The assumptions for incompressible turbulent rotating-disk flow are:

• ASM1. Steady flow: ∂/∂t = 0,

• ASM2. Axisymmetry: ∂/∂θ = 0,

• ASM3. Boundary layer approximation: L� δ,

• ASM4. A fluid element is convected with a velocity O(V ′). In the two
time scale of convection ∆tconvection and diffusion ∆tdiffusion are defined
as

∆tconvection ∼ L/V ′, ∆tdiffusion ∼ δ2/ν,

respectively. In the boundary layer both of ∆tconvection and ∆tdiffusion

are assumed to be of similar size, suck that

∆tconvection ∼ ∆tdiffusion,

giving

L/V ′ ∼ δ2/ν.
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These assumpotions are applied to equations (A.29), (A.33) and (A.37), result-
ing

Radial component (equation (A.29)):
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Azimuthal component (equation (A.33)):
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Axial component (equation (A.37)):
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The following terms in equations (A.38), (A.39) and (A.40) are negligible:
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• 101, 201, 301 due to ASM1,

• 103, 106, 115, 119, 203, 206, 211, 213, 217, 303, 306, 311 due to ASM2,

• 105, 108, 110 due to ASM3 which are smaller (δ/L) than 107,

• 114, 117, 118 due to ASM3 which are much smaller (δ2/L2) than 116,

• 205, 209 due to ASM3 which are smaller (δ/L) than 207,

• 212, 215, 216 due to ASM3 which are much smaller (δ2/L2) than 214,

• 302, 304, 312 due to ASM3 which are much smaller (δ2/L2) than 309,

• 310, 313 due to 3 which are much smaller (δ2/L2) than 312.

In summary, Reynolds averaged continuity equation and RANS for incompress-
ible turbulent rotating-disk boundary-layer flow are written as

Reynolds averaged continuity equation:
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The radial component of the RANS:
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The azimuthal component of the RANS:
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The axial component of the RANS:
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The pressure and centrifugal force terms in equation (A.42) can be transformed
as
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(A.45)

Equation (A.44) is integrated along the boundary layer, resulting

ρww = −P + PW , (A.46)

where PW is a wall static pressure. Thus the static pressure P in the turbulent
boundary layer on the rotating disk is given as

P = PW − ρww. (A.47)
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1Linné FLOW Centre, KTH Mechanics, SE-100 44 Stockholm, Sweden
2University of Cambridge, Cambridge, CB23 8AQ, UK

Published in Phys. Fluids 24, 031701, 2012

A new method of graphically representing the transition stages of a rotating-
disk flow is presented. The probability density function (PDF) contour map of
the fluctuating azimuthal disturbance velocity is used to show the characteris-
tics of the boundary-layer flow over the rotating disk as a function of Reynolds
numbers. Compared with the variation of the disturbance amplitude (rms) or
spectral distribution, this map more clearly shows the changing flow charac-
teristics through the laminar, transitional and turbulent regions. This method
may also be useful to characterize the different stages in the transition process
not only for the rotating-disk flow but also for other flows.

Experimental studies of the flow over a rotating disk show that the boundary-
layer is susceptible to an instability that presents itself through the formation
of stationary (in the rotating frame) vortices (see Gregory et al. 1955; Kohama
1984; Lingwood 1996; Corke et al. 2007). This primary instability can be pre-
dicted from linear theory; it is of cross-flow type, inviscid in nature and is a
convective instability, and may also have a non-zero frequency, i.e. it can be
traveling with respect to the disk. However, unless particular traveling modes
are deliberately excited, it is the stationary mode that is observed in exper-
iments because it is excited by unavoidable roughnesses on the disk surface.
There is also another convectively unstable mode (a viscous mode due to Cori-
olis and streamline curvature effects), however, for this mode the stationary
disturbances have smaller linear growth rates.

Lingwood (1995, 1997a) suggested that the onset of transition to turbu-
lence of the rotating-disk boundary-layer is not due directly to the convective
instability, but to an absolute instability which occurs above R=507. Here
the Reynolds number is R = r∗(Ω∗/ν∗)1/2, where r∗ is the radius of the disk
at the measurement position, Ω∗ is the rotational speed of the disk, ν∗ is
the kinematic viscosity of the fluid and * denotes a dimensional quantity. By
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introducing impulsive excitation to the rotating-disk boundary-layer flow, she
confirmed experimentally the existence of the absolute instability (above about
R=507) by tracking the trajectory of the excited wavepacket (Lingwood 1996).
The transition process once triggered probably takes place through a secondary
instability (Pier 2003; Kohama 1984).

It is the purpose of the present paper to introduce a PDF map of the
azimuthal velocity fluctuations to elucidate the changing flow characteristics
through the stable and unstable laminar-flow regions, through the transitional
region into the fully turbulent region for the rotating-disk flow.

The experimental set-up is a modified version of the one used by Lingwood
(1996), see figure 1. On the original aluminium-alloy disk a new disk made of
glass with a thickness of 24 mm and a diameter of 474 mm has been mounted.
The aluminum-alloy disk is connected to a DC-servo motor via a vertical shaft
and a pressurized air bearing ensures that the vibrations of the disk are small.
The surface of the glass disk is polished resulting in a surface roughness of less
than 1 µm; the rotational imbalance is less than 10 µm at the edge of the glass
disk. At the edge of the disk, a fixed wooden annular plate is positioned flush
with the disk surface.

A hot-wire probe with a single sensor made of platinum, with a diameter of
5 µm and 1 mm in length, is operated by a constant-temperature anemometer
(CTA) with an overheat ratio of 0.8. The sensing element of the hot-wire is

Figure 1. The experimental set-up of the rotating disk.
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oriented in the radial direction, making it mainly sensitive to the azimuthal
velocity. The signal from the CTA is digitized using a 16-bit A/D converter at
a sampling rate of 720 data points per disk revolution during a 60 second sam-
pling time. The hot-wire probe is mounted on a two-axis, remotely-controlled
traverse mechanism at 45◦ to the vertical to limit disturbance of the incom-
ing downward axial flow. The calibration of the hot wire is carried out on
the rotating disk using the laminar profile and a modified King’s law (for bet-
ter accuracy at low velocities Johansson & Alfredsson 1982) is fitted to the
calibration data.

The Reynolds number was varied using two methods: i) varying the ro-
tational disk speed and keeping the probe at a fixed radial position; and ii)
varying the radial position of the probe at a fixed rotational disk speed. The
experimental conditions are shown in Table 1.

The measured azimuthal mean velocity (V ∗) is plotted in figure 2. This
corresponds to the azimuthal component of the von Kármán similarity solution
for an infinite disk rotating in otherwise quiescent fluid, i.e. a Rossby number
of Ro = −1, as defined, for example, by Lingwood & Garrett (2011). The
measurements are performed at a fixed radius, and in this case the Reynolds
number was changed by varying the rotational speed of the disk. The abscissa
is the non-dimensional azimuthal velocity, V = V ∗/(r∗Ω∗) and the vertical axis
is the non-dimensional height from the wall (z = z∗(Ω∗/ν∗)1/2). For Reynolds
numbers in the range R = 430− 510, the measured profiles correspond well to
the theoretical laminar profile shown as a solid line, except far away from the
disk where the smallness of the azimuthal velocity makes the hot-wire measure-
ments inaccurate. Between R = 510 and R = 550 the nonlinear influence of

Case R r∗[mm] Ω∗[rpm] z

P01 430 198 690 0.4-16
P02 470 198 822 0.4-16
P03 490 198 890 0.4-16
P03 510 198 963 0.4-16
P04 530 198 1040 0.4-16
P05 550 198 1122 0.4-16
P06 570 198 1205 0.4-16
P07 590 198 1295 0.4-26
P08 610 198 1385 0.4-26
P09 630 198 1480 0.4-26
I01 360-700 116-226 1400 1.3

Table 1. Experimental conditions, where r∗ and z represent
the radial and axial positions of the probe, respectively.
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Figure 2. Mean azimuthal velocity profiles at R=430 (◦),
470 (∗), 510 (×), 550 (�), 590 (♦), 630 (5). Solid line is the
laminar theory profile.

the growing disturbances causes the mean azimuthal velocity to deviate from
the theoretical laminar profile. With further increases in Reynolds number,
this effect grows. At R = 630, the velocity profile has completely changed from
the basic laminar one, giving a larger velocity gradient close to the wall and
a dramatically increased boundary-layer thickness; both characteristics of the
development of a turbulent boundary-layer.

The changes in the mean velocity are also reflected in the velocity-fluctuation
profiles. Figure 3 shows the non-dimensional intensity of the azimuthal veloc-
ity fluctuation (vrms = v∗rms/(r

∗Ω∗)) plotted on a logarithmic scale against the
wall-normal position. At R = 430 and 450, a maximum in vrms is observed close
to the disk due to the imbalance of the disk. This effect appears up to z ≈ 2. At
R = 510 the vrms profile has developed a well-defined flow-induced maximum
close to the wall. At higher Reynolds numbers the velocity-fluctuation profiles
reflect the development of a turbulent boundary-layer.

Figure 4 shows the development of the disturbance spectrum measured at
z = 1.3 for various R. The power spectral amplitudes P (ω∗) are calculated from
the ensemble-averaged time series and are plotted against the non-dimensional
quantity ω∗/Ω∗. Linear stability theory shows that the flow is convectively
unstable to stationary disturbances above about R = 290 (Lingwood 1995). At
R = 430 one can observe a broad peak centerd around ω∗/Ω∗ = 30 in figure 4.
The amplitude of this peak increases with Reynolds number and corresponds to
previous experimental studies that show between 28 and 32 stationary vortices
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Figure 3. Profiles of vrms. The symbols are the same as in figure 2.

(Gregory et al. 1955). Note that these stationary vortices are the result of the
continuous excitation by unavoidable roughnesses fixed to the disk; it is known,
however, from Lingwood (1995) that the azimuthal wavenumber at the onset
of absolute instability of the rotating-disk flow (corresponding to a traveling
disturbance) is 68. For R = 510 a harmonic of the basic frequency appears and
at R = 550 at least five harmonics can be observed. The onset of nonlinearity
is in accordance with the suggestion of Lingwood (1995, 1997a) that there is an
absolute instability above R = 507 and its role is to trigger nonlinearity and the
onset of transition despite the fact that the disturbance amplitude at R ≈ 510
is quite small, less than 0.8% of the disk velocity. At R = 590 only the remnant
of the primary peak remains with the remainder of the spectrum filled out; by
R = 630 the spectrum reflects the turbulent nature of the boundary-layer.

In figure 5 the growth of the disturbances is shown from measurements
of vrms as a function of Reynolds number, where the Reynolds number was
increased by moving the probe in the radial position (case I01 in Table 1). The
measurements were made at a constant height z = 1.3 because, in the unstable
region, the intensity of vrms has a maximum around that position as suggested
in figure 3. The data shown are both the directly measured signal, as well as
filtered signals. At low R the noise level is high compared to the amplitude of
the fluctuations, mainly due to the imbalance of the disk and vibration of the
traverse, but through band-pass filtering around the basic frequency the noise
level can be lowered by an order of magnitude. For R ≥ 495 the signal is instead
high-pass filtered in order not to exclude the harmonics that start to appear
above this R. For the filtered signal an exponential growth, vrms,filtered ∼
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Figure 4. Fourier power spectra for ensemble-averaged time
series measured at z = 1.3 at (a) R = 430, (b) R = 470, (c)
R = 510, (d) R = 550, (e) R = 590, (f) R = 630.

exp(αR), is observed in the region 475 < R < 530, with α = 0.058. This is in
agreement with the maximum growth rate for stationary linear disturbances
in this R range (see e.g. figure 6a in Hussain et al. (2011), note that for
spatially growing disturbances α varies with R). Also beyond R = 530 there is
exponential growth but with a smaller (∼ 0.017) rate. Around R = 580 vrms
reaches a maximum value and thereafter it decreases to a constant level.

It is worth comparing figure 5 with figure 4 of Viaud et al. (2011) where
the transition to turbulence of the disk boundary-layer flow in an open rotating
cavity is described as a secondary instability of the global mode confirming via
DNS the possibility of a direct transition mechanism for a real flow through
a steep global-mode cascade. By comparison, the change in slope at around
R = 545 in figure 5 could correspond to Viaud et al.’s so-called ‘secondary front’
where the secondary instability of the primary global mode sets in a little way
downstream of the primary global mode, leading to a cascade of absolutely
unstable secondary instabilities and transition to turbulence. If so, then the
present results may represent the first experimental validation of Viaud et al.’s
DNS results and Pier’s (2003) theoretical predictions of absolute instability of
the primary global instability.

The growth rate curve shown in figure 5 does not show any details of
how the flow structures change during the transition process. We propose
here a new way to present the flow data that makes it possible to gain a
better insight into the different stages of the transition process. By plotting
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Figure 5. vrms variance measured at z = 1.3 and a con-
stant rotational speed Ω∗ = 1400 rpm. Solid and dashed
lines are exponential fittings for each instability region given
as vrms ∼ exp(αR), where α is the growth rate. These co-
efficients for solid and dashed lines are α = 0.058 and 0.017,
respectively. Circles denote unfiltered signal, triangles show
band-pass filtered signal (17 < ω∗/Ω∗ < 70) below R ≤ 490
and high-passed filtered signal (17 < ω∗/Ω∗) for 495 ≤ R ≤
525.

the probability density function (PDF) of the fluctuating signal, where the
velocity is normalized with the wall velocity and the PDF amplitude with its
maximum value, an interesting picture is obtained. Figure 6 shows the resulting
color contour plot of the PDF for the same data as in figure5. Even a cursory
glance of figure 6 gives a vivid impression of the changes in characteristics with
Reynolds number and particularly at R = 550.

The PDF is narrow and almost constant up to R = 475 due to the back-
ground noise and low fluctuation level. At about R = 475, the plot is seen
to spread exponentially, as also suggested by figure 5. But at R = 550, the
structure of the PDF has changed dramatically and is strongly skewed. This
Reynolds number corresponds to the point where the slope of the exponential
growth of vrms changes in figure 5. Figure 6, however, supplies more informa-
tion compared with figure 5 with regard to the structure of the disturbances.
At around R = 600, the skewed PDF starts to disappear and the positive de-
viation of v has its maximum. The almost symmetric PDF above R = 650
indicates that the flow has reached a fully developed turbulent state. These
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Figure 6. The PDF of the filtered instantaneous azimuthal
fluctuation velocity v at z=1.3 normalized by the wall speed.
Filled contours indicate 10, 20, 30, 40, 50, 60, 70, 80 and 90 %
of the local PDF value.

characteristics are not obvious in the spectral distributions such as those in
figure 4.

This PDF method is also useful to capture the structure normal to the wall
associated with the instability. Figure 7 shows the same quantity as plotted in
figure 6, but at fixed Reynolds numbers (increasing by 20 units in each subplot)
giving the PDF structure normal to the wall. Below a Reynolds number of
530 the PDF is symmetric around the mean value across the boundary-layer,
indicating that the disturbance is near linear below this Reynolds number. By
R = 550 the PDF becomes strongly asymmetric and around in z = 1.3 (figure 7
e) a double peak has appeared marked with + in the figure. At R = 570 the
picture is complicated further by the appearance of two double peaks, one
around z = 1 and the other around z = 2. For even higher Reynolds numbers
the maximum of the PDF again becomes centered around the mean value,
which here is indicative of the flow becoming fully turbulent (Alfredsson et al.
2011).

In figure 7 an interesting phenomenon is captured at R = 570. Kohama
(1984) suggested that the secondary instability of the stationary primary vor-
tices (observed using smoke-flow visualization) takes the form of “ring-like vor-
tices which occur on the surfaces of each spiral vortices [sic]”. The two peaks
in figure 7 (f) of the PDF around z = 2.0 − 2.8 may be a manifestation of
the secondary instability observed by Kohama. From a theoretical analysis,
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Balachandar et al. (1992) suggested that secondary vortices are centered over
the saddle point of the primary cross-flow vortices. At the same R the position
of the primary vortices change from z = 1.3 to z = 1.0, which explains why
the strong skewed PDF is observed in figure 6 above R = 550. Figures 6 and 7
together illustrate the structure of the boundary-layer flow through the transi-
tion process, comparing well with Viaud et al.’s figure 3 showing the nonlinear
evolution of an initial perturbation to a disordered state. While not conclusive
at this stage, the results shown here support previous experimental (Kohama
1984), theoretical (Pier 2003; Balachandar et al. 1992) and numerical (Viaud
et al. 2011) suggestions of a global nonlinear mode that is itself unstable to
secondary perturbations.

As discussed in Lingwood (1997b) the maximum convective linear growth
rate above R = 507 is much larger than the absolute growth rate but given suf-
ficient time the amplitude of disturbances generated by the absolute instability
will become large enough to cause nonlinearities and to fix the radial position
of the onset of the transition process. As Huerre & Monkewitz (1990) suggested
the nonlinear global mode resulting from a finite region of local absolute in-
stability may be thought of as a highly repeatable “self-excited, low-amplitude
wavemaker...., which acts as a source for the downstream instability wave(s).
Furthermore, as discussed by Viaud et al. (2011), in a strongly nonlinear and
weakly non-parallel regime, the presence of a finite region of absolute instability
has been shown theoretically to be a sufficient condition for a nonlinear global
mode with a steep front (a so-called ‘elephant mode’), located at the upstream
boundary (primary front) between local convective and absolute instability,
and, further, when the global mode is itself absolutely unstable to local sec-
ondary perturbations the transition process is likely to be via the secondary
instabilities a short distance downstream of the primary front (Kohama 1984;
Pier 2003; Viaud et al. 2011).

To summarize, the present work shows a new way to describe the char-
acteristics of a rotating-disk flow by introducing the PDF contour plot of the
normalized fluctuation velocity (where the PDF at each z-position is normal-
ized by its maximum value). The map is shown in figure 6 and if compared
with spectral and rms distributions in figure 4 and figure 5 it shows the differ-
ent stages more clearly. It is shown that the PDF can identify an exponentially
growing instability, a secondary instability and also clearly shows the onset of
the fully developed turbulent flow. In addition, this method is applied to the
velocity profile measurements to capture the structure normal to the wall. PDF
contour plots at each Reynolds number clearly show the disturbance structure,
in particular, peaks in the PDF at R = 570 may be associated with a sec-
ondary instability. Moreover, the evidence presented herein may represent the
first experimental validation of the suggested secondary absolute instability
of the primary nonlinear (steep-fronted) global mode (Pier 2003; Viaud et al.
2011). As mentioned above, this PDF method may be useful not only for
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rotating-disk flows (the so called BEK system of rotating boundary-layer flows
Lingwood & Garrett 2011), but also for other transitional flows, for example
other three-dimensional boundary-layers, such as those over swept wings, or
even more conventional two-dimensional boundary-layer configurations.

This research is supported by the Swedish Research Council (VR) and
KTH. We also acknowledge the help from the late Dr Tim Nickels in arrang-
ing the loan of the experimental apparatus from the University of Cambridge
Department of Engineering to KTH. We also thank the referees for useful com-
ments and for pointing out Viaud et al. (2011) to us.
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1Linné FLOW Centre, KTH Mechanics, SE-100 44 Stockholm, Sweden
2University of Cambridge, Cambridge, CB23 8AQ, UK

To be submitted

The effects of the edge of the disk on laminar-turbulent transition of the
rotating-disk boundary-layer flow are discussed. Healey (J. Fluid. Mech., vol.
663, 2010, pp. 148-159) suggested, using the linearized complex Ginzburg-
Landau equation, that the transition Reynolds number for the rotating-disk
flow can be affected by the Reynolds number at the edge of the disk. He com-
pared his theoretical work with experiments performed by various researchers,
which seemed to confirm the suggested change in the transition Reynolds num-
ber dependent on the edge Reynolds number. However, our experimental re-
sults with varying edge Reynolds number and edge condition do not show such
behaviour. We discuss the transition Reynolds number as defined by each of
the cited authors, and suggest the variations are explained by the different
definitions they use rather than the proximity of the edge of the disk to the
transition region.

1. Introduction

We discuss an incompressible rotating-disk boundary-layer flow without any
imposed flow. The laminar boundary layer established on a rotating-disk has a
three-dimensional profile with an inflection point in the radial direction. For an
infinite disk rotating in an otherwise quiescent fluid there is an exact similarity
solution, first described by von Kármán (1921). The Rossby number for the
von Kármán flow is Ro = −1, as defined, for example, by Lingwood & Garrett
(2011). The instability and transition of the rotating-disk flow has been investi-
gated starting with Theodorsen & Regier (1944) and Smith (1947) who noticed
fluctuations in the boundary layer on the rotating disk using a hot-wire probe.
Visualization studies performed by Gregory et al. (1955) and Kohama (1984)
showed 28-32 stationary (in the rotating frame) vortices in the unstable region.
Experiments by Kobayashi et al. (1980) and Malik et al. (1981) using hot-wire
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anemometry both gave the Reynolds number for the onset of convective insta-
bility for stationary modes slightly below 300, where R = r∗(Ω∗/ν∗)1/2, r∗ is
the radius of the disk at the measurement position, Ω∗ is the rotational speed
of the disk, ν∗ is the kinematic viscosity of the fluid and * denotes a dimensio-
nal quantity. Local linear stability analyses (Lingwood 1995) also reveal this
unstable region with two different modes: an inviscid instability mode, called
Type I, caused by an inflection point in the radial velocity component, and a
viscous instability mode, called Type II, caused by streamwise curvature and
Coriolis effects. Type II stationary disturbances have smaller linear growth
rates than Type I.

There are other stable modes, and one of these, henceforth called Type III,
was shown by Lingwood (1995, 1997) to coalesce with Type I above RCA = 507
for certain travelling waves. Here RCA is the critical Reynolds number for onset
of local absolute instability. The absolute instability is an inviscid mechanism
and Lingwood (1995) suggested it had a role in triggering nonlinearity, related
to the onset of transition to turbulence. By introducing impulsive excitation to
the rotating-disk boundary-layer flow, she confirmed experimentally the abso-
lute instability (above about R = 507) by tracking the trajectory of the excited
wavepacket (Lingwood 1996) and showed the development of nonlinearity and
the onset of the transition process from there, resulting in a fully turbulent flow
about R = 600 − 650. Theodorsen & Regier (1944), Kobayashi et al. (1980)
and Othman & Corke (2006) performed careful low-disturbance experiments,
and gave transition Reynolds numbers in the range 539-566, numbers that are
higher than the critical absolute Reynolds number. Davies & Carpenter (2003)
performed direct numerical simulations solving the linearized Navier-Stokes
equations and suggested that the convective behaviour eventually prevails even
for strongly locally absolutely unstable regions and concluded that the absolute
instability does not produce a linear amplified global mode.

Taking this point into account, Pier (2003) suggested that a nonlinear ap-
proach is required to explain the self-sustained behaviour of the rotating-disk
flow. He suggested that the rotating-disk boundary layer has a primary nonlin-
ear global mode fixed by the local absolute instability, predicted by Lingwood
(1995), which has a secondary absolute instability that triggers the transition
to turbulence. In fact Kohama (1984) did smoke-flow visualization that shows
a secondary instability on the stationary primary vortices, which takes the
form of “ring-like vortices that occur on the surfaces of each spiral vortices
[sic]”. Furthermore, Imayama et al. (2012) represented the vertical structure
of the vortices that show signs of secondary instability at R = 570 just before
the turbulent breakdown region. However, the behaviour of the secondary in-
stability and also its relation to the primary absolute instability are not fully
understood as yet.
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Othman & Corke (2006) performed experiments similar to those of Ling-
wood (1996) but used both a low-amplitude and a high-amplitude initial pulse-
jet excitation to create a wave-packet disturbance in the boundary-layer flow.
Contrary to Lingwood (1996) the trailing edge of the wavepacket did not be-
come fixed at RCA with the low-amplitude initial disturbance, hence the re-
sults agree well with the linearized DNS of Davies & Carpenter (2003). On the
other hand, the amplitude of the wavepacket with the high-amplitude initial
disturbance compares better with the result of Lingwood (1996), although it
is not certain that the trailing edge of the wavepacket becomes fixed at RCA.
However, Imayama et al. (2012) suggested that the change in slope at around
R = 545 in disturbance growth (their figure 5) could correspond to the so-
called ‘secondary front’ suggested by Viaud et al. (2011), leading to a cascade
of absolutely unstable secondary instabilities and transition to turbulence. This
observation by Imayama et al. (2012) is perhaps the first experimental valida-
tion of the theoretical predictions of absolute instability of the primary global
instability by Pier (2003) and the corresponding DNS results of Viaud et al.
(2011).

In addition to the studies described above, Healey (2010) suggested that
the proximity of the edge of the disk to the transition region is important; an
effect not captured by standard analyses assuming an infinite disk radius. He
recognized the scatter of experimentally-observed transition Reynolds number
Rt reported by previous authors as can be seen in table 1. He argued that,
based on investigations of the linearized complex Ginzburg-Landau equation,
the transition Reynolds number should depend on the Reynolds number at the
edge of the disk, Redge, where Redge = r∗d(Ω∗/ν∗)1/2, r∗d is the actual radius
of the disk, with the assumption that the transition to turbulence is related to
the appearance of a steep-fronted nonlinear global mode. Figure 7(b) of Healey
(2010) shows the variation in the experimentally-observed transition Reynolds
number depending on the edge Reynolds number compared with his theoretical
prediction. In the present paper, we will discuss the effect of the edge of the
disk on the instability and transition process based on experimental results.
The study includes measurements of the flow with a range of edge Reynolds
numbers and several different edge conditions. We observed no obvious effect
of the proximity of the disk edge or of the nature of the edge condition on the
transtion process. In addition, we suggest the scatter of the transition Reynolds
number reported by previous authors is explained by their different definitions
of what constitutes transition.

2. Experimental set-up and procedure

The experimental set-up is a modified version of the one used by Lingwood
(1996). On the original aluminium-alloy disk a new disk made of glass with
a thickness of 24 mm and a diameter of 474 mm has been mounted. At the
edge of the disk the glass disk is ground down approximately 1.5 mm with a
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Authors Rt Method

Theodorsen & Regier (1944) 557 Hot-wire
Gregory et al. (1955) 533 Visual, China-clay
Cobb & Saunders (1956) 490 Heat transfer
Gregory & Walker (1960) 524 Pressure probe
Chin & Litt (1972) 510 Mass transfer
Fedorov et al. (1976) 515 Visual, napthalene
Clarkson et al. (1980) 562 Visual, dye
Kobayashi et al. (1980) 566 Hot-wire
Malik et al. (1981) 520 Hot-wire
Wilkinson & Malik (1985) 550 Hot-wire
Lingwood (1996) 508 Hot-wire
Othman & Corke (2006) 539 Hot-wire

Table 1. Experimental Rt given in previous studies using
various experimental techniques.

45◦ angle. This is why the actual radius of this glass is r∗d=235.5 mm. The
aluminum-alloy disk is connected to a DC-servo motor via a vertical shaft, and
a pressurized air bearing ensures that the vibrations of the disk are small. The
surface of the glass disk is polished resulting in a surface roughness of less than
1 µm; the rotational imbalance is less than 10 µm at the edge and smaller at
the centre region of the glass disk

To investigate the effect on the transition process caused by the disk edge
condition, different conditions have been considered. Figure 1 shows the three
different edge conditions. Figure 1(a) shows the ‘open type’, which has no
extended plate or cover, figure 1(b) shows the ‘ring type’, where there is a steel
ring mounted below the surface of the disk covering eight aluminum clamps
fixing the glass disk to the aluminum-alloy disk. These clamps, which are
below the vertical edge of the glass disk, generate a disturbances field with
eight oscillations per rotation of the disk if not covered. The ring is mounted
around them to eliminate their contribution to the flow disturbance field. The
ring itself does not rotate and the horizontal gap between the ring and glass
disk is less than 1 mm. The edge of the glass disk is still exposed in a similar
way to the open-type edge condition because the top of the ring is located
11 mm vertically below the disk surface. The third case, figure 1(c) is called
‘plate type’, which consists of a non-rotational extended annular plate made of
wood with an outside diameter of 900 mm mounted around the glass disk. This
extended plate eliminates the effects of the eight aluminum fixing components
and also reduces the effects of noise coming from the air bearing and DC-servo
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(a) Open Type (b) Ring Type

(c) Plate Type

Figure 1. Three edge conditions.

motor. The horizontal gap between the disk and plate is less than 1 mm and
vertically the disk surface and plate are approximately flush.

A hot-wire probe with a single sensor made of platinum, with a diameter of
5 µm and 1 mm in length, is operated by a constant-temperature anemometer
(CTA) with an overheat ratio of 0.8. The sensing element of the hot-wire is
oriented in the radial direction, making it mainly sensitive to the azimuthal
velocity. The signal from the CTA is digitized using a 16-bit A/D converter at
a sampling rate of 720 data points per disk revolution during a 60 second sam-
pling time. The hot-wire probe is mounted on a two-axis, remotely-controlled
traverse mechanism at 45◦ to the vertical to limit disturbance of the incoming
downward axial flow. The calibration of the hot wire is carried out on the ro-
tating disk using the laminar profile and a modified (to obtain better accuracy
at low velocities, see Johansson & Alfredsson 1982) King’s law is fitted to the
calibration data.

The experimental conditions are shown in table 2. The Reynolds number
was varied using two methods: i) varying the rotational disk speed and keeping
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Figure 2. Mean velocity nomalized by wall velocity of
IO01(�), IR01(4) and IP01(◦) measured at z = 1.3 as func-
tion of r∗. The filled data points indicate removed data from
the analysis, because V is reduced suddenly due to the prox-
imity of the edge of the disk. The solid line shows the radius
of the actual glass disk r∗d.

the probe at a fixed radial position for the PO, PR, PP, IR00 cases; and ii)
varying the radial position of the probe at a fixed rotational disk speed for
other cases. The measurements were performed taking extreme care with the
glass surface. Before rotating the disk, the surface of glass disk was cleaned
with acetone and carefully checked that there were no visible dust particles on
the surface. The Reynolds numbers for IO, IR and IP were changed every 5
∆R across the measurement range, where ∆R is the unit Reynolds number.
All measurements are in the laboratory frame rather than the disk’s rotational
frame.

For the IO, IR and IP cases, the Reynolds number was changed by varying
the radius at which the measurements were taken. The maximum measurement
Reynolds number for these cases does not reach the edge Reynolds number
exactly shown in table 2, i.e. the maximum measurement Reynolds number in
IO01 is 540 despite Redge = 551. This is because the mean flow field is disturbed
very close to the disk edge. Figure 2 shows normalized azimuthal velocity V
at a constant height and each constant rotational speed. Within 3 − 4 mm of
the outer edge the normalized azimuthal velocity suddenly drops, and so data
measured this close to the outer edge were removed from the following results
and discussions.
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Case Edge Mode R Redge r∗[mm] Ω∗[rpm] z

PO Open Speed 430-630 512-749 198 683-1465 0.4-16(26)
PR Ring Speed 430-630 511-749 198 675-1455 0.4-16(26)
PP Plate Speed 430-630 512-749 198 690-1480 0.4-16(26)

IR00 Plate Speed 360-640 428-763 198 486-1542 1.3

IO01 Open Radius 360-540 551 154-231 800 1.3
IO02 Open Radius 360-565 577 147-231 865 1.3
IO03 Open Radius 360-605 615 138-231 1000 1.3
IO04 Open Radius 360-700 730 116-226 1400 1.3

IR01 Ring Radius 360-540 552 154-231 800 1.3
IR02 Ring Radius 360-565 576 147-231 860 1.3
IR03 Ring Radius 360-605 615 138-232 982 1.3
IR04 Ring Radius 360-700 729 116-226 1380 1.3

IP01 Plate Radius 360-540 555 153-229 800 1.3
IP02 Plate Radius 360-565 577 147-231 860 1.3
IP03 Plate Radius 360-605 618 137-231 1000 1.3
IP04 Plate Radius 360-700 731 116-226 1400 1.3

Table 2. Experimental conditions. “Edge” indicates three
kinds of edge conditions, see figure 1. Mode indicates the
Reynolds number change method (Speed: Reynolds number
is changed by varying the rotational speed of the glass disk;
Radius: Reynolds number is changed by varying the radius of
the hot-wire position). Here, r∗ is a local radius of the hot-wire
and z is the normalized wall-normal position of the hot-wire,
respectively.

3. Results

3.1. Azimuthal Mean Velocity Profile

The azimuthal mean velocity profiles with three different edge conditions are
shown in figure 3. The Reynolds numbers for these velocity-profile measure-
ments were changed by varing the rotational speeds, and these results corre-
spond to cases PO, PR and PP with Redge given by table 2. For Reynolds
numbers in the range R = 430 − 510, the measured profiles correspond well
to the theoretical laminar profile shown as a solid line for all edge conditions,
except far away from the disk where the smallness of the azimuthal velocity
makes the hot-wire measurements inaccurate. Between R = 510 and R = 550
the nonlinear influence of the growing disturbances causes the mean azimuthal
velocity to deviate from the theoretical laminar profile for all three different
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edge conditions, see small sections in figure 3. The plate type has larger devia-
tions than the other two cases at R = 550 and R = 590. With further increases
in Reynolds number, this effect grows. At R = 630, the velocity profile has
completely changed from the basic laminar one, giving a larger velocity gra-
dient close to the wall and a dramatically increased boundary-layer thickness;
both characteristics of the development of a turbulent boundary layer.

3.2. Azimuthal Fluctuation Velocity Profile

In figure 4 the growth of disturbances vrms is shown as a function of Reynolds
number. The Reynolds number at the measurement position was changed by
varying the radial position of the hot-wire for IO01-04, IR01-04 and IP01-04
(shown in table 2) holding the edge Reynolds number constant. Only for IR00
was the Reynolds number changed by varying the rotational speed of the disk
so that the edge Reynolds number varied. The measurements were performed
at a constant height z = 1.3. because, in the unstable region, the intensity
of vrms has a maximum around that position, see figure 3 in Imayama et al.
(2012).

At low R we measured different background-noise levels depending on the
edge conditions. In all cases, the experiments with the highest rotational speed
(IO04, IR04, IP04) have the largest background-noise levels. This is due to
higher levels of vibration of the traverse and disk at higher rotational speeds.
On the other hand, the lowest background-noise levels are observed in IO03,
IR03 and IP03. This is because compared with the measurements performed in
cases IO01-02, IR01-02 and IP01-02 those started from smaller radial positions
where the imbalance of the disk is smaller, and the rotational speeds are smaller
than IO04, IR04 and IP04. All of measurements in open-type have larger
background-noise levels compared with the ring-type and plate-type. This is
because eight aluminium components connect the glass disk to the aluminum-
alloy disk and these disturb the flow contributing to the background noise.
In the ring-type and plate-type cases these eight aluminum components are
masked by the ring cover and wooden annual plate, respectively, see figure 1.
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Figure 3. Mean azimuthal velocity profiles with three differ-
ent edge conditions (PO case (a), PR case (b), PP case (c))
at R=430 (◦), 470 (∗), 510 (×), 550 (�), 590 (♦), 630 (5).
The solid line is the laminar theory profile. The small figures
inside the main figures show magnified regions of the velocity
profiles are affected by nonlinearity.
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Figure 4. vrms measured at z = 1.3 for various edge con-
ditions (IO case (a), IR case (b), IP case (c)). The symbols
indicate 00(?), 01(♦), 02(4), 03(�), 04(◦) cases respectively,
where 00-04 cases are described in table 2.
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At R ≤ 480 the background-noise level is relatively high compared with
the amplitude of the fluctuations due to convective instability. But at R > 480
the flow disturbances start to exceed the background level and the exponential
growth of vrms is observed up to R = 585− 595 for all edge conditions. These
exponential growth regions match within 10 ∆R for all edge conditions and
edge Reynolds numbers. The change of the exponential growth is observed at
R = 545 − 555 which could be evidence of a “secondary front” as described
by Viaud et al. (2011). These results suggest three things about the transition
process of the rotating-disk boundary layer. First, the background disturbance
source from outside the boundary layer does not affect the transition process
significantly in these cases. Secondly differences in the edge conditions, namely
whether there is a extended annual plate around the glass disk or not, also
does not affect it. Third, the data with different edge Reynolds numbers match
closely, which suggests the edge Reynolds number does not affect the transition
process.

3.3. Probability Density Function Profile

To gain a better insight into the different stages of the transition process, in par-
ticular how the transition process progresses with increasing Reynolds number,
Imayama et al. (2012) introduced a probability density function (PDF) map of
the instantaneous fluctuation velocity normalized by the wall velocity and the
PDF amplitude normalized with its maximum value in order to illustrate the
process. Figure 5 shows the resulting colour contour plot of the PDF for the
same data as in figure 4. The open, ring and plate types in figure 5 (a-c) repre-
sent the superposition of different edge conditions, namely IO01, IR01 and IP01
are used for 360 ≤ R ≤ 540, IO02, IR02 and IP02 are used for 540 < R ≤ 565,
IO03, IR03 and IP03 are used for 565 < R ≤ 605 and IO04, IR04 and IP04
are used for 605 < R ≤ 700. Figure 5 (d) shows the single plate-type (IR00)
case. If the transition process were affected by the edge Reynolds number, then
the superposition PDF map would include significant discontinuities. However,
figure 4 indicates continuous and similar PDF trends as a function of the mea-
surement Reynolds number. The ring-type case in figure 5 (b) has a slightly
discontinuous region at R = 605, however the gap is less than 10 ∆R.

In figure 5 the PDF is narrow and constant at R < 475. The open-type
case is slightly broader at low Reynolds number compared with the other edge
conditions due to higher background-noise levels. At R ≥ 475 the PDF spreads
exponentially up to about R = 550 corresponding to the secondary front as
shown figure 4. At R = 550, the structure of the PDF changes dramatically
and becomes strongly skewed. This is indicative of secondary instability, as also
shown by figure 7 in Imayama et al. (2012). At around R = 600, the skewed
PDF starts to disappear and the positive deviation of v has its maximum. The
almost symmetric PDF above R = 650−660 indicates that the flow has reached
a fully developed turbulent state.
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Figure 5. PDFs of the instantaneous azimuthal fluctuation
velocity v at z=1.3 normalized by the wall speed with various
edge conditions and the two different modes of changing the
measurement Reynolds number, i.e. by varying radial position
or by varying rotational speed. Filled contours indicate 10, 20,
30, 40, 50, 60, 70, 80 and 90 % of the local PDF value.

4. Discussion of results

The present results as shown in figure 4 and figure 5 show that the development
of the flow is indepedent of the edge Reynolds number and edge conditions. We
need then to consider the scatter of the transition Reynolds number reported
by the previous authors and the result of Healey (2010) which proposes that the
transition Reynolds number for the rotating-disk flow can be affected by the
edge Reynolds number. Here, table 3 shows the transition Reynolds number in
recent studies measured using a hot-wire probe listing the transition Reynolds
numbers in ascending order. The previous authors used different definitions
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Figure 6. Ensemble-averaged spectrum P (ω∗) at 5 ∆R in-
tervals between R = 480 and R = 520 measured at z = 1.3
(IP04).

for the transition Reynolds number, however, and the present data will be
compared with each definition.

Lingwood (1995, 1997) suggested that the local absolute instability ap-
pears above R = 507 and that it triggers nonlinearity. Here, we define the
‘transition Reynolds number’, Rt, as the onset of nonlinearity where the am-
plitude of the harmonics of the primary vortices reaches 10−6 in terms of the
ensemble-averaged power spectrum intensity of the azimuthal velocity.1 Fig-
ure 6 shows an example of the transition Reynolds number definition of the
ensemble-averaged power spectrum. At R = 480 the spectrum due to the pri-
mary vortices appears at around ω∗/Ω∗ = 31 and the spectrum band for the
primary vortices expands with increasing Reynolds number. This result corre-
sponds to figure 6 in Malik et al. (1981) so that the number of vortices increases
as a function of Reynolds number. The peak around ω∗/Ω∗ = 1 is due to im-
balance of the disk. At R = 500, nonlinearity starts to cause harmonics of the
primary vortices to appear at around ω∗/Ω∗ = 63. At R = 510, the amplitude
of the harmonics reaches 10−6 in the power-spectrum scale. Thus, with this
definition, the onset of the transition is suggested to be Rt = 510.

However Malik et al. (1981) use a different definition for the transition
Reynolds number (520), namely that turbulent spots start to appear. We

1The power spectrum is defined as P (ω∗) = (2/N2
FFT )|H(ω∗)|2, where H(ω∗) is the discrete

Fourier transform of the time series and the normalization factor is NFFT = 2048, which is

the number of data points in one period of each discrete Fourier transform in this study.
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Authors Rt The definition

Lingwood (1996) 508 Onset of nonlinearity
Malik et al. (1981) 520 Appearance of turbulent spots
Othman & Corke (2006) 539 Onset of deformation of laminar profile
Wilkinson & Malik (1985) 550 Breakdown of the vortices
Kobayashi et al. (1980) 566 Entire loss of periodic

velocity fluctuations

Table 3. Experimental Rt (as defined in the original studies)
performed by previous authors using hot-wire measurements
and listed in ascending order.
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Figure 7. Ensemble-averaged timeseries of the azimuthal ve-
locity at various measurement Reynolds numbers at z = 1.3
for Plate Type (IP04). The signals are normalized by the max-
imum peak-to-peak amplitude. Measurements are taken in the
laboratory frame of reference.

sometimes observed wavepackets not only at R = 520 but over a range of
R < 550 appearing non-periodically and non-repeatably. In our case, this may
be due to dust falling from above and either being carried through the bound-
ary layer without attaching or becoming attached to the surface, but in either
case disturbing the flow inside the boundary layer and creating the wavepacket
disturbance. At higher Reynolds numbers the wavepacket has turbulent char-
acteristics but at R = 520 we found a very low probability of turbulent-spot
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formation. We suggest that turbulent spots at around R = 520 are likely to be
a result of large initial disturbances, e.g. falling dust, rather than a ‘natural’
part of the transition process and therefore that this definition of transition
Reynolds number for the rotating-disk flow is inappropriate.

Othman & Corke (2006) define the transition Reynolds number as the onset
of deformation of the laminar azimuthal velocity profile due to nonlinearity,
giving Rt = 539. Here, figure 3 shows this behaviour between R = 510 and
R = 550 for all edge conditions corresponding broadly to the result of Othman
& Corke (2006).

Wilkinson & Malik (1985) and Kobayashi et al. (1980) gave higher values
of the transition Reynolds number, namely 550 and 566, respectively. How-
ever, their definitions are related to the turbulent breakdown of the instability
structures, and are defined as the onset of breakdown of the primary vortices
and entire loss of periodicity, respectively.

Figure 7 shows ensemble-averaged timeseries of peak-normalized azimuthal
velocity (averaged over 1000 revolutions) at 10 ∆R intervals. At R = 520 in fig-
ure 7 approximately 33 stationary oscillations are observed per rotation; these
are the primary vortices, see figure 2 in Kohama (1984). Between R = 520 and
R = 560 the amplitude of each primary vortex is not constant. This is because
the disturbance field is a superposition created by a random distribution of
unavoidable surface roughness. The breakdown of the stationary modes starts
to appear in these ensemble-averaged timeseries at R = 580, θ∗ = 190 − 230
degrees. Note that single-realization time series would show the beginnings of
breakdown at a lower Reynolds number but ensemble-averaged data show the
last remnants of periodicity more easily. The stationary modes are shown here
to lose all periodicity at R = 620 − 630. Our observed Reynolds number for
the breakdown and the entire loss of periodicity is much larger than that of
Wilkinson & Malik (1985) and Kobayashi et al. (1980).

Here, we show the effect of the edge Reynolds number on the transition
Reynolds number in figure 8. The transition Reynolds numbers with differ-
ent edge Reynolds number and edge conditions are plotted against the edge
Reynolds number together with the prediction of of the edge effect by Healey
(2010). Our results clearly show the lack of dependence of Rt on these edge
conditions and edge Reynolds number, and suggest that Healey’s (2010) pre-
diction of a relationship between Rt and Redge (verified by his figure 7(b) using
others’ values of Rt) is better explained by a recognition that different authors
have used different definitions of Rt than by a physical phenomenon.

5. Conclusions

We performed an experimental study to investigate the laminar-turbulent tran-
sition process of a rotating-disk flow with different edge conditions and different
edge Reynolds numbers. Three different edge conditions were studied and four
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different edge Reynolds numbers with each edge condition. Figure 2 shows that
there is a dramatic effect on the mean flow within about 3− 4 mm of the disk
edge hence further measurements were not taken in this region. Figure 4 shows
that Redge has no significant effect on the transition process nor on Rt. The
results with different edge conditions agree within 10 ∆R. Open type has the
largest background noise level compared with the ring and plate types. This is
because the eight aluminum components fixing the glass to the aluminum-alloy
disk generate a disturbances field with eight oscillations per rotation of the disk.
However, we observe that the varying background-noise levels in this study do
not affect to the transition process (as suggested by figure 4). Furthermore,
this result is reinforced by the PDF maps shown in figure 5, which graphically
reveal the transition process described in Imayama et al. (2012). The PDF
maps showing a superposition of measurements with the four different edge
Reynolds numbers are continuous (with one small exception), which indicates
that Redge does not affect the transition process significantly.

We define the transition Reynolds number, Rt, as the onset of nonlinearity
where the amplitude of harmonics of the primary vortices reach −6 in terms
of the ensemble-averaged power spectrum intensity of azimuthal velocity, as
shown in figure 6. The transition Reynolds number as a function of the edge
Reynolds number is represented in figure 8, showing no dependence, a result
that contradicts Healey (2010), where his figure 7(b) predicts Rt increases as
Redge approaches Rt. We obtained a transition Reynolds number (using our
definition and measured across all the cases listed in figure 8) of 510 ≤ Rt ≤ 520.

The onset of nonlinearity is highly repeatable, which is consistent with this
nonlinearity not being significantly influenced by the background disturbance
field but by the absolute instability found by Lingwood (1995). The variation
in the transition Reynolds number reported by previous authors is discussed in
§ 4, and we suggest is largely a result of varying definitions rather than differing
physical phenomena.

We are grateful to the Swedish Research Council (VR) and KTH for sup-
port of this research. We also thank the late Dr Tim Nickels who arranged the
loan for the experimental apparatus from the University of Cambridge Depart-
ment of Engineering to KTH.
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The laminar-turbulent transition of the rotating-disk flow is discussed. The ex-
act nature of the laminar-turbulent transition process of the rotating-disk flow
is still not well understood. This study has been performed experimentally us-
ing hot-wire anemometry across the laminar-turbulent transition region. The
fluctuation velocity associated with a secondary instability is characterized as
a ‘kink’ in single-realization timeseries just before the turbulent breakdown
region. It is found that the appearance of kinked timeseries becomes less ap-
parent at certain wall-normal heights. The amplitude of the ensemble-averaged
timeseries of the fluctuation velocity, which are assumed to correspond to the
stationary mode, varies azimuthally probably due to the superposition of mul-
tiple disturbance fields. However it seems that the turbulent breakdown of the
stationary disturbances does not depend on their amplitude, but may depend
on the appearance of a travelling secondary instability. Based on the almost
constant transition Reynolds number reported in the literature, the hypothesis
is discussed that the secondary instability could be triggered by the primary
absolute instability (Lingwood, R.J., J. Fluid Mech. 299, 17–23) and could be
absolute unstablely itself.

1. Introduction

The laminar-turbulent transition of the rotating-disk flow is discussed. Von
Kármán (1921) derived the exact similarity solution of the laminar boundary
layer on a rotating disk flow that has a three-dimensional profile with an inflec-
tion point in the radial direction. The inflection point in the radial velocity pro-
file satisfies Rayleigh’s inflection-point criterion implying that this flow could
be inviscidly unstable. Local stability analysis (e.g. Lingwood 1995a) shows
that the critical Reynolds number of the stationary mode is about R = 290,
where the Reynolds number is R = r∗(Ω∗/ν∗)1/2. Here r∗ is the radius of the
disk at the measurement position, Ω∗ is the rotational speed of the disk, ν∗ is
the kinematic viscosity of the fluid and * denotes a dimensional quantity. This
inviscidly unstable mode is called Type I. The flow on the rotating disk is also
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be unstable through a viscous mechanism which gives rise to so called Type II
mode. However for this mode the stationary disturbances have smaller growth
rates than Type I. The maximum growth rate from linear stability theory is for
a disturbance travelling slowly relative to the disk rather than the stationary
mode (Hussain et al. 2011). However as shown in many studies, 28 to 32 spiral
vortices are observed, which are stationary in the rotating frame, (e.g. in the
flow visualization of Kohama 1984). These are triggered by unavoidable fixed
roughnesses on the disk surface which cause continuous, and perhaps larger,
stationary excitation of the flow, and therefore the stationary disturbances tend
to dominate the observed flow field rather than the travelling one.

Lingwood (1995a, 1997) found, using the Briggs’s (1964) method with a
local linear approximation, a change of instability mechanism from convective
instability to absolute instability for certain travelling waves above RCA =
507, where RCA is a critical Reynolds number for the absolute instability.
Lingwood (1995b) showed that the onset of nonlinearity appeared at Reynolds
number above 502 and below 514. Furthermore Lingwood (1996) followed the
development of the laminar-turbulent transition process from there, finding a
fully turbulent flow about R = 600− 650. She illustrated the process through
time records of the velocity signal which showed sinusoidal signals up to the
point where breakdown was observed without obvious signs in the hot-wire
time series associated with secondary instability. Based on these results she
stated that for her experiments “the stationary disturbances are sufficiently
small, even close to the onset of transition, for the boundary layer stability to
be governed by the mean velocity profiles rather than secondary instabilities”.

In contrast to Lingwood’s (1996) experimental observation, Kobayashi
et al. (1980), Kohama (1984) and Wilkinson & Malik (1985) observed signs as-
sociated with secondary instability just before the turbulent-breakdown region.
Kobayashi et al. (1980) who carried out the flow visualization on the rotating-
disk flow captured “a new striped flow pattern originating along the axis of
a spiral vortex”. Kohama (1984) who also performed the visualiztion study
suggested “ring-like vortices which occur on the surfaces of each spiral vortices
[sic]”. Furthermore both Kobayashi et al. (1980) and Wilkinson & Malik (1985)
observed kinked velocity fluctuations at a final stage of the laminar-turbulent
transition process. Then Wilkinson & Malik (1985) concluded that “stationary,
secondary instabilities between the primary vortices were observed”. From the
theoretical point of view Balachandar et al. (1992) suggested that about 9%
of the root-mean-square amplitude of the primary disturbances is required to
trigger the secondary instability at R = 500 and that the travelling secondary
instability appears as a pair of counter-rotating vortices. Lingwood (1996) on
the other hand performed the experiments with ‘clean’ disk conditions result-
ing in low-amplitude initial stationary disturbances with a peak amplitude of
only 3% of the local disk speed at R = 500.
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Pier (2003) suggested that within a theoretical analysis a nonlinear ap-
proach is required to explain fully the self-sustained behaviour of the rotating-
disk flow. He argued that the rotating-disk boundary layer has not only a
primary nonlinear global mode fixed by the local absolute instability, found by
Lingwood (1995a), but that a secondary absolute instability triggers the tran-
sition to turbulence. However, the behaviour of the secondary instability and
also its relation to the primary absolute instability are not fully understood as
yet.

Imayama et al. (2012) performed careful low-disturbance experiments with
an unexcited (i.e. with no deliberate excitation) boundary-layer flow on the
rotating disk and revealed, using the probability density function (PDF) of
azimuthal fluctuation velocities, a wall-normal structure associated, it is sug-
gested, with secondary instability above R = 570. This occurred despite the
fact that the primary instability is quite small (about 0.6%) at R = 500. Fur-
thermore the disturbance growth measurements by Imayama et al. (2012) show
the onset of nonlinearity at R = 510 (associated it is assumed with the appear-
ance of absolute instability) and subsequent laminar-turbulent transition with
an exponential growth of disturbances resulting in fully-developed turbulence
at R = 650. The change of the slope at R = 545 in the disturbance growth
measurement in their figure 5 could correspond to what Viaud et al. (2011)
calls a ‘secondary front’, leading to a cascade of absolutely unstable secondary
instabilities and transition to turbulence. These results maybe indicate that
even after the appearance of the absolute instability at aroun R = 507, the
secondary instability has an important role in the turbulent breakdown of the
rotating-disk flow.

The exact nature of the laminar-turbulent transition process on the rotating-
disk flow is however still not well-understood. The aim of this study is to
investigate experimentally the laminar-turbulent transition process including
the effect of the absolute instability. In particular the behaviour of a secondary
instability and turbulent transition will be discussed.

2. Experimental set-up

The experimental set-up is the same as the one used in Imayama et al. (2012).
Table 1 shows the experimental conditions in the present work and PP01-PP09
and IP02 are identical data used in Imayama et al. (2012). The azimuhtal
velocity measurements were performed by hot-wire anemometry. The detail
of experimental method has been discussed in Imayama et al. (2012). IP01 is
azimuthal velocity measurement as a function of Reynolds number performed
at a constant height z = 1.3 as well as IP02 except the difference with the edge
Reynolds number Redge, where z is a non-dimensional height from the wall

(z = z∗(Ω∗/ν∗)1/2) and the Redge is defined as Redge = r∗d(Ω∗/ν∗)1/2, where
r∗d is an actual radius of glass disk.
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Case R Redge r∗[mm] Ω∗[rpm] z

PP01 530 630 198 1040 0.4-16
PP02 550 654 198 1122 0.4-16
PP03 570 677 198 1205 0.4-16
PP04 590 702 198 1295 0.4-26
PP05 610 725 198 1385 0.4-26
PP06 630 749 198 1480 0.4-26

IP01 360-605 618 137-231 1000 1.3
IP02 360-700 731 116-226 1400 1.3

Table 1. Experimental conditions.

Case PP01-06 and IP02 are identical data used in Imayama et al. (2012). In
PP01-06 cases a Reynolds number is changed by varying the rotational speed
of the disk, on the other hand, in IP01-02 cases Reynolds number is changed by
varying the radius of the hot-wire position. Here, r∗ is a local radius of the hot-
wire and z is the normalized wall-normal position of the hot-wire, respectively.

3. Results

3.1. Azimuthal velocity time series

Imayama et al. (2012) observed a wall normal structure of the instantaneous
azimuthal fluctuation velocity profile that they associated with the secondary
instability, Their observation was based on the variation in the wall normal
direction of the probability density function (PDF) of the velocity fluctuations,
which showed double peaks that appeared around R = 550. Both Kobayashi
et al. (1980) and Wilkinson & Malik (1985) observed kinks on the sinuousoidal
velocity fluctuations just before the turbulent breakdown region and suggested
that this was a sign of the secondary instability. However Lingwood (1996)
did not observe obvious kinks in her experiment and stated “nothing with the
degree of periodicity observed by Wilkinson & Malik (1985)”.

To investigate the different behaviour just before the turbulent breakdown
region observed by previous authors, figure 1–6 show both single realizations
and ensemble-averaged azimuthal velocity time series (averaged over approxi-
mately 1000 revolutions) measured at various wall normal heights and Reynolds
numbers. Here v is an azimuthal fluctuation velocity (v∗) normalized by the lo-
cal disk speed (v = v∗/(r∗Ω∗)). The single realization time series contain both
time-dependent and time-independent components, made up by both travel-
ling and stationary waves, while the ensemble-averaged time series reveal only
the stationary mode if long enough time series are used to form the ensemble-
average. Typically the ensemble-average amplitude is smaller than that of the
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single realizations, however for some single realizations the opposite is true (see
e.g. figure 1(b)).

At R = 530, 550 no obvious periodic kinked fluctuation velocity is observed
in both the single realization and ensemble averaged time series. Figure 4 in
Imayama et al. (2012) shows the onset of nonlinearity in the spectrum at R =
510 may be triggered by absolute instability (Lingwood 1995a). At R = 530 it
is hard to see the nonlinear effect in the both time series, while at R = 550 the
distortion of single realizations starts to appear at θ∗ = 135 − 270◦, z = 0.6,
θ∗ = 135 − 180◦, z = 1.3 and θ∗ = 90 − 270◦, z = 2.0 where at least five
harmonics of the basic frequency in the spectrum at z = 1.3, see figure 4
in Imayama et al. (2012). At z = 3.0, R = 550 skewed single realization
and ensemble averaged time series can be observed due to roll up of higher
velocity component from near wall region due to primary vortices. This skewed
behaviour can be observed in PDF of the azimuthal velocity profile (see figure 7
in Imayama et al. 2012).

In figure 3 R = 570 and here the instantaneous signals show obvious dif-
ferent behaviour compared with the lower Reynolds number. The amplitude
of single realization time series become larger than ensemble-averaged time se-
ries and kinked velocity fluctuations appear in single realization time series at
all z. However at z = 1.3 the kinks are less apparent compared with other
heights. Furthermore at z = 2.0, 3.0 the kinks are sitting ‘backward’ on the
basic fluctuations, which is opposite to that at z = 0.6, 1.0 where they are
sitting ‘frontward’. Ensemble-averaged time series do not seem to have such
kinks, indicating that the kinks are associated with secondary instability, and
should be attributed to a travelling mode and not to a stationary one.

At R = 590, single realization time series start to have high-frequency
components showing the onset of turbulent breakdown at all z and amplitude
of the ensemble-averaged time series decreases compared with R = 570, a
result of turbulent breakdown. The appearance of the kinked velocity signals
and subsequent turbulent breakdown agree with previous authors’ observations
(Kobayashi et al. 1980; Wilkinson & Malik 1985).

At R = 610 high frequency components almost occupy in the single realiza-
tions time series at all z. On the other hand, low frequency components with
approximately four oscillations in a revolution appeared in ensemble-averaged
time series. Corke et al. (2007) suggested the growth of four stationary az-
imuthal oscillation in a revolution with the largest amplitude just upstream
the turbulent transition. This appearance is also captured by flow visualization
taken by Kobayashi et al. (1980). At R = 630 high frequency components are
more distinct and amplitude of ensemble-averaged time series becomes smaller
at all z resulting the flow changes to turbulence.

Figure 3 presents z dependence of the shape of kinked fluctuation velocity.
The kinked velocity fluctuations observed by both Wilkinson & Malik (1985);
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Kohama (1984) were measured at z = 1.77. Figure 7 shows the single real-
ization azimuthal velocity time series measured at z = 1.8, R = 570 which is
almost coincident with the wall normal height used by them, showing a similar
kinked fluctuation velocity. Lingwood (1996) on the other hand measured at
z = 1.3 where the kinks are less apparent. Based on these results, there was no
clear observation of kinked velocity fluctuations by her may have been due to
the measurement height at z = 1.3. Although Lingwood (1996) suggested that
the laminar-turbulent transition did not appear to be governed by secondary
instability but the mean velocity profiles and their absolute instability, a sec-
ondary instability may have triggered the turbulent breakdown consistent with
the observation of Imayama et al. (2012).

However Wilkinson & Malik (1985) and Kobayashi et al. (1980) observed
the appearance of breakdown of the vortices and the entire loss of periodic
velocity fluctuation at much lower Reynolds number. Wilkinson & Malik (1985)
observed the breakdown of the vortices at R = 550 and Kobayashi et al. (1980)
presents the entire loss of periodic velocity fluctuation at R = 566. Furthermore
figure 9 in Kobayashi et al. (1980) shows the kinked fluctuation azimuthal
velocity at R = 500, indicating the possibility that the primary vortices trigger
the secondary instability as suggested by Balachandar et al. (1992) due to a high
initial disturbance environment, namely without absolute instability. However
in the present study indications of the secondary instability appear at R = 570.
The relationship between the various observations of secondary instability and
the absolute instability (Lingwood 1995a) is still unknown although the shape
of the kinked azimuthal fluctuation velocity seems to be similar in reported
observations.
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Figure 1. A single realization (blue) and ensemble-averaged
(red) time series of azimuthal normalized fluctuation velocity
at R = 530: (a) z = 3.0, (b) z = 2.0, (c) z = 1.3, (d) z = 1.0,
(e) z = 0.6. The range of the ordinate is -0.1 to 0.1 with each
0.1 step for all z.
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Figure 2. A single realization (blue) and ensemble-averaged
(red) time series of azimuthal normalized fluctuation velocity
at R = 550: (a) z = 3.0, (b) z = 2.0, (c) z = 1.3, (d) z = 1.0,
(e) z = 0.6. The range of the ordinate is -0.2 to 0.2 with each
0.1 step for all z.
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Figure 3. A single realization (blue) and ensemble-averaged
(red) time series of azimuthal normalized fluctuation velocity
at R = 570: (a) z = 3.0, (b) z = 2.0, (c) z = 1.3, (d) z = 1.0,
(e) z = 0.6. The range of the ordinate is -0.3 to 0.3 with each
0.1 step for all z.
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Figure 4. A single realization (blue) and ensemble-averaged
(red) time series of azimuthal normalized fluctuation velocity
at R = 590: (a) z = 3.0, (b) z = 2.0, (c) z = 1.3, (d) z = 1.0,
(e) z = 0.6. The range of the ordinate is -0.4 to 0.4 with each
0.1 step for all z.
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Figure 5. A single realization (blue) and ensemble-averaged
(red) time series of azimuthal normalized fluctuation velocity
at R = 610: (a) z = 3.0, (b) z = 2.0, (c) z = 1.3, (d) z = 1.0,
(e) z = 0.6. The range of the ordinate is -0.4 to 0.4 with each
0.1 step for all z.



104 Shintaro Imayama

0 45 90 135 180 225 270 315 360

 θ
*
 [

o
]

v

(e)

(d)

(c)

(b)

(a)

Figure 6. A single realization (blue) and ensemble-averaged
(red) time series of azimuthal normalized fluctuation velocity
at R = 630: (a) z = 3.0, (b) z = 2.0, (c) z = 1.3, (d) z = 1.0,
(e) z = 0.6. The range of the ordinate is -0.4 to 0.4 with each
0.1 step for all z.
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Figure 7. A single realization azimuthal normalized fluctua-
tion velocity time series at z = 1.8, R = 570.

3.2. Disturbance growth

Single realizations and ensemble-averaged time series show different charac-
teristic at increasing Reynolds number in figure 1–6. Here to investigate the
disturbance growth of both components, the growth of the non-dimensional in-
tensity of the azimuthal velocity fluctuation (vrms = v∗rms/(r

∗Ω∗)) is measured
as a function of Reynolds number at constant wall normal heights z = 1.3,
because vrms has maximum value in the unstable region at around this height
(see figure 3 in Imayama et al. 2012). Figures 8, 9 present disturbance growth
of non-dimensional instantaneous azimuthal velocity fluctuations (v2

rms), non-
dimensional velocity fluctuation of ensemble-averaged time series vrms,en and
non-dimensional velocity fluctuation of the time-dependent part of the time
series vrms,td as a function of Reynolds number. Here the vrms,td is obtained
as

vrms,td =
√
v2
rms − v2

rms,en . (1)

If an ensemble is large enough to get rid of time-dependent components in the
average, vrms,en becomes the (non-dimensional) azimuthal velocity fluctuation
amplitude of the stationary mode vrms,st. In a similar way, vrms,td becomes
the amplitude of the travelling mode vrms,tr. In the present work the ensemble
is assumed to be sufficiently large (of the order of 1000 revolutions of the disk.
i.e. members of the ensemble).

The variation of vrms as a function of Reynolds number shown in figure 9
and has been discussed in figure 5 in Imayama et al. (2012). The growth of
vrms,st also shows almost same behaviour as vrms up to R = 550. However
at around R = 550 the growth of vrms,en is saturated and it does not grow
further. This is maybe because at R = 550 strong non-linearity makes energy
flow through a cascade process from the primary vortices to smaller scales as
shown in figure 4 in Imayama et al. (2012), thereby both limiting the growth
of the primary vortices as well as ‘scrambling’ them.
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Figure 8. vrms (4), vrms,en (�), vrms,td (◦) variances mea-
sured at z = 1.3, Redge = 618 as a function of Reynolds num-
ber (IP01).
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Figure 9. vrms (4), vrms,en (�), vrms,td (◦) variances mea-
sured at z = 1.3, Redge = 731 as a function of Reynolds num-
ber (IP02).

This Reynolds number where the growth of vrms,en is saturated almost
corresponds to the change of the slope in vrms. vrms,en has an almost constant
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amplitude between R = 550 and R = 580 and start to decrease beyond R ≈
580. Thus the reason that the slope of disturbance growth in vrms at R = 545
is mainly due to the change of disturbance growth of the stationary mode. The
decay of vrms,en can be considered as the turbulent breakdown of the stationary
mode. On the other hand, vrms,td continues to grow up to R = 580. Figure 8
also show a similar trend of each disturbance growth at different edge Reynolds
number.

Previous experimental studies (e.g. Gregory et al. 1955; Wilkinson & Ma-
lik 1985; Kobayashi et al. 1980) reveals between 28 and 32 stationary vor-
tices sitting on a disk. Furthermore Wilkinson & Malik (1985) suggested that
the number of stationary vortices increases with increasing Reynolds num-
ber. Figure 4 in Imayama et al. (2012) also shows the peaks around non-
dimensional frequency ω∗/Ω∗ = 30 in the spectrum. Thus the variation of
vrms,st means the growth of these stationary vortices. To investigate the detail
of the disturbance growth of the stationary mode, normalized peak amplitudes
(vpeak = v∗peak/(r

∗Ω∗)) of each stationary vortex are plotted in figures 10 and
11 as a function of Reynolds number. Each vortex grows exponentially but
at different amplitudes up to R = 550. This different amplitude of each sta-
tionary vortex is due to the different level of initial disturbance and this initial
environment dependence seems that the instability of the stationary mode has
a convective behaviour beyond the onset of absolute instability at RCA = 507
in a certain travelling mode. As increasing Reynolds number the appearance
of new stationary vortex can be observed at R = 540, 555 in figure 10. At
R = 550 most of stationary vortex stops its growth and maintain its amplitude
up to R = 575− 580. Subsequently most of stationary vortices start to decay
at the Reynolds number which means the onset of turbulent breakdown of the
stationary mode. Based on these facts it seems that the turbulent breakdown
of stationary vortices is not triggered by the amplitude of the stationary vor-
tices. At R = 570 in figure 3 the kinked fluctuation velocity associated with
secondary instability is observed not in the ensemble-averaged time series but
in the single realization time series, indicating that the secondary instability
may consist of travelling waves. Then perhaps it is implied that the breakdown
of stationary vortices is triggered by the travelling secondary instability instead
of their amplitude.

4. Conclusions

The laminar-turbulent transition of the rotating-disk flow has been investigated
experimentally, in particular, with respect to secondary instability and the tur-
bulent breakdown region using hot-wire anemometry in a low disturbance en-
vironment. Single-realization and ensemble-averaged timeseries of azimuthal
fluctuation velocity are shown. Kinked fluctuation azimuthal velocity asso-
ciated with secondary instability is observed here (more prevalently at some
wall-normal positions than others) in single-realization timeseries above R =
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570, which corresponds to previous experimental observations of Kobayashi
et al. (1980) and Wilkinson & Malik (1985). However, at z = 1.3 the kinked
fluctuation velocity is less apparent than at other wall-normal positions, which
may explain Lingwood’s (1996) lack of observation of such features in her mea-
surements at this wall-normal position. On the other hand, Kobayashi et al.
(1980) and Wilkinson & Malik (1985) measured the azimuthal velocity fluc-
tuation at z = 1.77 where we find that the kinked fluctuation velocity often
appears. Ensemble-averaged fluctuation-velocity timeseries do not seem to fea-
ture kinks, indicating that the secondary instability is a travelling wave (which
is therefore averaged away by the periodic ensembling process).

The growth of the instantaneous, ensemble-averaged and time-dependent
velocity fluctuations as functions of Reynolds number have been investigated.
The exponential growth shown by ensemble-averaged velocity fluctuations sat-
urates at R = 550, plateaus for R = 580−585, and is followed by the turbulent
breakdown of the stationary mode beyond that Reynolds number. More detail
on the variation between single realizations making up the ensemble-averaged
timeseries has been shown as a variance of the normalized peak amplitude of
each stationary vortex. Each stationary vortex grows exponentially but with
different amplitude up to R = 550, showing a convective behaviour. However
the turbulent breakdown of each stationary vortex seems to be independent of
its amplitude, which suggests this turbulent breakdown process is not due to its
convectively behaviour. Just before the turbulent breakdown of the stationary
mode, travelling secondary instabilities are observed at R = 570.

These facts may indicate that the turbulent breakdown of the stationary
mode is triggered by the appearance of a travelling secondary instability. If
so, based on the fact of almost constant transition Reynolds number observed
experimentally in previous studies (e.g. Kobayashi et al. 1980; Malik et al.
1981; Wilkinson & Malik 1985; Lingwood 1996; Othman & Corke 2006), under
conditions of low enough initial disturbances, the secondary instability itself
could have, as theoretically suggested by Pier (2003), an absolute instability.
However, the onset of the transition is either fixed by the primary absolute
instability found by Lingwood (1995a), or it may be triggered by the pri-
mary absolute instability. We suggest that the travelling secondary instability
controls the breakdown of the stationary mode and determines the turbulent
breakdown as a whole.

This work is supported by the Swedish Research Foundation (VR) and
the Linné FLOW Centre. Rebecca Lingwood and P. Henrik Alfredsson are
acknowledged for useful discussions.
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Figure 10. The normalized peak intensity vpeak of each sta-
tionary vortex at Redge = 618 (IP01). The colour indicates
the initial amplitude (0.006(Blue) < vpeak < 0.016(Red)) at
R = 500 or when new vortex appears.
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Figure 11. The normalized peak intensity vpeak of each sta-
tionary vortex at Redge = 731 (IP02). The colour is the same
as in figure 10.
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Internal report

The turbulent boundary layer on a rotating disk in otherwise quiescent fluid is
discussed. The turbulent boundary layer has a three-dimensional shape with
an inflection point in the radial velocity component. The aim of this study
is to give the statistical description of the rotating turbulent boundary layer
and also to compare it with a two-dimensional flat-plate boundary layer. A
special challenge is to determine the wall friction velocity accurately and here
this is done through direct measurement of the velocity distribution close to
the rotating disk in a very thin viscous sublayer. We use hot-wire anemometry
for the velocity measurements and compared to other flow cases the rotating
disk has the advantage of having the highest relative velocity at the wall itself
(if the hot-wire probe is in the laboratory frame of reference), thereby limiting
the effect of heat conduction to the wall from the hot-wire probe. Here the
friction velocity is determined directly from the azimuthal velocity profile in
the viscous sublayer and the turbulent statistics from the rotating boundary
layer are presented and compared with similar statistics from two-dimensional
boundary layers. This study is still ongoing and the results should be viewed
as preliminary.

1. Introduction

On a rotating disk, in otherwise still fluid, a boundary layer forms that has
a three-dimensional velocity profile and where fluid is transported both az-
imuthally with the disk as well as outwards in the radial direction. An exact
similarity solution for the laminar boundary layer, first reported by von Kármán
(1921), can be found for an infinite disk rotating in an otherwise quiescent fluid.
This boundary layer has the property that the thickness is constant, indepen-
dent of radius. On the one hand the laminar-turbulent transition process has
been addressed, both experimentally and theoretically, in many studies (e.g.
Gregory et al. 1955; Kobayashi et al. 1980; Kohama 1984; Lingwood 1995,
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1996; Davies & Carpenter 2003; Pier 2003; Imayama et al. 2012). On the
other hand, only few experimental studies of the turbulent boundary-layer on
the rotating-disk have been made, (see Littell & Eaton (1994) and references
therein), despite both the fundamental interest in three-dimensional turbulent
boundary layers as well as from their technical applications (e.g. rotor-stator
systems, see Crespo del Arco et al. 2005). In the following we will denote the
turbulent boundary layer on the rotating disk as the von Kàrmàn turbulent
boundary layer and abbreviate it as vKTBL. As usual it is a non-dimensional
Reynolds number that determines whether the flow is laminar or turbulent and
in this case the Reynolds number R is defined as R = r∗(Ω∗/ν∗)1/2, where r∗ is
the radius of the disk at the measurement position, Ω∗ is the rotational speed of
the disk, ν∗ is the kinematic viscosity of the fluid and * denotes a dimensional
quantity.

Some early work of the drag exerted by turbulent flow on rotating disks
was undertaken by Goldstein (1935). Theodorsen & Regier (1944) also per-
formed measurements of drag on“revolving disks” but in addition measured
the azimuthal velocity profile using hot-wire anemometry. With the hot wire
they measured mean velocity profiles both in the laminar, transitional and tur-
bulent regions up to about R = 2600. In contrast to the laminar boundary
layer the turbulent boundary layer thickness was shown to increase in the ra-
dial direction and they found good agreement of the velocity profile with the
1/7 power law.

Cham & Head (1969) performed radial and azimuthal velocity profile mea-
surement of the vKTBL with a Pitot tube as well as entrainment measure-
ment. They concluded that the azimuthal distribution is closely approximated
by a two-dimensional family of boundary-layer profiles suggested by Thomp-
son (1965) and the radial velocity profiles by the a crossflow model by Mager
(1952). They also estimated the azimuthal local skin-friction coefficient using
the Clauser (1954) plot, resulting in “realistic” values. Erian & Tong (1971)
performed experiments and concluded that “the eddy viscosity in the turbulent
boundary layer generated by the disk rotation is substantially larger than that
of the turbulent boundary layer over a flat plate”. The vKTBL experiments by
Littell & Eaton (1994) showed that the radial mean velocity component was at
most 10% of the azimuthal one. They also concluded that the main difference
from the two dimensional turbulent boundary layer (2DTBL) was the lack of
a wake component in the mean profile and stated that “the cause of the lack
of a wake is unclear”.

In order to scale the mean and fluctuating velocity with inner variables, the
friction velocity used in the above studies was obtained by classical empirical
methods based on the knowledge of 2DTBL. However Nagib & Chauhan (2008)
shows that the von Kármán constant κ which is one of the coefficients for the
logarithmic law in the turbulent boundary layer may change its value depend-
ing not only on Reynolds number but also on the flow system (e.g. different
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values are suggested for boundary layers, pipes and channels). To accurately
evaluate the turbulent statistics normalized by the inner variables, an accurate
determination of the skin friction is required. Nagib et al. (2004) suggests that
“oil film interferometry technique is the most reliable method for accurate and
direct measurement of mean skin friction (∼ 1.5%)”. However this technique
is not applicable on the rotating disk.

Hot-wire measurement in the viscous sublayer of turbulent boundary-layer
flows (e.g.flat-plate boundary layers, pipes and channels) gives in general errors
in the near-wall region due to the heat transfer from the hot-wire probe to the
wall. However hot-wire measurement of the azimuthal turbulent rotating-disk
velocity profile has a maximum azimuthal velocity at the wall in the labora-
tory frame of reference. This means that heat conduction from the wall to
the probe becomes relatively small compared with heat convection and direct
measurement of the skin-friction velocity using hot-wire anemometry becomes
possible as does evaluation of accurate turbulent statistics in the near-wall re-
gion. Furthermore Alfredsson et al. (2011) proposed a new way to evaluate the
skin-friction velocity using a hot-wire probe and the similarity of the cumula-
tive distribution function (CDF) of the velocity profiles in the near-wall region
for canonical flows. This method also allows evaluation of heat-transfer effects.

The aim of the present study is to evaluate the turbulence statistics of the
vKTBL using both inner and outer variables. To do so efforts have been put on
the direct determination of the skin-friction velocity using hot-wire anemometry
measurement of the velocity distribution in the viscous sublayer. It will be
shown that close to the wall the boundary-layer statistics are comparable to
those of 2DTBL whereas the outer region shows distinct differences.

2. Experimental Set-up

2.1. Overview

The experimental set-up is an identical with the one used by Imayama et al.
(2012), see figure 1, and only a short description is given here. On the original
aluminum-alloy disk a new disk made of glass with a thickness of 24 mm and a
diameter of 474 mm has been mounted. The aluminum-alloy disk is connected
to a DC-servo motor via a vertical shaft, and a pressurized air bearing ensures
that the vibrations of the disk are small. The surface of the glass disk is
polished resulting in a surface roughness of less than 1 µm and the rotational
imbalance is less than 10 µm at the edge and smaller at the centre region of
the glass disk. A non-rotational extended annular plate made of wood with an
outside diameter of 900 mm is mounted around the glass disk. This extension
plate eliminates the effects of the eight aluminum clamps fixing the glass plate
and also reduces the effects of noise coming from the air bearing and DC-servo
motor. The horizontal gap between the disk and plate is less than 1 mm and
vertically the disk surface and plate are approximately flush.
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Figure 1. The experimental set-up of the rotating disk.

A hot-wire probe with a single sensor made of platinum, with a diameter of
1 µm and 0.3 mm in length, is operated by a constant-temperature anemome-
ter (CTA) with an overheat ratio of 0.8. The sensing element of the hot-wire
is oriented in the radial direction, making it mainly sensitive to the azimuthal
velocity. The signal from the CTA is digitized using a 16-bit A/D converter at
a sampling rate of 2880 data points per disk revolution during a 60 second sam-
pling time. The hot-wire probe is mounted on a two-axis, remotely-controlled
traverse mechanism at 45◦ to the vertical to limit disturbance of the incoming
downward axial flow.

The experimental conditions for the present work are shown in table 1.
Here the boundary layer thickness δ∗99 is defined as the position where the az-
imuthal velocity reaches 1% of the disk velocity, Vw. The displacement thick-
ness δ∗1 is defined as

δ∗1 =

∫ ∞
0

V ∗(z∗)

V ∗w
dz∗, (1)

where V ∗w is the local disk velocity and z∗ is the wall normal height of the
hot-wire probe from the disk. The momentum thickness δ∗2 is defined as

δ∗2 =

∫ ∞
0

(
1− V ∗(z∗)

V ∗w

)
V ∗(z∗)

V ∗w
dz∗. (2)

The shape factor H is defined as H = δ∗1/δ
∗
2 . The Reynolds number based
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on the friction velocity v∗τ is defined as Reτ = v∗τδ
∗
99/ν

∗, and the Reynolds
number based on the momentum thickness is defined as Reθ = V ∗wδ

∗
2/ν
∗. We

also introduce an outer length scale, the so called Rotta-Clauser boundary-layer
thickness defined as ∆∗ = δ∗1Vw/v

∗
τ .

The viscous length and time units are defined as `∗ = ν∗/v∗τ and t∗ =
ν∗/v∗2τ , respectively, whereas superscript + denotes non-dimensionalisation with
the viscous units. ∆t∗ = 1/f∗s is the time between samples, with f∗s being a
sampling frequency.

Imayama et al. (2012) suggested that a fully-developed turbulent rotating-
disk boundary layer is seen for R > 650. The experimental conditions were
selected at two different Reynolds number beyond the threshold to have a
fully-developed turbulent flow.

2.2. Calibration of the hot wire

The calibration of the hot wire is carried out on the rotating disk using the
laminar profile changing the radial position and wall-normal height of the hot-
wire probe as well as the rotational speed of the disk. There is a principal
difference from similar calibration within the boundary layer over a stationary
plate, where the smallest velocity is at the plate itself and the highest in the
freestream; for the rotating plate the opposite is true. The procedure requires
that the absolute wall-normal distance of the hot wire from the disk to be known
accurately. The height of the hot wire is determined by taking a photograph of
the hot wire together with a precision gauge block with a thickness of 1.000 mm
utilizing the reflection of the sensor in the glass plate. A typical image captured
from the front of the hot wire by a camera with micro lens is shown in figure 2.
However in the turbulent boundary-layer flow the velocity exceeds the range
of the calibration due to the high velocities close to the rotating disk. An
extrapolated calibration data point is added as the maximum calibration datum
using the azimuthal velocity of the disk. Figure 3 shows the variation of the
anemometer output voltage close to the disk surface. The voltage at the disk
is estimated by a linear extrapolation of the data points.

At the wall the local disk speed is already known so that figure 4(a) shows
the hot-wire calibration points obtained from the laminar profile plus the extra
datum point. This procedure allows calibration of the hot-wire probe over
a broad velocity range without using an external calibration apparatus. The
accuracy of this scheme can be tested a posteriori when measurements are made
in the near wall region, where velocity fluctuations give instantaneous values
that are higher than the calibration points.

The calibration data points are fitted by a fourth-order polynomial given
as

V ∗ = a0 + a1E
∗ + a2E

∗2 + a3E
∗3 + a4E

∗4, (3)
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Table 1. Experimental conditions and DNS data used in the
present study. T01 and T02 are the two experimental profiles
for the vKTBL used in the present study. 2D01 and 2D02 are
profiles for a 2DTBL flow taken from Schlatter & Örlü (2010).
For the experiments the rotational speed for T01, T02 is Ω∗ =
1455 rpm. The skin friction is defined as cf = 2(v∗τ/V

∗
w)2 for

the vKTBL and cf = 2(u∗τ/U
∗
∞)2 for the 2DTBL.
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Figure 2. Typical calibration photograph to determine the
position of the hot wire (left side in the image) using a precision
gauge block with 1.000 mm thickness (right side in the image).
The upper half-plane shows the real objects and the reflections
in the glass surface in the lower half-plane.

where V ∗ is a mean azimuthal velocity, E∗ is a mean output voltage from the
anemometer and a0 − a4 are the coefficients of the polynomial approximation.
Figure 4(b) shows the deviations of the calibration data points from the poly-
nomial fitting. The deviation is less than ±1% except in the low velocity region
(V ∗ < 0.5 m/s).

3. Results and discussion

The following chapter is divided into four parts. First we discuss the near-wall
measurements and the procedure to obtain the skin-friction velocity. Secondly
we discuss the mean velocity profile and the turbulence intensity. In a third
part we discuss the higher moments (i.e. skewness and flatness) and finally
we show some spectral maps. We show data for two Reynolds numbers taken
at two radial position and at two different wall velocities (32.0 and 33.5 m/s,
respectively). The Reynolds numbers for these two stations are however quite
similar, and the inclusion of both of them is mainly to get an indication of
the accuracy (or rather repeatability) of the measurements. For the turbulence
statistics we compare with two-dimensional turbulent boundary-layer data at
approximately the same Reynolds numbers. Here we use DNS data that have
been extensively verified by experiments (Schlatter & Örlü 2010) and the DNS
database has the advantage that a range of Reynolds numbers is available.
We chose two Reynolds numbers from the simulation, one which has a similar
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timated by extrapolating the anemometer voltage to the wall.
The local radius is r∗ = 210 mm and the rotational speed is
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Figure 4. (a) The calibration curve with the extrapolated
point given as ∗. (b) The scatter between the relation 3 and
the calibration points.

skin-friction coefficient to our experiments, and one where the Reynolds number
based on the boundary-layer thickness and friction velocity is about the same
both for the DNS and the present experiments.

When plotting mean velocity we have chosen to plot 1−V ∗/V ∗w rather than
V ∗/V ∗w . In the former case the variable is zero at the wall and velocity profiles
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can be easily compared with velocity profiles over stationary plates. With
respect to even moments of the fluctuating velocity (such as the variance or
the flatness) no change is necessary but odd moments (such as the skewness)
have the opposite sign compared with the stationary case and are therefore
plotted with the sign changed.

3.1. Determination of the skin-friction velocity

In the present work we estimate the skin-friction velocity in a direct way by
measuring the velocity distribution in the near-wall region, i.e. within the
viscous sublayer. Recently Alfredsson et al. (2011) showed that the probability
density functions (PDF) or equivalently the cumulative distribution functions
(CDF) of the fluctuating streamwise velocity in 2DTBL is self similar in the
near-wall region. The same approach is taken here, but now with respect to
the azimuthal velocity. Figure 5 shows the mean azimuthal velocity profile in
the near-wall region together with five different values of the CDF, namely 0.2,
0.3, 0.4, 0.5 and 0.6. If the CDF is self similar, then straight lines through the
points should all meet at the same position at zero velocity, which corresponds
to the wall position. As can be seen this is the case for the present data, the
wall position is estimated with an error of about 2 µm and less than 1% in
velocity. This gives confidence in both the determination of the wall position
and extrapolation of the calibration as described in section 2.2.

It is noteworthy to see that the effect of the heat conduction seems to be
negligible in the present case in contrast to the velocity data in figure 9 in
Alfredsson et al. (2011). This is clearly an effect of the high velocity close to
the wall with respect to the hot wire thereby limiting the effect of heat transfer
to the wall.

The azimuthal skin friction at the wall τ∗w is calculated by the slope of the
mean velocity data in the viscous sublayer (z+ < 5) and the estimated wall

position where z+ = v∗τz
∗/ν∗, v∗τ is the friction velocity defined by

√
τ∗w/ρ, ρ

is a density and ν∗ is the kinematic viscosity.

3.2. Mean flow and turbulence intensity statistics

In figure 6 we show the so-called diagnostic plot introduced by Alfredsson &
Örlü (2010) with the comparison of the 2DTBL data. The overall picture is
the same for the two cases, however there are clear differences in the details.
Close to the wall, in the viscous sublayer (1 − V ∗/V ∗w < 0.2), the 2DTBL
data show that the local turbulence intensity is close to 36-40% whereas for
the rotating-disk flow data is about 30% (can be obtained from the slope of
the curve in the viscous sublayer). The near-wall maximum is found for a
higher value of (1 − V ∗/V ∗w) for the rotating disk compared with the 2DTBL
and the local turbulence intensity is smaller in the outer region. However for
the measurements on the rotating disk the sensor length is about 29 `∗ (see
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Figure 5. Application of the self-similarity of the CDFs in
the viscous sublayer. The circles show the azimuthal mean
velocity profile obtained through hot-wire measurement. The
solid lines indicate the linear fits of CDFs in the viscous sub-
layer. The ⊗ is the estimated wall position by the linear fits
of CDFs. The azimuthal friction velocity is calculated by the
slope of the three mean velocity measurements closest to the
surface together with wall value (all marked in the graph by
⊗). For the data shown here, v∗τ and `∗ are 1.43 m/s and
10.5 µm, respectively.

Table 1) so one would expect some effects from spatial averaging along the
sensor. An estimate based on the work by Segalini et al. (2011) shows that
at the maximum of the rms distribution in the near-wall region measurements
could be underestimated by as much as 10%.

The mean azimuthal velocity profiles normalized with inner scales in the
standard semi-logarithmic plot are shown in figure 7, where V +

w is the local
disk velocity normalized by the azimuthal friction velocity, V + is the azimuthal
mean velocity normalized by the azimuthal friction velocity and z+ is the wall-
normal height from the disk normalized by inner scales which are given as
z+ = v∗τz

∗/ν∗, respectively.

The rotating disk velocity profiles look as expected close to the wall and
overlap nicely with the DNS profiles there. In the logarithmic region they
are slightly above the standard logarithmic profile, but seem to have the same
slope, i.e. the same Kàrmàn constant (κ). Here the straight line corresponds to
the logarithmic law with κ = 0.41 and logarithmic intercept of 5.0. However,
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Figure 6. Diagnostic plot at T01 (◦), T02 (�), 2D01 (dashed
line), 2D02 (solid line).

a large difference between the two cases is found in the outer region, i.e. the
wake region, where the wake contribution is much smaller for vKTBL as also
pointed out by Littell & Eaton (1994).

If plotted in outer scaling, see figure 8, the difference between the 2DTBL
and the vKTBL is even more pronounced in the outer region. This is an
interesting observation and we hypothesise that it has to do with the inflow
towards the disk. It is well known that for a favourable pressure gradient the
wake contribution in the outer region becomes smaller which could be a similar
effect to what is observed here. An even more appropriate comparison could be
made with the asymptotic turbulent suction boundary layer that has an inflow
from the free stream resulting in an almost nonexistent wake contribution (see

Schlatter & Örlü 2011). With the outer scaling using ∆∗ the boundary layer
seems to be thicker than the corresponding 2DTBL cases.

The variance profiles (or rather the rms-profile) are plotted in figure 9. The
overall features are similar to what one would expect from a 2DTBL profile, the
inner maximum is at approximately z+ = 14, however the amplitude is lower
than for the 2DTBL profiles. As mentioned before the hot-wire sensor length
is almost 30 wall units which gives rise to spatial averaging and hence a lower
amplitude of the rms. The spatial averaging along the hot-wire probe may
explain most of the difference between the two cases in the inner region. When
plotted normalized by the outer length scale the difference becomes exaggerated
in the outer region, see figure 10 as also here it seems that the rotating-disk
boundary layer is thicker with this scaling.
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3.3. Skewness and flatness profiles

The higher moments, skewness and flatness were also calculated. The skewness
factor is for the rotating disk flow defined as

Sv = − v3

v3
rms

where the negative sign is used to allow comparison with the case of a stationary
plate. The flatness factor is defined as

Fv =
v4

v4
rms

The skewness factor (see figure 11) shows a similar behaviour to what is
known for 2DTBL flows near the wall. Sv reaches a value close to one at
the wall itself, is almost constant within the viscous sublayer, whereafter it
decreases, becomes zero around z+ = 15 and is almost constant and slightly
negative in the logarithmic region after which it becomes highly negative in
the intermittent part of the wake region before it goes towards zero in the
undisturbed freestream. With inner scaling the intermittent region seems to
occur in between the two chosen 2DTBL profiles, and shows slightly larger
negative values.

In outer scaling the rotating disk boundary layer is clearly seen to be thicker
than the 2DTBL as shown in figure 12.

A similar comparison can be done with the flatness factor (see figure 13).
Near the wall Fv approaches a value around 5 whereafter it decreases, becomes
3 (the Gaussian value) around z+ = 7 has a minimum around z+ = 15 and
then is again around 3 in the logarithmic region, before it peaks in the outer
intermittent wake region. Also here the vKTBL shows a higher flatness factor
in that region as compared with the 2DTBL. The same feature as for the
skewness is seen with outer scaling; the vKTBL seems to be thicker with this
scaling (see figure 14).

3.4. Turbulence spectra

The spectral maps of the azimuthal velocity fluctuations are shown in figure 15
and figure 16 in the form of premultiplied spectra. The spectra are measured
at 78 different z+ positions between z+ ≈ 4 and z+ ≈ 1000 and plotted as
a spectral map as function of z+ and t+, i.e. the inverse of the frequency
(f+)−1. There is a maximum around z+ = 15 where also the maximum in rms
is located. The corresponding frequency or rather its inverse is at t+ ≈ 40. The
spectra also show that the maximum energy content goes to larger time scales,
i.e. lower frequencies away from the wall. The maximum that is observed for
small z+ around t+ = 5000 is due to the imbalance of the disk and can be seen
not to interfere with the turbulent scales.
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An interesting comparison can be done with the spectral maps published by
Örlü & Schlatter (2012) for 2DTBL (obtained both from experiments and DNS)
where the spectral map is different both quantitatively and qualitatively. In
that case spectra have their inner maximum at a t+ of 100, and the frequency for
the maximum energy content is almost constant across the boundary layer. An
explanation of both these behaviours may be that in the vKTBL the structures
become inclined due to the three-dimensional nature of the vKTBL and one
may say that from the hot wire’s point of view the structures will then ‘look’
shorter. On the other hand, Littell & Eaton (1994) showed that the maximum
inclination of the mean profile is less than 10◦ which is too little to explain the
difference from t+ = 40 to t+ = 100.
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Figure 11. Skewness profile of azimuthal velocity in logarith-
mic and inner scale plot. The symbols are same as in figure 6.
Note that the skewness in T01, T02 is multiplied by −1.
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mic and inner scale plot. The symbols are same as in figure 6.
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4. Conclusions

We have here presented experimental results for turbulent boundary layers
driven by a rotating disk. We compare the mean velocity and variance as well
as higher moments with results obtained for a 2DTBL. Here we have to make a
choice what Reynolds number one should chose for the comparison. We chose
one Reynolds number for the 2DTBL case with a similar skin friction coefficient
and one with about the same Reτ as for the vKTBL.

In contrast to earlier studies we claim to have been able to determine
the skin friction (or friction velocity) accurately by direct measurement of the
velocity distribution close to the disk.

The mean azimuthal velocity profile shows strong similarity with the ve-
locity profile in a 2DTBL especially in the near-wall region and in the logarith-
mic region. However, the wake region is clearly less pronounced than for the
2DTBL. This also results in a lower shape factor for the vKTBL as compared
to the 2DTBL. Also when normalizing the normal distance from the plate with
the Rotta-Clauser length the differences between the vKTBL and the 2DTBL
become apparent in the outer region.

The turbulence intensities are quite similar in qualitative terms near the
wall, although quantitatively the experimental results for the vKTBL show
lower values. This can be explained by the spatial averaging of the hot-wire
probe which in this case has a length of almost 30 `∗, despite the fact that the
sensing length is only 0.3 mm long.

Also the higher moments, i.e. the skewness and flatness factors, show very
similar behaviour in the near-wall and logarithmic regions, as compared with
the 2DTBL. However as also in the other cases there is a difference in the outer
region.

An interesting aspect that needs further investigation is the difference be-
tween the spectral maps for the vKTBL and the 2DTBL. First we find that the
spectral peak corresponding to the maximum in the rms distribution near the
wall is located at a different (higher) frequency for the vKTBL. The spectral

maps also differ from that of a 2DTBL as reported by Örlü & Schlatter (2012)
where the maximum frequency for the energy in the spectra is almost constant
across the boundary layer.
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In summary, three main conclusions can be drawn from the present work:

• The flow statistics close to the wall and in the logarithmic region corre-
spond well to that of 2DTBL.

• The flow in the outer intermittent region is quite different, which may
be an influence of the inflow normal to the disk.

• The spectral frequencies do not scale on inner variables when comparing
the two cases, and the shape of the spectral maps also differs. This may
be an effect of the three-dimensional nature of the vKTBL.
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Schlatter, P. & Örlü, R. 2011 Turbulent asymptotic suction boundary layers
studied by simulation. J. Phys.: Conf. Ser. 318, 022020.
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