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Abstract

In this thesis capillary dominated two—phase flow is studied by means of nu-
merical simulations and experiments. The theoretical basis for the simulations
consists of a phase field model, which is derived from the system’s thermody-
namics, and coupled with the Navier Stokes equations. Two types of interfacial
flow are investigated, droplet dynamics in a bifurcating channel and sponta-
neous capillary driven spreading of drops.

Microfluidic and biomedical applications often rely on a precise control of
droplets as they traverse through complicated networks of bifurcating channels.
Three—dimensional simulations of droplet dynamics in a bifurcating channel are
performed for a set of parameters, to describe their influence on the resulting
droplet dynamics. Two distinct flow regimes are identified as the droplet in-
teracts with the tip of the channel junction, namely, droplet splitting and non-
splitting. A flow map based on droplet size and Capillary number is proposed
to predict whether the droplet splits or not in such a geometry.

A commonly occurring flow is the dynamic wetting of a dry solid substrate.
Both experiments and numerical simulations of the spreading of a drop are
presented here. A direct comparison of the two identifies a new parameter in
the phase field model that is required to accurately predict the experimental
spreading behavior. This parameter py [Pa - s], is interpreted as a friction
factor at the moving contact line. Comparison of simulations and experiments
for different liquids and surface wetting properties enabled a measurement of
the contact line friction factor for a wide parameter space. Values for the
contact line friction factor from phase field theory are reported here for the
first time.

To identify the physical mechanism that governs the droplet spreading, the
different contributions to the flow are measured from the simulations. An im-
portant part of the dissipation may arise from a friction related to the motion
of the contact line itself, and this is found to be dominating both inertia and
viscous friction adjacent to the contact line. A scaling law based on the con-
tact line friction factor collapses the experimental data, whereas a conventional
inertial or viscous scaling fails to rationalize the experimental observation, sup-
porting the numerical finding.

Descriptors: Phase field theory, finite element simulations, experiments, two—
phase flow, dynamic wetting, contact line physics, capillarity.
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Part 1

Summary






CHAPTER 1

Introduction

In our daily life we often observe beautiful two-phase flow phenomena; forma-
tion of drops as the kitchen tap is turned on, how coffee spill stains the table
linen, rain drops sliding on the windshield or cooking oil convecting towards
the frying pans colder part. These common occurrences are all governed by
the physics at the interface between the liquid and gas phase or at the contact
line where the liquid-gas-solid phases meet. In other words they are dictated
by the surface tension and the liquid-solid wettability.

Nature has used surface tension to develop several ingenious designs for
insect propulsion, water collection and capillary adhesion. For instance wa-
ter striders are able to walk on water despite the fact that they are heavier
than water, see fig. 1.1b. Their hairy legs prevent water from wetting them
and instead of penetrating the surface and sink, the feet deform the interface
generating a surface tension force that supports the insect. Various beetles
use surface tension in a different way. Instead of running on water, they have
developed a method based on surface tension to adhere onto solid substrates.
This allows them to easily walk up a vertical wall, or to withstand a pulling
force much greater than their own weight, fig. 1.1a (Eisner & Aneshansley
(2000)). The beetle’s secret is that it secretes an oil that wets their brush-like
feet. When in need of protection from a predator they sit down, in order for
thousands of their pre-wetted micron sized setae to contact the solid. This
generates an adhesion force that sucks the beetle to the solid. Yet another
example from Nature is the Namib desert beetle (Parker & Lawrence (2011)).
Early in the morning the Namib beetles can be observed on the crest of the
desert dunes, gazing against the wind, with their shells pushed up and heads
lowered. This funny posture is important for the beetle to harvest water. In
the hot and harsh climate, collection of water is a challenging task. The beetle
has developed a design for water collection, which relies on the surface energy
of its outer shell. The bumpy shell contains parts with a low energy that water
wets well (hydrophilic) and parts with a wax layer (high energy) that water
wets poorly (hydrophobic). The humid morning breeze condensates on their
shell, where water drops nucleates on the hydrophilic tip of the bumps. As the
drop grows it becomes affected by gravity and rolls down on the hydrophobic
parts of its shell, guiding the drop towards its mouth.

Capillary flow is not only a toy problem observed in the kitchen and in many
of Natures phenomena. It can even be a matter of life or death as we take our
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2 1. INTRODUCTION

very first breath. In the late 1920’s Dr. von Neergaard started to investigate
the correlation between surface tension and the respiratory distress syndrome
of newly born children (Comroe (1977)). He suggested that surface tension at
the moist lung tissue could influence their breathing. To test his hypothesis
he measured the force required to fill the lung with two liquids; air and an
aqueous solution. A larger resistance to breath was found when breathing air,
indicating a surface energy effect. von Neergaards hypothesis about capillarity
was only much later recognized, making surface tension an assassin of newly
born for about another 30 years after his discovery. Today it is established
that respiratory distress syndrome is caused by the lack of production of a
pulmonary surfactant, effectively reducing the lung surface tension easing the
first breath of life (Wrobel (2004)).

Since the advent of microfluidic technologies in the early 1990’s there has
been an increasing demand for miniaturized components in different applica-
tions. Examples of such micro-scale components are lab-on-chip technologies
for the analysis of medical samples or microsystem technologies which use the
two—phase flow as switches, compartments for mixing and chemical reactions.
Readers with special interest in microfluidics are referred to specific literature
on the subject, for more details see for example Stone et al. (2004). One im-
portant aspect in these small scale applications, in terms of governing physics,
is the fact that they are small. This makes surface forces, opposite to vol-
ume forces (inertia, gravity ect.), an important parameter for both design and
performance. In many cases the two—phase flow consist of drops or bubbles,
that are used as a deterministic tool for a desired process. Embolotheraphy
(Eshpuniyani et al. (2005), Bull (2005)) utilizes drops as a medical treatment
strategy for certain types of cancer, if all other treatments have failed. Drops
are injected into the blood stream, with the purpose to block a junction where
the capillary separates into two smaller vessels. This is done in an attempt
to occlude the blood flow into the tumor, starving it from oxygen and inhibit-
ing its growth. After ended treatment, these droplets are selectively vaporized
using high-intensity ultrasound.

A common aspect in microfluidics and in our interaction with liquids are
contact lines. The contact line is the point in which three different immiscible
materials meet. The discussion here will only regard systems in which two
of the materials are fluids, both gas and liquid, and the third material is a
smooth solid. Contact lines are important in processes such as coating see fig.
1.1b (Snoeijer et al. (2006)), re-wetting dry eyes, deposition of micro-droplets
in bio-medical applications or microfluidic systems. Even if contact lines are
an important part in many applications, the physics that governs its motion
still hold great challenges to physicists. In particular it is hard to derive a
theoretical prediction for the contact line motion without using ad—hoc physical
assumptions. Another difficulty in both experiments and numerical simulations
is to capture all relevant length scales inherent in the phenomenon. Often a
drop of millimeter size is observed as it spread due to the capillary force. The
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relevant length scale for the physical processes at the contact line is in the order
of the interface width, being roughly a nanometer. One question that arises
naturally is, how does the small scale physics at the contact line influence the
larger scale dynamics, and vise versa.

In this thesis capillary and dynamic wetting phenomena are studied by
means of numerical simulations and experiments. The thesis consist of two
parts; Part I and Part II. Part I is a broad description of relevant theoretical,
experimental and modeling aspects. First the general principles of capillarity
and wetting are discussed, giving a brief description of theoretical models in
static and dynamic situations. A more in—depth discussion about dynamic wet-
ting is presented, including theoretical, experimental and modeling approaches
reported in the literature. In section 4 the theoretical formulation used to de-
scribe capillary dominated flows and dynamic wetting are described. Section
5 gives a description of the numerical modeling approach. Some final remarks
are made in the last section of Part I. Part II is a collection of written articles.
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Figure 1.1: a)! A beetle (weight 13.5+0.4mg) adhered to the solid, withstanding
a 2g pulling force (Eisner & Aneshansley (2000)). b)? The water strider Gerris
walking on the free surface in experiment by Hu & Bush (2010), the inset to the
upper left illustrates the water striders hairy leg. ¢)® Forced wetting experiment
by Snoeijer et al. (2006), withdrawing a Si—wafer from a bath of silicone oil.
The capillary oil ridge is formed at the contact line, as the plate is withdrawn.

!Eisner, T. & Aneshansley, D. J. (2000) Defense by foot adhesion in a beetle (Hemisphaerota
cyanea). Proceedings of the National Academy of Sciences U.S.A 97, 6568-6573, fig. 2.
(© 2000 National Academy of Sciences U.S.A.

2Hu, D. & Bush, J. W. (2010) The hydrodynamics of water-walking arthropods. Journal of
Fluid Mechanics, 644, 5-33, fig.1. © 2010 Cambridge University Press.

3Snoeijer, J. H., Delon, G., Fermigier, M. & Andreotti, B. (2006) Avoided Critical Behavior
in Dynamically Forced Wetting. Physical Review Letters, 96, 17450-4-8, fig. 1. (© 2006
American Physical Society.



CHAPTER 2
Capillarity

2.1. Surface tension

Surface tension may be interpreted on two different scales, the micro-scale and
the macro-scale. On the macroscopic scale surface tension can be described
within the thermodynamic framework as the interface energy per surface area
(de Gennes et al. (2004), Berg (2010)). The origin of surface tension is however
coming from the details of the intermolecular reorganization at the interface
between the two phases. Let us consider a silicone oil drop in air, as seen in fig.
2.1. The oil molecules have an attraction toward each other, which is stronger
than the attraction to the surrounding gas. As a consequence, the molecules on
the liquid side of the interface feel a stronger attraction towards the oil rather
than the air molecules. The “lost” pair-interaction generates an excessive free
energy, which takes the form as surface tension on the macroscopic scale. More
information about the molecular origin of surface tension can be found in the
book by Israelachivili (2011).

2.2. Young—Laplace Law

Normal to the interface a force arises from the surface tension. This force is
directly related to the local curvature of the interface. Young and Laplace were
the first to relate the overpressure in drops and bubbles to the surface tension
and interface curvature (de Gennes et al. (2004)). The Young-Laplace law for
a spherical drop or bubble is,

20
P,— P,=AP=—. 2.1
e 2.1)

Here P; [Pal] is the pressure inside the drop, P, is the pressure outside, o [N/m]
is the surface tension coefficient and R the drop radius. The factor two is due
to the fact that the drop has two radii of curvature.

One way to derive the relationship for the Laplace pressure is to consider
the work required to move the interface a small length § R in the radial direction.
For mechanical equilibrium the work done by the pressure on the increased
volume will be equal to the increase in surface energy (Berg (2010)). The same
result is also obtained, by considering the pressure and surface energy as a
grand potential. Minimizing the potential gives then the Young—Laplace Law,
which illustrates that drops and bubbles find their surface energy minimizing
shape (de Gennes et al. (2004)).
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Microscopic

\interface (0)

Figure 2.1: The sketch to the left shows a liquid drop in air. Overpressure in
the drop (P;) is generated by the surface tension o. The sketch to the right
illustrates the molecular organization at the interface, where the molecules at
the interface feels an attraction to the liquid side generating the surface tension
force. The arrows are intended to illustrate the intermolecular interaction.

2.3. Dynamic capillary flows and non—dimensional numbers

Hydrostatics of bubbles and drops is not particularly relevant in most appli-
cations. Two-phase flow is in general a time dependent phenomenon. Drops
often traverse through channels of complicated geometrical shapes, where they
deform and might split into several smaller drops. The deformation of the in-
terface generates a local change in curvature, giving rise to a dynamic capillary
force that tries to prevent the drops from deforming when an outer force acts
on it. Determining the resulting drop dynamics is important in microfluidic
systems, where it is often required to have precise control of whether drops
would deform or split into two separate drops when approaching a channel
junction (Carlson et al. (2010), Pozrikidis (2012), Manga (1996)) or an obsta-
cle (Protiére et al. (2010), Link et al. (2004), Menetrier-Deremble and Tabeling
(2006)).

One non-dimensional parameter that controls the splitting or non-splitting
is the Capillary number (Ca). The Ca number expresses the ratio between the
viscous and surface tension force in the flow,

U
_O'

Ca (2.2)

w [Pa - 8] is viscosity and U [m/s] is the characteristic velocity like the bubble
or drop speed.

In small scale flow volume forces are usually less important. A measure of
the influence of gravity is the capillary length I, = ,/ %. The capillary length
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can be derived from the Bond number,

LQ
Bo="129"_ (2.3)

g

In the Bo number p [kg/m?] is density, g [m/s?] gravity and L [m] the char-
acteristic length, typically the drop radius. By assuming Bo = 1 having all
the material properties, the capillary length is defined. If the drop size is
L < I, or Bo < 1 gravity can be excluded from the analysis, as it gives a
small contribution to the flow compared to surface tension. Another observa-
tion is that a drop with a radius less than the capillary length has a spherical
shape, withstanding any deformation by gravity. The capillary length of water
can be computed by introducing its material properties at room temperature
(p = 103kg/m3, 0 = T3mN/m,g = 9.81m/s?), giving . ~ 2mm. This tells
us that water drops with a radius less than 2mm will be nearly unaffected by
gravitational effects and have spherical shapes.

Another important non-dimensional number is the Reynolds number (Re),
expressing the ratio between the inertial and the viscous force in the flow,

_ pUL
L

A typical length scale L appears in the Re. In small scale flows, such as mi-
crofluidics, this has the implication that Re < 1 in contrast to most common
observation of liquid flow such as smoke from a cigaret or a chimney, or when
mixing milk in a cup of coffee. To illustrate relevant Re numbers in a microflu-
idic application we can introduce parameters that are commonly encountered
in such systems. Let us assume a water drop with a radius similar to the size of
the microfluidic channel L = 10um that propagates with a speed U = 10mm/s,
having a density p = 1000kg/m? and viscosity p = 1mPas. Computing the Re
number based on these parameters gives Re = 1074, illustrating the dominance
of the viscous force.

Re (2.4)

2.4. Wetting — Young’s Law

Compared to the description of a free surface, a slightly more complicated
physical situation arises when it comes in contact with a third phase. Here the
discussion will be limited to situations where the two fluid phases are gas-liquid
or liquid-liquid, and when their interface is in contact with a dry smooth solid
substrate. The point in which the interface intercepts the solid substrate is
defined as the contact line or the three-phase point, see fig. 2.2.

Not only the drop interface has a surface energy (o), also the solid substrate
has an energy that is different if it is dry (os4) or wet (o). In an equilibrium
situation the drop will have a shape that minimizes the interfacial energy. By
following a similar line of thought as when obtaining the Young—Laplace law
in Sec. 2.2, the equilibrium angle between the tangent along the drop interface
and the solid substrate can be found. This was first done by Young, giving his
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Figure 2.2: Sketch of a drop that partially wets the solid substrate and is in its
equilibrium state. 6. is the equilibrium angle, given by the surface tension and
energy for the wet and dry solid substrate.

celebrated formula relating the solid surface energies to the surface tension and
the equilibrium angle 6. (de Gennes et al. (2004)),

Osg — Osl
cos(f,) = ——.
(60) = 70—
6. is defined as the angle in the liquid phase formed between a tangent along

the interface, intersecting the contact line and the solid surface, see fig. 2.2.

(2.5)

The equilibrium angle is used as a measure of how well a liquid wets the
solid substrate. One can roughly say that if the equilibrium angle g < 90 the
solid is often referred to as being hydrophilic, or “water loving”. If . > 90° the
solid is considered to be hydrophobic or “water hating”.

Two other states in the hydrophilic and hydrophobic regime should also
be noted, which is complete wetting (6. ~ 0°) and non-wetting (6. > 120°) or
superhydrophobic. In complete(perfect) wetting 8. ~ 0° and the liquid spreads
completely onto the solid. The liquid will continue to spread until it forms a
continuous film with a nano—scopic height. Superhydrophobic substrates have
proven hard to produce in laboratories, using relatively smooth solid surfaces.
Such a non wetting state can however be observed in Nature, where the Lotus
leaf is one example of a plant with superhydrophobic leafs. If we look at the
Lotus leaf through a microscope we can see that its surface is not smooth,
but it has rather an hierarchical surface structure of humps. To obtain highly
non-wetting substrates 6, > 120°, either surface structures (Quéré (2008)) or
a lubricating immiscible liquid film can be introduced (Wong et al. (2011),
Lafuma & Quéré (2011)).

Another measure for the surface wettability is the spreading coefficient.
The spreading coefficient S is given by the difference in surface energy between
a dry and wet substrate S = o4y — (05 + 0) = o(cos(f.) — 1). If S > 0 the
liquid spreads completely onto the solid and if S < 0 the solid is only partially
wetted by the liquid.



CHAPTER 3
Dynamic wetting

In contrast to the well established Young’s law for an equilibrium wetting state,
a theoretical description of dynamic wetting has proven to hold great scientific
challenges, and the derivation of constituent laws usually rely on ad-hoc physi-
cal assumptions. What makes the description of contact line motion difficult, is
the inherent multiscale nature of the phenomenon. To predict the macroscale
spreading, physics at the length scale of the contact line must somehow be
accounted for in the analysis. The preceding sections discuss general concepts
regarding theoretical, experimental and modeling aspects of dynamic wetting.
Several reviews are written on the topic, which gives a more detailed account
of the theoretical approaches as well as the vast literature on the subject, see
e.g. de Gennes (1985), Leger & Joanny (1992) and Bonn et al. (2009).

3.1. Hydrodynamic theory

Navier Stokes equations are the cornerstone for the description of flow physics,
given here for an incompressible flow

V-u=0 (3.1)

ot

where eq. 3.1 contains the mass conservation equation and eq. 3.2 contains
the momentum equations. Here u is the velocity, P the pressure and F is a
force per volume, like gravity. If the size of the system studied is much greater
than the mean free path of the molecular motion, a no—slip condition holds as
a boundary condition for the velocities at a solid wall. No—slip implies that
there is no relative speed between the wall and the fluid elements adjacent to
it.

)
p <“ +u-Vu> = —VP+uV2u+F (3.2)

Since the Navier Stokes equations present a well defined mathematical
model for the flow physics, Huh & Scriven (1971) tried to develop a model
for the contact line motion based on these equations. They assumed Stokes
flow (Re <« 0) and that the contact line has a wedge shaped form at the wall.
Both the viscous stress and viscous dissipation was derived based on these as-
sumptions, where they showed that both of these become infinite at the contact
line, if a no-slip condition was applied at the wall. This finding made Huh &

9



10 3. DYNAMIC WETTING

Scriven (1971) coin the now famous expression that ”... not even Heracles could
sink a solid...”. They also stressed that this could indeed be an indication that
the physical model was not entirely valid. The no-slip condition is within the
Navier Stokes framework incompatible with the contact line motion.

Even if the hydrodynamic framework had been shown to predict an un-
bounded stress at the contact line, Voinov (1976) used these equations to de-
scribe the contact line motion for a spreading drop. By making the assumption
that the Ca < 1 and that the curvature of the outer solution is small, he de-
rived a relationship for the apparent contact angle (62 ~ Ca) and the spreading
radius (r &~ t10) in time based on asymptotic theory. Tanner (1979) considered
a similar situation, for a drop spreading on a solid with S = 0, so that a pre-
cursor film has formed ahead of the drop. Later Cox (1986) presented a more
generalized derivation, arriving at a similar result with some correction terms.
The dependency of the apparent contact angle and spreading rate on the Ca
number is often referred to as the Voinov—Tanner-Cox law. Similar expressions
have also been derived by Hocking (1977) and Eggers (2005), where the latter
uses the thin film lubrication approximation.

If we use the problem formulation presented by Tanner, the relationship
for a complete spreading case can be easily derived based on a force balance
between the capillary and the viscous force. By disregarding any influence of
the precursor film and assuming the interface has the shape of a wedge (6 < 1)
at the contact line, the viscous dissipation can be equated and balanced by
capillarity, giving 6% ~ uU/o log(L/L,,) (de Gennes et al. (2004)). 6 is the ap-
parent contact angle and U the spreading speed. L and L,, are length scales for
the macroscopic and microscopic length, respectively. The microscopic length
L., is assumed to be the height of the precursor film ahead of the drop, and

hence
1 1
L pU\? L 3
0= |log(—)— ) =[log(=—) -Ca]) . 3.3
(108227 )" = (1ou() - ca) (5:3)
For a spherical cap shaped drop with 6 < 1, the apparent contact angle
relates to the spreading radius, r, in the manner 6 ~ 4V/r3. Introducing this
relationship into eq. 3.3, where U = dr/dt and integrating gives the Tanner’s
law for viscous spreading, disregarding all numerical coefficients

1
10
raL (ULt) . (3.4)
I
Using the problem formulation by Tanner gives a relationship that is indepen-
dent of the spreading parameter S. If however, performing a detailed deriva-
tion as by Voinov and Cox, a correction for the apparent contact angle appears
where also a microscopic angle 6, must be defined. A common assumption is
to choose this angle equal to be the equilibrium angle, thus giving a correction
for partial wetting to the above expression.

L,, represents a contribution from the microscopic scale, and to regularize
the solution this microscopic length scale needs to be defined. It can be viewed
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Figure 3.1: The main figure at the center shows a sketch of a drop that spreads
on a solid substrate. a) Shows an interpretation of the microscopic (6,,) and
the apparent dynamic (#) contact angle in the hydrodynamic theory. b) Sketch
of the molecular motion at the contact line in the molecular kinetic theory. kg
is the characteristic jump frequency, A the length between adsorption sites and
0 the dynamic contact angle.

as the slip length at the contact line, although this length is often found to be
much larger than what can be physically argued (Winkels et al. (2011)). An-
other suggestion to avoid the singularity at the contact line for partial wetting
has been to involve a disjoining pressure, arising from the molecular interac-
tions at the contact line, to predict the cut—off for the hydrodynamic theory
(de Gennes (1985), Eggers (2005)).

One of the shortcomings of the hydrodynamic theory today is that it cannot
fully capture spreading when either C'a or Re number is of order one. In the
former case it is found hard to formulate the appropriate boundary condition
to couple the outer large scale to the small scale solution at the contact line.

3.2. Microscopic model

Since hydrodynamic theory does not give an adequate description of the dis-
sipative processes at the contact line, different microscopic models have been
suggested as complementary explanations. Blake & Haynes (1969) proposed a
theory based on the motion of molecules in the contact line region. This model
is often referred to as the chemical model, since it is based on a similar idea as
the chemical reaction rate (Glasstone et al. (1941)), or as the Molecular Kinetic
theory (MKT). Contrary to hydrodynamic theory, the large scale dynamics are
completely dictated by the molecular processes at the contact line.

In the MKT the molecules hop forward (K+) and backward (K~) (Blake
(2006)), which are predicted in a statistical sense as
w —w

K =k
kT 0exp(5

n [1/m?] is the number of molecular adsorption sites per unit area, ko [s~}] is
the characteristic hopping frequency, ky [J/K] the Boltzmann constant and T
[K] the temperature. w [N/m] is the activation energy for hopping between

KT = kgexp(

). (3.5)

]
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sites, modeled as the difference between the equilibrium and dynamic contact
angle w = o(cos(.) — cos(d)). The contact line velocity is readily derived
by taking the difference between the forward and backward hopping times the
jump length, A [m], between activation sites

cos(f.) — cos(h))

. 3.6
At equilibrium the backward and forward hopping are equal, as are the dynamic
and equilibrium contact angle, predicting no contact line motion.

Vv = )\(K+ — K_) = 2k0ASiDh<U(

When the difference between the equilibrium angle and the dynamic an-
gle is small, the contact line velocity given in eq. 3.6 reduces to Vg =
:L‘Z;’% (cos(fe) — cos(9)) (de Ruijter et al. (1999)). The linear form of the con-
tact line velocity is most often used to match experimental results, where kg, n
and \ are fitting parameters that needs to be adjusted based on experimental
observations. To obtain a match with experiments A is often found to be much

larger than the molecular size (de Gennes et al. (2004)).

The inverse of the pre—factor (J}:Z‘)T)’l multiplying the linear form of the

contact line velocity has also been interpreted in terms of a macroscopic friction
factor, which would generate a local dissipation. Since both the hydrodynamic
and the MKT has been found to explain different experimental data, Petrov
& Petrov (1992) suggested a model in an attempt to merge the two different
approaches to better explain wetting experiments.

One way to include both a local effect at the contact line and the con-
tribution from the bulk viscosity to describe wetting phenomena, is to use
a thermodynamic formulation as suggested by Brochard-Wyart & de Gennes
(1992) and de Ruijter et al. (1999). What drives the contact line motion is the
off equilibrium contact angle that generates a work W = ro(cos(f.) — cos(9)).
In equilibrium, the free energy (®) is constant and the rate of change of work
(W = Uo(cos(.) — cos(d))) should equal the dissipation (T'S), ® = W — T'S
(Brochard-Wyart & de Gennes (1992)),

_ 3plog(L/Ly)
N 0
A [Pa-s] is a friction parameter at the contact line generating a local dissipation.

Two regimes can be interpreted from this model, depending on the relative
magnitude of the two terms on the right hand side.

Uo(cos(f.) — cos(6)) U2+ A-U% (3.7)

3.3. Experiments of dynamic wetting

Experimental approaches to study dynamic wetting can be separated into two
groups, forced wetting or capillary driven spreading (see fig. 3.2). In forced
wetting experiments the contact line dynamics is studied by exerting an exter-
nal force onto the fluid, which moves the contact line. An example of a forced
wetting setup is the extraction, or pushing, of a plate out of or into a liquid
bath. Another example is contact line motion in a capillary, which is driven by
an external piston acting onto the fluid phase. A coating process is a particular
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Figure 3.2: a) Sketch of a forced wetting experiment, as a plate is withdrawn
with a speed U from a liquid bath. b) Example of capillary driven spreading,
as a liquid drop comes in contact with a dry solid substrate. The drop has
initially an spherical shape, and at equilibrium the drop has the shape of a
spherical cap.

relevant application for forced wetting. Capillary driven spreading is different
from forced wetting by that there is no external force exerted onto the fluid and
the flow is driven by the capillary force local to the contact line. Two examples
of typical experimental setups to study forced and capillary driven spreading
are shown in fig. 3.2. Both hydrodynamic and microscopic theories have been
used to rationalize experimental observations from both forced and capillary
driven wetting.

Hoffman (1975) investigated the contact line motion in a capillary, where
the flow was driven by an external piston. He observed a seemingly universal
behavior of the relationship between the dynamic contact angle 6 and the Ca
number. His observation 6 ~ Ca? was later verified analytically by Voinov
(1976), Tanner (1979) and Cox (1986). Tanner (1979) investigated the spread-
ing of silicone drops, and saw the same dependency of the 6§ and the C'a number.
Strom et al. (1989) studied the liquid meniscus when a chemically treated metal
blade was lowered or raised in a bath of silicone oil. Different oil viscosity and
plate speed were examined and the results were in good agreement with the
hydrodynamic theory, see fig. 3.3.

Marsh et al. (1993) studied forced wetting in a similar setup as Strom et al.
(1989), using a cylinder instead of a plate. By fitting the microscopic length
in the logarithm in the hydrodynamic theory, they achieved good agreement
with the experiments. Since the C'a number was varied nearly three orders of
magnitude, this also allowed a parametric study of the microscopic length used
in the fitting procedure. This length was found to depend on the speed of the
cylinder and it was hard to find any significant trend in the value of L,, in
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180

¢ Strom et al., Paraffin oil on polystyren

160} < Strom et al., Silicone oil on polystyren

+ Strom et al., Silicone oil II on polystyren

140 O Hoffman, G.E. Silicone Fluid SF-96 on glass

O Hoffman, Brookfield Std. Viscosity Fluid on glass

107

10 1(‘)’3
log(Ca)

Figure 3.3: Comparison of the hydrodynamic theory and the perfectly wetting
experiments by Strom et al. (1989) and Hoffman (1975). The fully drawn line
represents the analytical function by Cox (1986) for (L/L,, = 10*) and 6, = 0°.
The figure is adopted from Bonn et al. (2009).

eq. 3.3 for the different experiments. However, the logarithmic nature of the
correction caused the dynamic angle to change only slightly even if L,, varied
over different orders of magnitude.

In the above described experiments the Ca < 1. For C'a > 0.1 Chen et al.
(1995) demonstrated that the theory fails to predict the experimental results.
Extension of the asymptotic solution (Cox (1986)) to also account for larger
Ca numbers, is still an open theoretical question (Eggers (2004)).

Hayes & Ralston (1993) studied forced wetting, and found the hydrody-
namic theory to only give a good prediction over a limited velocity range. The
MKT was however found to give a better description of the experimental ob-
servation, where the hopping length A, frequency kg and n sites per area needs
to be adjusted. Based on the MKT de Ruijter et al. (1999), de Ruijter et al.
(2000) derived a relationship for the spreading radius in time r = t7 and the
dynamic contact angle 6 ~ t*%, which was also found experimentally (de Rui-
jter et al. (1999) and De Coninck et al. (2001)). Seveno et al. (2009) looked
at capillary driven spreading of different liquids and evaluated the data with
the hydrodynamic, combined model (Petrov & Petrov (1992)) and the MKT.
Of the four liquids used in the experiments the most viscous liquid was found
to follow the hydrodynamic theory, and the least viscous liquid the MKT. For
intermediate viscosities the results were best described by a combined model.
Recently, spreading experiments by Duvivier et al. (2011) were performed for
liquids with a large span in viscosities, in an attempt to connect the local fric-
tion factor at the contact line in the MKT to the liquid bulk viscosity. The
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Figure 3.4: *Three snapshots in time as a water drop spreads onto a dry glass
plate, which has an equilibrium angle of 6, ~ 3°.

frictional coefficient was determined by adjusting the friction factor appearing
in the linearized form of the MKT, so that the theory matched the experiments.

Prevost et al. (1999) studied the contact line motion of superfluid helium
at cryogenic temperatures (< 2K) in an attempt to remove any effect from
viscosity. They measured the force acting at the contact line, where they found
the contact line to move through thermally activated jumps related to the
roughness of the Cesium substrate.

Rapid spontaneous spreading has been investigated by several authors
(Biance et al. (2004), Drelich & Chibowska (2005), Bird et al. (2008), Courbin
et al. (2009), Carlson et al. (2012a) and Carlson et al. (2012b)). Fig. 3.4 shows
three snapshots in time from a high-speed imaging of a water drop spreading
on a dry glass plate (. =~ 3°). The drop spreads rapidly across the solid and
has within a millisecond traveled a distance similar to its initial radius. Such
rapid short-time spreading was proposed by Biance et al. (2004) and Drelich
& Chibowska (2005) to be governed by inertial forces. By making a simplified
force balance Biance et al. (2004) predicted the droplet radius to evolve as the
square root of time. Water drops that spread on almost perfectly wetted solids,
verified their power-law prediction. Bird et al. (2008) performed similar exper-
iments but investigated the influence of the wettability of the solid substrate.
For water spreading on a surface with low contact angle 6, = 3° they found the
same exponent in the power-law as Biance et al. (2004). However, the expo-
nent was found to be a function of the equilibrium contact angle. Carlson et al.
(2011) presented another interpretation of the spreading physics. By integrat-
ing experiments and phase field simulations, another dissipative contribution
was identified at the contact line, interpreted through a contact line friction
factor (Carlson et al. (2012a)). By evaluating the dissipative contributions and
the rate of change of kinetic energy, contact line dissipation was identified to
dominate short time spreading even for rather large viscosities (85mPa - s).
The contact line friction factor was measured from the numerics by adjust-
ing the parameter so that the numerics and experiments matched for different

4Experiments performed at Princeton University from an ongoing work in collaboration with
Pilnam Kim, Gustav Amberg and Howard A. Stone.
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viscosities. A scaling law (Carlson et al. (2012b)) based on the contact line
friction factor collapsed the experimental data for a wide range of viscosities
(1 — 85mPa - s), different drop size and solid surface wettabilities. The same
exponent was observed in the power—law when using a scaling based on the
contact line friction parameter, even for different wettabilities. Bliznyuk et al.
(2010) also observed the spreading radius to evolve as square root in time, for
spontaneous spreading of viscous glycerin drops.

3.4. Simulations of dynamic wetting

Several modeling approaches exist for two—phase flow, which represents the
interface in different ways. Most popular are the Volume-of-Fluid (Hirt &
Nichols (1989)) and Level Set (Osher & Sethian (1988)) method, which define
the interface through a numerically prescribed volume fraction or as a level
set function, respectively. These methods do not require re—meshing of the
interface, as the numerical color/level set function is solved by an advection
equation on a fixed mesh. The interface can also be modeled by a moving
mesh as in the boundary element method (Pozrikidis (2001)), whereas the front
tracking method (Unverdi & Tryggvason (1992)) is a hybrid of the boundary
fitted and volumetric interface methods. All of these methods have in common
that the boundary condition for the moving contact line is not well defined,
and relies on ad-hoc slip models.

A different way to obtain macroscopic models for two—phase flow is by
postulating the free energy of the system. Through the free energy a phase
field method can be derived for the interfacial dynamics in the bulk and on
solid boundaries through a wetting boundary condition. On the nano—scale,
molecular dynamic simulations represents a modeling framework that also nat-
urally incorporates moving contact lines between different molecular species.
The discussion below will be limited to literature about phase field simulations
on the macro—scale and molecular dynamics simulation on the nano—scale.

3.4.1. Macroscopic free energy models

The phase field method, also labeled as the diffuse interface method, predicts
from the system thermodynamics a solution for an interface that has a finite
thickness (€), an idea that dates back to van der Waals (1893). Different phase
field models can be derived based on the postulated free energy of the system
or through its equation of state. Anderson et al. (1998) gives a review of the
most popular phase field methods.

The phase field theory presents an alternative way, than described above,
to obtain models of wetting phenomena. By defining the surface energies, a
boundary condition can be derived for the contact line motion that allows it to
move, even when a no-slip condition is applied for the velocity. The contact
line moves by interfacial diffusion, avoiding the Huh—Scriven paradox and over-
comes the difficulty that arises at the contact line in classical hydrodynamic
theory. Another important point is that this makes the flow at the contact
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line somewhat different than the prediction from classical hydrodynamic the-
ory. Flow lines passes through the interface as the interfacial diffusion moves
the contact line (Seppecher (1996)). Pomeau (2011) interpreted this as if there
would be a local phase change at the contact line.

Phase field models exhibit many attractive features such as; mass conser-
vation, obeys the laws of thermodynamics, contact line motion, ect., but there
are still questions about its validity when modeling macroscopic contact line
motion. With todays state—of-the-art computational resources a millimeter
drop can be simulated with an interface that is about thousand times smaller
than its radius. This interface thickness will then be in the order of microm-
eters. For liquids that are far from their critical point, like for instance water
at room temperature, the interface has a thickness of about a nanometer. A
direct consequence is that the thickness of the interface needed in macroscopic
simulations has to be taken much larger than what can be physically moti-
vated. Another question that still lingers is its sharp—interface limit (e — 0),
and whether such a solution exists at the contact line (Wang & Wang (2007)).
Although these aspects presents a rather grim outlook for using a phase field
method to simulate contact line motion, meaningful results have been predicted
on the macro scale in accordance with hydrodynamic theory by Villanueva &
Amberg (2006a), Yue et al. (2010) and Yue & Feng (2011) as well as in exper-
imental observations by Carlson et al. (2012a) , Do-Quang & Amberg (2009Db)
and Villanueva et al. (2006b).

By prescribing the equation—of-state for a van der Waals fluid, Teshigawara
& Onuki (2010) derived a theoretical framework to study wetting close to the
critical point. Spreading dynamics of a drop in a thermal gradient was stud-
ied on a perfectly wetting substrate. Liquid condensed at the precursor film,
without the need to define the evaporation rate. The volatility of these liquids
would not allow comparison with Voinov—Tanner—Cox law or experimental ob-
servation of non-volatile liquids.

Phase field simulations of macroscopic wetting for an incompressible flow
are usually based on the Cahn—Hilliard equations. For relatively slow wetting
phenomena, in a similar regime as the Voinov—Tanner—Cox theory, phase field
theory has proven both analytically (Jacqmin (2000)) as well as numerically
(Villanueva & Amberg (2006a), Yue et al. (2010), Yue & Feng (2011), Briant
& Yeomans (2004)) to capture such wetting physics. Jacqmin (2000) proposed
an effective slip length based on the mobility constant multiplying the chemical
potential and the dynamic viscosity. Briant & Yeomans (2004) found the con-
tact line diffusion to vary over a length scale different than the interface width,
and by scaling arguments showed that this length is related to the mobility
constant multiplying the chemical potential. Yue et al. (2010) modified the
scaling argument for the diffusion length and instead interpreted this length in
terms of the microscopic length appearing in hydrodynamic theory (L,,). It
should be noted that all of these results are obtained by making the physical
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assumption that the interface is close to an equilibrium state as it wets the
solid.

In order to capture spontaneous rapid spreading of water drops, Carlson
et al. (2009) and Carlson et al. (2011) showed that the assumption of local
equilibrium fails to capture the experimental observations. By retaining any
perturbation in the concentration at the solid, a boundary condition for wetting
far from equilibrium can be derived. A new parameter appears in the bound-
ary condition, which controls the relaxation towards equilibrium. Carlson et al.
(2012a) interpreted this coefficient as a local friction adjacent to the contact
line and measured from the numerics its dissipative contribution in the flow. A
different explanation was proposed, contrasting the previously suggested iner-
tial wetting by Biance et al. (2004) and Bird et al. (2008), where the dissipation
from the contact line is claimed to dominate the flow. By matching experiments
and simulations for liquids of different viscosity, wetting substrates with differ-
ent wetting properties, allowed a numerical measure of the contact line friction
parameter. The experimental data collapsed using a scaling law based on the
contact line friction parameter. In simulations Yue et al. (2010) and Yue &
Feng (2011) interpreted the local friction parameter as a relaxation parameter
at the contact line. Instead of suggesting this to be a physical mechanism it
was assumed to be a numerical, compensating for having an artificially large
diffusion length.

3.4.2. Molecular dynamics simulations

Contact line motion has also been studied on the microscopic scale through
molecular dynamics simulations. Even with the increasing computational
power, these systems are still limited to tens of nano meters. By prescribing
the intermolecular interaction between the different types of molecules their
motion are determined by Newtons first law. One convenient outcome of this
is that the contact line can be modeled without the need for ad-hoc assump-
tions, as it is directly a solution based on the intermolecular potentials. Fig.
3.5 shows three snapshots in time from a molecular dynamics simulation of an
Argon droplet spreading on a smooth Titanium substrate.

Some of the earliest studies on contact line dynamics were performed by
Koplik et al. (1988) and Thomson & Robbins (1989). Koplik et al. (1988) stud-
ied the slip at the contact line in a Poiseuille flow and Thomson & Robbins
(1989) in a Couette flow, both using a Lennard-Jones potential for the inter-
molecular interaction. Thomson & Robbins (1989) found the apparent angle
in the simulations to follow the Tanner—Voinov—Cox theory. He & Hadjicon-
stantinou (2003) used molecular dynamics to study the spreading of a drop
on a solid substrate that it wets perfectly. To avoid evaporation of the lig-
uid a spring model was used between the molecules, which mimics the chain
interaction between monomers. In the two dimensional (or quasi-three dimen-
sional) simulation the radius was found to evolve as 7 ~ t!/7, in accordance
with classical theory. Many others have also used moleuclar dynamics to probe
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Figure 3.5: ° Snapshots from a molecular dynamics simulations of an Argon
drop with a radius of 12nm as it spreads in time on a Titanium substrate with
0. ~ 0° at 80K. The intermolecular interactions are determined through a
Lennard—Jones potential.

different wetting phenomena using models for different liquids and geometries
(De Coninck et al. (1995), Matsumoto et al. (1995)). Findings from molecular
dynamics simulations can be summarized as; the contact line is regularized by
a small slip region inside the interface and any deviation from the equilibrium
angle causes a large response that drives the contact line motion (Ren & E
(2007)).

Based on molecular dynamics observations Qian et al. (2003) developed a
general wetting boundary condition for phase field simulations on the nanoscale,

= 20 (42C  Bw(C) 00
sTTH dy ' oC ) ox

9y (3.8)
where 8 [Pa - s/m] is a friction factor, ug slip velocity, n the wall normal, «
is a phase field parameter appearing in the free energy functional and w(C)
is a function defining the surface energy on the dry or wet side of the contact
line. z is the tangential direction along the solid substrate. Direct comparison
between molecular dynamics simulations and phase field simulations show that
this boundary condition indeed capture the slip velocity in the contact line
region (Qian et al. (2004)). These simulations were made in a steady-state
Couette flow, and the non-equilibrium boundary condition was used in the
phase field model.

Ren & E (2007) and Ren et al. (2010) also suggested a boundary condition
for macroscopic contact line simulations. Through measurements of steady—
state molecular dynamics simulations they distinguished the different contri-
butions at the contact line. They also identified a local friction factor at the
contact line, and showed that the frictional force would be proportional to the
force generated by having a contact angle different than the equilibrium angle.
An extension of the boundary condition to be valid also within the thin film
framework was presented in Ren & E (2010).

Numerical methods have been tailored with the aim to capture the mul-
tiscale nature of problems like the moving contact line. Development of such

5Molecular dynamics simulation performed at The University of Tokyo from an ongoing work
in collaboration with Yoshinori Nakamura, Junichiro Shiomi and Gustav Amberg.
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multiscale methods have shown some promise (E et al. (2007)), but great chal-
lenges still remain in order to have a modeling framework that directly couples
a microscale and a macroscale solver for problems that vary in time and space.



CHAPTER 4

Phase field theory

4.1. Free energy

Phase field models are based on a postulate of the systems free energy. Seminal
work devoted to the development of phase field theory is presented by van der
Waals (1893), Chella & Vilnals (1996), Seppecher (1996) and Yue et al. (2010).
In the following a phase field model will be derived based on the work by
Cahn & Hilliard (1958) and Jacqmin (1999), which also forms the theoretical
foundation for the numerical results presented in Part II.

Cahn & Hilliard (1958) showed, by making a multivariable Taylor expan-
sion of the free energy per molecule, that an expression for the free energy could
be derived. The first order approximation of the Taylor expansion gives what
is presented here as the volumetric energy or the integral of the free energy
functional, where the higher order terms are adsorbed into the coefficient (3)
multiplying the gradient term. Here the free energy is defined for a system
containing two binary incompressible phases, which are immiscible and repre-
sented by a concentration C. We design the total free energy, F, in such a way
that two stable phases are favored,

F = / (ﬁ\II(C) + ;IVCF) dQ+/(Usg + (051 — 05¢)g(C)) dT (4.1)

a model originating from van der Waals (1893). The total free energy consists
of two contributions, defined through the volume () and surface (T") integral.
The volume integral has two parts, where the first term from the left defines
the bulk and the second term the interfacial energy. § ~ o/e¢ and a =~ oe are
positive phase field parameters depending on surface tension o and interface
thickness e. U(C) = 1(C + 1)*(C — 1)? is chosen as a double-well function
where its two minima represents the two stable phases, see fig. 4.1a.

The surface integral gives the contribution to the free energy by having a
solid substrate that is wet (o) or dry (os). g(C) = 2(=C3 +3C +2) is a
higher order polynomial in C, acting as a switch between the two stable phases.
For this model the two stable phases are defined at C' =1 (liquid) and C = —1
(gas), g(C) is then g(1) = 1 and g(—1) = 0. Note that the relationship for the
equilibrium contact angle from Young’s relation eq. 2.5 can be substituted into
the integral (055 — 051) = o cos(fe).

21
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By making a variation in the free energy with respect to the concentration,
the chemical potential ¢ = 3¥'(C) — aV2C is obtained,

OF = / (5\11’(0) — aV2C> 5CdQ + / (aVC -n — o cos(be)g'(C)) 6CdT

= /(b CdQ + / (aVC -n —ocos(be)g' (C)) 6Cdl
(4.2)

A new term appears in the surface integral by integrating the variation of the
gradient term by parts as; [, aVCOV(6C) = [, —aV2C6C + [, aVCC.

4.2. Evolution of fluxes
4.2.1. Decrease of free energy

From the free energy postulate given in eq. 4.1, it is clear that any pertur-
bation in the concentration will lead to a change in free energy. The model
is designed so that the free energy decreases with any change in C' (Chella
& Vilnals (1996)). Assuming that any variation in C' with respect to time ¢
should equal the divergence of a flux, the Cahn—Hilliard equation is recovered.
By using the above defined free energy, this tells us whether the systems energy

decreases in time, as expected. The flux J = —M V¢ is modeled as the gradient
in chemical potential and M [m?/(N - s)] is a positive mobility constant,
oC
= _—_Vv.J 4.3
50 (4.3)

From eq. 4.3 it is clear that 6C' = —V - Jét, which can be introduced into
eq. 4.2 giving 6F = 6t [ —V - J¢dS2. The variation in F is then,

OF = (5t/ —V - JpdQ) + /(50 (aVC -n —ocos(be)g'(C))dr. (4.4)

Integration by parts of the first term in the right hand side of eq. 4.4, gives a
boundary condition for the flux J. Assuming that there is no flux across the
boundary J-n = 0.

Similarly, we se that the perturbation on C' on the boundary, 4C in the
boundary integral must also guarantee a decrease in F'. The contribution inside
the surface integral is often referred to as the wetting condition. The boundary
condition for non—equilibrium wetting on I' is defined as,

fufeaa—f =aVC -n—ocos(h.)g (C) (4.5)

when a no-slip condition is prescribed for the velocity. py [Pa - s] is a positive
constant and interpreted as a friction factor at the contact line. If puy > 0
the solution allows a contact angle (#) at the solid substrate that is different
than the equilibrium angle ¢.. If uy = 0 local equilibrium is assumed at the
boundary, imposing the equilibrium contact angle. For a boundary with a no—
slip condition for the velocity the second term on the left hand side drops out.
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Details about the wetting boundary condition will be discussed in sec. 4.4.
Introducing the relation for the wetting condition in eq. 4.5 into eq. 4.4,

5F ac\*
~ = /_M(w)%m—/euf <8t) dl' <0 (4.6)

ensures a decrease of free energy with time.

4.2.2. Cahn—Hilliard and Navier Stokes equations

The complete mathematical model is given by the Cahn—Hilliard equation,

% +u-VC=V-(MVe) (4.7)

the chemical potential (¢)
¢ = pY'(C) — aViC (4.8)

and the wetting boundary condition with no—slip for the velocity,
oC
—hpegs = aVC -n—ocos(f.)g (O). (4.9)

These equations couple with the mass conservation equation eq. 4.10 and
the Navier Stokes equations eq. 4.11 for the flow of an incompressible fluid,

V-u=0, (4.10)

p (Z‘; +u-Vu> = -VS+V- (,u(V(u+VuT))) — OV (4.11)
S=P—C¢—(BY(C)+ 3a|VC|?) is the modified pressure (Jacqmin (1999)),
from the potential form of the surface tension forcing that is the last term in eq.
4.11. For these equations to prescribe a well posed problem, we may prescribe
the value for the velocity at the boundary of the domain though a dirchlet
boundary condition then the pressure must be allowed to adjust freely through
a Neumann boundary condition V.S - n = 0. Vice—versa if instead a Neumann
boundary condition is prescribed for the velocity, the pressure should then be
defined at the boundary.

In addition to the Re number and the C'a number defined in sec. 2.3,
dimensional analysis identify a Peclet (Pe) number and a Cahn (Cn) number
in eq. 4.7 and eq. 4.8, respectively. The Pe number is the ratio between the
convective and diffusive mass transport,

UL ULe
D oMy"(C =+1)
where D = w is the Cahn—Hilliard bulk—phase diffusivity. The Cn

number describes the ratio between the interface thickness € and the charac-
teristic length,

Pe = (4.12)

Cn= (4.13)

£
T
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4.3. Phase field interface and surface tension

From the governing equations eq. 4.7 and eq. 4.8 we seek an analytical solution
for the interface profile in one dimension and the dependency of the surface
tension coefficient with respect to the phase field parameters o and (. In the
defined system two stable phases are energetically favored, which are separated
by a diffuse interface that changes smoothly but abruptly. The equilibrium
interface profile is such that it minimize the free energy in eq. 4.1. Let us
derive a solution of C along the coordinate ¢ in equilibrium. The chemical
potential in eq. 4.8 is by definition constant in equilibrium, and with our
choice of the double—well function it is clear that

¢ =pY(C)—aCcc=0. (4.14)
C¢ and C¢ ¢ are defined as C¢ = dC/d¢ and C¢ ¢ = d*C/d(?, respectively. Eq.
4.14 is multiplied by C¢
BY'(C)-Ce —aCe-Ce =0 (4.15)
and integration along the ( direction gives

¢
2
ozCC

5 (4.16)

¢
/ (BY(C) - Cc — aCec - Cc) dC = [BU(C) ) —

— 00

At ¢ = +oo we have a pure phase C' = £1 so that C¢|1oc = 0 and ¥(C' =
+1) = 0. This gives an expression relating C; to the double-well function as,

Ce = \/%\P(C’). (4.17)

In eq. 4.17 we require \/¥(C) to be positive and definite, we write /¥ (C) =
£(14C)(1—-C) shifting the bounds for the integration of C to [0, C]. Separating
the variables in eq. 4.17 and integrating with respect to C' and ( yields,

/oc mdo = /0< \/?dg (4.18)

Concentration C' = 0 is at the midpoint of the interface at coordinate { = 0
that is the lower integration limit on the right hand side. Completing the
integration of eq. 4.18 gives the equilibrium profile C,(¢) for a flat interface in
one dimension along ¢

C.(¢) = tanh (@g) — tanh (\éﬁ) , (4.19)

where € = % is defined as the thickness of the diffuse interface. The equilib-

rium interface profile is plotted in fig. 4.1b.

The ability to analytically derive the structure of the equilibrium interface
profile has an important implication, as it enables a solution of the surface
tension coefficient in the phase field model. The surface tension is defined as
the excess free energy, and it is clear from the postulated free energy in eq.
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(a) Double—well function ¥(C). (b) Equilibrium interface profile Ce(().

Figure 4.1: a) Shows the form of the bulk free energy, where the two minima
represents the equilibrium phases. b) Shows the interface profile of C,(¢) for an
interface with a thickness € = 0.15, where C' = +1 are the equilibrium phases.

4.1 that ¥(C) gives a contribution to the free energy only in the interfacial
region. By considering a one-dimensional equilibrium composition C,(¢) and
integration of the free energy per volume along ( direction gives the surface
tension coefficient in the phase field model,

o= /_Oo (5@(0) + ‘;‘c*g) d¢ = /_Oo aC2d( = Lf\/@ (4.20)

relating the phase field parameters o and 3 to o.

4.4. Wetting boundary condition
4.4.1. Local equilibrium

A contribution to the free energy arise from the solid boundary, see eq. 4.1.
By making a variation in the free energy with respect to C' eq. 4.2, the wetting
condition appears. This gives a well defined boundary condition for the contact
line at a solid substrate. By assuming local equilibrium at the boundary (T")
the wetting boundary condition becomes,

0=aVC -n—ocos(6.)g'(C). (4.21)

A consequence of the local equilibrium assumption is that the equilibrium angle
is imposed between the interface and the solid boundary, defined on the liquid
side.

So far, the derivation of the polynomial g(C) has not been described. Two
restrictions of its solution have however been prescribed from the free energy,
namely that is should take the value g(1) =1 and g(—1) = 0. The polynomial
g(C) is not arbitrary but also defined by the postulated form of the free energy.
For simplicity we assume only a one dimensional equilibrium profile of the
concentration along ¢ direction, which is introduced in eq. 4.21. A sketch of the
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shape of the contact line foot-region is shown in fig. 4.2, where from geometrical
arguments VC - n = 90C/0y = cos(f.)C, where n = ey,. Substituting these
quantities in eq. 4.21 we get,

acos(f.)Ce = acos(0e)g'(C). (4.22)

Now using the relationship for C¢ given in eq. 4.17 and the definition of
the surface tension coeflicient in eq. 4.20 we get,
dg(C)

02(1 +O)1-0) =00 (4.23)

Through integration of eq. 4.23 g(C') is obtained as

9(C) C
/ dg(C):/O %(1+C)(1—0)d0

g0

9(C) = i(—c?’ +3C+2), (4.24)

where the integration constants are defined from the value prescribed for g(C)
when C = +1.

4.4.2. Non—equilibrium

Previous numerical work has shown that the equilibrium wetting boundary con-
dition describes many flows with contact lines well, see for example Do-Quang
& Amberg (2009b) and Villanueva & Amberg (2006a). A boundary condition
that also captures non—equilibrium wetting can be derived, by postulating that
any variation in C at the boundary should be counteracted by a diffusive flux
proportional to Dy 0C/6t. Dy [Pa-ms] is a rate coefficient, which was later
re—defined by Carlson et al. (2012a) as Dy = pge where p1f [Pa-s] is interpreted
as a contact line friction factor. The non-equilibrium boundary condition, first
proposed by Jacqmin (1999), takes the form,

— e (aaf +u- VC’) =aVC -n—ocos(f.)g (C). (4.25)
If a no—slip boundary condition is applied on the velocity u, the second term on
the left hand side drops out. In nanoscopic simulations the slip at the contact
line might however not be neglected and the slip velocity needs to be computed
through eq. 3.8.

There is one significant difference between the equilibrium and non—
equilibrium wetting boundary condition from an energetic point of view. The
former is not dissipative, while the latter generates a dissipation at the contact
line. This has the consequence that with a p1y > 0 the contact line will move
slower than with 1y = 0. Eq. 4.25 makes it possible to analytically derive a re-
lationship for the contact line velocity. To obtain such a solution let us assume
that there is no—slip at the boundary and that the contact line dynamics are
completely dictated by eq. 4.25, neglecting all other contributions that might
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Figure 4.2: Sketch of the geometry of the interface at the wall. n is the normal
vector on the solid, ¢ is the normal direction to the interface.

affect the contact line movement. A sketch of the interface shape at the contact
line is given in fig. 4.2.

Let us consider a solution where we move in the same frame of reference
as the interface. Its geometry defines a shift in coordinates such that { =
xsin(f) + ycos(d) — Ut, where n = e, and ¢ is normal to the interface. The
normal velocity of the interface is U, where the interface geometry gives the
velocity V' along the tangential x direction as U = Vsin(f). Substituting
these relationships into eq. 4.25 and multiplying it with C¢ on both sides and
integrating gives the expression for the contact line velocity when contact line
friction dominates (Yue & Feng (2011)),

V= Mif (COS(QZBH(G(;OS(G)) . (4.26)

One peculiarity of the analytically predicted velocity from the phase field
theory is that the velocity has a divergent solution for § = 0° and 6 = 180°.
Any influence from other contributions to the flow such as inertia or viscous
dissipation are disregarded in this prediction. At the extremes of the function
these other contributions are believed to regularize the contact line velocity.

In fig. 4.3 the contact line velocity predicted in the phase field theory
eq. 4.26 and the linearized MKT eq. 3.6 (Vi = 2’;;’% (cos(f.) — cos(h))) are
compared for different dynamic contact angles (6), assuming an equilibrium
angle of 8, = 45°. The two solutions are very different when the dynamic angle

is far from the equilibrium angle.

Comparison of the form of eq. 4.26 and eq. 3.6 (MKT) shows the phase
field theory to predict a friction factor that would be proportional to 1/sin(8)
within the MKT framework. The 1/sin(d) factor introduces an additional
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Figure 4.3: Analytical contact line velocity using 6, = 45°, o = 20mN/m and

py = 20mPas assuming here that py = (n’\kkb"T)*l. The dashed line shows the

contact line velocity predicted with the linearized form of eq. 3.6 (Vg =

ﬁ(cos(@e) — cos(#))) from the MKT and the fully drawn line the prediction

from phase field theory eq. 4.26.

non-linearity to the function. By using values for the numerically measured
iy and measured dynamic contact angle 6 from experiments, the prediction
from eq. 4.26 and eq. 3.6 was evaluated by Carlson et al. (2012b). Direct
comparison with spreading slopes measured from the experiments show that
the analytical phase field velocity eq. 4.26 predicted a spreading behavior in
accordance with the experimental observation. The expression from the MKT
given in eq. 3.6 did on the other hand not predict the correct spreading slope
for these experiments.



CHAPTER 5
Numerical methodology

5.1. Finite Element toolbox — femLego

A finite element toolbox named femLego (Amberg et al. (1999)) has been used
for the numerical simulations. femLego is an open—source symbolic tool to
solve partial differential equations, where all the equations, numerical solvers,
boundary and initial conditions are defined in a single Maple sheet, acting as
a user-interface. One of its strong advantages is that it is easy to modify or
even replace the governing equations, without the need to rewrite the source
code. The variables can be discretized in space with quadratic or piecewise
linear approximation functions, on tetrahedral elements. Only piecewise lin-
ear approximation functions have been used for the numerical results in this
work. femLego includes adaptive mesh refinement routines, which are partic-
ularly important when solving problems that need a high resolution in certain
parts of the domain, which might also move in time (Do-Quang et al. (2007)).
The code runs on parallel computers, showing a good scaling behavior up to
several thousands of computer process units. After compiling the Maple sheet,
a C++/C and fortran77 code is automatically generated.

5.2. Numerical schemes
5.2.1. Cahn—Hilliard equation

One of the challenges when solving the Cahn—Hilliard equation is the fourth
order derivative of the concentration. Another complication is the non-linearity
in C that comes from the definition of the double-well function ¥(C). Two
different numerical strategies have been used to solve the Cahn—Hilliard equa-
tion, where both are based on separating the concentration and the chemical
potential into two second order equations.

The chemical potential and the Cahn—Hilliard equation are discretized with
piecewise linear finite elements, where the variables ¢ and C' are solved in the
same finite element space. The weak variational form of the equation eq. 4.8

and eq. 4.7 reads as follows;
Find C, ¢ € H*(Q) for all x € H'(Q)

(¢, x) = (BY(C),x) — (aVC, Vx) = (aVC, x)r =0 (5.1)

29
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(aaf,x) +(u-VC,x)+ (MV¢,Vx) — (MV¢,x)r =0. (5.2)

One way to solve the above coupled system of equations is to use a type

of preconditioned conjugate gradient solver, described in detail in Villanueva

(2007), Villanueva & Amberg (2006a). The numerical scheme consist of three

steps, where the first step only solves the advection of C. The chemical potential

is linearized and lumped into a symmetric matrix form. The non—convective

part of C is solved inside a Conjugate Gradient (CG) loop that updates ¢. The

final step solves ¢ with a CG solver, to improve the accuracy of the numerical
solution.

Another solution method is to use a non-linear method each time step. A
Newton iteration method has been used (Boyanova et al. (2011) and Do-Quang
& Amberg (2009b)), that solves the chemical potential and the Cahn—Hilliard
equation simultaneously. This allows the system to be solved implicitly, with a
backward Euler method. The solution method is as follows; the initial condition
for the for the variables C' and ¢ are prescribed. The non-linear problem
is approximated each time step by solving a sequence of Newton iterations,
consisting of a solution of the linear problem and the Jacobian matrix. The
Jacobian matrix is automatically assembled in femLego. Each Newton iteration
updates the solution until it reaches a preset maximum residual, see Boyanova
et al. (2011).

One implication of reducing the second order derivatives in the equations
by integration by parts, is that the Neumann boundary condition appears for
the variables in the finite element system. No flux of chemical potential is
assumed at the boundary V¢-n = 0. The wetting boundary condition appears
in the chemical potential, as a Neumann condition for the concentration. Since
the wetting boundary condition is already derived from the thermodynamic
formulation eq. 4.9, the boundary condition for VC' - n in the equation set
above in weak form on the boundary I" becomes,

wCnr = (25 ) —(Zemagry) 6

withu=0onT.

Since the wetting boundary condition appears naturally within the finite
element formulation, it is rather straight forward to implement. It is however,
slightly more complicated to treat this boundary condition with other numer-
ical methods. One of the difficulties is to implement this boundary condition
accurately, since it requires a discretization of C' on the boundary whereas its
value is not known. Ding & Spelt (2007), Takada et al. (2008) and Lee & Kim
(2011) all used a finite difference method to discretize the equilibrium bound-
ary condition. To obtain a discretization of the concentration gradient at the
boundary they used a ghost—fluid method, with an additional set of ghost—
nodes underneath the solid boundary. By approximating the values for the
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concentration in the ghost-nodes, the gradient in concentration can be approx-
imated at the solid boundary. Ding & Spelt (2007) used a criterion to identify
the interfacial region, and used a fixed stencil to approximate the concentration
in the ghost—node. Lee & Kim (2011), used a method of characteristics where
the node points in the stencil were determined as a function of the equilibrium
contact angle.

5.2.2. Navier Stokes equations

Two types of explicit projection methods have been used to solve the incom-
pressible two—phase flow, depending on whether the phases have similar or dif-
ferent density. For the former case, a solution methodology similar to single—
phase incompressible flow can be used. Such projection methods in general
consist of two steps, which allow pressure and velocity to be solved in segre-
gated manner. The projection method proposed by Guermond and Quartapelle
(1997) has been used for such simulations (Carlson et al. (2010); Villanueva &
Amberg (2006a)). Since all variables are approximated with a piecewise linear
function, the velocity and pressure are solved in the same space. Restrictions by
the Ladyzhenskaya—Babuska—Brezzi condition were avoided by adding a pres-
sure stabilization term (e, Vy, VP) (Hughes et al. (1986)), where €, is a small
numerical parameter proportional to the mesh size.

When the two phases have different density, the standard projection scheme
needs to be modified, to ensure that the mass density of each fluid particle re-
mains unchanged as it is advected, requiring the velocity field to satisfy the
incompressibility constraint. Below is a description of the projection method
by Guermond & Quartapelle (2000), used to simulate incompressible two-phase
flow with a density contrast. The scheme ensures mass conservation, without
affecting the kinetic energy balance. This is achieved by writing the density in
the evolutionary term (9/9t) in the momentum equation eq. 5.7 as a product
of the square root of density, with one inside and one outside the time deriv-
ative operator. The weight of density in the projection step generates an new
complication.

Below the discretization of the incremental projection scheme for variable
density (Guermond & Quartapelle (2000)) is presented. One modification to
the original scheme is made here, namely that the continuity equation is sub-
stituted by the solution for the Cahn—Hilliard equation that conserves the C'
variable.

¢n+1 _ ﬁ(Cn+1 _ (Cm+1)3) o av2cn+1
Cn+1At_ cn + u” - vcn+1 — _MV2¢n+1 (54)
the equations are solved implicitly and the brackets are used to indicate that

the two equations are solved simultaneously using a Newton iteration method
(Boyanova et al. (2011)).

The material property for each individual phase is related through an in-
terpolation of the concentration C', where C' = 1 for phase 1 and C = —1 for
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phase 2. Both density and viscosity are allowed to be different in each of these
phases. An example of how the material properties are interpolated is shown
here for the density, but the same method is also used for the viscosity,
1
p=75(P(1+C) +pe(1-0C)) (5.5)
p1 and py are the density of phase 1 and phase 2, respectively.

When solving for two—phase flow with a density contrast, an additional
pressure solution is required due to the weight of density. This additional step
can be interpreted as a preliminary projection step giving an estimate for P*+1.
Q" is an approximate pressure,

v Pt vQ"
-V (W> =-V. (%) : (5.6)

The next step predicts a solution for the preliminary velocity ©™*!, where the
non—linear advective term is made semi—-implicit,

n+1,,n+1 _ {31 1
\/W ( VP u VP a > + pn+1un .vut! + 7[v . (pn+1un)]un+1 —

At 2
= VP4V (@ (Tut o (Tt 4 O g,
(5.7)
The projection step takes the form,

ﬁnJrl _ un+1

The end—of-step, divergence free, velocity G can be avoided in the scheme
by taking the divergence of eq. 5.8, making use of the relation V - a4"*! = 0.
This gives the solved projection step,

1
V - un+1 = AtV - (pn+1v(Qn+1 _ Pn-‘rl)) ) (5.9)

n— q—

eq. 5.8 reads @ ﬁ,fv (@™ — P™) at time n. u is removed from the
scheme by introducing its definition into eq. 5.7,

/ +1
\/W ( Pn+1un - \/,Dnun> + pn+1u" . vat! + l[v . (pn+1un)]un+1 —

At 2

/ m+1
—vprtt \;ﬁ (Q” _ p") +V- (Mn-&-l(vun+1 + (Vun+1>T) + Cn—i—lv(ﬁn—i—l.
(5.10)

The numerical scheme consist of four consecutive steps, eq. 5.4, 5.6, 5.10, 5.9,
that solves the variables [¢, C, P,u, Q]. More details about the stability analy-
sis, and theory behind the scheme, can be found in Guermond & Quartapelle
(2000).



CHAPTER 6
Summary of results

This section gives a brief summary of the results presented in Part II.

Droplet dynamics in a bifurcating channel.

These results are reported in Carlson et al. (2010), or Paper 1 in Part II,
and concerns droplet dynamic in a bifurcating channel.

Three dimensional numerical simulations based on the Cahn-Hilliard and
Navier Stokes equations have been performed. First the numerical implemen-
tation was validated against two benchmark cases for a static and a dynamic
drop. In the static case, the over—pressure in a drop was computed and the
simulation result was compared with the Young—Laplace law. To verify that
also the numerics capture accurately a dynamic case, the deformation of a sin-
gle drop in a Couette flow was computed and the predicted deformation, for a
set of parameters, was compared with the analytical solution by Taylor (1960).
Both benchmark cases showed good agreement between the numerical results
and analytical solutions.

We then proceed to investigate droplet dynamics in a bifurcating channel,
a flow particular relevant for bio—medical applications. The aim here was to
describe the parameter space that governs the droplet dynamics at the channel
junction. Two different droplet characteristics were predicted, either splitting
or non—splitting droplets.

Fig.6.1 shows four snapshots in time as a droplet comes in contact with
the channel junction. At non-dimensional time 7' < 2 the droplet travels in
the straight parent channel, and around 7" = 2 the droplet meets the junction
where the parent channel bifurcates into two smaller daughter branches, see
fig. 6.1a. The deformation of the interface converts work done by inertial and
viscous forces into surface energy, leading to a deceleration of the droplet at
the tip of the junction. But the droplet is not sufficiently stretched to initiate a
type of Rayleigh-Plateau instability (for details see Berg (2010)), which would
generate breakup, instead the droplet rests in an unstable quasi—steady state
at the tip of the junction. The incipience of a numerical disturbance, generates
a slightly asymmetric flow in the film formed between the droplet interface and
the channel surface, which initiates droplet slipping (see fig. 6.1b). As the
perturbation grows the droplet migrates into the lower daughter branch (fig.
6.1c). This leaves an asymmetric distribution of the phases in the daughter
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Figure 6.1: Droplet dynamics in a bifurcating channel at four different snap-
shots in non-dimensional time with Ca = 1.8-1073 and V=0.67, in the splitting
regime. The figure shows the iso—surface for the order parameter C=0 with
Cn= 0.06 and the velocity vectors in the plane [0,0,1]. Fig.6 in Paper 1 in Part
II.

branches and the droplet wrapping generates a flow recirculation in the upper
branch. Finally the droplet travels into the lower branch, which acts effectively
as a resistance to the continuous flow from the parent channel directing most
of its flow into the upper branch (fig. 6.1d).

A set of simulations were performed where the C'a number and the droplet
size were varied. This allowed us to predict a flow map for the two regimes,
splitting and non-splitting droplet. For non-splitting droplets, a relationship
was also proposed to describe the mass flow distribution of the continuous phase
in the upper and lower branch, which was found to be linear with respect to
the drop size.
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Dynamic wetting

Four articles have been written about dynamic wetting Carlson et al.
(2009), Carlson et al. (2011), Carlson et al. (2012a,b) or paper 2, 3, 4, 5 in
Part II, where a phase field model has been developed to describe such phe-
nomena.

Phase field models have previously been applied with success to describe
flows with contact lines. However, the detailed comparison between numerical
simulations and experiments of short—time dynamic wetting have been scarce
in the literature. Experiments reported by Bird et al. (2008) allowed a detailed
comparison with numerical phase field simulations. In Carlson et al. (2009)
axis-symmetric phase field simulations of spontaneous spreading drops were
compared directly with these experimental findings. The simulations revealed
that a common assumption, that there is local equilibrium at the contact line,
did not predict the correct contact line speed. Allowing the physics at the con-
tact line to relax towards equilibrium, by applying a non—equilibrium boundary
condition, showed that the numerics could reproduce the experimental spread-
ing behavior.

In the non—equilibrium boundary condition a new rate coefficient appears,
denoted in as Dys. This parameter is not known a-priori, and was adjusted
for the simulations to match the experimental spreading radius. Not only the
spreading radius was affected by the use of the non—equilibrium boundary con-
dition, also the predicted drop shape became very different. Fig. 6.2 shows the
numerical drop shape for the spreading of a water drop on three dry substrates
with different wetting properties. The left panel in each subfigure shows the
drop shape using the non—equilibrium boundary condition and the right panel
the predicted drop shape with the equilibrium boundary condition. It is clear
that the apparent dynamic contact angle is predicted to be very different for
the two boundary conditions. Comparing the simulated and experimental drop
shape, we notice that the shape predicted with the non—equilibrium boundary
condition is in close agreement with the experimental observation.

One difference between the equilibrium and non—equilibrium wetting
boundary condition is that the latter is a source of dissipation. On the macro-
scopic scale, as the simulations presented here, this slows the contact line mo-
tion. To better understand how this dissipation influences the spreading, we
extract the three dissipative contributions (viscous Rw diffusive Rp and con-
tact line dissipation Rp,, ) (Carlson et al. (2011)). Since also inertia has been
proposed to govern such spreading, the rate of change of kinetic energy (Rp)
was also measured from the numerics. These four rates were compared in order
to determine which contribution that dominated, as the drop spreads. Contra-
dictory to previous interpretation that this spreading is governed by inertia, the
numerics predicted the local dissipation at the contact line to give the largest
contribution and dominate the spreading. How these rates evolves in time is
shown in fig. 6.3, where the insets of the drop shapes correspond to the time
given on the x-axis.
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Figure 6.2: Droplet shapes at (1) t=0.4ms, (2) t=0.8ms, (3) t=1.2ms and (4)
t=1.9ms, for three different surfaces: a) D,, = 1.0, §. = 3° , b) D,, = 1.4,
0. = 43° , ¢) D, = 0.2, . = 117°. The right half of each panel shows the
corresponding simulated result for equilibrium conditions, Dw = 0. Fig. 2 in
paper 3 in Part II.
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Figure 6.3: The non—dimensional rate of dissipation in time and the rate of
change of kinetic energy for the spreading of a water drop (R & 0.78mm) on a
dry solid surface with 8y = 43°. The full line corresponds to Rp, dashed line
RDW, dashed dotted line Ru and the dashed line with round markers to Rp .
The insets in the lower part of the figure shows the droplet shape corresponding
to the time given on the x-axis. Fig. 9 in paper 3 in Part II.

In macroscopic phase field simulations, the interface thickness (¢) and the
Cahn-Hilliard mobility (M) needs to be taken much larger than what can be
argued physically. Changes in € and M are reflected in the Cn and Pe number.
It is particularly important to know whether these two parameters influence
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the spreading physics in simulations, and how the rate coefficient in the non—
equilibrium boundary condition is affected when varying these. In Carlson
et al. (2011) simulations with different interface widths indicate that the rate
coefficient Dy, = €puy is a product of the interface thickness and a coefficient
iy, which we interpret as a contact line friction. By varying Dy, with € for
Cn = 1072 to Cn = 2.5- 1073 showed that the numerical results were rather
insensitive to the interface width. Also changing the mobility M (Pe number)
one order of magnitude, did not have any observable effect on the simulation
results.

Experiments were designed with the aim to capture even shorter timescales
than reported by Bird et al. (2008) and to see the effect for a wider range
of viscosities. Integration of experiments and simulations allowed thereby a
measure of the contact line friction factor from the phase field theory ps for
a wide parameter space. These results were reported in two articles Carlson
et al. (2012a,b).

py was measured from the numerics by comparing directly the wetted ra-
dius and the apparent dynamic contact angle from the experiments. The same
procedure was used in both the numerics and the experimental post—processing
for the measurement of the apparent dynamic contact angle. The primary in-
put in the axis-symmetric simulations are given directly from the experiment,
meaning that the measured value for density, dynamic viscosity, equilibrium
contact angle and surface tension are used. Fig. 6.4 shows the direct compari-
son of the wetted radius and dynamic contact angle predicted from the numerics
and the experiments for a water drop pm,0 = 1mPa - s and a glycerin—water
drop pgo.5% = 85mPa-s. Fig. 6.4a and fig. 6.4b shows that the bulk viscosity
influences both the speed of the contact line and the dynamic contact angle as
it relaxes in time.

Fig. 6.5 shows a direct comparison between the drop shape predicted in
simulations and in experiments, for the explored parameter space. By adjusting
a single parameter the complete dynamics match between experiments and
simulations. The measured contact line friction factor for the cases in fig. 6.5
are reported in tab.6.1. The value of 1 is found for all cases to be larger than
the dynamic viscosity and to depend on the solid wettability.

One interpretation of such rapid wetting is that inertia resists the spread-
ing motion (Biance et al. (2004), Bird et al. (2008)). One aim with our ex-
periments was to see if we could find a dependency of viscosity. One relevant
non—dimensional number to predict the relative dominance between viscous and
inertial forces would be the Ohnesorge number Oh = p/+v/poL. Oh is achieved
through dimensional analysis by assuming the spreading speed follows a capil-
lary scaling U = o/u. For water, such a scaling gives a speed U ~ 73m/s or
Oh = 0.005, while for the most viscous liquid used in the experiments (85mPas)
U = 0.73m/s or Oh = 0.4. This should indicate that all experiments would
follow an inertial scaling. Such a large difference in spreading speed for these
two viscosities are however not observed in experiments, see fig. 6.4a.
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Figure 6.4: a) Droplet spreading radius and b) dynamic contact angle as func-
tions of time for a pure water and an 82.5% glycerin-water droplet. The inset
in b) illustrates how the dynamic contact angle has been defined in the exper-
iments and the simulations. The dashed curves are simulations and the points
with error bars are experimental. Fig. 3 in paper 4 in Part II.

Mass fraction glycerin | 0% | 50% | 65% | 72.5% | 82.5%
SiO5 [Pa - §] 0.15 | 0.33 | 0.51 | 0.66 | 1.02
Silane [Pa - s 0.17 ] 0.26 | 0.33 | 0.41 0.80
Teflon [Pa - 5] 0.07 | 0.06 | 0.09 | 0.10 0.19

Table 6.1: Values for the contact line friction parameter py [Pa - s] for differ-
ent viscosities % glycerin [0, 50,62.5,72.5,82.5%)], pu ~[1,6.6, 14, 31,85|mPa - s
and substrates [SiOs, Silane, Teflon], 8, =[20°,60°,109°] measured from the
numerics.

Fig. 6.6a shows how the radial position of the contact line evolves in time
for drops with different initial radii and for different viscosities on the oxidized
Si—wafer. The markers represent the mean value after several realizations of the
experiments (minimum of four) and the data set has been reduced for clarity.
One observation to be made in fig. 6.6a is that the viscosity as well as the drop
size influences the spreading.

Fig. 6.6b shows the same data, with the contact line radius scaled with
the initial drop radius R and the time scale with a viscous capillary speed o /.
However, as is evident from fig. 6.6b, this scaling fails to collapse the data, so
the viscous contribution does not seem to be the limiting factor in this situation.
An alternative would be an inertial scaling of time based on an inertial capillary
velocity scale \/o/(pR), as shown in fig. 6.6¢c. As is evident here, this scaling
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Figure 6.5: Direct comparison of experimental results and numerical sim-
ulations for five drops with an initial radius R = (0.5 + 0.02)mm and
0,50, 62.5,72.5,82.5% glycerin mass fraction (from left to right), spreading on
Si0,Silane and Teflon (from top to bottom) at time 0.33ms after start of
spreading. Each panel shows a composite of experiment and simulation, where
the left half is the experimental picture and the right half the numerical pre-
diction. Fig. 2 in paper 4 in Part II.

does not capture the essential dynamics either, and we conclude that neither
inertia or bulk viscosity is the limiting factor for spreading in our experiments.

The remaining possibility is a capillary velocity based on the contact line
friction discussed above and quantified in tab.6.1. A representative velocity in
this case can be found from dimensional analysis to be u* = ¢/py. Introducing
the values for o and py from tab.6.1 gives a speed of ujy, ~ 4.8m/s for water
and ugg,, ~ 0.6m/s for 85% glycerin. By scaling time with R/u*, we do obtain
a collapse of data, for the entire range of viscosities and drop sizes, see fig. 6.6d.
The scattered dimensional plot represented in fig. 6.6a is reduced nearly to a
single spreading curve. Fig. 6.6 shows only results for the SiO5 surface, but
similar results are also obtained for the other solid surface coatings. The scaling
law indicates a local dissipation at the contact line to dominate the short—time
spreading, in accordance with the numerically measured dissipations in Carlson
et al. (2011) and presented in fig. 6.3.
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Figure 6.6: The spreading radius in time on an oxidized Si-wafer for two drop
sizes R = (0.3 & 0.02)mm (hollow markers) and R = (0.5 + 0.02)mm (filled
markers) for different mass fractions glycerin as indicated in the legend. (a)
Dimensional units. (b) Viscous scaling. (c¢) Inertial scaling. (d) Contact line
friction scaling. Fig. 2 in paper 5 in Part IIL.



CHAPTER 7
Concluding remarks

Two types of interfacial flow, droplet dynamics in a bifurcating channel and
dynamic wetting, have been studied in this work, with the aim to improve the
current understanding of their governing physics. Both of these flows have been
studied by means of numerical simulations, based on a phase field model.

Droplets that meet a channel junction is a common occurrence in any mi-
crofluidic device, however numerical simulations of two—phase flow in such com-
plicated geometries have so far been rather limited. We have demonstrated that
by solving the Cahn-Hilliard and Navier Stokes equations with a finite element
method, allowing meshing of complicated geometries, the droplet dynamics
can be predicted at the tip of the channel junction. In the future this opens a
window of opportunity to, probe two—phase flows in an even more challenging
geometrical system, which are of great industrial relevance. Examples of such
type of flows are imbibition in porous media, impact of drops on complicated
substrate structures and drops that travels in microfluidic devices.

Spontaneous capillary driven spreading on dry solid substrates has been
investigated in both numerical simulations and experiments. The ability to
conduct both, allow a direct comparison of the two as the drop spreads. Critical
evaluation of phase field simulations reveal that a common assumption of local
equilibrium at the contact line predicted results, which could not rationalize
the experimental behavior. This illustrates that a key ingredient was missing in
the model. A non—equilibrium boundary condition, first postulated by Jacqmin
(1999), was implemented and the numerical simulations reproduced the exper-
iments. To the authors knowledge, the influence of this boundary condition in
macroscopic simulations has previously been unknown.

Another important outcome of the understanding of the non—equilibrium
boundary condition is that it allows a new interpretation of the physics at
the contact line. Phase field theory predicts a new parameter in this boundary
condition, which is interpreted here as a contact line friction factor. The friction
at the contact line generates in this model a dissipation as it moves. The
friction factor was measured for a wide parameter space, by direct comparison
of spreading experiments and the numerical simulations. Our numerical results
show that there is a significant dissipation generated locally at the contact line,
which is believed to govern short—time dynamic spreading. A scaling law based
on the contact line friction parameter also collapsed the experimental data set,
which could not be explained by a conventional viscous or inertial scaling.

41



42 7. CONCLUDING REMARKS

One important remark to make about phase field simulations of wetting
phenomena, is that with todays state-of-the—art computational resources,
we are still far from resolving all important length scales when modeling
the spreading of a millimeter drop. One practical implication of the limited
computational power is that in macroscopic phase field simulations, the
interface width has to be taken much larger than what can be physically
argued. A matter in question is whether the non-—equilibrium boundary
condition presented here merely compensates for the fact that all relevant
length scales are not resolved. One suggestion for future work, which might
bring answers to such hypotheses, would be to make a direct comparison with
phase field simulations and a type of first—principle simulations, like molecular
dynamics. This could even clarify the intricate nano scale physics at the
contact line, which might influence or even dominate dynamic wetting.

A myriad of two—phase flow phenomena still hold scientific challenges.
Many of these are also of great importance in industrial applications. Contact
line hysteresis is one example of such a phenomenon. Both substrate defects
and chemical heterogeneity are well known to generate contact line hysteresis,
but how these influence a dynamic wetting process is yet to be quantified.

Another phenomenon of scientific interest is chemical reaction at interfaces.
In many microfluidic systems droplets are used to transport different chemical
components. When these droplets get close to each other or even coalesce,
the different chemical species can rapidly react. This might locally modify the
surface tension as well as generate an increase in temperature, which can create
a non-trivial flow and even promote mixing at the micro scale.

Yet another avenue of research that holds scientific challenges is the under-
standing of how three phase mixtures interact with a solid. Today, a significant
effort has been devoted to the modeling of two phase flow and how an interface
wets a solid substrate. Development of models that accurately predict the in-
teraction of a three phase liquid mixture and a solid substrate has so far been
rather limited in the literature. Details of the physical processes that govern
the dynamic interaction between oil-gas/water—gas/water—oil interfaces in con-
junction with a solid is particularly relevant to the oil and gas industry. Such
liquid mixtures are encountered both in the oil recovery in porous rock for-
mations and in the cleanup of oil spills in the ocean. Plastic foams have been
shown to efficiently absorb and remove oil sheen from the B. P. Deepwater
Horizon 2010 oil spill accident in the Mexican Gulf. Models that describe how
the oil-water—gas mixture behaves upon contact with the solid material can be
invaluable for increasing the efficiency and can even promote novel design of
materials to cleanup oil spills.

From a modeling perspective all of the above mentioned phenomena still
lack a complete and physically sound description. Development of models thr-
ough guidance of experimental observation, which could even allow a direct



7. CONCLUDING REMARKS 43

comparison, can open hidden doors that might disclose more of Natures phys-
ical secrets.
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In the present paper we present a phenomenological description of droplet dy-
namics in a bifurcating channel that is based on three—dimensional numerical
experiments using the Phase Field theory. Droplet dynamics is investigated in
a junction, which has symmetric outflow conditions in its daughter branches.
We identify two different flow regimes as the droplets interact with the tip of
the bifurcation, splitting and non-splitting. A distinct criterion for the flow
regime transition is found based on the initial droplet volume and the Capil-
lary (Ca) number. The Rayleigh-Plateau instability is identified as a driving
mechanism for the droplet breakup close to the threshold between the splitting
and non-splitting regime.

1. Introduction

Droplet dynamics is a very common phenomenon that can be observed in ev-
eryday life, for instance during rainfall and in your kitchen sink. Due to their
ubiquitous occurrence with fascinating physical phenomena they have attracted
the attention of scientists for more than a century. Nonetheless, many flows
involving droplets are yet not fully understood. This is a direct consequence of
the complex physical picture formed by the competition between hydrodynamic
and free—surface forces, in addition to the wetting phenomenon that governs
the nature of the interaction between the interface and the solid surface.

During the last decade there has been a rapid growth of droplet microfluidic
applications, which has resulted in an increased interest in flow physics at the
micro scale. In these applications it is of utmost importance to obtain well-
defined droplet behaviors as they traverse geometrically complex networks of
channels.

One avenue of droplet microfluidics is the use of droplets as compartments
for a desired physical phenomenon such as mixing, as shown by Garstecki, Fis-
chbach, and Whitesides (2005). Mixing in micro scale is a well-known obstacle,
since it is merely driven by molecular diffusion. One direction to follow in order
to foster mixing is emulsion, which can be realized by design of droplet—droplet
interaction. The potential use of an emulsion technique is often limited by the
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possibility to precisely control the droplets size distribution. Passive droplet
formation, in a device requiring no moving parts, have been demonstrated in a
flow focusing device by Anna, Bontoux, and Stone (2003) and by geometrically
mediated droplet division in a A junction (Menetrier-Deremble and Tabeling
(2006)) and droplet formation in T-junctions (Link et al. (2004)). Droplets can
also be introduced in microfluidic devices to perform specific tasks, where they
have shown promise as flow parameters to perform logical operations (Prakash
and Gershenfeld (2007)) and used to code/decode various signals (Fuerstman,
Garstecki, and Whitesides (2007)).

The importance of understanding droplet and bubble dynamics in complex
networks goes well beyond its relevance to design and applications in microflu-
idic technology. They are also widely encountered in medical technology where
they are used as vehicles for drug transport, part of medical treatment strate-
gies (gas embolotherapy) or an undesired bi—product of a clinical treatment
(air embolism). Air embolism occurs as an air bubble enters the vascular sys-
tem that may have a dangerous or even fatal outcome, if appropriate measures
are not taken. As the bubble traverses through the vascular system it might
lodge in one of its micro—circulations occluding the natural blood flow, causing
ischemia (Bull (2005)). If a bubble should be trapped in one of the critical
sections in the body such as a capillary in the brain or in a coronary circula-
tion the outcome could be disastrous. Embolotherapy on the other hand is a
medical treatment strategy that exploits bubbles and their free surfaces (Bull
(2005)), where a bubble is introduced in order to occlude the blood flow to
certain parts of the tissue thus excluding its oxygen supply.

The medical relevance of embolism and embolotherapy has initiated exper-
imental investigations of bubbles in artery and capillary geometries (Calderon,
Fowlkes, and Bull (2005), Calderon et al. (2006) and Eshpuniyani, Fowlkes, and
Bull (2005)), in an attempt to predict which blood vessel it will occlude. Differ-
ent flow regimes for bubble splitting and lodging were observed. Eshpuniyani
et al. (2005) found the non-splitting bubbles to be sensitive to gravity, with
regard to which branch it would choose to lodge into. Baroud, Tsikata, and
Heil (2006) made a similar observation about the disturbance sensitive nature
of slug flow in a symmetric Y-junction. For velocities above a certain threshold
the long, low viscous, liquid plugs divided asymmetrically as they propagated
into a junction that was filled with air. The initial perturbation was believed
to originate from a small imperfection, near the tip of the bifurcation, in the
fabrication of the channel, as the fastest finger was always associated with the
same branch.

In contrast to the vast amount of experimental results on droplet and bub-
ble transport in complex geometries the literature on numerical experiments is
scarce. Historically, computational multifluid dynamics has been restricted to
rather simple geometries. As a result there is available today a great deal of
knowledge about droplet and bubble dynamics in straight pipes and channels
(Bretherton (1961), Taylor (1960), Aussillous and Quere (2000)). Numerical
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prediction of two phase flows in T-junctions have been previously demonstrated
by van der Graaf et al. (2006) with the Lattice Boltzman method and, low res-
olution simulations, performed by De Menech et al. (2008), De Menech (2006)
with the Phase Field method. We recognize that numerical results on droplet
dynamics in Y-junctions are elusive. Manga (1996) investigated the motion of
drops in a Y-junction with equally sized daughter branches with the boundary-
integral method (Pozrikidis (2001)). He based his analysis on the assumption
of a channel flow of Stokes type (Re < 1). His two-dimensional simulation
results indicated that the drops have a tendency to follow the channel branch
with the highest flow rate, and that two drops could interact at the tip of the
bifurcation. Such a droplet—droplet interaction points at a plausible mixing
effect by emulsification.

In order to numerically capture all physical aspects of droplet dynamics
in complex geometries there are several obstacles that need to be overcome
both in terms of modeling and in the numerical treatment. First, such simula-
tions should rest on a physically sound description and numerically consistent
treatment of complex wetting phenomena and free surface forces. The compu-
tational technology needs to be able to handle two or more phases with different
densities and viscosities that undergo topology changes such as droplet breakup.
We also need the capability to deal with numerical domains of unstructured
meshes. Solving the Cahn—Hilliard and the Navier Stokes equations with a
finite element method appears as a computational platform realizing these re-
quirements, opening a window of opportunity for numerical experiments on
interfacial dynamics in complex geometries.

In the present paper we aim to elucidate parts of the physics governing
droplet dynamics in bifurcating channels. Our investigation is based on three—
dimensional numerical experiments by solving the Cahn—Hilliard and the Navier
Stokes equations with a finite element method. A multiphase flow consisting
of two binary immiscible liquids is simulated in a bifurcating channel, which is
frequently encountered in medical technology and microfluidic applications.

We seek in particular to define the parameter range that controls the re-
sulting droplet dynamics. In other words, for what critical condition does the
droplet split or not as it interacts with the tip of the bifurcation. To reduce the
number of parameters that might affect such phenomena and to isolate effects
from the capillary force, we consider here two phases with equal density and
viscosity. In what follows we will show that a type of Rayleigh-Plateau instabil-
ity, which is not captured in two-dimensional simulations (Pozrikidis (2001)),
can be a driving mechanism for droplet breakup. Two distinct flow regimes are
characterized, splitting and non—splitting droplets. A relation between the two
regimes has been identified, based on the initial droplet size and the Capillary
(Ca) number. We find the non—splitting flow regime to inherit an unstable
nature, which has a direct impact on the mass flow distribution in the channel
branches.
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2. Mathematical formulation
2.1. The phase field theory

The phase field theory is based on the thermodynamical consideration of the
free energy of a binary system. The two components are here assumed to be
immiscible and separated by a narrow diffuse interfacial region. By considering
that two immiscible components actually mix over an interfacial region van der
Waals (1893) proposed the idea of a diffuse interface. The composition profile
of the interface can be seen as the competition between the random molecular
motion and the molecular attraction.

Cahn and Hilliard (1958) derived the free energy by making a multivariable
Taylor expansion about the free energy per molecule,

[ = BU(C) + 5|VCP (1)

following here the phase field derivation and notation by Jacqmin (1999) where
C is an order parameter. The creation of an interface is established by the
competition between the bulk free energy SU(C), and the interfacial energy
2|VC|? due to composition variations. « and (3 are constants that comes
out directly from the Taylor expansion, see Cahn and Hilliard (1958), and are
proportional to the surface tension coefficient o and the interface width e, 3 ~ Z
and a ~ oge. The free energy functional ¥ and the phase field parameters «,
[ and the mobility M control the interfacial dynamics and width. ¥ is taken
as a double-well function, ¥(C) = 1(C + 1)?(C — 1)2, which will give the two
equilibrium states at C==1. Integration over the volume of the systems gives
the total free energy defined by F' = fQ fdV. The functional derivative of F’
with respect to the order parameter C gives rise to the chemical potential,

OF
= — =pV'(C) - aVC. 2
- ( e
By minimizing the chemical potential with respect to C' we obtain the equilib-
rium profile to the interface, here given in one dimension as Cy(z) = tanh(ﬁ).

€= \/% is the mean field thickness and the surface tension is defined by the

integral,
> dCy\? W2 1 .
= - dr = —a232. 3
aa/_oo<dx>x Saﬁ (3)
By taking into account the effects of the fluids motion a convection—diffusion
equation is obtained, also referred to as the Cahn—Hilliard equation

oC
Sr +uVC =V (MV) = V- (MV(B\I"(C) - aV20)> . @
where the mobility M is considered as a constant. We require that there is no
flux of the chemical potential through the boundaries of the domain, which is
fulfilled by the Neumann boundary condition
0
9% _

On ’ (5)
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where n is the normal vector to the boundary. The surface free energy contri-
bution is postulated as (Carlson, Do-Quang, and Amberg (2009))

Fyan = / losL + (osv — os1)9(C)] dA, (6)

where o ) is the surface energy between the three different phases; liquid (L),
gas (V) and solid (S). g(C) = 0.5 + 0.75C — 0.25C® is a smooth function
between zero and one, and its derivative ¢’(C) will be non—zero only at the
diffuse contact line. In eq. 6 it is assumed that the interface is at or close to
equilibrium as it wets the solid surface. 6y is the equilibrium contact angle,
formed between the tangent of the interface and the solid surface, given by
Young’s Law; cos(fp) = 75¥“—%5L. Through the variational derivative of the
total free energy of the system, with respect to C, and integration by parts,
the natural boundary condition for the concentration at the wall is obtained,

ag—i + o cos(y)g’ (C) =0 (7)

governing the diffusively controlled wetting at local equilibrium (Carlson et al.
(2009)).

2.2. Governing equations for the motion of the fluids

Both phases are considered as incompressible in an isothermal system,
V-u=0. (8)

The interfacial two-phase flow is governed by Navier Stokes equations,

P @‘t‘ +(u-v) u> - VP4V (u(Vu + (Vu)T)) —Cove  (9)
where u is the velocity and P is the modified pressure (Jacqmin (1999)). p and
w are the fluids density and dynamic viscosity, which are equal in both phases.
The last term is expressing the surface tension force that is based on the model
proposed by Jacqmin (1999). We impose a no—slip boundary condition at the
wall u = 0 and prescribe a velocity profile at the inlet with the shape of a
paraboloid. To obtain a well-posed problem we apply a Neumann boundary
condition on the pressure at the inlet,

orP

on
At the outlets the pressure is defined with an essential boundary condition
P =0, and a Neumann boundary condition is used for the velocities,

ou
= 0. (11)

0. (10)
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2.3. Scaling laws

The governing equations are made dimensionless based on the characteristic
parameters of the flow, giving the dimensionless variables (denoted by *)

30,
NP (12)

where L. is a characteristic length scale and U is the reference velocity. By
introducing this scaling into the Navier Stokes and Cahn-Hilliard equations we
obtain their non—dimensional form, where the * notation is left out,

V-u=0, (13)

L.
x=L.* t= Ft*, P =pU%P*, u=Uu", ¢ =

aC 1, 1

- v (\1/’(0) - Cn2V2C) , (14)

p (811 +(u-V) u) - —vp+% (v. (u(Vu+ (Vu)T)) CW}) . (15)

ot - Cn-Ca
Here four non-dimensional numbers appear:
2v2UeL. € pULL, 2v2uU
¢ 3Mo " L. ¢ wo ¢ 30 (16)

The Peclet (Pe) number expresses the ratio between advection and diffusion.
The Cahn (Cn) number expresses the ratio between the interface width and
the characteristic length scale. The Reynolds (Re) number expresses the ratio
between the inertia and the viscous force. The Capillary (Ca) number expresses
the ratio between the viscous and the surface tension force.

2.4. Computational technology
2.4.1. The numerical toolbox femLego

The computations have been carried out using the numerical toolbox femLego
(Amberg et al. (1999)), a symbolic tool for solving partial differential equations.
The user has full control over the mathematical modeling and the numerical
solution procedure as the partial differential equations, boundary conditions
and numerical solvers are all defined in a single Maple worksheet. The code
inherits adaptive mesh refinement and parallel computation capabilities (Do-
Quang et al. (2007)).

Due to the stiff nature of the Cahn—Hilliard equation, great care needs to
be taken in the solution procedure in order to avoid numerical instabilities.
The equation is treated and solved in accordance with Villanueva and Amberg
(2006) with a type of preconditioned Conjugate Gradient (CG) method. The
Navier Stokes equations are solved using a projection scheme, proposed by
Guermond and Quartapelle (1997). The non-linear convective term is treated
semi-implicitly permitting larger time steps during the computations, its linear
systems for the velocies and pressure are, respectively, solved with a Generalized
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[ Cun [ 0.04 ] 0.04 [ 0.06 | 0.08 ]

Az ]0.013 | 0.02 | 0.02 | 0.027
Perror | 0.6% | 2.0% | 0.6% | 0.9%

Table 1: Deviation between the numerical and analytical pressure for different
Cn numbers and mesh resolutions. Ax is the mesh spacing and P, is defined

as the relative error between the analytically and the numerically predicted

pressure jump, Peppor = 100 - (1 — N o e—

Minimal Residual method and a CG method. A first order forward Euler
scheme has been applied for the time marching and all variables are discretized
in space using piecewise linear functions.

2.5. Model validation
2.5.1. The Laplace Law

In order to assure that the mathematical modeling in three dimensions is cor-
rectly implemented it has been validated against the Laplace law. The Laplace
law gives an analytical expression for the pressure difference inside and outside
of a static droplet or bubble submerged in a liquid. This test does in particular
concern the treatment of the surface tension force that is directly balanced by
the pressure force.

We have measured the pressure jump for different mesh spacing and
Cn numbers. The Cn number gives the ratio between the width of the diffuse
interface and the characteristic length scale in the flow, here being the droplet
diameter d. The results are summarized in table(1), where we have kept the
Ca =1, Pe =3-1072 and Re = 1 fixed. These dimensionless numbers gives an
analytical pressure difference (AP)analytical = 8/2 /3. The numerical domain
has an extension of [2d x 2d x 2d] and an equidistant mesh has been applied.
Table(1) is summarizing the relative error between the computed and analyti-
cal pressure prediction for different Cn numbers and mesh spacings, after eight
time steps. It is noted that the correct pressure is immediately obtained with
good agreement between the numerical and analytical solution. One trend in
table(1) is that the error in pressure depends on the numerical resolution of the
interface. Another observation is that the correct pressure jump is obtained
even with wide interfaces.

2.5.2. Deformation of a droplet in Couette flow

The dynamic behavior of the surface tension force has also been verified by
validating the numerical solution of the deformation of a three—dimensional
droplet in a Couette flow. Taylor (1934) derived analytically the deformation
(D) of a droplet in a shear flow in the limit of low Re numbers (Re < 1), which
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Figure 1: Tllustration of the Couette flow and a description of the minor (B)
and major (L) axis of a droplet at steady—state.

he also verified in experiments,
19X\ + 16 L—-B
T 116 T L+ B
Here the viscosity ratio of the two liquids is A, L and B are the major and minor
axes, respectively. The Ca number Ca = ‘%’d is defined by the shear rate ¥,
the viscosity of the continuous liquid and d the droplet diameter. The deforma-
tion parameter D can be extracted from experiments and numerical simulations
by measuring the major and minor axis when the droplet has reached steady—
state. A two—dimensional sketch of the domain and a schematic description
of the droplets minor (B) and major (L) axis is given in fig. 1. Initially the
droplet is spherical and it deforms into an elliptic shape.

(17)

Table(2) gives the relative difference between the analytical and numerical
results for a droplet in a Couette flow for various Ca numbers. All results
are found to be in good agreement with the analytical prediction from Taylor
given in eq. 17. Fig. 2 shows the velocity vectors in a plane extracted at the
center of the domain with a normal [0 - €,,0 - &,,1 - €.] and the iso-surface
of C=0 is describing the droplet shape. The simulation has reached steady—
state, meaning that the capillary force balances the viscous force acting on the
droplet. Three stagnation points are observed in the extracted plane, one at
the center of the droplet and the two others are symmetrically placed at the
left and right side of the droplet, see fig. 2.

2.5.3. Geometrical description of the domain

Droplet dynamics is investigated in a three-dimensional Y—junction described
by the two-dimensional sketch given in fig. 3, where the z-direction goes into
the plane of the figure. A velocity profile with a shape of a paraboloid, with a
non—dimensional mean velocity & = 1, has been prescribed at the inlet of the
parent channel, and a Neumann boundary condition is defined for the pressure.
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Figure 2: The two—dimensional velocity profile in the plane [0, 0, 1] and the
droplets iso-contour C=0 at steady—state in a Couette flow.

[ Ca ]015] 0.1 [0.08]0.06 |
[ Derror | 28% [ 1.1% [ 0.8% [ 1.0% |

Table 2: The relative deviation between the analytical and computed deforma-
tion parameter is given for different Ca numbers. All other parameters have
been kept constant Re=0.01, Pe = 103, Cn=0.06 and A = 1 and the mesh is
equidistant with a spacing Az = 0.02.

A symmetric outlet condition is given for the pressure (P = 0) at the upper and
lower daughter branch. The parent channel has a quadratic cross section L2, L
being the width of the channel, and the daughter branches have a rectangular
cross section L - Lp where L is in the z-direction. The daughter to parent
channel area is L'LL23 = 0.75 and 6 is the bifurcation angle. The droplet has
initially a volume V; and the non-dimensional volume is defined as V' = %
The walls are hydrophobic, having an affinity of the continuous phase, with
an equilibrium contact angle of §,=180 degrees. This prevents wetting of the
dispersed phase on the channel surfaces. The non-dimensional numbers given
in eq. 16 are defined with the characteristic length scale chosen as the width
of the parent channel L. = L and the reference velocity has been chosen as the
mean velocity at the inlet.

Droplets are an important part in microfluidic applications that often con-
sist of complex networks of channels. Microfluidic flows are laminar, but the Re
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Figure 3: Geometrical description of the numerical domain.

number can be greater than unity (Song et al. (2003)) as the droplets traverses
through these complex geometries. The focus here is on the detailed droplet
dynamics in a generic flow configuration at small scales, a bifurcating channel,
rather than simulating a whole microfluidic system. Here the Re number is
small, but larger than unity Re=14.7 and Pe = 1 - 103, both kept constant
in all simulations. These non-dimensional numbers can be interpreted as a
flow consisting of two immiscible liquids with, say, material properties simi-
lar to water (p = 103kg/m3, u = 0.001Pas) with a bulk diffusion coefficient
Dp = 1.47-107%m?/s. The continuous phase would then have a mean veloc-
ity at the inlet U=0.0147m/s and the width of the parent channel is L=1mm.
These dimensions are typical of many microfluidic systems, see for instance
Song et al. (2003), Calderon et al. (2005) and Eshpuniyani et al. (2005). The
only material property we vary in the simulations is the surface tension coeffi-
cient for the two phases; 1.4-1074 <0 < 7.8-1072 (0.1 > Ca > 1.8 -1073).
The channel has an extension in the x-direction of about 10L. A nearly
equidistant mesh has been employed between the inlet and the straight section
(in x-direction) of the branches, with few skewed cells near the point of the
bifurcation. L is discretized by 50 node points. In the straight section of the
branches where they are aligned with the x-direction, has a coarse mesh with
L~10 node points in order to reduce the computational time. The extension of
the branches ensures that the droplet behavior is not influenced by the outlet
boundary condition in the simulations. The mesh consists of nearly 7.5 million
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tetrahedron elements and the computational time on 1024 processors for a
single case was about 24 hours.

3. Freely evolving droplet dynamics
3.1. Flow regimes: splitting and non—splitting

In the quest to identify the parameters that govern the process of droplet
splitting or non—splitting in the junction, a set of simulations with different
Ca numbers and initial droplet size were performed. Fig. 4, 5, 6 displays the
three—dimensional droplet iso-surface for C=0and the velocity field in the cross
section, taken at the centre line in the channel, with a normal [0-€,,0-&,,1-€,].
In these three simulations the droplets have the same initial shape, as a liquid
slug, with the aspect ratio % = 2, a volume V = 0.67 and Cn= 0.06.

Fig. 4 describes the temporal droplet evolution with its velocity vectors for
Ca=3.0-1073. Fig. 4a shows the elongated droplet as it is just about to come
in contact with the edge of the junction. It deforms symmetrically forming two
identical liquid fingers in the upper and lower daughter branch, which almost
completely fill the channel, (fig. 4b). The droplet rear forms a small curvature,
with a large radius, at the entrance of the bifurcation, bulging in the upstream
direction (fig. 4b). A cylindrical liquid thread is formed between the tip of the
junction and the droplet rear, which drains symmetrically into the branches,
see fig. 4c. As the circumference of the thread becomes less than its normal
length, the surface tension force starts to contract it radially. This eventually
results in a pinch—off and the formation of two equally sized daughter droplets,
with a spherical shape. The two droplets propagate downstream in the channel
branches, and a thin film is formed of the continuous phase, between the channel
surface and the droplet interface, see fig. 4d.

Fig. 5 describes the temporal droplet evolution with its velocity vectors for
Ca= 2.2 -1073. In comparison with the results in fig. 5 the capillary force is
here just slightly stronger, resulting in an almost identical droplet shape as it
approaches the junction (fig. 5a). Fig. 5b shows the droplet as it has deformed
in the junction. Due to the stronger capillary force it has a larger curvature at
its rear than observed fig. 4b. The deformation of the interface converts work
done by inertial and viscous forces into surface energy, leading to a decelera-
tion of the droplet at the tip of the junction. Notice that the magnitude of the
velocity vectors inside the droplet is smaller in comparison with the outer flow.
It stays at the junction until the incipience and growth of an instability similar
to the Rayleigh-Plateau (R-P) (Rayleigh (1882)) instability. This instability
appears as the length of the liquid thread exceeds its circumference, meaning
that its surface area can be reduced by breakup as this is energetically favor-
able. The instability is here not initiated exactly at the centre of the channel,
causing a slight asymmetric drainage of the liquid bridge, with a higher flow
rate entering the lower branch (fig. 5c). Finally, the thread pinches off forming
two droplets, where the droplet in the lower branch is slightly larger than the
droplet in the upper branch (Fig. 5d).
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(c) T=2.7. (d) T=3.0.

Figure 4: Droplet dynamics in a bifurcating channel at four different snapshots
in time with Ca = 3.0 - 1072 and V=0.67, in the splitting regime. The figure
shows the iso-surface for the order parameter C=0 with Cn= 0.06 and the
velocity vectors in the plane [0,0,1].

Fig. 6 describes the temporal droplet evolution with its velocity vectors
for Ca= 1.8 -1073. By further reducing the Ca number, in comparison with
fig. 4, 5, through an increase in the surface tension force, we observe a different
droplet behavior . Initially, the droplet approaches the junction in a similar
fashion as reported above. But the dominating surface tension force reduces
the ability of the inertia and viscous force to deform the droplet and it obtains
a quasi steady-state condition, with no internal flow, as it sticks in the junction,
see fig. 6a.

Due to the stronger capillary force, a larger curvature is generated at the
droplet rear, resulting in a larger radius of the liquid thread. This has a direct
consequence on the resulting droplet dynamics, as the birth of a R-P instability
is prevented. Although the droplet preserves this state for several hundred
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Figure 5: Droplet dynamics in a bifurcating channel at four different snapshots
in time with Ca = 2.2- 1072 and V=0.67, in the splitting regime. The figure
shows the iso-surface for the order parameter C=0 with Cn= 0.06 and the
velocity vectors in the plane [0,0,1].

time steps, we find this sticking behavior to inherit an unstable nature as the
droplet always exits into one branch. The incipience of a numerical disturbance,
generates a slightly asymmetric flow in the film formed between the droplet
interface and the channel surface, which initiates droplet slipping see fig. 6b.
As the perturbation grows the droplet migrates into the lower daughter branch
(fig. 6¢). This leaves an asymmetric distribution of the phases in the daughter
branches and the droplet wrapping generates a flow recirculation in the upper
branch. For flows with Re < 1 such recirculation patterns would be absent,
as they would be damped by the viscosity. Finally the droplet propagates into
the lower branch, see fig. 6d.

The temporal evolution of the surface area for the three cases reported
above are shown in fig. 7. The vertical axis depicts the non—dimensional
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Figure 6: Droplet dynamics in a bifurcating channel at four different snapshots
in time with Ca = 1.8 - 1072 and V=0.67, in the splitting regime. The figure
shows the iso-surface for the order parameter C=0 with Cn= 0.06 and the
velocity vectors in the plane [0,0,1].

droplet surface area, where A; is the initial droplet area. The droplets have
initially the same shape, but different surface tension coefficients. As shown in
fig. 4, 5, 6, small variations in the magnitude of the capillary force can have a
large influence on the droplets ability to deform in the bifurcation. We notice
in fig. 7 that their initial shape is not being energy minimized, explaining the
small deviation from the value one at the first output at T=0.1. As the droplets
approach the tip of the bifurcation they deform in a similar manner, with a
continuous decrease in surface area. They obtain the same minimum surface
area as the major part of the droplet occupies the region where the channel
bifurcates, see fig. 7 at T~1.5. At this place in the channel the droplet is least
confined between the walls, so that it attains a shape with a surface area being
less than what it had in the parent channel. As the droplets nose interacts with
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Figure 7: The temporal evolution of the surface area for three droplets with
different C'a number, with V=0.67 and A; is the initial droplet surface area.

the tip of the junction it deforms into its two branches. This leads to an increase
in surface area, where the three droplets deform in a similarly fashion until the
time T=2. Around this time, the effect of the different Ca numbers starts to
manifest itself. The case with the lowest surface tension force (Ca = 3 -1079)
has a linear increase in surface area from the time T=1.5 until droplet breakup
at T=2.8. An abrupt change in surface area is then observed, demonstrating
that splitting is energetically favorable. Afterwards, the two droplets readjust
into their equilibrium shape as they propagate into the two daughter branches.

For the case with Ca = 2.2 - 1073 the slope of the surface area in time
becomes different around time T=2. Here the surface force becomes comparable
with the inertia and the viscous forces acting on the droplet, which increases
the deformation. The change in Ca changes also the temporal timescale in the
flow, and breakup takes place at T=3.1.

The non-splitting droplet (Ca = 1.8 - 1073) has a different behavior than
the two cases with lower surface tension coefficients described above. Its surface
area increases up to around time T=2.4, then its growth almost ceases with
just a small change in surface area until T=3.3 when the droplet stops at
the tip of the bifurcation, see fig. 6, 7. Around T=3.3 the droplet starts
to wrap into the lower branch, having a large effect on its surface area that
rapidly reduces by around fifteen percent between time T=3.2 and T=3.7.
As the droplet has migrated into the lower branch it adjusts into its energy
minimizing shape, obtaining a lower surface area than it had at time T=0.
That its surface area is less in the smaller branch than in the larger parent
channel may seem counterintuitive. This is due to that the speed in the channel
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containing the droplet is decreased, giving a lower local Ca, and thus a smaller
droplet distortion.

Q;, Qu and @ are the mass fluxes through the inlet, upper and lower
outlet, respectively, see fig. 3. Fig. 8 shows how the non—splitting droplets
influence the mass flow distribution in the junction. The figure describes the
ratio between the outflow in the upper branch (Qy ), which is not occupied by
the droplet, and the inflow (Q;). It should be noted that by monitoring the ra-
tio between the lower branch and the inlet produces a symmetric plot as seen in
fig. 8. The splitting droplets, of equal size, produce a symmetric outflow of the
two daughter branches. The asymmetric effect generated by the non—splitting
droplets is clearly demonstrated in fig. 8 and portray that the droplets, al-
though having the same density and viscosity as the continuous phase, acts as
a flow resistance in the branch they occupy. This effect is primarily generated
by the interface, which is sensed by the outer flow. We note that such an ob-
servation has also been made in droplet experiments performed by Garstecki
et al. (2005). The blue hollow circles describe the mass flow ratio, in this con-
text, of a large droplet, which does not obtain a steady outflow before entering
the section of the branch that is aligned with the x-direction. Nonetheless for
smaller droplets one can observe in fig. 8 that there is a dependence on the
droplet size and the distribution of the continuous phase in the two branches.
These results reveal that the flow ratio between the upper and lower branch
converge towards a constant value, depending on droplet size.

By monitoring the outflow ratio in time we can observe the effect of the
perturbation as the droplet wraps into the branch. This is illustrative for
the two cases where the droplet has the same size (V=0.52), but different Ca
numbers. For these cases the path to the final outflow distribution between the
branches are highly different, but their final value is nearly the same. This also
shows, for the parameters space investigated here, that the Ca number plays a
minor effect with regard to the outflow ratio, see fig. 9.

By plotting the final outflow ratio between the upper and lower branch, we
find the relationship for the flow resistance that is dependent on the droplet
size, see fig. 9. The outflow ratio is found to depend linearly on the droplets
volume, the dashed line in fig. 9 is described by % =0.94+0.70V. The large
droplet, see blue hollow circles fig. 8, have been disregarded here as the outflow
ratio does not reach steady-state in the branch.

3.2. Flow regime map

The droplet splitting or non—splitting phenomenon depends mainly on the rel-
ative dominance of the surface tension force, represented in the Ca number.
The resulting droplet dynamics seem to also highly depend on its initial con-
figuration, identifying the droplet size and the Ca number as two of the key
parameters for the definition of the multiphase flow characteristics in the junc-
tion. Similar experimental observations have been made in both T- (Link



Droplet dynamics in a bifurcating channel 79

0.6 :
V V=0.18, Ca=0.015 X%
0.58] * V=0.27, Ca=0.01 O, ]
V=0.40, Ca=6-10" o %0000000000(
0561 A v-0.52, Ca=1.810" o
054l ¢ V=052, Ca=3.5107 e
O V=067, Ca=1.810" O PR

052 K 0 ]

)

g 0.564 1
0.48 ]
0.46 ]
0.44} © ]
0.42 © ]

0.5 1 15 2 25 3 3.5 4 4.5 5
time, T

Figure 8: The mass flow ratio between the upper outflow branch and the inflow,
where the vertical axis describe the outflow ratio %—U

et al. (2004)) and A-junctions (Menetrier-Deremble and Tabeling (2006), Esh-
puniyani et al. (2005)). These parameters form a non—dimensional space, which
is explored in numerical experiments, describing the relationship between the
splitting and non-splitting flow regimes as shown in fig. 10.

Note in particular that there seem to be a distinct, well-defined, condition
for the flow regime transition between splitting and non-splitting droplets.
Close to this threshold we recognize that a slight variation in droplet size or
the surface tension force could have a tremendous affect on the flow physics in
the junction. These findings identify that large droplets favor splitting and that
such a process is hard to obtain with small droplets. Strikingly, the threshold
for splitting or non-splitting falls on a single curve given by V' = —0.79 — 0.53 -
log(Ca), see fig. 10.

The red circles in fig. 10 represent the results for simulations with a thicker
interface Cn=0.08. We note that the criterion for splitting and non-splitting
changes with the interface width. Close to the splitting/non-splitting threshold
it is expected that even small changes in parameters, like the interface width,
will have an effect on the results. By reducing the interface width the split-
ting curve might shift slightly towards higher Ca numbers, although the shape
of the curve and the actual interfacial dynamics are not believed to change
significantly.

There are some salient points that need to be emphasized. We note that
the disturbance initiating droplet motion into the lower branch in the non-
splitting regime has a numerical nature. Flows involving droplets that will not
split or rigid particles that enter a bifurcation are inherently unstable. Here the
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Figure 9: The droplet volume V is plotted against the mass flow distribution
between the upper and lower branch 8—‘; The dotted line is added as a guide
to the eye. A linear relationship between the mass flow ratio and volume is

found to be approximated to; % =0.9440.70V.

droplet always enters the same branch, demonstrating that the perturbation is
numerically consistent for all cases. One hypothesis for the perturbations is that
there is a slight asymmetry in the mesh near the point of bifurcation. Another
explanation could be that this effect is caused by the convergence criteria, even
though they are small at each time step (e ~ 10~7) they are of finite size and
accumulate in time. In order to quantify the magnitude of the perturbation
needed to control the droplet motion, we introduce a small asymmetry between
the two outlet boundary conditions. This is done in practice by restarting the
simulations from a state when the droplet sticks in the junction, placing a small
variation between the pressure outlets. We observed that the droplet change
branch when a pressure difference of AP = M ~ 0.04 is placed
between the two branches, where P;, is the inlet pressﬁre at the restarted time
step. This indicates the disturbance sensitivity nature of the non—splitting flow
regime and illustrates that the symmetric placement of a drop at the junction
is highly unstable. Experimentally such unstable two phase flow phenomena
have been observed in similar geometries by Baroud et al. (2006) and Calderon
et al. (2005).

4. Conclusion

The present paper reports on three—dimensional numerical experiments based
on phase field theory of droplet dynamics in a bifurcating channel with symmet-
ric outflow conditions. Two distinct flow regimes are identified as the droplets
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Figure 10: Semi-logarithmic map of the splitting and non—splitting flow regime,
the dotted line has been added as a guide to the eye. The square markers are
results with Cn=0.06 and the circles Cn=0.08, hollow markers denote non-
splitting and filled markers splitting droplets. The dashed line describes the
threshold for splitting or non-splitting approximated by V = —0.79 — 0.53 -
log(Ca).

interact with the junction, splitting and non—splitting. In particular we show
the effects of the initial droplet size and C'a number on the resulting two-phase
flow characteristics.

Droplets that split equally, produce a symmetric distribution of both phases
in the channel daughter branches. Near the threshold between the two regimes,
we observe that the R-P instability can be a driving parameter for droplet
division.

In the non-splitting regime the droplet migrates into one of the channel
branches, leading to a strong temporal asymmetric flow in the junction. A
linear relationship is found for the droplet size and the outflow ratio between
the upper and lower branch. By placing a small difference between the upper
and lower outflow condition we demonstrate the disturbance sensitive nature
of the flow. This is illustrating that a symmetric placement of the droplet in
the parent channel is highly unstable.

These results identify the Cahn-Hilliard Navier Stokes equations solved
with a finite element method as a viable computational platform for the descrip-
tion of multiphase flow characteristics in complex geometries at small scales.
One prospect for the future is a further description and identification of novel
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interfacial dynamics. Future studies should include the influence of the tip ge-
ometry, multiple droplet interaction and wettability effects, in order to obtain
more pieces of the puzzle forming the physical picture of droplet dynamics in
bifurcating channels.
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In this paper we present simulations of dynamic wetting far from equilibrium
based on phase field theory. In direct simulations of recent experiments [J. C.
Bird, S. Mandre and H. A. Stone, Physical Review Letters 100 (23), 234501
(2008)], we show that in order to correctly capture the dynamics of rapid
wetting, it is crucial to account for non-equilibrium at the contact line, where
the gas, liquid and solid meet. A term in the boundary condition at the solid
surface that naturally arises in the phase field theory is interpreted as, allowing
for the establishment of a local structure in the immediate vicinity of the
contact line. A direct qualitative and quantitative match with experimental
data of spontaneously wetting liquid droplets is shown.

How a liquid spreads on a dry solid surface is an everyday experience, and
an important part in numerous industrial applications. The actual physics
that governs the phenomenon of moving contact lines, and the prediction of
such processes in practice, still today remains unclear (Blake (2006), Ren &
E (2007)). Part of the reason for the lack of definite and conclusive answers
is that the resulting dynamics is dictated by physical phenomena taking place
on different length scales. The large-scale dynamics are typically governed by
hydrodynamic theory, while the movement of the contact line is determined by
processes on or just above molecular length scales.

One reason that dynamic wetting has remained mysterious is that experi-
ments are difficult, with a large span in length scales, and, in this context, very
rapid timescales. The emergence of ultra fast cameras have made rapid dynamic
wetting experimentally accessible. The spontaneous spreading of partially wet-
ting liquid droplets on surfaces with different wettability were described in a
recently published article by Bird et al. (2008). They were able to capture in
detail the dynamic evolution of the contact line and the droplet shape, also
during the very rapid first phase. It was shown that viscous scaling fails to
describe the initial wetting behavior, as it was found to be driven by inertia.
Rapid wetting has also been identified in molecular dynamics simulations by
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Ren & E (2007) at the nano scale. They described this regime as the onset of
non-linear response, and proposed that a molecular diffusive or active processes
governs the contact line motion.

There exists two principal theories for the description of dynamic wetting
phenomena, namely the molecular-kinetic theory and the hydrodynamic the-
ory. Molecular-kinetic theory describes dynamic wetting as the disturbance
of adsorption equilibria at the contact line, where the three phases meet. Its
movement is explained by statistical dynamics of the molecular motion in the
vicinity of the contact line. Within this zone the molecules have a characteristic
rate constant (ko) and length (A) of random displacements (Blake (2006)).

In hydrodynamic theories, built on a continuum description, the classical
no-slip condition of zero fluid velocity at a solid surface leads to an essential
singularity in stress (Huh & Scriven (1971)). Nonetheless, dynamic wetting
models have been developed for the region near the contact point (Voinov
(1976)). These models allow for local slip near the contact line, and consider the
formation of the dynamic contact angle as an outcome of the viscous bending
force acting on the free surface. It is notable that both the molecular-kinetic
and hydrodynamic theory have been applied with success, pointing out that
both models captures different key aspects of the phenomenon.

Another way to handle moving contact lines without violating the no-slip
condition is the phase field theory (Jacqmin (2000)), which enables contact line
motion by diffusive interfacial fluxes. Its theoretical framework stems from a
thermodynamic formulation (Cahn & Hilliard (1958)), based on a description
of the free energy in the system. In what follows we will use this formulation
in order to study the very rapid wetting observed by Bird et al. (2008). We
will show that in order to capture the observed behavior it is necessary to
allow for non-equilibrium in the contact line condition. The parameters in the
model are, apart from the properties of the fluids and the surface energies, the
interface width (e) and a mobility (D) associated with the contact line. The
value of this mobility is estimated from comparisons between simulations and
experiments by Bird et al. (2008). Its interpretation and physical significance
is discussed.

The governing Cahn-Hilliard Navier Stokes equations for incompressible
flow of a binary system Jacqmin (2000), are given in eq. 1, 2, 4:

V-u=0, (1)
Du 1 1 Bo CV¢
MO o = e VPt RV T W T Weon 2)

These equations have been made non-dimensional with the material properties
of the liquid phase (subscript 1), the capillary speed U = ﬁ and the char-
acteristic length L, giving the dimensional velocity u* = U - u and pressure
P = %P. wy is the liquid viscosity and o is the surface tension coefficient.
7 = u(C)(Vu + (Vu)T) is the Newtonian viscous stress tensor. C denotes
the continuous phase field variable, which takes the value -1 in the gas and 1
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in the liquid. The density p(C) and the viscosity u(C) depend on C' accord-
ing to p(C) = L(C+1) - %(C —1), and p(C) = $(C +1) — ;—IZ(C’ - 1),

where subscript g denotes gas phase. The Reynolds (Re) number Re = p’ﬂ%
describes the relative importance between the inertial and viscous force in the
flow. The Bond (Bo) number expresses the ratio between the buoyancy and the

. - L? . . . . .
surface tension force Bo = %. g is gravity and e, is the unit vector in

z-direction. The Weber (We) number expresses the ratio between the inertia

and surface tension force, We = % The term C'V¢ is modeling the
surface tension force (Jacqmin (2000)) where ¢ is the chemical potential. The
Cahn number (C,,) is expressing the ratio between the interface width (¢) and

the characteristic length scale, C, = .

The phase field theory is based on a description of the free energy in the
system, here postulated as in Jacqmin (2000),

P /Q (ﬂ\II(O) + ;‘WCF) a0+ /F (041 + Ac) dI. 3)

The volume integral (£2) represents the bulk free energy and the surface integral
(T) the free energy contribution from the surface. Here, ¥ = 1(C + 1)?(C —
1)? is a double-well function with two stable minima that expresses the two
equilibrium concentrations for gas (Cy = —1) and liquid (C; = 1). « and (3 are
phase field parameters proportional to; a ~ o€, 3 ~ 2. Ao = (055 — 05 )w(C)
where 0,4 and o, are the surface energies for the solid-gas (sg) and solid-liquid
(sl) interfaces, and w(C) = 0.5 — 0.75C + 0.25C? is a normalized function
varying smoothly from 0 to 1. Based on the free energy formulation the Cahn-
Hilliard equation can be derived in a standard way, that determines the phase
field variable C', omitting here the surface contribution:

DC 1

Dt Pe
Here Pe is the Peclet number, expressing the ratio between advection and
diffusion, Pe = %, where D is the bulk diffusivity (Villanueva & Amberg
(2006)). The chemical potential ¢* is non-dimensionalized as ¢* = ¢f and
defined as the variation in free energy with respect to C' ¢* = g—g, which results
in the second equality in eq. 4.

V26 = %VQ (\If’(C) - C,fv?c) . (4)

Following the methods of phase field theory the boundary condition for C
on a solid surface is derived by collecting all boundary terms in the variation
of the free energy (F') with respect to C,

OorF = /F (0eVC -n+ (05g — o) (c)) 6CdT (5)

where n is the surface normal. Here the first term on the right hand side arises
from the gradient energy term in the bulk.

In keeping with the strategy of phenomenological non-equilibrium thermo-
dynamics, we now require the evolution of C to be such that further changes
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0C ~ % are associated with a decrease in free energy. This leads to a general
form of the boundary condition for C, see Jacqmin (2000),
. 0C
wa
where D is a phenomenological parameter.

=0eVC -n+ (059 — Usl)w/(c) (6)

This boundary condition accounts for non-equilibrium and has previously
been discussed by Jacqmin (2000). Qian et al. (2003) obtained a direct match
between phase field and molecular dynamics simulations of moving contact
lines at the molecular scale. This was achieved by extracting the phase field
parameters and the local slip at the surface from the MD simulations, that was
used as input in the phase field model, using a similar boundary condition as the
one above. It should be noted that these wetting simulations does not lie within
the rapid regime, studied here. To our knowledge, the boundary condition given
in eq. 6 has never been explored in practical simulations, as the contribution
from its left hand side has been neglected. Such an assumption applies for small
Dy, leading to the immediate enforcement of the equilibrium contact angle as
the liquid wets the solid. This has been a common and generally successful
assumption in phase field simulations of wetting phenomena (Jacqmin (2000),
Villanueva & Amberg (2006), Do-Quang & Amberg (2009), Khatavkar et al.
(2007)). In some of these simulations fast interfacial dynamics takes place,
but the contact angle close to the surface does not deviate significantly from
the static equilibrium value. However, we will show below that in very rapid
wetting situations, such as observed in Bird et al. (2008), this is inadequate,
but by retaining the time derivative in eq. 6 the appropriate non-equilibrium
effects are captured.

We interpret D}, as a phenomenological parameter that stems from the
molecular interaction at the contact line and propose a definition of D}, based
on parameters from the molecular-kinetic theory. The molecules have a ther-
mal energy (kgT) and move over a length (A). The molecular movement is
associated with the rate constant of random displacement (ko) as they inter-
change adsorption sites at the solid surface, forming new contact line. This is
analogous to the temporal breaking of wall-liquid bonds and implies that the
dynamic contact angle is caused by molecular diffusion, in a dissipative process,
as the molecules reorganize near the contact line. D} is defined accordingly,
Dy = ’;2313; . The factor ksz = oy corresponds to the surface energy needed
for the molecules to make an interchange in adsorption sites and koA = Uy is
the molecular mean velocity caused by adsorption site hopping. This leads to
the dimensionless non-equilibrium wetting boundary condition,

Dw% = C,VC - n+ cos(f.)w'(C) (7)
Osg—0sl

where cos(f.) = === 0. is the static equilibrium contact angle and D,, is

defined as D,, = ffi = %. We have chosen to express the coefficient multi-

plying %—f in terms of two additional non-dimensional numbers; Ag = Y

oM

is
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a new dimensionless number expressing the ratio between the work done by the
viscous force and the energy needed for a molecular site interchange. Kn = % is
similar to a Knudsen number denoting the ratio between the typical molecular
displacement and the characteristic macroscopic length. Based on the present
derivation we recognize that the term that accounts for the relaxation towards
equilibrium becomes less significant for highly viscous fluids and large scale
wetting.

In order to estimate the magnitude of the parameter D; we introduce
values that are commonly reported in the literature from the molecular-kinetic
theory (Blake (2006)) for A = 0.5nm, ko = 10°s~! and apply kg = 1.23 -
10723JK~', T = 300K. It should be noted that these material constants
vary for different liquids and solids. By applying these values we obtain D}, =
1.5-108Nsm~1. We also note that the energy required for the interchange
of adsorption site/breaking solid-liquid bonds oy = 0.015Nm ™!, with Kn =
6.4-10"7 and Ag = 3.3 - 1075, giving (Dy)m_x = 0.019 where the subscript
(m-k) denotes molecular kinetic. Jacqmin (2000) gave a rough estimate of the
magnitude of D} based on data from molecular dynamics simulations. His
result is (D7) ~ 107 Nsm™1, in reasonable accordance with our prediction.

To summarize the model formulation, the equations (1, 2, 4, 7) now include
the properties of the liquid and the gas, i.e. densities, viscosities and surface
energies for the three interfaces that appear, and the bulk mass diffusion co-
efficient. The only additional parameters in the model are the interface width
€, and the rate coefficient D in eq. 6. The interface width and bulk diffusiv-
ity were seen, in additional simulations not presented here, to have a limited
influence on the results. Thus we keep Pe = 10* and Cn = 10~2 constant in
all simulations. D}, as discussed above, we believe is an independently mea-
surable quantity that characterizes rapid wetting. The model in itself has no
adjustable parameters, even though at the present time we could only obtain
the order of magnitude for D from independent data.

A water droplet (p; = 998kg/m3,; = 1073Pa - s) with a radius of
L=0.78mm in air (p, = 1.2kg/m>® u, = 1.6 - 107°Pa - s) with the surface
tension o = 72.7mN/m is modeled as it spontaneously wets three dry surfaces
with different wettability (6. = [3,43,117]°). These material parameters have
been kept constant in all simulations. The simulation setup is in accordance
with the experiments performed by Bird et al. (2008). Initially a spherical
droplet is pinned at the upper wall mimicking the needle used in the experi-
ments see fig. 2, with an equilibrium contact angle of 8, = 90°, and it wets
the lower solid surface by diffusion. Axi-symmetric simulations have been per-
formed with the Finite Element code FemLego (Do-Quang & Amberg (2009)),
a symbolic tool for solving partial differential equations, and the equations have
been solved in accordance with Villanueva & Amberg (2006). An equidistant
base mesh has been applied with ~ 40 elements over the initial droplet radius
and an adaptive mesh refinement method (Villanueva & Amberg (2006)) has
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been used, enabling a high resolution of the interface here being 6.5 times finer
than the base mesh.

Fig. 1 shows the temporal evolution of the droplet spreading radius (r).
Our results reveals that the assumption of local equilibrium D,, = 0 fails, as
the contact lines travel too fast. A set of simulations were performed where
we only vary D,, to obtain its correct value, since the physical properties for A
and kg are, to our knowledge, not accessible for these different solid-liquid-gas
systems. From a physical perspective D,, should differ in different systems.
Fig. 1 shows the best fit and a direct match with the experimental results
on three surfaces with equilibrium contact angles equal to 6, = [3°,43°,117°]
corresponding to D,, = [0.05,0.07,0.01]. It still remains unclear why D,, is
behaving non-monotonically with regard to the equilibrium contact angle. Note
that the numerical predicted values for D,, are in agreement with the order of
magnitude analysis given above, based on the data from the molecular kinetic
theory (Dy)m—r = 0.019. These results indicate that dynamic wetting is driven
by the relaxation towards thermodynamic equilibrium, by minimizing the free
energy. In order to correctly capture the wetting speed, and recreate the wetting
physics, it is crucial to account for non-equilibrium effects.
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Figure 1: Temporal contact line evolution; square, round and diamond shaped
markers denote results for 6, = [3°,43°,117°]. Full lines corresponding to
D,, = [0.05,0.07,0.01] and dashed lines to D,, = 0. The experimental results
from Bird et al. (2008) are given by the large open symbols.

The behavior at very early times is most likely dominated by the rupture of
a film, or incipience of wetting, similar to a nucleation event. The simulations
are not intended to capture this accurately, note in fig. 1 that we have little
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data at times less than 0.1ms. Late time spreading dynamics disclose that the
simulations even capture the change of slope for the radius observed between
the dimensionless time 2 and 3 see Fig. 3 in reference Bird et al. (2008). The
shift in power-law spreading is believed to be a contraction of the droplet after
detaching from the wall due to an overshoot in contact angle, rather than a
transition from inertial to a viscously dominated spreading as hypothesized
by Bird et al. (2008). This kink was observed with both wetting boundary
conditions. Space does not allow us to report this in detail here, but this will
be presented elsewhere.

(4) 3)(2) (1) (4) 3)2)(1) (4)3X2X1)

Figure 2: Droplet shapes at (1) t=0.4ms, (2) t=0.8ms, (3) t=1.2ms and (4)
t=1.9ms, for three different surfaces: a) D,, = 0.05, 8. = 3° , b) D,, = 0.07,
0. = 43° , ¢) Dy, = 0.01, . = 117°. The right half of each panel shows the
corresponding simulated result for equilibrium conditions, Dw = 0.

Fig. 2 shows four snapshots of the droplet as it spontaneously wets dry
surfaces, for three different wettabilities. The left half of each panel in fig. 2
displays the results with a non-equilibrium wetting boundary condition and the
right side displays the results with the assumption of wetting at local equilib-
rium (D,, = 0). At time (1) the droplet has just come in contact with the solid
surface, and it wets the surface in the successive times (2,3 and 4). The results
with the dynamic wetting model (left) shows that the droplet initially forms a
large contact angle ~ 150° as it wets the surface. As the droplet spreads, the
dynamic contact angle relaxes towards its equilibrium value .. One clear ob-
servation is that the dynamic contact angle differs substantially from the static
equilibrium value 6.. The results with the assumption of local equilibrium
(right half) show that, as the liquid wets the solid at time (1), a local equi-
librium contact angle is immediately enforced. As the contact line propagates
in time (2,3,4) the contact angle remains nearly constant. Notice in particular
that the wetting line for the non-equilibrium condition propagates slower than
with the equilibrium treatment. This is due to the additional energy dissipation
at the contact line, as it relaxes towards equilibrium. A significant difference
is found for the droplet shapes for the two different treatments in the partial
wetting regime fig. 2a, b.
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Comparison of the droplet shapes in fig. 2 and the experimental results
of spontaneously wetting droplets (Bird et al. (2008); Drelich & Chibowska
(2005)) shows that the equilibrium assumption is deficient. It overpredicts the
capillary wave in all three cases. The dynamic wetting treatment on the other
hand produces wetting characteristics in striking similarity with the experimen-
tal results in Bird et al. (2008); Drelich & Chibowska (2005). Note in particular
that the droplets in fig. 2, with a radius L=0.78mm for the times t (1,2,3), are
in direct correspondence with the temporal evolution given in reference Bird
et al. (2008)-Fig. 1 for a droplet with a radius L=0.81mm.

In summary we have shown that with a wetting boundary condition that
accounts for non-equilibrium at the contact line, the phase field formulation,
built on the primary thermodynamical properties of the system, correctly cap-
tures dynamic wetting phenomena of spontaneously spreading liquid droplets.
The presented model has one additional, physically reasonable, and in prin-
ciple measurable parameter (D). We propose a definition of this term as
D = ’;%ICTO, based on parameters from the molecular kinetics theory. In this
context, the model encompasses both the hydrodynamic and the molecular
kinetic theories. A direct qualitative and quantitative match is obtained with
experimental results on the droplet-spreading rate and shape, respectively. The
results indicate that contact line motion and the dynamic contact angle for-
mation are due to molecular interactions at the vicinity of the contact line. In
the partial wetting regime, the simulations did not show much viscous bending,
and the dissipation of energy at the contact line is believed to be related to
a diffusive reorganization of molecules at the contact line, rather than viscous
dissipation.
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In this article we present a modeling approach for rapid dynamic wetting based
on the phase field theory. We show that in order to model this accurately it is
important to allow for a non-equilibrium wetting boundary condition. Using
a condition of this type, we obtain a direct match with experimental results
reported in the literature for rapid spreading of liquid droplets on dry surfaces.
By extracting the dissipation of energy and the rate of change of kinetic energy
in the flow simulation, we identify a new wetting regime during the rapid phase
of the spreading. This is characterized by the main dissipation to be due
to a reorganization of molecules at the contact line, in a diffusive or active
process. This regime serves as an addition to the other wetting regimes that
have previously been reported in the literature.

1. Introduction

Contact lines between solids and liquid or gas interfaces appear in very many
instances of fluid flows. This could be coffee stains, water-oil mixtures in oil
recovery, hydrophobic feet of insects or surfaces of leaves in nature. Due to
their ubiquitous occurrence in nature and our daily life, as well as in industrial
processes, they have attracted the attention of researchers since many years.
What kind of physical mechanisms that actually govern dynamic wetting phe-
nomena have been a matter of controversy and argument in the recent literature
(Eggers & Evans (2004) Blake & Shikhmurzaev (2002), Shikhmurzaev & Blake
(2004)), where these viewpoints have been based on different theoretical ap-
proaches (Blake (2006), Bonn et al. (2009)). Even though extensive research
has been directed towards wetting physics, many phenomena with moving con-
tact lines are still not well understood. An example of such is the understanding
of the physical processes that govern rapid dynamic wetting, which still holds
challenges.

Despite the apparent simplicity of placing a small water droplet on a glass
plate, the prediction of its evolution after contact with the solid surface is non-
trivial. A number of physical phenomena in the bulk and at the solid surface
influence the evolution of the spreading droplet. This is particularly true during
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the initial phase of wetting, when the contact line speed is typically the greatest.
In this case, experimental investigations show (Bird et al. (2008), Biance et al.
(2004), Drelich & Chibowska (2005)) that the initial speed of the contact line
of water on a hydrophilic surface is in the order of meters per second.

General reviews of wetting phenomena are given by de Gennes (1985),
Blake (2006) and Bonn et al. (2009). In the following we will discuss literature
particularly relevant for the very rapid wetting processes that are the subject
of this paper.

The contact line is formed as the interface between a gas and a liquid, or two
immiscible liquids, interacts with a solid substrate. A classical problem in fluid
dynamics has been that the Stokes equations allow a solution for the flow in the
vicinity of the contact line, which however exhibits a non-integrable singularity
of the viscous stress at the wall, Huh & Scriven (1971). This singularity can
be removed formally if the no-slip condition at the wall is relaxed. The root
of the problem is however that the continuum description breaks down and
that phenomena at molecular length scales must somehow be accounted for.
Allowing slip on the wall and using Navier Stokes equations, Voinov (1976)
and Tanner (1979) derived a relationship between the apparent or observable
contact angle and the Capillary number (Ca) (Blake (2006)),

0% — 03 = QCaln(hi). (1)

Here 6 is the apparent contact angle, i.e. the angle between the macroscpically
observable interface and the solid wall. 6,, is the microscopic contact angle at
the solid surface, which is usually assumed to be the equilibrium contact angle.
Ca is the Capillary number, Ca = pU/o, giving the ratio between the viscous
and surface tension force. p is the droplet viscosity, U the wetting speed and
o is the surface tension coefficient.

The equation is derived based on the assumption that 8p < 3/47 and
that the characteristic length h, e.g. droplet diameter, is much larger than the
microscopic length h,,, h > h,,. The singularity at the solid surface is here
circumvented by introducing the slip-length, an ad-hoc length of microscopic
size hy,. It is commonly determined (h,,) by curve fitting of the equation to
experimental results. A similar result to Voinov (1976) and Tanner (1979) was
obtained by Cox (1986), based on an asymptotic reduction of the Navier Stokes
equations. These results generally match available experimental data well, such
as the experiments from Hoffman (1975). In the hydrodynamic theory, the
surface tension force generated by the local curvature near the contact line
is believed to be the driving mechanics behind contact line motion, whereas
viscosity in the bulk is resisting its motion.

Another physical explanation of contact line motion was proposed by Blake
& Haynes (1969), a theory that is often referred to as the molecular kinetics
(MK) theory. Contact line movement is here considered to be an active pro-
cess at the molecular adsorption sites on the solid surface. The molecules are
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assumed to hop back and forth between adsorption sites with a characteris-
tic frequency (ko), where they move over a molecular distance (). Based on
Eyring’s theory of absolute reaction rates (Glasstone et al. (1941)) the fre-
quency of molecular transfer due to the forward (K*) and backward (K ™)
hopping can be expressed as (Ren & E (2007)),

w
— 2

where n the number of adsorption sites per unit area, k; the Boltzmann con-
stant and 7' the temperature. w = o(cos(y) — cos(#)) is the work done due to
the uncompensated Young’s stress by having a non-equilibrium contact angle,
where 0y is the equilibrium contact angle and 6 is the dynamic contact angle.
This gives the relationship for the velocity of the moving contact line as,

o(cos(bp) — cos(h))
2(7)1ka ) 3)

At equilibrium the backward and forward hopping are equal as are the dynamic
and equilibrium contact angle, predicting no contact line motion.

K = kgexp( ), K= = koexp(

Vg = A(KT — K™) = 2koAsinh(

Despite the fact that these two theories are formulated on different length
scales and from very different points of view, they have both been applied with
success. This suggests that the hydrodynamic and molecular kinetic theory
each captures different wetting physics. It should be noted that no active
molecular processes are accounted for in the hydrodynamic theory and that the
MK theory does not include any influence from viscosity. A combined model
was proposed by Petrov & Petrov (1992) that merge these two approaches, in
an attempt to capture a broader spectrum of wetting phenomena.

Experimental investigations of droplet spreading have historically been
mainly focused on the rather slow viscously dominated spreading regime, such
as the work by Hoffman (1975) and Ngan & Dussan V. (1982) to name a
few. These experiments have been well explained by already existing theoreti-
cal models, such as the one by Voinov-Tanner. Experiments have earlier been
limited in both temporal and spatial resolution, making certain rapid wetting
phenomena inaccessible. An example of such is the short-time spreading of a
water droplet on a glass surface. The advent of high-speed cameras has now
made such wetting phenomena experimentally accessible, and in recent years
experimental results have appeared (Bird et al. (2008), Biance et al. (2004),
Drelich & Chibowska (2005), Saiz & Tomsia (2004)). The observations have
many similarities, such as the temporal evolution of the droplet shape, where
the observable contact angle highly differs from the equilibrium value as the
droplets spreads. In these rapid spreading experiments, the contact line moves
with a characteristic velocity in the order of meters per second.

Bird et al. (2008) captured in detail, with a high-speed camera (670001fps),
the temporal contact line evolution for droplets spreading on solid surfaces with
varying wettability. In these experiments, also the initial rapid wetting phase
was captured. By varying the droplet size, viscosity and surface wettability
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they showed that the time scale for the phenomena failed to follow a viscous
scaling. A striking finding was made, as the experiments fell on a master
curve based on an inertial time scale. This indicates that inertia might resist
wetting. They also found that the slope of the spreading rate depended on
the equilibrium contact angle of the surface. Additional spreading data was
provided in Courbin et al. (2009), in an attempt to expand the collapse with
a viscous scaling. It was also shown that the spreading power law response
depended on the initial shape of the droplets.

Ren & E (2007) identified a similar rapid wetting regime, at the nano scale,
in molecular dynamics simulation. They described this flow regime as the onset
of non-linearity, due to the large local forcing acting in the contact line region.
This flow was suggested to be an active or diffusive process, at the contact line.
It was pointed out that this type of wetting physics still remains unclear, and
further investigations are needed to identify the governing wetting mechanisms.

An alternative way to obtain models of wetting phenomena is through the
use of phase field theory, which is based on a phenomenological description of
the free energy of the system. The phase field framework enables contact line
motion due to diffusive interfacial fluxes, in other words, a different mechanism
from those mentioned above. For relatively slow wetting phenomena, situated
in the same wetting regime as Voinov-Tanners theory and Hoffmann’s experi-
ments, the phase field theory has proven both analytically (Jacqmin (2000)) as
well as numerically (Villanueva & Amberg (2006), Yue et al. (2010) and Briant
& Yeomans (2004)) to capture such wetting physics. Briant & Yeomans (2004)
found the contact line diffusion to vary over a length scale different than the
interface width, and by scaling arguments showed that this length is related
to the mobility constant multiplying the chemical potential. Yue et al. (2010)
made a modification to the scaling of the diffusion length and interpreted the
microscopic length in Voinov-Tanners theory (h,,) in terms of the contact line
diffusion length from the phase field theory. It should be noted that all of these
results are obtained by making the physical assumption that the interface is
close to an equilibrium state as it wets the solid.

The equilibrium boundary condition, mentioned above, has been expanded
to a general boundary condition by Qian et al. (2006a), which has been ex-
plained by Onsager’s principles of minimum dissipation (Qian et al. (2006b)).
By extracting the phase field parameters and local slip at the surface from
molecular dynamics simulations, used as input parameters in the phase field
model, a direct match of the interface and slip profile could be obtained at the
nano scale, see Qian et al. (2006b), Qian et al. (2004). An important point, is
that these simulations fall in the same category as the results from Villanueva
& Amberg (2006), Yue et al. (2010) as they are in this context considered to
have rather slow wetting dynamics.

In our recent paper Carlson et al. (2009) we showed that the assump-
tion of local equilibrium at the solid surface is deficient in the rapid dynamic
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wetting regime, and that the phase field, or diffuse interface, framework, pro-
vides a rather natural way to incorporate non-equilibrium effects at the contact
line. This implies that there is an important relaxation process from a non-
equilibrium towards an equilibrium state. Within the phase field framework
the boundary condition that accounts for such wetting physics, follows directly
from the variational formulation of the free energy in the system, see Jacqmin
(2000). We showed (Carlson et al. (2009)) that by including the effects of non-
equilibrium in the boundary condition at the solid surface, a direct match could
be obtained with the detailed experimental results by Bird et al. (2008). In
the contact line formulation at the solid surface a rate coefficient Dy, appears,
which was interpreted in terms of parameters from the MK theory. Jacqmin
(2000) was to our knowledge the first to discuss this boundary condition and he
made a rough estimate of the magnitude of Dy, based on molecular dynamics
simulation data from Matsumoto et al. (1995). The magnitude of the coefficient
found by Carlson et al. (2009) and Jacqmin (2000) are in reasonable agreement.
Thus, it is believed that this general wetting formulation encompasses wetting
regimes that have previously been captured with the hydrodynamic and the
MK theory.

Four different regimes have been presented in the literature, which are said
to describe the force balances and dissipation mechanisms in dynamic wetting,
at different stages. These are the initial cusp, inertia and viscous wetting
from the hydrodynamic theory and molecular contact line friction from the
molecular kinetic theory. In the very first short-time spreading, the interface
forms a small cusp region where viscosity is believed to dominate the spreading
dynamics (Eggers et al. (1999), Biance et al. (2004)). This initial spreading
regime takes place as the droplet starts to spread onto the solid, where a small
region with a high curvature drives the flow. As the length scales are small
the flow has a low Reynolds number (Re), describing the relative importance
between inertia and viscous forces, and viscosity is impeding the contact line
motion that is driven by interfacial energy.

As the contact line propagates across the solid surface the spreading radius
increases and the liquid in the bulk of the droplet is accelerated, consequently
increasing the inertial forces in the flow. When sufficient bulk liquid is acceler-
ated, inertia is dominating over the initial viscous dissipation and constitutes
the main hindrance for droplet spreading. The inertial spreading was found to
obey the laws predicted by Eggers et al. (1999), also found experimentally by
Aarts et al. (2005). By following the same reasoning as Eggers Biance et al.
(2004), Aarts et al. (2005) found the spreading radius for inertial wetting to
also scale with the square root of time. Geometrical arguments about the
flow, forced by symmetry in the direction perpendicular to contact and that
both seemingly are driven by gradients in curvature provides an analogy be-
tween droplet coalescence and spreading. Nonetheless, droplet spreading can
not be fully explained by gradients in curvature since the solids equilibrium
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contact angle is experimentally found to influence the power-law response to
the spreading curve (Bird et al. (2008)).

In the late time dynamics, the droplet has a slow, nearly steady motion as
it relaxes towards its equilibrium contact angle. This slow wetting dynamics is
often characterized by the capillary number Ca, and viscous dissipation in the
whole bulk is the main source for the resistance to contact line motion. The slow
viscously dominated wetting has been well defined by classical wetting relations
as derived by Voinov (1976), Tanner (1979), Cox (1986)). By assuming that the
droplet has a spherical cap and applying Tanners law (Biance et al. (2004)) the
relationship between the spreading radius (r) and time (¢) can be derived, and
scales with 7 ~ ¢15. The expressions for the inertial and viscous spreading radii
then yield a criterion for the transition between inertial and viscous wetting,
as described by Biance et al. (2004).

The molecular kinetic theory describes a different dissipative mechanism
than what is predicted with the hydrodynamic theory. Here, the dissipation
arises from the advancing contact line region due to the attachment of liquid
molecules at the solid surface (De Coninck et al. (2001)). The spreading radius
in this regime is found to scale with r ~ t7 and has been identified at later time
scales, taking place after the inertial spreading regime described above (Seveno
et al. (2009), De Coninck et al. (2001)).

Recent experimental findings suggest that at even shorter time spreading
none of the regimes discussed above are appropriate, one indication being that
the equilibrium contact angle seems to be a less important parameter here
(Bird et al. (2008)). Two questions that remain are; if there exist additional
dissipative mechanisms that might influence the spreading dynamics at very
short times; and at what time scales do they govern the contact line motion?

The main purpose of the present paper is to present a mathematical model
of very rapid spreading and, guided by results from this, elucidate the physics
governing a rapid dynamic wetting process. In the next section the math-
ematical model is motivated and presented, including a new rate coefficient
(Dw ), which we will argue captures molecular interactions at the contact line.
In section 3 we present detailed simulations of recent experiments on rapidly
spreading droplets. In section 4 we wish to identify the primary cause for re-
sistance to spreading, by computing the evolution of the kinetic energy in the
flow, as well as dissipation due to viscous stresses, and molecular processes at
the contact line, etc. The relative magnitude of these is studied as the droplet
evolves. We finally make some concluding remarks.

2. Phase field theory

The phase field, or diffuse interface, model is formulated here for a binary mix-
ture of two immiscible fluids (gas or liquid), and includes the surface energies of
fluid-fluid and fluid-solid interfaces. The formulation starts from a postulated
free energy F' of the system, as a functional of the fluid mixture composition
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r= [ (see)+ §ver)an+ [ (C)on - ou)+ou)ar.

The free energy has one contribution from the bulk (2) and one from the
bounding solid surfaces (I'). The first term in the integral over the volume
Q is the bulk potential, which is chosen here in the conventional way as ¥ =
1(C+1)%(C —1)%. This function has two local minima which implies that the
only stable equilibrium values that C' can take are +1 or —1. These values thus
denote regions occupied by one of the two pure fluids in the mixture. In what
follows we will consider water and air, with C' = 1 for water and C = —1 for
air. The second term in the bulk integral introduces the surface energy of fluid-
fluid interfaces. The competition between the bulk and interfacial energy forms
an interface, separating the two phases. § and a are phase field parameters,
originating from the multivariable Taylor expansion about the free energy per
molecule, see Cahn & Hilliard (1958). These determine the surface energy o

and the width of fluid-fluid interfaces e according to 5 = 2?755 and o = 0’6%,

or conversely o = %\/OT,B and e =, /5.

The free energy at the solid surface (Jacqmin (1999)), is formulated as an
integral over the solid boundary I' of the local surface energy. The function
g(C) = 0.5—0.75C 4+ 0.25C? is a smoothly varying function which is equal to 0
for a wet wall (C=1) and 1 for a dry wall (C=-1). It thus acts as a switch that
changes the surface energy between o, for a dry and o for a wet solid surface.
The choice of the function g(C) is made so that, together with the choice of the
double well function ¥(C'), it will give an equilibrium contact angle consistent
with Youngs law.

By taking the variational derivative of the free energy (F') with respect to
the order parameter C' and integration by parts we obtain:

5F = / (ﬂ\If’(C) - aVQC) 5CdQ + / (aVC -1+ ¢(C)[osg — 0a1]) 5CAT.
(5)

The integrand of the volume integral defines the bulk chemical potential
¢* = BY'(C) — aV2C. The surface integral defines the boundary condition
for the chemical potential, accounting for the variation in free energy at the
surface. The surface integral is representing the wetting boundary condition
where n is the surface normal. This boundary condition will be analyzed fur-
ther below. By minimizing both the bulk contribution of the chemical potential
with respect to the order parameter C the equilibrium profile for a flat inter-
face can be obtained as Cy(z) = tanh(ﬁx). The expression for surface energy

o= %ﬂ\/aﬂ is readily obtained by inserting the equilibrium profile for C in
the expression for free energy 4 and integrating over the interface. Van der
Waals was the first to propose a free energy formulation similar to the one
given above, where a diffuse interface separates the two different fluids. Cahn
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& Hilliard (1958) extended Van der Waals theory to a time-dependent situa-
tion by approximating the diffusive fluxes as proportional to gradients of the
chemical potential,

%ﬂl*.vcz—vjzv (MV(ﬁW'(C)—aVQC)>’ ©

where —J = MV¢* is a flux. We have here also accounted for the effects of
the fluids motion and M is a mobility that is considered to be constant.

2.1. Equilibrium wetting boundary condition

Within the phase field theory the boundary condition that accounts for the
free energy distribution between the different phases, sets the wetting bound-
ary condition for the interface, see eq. 5. By making the assumption that
the interface is at local equilibrium as it wets the solid surface the boundary
condition becomes (Villanueva & Amberg (2006)),

aVC -n+ocos(fy)g' (C) = 0. (7)

We have here used Young’s equation relating the equilibrium static contact
angle to the surface tension coefficients (¢): o cos(6p) = o5y — 0.

The assumption of local equilibrium at the solid surface has been a wide-
spread assumption in phase field wetting simulations, which has proven to be
successful in describing numerous physical phenomena involving moving con-
tact lines (Do-Quang & Amberg (2009), Villanueva & Amberg (2006a), Ding
& Spelt (2007), Jacqmin (1999) and Yue et al. (2010)). One of the strong
arguments that speak in favor of the equilibrium assumption is that it has
been found in good agreement with the hydrodynamic wetting theory. Yue
et al. (2010) matched phase field simulations with the wetting relation by Cox
(1986) and proposed a new interpretation of the ad-hoc microscopic length
needed in this relation. This length was found to scale with the mobility be-
tween the phases and the viscosity. Villanueva & Amberg (2006) showed that
numerical phase field wetting simulations were in good agreement with the ex-
perimental results of Hoffman (1975). Hoffmann’s experiments show a fairly
universal relationship between the apparent, observable, contact angle and the
capillary number. This is in good agreement with the analytical expressions by
Voinov (1976), Tanner (1979) and Cox (1986). Based on the equilibrium wet-
ting condition Jacqmin (1999) showed using asymptotic analysis that the phase
field boundary condition given in eq. 7 converged to a relationship between the
apparent contact angle and the capillary number.

2.2. Non-equilibrium wetting boundary condition

Although the equilibrium wetting assumption has been found to capture many
physical wetting phenomena, it has been demonstrated by Carlson et al. (2009)
that this assumption is inadequate for rapidly spreading droplets. In order to
capture this rapid wetting regime, which has an additional dissipative mech-
anism, it is crucial to allow for a relaxation from non-equilibrium towards an



Dissipation in rapid dynamic wetting 107

equilibrium state. A non-equilibrium boundary condition is incorporated in the
phase field framework, and has been discussed previously by different authors,
see Jacqmin (2000), Qian et al. (2003). However, its importance in practical
simulations has only just recently been investigated (Carlson et al. (2009)).

The boundary condition in eq. 7 is modified to account for non-equilibrium
at the contact line. The phenomenological argument inherent in the phase field
method, leading from a free energy to partial differential equations, consists of
requiring the irreversible evolution of the system to be such that the free en-
ergy is always decreasing. The boundary condition as given in equation 7
will not give any dissipation at the contact line. This is readily modified to
allow for dissipation, if, instead of setting the argument of the surface inte-
gral in equation 5 to zero, permissible changes in C' are made proportional to
aVC -n+ocos(bp)g’(C), so that the resulting change in free energy is negative
definite. The off equilibrium perturbations are counter acted by a diffusive flux
proportional to D;}V%—f, where Dy, is a phenomenological parameter, analo-
gous to a mobility, leading to a non-zero contribution on the right hand side of
eq. 7. This gives then the non-equilibrium boundary condition governing rapid
wetting

aVC -n+ocos(fy)g' (C) = D{‘,Vaa—f (8)

Dy, is believed to originate from the molecular interactions at the contact line,
as they reorganize in a diffusive process causing contact line motion (Carlson
et al. (2009)). No-slip is prescribed at the solid surface.

2.3. Governing equations for the fluids motion

We consider here a system consisting of a two phase flow of air and water,
where both are considered as incompressible. Experiments have shown (Bird
et al. (2008)) that the contact line has a maximum speed of around one meter
per second, so no significant compressible effect is expected in the air and it is
therefore treated here as an incompressible phase.

V-u* =0. (9)
p*(C) (8(;* +(u*- V) u*) — _vp
+ V- (5 (C)(Vu + (Va)T)) = p(C)ge, — CV" (10)

where u* is the velocity and P* is the modified pressure, see Jacqmin
(1999). p(C) and w(C) are the fluids density and dynamic viscos-
ity, which are given as functions of the order parameter C; p*(C) =
L (p(C+1) = pg(C=1)),1*(C) = 5 (u(C +1) — pg(C —1)). The subscript
[ denotes liquid and the subscript g denotes gas, using the material parameters
for water and air. g is gravity and e, is the unity vector in the z-direction. The
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last term is expressing the potential form of the surface tension force, proposed
by Jacqmin (1999).

2.4. Non-dimensional formulation

The governing equations are made dimensionless based on the characteristic
parameters of the flow, giving the dimensionless variables

¥ =1Lz t"'= £t, pP* = MP7 uw=Uu*, ¢* = 30
24/2¢

U L
where the dimensional variables are denoted with *. L is a characteristic length

scale, here chosen as the initial droplet radius, and U is the reference velocity.

The reference velocity is considered to be the capillary speed U = % By intro-

¢ (11)

ducing this scaling into the Navier Stokes and the Cahn—Hilliard equation we
obtain their non-dimensional form, here considered in cylindrical coordinates,

V-u=0, (12)

8£ _i 2 _L 2 / 272
o Tu VO =5V =V (\P(C) Cnvc), (13)

Pl ot
4L (v. (“(C)(vw (Vu)T)> _BoplQ), _ _CV9 ) L4

;)((,‘)(&1+(u.v)u) =-VP

Re W Ca py > Cn-Ca

This gives five non-dimensional numbers;

2V/2UeL L 22 — py)gL?
_ 2V2Ue CCn= £ Re=PUL oy fuzU’ Bo — (P1L=pg)gL*

3Mo L o 30 o

Pe

(15)
The Peclet number (Pe) expresses the ratio between the advection and
diffusion. The Cahn number (Cn) expresses the ratio between the interface
width and the characteristic length scale. The Reynolds number (Re) expresses
the ratio between the inertia and viscous forces. The Capillary number (Ca)
expresses the ratio between the viscous and the surface tension force. The Bond
number (Bo) expresses the ratio between the gravitational and surface tension
force.

The wetting boundary condition is scaled in accordance with Carlson et al.
(2009) Dy, = %7 here A is the molecular hopping length, kg their charac-
teristic frequency, kj is the Boltzmann constant and T the temperature. This

gives the dimensionless general wetting boundary condition

DW%—f = CnVC -n+ cos(by)g'(C). (16)
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Dy = /L‘i‘/ = % is a phenomenological parameter and described in terms of
A

two additional non-dimensional numbers, where Kn = 7 is a type of Knudsen
number giving the ratio between the molecular hopping length and the charac-
teristic length scale. In the phase field context it is natural to interpret Kn in
terms of the Cahn number, which we will return to below. Ag = ”ﬁ‘—ZIM is a
new non-dimensional number where Ujy; = kg is the mean molecular hopping
velocity and oy = ’“/{’—ZT is the energy required to break the liquid-solid bonds
due to the hopping between adsorption sites. Thus, Ag represents the ratio
between the viscous force and the energy needed to break solid-liquid bonds

associated with the molecular hopping (Carlson et al. (2009)).

On all solid walls a no—slip boundary condition u = 0 is imposed, and
a Neumann boundary condition is applied for the pressure. Vise-versa apply
for the outlets of the domain, with a Neumann boundary condition for the
velocities and the pressure is defined as P = 0.

2.5. Computational methodology

The axi-symmetric governing equations have been solved numerically with the
finite element toolbox FemLego (Amberg et al. (1999)). FemLego is an open
source symbolic tool for solving partial differential equations. Within a single
Maple worksheet the partial differential equations, boundary conditions and
numerical solvers are all defined. It inherits parallel computational and adap-
tive mesh refinement capabilities, see Do-Quang et al. (2007) for details.

The Cahn-Hilliard equation has been solved with a type of precondition
Conjugate Gradient (CG) solver, described by Villanueva & Amberg (2006).
The multifluid Navier-Stokes equations have been solved with a projection
scheme, which was proposed by Guermond & Quartapelle (2000). The lin-
ear system for the velocities and pressure have been, respectively, solved with
the General Minimum Residual method and a CG solver. All variables are
approximated with linear base-functions and the mesh consist of triangular
elements.

An adaptive mesh refinement method has been applied in the simulations
(Do-Quang et al. (2007)), enabling a high resolution of the key features in the
flow, here being the interface. This allows us to resolve small length scales in
the flow without having an excessive computational time. The droplet radius
is discretized with approximately forty node points and the interfacial area has
about a six times higher mesh resolution.

3. Prediction of spontaneous spreading of water droplets
3.1. Scope and simulation setup

Here we will present numerical simulations in direct accordance with the droplet
spreading experiments performed by Bird et al. (2008). A water droplet with
a radius L=0.78mm in air is simulated as it wets three solid surfaces with
different degrees of wettability. The material properties for air are denoted
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by the subscript g and the material properties for water are denoted by the
subscript 1. The density is p; = 998kg/m>, p, = 1.2kg/m?>, the viscosity is
w = 1073 Pas, g = 1.6 10~ Pas, gravity is g = 9.81m/s? and the surface
tension coefficient is ¢ = 0.073N/m. This gives the characteristic capillary
velocity U = i = 73m/s, it should however be noted that the actual speed
in the simulations are much less than this value Up,q. ~1m/s. This gives
then the non-dimensional numbers based on the liquid material properties,
Re=56940, Ca=1 and Bo=0.08. The mass diffusion coefficient has been chosen
as D = 5.7-107%m?/s giving a Peclet number Pe = 1-10*. The choice of
Pe for the simulations presented here does not influence the results. A short
discussion around the influence of Pe on the flow is presented below. In addition
to the material properties for the gas and liquid we define the static equilibrium
contact angle for the three solid surfaces as 6y = [3°,43°,117°]. Since these
parameters are the same as in the experiments by Bird et al. (2008) we choose
to keep these fixed in the simulations, where we only vary the rate coefficient
Dy, that is determined from the experimental data. After determining Dy,
the model has in principle no adjustable parameters, as we will show below
that the width of the interface does not influence the simulation results in a
noticeable way. The model as presented enables then modeling of dynamic
wetting without making any ad-hoc physical assumptions.

Fig. 1 shows the axis-symmetric simulation setup and the initial condition.
Initially the droplet has a spherical shape and is placed underneath a rod,
imitating the needle used in the experiments. In the simulations the contact
line is allowed to move across the surface of the rod, while in the experiments
liquid is always retained at the tip of the needle. In order to keep the droplet
attached to the rod surface, it has been given an equilibrium contact angle
of 8y = 90°. At the lower surface, which the droplet spreads onto, the non-
equilibrium boundary condition 8 is used. In order to minimize the influence of
the initial condition in the simulations, the droplet is at first not put in direct
contact with the wall. It is placed so that a thin air layer, in the wall normal
direction, separates the interface and the wall with a thickness that is less than
the interface width. This way the onset of wetting is captured without initially
prescribing an artificial contact angle at the surface.

3.2. Spreading rate

The detailed evolution of the contact line motion of droplets spreading over
solid surfaces with different degrees of wettability was described by Bird et al.
(2008). Their experiments provide excellent data for a fidelity check of macro-
scopic contact line models for dynamic wetting, as the observed contact angle,
in these experiments, changes in time as the droplets spread. We have here ex-
tracted and focused on the experimental results of water droplets with a radius
L=0.78mm, that wets three solid surfaces with different degrees of wettability
0o = [3°,43°,117°].
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symmetry axis water droplet

Figure 1: Simulation setup and the initial condition.

Fig. 2 shows the sensitivity and influence of the parameter Dy, on the
spreading rate as the water droplets wet the different surfaces. Fig. 2a shows
the temporal evolution of the contact line as the droplet spreads over a surface
with an equilibrium angle 6y = 3°. One clear observation is that the equilibrium
assumption (Dy = 0) is deficient, as the contact line propagates too fast
over the surface. By increasing the coefficient Dy, dissipation is added at
the contact line, resulting in a deceleration of the relaxation process towards
thermodynamic equilibrium. Best fit with the experimental result is found for
Dy = 1.0.

For wetting on a solid surface with an equilibrium contact angle 6y = 43°,
see fig. 2b, a similar overall picture as in fig. 2a is observed. The assumption of
local equilibrium at the contact line, makes it propagate too fast in comparison
with the experimental result by Bird et al. (2008). The best match with the
experimental results was found for Dy, = 1.4. We notice that the speed of the
contact line is lower here (6y = 43°) than what was observed on a surface that
is more wettable, see fig. 2a. This effect is due to a lower local forcing in the
contact line region, as the initial wetting is closer to its equilibrium state.

For a nearly hydrophobic surface (yp = 117°) the equilibrium assumption
seems to give results that are quite coherent with the experimental wetting, see
fig. 2c. A slight improvement might be seen in the spreading prediction using
the coefficient, Dy = 0.2.

To summarize the results in fig. 2 we notice that, for the case studied here,
the equilibrium wetting boundary condition fails to correctly predict the wet-
ting speed on hydrophilic surfaces. By introducing another dissipative mecha-
nism, we thus obtain a direct agreement with the experimental results by Bird
et al. (2008). The rate coefficient appearing in the non-equilibrium boundary
condition is determined from the experimental data, and best fit is observed for
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Dy = [1.0,1.4,0.2] for surfaces with 8y = [3°,43°,117°], and have been con-
densed into fig. 1 in Carlson et al. (2009). Dy is believed to be a physically
reasonable parameter, that should naturally vary for different systems. We are
at the present time lacking a rational explanation for the non-monotonic be-
havior of the coefficient Dy, for the different contact angles, investigated here.
However it should be noted that ongoing work based on a micro scale analysis
is in progress, but beyond the scope of the present paper.

One peculiar feature that was identified by Bird et al. (2008) was that,
by using an inertial time scale, the experimental spreading results fell on a
master curve, irrespective of droplet size. The spreading curve was found to
follow a power law, but the exponent found in the experiments changed with
the wettability of the solid substrate. The data did not collapse when a more
intuitive viscous time scaling was used. In fig. 3 droplet radius is plotted versus
time in logarithmic units, where the triangles are intended to more clearly
illustrate the different exponents observed in the power-law for the different

solid substrates. Here a nondimensional time 7 = —— is used, to facilitate
Pl

comparison with Bird et al. (2008). It should be noted that Bird et al. (2008)
points out that less emphasis should be placed on their results for the initial

wetting (7 = th < 0.1), due to the spatial accuracy of their measurements.
Lz

o

The slight discrepancy at late times is likely an effect of differences in the
experimental and computational setup. At late times in the experiments the
droplet starts to detach from the needle by forming a thin liquid neck that
finally pinches off, where liquid is always retained at the tip of the needle. In
the simulations a rod mimics the needle, allowing the contact line to move.
This would influence the size of the smaller secondary droplet as well as the
time for the collapse of the liquid neck as the larger droplet detaches.

L3

A dramatic change in the spreading characteristics is observed for all three
cases around the time 7 = 3 in both the simulations and the experiments. The
same behavior was found also with the equilibrium boundary condition. This
spreading behavior was explained as a transition between the inertial and the
viscously dominated wetting (Bird et al. (2008)). The simulations of a highly
wettable surface (6p = 3°) are stopped before this time, since the contact line
leaves the domain before reaching the transition. Later in this article we will
present the dissipative mechanisms and the rate-of-change of kinetic energy.

By applying the criterion for the transition between inertial and vis-
cous wetting, proposed by Biance et al. (2004), we obtain a specific time

T~ (”;}L) ® where the transition should approximately take place. By in-

troducing the material parameters for the simulated cases we obtain 7 = 3.9,
which is in good agreement with the experimental and numerical data, see fig.
3.
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Figure 2: The temporal evolution droplets spreading radius with L=0.78mm
and the influence of Dy, on the results as it wets three solid surfaces with
different degrees of wettability; 6y = [3°,43°,117°]. The fully drawn line, in
each sub-figure, represents the best match with the experiment.



114 A. Carlson, M. Do-Quang and G. Amberg
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Figure 3: Comparison between the experimental and numerically predicted
droplet spreading radius with logarithmic axes. The full lines denote the simu-
lations and the dotted lines with markers the experimental master curve from
Bird et al. (2008).

3.3. Interfacial evolution and dynamic contact angles

Fig. 4, 5, 6 show the droplet shape and velocity vectors for a water droplet
spreading on three solid surfaces with an equilibrium contact angle of 6y =
[3°,43°,117°]. The left half of each panel in fig. 4, 5, 6 shows the simulations
with the non-equilibrium wetting boundary condition 8, labeled dynamic, and
the right panel the results with the local equilibrium condition 7, labeled static.
The wording "dynamic” and ”static” does in this context denote the contact
angle boundary condition at the solid surface, which is changing in time in the
former and fixed in the latter. The apparent contact angle is changing in time
with both of the boundary conditions.

Fig. 4 shows four snapshots in time of the droplet as it spreads on a solid
surface with an equilibrium contact angle 8y = 3°. In fig. 4a the droplet has
just started to wet the solid surface and has propagated about one third of
its initial radius. A larger contact angle is observed with the non-equilibrium
boundary condition, left half, than with the assumption of local equilibrium,
right half. Both of the wetting boundary conditions produce a smooth velocity
profile in the domain, being largest in the vicinity of the contact line. A flow
recirculation is observed with both models, with a larger local curvature is
predicted with the static model.

The two different models predict a somewhat different shape of the droplets
interface. We see clearly that the equilibrium assumption propagates too fast
over the solid surface, see fig. 4b. A capillary wave is generated at the onset
of wetting, fig. 4a, which propagates across the droplet. This wave is visible in
all of the sub-plots in fig. 4. The wave propagates across the droplet before its
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0p=3° 7=016 7=031 7=047
0. 71° 58° 52°
0 78° 63° 52°

Table 1: Comparison of the experimental and numerical predicted dynamic
contact angle for a solid surface with an equilibrium contact angle 6y = 3°,
where 6. is the experimental and 64 is the numerically predicted apparent
dynamic contact angle.

drawing a tangent through these points, we were able to measure the observable
dynamic contact angle. These results have been compared with the experimen-
tal results from Bird et al. (2008), see table (1). The apparent contact angle
from Bird et al. (2008) has been extracted in a similar fashion as the simulation
results, by drawing a tangent along the interface close to the solid surface. Here
0. is the experimental and 6, numerically predicted contact angle with the non-
equilibrium condition. A direct match is found in time, between the measured
numerical and experimental apparent dynamic contact angle, indicating that
we have captured the correct value for the coefficient Dy, see tab.(1).

Fig. 5 shows the simulation results of a water droplet that spreads on a
solid surface with an equilibrium contact angle 8y = 43°. In the initial stage of
the spreading, see fig. 5a, we notice a large discrepancy between the predicted
apparent contact angles with the two different wetting boundary conditions. By
comparing the result using the equilibrium assumption with the experimental
results by Bird et al. (2008), we observe that neither the contact angle nor
the capillary wave is in coherence with the experiments. Good agreement is
found with the local dynamic treatment. As the contact line moves in time the
difference in droplet shape predicted by the two boundary conditions becomes
more pronounced, see fig. 5b. A large flow recirculation is observed at the
capillary wave (fig. 5c) where two secondary vortices are formed as the wave
approaches the needle/rod, see fig. 5d.

A comparison between the predicted contact angle from the dynamic treat-
ment and the experiments in time are given in table (2). In this partial wetting
regime, there is a slight deviation between the experimental and numerical
dynamic contact angle. One explanation for the deviation can be that the
coefficient Dy could be better fitted, for instance maybe against 6, in time
instead of the spreading radius.

Fig. 6 shows the droplet spreading on a solid surface with an equilibrium
contact angle 6y = 117°. We notice, as also observed in fig. 2c, that the
result with the non-equilibrium and equilibrium boundary conditions are hard
to distinguish from each other. The flow field is almost identical with the two
boundary conditions. A slight difference in the droplet shape can be seen in
the initial wetting, where the contact angle is slightly larger with the dynamic
treatment, see fig. 6a-6b. A flow recirculation is observed as the capillary
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6d. The numerically predicted dynamic contact angle gives a direct match with

the experimental results from Bird et al. (2008), see table (3).

3.4. Dynamic contact angle relazation

Based on the results presented in fig. 4, 5, 6 it is clear that the dynamic contact
angle predicted with the two boundary conditions are different. The dynamic

has been extracted from the simulations as it evolves in time,

0s)

(

contact angle
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Table 2: Comparison of the experimental and numerical predicted dynamic

contact angle for a solid surface with an equilibrium contact angle 6,

43°,

where 6. is the experimental and 64 is the numerically predicted apparent

dynamic contact angle.
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Figure 6: Numerically predicted velocity profile and droplet shape for a droplet

117° at

four snapshots in time [a: 7 = 0.04, b: 7 =043, ¢: 7 = 0.63, d: 7 = 0.82].

spreading on a solid surface with an equilibrium contact angle 6

The left subfigure shows the dynamic treatment with Dy, = 0.1 and the right

subfigure the equilibrium assumption with Dy = 0.
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0o =117 7=0.16 7=031 7=047
0. 147° 125° 120°
05 132° 123° 120°

Table 3: Comparison of the experimental and numerical predicted dynamic
contact angle for a solid surface with an equilibrium contact angle 8y = 117°,
where 6. is the experimental and 64 is the numerically predicted apparent
dynamic contact angle.
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Figure 7: Temporal evolution of the dynamic contact angle evolution using the
local equilibrium assumption boundary condition (dotted lines) and the non-
equilibrium boundary condition (full lines). The inset in the upper right shows
schematically how the contact angle is extracted along the C=0 contour.

see fig. 7. This was done by fitting a tangent through the points along the zero
contour of the phase field parameter C, at a well defined height in the wall
normal direction (z-axis). In order to say something with fidelity about the
dynamic contact angle, several points are needed in the interpolation. As the
droplet starts to wet the dry solid surface, the interface forms a small radius
of curvature see fig. 4, 5, 6. To extract the proper dynamic contact angle it is
important not to interpolate the contact angle at a too small or large height
in the z-direction from the solid surface, since the former would produce an
inaccurate result and the latter interpolate the wrong angle. The first time
steps, when the radius of curvature is in the same order of magnitude as e,
have been disregarded, as there are not sufficient points in order to extract the
contact angle with fidelity. In the first spreading phase the radius of curvature
in the foot-region changes rapidly, and the interpolation height in z-direction
has been taken to be equal to this radius. The wall normal interpolation height
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is fixed to 15e when the radius of curvature exceeds this length. The inset in
fig. 7 shows schematically how the dynamic contact angle is extracted. For the
simulations with the equilibrium boundary condition, points closer than e from
the wall have been neglected when extracting the dynamic contact angle, since
the equilibrium contact angle is imposed here.

One observation to be made in fig. 7 is that the results obtained with the
non-equilibrium boundary condition evolve towards the static contact angle (6p)
much more slowly than with the equilibrium condition. For the cases with the
non-equilibrium condition the droplet starts to wet with a high contact angle,
close to 160°. As it spreads across the surface, the contact angle changes and
relaxes towards its equilibrium condition. In the initial short-time spreading
the dynamic contact angle varies rapidly.

The results with the equilibrium condition reveal that the droplet starts
to wet with a contact angle that is much closer to its equilibrium angle. As
the droplet spreads the dynamic contact angle varies, although not with such
a span in angles as observed with the non-equilibrium condition. It seems that
the temporal contact angle relaxation is much shorter with the equilibrium
assumption than with the non-equilibrium condition.

The evolution of the contact angle for the surface that does not wet
well, (6p = 117°), shows that there is no significant effect by using the non-
equilibrium condition for this hydrophobic case. This result is in accordance
with the finding in fig. 2c.

Fig. 7 also reveals that the hydrodynamic forces present in the flow influ-
ence the evolution of the dynamic contact angle. For instance an effect from
the capillary wave can be seen in all cases around the time 7 ~ 1.6. This is
due to the formation of a liquid neck along the symmetry axis as the droplet
spreads. As the neck breaks off two separate droplets are formed, one large on
the lower surface and a small secondary droplet on the needle. This makes the
droplets and the contact angles oscillate, see fig. 7 for 6y = [43°,117°] after
time 7 = 2.0. The influence of the breakup on the dynamic contact angle is
clearly observed for the case when 6y = 117°, as the surface tension contracts
the droplets. Detachment from the upper wall takes place at a slightly later
time, 7 = 3.1, with the equilibrium condition when 6, = 43°, a different size is
also predicted for the two droplets.

3.5. Influence of the interface width and bulk diffusion

One difficulty of the phase field method is that the interface width in practical
simulations has to be taken much larger than what can be motivated physically.
In the numerical experiments shown here, a Cahn number of Cn = 102 has
been applied. This means that in the simulations the width of the interface is
€ = 7.8um. Comparing the numerical and actual physical width of the interface,
being in the order of a couple of Angstrbm, it is clear that this numerical width
does not account for the interfacial physics on length scales below e. However,
we will verify that the macroscopic results of the simulations are insensitive to
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the interface width (i.e. the Cahn number), and that this can be considered as
a numerical parameter in the present context.

To show that the phase field method can capture macroscopic phenomena
with accuracy, it is important to show that the simulation results are fairly
independent of the width of the numerical interface. Several authors, Carlson
et al. (2010), Villanueva & Amberg (2006), Yue et al. (2010) and Ding & Spelt
(2007), have previously demonstrated this. Since we here explore a term that
have typically been neglected in phase field simulations, we have investigated
the effect of Cn and Pe on the simulated wetting physics. Fig. 8 shows the
shape of the droplet for four simulations, with different Cn and Pe. A direct
match between all the different cases is obtained for the droplet shape as well as
the wetting foot-region. As these interface widths did not have any noticeable
effect on the results, we are satisfied that the results are insensitive to values of
Cn and Pe. Additional simulations, not presented here, with the equilibrium
boundary condition show that the results were also insensitive to the Cn and

Pe numbers presented in fig. 8.

In the phase field context it is thus natural to interpret Kn, appearing
in the non-dimensional number Dy, = 2—*‘2’ = % as being similar to the
Cahn number Cn. A set of simulations were performed where the interface
width was changed nearly one order of magnitude between Cn = 2-10~2 and
Cn = 0.25-1072. By changing the Cn number but retaining the same Dyy it
was observed in the simulations that the contact line did not obtain the same
speed. However, if the ratio %—Vg is held constant, the droplet shape remains
nearly independent of the interface width as it spreads in time. This is shown
in fig. 8 where % = 140, indicating that it seems reasonable to interpret De‘*"’
as a constant independent of the interface width.

The results for different Cn numbers are shown in fig. 8, where no signif-
icant effect of the interface width was seen in the simulations, demonstrating
that the use of a finite interface width can only have a very minor influence
on the wetting simulations presented here. It seems for now also reasonable
to interpret Ag as a non-dimensional number that is independent of the in-
terface width. Yue et al. (2010) showed that to obtain convergent phase field
contact line simulations with respect to the interface width, analogous to a
sharp-interface limit, the simulations should satisfy 4 > v/ PeCn with the scal-
ing used in the present work. Remembering that the predicted velocity in the
simulations is about two orders of magnitudes less than the characteristic veloc-
ity U = %, we notice that all simulations presented here satisfies the proposed
condition for convergent results for moving contact lines, as already indicated
in fig. 8.

A question that naturally arises is whether the non-equilibrium bound-
ary condition will hold in the limit of a vanishing interface width (¢ — 0).
Wang & Wang (2007) studied the asymptotic behavior of the solution of the
Cahn-Hilliard equations, by expanding the phase field variable in terms of the
interface width. Near the contact line the outer solution was shown to behave
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Figure 8: Effects of the interface width and bulk diffusion in the simulations
for a wetting droplet on a solid surface with 8y = 43° and Dy = &2 = &n

Dw __
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140 for the four cases shown above with different Cn and Pe.
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regularly, although they did not obtain a solution for the inner contact line
region. They pointed out that the deviation from the equilibrium contact an-
gle, would indeed depend on the inner structure of the interface at the contact
line. It is in this region where the diffusive slip would act as a mechanism for
the contact line movement. Based on the study by Wang & Wang (2007), Yue
et al. (2010) noted that it still remains unclear wether such a sharp-interface
limit exists for the Cahn-Hilliard model. However, Qian et al. (2004) and co-
workers made a detailed comparison between the contact line motion predicted
with molecular dynamics simulations and with phase field modeling. Excellent
agreement was obtained for the slip profile at the nano-scale, where most pa-
rameters in the phase field equations were given directly from the molecular
dynamics calculations. The non-equilibrium boundary condition, retaining a
non-zero Dyy, was demonstrated to be of great importance in order to obtain a
matching phase field solution with the molecular dynamics simulations. They
found that the contact line dissipation is an important contribution to the total
dissipation at small length scales, a result that is in agreement with the findings
presented in sec. 4.

4. Governing dissipative mechanisms in rapid dynamic
wetting

To identify the different mechanisms that govern the dynamic wetting process,
the different rates of dissipation have been extracted from the flow. This has
been done in accordance with the methodology presented by Qian et al. (2009b),
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Wang et al. (2008). These dissipative mechanisms are the viscous dissipation
(R},), the diffusive fluxes of the chemical potential (R},) and the contact line

relaxation at the solid surface (R’jjw ). However, during rapid dynamic wetting,
some of the released energy is converted into bulk kinetic energy, and thus
the force balance that determines the wetting speed involves the liquid inertia
(Biance et al. (2004)). Therefore, the rate of change of kinetic energy (R*) is
also extracted from the flow. To identify the primary cause for resistance to
spreading, the relative magnitude of these four rates (R RD,RDW,R*) are
studied as the droplet evolves. These four contributions are scaled with the
surface energy (R; =oUL - RH,RD = oUL - RD,RD = oUL - Rp,, and

R:j =oUL- Rp) giving their dimensionless form

: Cn (06
_ . T _ n
_/Cau(C)Vu.(Vu—I—V w)dQ, RD—/Qpe <8t) do,
- [ Re-Cadp(C)u?
/DW ( at) dr, R, 7/0 S o, (17)

RH, Rp and Rp are bulk contributions (£2), while RDW is a contribution at the
solid surface (T).

Above, the relationship between Cn and Dy was discussed, and it was
shown numerically that g—”;{ = Aig is a number independent of the interface
width. This indicates also that the dissipation at the contact line as it re-
laxes towards equilibrium, should also not depend significantly on the interface
width. This can also be seen by considering here the rate of change of the
order parameter C with the spreading radius (r) at the solid surface where

9¢ ., 9Cor , LI Thig gives an estimate for the dissipation from the contact
ot Or ot € Ot

line relaxation; RBW = [0 Dy 22dl ~ Dy, (225)22nre. This gives then by

. . . 2 Dy, U? D 1

scaling Rp,, with the surface energy cUL, Rp,, ~ —J-Zre~ GX1 ~ g
Assuming here that r is in the same order of magnitude as L. and we apply the
analogy as introduced above, where Dy is interpreted in terms of Cn. This
shows, along with the result presented in fig. 8, that the energy dissipated at

the contact line does not significantly depend on Cn.

Fig. 9 shows the rate of dissipation and kinetic energy for a droplet spread-
ing on a solid surface with an equilibrium contact angle 8y = 43°. Snapshots
of the droplet shape at four different times have been placed as insets.

Initially the droplet spreads rapidly across the solid surface and the contact
line decelerates as it moves. At time 7 = 2.0, the extended liquid neck formed
along the symmetry axis between the upper and lower wall breaks, forming a
large drop on the lower solid surface and a small secondary droplet pinned at
the needle tip. It is well known that the contact line dynamics influences the
size of the deposited droplets (Qian et al. (2009a)), thus the modeling approach
presented here does not only enable a more precise prediction of the contact
line spreading but also the prediction of such a droplet deposition process. The
breakup time as well as the droplet sizes are different for the equilibrium and
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non-equilibrium boundary condition. After breakup of the liquid neck, the
droplets on the lower and upper solid surfaces oscillate as they relax into their
equilibrium state, see fig. 9. All these processes influence the rate of dissipation
as well as the rate of change of kinetic energy, see fig. 9. As the main objective
here is to identify the governing mechanisms in the early rapid dynamic wetting
we will now focus on the behavior up to the collapse of the liquid neck.

Fig. 10 shows the temporal evolution of the four rates as the droplet
spreads over the three different solid surfaces with 6y = [3°,43°,117°]. These
rates are presented until the liquid neck start to collapse (7 ~ 1.5). First, with
the incipience of wetting, viscous dissipation is large as seen in all three plots
in fig. 10. This is in agreement with the theory proposed by Eggers et al.
(1999), as a small cusp region is formed at the contact line. This regime has a
very short time span, and is quickly replaced by another wetting regime where
either the dissipation from the contact line relaxation, or the rate of change of
kinetic energy dominates, see fig. 10.

In fig. 10a the four rates are given in time for the initial spreading on a
solid surface with 6y = 3°. Initially the viscous dissipation is large, but reduces
rapidly while the dissipation from the contact line and rate of change of kinetic
energy starts to increase. In this early wetting, the contact line propagates
with a high speed (~ 1m/s) across the solid surface. After the time 7 ~ 0.05
the dissipation from the contact line relaxation starts to decrease, and inertia
becomes increasingly important. Around time 7 ~ 0.45 the dissipation from
the contact line and the rate of change of kinetic energy balances each other.
Further on, the rate of change of kinetic energy in the bulk dominates the
wetting and the spreading dynamics is dominated by inertia. The contribution
from the bulk diffusion of the chemical potential is here much less than the
three other contributions, and has an insignificant influence on the results.

A similar scenario is observed for the initial wetting on a solid surface with
0o = 43°, see fig. 10b. In comparison with the results for the solid surface
with 6y = 3°, it is seen that the transition between the relaxation and inertial
wetting takes place at a later point in time, 7 ~ 1.1, as compared to 7 ~ 0.45
for 8p = 3°. This result is also in accordance with the values determined for
the rate coefficient Dy, as Dy is found to be larger for 6y = 43° than for
0o = 3°. The magnitude of the different rates are here less than those observed
for #y = 3°, since the contact line moves slower.

A different picture is observed for the spreading on a solid surface that
does not wet well (6y = 117°), see fig. 10c. Here, viscous dissipation dominates
initially, as for the two cases reported above. However, the dissipation from
the contact angle relaxation seems to play a minor role in comparison with the
viscous dissipation and rate of change of kinetic energy. Instead the viscous
dissipation increases in time, contrary to the observations in fig. 10a, 10b, and
there is a transition between viscous and inertially dominated wetting around
7 ~ 0.15. After this transition, inertia dominates and the viscous dissipation
slowly decreases.
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The contact line relaxation regime is to our understanding a new dissipa-
tive mechanism, which has not previously been known to dominate the initial
droplet spreading. This dissipative mechanism is believed to be a reorganiza-
tion of molecules, in a type of diffusive or active process, at the contact line. In
order to model rapid dynamic wetting processes with fidelity, it is important
to account for this dissipative mechanism. This term, (~ 27rreDW(%)2) re-
sembles the term for contact line dissipation proposed by de Gennes (1985). It
is also similar to the dissipation estimated from the molecular kinetics theory
(de Ruijter et al. (1999)). At the present time we are not able to determine
whether these mechanisms are indeed the same, as this would require first prin-
ciples studies at the molecular scale, which goes beyond the scope of the present
paper. In should however be noted that the scaling for the spreading radius
from the molecular kinetic theory r ~ 7 was not recovered in the simulations,
and that this regime has been shown to take place at much later time scales
(Seveno et al. (2009), De Coninck et al. (2001)) than what is observed in the
simulations. The initial wetting regime found here, serves as an addition to the
other wetting regimes that have previously been reported in the literature.

For all three cases the viscous dissipation and the rate of change of kinetic
energy balances each other several times, although at slightly different times.
Later on viscous dissipation dominates the flow, influencing the spreading rate
as also seen in fig. 3. The time for transition from wetting dominated by inertia
to viscosity 7+ ~ 1.5 (;) is in reasonable correspondence to the result by Biance
et al. (2004), v = 3.80 (t; ~ 9.7ms). Although, it is clear that for late time
dynamics hydrodynamic forces like the collapse of the liquid bridge and droplet
oscillation influence the phenomena as illustrated in fig. 9.

4.1. Estimating the duration of the relazation regime

In view of the above, there seems to be a distinct timescale where the dissi-
pation from the contact line dominates the wetting physics. A force balance
between the capillary force generated by interface distortion and the contact
line relaxation gives an estimate of the spreading radius in this regime. It is in
this context natural to interpret the contact line relaxation as a friction force
at the contact line, while the capillary force is driving the flow. By follow-
ing the same methodology as in Biance et al. (2004) it is possible to estimate
the spreading radius as a function of time, assuming that the capillary force
balances the contact line relaxation force as,

dc
QWT'D%E =2-7ro

Dy, dr
~ p awo’

T~ (D;V> t. (18)
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Figure 9: The rate of dissipation in time and the rate of change of kinetic energy
for the spreading on a solid surface with 8y = 43°. The full line corresponds to
R,, dashed line Rp,,, dashed dotted line R, and the dashed line with round
markers to Rp . The insets in the lower part of the figure shows the droplet
shape corresponding to the time given on the x-axis.

Eq. 18 along with the estimate for the spreading radius for inertial driven
wetting (Biance et al. (2004)) r ~ (%)%t%, gives then a characteristic time for
ki

2
the transition between the relaxation and the inertial regime, t; ~ <(“)> .
DYy

By introducing the material properties for the density, rate coefficient,
length and surface tension coefficient, the duration of the wetting domi-
nated by the contact line relaxation, and a distinct time for the wetting
transition between the inertial and the contact line relaxation regime is ob-
tained. For the three cases reported above the transitional time (¢;) should
be t; = [0.44,0.88,0.018]ms or 7 = [0.18,0.34,0.007] for 6, = [3°,43°,117°].
These results are in good agreement with the numerically predicted transitional
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Figure 10: The rate of dissipation in time and the rate of change of kinetic
energy at the early stage in the wetting process for a droplet (L=0.78mm)
spreading on a solid surface with 6y = [3°,43°,117°]. The full line corresponds
to Rp, dashed line R Dyw » dashed dotted line Ru and the dashed line with round

markers to Rp .
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time. The transition time for 8y = 117° is very short, possibly within the vis-
cous cusp region, where viscosity dominates. The latter is supported by the
numerical result, presented in fig. 10c.

5. Conclusion

A phase field modeling approach for rapid dynamic wetting is presented, where
the dissipative mechanisms that dictate the evolution are identified. It is shown
that it is crucial that the mathematical modeling accounts for non-equilibrium
effects at the contact line. In particular we demonstrate that a contact line
model assuming local equilibrium will be deficient. A coefficient that appears
in the non-equilibrium boundary condition is interpreted as allowing for a dif-
fusive reorganization at the contact line. This coefficient thus represents the
molecular processes of the contact line, and parameterizes their influence on
the macroscopic spreading rate. At the present time, we could only get the
order of magnitude of this coefficient from independent experimental data.

Rapid spontaneous spreading of liquid droplets on solid surfaces with dif-
ferent degrees of wettability was studied numerically. A direct match with the
temporal evolution of the experimental spreading radius by Bird et al. (2008)
was obtained. Good agreement was also found between the numerical and ex-
perimental apparent dynamic contact angle in time. The results presented here
were found not to depend significantly on the bulk diffusion or interface width.
As a consequence, meaningful simulation results can be obtained by using in-
terface widths that are much larger than what can be physically motivated.

By tracing the rate of dissipation and the rate of change of the kinetic en-
ergy we found a new wetting regime, where the dissipation from the contact line
relaxation dominates. This is to our knowledge the first time this dissipative
mechanism is found to dominate a dynamic wetting process. This serves as a
new wetting regime complementing the regimes previously reported in the liter-
ature. The three wetting regimes predicted from hydrodynamic theory (Biance
et al. (2004), Bird et al. (2008), Eggers et al. (1999)) were also identified in
the simulations. A reasonably good match was found for the time of transition
from inertial to viscously dominated wetting between the simulations and the
theory proposed by Biance et al. (2004).

Finally, a spreading law for the relaxation regime was derived based on a
balance between the capillary force and the contact line friction. This along
with the spreading law for inertially dominated wetting (Biance et al. (2004))
yields as a distinct criterion for the transition between wetting dominated by
contact line relaxation and inertia. The transitional times found in the simu-
lations are in good agreement with the theoretical predictions.
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Dynamic wetting of a solid surface is a process that is ubiquitous in nature, and
also of increasing technological importance. The underlying dissipative mech-
anisms are however still unclear. We present here short-time dynamic wetting
experiments and numerical simulations, based on a phase field approach, of a
droplet on a dry solid surface, where direct comparison of the two allows us to
evaluate the different contributions from the numerics. We find that an impor-
tant part of the dissipation may arise from a friction related to the motion of
the contact line itself, and that this may be dominating both inertia and viscous
friction in the flow adjacent to the contact line. A contact line friction factor
appears in the theoretical formulation that can be distinguished and quantified,
also in room temperature where other sources of dissipation are present. Water
and glycerin-water mixtures on various surfaces have been investigated where
we show the dependency of the friction factor on the nature of the surface, and
the viscosity of the liquid.

1. Introduction

A canonical example of dynamic wetting is the time dependent spreading of a
liquid droplet on a dry substrate. The droplet spreads by motion of the contact
line, i.e. the curve where the liquid-gas interface that constitutes the droplet
surface intersects the solid substrate. Contact lines are present in a myriad of
flow phenomena in Nature and in industrial applications, such as the formation
of coffee stains, water uptake of birds, droplet deposition in biomedical appli-
cations, etc. Wetting is also utilized in technology, for example in microfluidic
systems, sintering and in immersion lithography techniques. Dynamic wetting
has however been difficult to describe theoretically and to model computation-
ally, primarily due to the inherent coupling between molecular and macroscopic
length scales. In the immediate vicinity of the contact line microscopic interac-
tions can be important for the dynamic contact angle (Ren & E (2007)) while
the bulk viscosity is known to influence spreading dynamics on the macro-scale
(Tanner (1979)).
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In addition to these different mechanisms, inertia has also been proposed
to characterize certain wetting phenomena (Biance et al. (2004), Bird et al.
(2008)). Bird et al. (2008)) demonstrated that a set of experimental spreading
data for water on solid surfaces with different wettability collapsed if the drop
radius was changed. The slope of the spreading curves did however change with
the wettability. We have recently shown (Carlson et al. (2012)) that neither an
inertial or viscous scaling law can describe our experimental spreading data for
a wide range of viscosities (1-85mPas). Instead, the data collapses for a scaling
law based on contact line friction factor predicted from the phase field theory,
where the slope was found to be the same even if the solid surface wettability
was changed. Simulation of such wetting makes it possible to estimate the
inertial and contact line friction contribution, allowing a direct comparison of
the magnitude of the two. As we will show later here, the latter predicts indeed
a larger contribution in simulations.

It is well known (Huh & Scriven (1970)) that continuum hydrodynamic
theory cannot give a complete description of the dissipation at the contact
line, as it predicts a non-integrable viscous stress at the contact line, if a no-
slip condition is applied for the liquid flow. Ad hoc models can be generated
if the liquid is allowed for instance to slip at the surface (Voinov (1976)),
and these are also adequate for predicting the motion of contact lines for flow
situations were the dominating dissipation is due to the continuum viscous flow
surrounding the contact line. However, there may be parameter ranges where
the dominating dissipation mechanism is local to the contact line, and then
nanoscale phenomena must somehow be accounted for.

Several different explanations have been proposed for the nanoscale mecha-
nisms at play in dynamic wetting (Bonn et al. (2009)). Blake & Haynes (1969)
describe contact line motion as an activated process where molecules are hop-
ping between potential wells at the solid surface. Prevost et al. (1999) used
inviscid superfluid helium at cryogenic temperatures (< 2K) in experiments to
limit viscous effects at the contact line. They measured the force acting onto
the contact line and found that it moved through thermally activated jumps
that were related to the roughness of the Cesium substrate. Duvivier et al.
(2011) estimated a contact line friction factor for liquids of different viscos-
ity from the molecular kinetic theory Blake & Haynes (1969), by fitting the
experimental spreading radius for drops with different viscosity. Ren and E
extracted a friction parameter acting at the contact line on the macro (Ren &
E (2010)) and micro scale (Ren & E (2007)). Molecular dynamics simulations
(Ren & E (2007)) for large capillary numbers (given by the ratio between
the viscous and surface tension force) indicated that the contact line might be
closer to a diffusive process. In this parameter regime experiments have also
shown that classical theory fails to describe the results (Chen et al. (1995)).
Eggers (2004) examined theoretically contact line motion at large capillary
numbers and pointed out that the interaction between the large scale and the
local dynamics near the contact line still holds great challenges.
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2. Theory

In spite of the extensive studies of wetting physics, direct measurements of
the dissipation in macroscopic wetting has been elusive in both experiments
and simulations. Our primary aim here is to quantify the importance of a
contact line friction force, and to obtain values for the corresponding friction
coefficient. To this end we have conducted droplet spreading experiments, with
water-glycerin mixtures with a wide range of viscosities (1-85mPas), on solid
surfaces with different wetting properties. To analyze these experiments, cor-
responding axis-symmetric numerical simulations based on the Navier-Stokes
Cahn-Hilliard equations (Jacqmin (1999)) have been made , assuming that
thermodynamics of the experimental system is described by the postulated free
energy. The simulated results allow us to identify the different contributions
to the dissipation, which are needed to reproduce the experimental results.

The Navier-Stokes equations take the form,
p% - VP+V. (u(Vu—i—VTu)) 6V — pg-n, in Q (1)
V-u=0in (2)
D/Dt is the total derivative, {2 denotes in the total volume, while I" denotes
the boundary. ¢ = g—g is the chemical potential, where F is the free energy and
C the concentration taking the value C'=1 in the liquid phase and C'=-1 in the
gas phase.p = 3 (pg(1 = C) + (14 C)) and p = % (ug(1 — C) + w(1+C))
are representing the density and the viscosity, respectively, as a function of the
concentration. The subscript [ denotes the liquid phase and the subscript g
the gas phase. g = 9.81m/s? is gravitational acceleration and n, is the normal
vector in the z-direction.
The Cahn-Hilliard equation (Cahn & Hilliard (1958), Jacqmin (1999)) is
based on a formulation of the free energy in the system,

%f =V-(MV¢)=V- <MV(Z\I/’(C) — 60V2C')> in O (3)
and can be used together with the Navier-Stokes equations to model contact
line motion. M = 8-1071'm*/(Ns) is a Cahn-Hilliard mobility. The free
energy of the system is given by a volume and a solid surface contribution,
F=[(29(C)+ ZFIVCP)d+ [ (05 — 054)9(C) + 044) dT. The volumetric
free energy consists of two terms representing the bulk (£¥(C')) and interfacial
energy (%£|VC|?), respectively. ¥ = 1(C? —1)? is a double-well function with
two minima, being the equilibrium concentrations (C') of gas and liquid. e
is the diffuse interface width and o is the surface tension coefficient. On the
solid surface, the energy is given by either having a wet (o) or dry (os4) solid
surface, where g(C) = 1(2+3C — C?) is allowing for a change in surface energy
with respect to the concentration.

By making a variation § F//§C in the free energy with respect to the concen-
tration, we obtain an expression for the chemical potential. Another outcome
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Figure 1: Initial condition taken from the experiments. The mirrored image
comes from the reflection from the Si-wafer and the fully drawn line illustrates
the solid substrate. R defines the droplet radius and the dashed line the field
of view in the experiments.

from the variational procedure is a general wetting boundary condition, formu-
lated from phenomenological thermodynamics. This boundary condition for
the concentration on the solid surface, has been demonstrated to indeed cap-
ture the main features in macroscopic rapid dynamic wetting (Carlson et al.
(2011), Carlson et al. (2009))

euf% = —eoVC -n+ocos(f.)g' (C). (4)

pr is here interpreted as a friction factor at the contact line and 6. is the
equilibrium contact angle. Since a no-slip condition is given for the velocities
at the solid surfaces, the contact line moves by interfacial diffusion, overcoming
the difficulty that arises at the contact line in classical hydrodynamic theory.
The predicted flow at the contact line is also different than the solution from
classical theory, as interfacial diffusion allows flow lines to pass through the
interface (Seppecher (1996), Yue et al. (2010)) a process interpreted by Pomeau
(2011) in terms of phase change.

The primary input in the axis-symmetric simulations are given directly
from the experiment, meaning that the measured value for density, dynamic
viscosity, equilibrium contact angle and surface tension are applied. For the
sake of direct comparison between the experiments and simulations, the in-
terface width is chosen to be the same as the pixel size in the experiments
e=7.5um. In Carlson et al. (2011) the sensitivity of both e and M was inves-
tigated, by varying both about one order of magnitude, the results remained
unchanged and no significant increase in viscous dissipation was observed.
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Figure 2: Direct comparison of experimental results and numerical simulations
for five droplets with an initial radius R = (0.54+0.02)mm and 0, 50, 62.5, 72.5,
82.5% glycerin mass fraction (from left to right), spreading on SiOs, Silane
and Teflon (from top to bottom) at time 0.33ms after start of spreading. Each
panel shows a composite of experiment and simulation, where the left half is
the experimental picture and the right half the numerical prediction.

A set of droplet spreading experiments have been performed with
high-speed imaging at 150k fps (128 x 48 pixels), on Si-wafers coated
with: oxide layer, teflon (Teflon AF 1600, DuPont, USA) and silane (tri-
methyl(vinyl)silane). The surfaces where prepared with a standard silanization
process (de Gennes et al. (2003)). Droplets were made of glycerin-water mix-
tures, with five different mass fractions (0 to 85%) of glycerin. Viscosity was
measured before and after the experiments with a commercial viscometer, and
the measurements were found to be in good agreement with values reported in
literature (Dorsey (1940)). Surface tension was measured by a pendant drop
technique. The measured values for viscosity and surface tension are given in
table 1. Droplets were generated at the tip of a needle by a syringe-micro-pump

% glycerin 0% | 50% | 62.5% | 72.5% | 82.5%
1+ 0.2 [mPas] 1 | 6.6 14 31 85
0+0.2 [mN/m] | 73 | 66 66 65 64

Table 1: Measured values of the dynamic viscosity (u) and surface tension
coefficient (o) for the different mixtures of water and glycerin. The upper row
shows the mass fraction of glycerin in water.

system, which allowed to control the volume rate. The nominal droplet size
was controlled by vertically adjusting the distance from the needle tip to the
solid surface (see fig. (1)) using a micrometer screw, although the actual size
of the droplet was measured more accurately from the digital images.

The contact line friction factor (us) that appears in eq. 4 is determined
by matching the experimental spreading radii in simulations. A non-zero py
generates an additional dissipation that slows the relaxation of the contact line
to its equilibrium state. It allows us to parametrize on a macroscopic level what
is believed to be microscopic effects that generates dissipation at the contact
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line. After numerically measuring the value of iy we compare directly the
evolution of the dynamic contact angle (#) in the experiment and simulation.
Since no external force is applied on the system, the uncompensated Young’s
force (F' = 2mro(cos(f.) — cos(f)) is believed to be the leading mechanism
driving the spreading, thus the rate of change of work done by this force to
advance the contact line W = uy F = 21ruqo(cos(f,) — cos(f) is also directly
compared between experiments and simulations, where r is the spreading radius
and u.; is the contact line speed.

We next proceed to formulate the different contributions to the dissipation
rate for a drop spreading on a substrate (Ren & E (2011)). Based on the
governing equations three dissipation contributions appear, namely; viscous
dissipation (R, ), contact line dissipation (Ry) and a diffusive dissipation,

R, = / g(vTu + V) (Vi + Vu)dQ (5)

. oC?
Rf :/Elufg dl'. (6)

For clarity we have discarded the diffusive dissipation here (RM =
J1/M(0¢/0t)?dSY), as it is found to give a very small contribution. Since iner-
tia has been proposed as a mechanism to govern spontaneous capillary driven
spreading, we also extract the rate of change of kinetic energy (Rp) to compare
its magnitude with viscous and contact line dissipation,

o [ O(gpu?)
R,,—/TdQ. (7)

As formulated by de Gennes (1985), among others (de Ruijter et al. (1999),
Duvivier et al. (2011), Prevost et al. (1999)), there can be a dissipation (Rpg =
2mrpsu?)) at the contact line itself, given as a function of the contact line speed
and a friction factor py. This is in fact the same form as Rf in eq. 6, which

is formulated from the boundary condition in eq. 4. In order to see this we

estimated Ry as Ry = Jr euf%—?QdF ~ 2mreps(52)2(25)%e ~ 2mrppug®. Note

that the variation in concentration at the solid surface with respect to the radial
direction is 6C/or ~ 1/e.

3. Dissipation in dynamic wetting

Fig. 2 shows a direct comparison of experimental results and numerical simu-
lations for five droplets with different viscosities on SiOs, Silane and Teflon
(from top to bottom, respectively), at time ¢ = 0.4ms. The initial condition
and the field of view for the experiments is shown in fig. 1. Here the initial
radius is R ~ 0.5 mm. In the simulations, the friction parameter s acting
at the contact line, which is unknown a priori, is measured by matching the
spreading radius in time with the experiments. In fact, if ;1f is set to zero, the
equilibrium contact angle is enforced at the solid surface and the contact line
propagates faster in the simulations than what is observed in the experiments.
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But when the appropriate value for 15 is introduced, the contact line relaxation
is impeded and the simulations match measured parameters from experiment
like the spreading radius and apparent dynamic contact angle. Notice that by
adjusting this single parameter p ¢ the simulations capture the complete droplet
dynamics as it spread in time.

As the droplets start to wet the solid surfaces, see fig. 2, the interface forms
an apparent contact angle that is much larger than the static equilibrium value.
For the spreading of a water droplet, a capillary wave is formed at the contact
line at the start of spreading. This wave propagates across the drop, before
it is finally dissipated (Carlson et al. (2011), Bird et al. (2008)). Contrary to
water, experimental observations of the more viscous fluids does not show any
capillary waves, which are immediately damped by viscosity. Still, the apparent
contact angle is very different from its static value.

In fig. 3 the measured spreading radius, dynamic contact angle and uncom-
pensated young’s force are presented. The errorbars represent the maximum
deviation between several realizations of the same experiment, using a mini-
mum of four realizations. Fig. 3a shows the evolution of the spreading radius
and fig. 3b the dynamic contact angle () as functions of time for the spread-
ing of water and glycerings 59, droplets presented in the first row to the far left
and right in fig. 2. The inset in fig. 3b illustrates how the dynamic contact
angle has been defined in the experiments and the simulations. The contact
angle was measured by computing the tangent over the first seven pixels of the
interface contours neglecting the first pixel. Thus the tangent was computed
from the remaining six points using the least square method, which showed
consistent results for different interpolation heights as long as it is less than the
local radius of curvature at the contact line.

As can be seen from fig. 3a, the evolution of the droplet radius is very
different for the two cases, with about a factor of two larger speed for the water
droplet. The greatest difference can however be observed in the evolution of
the contact angle in fig. 3b. For the water droplet, the contact angle evolves
in a highly non-linear fashion, while in the latter the contact angle relaxes
approximately linearly in time. In both cases a friction factor 1 of considerable
size is found to be needed in order to obtain the proper wetting dynamics. For
the water droplet a friction factor (1f)m,0 = 0.15Pas is found. For the very
viscous glycerin-water droplet (f1f)giycerings s = 1.02Pas.

One of the driving forces in the spreading dynamics believed to be the
uncompensated Young’s force (F'), by having a dynamic angle which is different
from the angle at equilibrium state. In fig. 3c, we compare the rate of work
done (W = uF') by this force between experiments and simulations, as the
contact line advances across the solid substrate. Since the contact line velocity
and the contact angle relaxation (see fig. 3a, b) evolves much faster for water
than for the glycerin mixture, W is higher for water as observed in fig. 3c. W
slowly decreases in time during the spreading of the glycerings 5o, droplet.

5%
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Figure 3: a) Droplet radius, b) dynamic contact angle and ¢) the rate of change
of work due to the uncompensated Young’s stress as functions of time for a pure
water and an 82.5% glycerin-water droplet. The dashed curves are simulations
and the points with error bars are experimental. The contact line speed u; is
determined by taking the derivative of the mean spreading radius in a).



Contact line dissipation in short—time dynamic wetting 143

00155
— 001 %
E “‘. i l-‘-y-\--______,.,-
. R
m0_0057 "ﬂ' ------ et ea————
".‘
y Rp
G0 0.2 0.4 0.6 0.8 1 00 0.2 04 0.6 0.8 1
t [ms] t [ms]
(a) Water droplet p = 1mPas, 6. = 20°. (b) glycerings 59, p = 85mPas, 6. = 17°.

Figure 4: The different contributions to the dissipation from the simulations,
viscous R,, (dashed lines), contact line R dissipation (dashed-dotted lines) and
rate of change of kinetic energy R, (full lines).

Having obtained a very good match between simulations and experiments,
as shown in fig 3, we will now assume that also the dissipation mechanisms
are the same in simulations and experiments. Thus, we will now evaluate the
different contributions to the dissipation rate from the simulations, and claim
that they reflect the dissipation rates in the corresponding experiments. Fig.
4 shows a comparison between the dissipation rates Rf and Rm extracted
from the simulations as the water (fig. 4a) and glycerings 59 (fig. 4b) droplet
spreads in time. Since it has been argued that inertia has a dominant role in
such spreading, we also compare the magnitude of the rate of change of kinetic
energy (R,). The dashed line shows the viscous dissipation (R,,), the dotted
line the contact line dissipation (R;) and the full line the rate of change of

kinetic energy (R)).

Fig. 4a shows the dissipation as the water droplet spreads on an oxidized
Si-wafer. At the incipience of wetting the contact line forms a small cusp re-
gion with a large curvature, and the contact line accelerates from a zero-velocity
condition explaining the increase in dissipation at the very early stage of the
spreading. It is also at the early stage of the spreading that the viscous dissi-
pation is the largest but the spreading dynamics is dominated by contact line
dissipation, which is here about five times larger than the viscous dissipation.
Also the rate of change of kinetic energy is producing a similar contribution
as the two dissipations, but it is found to give a smaller contribution than the
contact line friction. Rapid spreading of water shows capillary waves traveling
across the droplet (Biance et al. (2004), Bird et al. (2008)), which are causing
the wavy form of the change in kinetic energy in time observed here. After a
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peak in both the viscous and contact line dissipation around time ¢t = 50us,
they slowly decreases as the contact line decelerates in time.

Also the dissipation in the spreading of the glycerings sy droplet was
found to be dominated by contact line dissipation, see fig. 4b. At the start
of spreading the contact line dissipation is large, but rapidly decreases and
levels off around ¢ = 20us. In the same timeframe viscous dissipation slowly
increases, before it becomes fairly constant. Contact line dissipation is found
to be a significant and dominant contribution in the spreading of droplets for
both low and high viscosity. At a much later time, when the capillary number
is small (<« 0.1) and the droplet has a spherical cap profile, viscous dissipation
is expected to dominate the spreading thus recovering Tanner’s law (Bonn
et al. (2009)). For this viscous liquid, the rate of change of kinetic energy is
much smaller than the viscous and contact line dissipation, also illustrating
why no capillary wave is observed as it is immediately damped by the viscosity.
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Figure 5: Measured contact line friction uy as a function of the dynamic vis-
cosity p on the Si-wafers coated with oxide (circles), silane (squares) and teflon
(triangles). Water has an equilibrium contact angle of about [20°, 60°, 109°] for
these coatings, respectively. Variation in the equilibrium contact angle for the
different mixtures is small Af, ~ £2°.

The experiments of different water-glycerin mixtures have been performed
on Si-wafers coated with oxide, silane and teflon. In fig. 5 we show the measured
contact line friction parameter as a function of the dynamic viscosity of the
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mixtures, for the three surfaces. We notice that all of the reported values for the
contact line friction factor are much larger than the dynamic viscosity. Based
on the macroscopic simulations it is hard to make a conclusive argument about
the microscopic origin of uy, it has previously been interpreted as an hysteresis
effect (Prevost et al. (1999)) and molecular hopping (de Ruijter et al. (1999))
at the contact line.

The further the droplet is from its equilibrium condition as it starts to
spread, the more important contact line friction is in the flow. In the spreading
phenomena investigated here the contact angle is initially large, ~ 180°, as the
droplets start to wet. This explains why the friction factor becomes larger for
surfaces that wet well. The friction factor increases with respect to the viscosity
on all of the solid surfaces.

4. Conclusions

Our measurements identify contact line dissipation as an essential part in dy-
namic wetting. The excellent agreement between experiments and simulations
indicates that the dissipation is the same in the two. This enables us to dis-
tinguish the different dissipation rates in simulations. They show that contact
line dissipation is a significant and dominant contribution that can not be dis-
regarded at the early stage of the spreading process. A friction factor appears
(pef) at the contact line, which generates the dissipation as the contact line
moves. This contact line friction factor is believed to parametrize the micro-
scopic interactions at the contact line on the macro-scale. It has been directly
measured from simulations by a direct comparison of experiments for a range of
viscosities and equilibrium contact angles. These results help us to quantify an
important underlying physical mechanism that governs rapid dynamic wetting,
which has been largely unknown. This is in particular relevant for the strategic
design of application at small scales, such as microfluidic devices, where moving
contact lines are an inherent part.
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We report experiments on the rapid contact line motion present in the early
stages of capillary driven spreading of drops on dry solid substrates. The
spreading data fails to follow a conventional viscous or inertial scaling. By
integrating experiments and simulations, we quantify a contact line friction
(fer), which is seen to limit the speed of the rapid dynamic wetting. A scaling
based on this contact line friction is shown to yield a universal curve for the
evolution of the contact line radius as a function of time, for a range of fluid
viscosities, drop sizes and surface wettabilities.

The interest in moving contact lines is increasing due to the need for design
of fluid applications at small scales, since these often rely on manipulation or
control of two-phase flow. Examples of such are microfluidic systems, sintering,
printing, coating and immersion lithography techniques to name a few. Spon-
taneous spreading occurs in the deposition and formation of micron sized drops
in biomedical applications and when rewetting the lubricating film covering the
eye.

A generic example of dynamic wetting is the spreading of a spherical liquid
drop as it comes in contact with a dry solid surface. Its spreading after contact
is dominated by different physical mechanisms at various stages in the temporal
evolution. If the drop radius is less than its capillary length, the flow is mainly
driven by the interfacial energy of the drop and the substrate surface energy.
The contact line is formed at the intersection of the drop liquid-air interface
and the solid substrate, where the dynamic contact angle is defined as the angle
between the liquid-air interface and the substrate. For a moving contact line,
the interface is typically distorted near the solid surface, giving rise to a free
surface capillary force, which may pull the contact line forward. These forces
are balanced by different rate-limiting processes, such as viscous dissipation
(Huh & Scriven (1971)) and inertia (Bird et al. (2008)), which all act to reduce
the contact line speed.

It is well known that the classical hydrodynamic theory predicts a diver-
gence of viscous stress at the contact line. Therefore it might be expected that
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the spreading is dominated by the viscous dissipation in the bulk. By regular-
izing the viscous dissipation, a model for the spreading in viscously dominated
wetting is established (Voinov (1976)). This is often referred to as Tanner’s
law where the spreading radius (r) evolves as r ~ R(%)%m where o is the
surface tension coefficient, R the initial drop radius and p the viscosity. This
model, which holds promise if the drop evolves slowly and has a shape similar
to a spherical cap, has explained many experiments. However there are many
wetting phenomena that it does not describe, illustrating that there are other

mechanisms influencing or dominating the spreading.

One example is the spontaneous spreading of a water drop as it comes in
contact with a low energy substrate. Experiments indicate here that the ac-
celeration of liquid in the bulk of the drop is resisting contact line motion. An

inertial spreading is found to follow r ~ R (RT?"’) T (Biance et al. (2004))

(p is the density), but by making the substrate more hydrophobic a different
exponent for the spreading radius was found by Bird et al. (2008). The hydro-
dynamic model cannot fully capture wetting at high capillary numbers (given
by the ratio of the viscous and surface tension force) (Chen et al. (1995)), and
dynamic wetting experiments of viscous (1Pa s) drops (Bliznyuk et al. (2010)).
In the latter case the spreading radius was observed to increase as the square
root of time (r ~ t0-9).

de Gennes (1985) postulated that there might be another non-
hydrodynamic dissipative contribution arising from the contact line itself. This
macroscopic dissipation was defined by a friction factor local at the contact line,
which has the same units as viscosity. Others (Carlson et al. (2011), Ren & E
(2007), Prevost et al. (1999), Ren et al. (2010), Blake & Haynes (1969)) have
also discussed the importance of local non-hydrodynamic effects at the contact
line, with different interpretations of its microscopic origin. Recently (Duvivier
et al. (2011)) a friction factor was estimated from the molecular kinetic theory
by fitting the experimental spreading radius for drops with different viscosity.
These experimental observations are collected at much later time scales than
presented here, and the value for this friction factor is an order of magnitude
larger than our numerical measurements.

By integrating experiments and axi-symmetric simulations based on the
Cahn-Hilliard Navier Stokes equations (Carlson et al. (2009, 2012)) we estimate
values for the friction factor (uy) that appears in the free energy formulation.
Theoretically, the friction factor generates a local dissipation at the contact line
through its boundary condition. Here, particular attention is devoted to the
very first stage of a spontaneous spreading process that is far from equilibrium.
The experimental data cannot be rationalized as viscous or inertial effects.
The data set collapses for a scaling law based on the numerically measured
contact line friction parameter s, even for a wide range of viscosities (1-85mPa
s), different drop sizes and surface energies. These results indicate that local
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dissipation at the contact line, interpreted as a contact line friction, is limiting
spreading.

Both experiments and numerical axi-symmetric simulations of drop spread-
ing have been performed. The simulations are based on the Cahn-Hilliard
Navier-Stokes equations (Carlson et al. (2009)). In terms of phenomenologi-
cal thermodynamics one can postulate the free energy (F') for a binary fluid
F=[(29(C)+ %|IVC]?)dQ+ [ (65 — 054)9(C) + 044) dT'. The volumetric
(2) free energy consists of two terms representing the bulk (ZW¥(C)) and inter-
facial energy (%£|VC|?), respectively. ¥ = 1(C? —1)? is a double-well function
with two minima, giving the equilibrium values of the order parameter C, as
C = —1 for gas and C =1 liquid. The diffuse interface width (e) is chosen to
be the same as the spatial resolution in the experiments € = 7.5um. Important
to note, however, is that in (Carlson et al. (2011)) € has been varied one order
of magnitude, without any noticeable change in the results or any increase in
viscous dissipation.

The surface energy of the wet substrate is o4, and the dry (o44). g(C) =
1(2+3C — C?) is chosen to give g(1) = 1 and g(—1) = 0, thus producing the
corresponding wet or dry surface energy of the substrate.

By making a variation in F' with respect to the concentration, one obtains
an expression for the chemical potential (6F/6C). If accounting for the effects
of convection of the concentration, that would equal the flux due to gradients
of the chemical potential, the Cahn-Hilliard equation is recovered, which along
with the Navier Stokes equations forms a theoretical basis for modeling of
wetting (Carlson et al. (2009)) with a no-slip on the wall.

By retaining any perturbation in the concentration at the wall, a general
wetting boundary condition for the concentration at the solid surface appears
(Jacqgmin (2000)),

eﬂf% = —eoVC -n+ocos(fe)g (C). (1)

We interpret here ¢ as a friction factor at the contact line. 6, is the equilibrium
contact angle.

Experiments of spontaneously spreading drops have been carried out thr-
ough high-speed imaging (150kfps) for different viscosities and coatings (ox-
ide, silane, teflon) on Si-wafers. The viscosity was changed by using different
glycerin-water mixtures, of glycerin mass-fraction 0%, 50%, 65%, 72.5%, 82.5%
, corresponding to viscosities [1, 6.6, 14, 31, 85] mPa s, respectively. The differ-
ent viscosities do not give any significant change in equilibrium contact angle
(£2°), which were measured as 6. = [20°,60°,109°] for oxide, silane and teflon
coatings.

The axi-symmetric Cahn-Hilliard Navier Stokes simulations mimic the ex-
periments using the same material properties (density, viscosity, surface tension
and equilibrium angle) as measured from experiments. To obtain the experi-
mentally observed spreading behavior, an additional dissipation at the contact
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Figure 1: Panel a) Illustrates the initial condition for the experiments and
the numerical simulations, where a drop held at the tip of a needle is brought
into contact with a dry solid substrate. The dashed box in the figure shows
the field-of-view in the experiments. In panels b) and ¢) are shown the drop
shape near the substrate, at times ¢ = 0.15ms, t = 0.60ms and t = 0.90ms,
after initial contact. Each panel shows a composite of experiment (left) and
simulation (right). The black solid line in the right half that is plotted on top
of the simulation result, illustrates experimental interface shape. b) A water
drop spreading on an oxidized Si-wafer (6, = 20°, viscosity pm,0 = 1mPa s).
¢) Glycerin 82.5% drop spreading on an oxidized Si-wafer (6. ~ 20°, viscosity
Hglycering, 5o = SomPa s).

Mass fraction glycerin | 0% | 50% | 65% | 72.5% | 82.5%
Si04 [Pa g] 0.15 | 0.33 | 0.51 | 0.66 1.02
Silane [Pa s] 0.17 [ 0.26 [ 0.33 | 0.41 | 0.80
Teflon [Pa s 0.07 | 0.06 | 0.09 | 0.10 0.19

Table 1: Values for the contact line friction parameter py [Pa s] for different
viscosities and substrates (SiOs, Silane, Te flon) measured from the numerics.

line was necessary through a non-zero py (Carlson et al. (2009)). us was deter-
mined by obtaining a direct agreement between simulations and experiments,
enabling a direct measurement of p1f even in the presence of other contribu-
tions such as viscosity and inertia (Carlson et al. (2012)). The values for pf
are reported in table I for all the surfaces and viscosities. A non-monotonicity
in uy is observed for pure water for the Si0O, and silane coating, the same de-
pendency was reported by Carlson et al. (2009) when comparing with similar
experiments by Bird et al. (2008). We can at the present time not explain
this non-monotonicity for pure water. Fig. 1 shows the excellent agreement
between simulations and experiments for a water-glycerin 82.5% drop with an
initial radius R ~ 0.5mm. Fig. la shows the initial condition in the experi-
ments and simulations, and the field of view in the experiments (dashed box).
The same window was extracted from the numerics, however the whole drop
was simulated.
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Figure 2: The spreading radius in time on an oxidized Si-wafer for two drop
sizes R ~ (0.3 + 0.02)mm (hollow markers) and R ~ (0.5 + 0.02)mm (filled
markers) for different mass fractions glycerin as indicated in the legend. (a)
Dimensional units. (b) Viscous scaling. (c¢) Inertial scaling. (d) Contact line
friction scaling.

Fig. 2a shows how the radial position of the contact line evolves in time
for drops with different initial radii and for different viscosities on the oxidized
Si-wafer. The markers represent the mean value after several realizations of the
experiments (minimum of four) and the data set has been reduced for clarity.
One observation to be made in fig. 2a is that the viscosity as well as the drop
size influences the spreading.

Fig. 2b shows the same data, with the contact line radius scaled with
initial drop radius R and the time scale with a viscous capillary speed o/p.
The capillary speed o/p is 73m/s for water and 0.75 m/s for 85% glycerin-
water. However, as is evident from fig 2b, this scaling fails to collapse the
data, so the viscous contribution does not seem to be the limiting factor in
this situation. An alternative would be an inertial scaling of time based on an
inertial capillary velocity scale \/o/(pR), as shown in fig 2c. As is evident here,
this scaling does not capture the essential dynamics either, and we conclude
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that neither inertia or bulk viscosity is the limiting factor for spreading in our
experiments.

The remaining possibility is a capillary velocity based on the contact line
friction discussed above and quantified in table 1. A representative velocity in
this case can be found either from equation 2 or from dimensional analysis to
be u* = o /py. Introducing the values for o and py from table 1 gives a speed of
ufe, ~ 4.8m/s for water and ug,,, ~ 0.6m/s for 85% glycerin. By scaling time
with R/u*, we do obtain a collapse of data, for the entire range of viscosities
and drop sizes, see fig. 2d. The scattered dimensional plot represented in fig.
2a is reduced to a single spreading curve. Fig. 2 shows only results for the
Si04 surface, but similar results are also obtained for the other solid surface
coatings.

iy is determined by adjusting it in simulations so that the mean spread-
ing radius agrees with that of several experiments performed using the drop
radius 0.5mm. It should be noted that the adjustment of this single parameter
achieves excellent agreement for the entire drop shape, over the whole spread-
ing event. We have also varied the drop size in additional experiments, which
has a significant influence on the spreading radius (see fig. 2a). As shown in
fig 2d, the data for both drop sizes collapse excellently when using a scaling of
time according to ot/(R * ps). The value of py is thus independent of drop
size, and this indicates that it is an intrinsic material property of the surface
in combination with the wetting liquid.

Fig. 3a shows the non-dimensional collapse of data for the three surface
coatings for different drop sizes and viscosities. By representing the dimension-
less curves in fig. 3a in logarithmic axis, we observe that the radii follow the
same slope independent of the solid surface at the early stage of the partial
wetting, see fig. 3b. This is indicating that the governing physical mechanism
is indeed the same for the different solid surfaces. From fig. 3b it is clear

that the spreading radius evolves as & ~ ( R‘ﬁf)z. A similar relationship is

expected in a diffusion process, where in this context oR/p; would represent
a diffusion coefficient. This could indicate that a diffusive process is taking
place at the contact line, which was suggested by Ren & E (2007) from rapid
wetting simulations using molecular dynamics. However, a detailed study at
the nanoscale would be needed to verify this. In the first stage of the spreading,
for non—dimensional time < 1, the experiments cannot be fully captured by the

ot

hydrodynamic theory through Tanner’s law r = R(M—R)% or by the molecular

kinetic theory that predicts  ~ ¢7 (de Ruijter et al. (1999), De Coninck et al.
(2001)). We have for clarity inserted the slope predicted from Tanner’s law in
fig. 3b.

In fig. 3b a distinct transition between the 1/2 slope and a much more grad-
ual slope (~ 1/10) is observed around non-dimensional time 1. This might be
an indication of the transition between contact line friction dominated spread-
ing and another slower spreading regime. We assume here that the second
regime is viscously dominated spreading given by Tanner’s law and makes this
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equal to the contact line friction dominated spreading r = R M‘;—tR a distinct

transition time (¢;) between the two regimes is obtained. In dimensional scales

10 b)

-IE:::::I

log(/R)

Ll ‘ 0 1
log( 0 VR 0

Figure 3: Non-dimensional spreading radius based on a contact line friction
scaling on the different substrates (oxide (back), silane (red), teflon (blue)).
Hollow markers denote (R = 0.3mm) and filled markers (R = 0.5mm). (a)
Linear axis. (b) Logarithmic axis.

this becomes t; = %(‘L—fﬁ or in non-dimensional time (7), 7 = % = (%f)%
Introducing the material properties in the expression for 7 we notice that a
physically reasonable transition time is obtained and in very good agreement
with the experimental results presented in fig. 3. For example, the dimension-
less transition time for water and 85% glycerin is on the oxide surface found to

be 199, = 3.5 and 7g59, = 1.05, respectively.
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An analytical function can be derived for the contact line velocity (),
based on the boundary condition given in eq. 1, if the equilibrium profile for the
concentration across the interface is introduced and some algebra is performed
(Yue & Feng (2011)),

o cos(fe) — cos(0)
i sin(d) ®

where 6 is the dynamic or apparent contact angle. Eq. 2 is different from other
expressions for the contact line velocity previously reported in the literature
(de Gennes (1985)) by that it is divided by sin(f) which makes the expression
diverge at angles 0° and 180°. This function is assumed to only be valid when
the local dissipation at the contact line dominates. At these extrema, other
mechanisms such as inertia or bulk viscous friction are expected to regularize
the solution. sin(f) gives a non-negligible contribution to the function and
introduces an additional non-linearity.

Uel =

In fig. 3b it is clear that the spreading radius evolves as a function r ~

R(2¢ )%. By taking the time derivative of this expression we find that the
Ry

contact line speed should be proportional to ~ t=3. To evaluate the analytical
expression for the contact line velocity given in eq. 2, we use the experimental
data for the dynamic contact angle for the data presented in fig. 2a for the
different viscosities and drop sizes, as they evolve on the oxidized wafer. We
define the dynamic contact angle between the tangent along the contoured
interface (interpolated at a fixed height of 7 pixels from the wall) and the solid
substrate, on the liquid side. The dynamic contact angle measurements are
found to be fairly insensitive to changes in interpolation height, as long as this
height is chosen to be less than the local radius of curvature at the contact line.

Fig. 4 shows that the expression given in eq. 2 indeed gives a slope for the
cos(fe)—cos(9) |
sin(0)
R/r, which from eq. 2 recovers the experimentally observed behavior presented
in fig. 2d and fig. 3. The inset in fig. 4 shows the predicted contact line
speed using the linearized function from molecular kinetic theory dp g =
(o/pg) - (cos(Be) — cos(0)) (de Ruijter et al. (1999)). Since we are interested
in the slope for the contact line speed in time, we assume py¢ to be the same
in 4pr i as reported in table I. One clear observation to make from the inset
in fig. 4 is that at non—dimensional time < 2.4 the slope for the contact line
speed predicted from molecular kinetic theory upxr = (tf/0)tn ks does not
agree with the experimental observation in fig. 3.

contact line speed as ty ~ R RLMF%. This indicates that

In summary we have shown that spreading experiments and simulations for
a wide range of viscosities, on substrates with very different wetting properties,
all exhibit a universal spreading behavior if contact line friction dominates
the spreading. An expression for the contact line radius is proposed for this

spreading regime as r ~ R(u‘;tR)z. The analytical contact line velocity from

phase field theory, where the dynamic contact angle is primary input, predicts



Universality in dynamic wetting dominated by contact line friction 159

1

10 : ;
30
3
100 | ®m0O 0%
AA 50%
@0 62.5%
X% 72.5%
<44 82.5%
1072 10°

=
Mog(trorRr)

Figure 4: The main figure shows the dimensionless contact line velocity func-
tion from phase field theory uy = “ay = (cos(fe) — cos(6))/sin(f). In-
set shows the velocity predicted from the linearized molecular kinetic theory
UMKT = %fﬁMKT = cos(f,) — cos(f). The input in these two functions are
the experimentally measured dynamic contact angle 6 for two different drop
sizes on the oxidized Si-wafer. The mass fraction glycerin is indicated in the
legend. Hollow markers denote small (R = 0.3mm) and filled markers large
drops (R = 0.5mm).

the same slope for the spreading as found directly in experiments. A criterion
is proposed to determine the dominance of contact line friction or viscosity in
spreading, which is found in good agreement with the experiments. We hope
that these results can help rationalize spreading phenomena that falls beyond
classical hydrodynamic theory, and gives a phenomenological explanation for
such physics.
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