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Kungliga Tekniska Högskolan, Stockholm.

c© Malte Kjellander 2012

Universitetsservice US–AB, Stockholm 2012



Energy concentration by converging shock waves in gases

Malte Kjellander
Department of Mechanics, Royal Institute of Technology (KTH)
SE–100 44 Stockholm, Sweden

Abstract Converging shock waves have been studied experimentally in a

shock tube, and numerically using inviscid calculations and the theory of geo-
metrical shock dynamics. The converging shock waves were created in a shock
tube with two modular test sections designed to create cylindrical respectively
spherical waves. In the spherical case the shock waves take the shape of spher-
ical cap before propagating into a cone, while the cylindrical shocks converge
in a fully circular cylindrical chamber.

The dynamics and symmetry of circular and polygonal cylindrical shock
waves with initial Mach numbers ranging from 2 to 4 were studied. The shocked
gas at the centre of convergence attains temperatures high enough to emit ra-
diation which is visible to the human eye. The strength and duration of the
light pulse due to shock implosion depends on the medium. In this study, shock
waves converging in air, argon, nitrogen and propane have been studied. Cir-
cular shock waves are very sensitive to disturbances which deform the shock
front, decreasing repeatability. Shocks consisting of plane sides making up a
symmetrical polygon have a more stable behaviour during focusing, which pro-
vides less run-to-run variance in light strength. The radiation from the gas at
the implosion centre has been studied photometrically and spectrometrically.
The full visible spectrum of the light pulse created by a shock wave in argon
has been recorded, showing the gas behaving as a blackbody radiator with
apparent temperatures up to 6,000 K. This value is interpreted as a modest
estimation of the temperatures actually achieved at the centre as the light has
been collected from an area larger than the bright gas core. Circular shock
waves attained higher temperatures but the run-to-run variation was signifi-
cant. The propagation of circular and polygonal shocks was also studied using
schlieren photography and compared to the self-similar theory and geometrical
shock dynamics, showing good agreement.

Real gas effects must be taken into consideration for calculations at the
implosion focal point. Ideal gas numerical and analytical solutions show tem-
peratures and pressures approaching infinity, which is clearly not physical. Real
gas effects due to ionisation of the argon atoms have been considered in the
numerical work and its effect on the temperature has been calculated.

A second convergent test section was manufactured, designed to smoothly
transform a plane shock wave into the shape of a spherical cap. After the
convergent transformation the spherical shock propagates through a conical
section, where it is aimed to retain the spherical shape and converge in the tip
of the truncated cone, which has an end radius of 0.3 mm. Spherical implosion is

iii



more efficient than cylindrical and the target volume is much smaller than that
in the cylindrical chamber. The new set-up does not suffer from large losses
through reflections. Spectrometric and photometrical measurements of the
implosion show significantly stronger radiation of longer duration. Preliminary
results show measured apparent blackbody temperatures up to 27,000 K during
implosion of shock waves of initial Mach number MS = 3.9.

Descriptors: Shock waves, converging shocks, ionisation, shock dynamics,
shock tubes, black body radiation.
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Overview and summary





CHAPTER 1

Introduction

Shock waves are essentially waves propagating at velocities higher than the speed
of sound. They are very thin and sharply raise the temperature and pressure in
the medium they travel through - the stronger the shock, the higher the increase in
pressure and temperature. Shock waves can be said to be one of nature’s way of
spreading local concentrations of energy and are created by sudden releases of energy,
such as lightning strikes or explosions. A shock wave created in a point propagates
outwards in all directions, weakening in strength, slowing down, as its front swells.
Some energy is dissipated through non-reversible processes within the shock front,
which further takes energy away and weakens the shock wave. The shock wave heats
the gas it propagates through and in this manner the released energy is spread over a
large space. Now reverse the process. By some means, create a shock wave spherical
in shape which propagates inwards. Although the dissipative losses within the shock
front are still present, the shock wave now accelerates as the available space becomes
smaller and gets increasingly stronger. Given perfect symmetry, the shock wave will
all but coalesce unto a point, creating a very high concentration of energy.

Converging shocks occur naturally in collapsing spheres, ranging in size from mi-
crobubbles to supernovae. Except being of interest from a physicist’s point of view,
present and potential applications are found in e.g. medicine and material science. A
regular method to deal with troubling kidney or gallstones is by extracorporeal shock
wave lithotripsy. Shock waves generated outside of the body are focused on the stones
inside the body, which shatters them. The possibility to use similar methods on other
types of unwanted intruders, e.g. some types of cancer cells, is being studied. The
shock waves generated to break kidney stones are extremely weak, barely stronger
than sound waves. Strong converging shock waves are of interest in material synthe-
sis, where the phase, hardness or other characteristics of a material can be changed
through shock wave compression: one example is the synthesis of diamonds from car-
bon. Attempts to initiate fusion reactions which generally required extremely high
temperatures have also been made; e.g. gamma-rays have been detected escaping
from shock waves converging in deuterium. All these applications have at least one
thing in common: it is of importance to be able to create symmetric shock waves
converging to a well-defined focus. To create extreme conditions intuition says sym-
metry is necessary to focus the energy to an as small volume as possible, whereas
in the case of lithotripsy, the shock waves must focus on the target stones so that
surrounding body tissue is not damaged.

The first work on converging shocks was an analytical study by Guderley (1942),
which was followed by experimentally produced shocks about a decade later (Perry

1



2 1. INTRODUCTION

& Kantrowitz 1951). Already during the first experiments it was found that the
amplification of the converging shocks of initially moderate strength heated the gas
at focus to such a degree that it became radiating.

The present work is one of basic research. The aim is to study the dynamics
of converging shock waves and the light emissions they create in order to determine
what level of energy concentrations are achievable. Converging shock waves were
produced in a shock tube with two modular test sections: one designed to create
cylindrical shock waves and a second designed to shape the plane circular shocks
into the shape of a spherical cap. The propagation of the shocks is studied with
schlieren photography and the light pulse from the shock implosions investigated by
photometry and spectrometry. Figure 1.1 shows a photograph of the light during a
run with the cylindrical test section.

Figure 1.1: Photograph of radiating argon heated by converging shock wave.

1.0.1. Thesis structure

The main parts of the thesis are the papers presented in Part II. In the introduc-
tory Part I the Chapters 2,3 and 4 are essentially a literature study intended to give
an introduction to the topics at hand whereas Chapter 5, 6 and 7 summarise the
experimental facility and the results of the present work. The contributions of the
individual authors to each paper are stated in Chapter 8. Part II contains seven
papers, arranged in the following order: the first three papers appeared in the au-
thor’s licenciate thesis whereas the remaining four are added to them in chronological
order. Papers 1 and 7 are spectrometric studies on the light emissions created by
cylindrical respectively spherical shock waves in argon. Paper 2 is a study concerning
the influence of real gas effects on converging shocks using the approximate theory of
geometric shock dynamics. Papers 3, 4 and 5 deal with the propagation and dynamics
of converging cylindrical shock waves of polygonal and circular forms.



CHAPTER 2

Basic equations

This chapter provides a physical and mathematical description of the gases
involved, shock wave jump relations and an introduction to pseudo-steady shock
reflections. The gas models used in the thesis are either the standard perfect gas
model or the equilibrium model for monatomic gases described in this section.

2.1. Equations of motion

The governing equations of an compressible inviscid fluid are the Euler equa-
tions. For an inviscid gas with volumetric mass density ρ, temperature T ,
pressure p, internal energy per unit mass e and velocity u = (u, v, w) they are
written in the conservation form as follows, neglecting body forces and heat
addition (see e.g. Anderson 2003).

The conservation of mass:

∂ρ

∂t
+ ∇ · (ρu) = 0 (2.1)

The conservation of momentum:

∂(ρu)

∂t
+ u∇ · (ρu) = −∇p (2.2)

The conservation of energy:

∂

∂t

[

ρ

(

e +
u2

2

)]

+ ∇ ·

[

ρ

(

e +
u2

2

)

u

]

= −∇ · (pu) (2.3)

The equations need to be closed with an equation of state. At low pressures
and temperatures, most real gases behave as thermodynamically perfect gases
and fulfil

p = ρRT = nkT (2.4)

where R is the specific gas constant, n the number of atoms per unit volume
and k the Boltzmann constant. Departures from the perfect state typically oc-
cur when the gas attains very high pressures or temperatures but the simplest
definition of a real gas is a gas that does not fulfil the perfect gas law. As a
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4 2. BASIC EQUATIONS

general equation of state does not exist different models for different regimes
must be used. For the present study the most important and influential de-
partures are caused by ionisation in argon, which is covered in the following
chapter.

2.2. Ionised monatomic gases: equation of state and
equilibrium conditions

This section described how the monatomic gases accounting for ionisation are
modelled. The model is taken from established theory, see Vincenti & Kruger
(1966), Zel’dovich & Raizer (2002) or Cambel & Jennings (1967). Consider a
volume of monatomic gas that is heated to high temperatures. As the trans-
lational energy of the gas increases, collisions between particles become more
frequent and violent. Through the collisions translational energy is transferred
to excite electrons to higher levels or transfer them into a free state, ionising
the gas. The gas now consists of several components: neutral atoms, electron
and ions of different charge. New variables are needed: generally, the subscript
i will used for values connected to the ions and e to the electrons. The electron
number density is denoted as ne (dimension m−3) and the number densities of
the heavy particles ni, i = 0, 1, ..., $ where i is the charge state of the ion and $
the atomic number. For the neutral atoms, i = 0. The total number density of
all heavy particles is denoted nH and is the sum of all ni. The number fraction
or degree of ionisation is defined as αe = ne/nH . The variable αe may also be
seen as the average number of electrons released by the atoms. The number
fractions of heavy particles in ionisation stage i is defined as αi = ni/nH . From
from these definitions follows that

N
∑

i=0

αi = 1 (2.5)

Charge is conserved and an ion in stage i has released i free electrons, which
translates into

ne =
!

∑

i=1

ini = nH

!
∑

i=1

iαi = nHαe and (2.6)

αe =
!

∑

i=1

iαi (2.7)

The gas consists of a mixture of electron and ionised gases. Assuming that
each component individually can be treated as a perfect gas, each has a partial
pressure
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pe = nekTe (2.8)

pi = nikTi, i = 0, 1...$ (2.9)

for the electrons and ionic components respectively. If the gases are in local
thermodynamic equilibrium they may all be described by a single translational
temperature, Te = Ti = T . Using the particle fractions as defined above, the
total pressure can then be written according to Dalton’s law as follows, yielding
an equation of state for a partially ionised gas,

p =
!

∑

i=0

pi + pe = kT (
!

∑

i=0

ni + ne) = nHkT (1 + αe) (2.10)

This can be reformulated using k = Rimi, where Ri and mi is the specific
gas constant and molecular mass for the component i. The weight differences
between ions of different stages are negligible and the weights and specific gas
constants of all ionic components can be approximated with those of neutral
argon, mi ≈ mA and Ri ≈ RA. Dropping the index from the gas constant, this
leads to ρ ≈ mAnH and

p = ρRT (1 + αe) (2.11)

The internal energy content at equilibrium of the gas is divided into trans-
lational energy, potential energy of the ions and energy bound in excited elec-
tronic states. Each atom, ion or electron has three degrees of freedom and each
therefore contributes 3/2kT . When a heavy particle is ionised, the energy re-
quired to remove the electron becomes bound as potential energy. The energy
required to ionise an atom or ion from state i−1 to state i is Ii. The total energy
required to remove N electrons from an atom is therefore Itot = I1+I2+...+IN .
There also exist electrons excited to higher levels within the ions, whose excita-
tion energy is designated Wi. Summarising, the internal energy per unit mass
of the ionised gas may be expressed as (remembering that k/mi = Ri ≈ R)

e =
3

2
(1 + αe)RT + R

!
∑

i=1

αi

i
∑

j=1

Ij

k
+ R

!
∑

i=0

αi
Wi

k
(2.12)

The energy of the excited states may be found from statistical mechanics,

Wi = kT 2 ∂lnQel
i

∂T
(2.13)

where Qel
i is the electronic partition function of component i. The equilibrium

values of the ionisation fractions can be determined from the Saha equation,
which rewritten using the particle fractions becomes
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αi+1

αi
=

1 + αe

αe

(

2πme

h2

)3/2 (kT )5/2

p

2Qel
i+1

Qel
i

exp

(

−
Ii+1

kT

)

(2.14)

where me is the electron mass and h the Planck constant. For a given p and T
equation 2.14 can be solved, e.g. by the iterative method of Trayner & Glowacki
(1995). Appendix B contains derivations of the energy and Saha equations and
for further reading on the topic ionisational equilibrium, see e.g. Drellishak
et al. (1963) or Ebeling (1976).

2.3. Shock waves

A shock wave can be briefly described as a wave with finite amplitude, travelling
in a medium at velocities higher than the speed of sound in that medium. Over
the shock wave the pressure, velocity, temperature and density change abruptly.
This change is not reversible: inside the shock wave dissipation of energy occurs,
the entropy increases. Shock waves occur in nature when excessive amounts
of energy is released rapidly, such as the crack of lightning or during volcano
eruptions1. They also occur when an object is travelling at supersonic speed
in a medium – or vice versa, if the medium itself is travelling at supersonic
speed compared to its surroundings. The physical shock wave is very thin - of
the order of a few mean free paths. The entire width of a shock wave therefore
only contains a small number of particles in the longitudinal direction and thus
the shock appears as nearly a singularity in the continuum model - yet the
existence of shock waves was predicted by considering certain waves travelling
in a fluid governed by the Euler equations. Before they were studied in any
laboratory, what is now called shock waves were discussed as a mathematical
peculiarity by prominent 19th century scientists. It was for a long time an open
question whether they existed at all in the physical world. A short summary is
provided here – for a more in-depth description on the historical development,
see e.g. Salas (2007).

Poisson (1808) was the first to solve the propagation of a wave in a fluid
described by the Euler equations. A problem, or ”a difficulty” as Stokes (1848)
called it in his paper treating the subject, appears when considering that dif-
ferent parts of a sinusoidal wave travel at different velocities. Given enough
time, the front of the wave will steepen until it becomes vertical: suddenly the
solution breaks down. Although he later changed his mind, Stokes suggested
that once such a breakdown appears a possible physical result is that the front
of the wave continues its motion as a sharp discontinuity.

Riemann (1860) solved the propagation of various initial discontinuities,
although he assumed the jumps to be isentropic. He introduced the invariants
now bearing his name and the method of characteristics to trace the paths of

1If these examples interest the reader he is diverted to e.g. Jones et al. (1968); Saito et al.

(2001).
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the jumps. Working from a thermodynamic rather than mathematical point of
view, Rankine (1870) and Hugoniot (1889) presented the well-known jump con-
ditions over a discontinuity by considering the conservation of mass, momentum
and energy. Without the entropy condition, solutions exist for both compres-
sion and rarefaction shocks (i.e. where pressure increases and decreases, respec-
tively). The laws of thermodynamics had not yet been firmly established and
even though Hugoniot stated that the entropy increases over the compression
shocks, it was not until the early 20th century that Lord Rayleigh and Taylor
determined that only compression shocks exists in nature, due to the second
law of thermodynamics.

The first to actually observe and visualise shock waves was Töpler in 1864.
For the purpose he used the schlieren technique that he had recently invented
and observed shocks created by electric discharges. Using a precise timing cir-
cuit he flashed the schlieren light source after a certain duration from each
discharge. By continuously discharging the source and by flashing at the same
moment a seemingly stationary schlieren image could be seen in the viewing
telescope, which he documented by drawing them by hand. Some of his images
and a biography has been published by Krehl & Engemann (1995). Töpler in-
tended to visualise sound and it was not clear what actually had been observed
- he designated them as sound waves, travelling at the speed of sound. It would
be Mach who, in a set of experiments during 1875-1888 – partly using Töpler’s
techniques – would not only visualise shock waves but also conclude that these
were not sound but the discontinuities described by Riemann. Among other
things, Mach also experimentally showed the steepening of a pressure-pulse into
a shock wave, the irregular reflections that bear his name and a host of other
contributions to many fields of research. The study of shock waves may have
had little practical use in the 19th and early 20th century, but with the advent
of supersonic flight and high-speed internal flows the purely mathematical and
slightly academic discontinuities of Stokes and Riemann have become a major
research field.

2.3.1. Generalised Rankine-Hugoniot relations

Figure 2.1(a) illustrates a standing normal shock wave and particle paths. The
frame of reference is chosen so that the shock is stationary. The gas upstream is
in a known state (1) and flows into the standing shock with a supersonic Mach
number M1 = u1/a1. After passing through the shock, which is treated as a
sharp discontinuity, the gas continues at a lower and subsonic Mach number
M2 = u2/a2 being in a new state (2). The unknown state (2) is sought. Assum-
ing that the change of quantities is immediate, consider the states immediately
up- and downstream of the shock.
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Figure 2.1: Normal shock wave and particle paths in x − t space in a frame
moving with the shock (a) and in a laboratory frame (b). After Oertel (1966).

By the laws of conservation,

ρ1u1 = ρ2u2 (2.15)

ρ1u
2
1 + p1 = ρ2u

2
2 + p2 (2.16)

h1 +
u2

1

2
= h2 +

u2
2

2
(2.17)

where h = e + pV is the enthalpy. The entropy condition demands that dissi-
pation causes the entropy of the gas to increase when it passes the shock, or
s2 ≥ s1. For calorically perfect gases, where p = ρRT and h = cpT with a
constant cp, the above set of equations can be solved to give the well-known
normal shock relations presented by Rankine and Hugoniot. For many prob-
lems a more intuitive approach is from a frame of reference that is at rest with
the flow ahead of the shock. The system can be transformed to such a lab-
oratory frame where the shock wave is moving with a velocity u′

s = M ′

s/a1

into an undisturbed state (1) by setting u′

s = −u1 and u′

2 = u2 − u1. This is
illustrated in Fig. 2.1(b): note that the Mach number of the flow behind the
shock M ′

2 might now be either sub- or supersonic in that frame. The jump
relations solved by Eqs. 2.15-2.17 are identical for both frames.

Consider now a shock so strong that the gas in the post-shock condition
(2) may no longer be considered perfect. Depending on the gas, it might expe-
rience vibrational and rotational excitation, chemical reactions, dissociation or
ionisation. It is no longer possible to close the system with a simple equation
of state, and iterative methods are needed to find a solution, see for example
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Figure 2.2: Normal shock wave. The state (1) ahead of the shock is known and
the equilibrium state (2) is sought.

Resler et al. (1952), Kozlov & Stupitskii (1968), Nieuwenhuijzen et al. (1992)
or Michaut et al. (2004). In this overview a short description of the solution
procedure for shocks in monatomic gases is added: a strong shock wave is mov-
ing into a gas with known conditions p1, T1, ρ1, u1, h1 and ionisation αi,1. The
gas in region (1) is in such a state that αi,1 = [α1, α2, ..., α!]1 can be considered
equal to zero. In a frame attached to the shock wave the system is such as
illustrated in Fig. 2.2. To find the state (2) the set of Eqs. 2.15-2.17 needs
to be solved. The enthalpy for a monatomic gas in the upstream condition is
h1 = 3/2RT + pV = 5/2RT . In the post-shock state the gas is ionised; with
the energy equation Eq. 2.12 and equation of state Eq. 2.11 the enthalpy in
state (2) becomes

h2 =
5

2
(1 + αe,2)RT2 + R

!
∑

i=1

αi,2

i
∑

j=1

Ij

k
+ RT 2

2

!
∑

i=0

αi,2
∂lnQel

i (T2)

∂T
(2.18)

The last term, the electronic excitation energy, is often much smaller than the
first two and may then be neglected. To calculate α, local thermodynamic
equilibrium is assumed to be established instantaneously and the species dis-
tribution is found from the Saha equation, Eq. 2.14. The set of equation is
closed, but an iterative method is necessary to find the post-shock conditions:

1. An initial value of ρ1/ρ2 is estimated, based on e.g. the standard
Rankine-Hugoniot equations.

2. New values of p2, u2 and h2 are calculated using Eqs. 2.15-2.17.
3. With the new values, a temperature that simultaneously fulfils the en-

thalpy according to Eq. 2.18 and the equilibrium conditions according
to Eq. 2.14 is found using a numerical method.

4. A new ρ1/ρ2 can now be found from the equation of state, Eq. 2.11,
which is used as a new guess in step 1. The process is repeated until the
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error between the guessed and resulting values is as small as acceptable
or machine allows.

Figure 2.3 shows the equilibrium conditions behind a normal shock wave in
argon with initial temperature T = 293 K and three different initial pressures
p1 = 0.1, 0.01 and 0.001 atm. The dashed lines are the Rankine-Hugoniot
relations for a perfect gas without ionisation depending only on Mach number.
The ionisation has a strongly limiting effect on the temperature as energy is
transferred from translational to potential energy. Whereas the compression
approaches an asymptotic value (ρ2/ρ1 = 4 for γ = 5/3) for the constant-
composition gas this is not the case for the ionising shock. The peak corre-
sponds to the maximum of the first ionisation stage, whereafter the transla-
tional energy increases relative to the potential energy, resulting in a decrease
of density.
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Figure 2.3: Effect of ionisation on shock jump conditions (a-c) at three different
initial pressures p1 = 0.1, 0.01 and 0.001 atm. Dashed lines represent the non-
reacting Rankine-Hugoniot solution. The ionisation is presented in (d).
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Figure 2.4: Structure of an ionising shock in a monatomic gas, moving towards
the right in the positive x-direction: sketch of the temperature and ionisation
distribution. Region 1: undisturbed gas, 2: shock front, 3: relaxation zone, 4:
equilibrium post-shock state.

2.3.2. Shock structure

In the previous sections it was stated that the shock front was only a few
mean free paths thick, and that the gas assumes equilibrium conditions af-
ter shock passage. However, the picture becomes more complicated when the
temperature jump is so large that reaction processes start behind the shock.
The structure of strong shocks in argon has been studied extensively and a
working model for the processes has been developed for shock Mach numbers
M ≈ 15− 30: see e.g. the theoretical studies (Bond 1954; Gross 1965; Wong &
Bershader 1966; Hoffert & Lien 1967; Biberman et al. 1971; Matsuzaki 1974;
Kaniel et al. 1986) and experimental (Petschek & Byron 1957; Fomin et al.
2003; Yakovlev 2006). Without going into detail, the basic features are pre-
sented here.

Figure 2.4 shows a qualitative sketch of the shock structure in a monatomic
gas with the variation of temperatures and ionisation fraction. Region (1) con-
tains the undisturbed gas, while region (4) is the post-shock state in thermody-
namic equilibrium. Region (2) is the very front of the shock, where translational
equilibrium is reached after only a few collisions. The thickness of this region
is thereby a few mean free paths. Immediately behind the front is the so called
frozen condition as determined with the standard Rankine-Hugoniot equations.
Region (3) is the relaxation zone, in which the gas attains its equilibrium val-
ues. In this non-equilibrium area the electron and ion gases have different
translational temperatures, Te and T . A commonly used model is the two-step
ionisation process: in the first step atoms are excited to the first electroni-
cally excited state and in the second step the excited atoms are subsequently
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ionised. Catalysts for both reactions are either heavy particles or electrons.
Once a certain number of energetic electrons have been generated the process
increases rapidly – giving rise to a so-called electron avalanche – which can be
seen in the sudden increase in ionisation in the figure. The relaxation zone can
be substantial: e.g. for a shock of strength M ≈ 10 in initial p1 ≈ 1 kPa and
T1 = 300 K it is several centimetres. Increasing the shock strength to MS ≈ 20
decreases the relaxation zone to less than 0.1 mm (Zel’dovich & Raizer 2002).

2.4. Pseudo-steady shock reflections

The interactions between several shock waves or between shocks and solid
boundaries are important in this work, so a brief introduction will be given
here. The categorisation and transition of reflections are subject to ongoing
research and this section is based on the review of the current state of research
by Ben-Dor & Takayama (1992) and Ben-Dor (2006). The reflection pattern
appearing when a shock wave collides with an inclined solid surface is depen-
dent on the wall inclination θw and Mach number M of the incoming shock
wave (and also on the state of the gas; this introduction only deals with ideal
conditions).

The different patterns are categorised in two main groups, regular and ir-
regular reflections. Figure 2.5 illustrates some of the possible shock reflections.
A plane shock wave i is moving perpendicularly along a surface from left to
right, with velocity uS and Mach number MS . The shock propagates into a
gas at rest. At a certain point it strikes a wall inclination with angle θw. If
θw is large enough, regular reflection occurs, Fig. 2.5 (a), where the reflected
shock r is connected to the incident shock at the surface (point P). Although
the shock waves are not stationary in the laboratory frame, the flow is steady
in a reference frame attached to point P and such systems are referred to as
pseudo-steady.

Irregular reflections occur when the angle θw is so small that a physical flow
can not be established by the regular reflection pattern (a). Irregular reflection
includes von Neumann reflection and different forms of Mach reflections. Two
different Mach reflections are shown in (b) and (c). A shock wave m normal to
the surface appears – called a Mach stem after its first observer – inducing a
parallel flow close to the surface. The incident and reflected shock waves instead
coalesce with the stem at a point away from the wall, called the triple point
(T). A slip line divides the gas that has passed the incident and reflected shock
from the gas affected by the stem. If the flow immediately behind the triple
point between r and s is supersonic relative to T, the near part of the reflected
shock wave becomes straight. This pattern is designated as a transitional Mach
reflection (c). A von Neumann reflection is a weaker form of irregular reflection,
where the reflected shock r is a compression wave. Experimental visualisation
of many types of reflections can be found in e.g. Takayama & Ben-Dor (1993).
The different reflection domains are sketched in Fig. 2.6 for shock waves in
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perfect air and argon up to MS = 5. It should be noted, that for high Mach
numbers non-ideal gas effects have large influences on the regimes (see e.g.
Ben-Dor & Glass 1979, 1980).
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Figure 2.5: A few shock reflection types: (a) regular reflection; (b) single Mach
reflection; (c) transitional Mach reflection. The streamlines in figure (a) are
presented as seen from a frame of reference attached to the intersection point
P.
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Figure 2.6: Approximate reflection regimes for shock waves in perfect air (a,
γ=1.40) and argon (b, γ=1.66), after Ben-Dor (2006) and Lee & Glass (1984)
respectively. The transition lines from (b) are inserted as dashed lines in (a)
for comparison.



CHAPTER 3

Shock tubes

Shock tubes are devices used primarily to study high temperature gas kinetics,
shock wave interactions and high speed flow. The first shock tube was built
slightly more than a century ago: the originator was the French chemist and
inventor Paul Vieille (1854-1934) who, working for the French armouries, also
invented the smokeless gunpowder. During experiments with detonations he
had detected waves in non-reacting gas. For the purpose of investigating if
these were the discontinuous waves then recently described by Hugoniot, he
constructed the first of the devices which are now called shock tubes: a four
meter long tube divided in two sections by a thin diaphragm. One end was
filled with air at atmospheric pressure, the other at a high pressure. In a
series of experiments, using purely mechanical detectors he registered shock
waves travelling at about 600 m/s (Vieille 1899–1900) as well as the expansion
wave travelling the opposite direction. A few shock tubes experiments were
conducted during the Interwar period (Schardin 1932) but it was not until
after the Second World War that a large number of shock tubes appeared
in research facilities in many countries, beginning with Payman & Shepherd
(1946) in the UK, Bleakney et al. (1949) in the US and Soloukhin (1957) in
the USSR. This chapter provides a short introduction to the workings of the
simple shock tube. Much of the collected information is based on Oertel (1966)
and references therein.

3.1. The simple shock tube

A simple shock tube is a long tube, usually with a rectangular or circular cross
section, consisting of two sections separated by a thin membrane. The first is
called the driver section and is filled with a gas at high pressure. The other, low
pressure section is called the driven section. A shock tube at initial conditions
is sketched in Figure 3.1. When the membrane is broken, a shock wave is
formed, travelling down the tube. After reflecting on the end wall, the shock
wave travels through the previously shock-heated gas compressing and heating
it further. The gas is ideally at rest in this hot reflected zone and is used for
studying thermodynamics and reactions in hot gases.

3.1.0a. Flowfield. In the ideal situation, a one-dimensional flow without viscos-
ity where a shock wave and expansion is instantly formed at membrane burst,

14
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Driver section

Driver gas 

Diaphragm

Driven section

Driven gas (test gas)4 1

Figure 3.1: Shock tube before membrane burst. Initially the high and low
pressure gases are in states (4) and (1) respectively.

the flow field and wave propagation can be solved explicitly from the known
initial conditions in states (1) and (4). Fig. 3.2 shows the ideal solution of
a shock tube run with air in both sections (”air-air”) with p4=14 atm and
p1=1 atm. At t = 0 the membrane bursts and two waves are formed: one
shock wave travelling downstream with constant velocity uS and Mach number
MS = uS/a1 and one expansion wave propagating with u − a or in words,
propagating upstream relative to the gas with the local speed of sound. When
the gas in the driven section is passed by the shock wave it is compressed to
a state (2) and a momentarily accelerated to a velocity u2. The high pressure
gas is expanded in the expansion wave to a state (3) with the same pressure
as the shock-compressed gas and is moving into the driven section with the
same velocity as the shock-induced flow, p3 = p2 and u3 = u2. The front of
the expansion travels upstream with velocity −a4 (as u4=0) and the tail with
velocity u3 − a3: the tail may move either towards the left or right depend-
ing on whether u3 is sub- or supersonic. The whole flow can thus be divided
into a number of states: (1) the pre-shock initial low pressure state, (2) the
shock-compressed state, (3) the expanded cold state, (4) the initial high pres-
sure state. Between states (3) and (4) is the expansion wave wherein the gas
conditions change continuously.

The shock Mach number MS is dependent on the pressure, the speed of
sound and heat capacity ratio in the initial high and low pressure gases. An
expression relating the pressure ratio to the Mach number is given in below
(for an explicit derivation, see e.g. Resler et al. 1952):

p4

p1
=

[

2γ1M2
S − (γ1 − 1)

γ1 + 1

] [

1 −
γ4 − 1

γ1 + 1

a1

a4
(MS −

1

MS
)

]−
2γ4

γ4−1

(3.1)
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Figure 3.2: An example run in air-air: p4=14 atm and p1=1 atm, T4 = T1 = 300
K, MS=1.7. Flow field (a) and gas conditions at time t = 0.5 ms (b) through
(e). A wave diagram is shown in (f). The diaphragm is situated at x=0.33 m.
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With a known MS , state (2) is determined from the normal shock relations.
State (3) can then be determined as the velocity and pressure are the same as
in state (2) and as it has been isentropically expanded from state (4), the
isentropic relations give the density and temperature. When the expansion
front reaches the left wall it will reflect and travel back into the expansion,
creating a complex region. The values in the expansion, including the complex
region, can be calculated using the method of characteristics. The velocity and
Mach number MR of the reflected shock wave at the right wall are determined
by considering that the gas behind it must be at rest. With a known MR state
(5) behind the reflected shock can be acquired from the shock jump conditions.

Returning to Eq. 3.1: the Mach number of the shock wave MS apparently
depends on the initial ratios of the pressures p1 and p4 and the speeds of sound
a1 and a4. Considering the limit p4/p1 → ∞ yields and interesting result,

Mmax =
γ1 + 1

γ4 − 1

a4

2a1
+

√

1 +

(

γ1 + 1

γ4 − 1

a4

2a1

)2

(3.2)

or, for strong Mach numbers,

Mmax ≈
γ1 + 1

γ4 − 1

a4

a1
(3.3)

An upper limit for the achievable Mach number is set by the ratio of speeds
of sound no matter how much the pressure is increased. Lighter driver gases
thereby generate stronger shock waves and common drivers are, besides cheap
air, H2 and He. Figure 3.3 shows ideal shock Mach numbers MS for different
gas combinations and pressure ratios.

3.1.0b. Measurement times. During studies of e.g. reaction rates in the hot
gas in the zone behind the reflected shock, designated here as state (5), it is
essential that the measurement time is long enough. The available time for
measurements can be determined and optimised by studying the wave prop-
agation. As such wave diagrams as the one presented in Fig. 3.2 are helpful
tools. The measurement time is the time from the instant the shock arrives
at the end wall until the first disturbance - a reflected shock or expansion -
reaches the end wall and changes the gas conditions. By changing the lengths
of the low and high pressure sections the wave pattern can be altered in such
a way that the measurement time is prolonged. In general the optimal time is
when the reflected shock wave, the reflected expansion from the left wall and
the contact surface all confluence at the same time.

The measurement time can be increased if the gases and MS are chosen
such that the reflected shock passes the contact surface without reflection.
This can only happen if the driver gas after passing of the reflected shock
comes to rest and the pressures in the reflected states 1’ and 2’ (the states of
1 and 2 that has been passed by the reflected shock) are equal. The contact
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Figure 3.3: Shock Mach number as a function of pressure ratio for different
driver-driven gas combinations according to the ideal solution Eq. 3.1. Driven
and driver gases are assumed to have the same initial temperature.

surface in this case remains stationary after colliding with the shock. It is not
trivial to achieve such a tailored contact especially as it sometimes involves pre-
heating gases to tune the speed of sound, but, for a given Mach number, it can
increase the measurement times by roughly a factor 4. Palmer & Knox (1961)
have presented tailoring conditions for He-Ar. Hong et al. (2009) presented
tailoring conditions for a number of common gases for tubes with difference
cross-sections.

As the calculations on measurement times are somewhat lengthy the reader
is referred to Oertel (1966).

3.1.0c. Non-ideal effects. Various processes create large or small deviations
from the ideal calculations. For the prediction of the shock Mach number,
experiments have shown good agreement with the ideal solution for low pres-
sure ratios, but for higher ratios, p4/p1 ! 104, the ideal solution predicts lower
Mach numbers than experiments have shown. Causes for this discrepancy may
be heating of the high pressure vessel during filling of the pressurised gas,
multi-dimensional effects and finite formation of the shock. The membrane
opening is finite and a shock is not instantly formed. When the membrane
bursts pressure waves start propagating into the low pressure gas. The speed
of sound behind the successive waves increases, resulting in a compression of
the waves into a shock wave – a compression shock. White (1958) developed a
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one-dimensional theory for a finite opening, which was closer to experimental
results but still under-predicted the Mach number. Axisymmetric calculations
on multi-dimensional effects were carried out by Petrie-Repar & Jacobs (1998)
showing that this too had effect.

Behind the shock front a viscous a boundary layer is formed along the walls.
For combinations of geometry and shock strength the boundary layers of oppo-
site walls may even unite and the flow is completely turbulent. After reflection,
the shock wave will propagate into the boundary layer it had induced and a
bifurcation zone is formed as the reflected shock interacts with the boundary
layer. Boundary layer effects are large and interactions of boundaries and the
contact surface can have great impact on the flow, even decelerating the shock
front (Emrich & Wheeler 1958).



CHAPTER 4

Converging shock waves

This chapter recounts past studies of converging shock wave in a brief review.
A large number of papers have been published on the topic, and far from all are
mentioned here. Instead a selection has been made that connects more closely
to the present study.

4.1. Theoretical background

The first study of converging shock waves was made by Guderley (1942). For
the implosion of strong cylindrical and spherical shock waves in an inviscid,
perfect gas he derived a local self-similar solution to the gas-dynamic equations
of the form

r

r0
=

(

1 −
t

t0

)α

(4.1)

where r0 is the initial radius at the time t = 0 and t0 is the instant of focusing,
when r = 0. The self-similarity exponent α governs the acceleration of the
front, where α = 1 implies a constant velocity. The solution to the problem is
not trivial and values of the exponent, which is dependent on the gas in which
the shock is propagating, are determined numerically1. Solutions to the local
and global – taking into consideration the initiation of the shock – problems
and determinations of self-similar exponents with an increasing number of sig-
nificant digits have been made in a great number of studies, e.g. Butler (1954),
Stanyukovich (1960), Fujimoto & Mishkin (1978), Lazarus & Richtmyer (1977),
Lazarus (1981), Van Dyke & Guttman (1982) and Ponchaut et al. (2006). Ta-
ble 4.1 shows the history of the exponent for cylindrical and spherical shock
waves for γ = 7/5 and γ = 5/3 and corresponding shock trajectories and
velocity increase are plotted in Fig. 4.1. Fujimoto & Mishkin (1978) used a
different approach and claimed that the problem might be solved in closed
form, which yielded quite different values compared to the rest. Other authors
challenged the validity of their method (Lazarus 1980; Van Dyke & Guttman
1982; Wang 1982). Nakamura (1983) used the method of characteristics to
solve the problem and acquired exponents agreeing well with the self-similar

1An overview of the solution process, and of self-similar problems in general, is presented by
Zel’dovich & Raizer (2002), pp. 794–806

20
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solution. Chisnell (1998) made an approximate analytical determination of the
exponent agreeing very well with those acquired from the exact form. His solu-
tion also gave a description of the flow field at all points behind the converging
shock front.
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Figure 4.1: Spherical and cylindrical solutions to the self-similar solution Eq.
4.1 for two different γ (values for α taken from Tab. 4.1). Shock trajectories
(a) and velocity amplification for shocks with the same initial velocity at u(r =
r0) = u0 (b).

Approximate methods neglecting the influence of the flow behind the shock
wave were developed independently by Chester (1954), Chisnell (1955, 1957)
and Whitham (1958). It is a geometrical approach based on tracking the shock
fronts along rays perpendicular to the fronts, analogous to acoustic wave the-
ory. The approach, called the CCW-method after the listed authors above,
or geometrical shock dynamics (GSD), works well also with converging shocks
and results in good approximations of the similarity solutions. The theory has
been expanded by Whitham to allow uniform flow in front of the shock and by
Apazidis et al. (2002) to also account for shocks propagating into non-uniform
flows. A comparison of the solutions of self-similar theory, geometric shock
dynamics as well that of a numerical Euler solver was presented by Hornung
et al. (2008), showing good agreement.

4.2. Experiments in shock tubes

To create a radially diverging shock wave is relatively uncomplicated. An
explosion or electric spark generates an even shock, propagation radially from
the point of the charge. To create a converging shock wave is, naturally, more

2Value depending on intital Mach number.
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Cylindrical Cylindrical Spherical Spherical
γ = 7/5 γ = 5/3 γ = 7/5 γ = 5/3

Guderley (1942) 0.834 - 0.717 -
Butler (1954) 0.835 - 0.717 0.688
Stanyukovich (1960) 0.834 - 0.717 -
Welsh (1967) 0.835 0.816 0.717 0.688
Lazarus & Richtmyer (1977) 0.835 0.816 0.717 0.688
Fujimoto & Mishkin (1978) - - 0.707 0.687
Mishkin & Fujimoto (1978) 0.828 0.814 - -
de Neef & Hechtman (1978) 0.835 - - -
Van Dyke & Guttman (1982) 0.835 - 0.717 0.688
Nakamura (1983) 0.834 - 0.717 -
Hafner (1988) 0.835 0.816 0.717 0.688
Chisnell (1998) 0.835 0.816 0.717 0.688
Ponchaut et al. (2006) 0.835 0.816 0.717 0.688

Experiments:
Baronets (1984) 0.816 to 1.02

Kleine (1985) 0.832 (+0.028,−0.043)
Takayama et al.(1987) 0.831 ± 0.002

Table 4.1: Guderley’s self-similarity exponent. Significant digits of numerical
values reduced to three. MS is the initial shock strength during the experi-
ments.

problematic. The methods used by researchers have in principle been variations
of two different methods. One, to do the opposite of the point explosion and
diverging shock: to generate a shock by placing explosives or an array of spark
plugs on a spherical (or cylindrical) periphery, and two: to generate a plane or
diverging shock wave and shape it into a converging spherical (or cylindrical)
shape by shock reflection and diffraction. In this section is a short review and
references to past experiments. Fig. 4.2 shows a collection of different means
of creating shock waves.

The first experiments on converging shock waves were carried out by Perry
& Kantrowitz (1951). They used a standard shock tube with a tear drop-shaped
and centrally aligned inner body, sketched in Fig. 4.2 (a). It’s a device that
belongs to the second category described above: initially plane shock waves
are reflected and diffracted around the tear-drop to form cylindrical shock
waves on the downstream side – the shock front at two instants is illustrated in
the figure. They found that the shock waves managed to concentrate enough
energy to make the gas at the centre of implosion emit light - even more so
when argon was used as a test medium. The production of light was believed
to be caused by ionised gas and taken as an indicator of high pressures and
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temperatures. Two different initial Mach numbers were studied, 1.4 and 1.8.
The convergence process was studied with schlieren optics. They observed that
symmetrical shapes were more difficult to achieve when the shock waves were
initially stronger. For stronger shock waves, reflections appeared on the front
breaking up the symmetry.

The design of Perry & Kantrowitz inspired several other works. Kleine
(1985) and Takayama et al. (1987) investigated the dynamics and stability of
converging circular cylindrical shock waves in air in two different shock tubes
with similar construction. The stability and propagation was investigated and
they found experimental values for the self-similarity exponent, which agreed
well with theory (see Table 4.1). Watanabe & Takayama (1991) continued the
stability experiments.

To avoid the need for supports of the inner body that generate the distur-
bances, a vertical shock tube with an an annular membrane was built at the
Tohoku University (Watanabe et al. 1995; Hosseini et al. 2000). The result-
ing converging shocks kept the circular form better than in shock tubes with
supports for the inner body. Deformation of the shock shape still occurred how-
ever, and reason for this was believed to be small changes in area between the
inner and outer body of the coaxial channel. Also in this experiment cylindrical
rods were placed in the test section to introduce corresponding disturbances in
a controlled way. One conclusion was that when several modes were combined,
the lowest dominated the others.

Hosseini & Takayama (2005b) also constructed a hemispherical chamber
for focusing of shock waves created by explosives. The final Mach number
of the converging shock was between 2.5 and 8. They created a transparent
chamber with aspheric outer surface in order to use holographic interferometry.
They produced high-speed video recordings of the shock wave propagation and
discussed the influence of different methods of shock generation had on shock
stability.

4.3. Shocks waves initiated by detonations or explosions

Lee, Lee and Knystautas at the McGill University in Montreal performed experiments
with converging detonation and shock waves in different cylindrical chambers filled
with acetylene-oxygen mixtures. Lee & Lee (1965) used a cylindrical drum - a ”bomb”
- divided in two halves by a disc, with an annular opening between the disc and drum
wall that allowed the shock to pass from one section to the other. The explosive
gas was ignited in the centre of one of the sections, creating a diverging detonation
wave entering the second section where it imploded. They found that the detonation
strengthened and imploded as a strong shock.

A second implosion chamber (Knystautas & Lee 1967; Knystautas et al. 1969)
was created which essentially was a cylindrical disc with a large number of spark

plugs positioned in the ends of channels entering the chamber wall.
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Figure 4.2: Principle of operation of a few experimental devices designed to
create converging shock waves. Devices (a) and (b) create cylindrical shocks,
(c) and (d) spherical. Part (a), the first experiments: the shock tube of Perry &
Kantrowitz (1951). The plane shock is transformed into a cylindrical shape by
the tear drop. A glass window provides optical access. Part (b), the cylindrical
implosion device of Knystautas & Lee (1971). The gas is ignited in one end and
the detonation wave propagates through the annular section (t1 − t2). Before
entering the implosion chamber (t3) it passes through a converging duct to
compensate for the attenuation in the bend. Part (c), a hemispherical implosion
chamber such as the one employed by Glass (1967). The chamber is filled with
an explosive gas which is ignited at the centre. A detonation wave is created
(time t1), which reflects on the wall and converges as a strong shock (t2). Part
(d), the spherical implosion chamber of Terao (1984). Detonation is initiated
by a spark plug at the top of the inlet tube (t1). The wave enters a cylindrical
space (t2) before it is diverted via a large number of ducts into the implosion
chamber into the shape of a spherical segment (t3).



4.3. SHOCKS WAVES INITIATED BY DETONATIONS OR EXPLOSIONS 25

Arranged in an even array, they were simultaneously discharged to ignite the
gas around the periphery. The detonation waves exit the channel and en-
ter the cylindrical chamber. Knystautas et al. (1969) measured the intensity
of the light from the implosion focus at two wavelengths and compared to a
blackbody radiator, estimating a maximum temperature3 of 18.9 ×104 K. The
stability of cylindrical shocks was investigated with a third chamber which was
a much improved version of the drum (Knystautas & Lee 1971); it is shown
in Fig. 4.2(b). They reported that transverse waves distributed local pertur-
bations thereby attenuating disturbances. Another conclusion was that the
energy densities attainable at implosion focus are practically limited by the
degree of symmetry.

A considerable amount of work has been made at the University of Toronto
by I. I. Glass and co-workers (Flagg & Glass 1968; Roberts & Glass 1971; Glass
et al. 1974; Glass & Sharma 1976; Roig & Glass 1977; Glass & Sagie 1982;
Saito & Glass 1982). Their research was focused on a hemispherical implosion
chamber – a simple sketch of its workings is shown in Fig. 4.2(c) – working on
the following principles: in the geometrical centre of the chamber, detonation
or shock waves are initiated by explosives or exploding wires. The waves reflect
off the periphery and converge as strong shock waves. As a shock wave implodes
and reflects from the geometrical centre, a high pressure and temperature region
is produced. Roberts & Glass (1971) measured the emission from the light
produced during and after implosion. The chamber was filled with a oxygen-
hydrogen gas at high pressures (6.8–27.2 atm). They found the radiation to
be continuous with an apparent blackbody temperature of ∼5000 K. Saito &
Glass (1982) made further spectrometric studies in H2 − O2. A smaller area was
investigated and higher temperatures could be measured as averaging effects
with colder regions could be avoided: around 10− 13 × 103 K for regular runs
and up to 17 × 103 K when the imploding shock was boosted by explosives
lined on the periphery. Except for studies on the gas conditions at implosion,
the device was also used as a shock tube driver (Glass et al. 1974), to launch
projectiles (Flagg & Glass 1968), to synthesise diamonds (Glass & Sharma
1976) and, filled with deuterium-oxygen, in fusion initiation experiments (Glass
& Sagie 1982).

Matsuo et al. at the Kumamoto University have conducted a series of in-
vestigations using a cylindrical implosion chamber, in which converging shocks
are generated by explosives lined on the circular periphery. The light emission
at the focus, produced by shocks in air, was measured and compared to the
blackbody function. Time-resolved intensity was measured with photomulti-
plier tubes at a number of separate wavelengths between 400 and 500 nm and
temperatures in the range of 13,000-34,000 K were found (Matsuo & Nakamura

3It was later pointed out by Ref. Roberts & Glass (1971) that the temperature analysis was
flawed due to erroneous use of Wien’s law.
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1980, 1981; Matsuo et al. 1983, 1985). Numerical work was made in connection
to the experiments (Matsuo 1983; Matsuo & Fujiwara 1990).

Terao (1983) constructed a cylindrical and a hemispherical chamber to
study converging cylindrical and spherical shock waves, carrying out pressure
and propagation measurements. In a number of papers measurements on spher-
ical converging detonation waves in a propane-oxygen gas were presented (Terao
1984; Terao & Wagner 1991; Terao et al. 1995). The propagation and pressure
evolution of the shocks were studied and compared with theory. Spectromet-
ric measurements on the light emissions were made and high gas and electron
temperatures at the implosion focus (Terao et al. 1995) were reported. One of
his constructions is sketched in Fig. 4.2 (d).

4.4. Dynamic instability

The question whether converging shocks are dynamically stable is of great
importance. Perry and Kantrowitz observed how ”shock-shocks”, appeared
on a circular shock front breaking up the symmetry. The disturbances had
been introduced by the supporting struts of the inner body. Butler (1954)
conducted perturbation calculations showing that strong cylindrical shocks are
unstable and Whitham (1973) used his ray-shock formulation to come to the
same conclusion. Neemeh & Ahmad (1986) studied the stability of cylindrical
shock waves, experimentally and theoretically. Perturbations were introduced
externally, by placing cylindrical rods in the path of the shocks. They made a
number of conclusions: the region of collapse was shifted due to the disturbance
and depending on whether the shock was strong or weak, the shift was either on
the disturbed side of the centre or beyond. Perturbations were found to grow
exponentially, in good agreement with Butler’s theoretical work, indicating that
cylindrical shocks are unstable.

Stability was investigated by Takayama et al. (1987) in two tubes (in
Sendai, Japan and Aachen, Germany) of similar design: one tube had three
supporting struts for the inner body and the other four. In the tube with three
struts the deformations became triangular, while square deformations appeared
in the second tube. The deformations were designated as three- and four-mode
instabilities. The stability of cylindrical shock waves was further studied in
the Sendai tube by Watanabe & Takayama (1991). Using holographic interfer-
ometry the shock waves and density variations in the whole flow field behind
them were studied. They showed how initial disturbances in the density and
pressure fields behind a shock that initially looked completely circular grew
as the shock converged. The shock shape slowly deformed until the gradients
behind the front became so large Mach reflections occurred.

The tube at KTH, which works on similar principles, also exhibits the
four-mode instability due to the struts. The multiple-exposure schlieren image
in Fig. 4.3(a) shows how the initially circular shock is progressively deformed
and eventually collapses as Mach reflections occur. Fig. 4.3(b) shows a reflected
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shock wave and how the circular shape is retained. Close-ups of initially circular
shock waves are presented in Fig 4.4, at radii equal and less than that of the
last central exposure in Fig. 4.3(a). Fig 4.4(d) shows a reflected shock that
regains the circular shape almost instantly.

0 10 20 
mm 

t

(a)

0 10 20 
mm 

t

(b)

Figure 4.3: Multiply exposed schlieren images of circular cylindrical shock wave:
(a) converging shock; (b) diverging shock after focus. The gradual collapse of
the circular shape that culminates in the appearance of reflections may be seen
in (a). Each exposure is 0.3 µs and the delays between them are 2.2 µs.

4.5. Previous work at KTH

Experiments on converging shock wave were initiated at KTH Fluids Physics
Laboratory in 1996. Apazidis & Lesser (1996) conducted a theoretical study
using Whitham’s geometrical shock dynamics to design a chamber aimed to
produce converging polygonal shock waves. The background to this was the
numerical work by Henshaw et al. (1986) and Schwendeman & Whitham (1987)
who found that a symmetric polygonal shock is dynamically stable in the sense
that the shock front will undergo a periodic transformation between n and
2n sided polygonal form while retaining the symmetry of the shock structure.
(Johansson et al. 1999; Apazidis et al. 2002) proceeded to build a confined
cylindrical chamber with smooth exchangeable boundaries. A shock wave was
generated in the centre of the chamber by electric discharges or exploding wires.
The shock wave diverged, reflected on the smooth polygonal boundary and
converged. Schlieren photography was used for visualisation. The experimental
results agreed well with the modified geometrical shock dynamics for shocks
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Figure 4.4: Schlieren photographs of the collapse of cylindrical shock waves.
The scale applies for all images. The photographs are from separate runs.
Image (d) shows a reflected diverging shock wave (DS). The shock wave is
clearly seen framing the turbulent region. The eight reflected shocks (RS) are
those created from the Mach reflections seen in Figs. (a)–(c). Small arrows
indicate wave direction.

moving into a non-uniform flow. More information can be found in the licentiate
thesis by Johansson (2000).

However, the method of initiating the shock in the chamber created a
disturbance zone in the centre. To avoid these disturbances a horizontal shock
tube was constructed. The tube works on similar principles as that of Perry &
Kantrowitz (1951) and Takayama et al. (1987) and is described in Chapter 5.
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The shock tube has exchangeable reflector boundaries akin to those used in
the confined chamber. Polygonal shocks with different number of sides were
generated in the tube and studied with schlieren optics (Eliasson et al. 2006).
The four-mode instability reported by Takayama et al. (1987) was also observed
in the KTH tube. Another way of reshaping the shocks was used, previously
employed by Wu et al. (1977), Neemeh & Ahmad (1986): small cylinders were
inserted in the tube to deform the shocks into polygonal shapes (Eliasson et al.
2007a). The light production was also studied with a photomultiplier tube
(Eliasson et al. 2007b). The total intensity of the light pulse was measured
for polygonal and circular shock shapes. It was shown that the light intensity
between different shock tube runs was more consistent when the shocks had
polygonal shapes, albeit not as strong. More information can be found in the
doctoral thesis by Eliasson (2007).

Summary converging shock waves

Table 4.2 lists a number of experimental studies, covering the past six decades.
The Method column specifies how the shock waves are initiated and their ge-
ometry: C for cylindrical and S for spherical (including hemispherical etc.). In
the detonation-driven experiments the test gas itself is ignited, while in those
categorised as ”explosive” shock waves in non-combustible gas are created with
explosive charges. The Measurement column briefly lists which methods of di-
agnostics were used and/or what was the focus of the study: the temperature
measurements were made by spectroscopy while visualisation was made with
various methods and therefore written out explicitly. Although the author
makes no pretence that the list is complete,4 it gives an overview of the past
and present experiments and groups. The possibility or promise to generate
extremely high temperatures and pressures continues to drive interest in the
field. New methods of shock shaping are investigated to overcome the problems
with asymmetric or unstable shock waves (e.g. Dimotakis & Samtaney 2006;
Zhai et al. 2010; Vandenboomgaerde & Aymard. 2011) and new experiments
continues to appear.

4Especially a large number of Russian works are left out (see e.g. Sokolov 1990, and references
therein).
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Author(s) (year) Test gas Method (geometry) Measurements

Perry & Kantrowitz (1951) air, Ar shock tube (C) schlieren, photometry

Belokon et al. (1965) (C) temperature

Lee & Lee (1965) C2H2-O2 detonation (C) streak photography, pressure

Knystautas & Lee (1967) C2H2-O2 detonation (C) schlieren photography

Flagg & Glass (1968) H2-O2 detonation (S) applied: hyper-velocity launcher

Knystautas et al. (1969) C2H2-O2 detonation (C) streak photography, temperature

Lee & Knystautas (1971) C2H2-O2 detonation (C) stability

Knystautas & Lee (1971) C2H2-O2 detonation (C) schlieren photography

Roberts & Glass (1971) H2-O2-He detonation (S) temperature

Fujiwara et al. (1971) H2-O2 detonation (C) smoke film

Glass (1972) comprehensive report on project

Setchell et al. (1972) Ar shock tube (conical) velocity (piezo-electric probe), schlieren photography

Fujiwara & Taki (1974) C2H2-O2 detonation (C) temperature

Glass & Sharma (1976) H2-O2 detonation (S) applied: diamond synthesis

Wu et al. (1977) air shock tube (C)

Matsuo & Nakamura (1980) air explosives (C) photography, streak photography

Wu et al. (1980) air shock tube (C) schlieren photography, pressure

Baronets (1981) Ar induction-discharge (C) photography, schlieren

Glass & Sagie (1982) D2-O2 detonation (S) scintillator, applied: fusion initiation

Saito & Glass (1982) H2-O2 detonation (S) temperature

Baronets (1984) Ar induction-discharge (C) photography, schlieren, temperature

Matsuo (1983) air explosives (C) spectrometry, photometry

Terao (1984) C3H8-O2 detonation (S) gas and electron temperature
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Author(s) (year) Test gas Method (geometry) Measurements

Berezhetskaya et al. (1984) air spark discharge (C) shadowgraphy, pressure

Kleine (1985) air shock tube (C) schlieren

Takayama et al. (1987) air shock tubes (C) stability, holographic interferometry, pressure

Matsuo et al. (1985) air explosives (C) spectrometry, photometry, shadowgraphy

Barkhudarov et al. (1988) spark discharge (C) shadowgraphy

de Rosa et al. (1991) air electric discharge (S) interferometry, shadowgraphy

Terao & Wagner (1991) C3H8-O2 detonation (S) pressure, temperature

Baronets (1994) Ar induction-discharge (C) wave propagation (shadowgraphy)

Fujiwara et al. (1992) air detonation, flyer disc (C) propagation (photography)

Watanabe & Takayama (1991) air shock tube(C) stability, interferometry, pressure

Terao et al. (1995) C3H8-O2 detonation (S) temperature

Watanabe et al. (1995) air vertical shock tube (C) proof of concept

Johansson et al. (1999) air electric discharge (C) schlieren

Hosseini et al. (2000) air vertical shock tube (C) interferometry

Hosseini & Takayama (2005a) various vertical shock tube (C) Richtmyer-Meshkov instability, interferometry, p

Hosseini & Takayama (2005b) air explosives (S) propagation, stability, shadowgraphy

Eliasson et al. (2006, 2007a) air shock tube (C) schlieren

Eliasson et al. (2007b) air, Ar shock tube (C) photometry, schlieren

Bond et al. (2009) CO2, N2 shock tube (wedge) schlieren, pressure

Hosseini & Takayama (2009) air vertical shock tube (C) interferometry, pressure

Zhai et al. (2010) air shock tube (C) schlieren

Kjellander et al. (2010, 2011) various shock tube (C) schlieren, photometry (this work)



CHAPTER 5

Experimental equipment

The experiments were performed at the shock tube facility of the Fluid Physics
Laboratory at KTH Mechanics. The facility consists of a shock tube with
circular cross section and equipment for detection and measurement of shock
propagation and light emissions. Two end sections (”test sections”) on the tube
have been used; one designed to create cylindrical converging shock waves and
a second to obtain spherical shocks. This chapter describes the experimental
setup and serves as an introduction to future users of the facility.

5.1. Shock tube

This section describes the shock tube and equipment common to both test sec-
tions whereas the test sections are described in separate sections. The common
section of the shock tube is circular with an inner diameter of 80 mm and a
length of 1830 mm including the driver section. An outline of the facility is
given in Figure 5.1, where the capital letters designate different parts of the
tube: (A) is the driver section, (B) and (C) the driven section. The diaphragm
is located at the intersection of parts (A) and (B). The driven section consists
of an inlet tube (B), its purpose is to allow the shock wave to attain a plane
form before entering the test section (C). The low pressure section is evacuated
by a two-stage rotary vacuum pump connected to the tube at (6.). Test gas is
introduced into the tube through the valve at (5.). When a test gas other than
air is used, the section is repeatedly evacuated and filled with the gas twice to
ensure pure test gas in the test section. After the final evacuation the gas is
allowed to retain room temperature, a process that takes about two minutes.
The argon gas used in the present experiments had a purity rate of 99.99%.

32
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B

C

A

Ø 80

330 1300

Two-stage 
vacuum pump

Test gas
(or vent)

Driver gas

DPI 150

Pump
(or vent)

Sections:   (measures in mm)
A: driver section
B: driven section: inlet tube
C: driven section: working sections

Connections:
1. Driver inlet
2. High pressure sensor 
3. Burst indicator (banana socket)
4. Low pressure sensor
5. Test gas valve or vent 
6. Vacuum pump valve (with safety)
7. Shock sensors (platina-coated glass plugs)

Figure 5.1: Schematic of the shock tube facility. The two working sections (C) are described in separate parts. DPI 150:
the Druck pressure indicator recording p4 and p1, the high and low pressures before membrane rupture.
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Membrane Breaking pressure Typical Ms

Al 0.3 mm 0.8 MPa 1.7 − 2.5
Al 0.5 mm 1.6 MPa 2 − 6
Al 0.7 mm 2.3 MPa 4 − 8

Mylar 0.05 mm 0.3 MPa 1.3 − 2

Table 5.1: Breaking pressures (p4−p1) for membranes of different material and
thickness and typical Mach number ranges for which the membranes were used.
Depending on driver filling time and knife sharpness the measured pressures
could be varied with about 200 kPa for the thicker Al membranes and 100 kPa
for the thinner. The plastic mylar membranes were used only occasionally and
no such variation has been tested. Run-to-run variations for all diaphragms
were around 10-20 kPa.

Regular air or commercial helium were used as driver gas and introduced
at connection (1.). To get full control over the driver gas composition when
only helium was used the driver section was evacuated to about 2.5 kPa prior
to filling. Filling the driver section must be done slowly. It is essential that
the high pressure gas is in thermal equilibrium with its surrounding to obtain
a correct gas temperature. Moreover the pressure transducer is located some
distance from the membrane and connected through a small tube, which in the
case of a rapid gas filling would give a false pressure reading.

The membranes are inserted in a flange between sections (A) and (B).
The driver section is mounted on slides attached to the driven section. A
cross-shaped knife that ensures consistency in the mechanical opening process
and membrane ruptures at a set pressure difference is located behind the di-
aphragm at the low-pressure side. The pressure difference required forcing the
diaphragm to- wards the knife is determined by the thickness and strength
of the membrane. During present experiments mostly aluminium diaphragms
were used but plastic mylar-film was also used to obtain weaker shocks. Table
5.1 shows the bursting pressures and Fig. 5.2 shows a photograph of ruptured
membranes. The 0.3 mm aluminium diaphragms had a tendency to be ripped
apart and clutter the tube with debris, and were for that reason used sparingly.
The burst pressure and its variation between runs are dependent on the han-
dling of the filling of the gas and may thus differ from the tabulated values.
The sharpness of the knife-edge also influences the bursting pressure. If care is
taken to fill the tube in the same manner each run, experience shows that the
variation between shots is as low as 10 kPa.

The pressures in the sections are measured with a pressure transducer and
indicator (GE Druck DPI 150), connected to the driver section at (2.) and to
the driven section at (4.). An external module (GE Druck IDOS) connected to
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Figure 5.2: Two used membranes; one 0.05 mm plastic film and one 0.5 mm
aluminium membrane. The Al membrane shows the imprint of the burst indi-
cator on the tip of one leaf.

the indicator is used to measure the high pressure. The pressure at the instant
of membrane rupture is registered and assumed to be the high pressure p4. The
shock speed is measured by means of temperature sensors sensing the shock
passing the sensor, The sensor element is a strip of platinum film painted on
the flat surface at the end of a 10 mm diameter glass cylinder inserted through
the shock tube wall and aligned flush with the inner surface of the tube. They
are mounted on the test sections but are de- scribed here as they are common
to both sections. The platinum strip is connected to a high frequency amplifier
through a high pass filter and the resistance change in the strip is instant when
the shock passes its surface. The circuit diagram is shown in Fig. 5.3. Fig. 5.4
shows a graph over measured Mach numbers compared with the ideal solution
Eq. 3.1. The measured Mach numbers are smaller than the ideal values except
for the smallest pressure ratios. The plotted Mach numbers have been measured
in either of the two test sections; they have not been distinguished in the graph
as no different trend could be seen.

5.2. Cylindrical test section

One working section is designed to create cylindrical converging shock waves.
It is similar in principle to the shock tubes of Perry & Kantrowitz (1951) and
Takayama et al. (1987). A coaxially aligned conical inner body transforms
the plane tube cross-section to an annular channel, which opens into an open
compartment where the shock wave converges cylindrically. The total cross-
section is kept constant through the plane tube, transformation section and
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Figure 5.3: Circuit diagram of shock sensor amplifier.
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Figure 5.4: Measured Mach numbers MS for different pressure ratios compared
with the ideal solution Eq. 3.1. Typical measurement errors for a few Mach
numbers and pressure ratios have been added; they are similar for all gas
combinations.

annular channel. The height of the channel is 10 mm and ends into the open
chamber with a 90◦ bend. The test section is made up of this open chamber
and is 5 mm wide and has a radius of 70 mm. The shock wave reflects off the
end wall of the annular channel and diffracts down into the test section. A
high pressure and temperature region created by the reflection off the end wall
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Annular shock wave Converging cylindrical 
shock wave

Plane shock wave

Figure 5.5: Sketch of the shock wave propagation through the tube. The plane
shock enters the transformation section from the inlet tube, becomes annular
before going through the bend into the cylindrical test section. The part of the
shock wave that reflects on the test section wall and returns up the annular
channel is omitted for clarity.

drives the flow towards the centre of the cylindrical test section. A drawing of
the construction is shown in Figure 5.6; note that the second set of supports is
rotated by 45◦ around the central axis from the first set. The shock propagation
is illustrated in Figure 5.5. The test section is framed on both sides by glass
windows for easy visualisation: the inner body is hollow to allow equipment
for illumination of the test section. The observation window is a 15 mm thick
thermal-resistant borosilicate glass (Borofloat 33) disc with optical transmission
down to the UV wavelengths.

The shock sensors are inserted flush with the outer wall of the annular
channel and separated by 25.0 cm.

5.2.1. Triggering and Synchronisation

Capturing images or spectra of a very rapid phenomenon requires an accurate
triggering system to turn on cameras or other equipment. Several triggering
methods have been used: using the shock sensors, a shock-deflected laser system
and photo-multiplier tubes.

5.2.1a. Shock sensor triggering. The temperature sensors positioned on the
outer surface of the annular tube may be used for triggering. It is a robust
system and apt for all triggering purposes except when rapid events very close to
the focal region are studied, when a more precise system is necessary. The shock
wave propagation time from passing the downstream shock sensor to implosion
in the test section is several hundred µs and the time variation between runs
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Figure 5.6: Drawing of the annular-cylindrical unit. The second set of sup-
porting struts is rotated by 45◦ from the first around the axis. The first set is
hollow to allow a laser beam to illuminate the test section. Measures in mm.

amounts to several microseconds. Typically, the signal output is connected to
a time delay unit (DG525, Stanford Research Systems), which in turn triggers
a laser, camera, oscilloscope or spectrometer.

5.2.1b. Laser triggering. A system for detecting the shock waves close to the
implosion point was designed for the cylindrical convergence section as the
precision using the shock sensors is too low. A non-intrusive method was
therefore developed to detect the shock closer to the focus. A continuous
laser beam is directed through the test section, about 15 mm from the centre.
Deflections of the laser beam caused by the passing shock wave are detected
by a photodiode.

Figure 5.7 shows a photograph and a principal sketch of the set-up. A HeNe
laser beam is directed through the test section at a small angle, passes through
both glass windows and is reflected back by a mirror inside the inner body. The
beam path is in the horizontal plane of the tube centreline. The beam exits the
test section on the opposite side of the centre. A lens (f=+80 cm) focuses the
beam on an optical fibre that leads the light to a fast photodiode (Hamamatsu
S5973). The circuit that amplifies the photodiode current is given in Fig. 5.8. It
consists of a primary current amplifier with very fast response and a secondary
amplifier to increase the output voltage to the triggering levels of the time
delay unit. Characteristics were determined with a pulse laser: the rise time of
the primary amplifier is about 20 ns and the rise time of the combined circuit
including the secondary amplifier is 100 ns.
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Figure 5.7: Photograph and sketch of the laser triggering set-up. Description
for both: (1.) HeNe laser; (2.) mirror (inside tube); (3.) 80 mm lens, focusing
the laser beam on (4.) optical fibre mounted in a traverse, which is connected to
a (5.) photodiode and amplifier. The path of the laser beam is sketched in the
photo. Two fibres collecting light from the implosion to the photo-multiplier
tube and spectrometer (lower left corner) can also be seen in the photo. A
damping filter and a knife edge may be used additionally.

The response to a passing shock wave consists of four peaks: the first two
correspond to the converging shock wave passing the laser beam going into and
out from the test section respectively, while the second pair corresponds to the
outgoing reflected shock wave. The peaks have a certain slope depending on
the angle between the laser beam and test section. The angle of the laser varied
between experiments, depending on the other measurement equipment placed
in front of the test section. For triggering, the photodiode signal is set to the
trigger input of the delay unit. The system is very sensitive to the position
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Figure 5.8: Circuit diagram of the photodiode amplifier. Vs may be set to
5 − 15 V.

of the receiving optical fibre. The fibre is fastened on a traversing system and
before each run it is moved to its most sensitive position where it generates the
maximum signal. The triggering level on the DG535 is set to just below the
value of the maximum: when the shock passes the generated signal drops.

5.2.1c. Photo-multiplier signal. A simple way to trigger the spectrometer is
to use the photomultiplier tube detecting the light created by the shock wave
itself. It is particularly useful for measuring the light spectrum after shock
focusing, during the relaxation phase of the gas in the centre, but the small
rise in emission just prior to the collapse enables this method to be used to
detect the beginning of the implosion pulse as well. The problem that arises in
the latter case is that this initial light increase is relatively slow and shows large
variations in terms of amplitude, which reduces the likelihood of triggering at
the same instant relative to implosion each run.

5.2.1d. Burst indicator. Immediately downstream of the membrane in the driven
section, an electric conductor runs through the tube wall at connection (2.) in
Figure 5.1. The conductor is electrically insulated from the metal tube and the
conductor terminal is aligned flush with the inner side of the tube. When the
membrane bursts it hits the conductor tip, connecting it with the tube. The
change in potential may be used as an indicator for the membrane burst event
or as a trigger.

5.2.1e. Pressure triggering. To take schlieren or normal photographs with the
Nikon camera the system is in enclosed in a blacked-out enclosure, the camera
shutter opened before membrane rupture and left open for 30 seconds exposing
during the whole experiment (see Section 5.3.1 below). To do this an automatic
system was built that monitors the pressure in the driver section and triggers an
infrared remote control (a modified Nikon ML-L3) to turn on the camera once
the pressure reaches a predetermined value, slightly below what is required to
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Figure 5.9: Circuit diagram of pressure comparator. Connectors (1.) and
(2.): power supply for comparator, (3.) and (4.): power supply for pressure
transducer . Output cable to IR remote (5.).

break the membrane. A pressure transducer (Keller Series 21R ) was connected
on a T-joint inserted on the tube between the Druck pressure indicator and the
driver section (not shown in the drawing). The sensor signal is connected to a
comparator circuit, drawn in Fig. 5.9, which toggles a relay when the pressure
signal exceeds 2/3 of the comparator supply voltage. A potentiometer is used
to tweak the triggering voltage/pressure and a LED indicates when the relay is
activated. The circuit connects the two conductors in the output cable to the
infrared remote that triggers the camera.

5.3. Flow visualisation: Schlieren optics

Flow visualisation is provided with schlieren optics. A schlieren system makes
use of the density-dependence of the refractive index of light. Here follows a
short introduction and description of the present set-up. Three main compo-
nents are necessary: a collimated light source, a light blocker - called a schlieren
stop - and a camera. The principle is simple: the parallel light rays illuminate
the test section of interest and are afterwards focused on the stop, which par-
tially or completely blocks the light. Density gradients in the test section make
the parallel rays deflect. Light that would otherwise have been blocked by the
stop will now pass it (or vice versa - light that would have passed may instead
be blocked). The density changes will thereby appear as darker or brighter
areas on the image plane after the schlieren stop.

Two principal optical set-ups were used. One that had all optical elements
arranged on the centre line of the shock tube and one that made use of the
Schlieren Optical Unit (SOU) seen in Figure 5.10 and 5.11 where the optical
axis was twice folded. A schematic drawing of the latter system is presented in
figure 5.10. Light was provided with laser. The laser head is mounted outside
of the shock tube, perpendicular to it. The beam enters the inner body of
the annular section through one of the support struts and expands, thereby
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Figure 5.10: Schematic drawing of schlieren set-up. The laser beam enters the
tube through a hollow support and is directed through the test section via a
mirror and two lenses. M: mirrors, L: lenses, S: schlieren stop.

illuminating the test section through the glass window. On the receiving side
the collimated light was focused with lens L1 (f=1350 mm) on a schlieren stop.
To be able to detect density gradients in all radial directions a circular stop
was used. Either a small micro-sphere blocking most of the beam - typically a
0.67 mm ball bearing - or a pinhole were used, the former shown in Fig. 5.12.
The pinhole blocks light from areas of large gradients, generating bright images
with dark shock waves, and the other way around for the sphere.

A second lens L2 creates an image for the camera. Magnification is decided
through choices of lenses L1 and L2 and the distances between them and the
object plane (the test section). When the SOU is used, the lens L1 is an in-
built 1350 mm lens. The system that does not use the SOU is in principle no
different, except in that the optical axis is not mirrored.

5.3.1. Cameras

Two CCD cameras are used: a PCO SensiCam and a Nikon D80 system camera.
The SensiCam (12 bits, 1280x1024 pixels, pixel size: 6.7x6.7 µm) is equipped
with a 80 mm Canon lens and can take either singly or multiply exposed images.
It is controlled by a computer that receives an external TTL-level trigger signal
via a PCI-board. For single exposures, an Nd:YAG laser (New Wave Orion) is
used with both cameras. The pulse length of the laser is about 4 − 5 ns. The
timing of the pictures is determined with the laser: the camera was left open
for a longer interval (5 µs for the SensiCam and 30 s for the Nikon) and the
laser fired at the desired instant for photographing.

The Nikon D80 is a regular digital system camera equipped with a Micro
Nikkor 60 mm macro lens. The shutter of the Nikon D80 could not be satisfac-
tory triggered without internal modification of the camera, so the shutter was
simply left open for 30 seconds. It was triggered using the pressure comparator
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described above. At a pressure just below membrane burst pressure, the out-
put triggered a commercial infra-red remote (Nikon ML-L3) which opened the
camera shutter. The remote was modified to be triggered by the relay circuit.
The delay between the given IR signal and the shutter opening was very long
- longer than the propagation time of the shock wave from membrane rupture
and focusing, which made it necessary to trigger the camera before the actual
membrane opening. Although the optical set-up is shielded from stray light, an
exposure problem occurs with the Nikon camera with the shutter left open for
long periods. This causes the camera to not only capture the schlieren image
enlightened by the laser beam, but also to be exposed to the implosion light
pulse. The implosion pulse may be very bright and over-expose the photo-
graph. The unwanted exposure due to the implosion light flash is damped by
placing neutral filters in front of the camera and compensating with increased
laser power.

5.3.2. Lasers

And Orion Nd:YAG pulse laser was used as light source for the schlieren pho-
tography. The laser Q-switch can be triggered internally or externally. In each
mode, it first receives a TTL signal to start the flash lamp (”Fire lamp”). In
internal QS mode, the laser pulse follows the ”Fire lamp” signal after 328 µs.
In the external mode, the laser is fired after receiving a second triggering signal
(”Fire QS”), typically around 200 µs after the ”Fire lamp” signal. The external
handling of the Q-switch generates much stronger light than in internal mode.
The output laser beam strength is controlled manually. Two energy modes,
called High and Low, are available and is supplemented with an energy scale
ranging from 0-99. Typical used values were Low 4 with the external Q-switch
mode, and Low 15 with internal Q-switch mode. The effective exposure time
for the schlieren photographs when using the Orion is determined by the laser
pulse length, which is 4-5 ns.

The Orion laser could not be used for multi-exposed images since its max-
imum pulse frequency is 1 Hz. Instead a continuous laser was used as light
source: an argon-ion (Spectra-Physics BeamLok 2060) and a HeNe laser were
used interchangeably.

5.3.3. Arrangement procedure

To arrange the system the following procedure is followed.

The first step is to find the optical axis. The axis follows the centre line of
the shock tube and is relatively easy to find if the optics are to be aligned in a
straight line. However, when the SOU is used the optical axis is twice folded
by 90◦ and SOU must first be aligned. Starting in the camera end might
be the simplest course of action. A HeNe laser can be used as an alignment
assistant. First, the laser is placed at the position of the camera and the beam
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(a)

(b)

(c)(e) (d)

Figure 5.11: Set-up for schlieren photography: (a) laser light source; (b) 1350
mm lens (inside tube); (c) schlieren stop; (d) focusing lens; (e) camera.

Figure 5.12: The etched 0.67 mm micro-sphere used as a schlieren stop.

is aligned straight with the the optical rail on top of the SOU and directed
through the centre of the light hole on the tower. A mirror should be used to
control that the beam is aligned along the optical axis of the system. With
the laser beam coming out of the SOU along its optical axis, the whole unit
can be positioned by moving it until the HeNe beam enters the centre of the
shock tube perpendicularly. When properly aligned, the laser beam should go
through the whole system and hit the schlieren laser orifice.
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The illumination laser should be aligned through the hollow support per-
pendicular to the tube. The alignment of the mirror M inside the tube can be
made from outside. A remote-controlled electric motor controls the motion of
the mirror around the vertical axis. The motion around the horizontal axis is
handled with a manual screw going through the hollow strut on the opposite
side of the light-entering strut.

With the SOU and schlieren laser aligned, the optical instruments - lenses,
stop and camera - can be placed. A clear camera image is obtained by putting
a semitransparent paper grid in the centre of the test section and focusing the
camera on the grid. When all optical elements are aligned, the schlieren stop
is positioned at the focus point of the laser light.

5.3.4. Shock wave shaping

Two different methods have been employed to shape the shock waves from
cylindrical into primarily polygonal forms: by cylindrical obstacles creating
a reflection and diffraction pattern or by wings dividing the test section into
radial channels where plane sides are created. The annular-cylindrical tube
was designed to create shock waves shaped as polygons by using replaceable
reflector plates around the periphery of the test section. This method has
not been used in the work but is mentioned for completeness (for details see
Eliasson et al. 2006).

5.3.4a. Cylindrical obstacles. By placing small cylindrical objects in the test
section, the diffraction of the converging cylindrical shock wave around the
obstacles changes the overall form. If the size and position of the obstacles
are arranged in certain way, symmetrical polygonal forms may be achieved.
The diameters of the cylindrical objects ranges from 7.5 to 15 mm. They are
positioned between the glass windows using guides. During mounting they are
temporarily kept in position with a small amount of glue: equipped with o-
rings they are afterwards kept in place mechanically by the pressure from the
glass windows.

5.3.4b. Biconvex wing profiles. Another method is to place biconvex wings in
the test section with their chords aligned radially. The incoming shock wave
reflects on the wings and if arranged properly, the shock wave attains polygonal
structure with almost plane sides when leaving the channels. Since the wings
have sharp leading and trailing edges, less pressure is lost compared to the case
when circular objects are used, in which case reflected waves travel upstream.
Figure 5.13(a) shows the test section with the wing dividers. The leading edges
are aligned flush with the inner surface of the annular channel and the trailing
edges end 20 mm from the centre of the test section. Calculations were made
to find the appropriate lengths and widths to ensure plane shock wave exiting
the channels into the open centre of the chamber. One purpose of the wings is
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(a) (b)

Figure 5.13: Wing matrix mounted in the test section (a) and before assembly
(b).

to improve the control of shock shaping and to allow the same blockage ratio
no matter the number of wings - and consequently the number of sides of the
polygonal shock wave - by altering the thickness and length of the wings from
case to case. The measurements in the present study however, only feature a
configuration with eight such dividers, creating a cylindrical octagonal shock
wave.

5.3.5. Inner body alignment

The eccentricity of the inner body inside the shock tube has major impact on
the symmetry of the shock waves. Referring to Figure 5.1, the inner body is
supported by two sets of struts. The downstream set is located close to the test
section and may be aligned with the help of a mechanical guide. The upstream
set is situated too far upstream for this method to be useful. It was found that
the wings provided a good tool for tuning the position of the body. The wing
matrix divided the test section in eight radial channels and the velocity of each
segment of the otherwise connected circular shock wave could be seen in detail.

s
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(a) (b)

Figure 5.14: Schlieren images of shocks arriving at the open center of the test
section to illustrate the effect of non-aligned inner body: (a) before and (b)
after alignment.

Wing 

(a)

Wing 

(b)

Figure 5.15: Interaction of two shock waves close to the trailing edge of a wing
(outlined with dashed lines) at slightly different times. In (a) the lower shock
wave has already arrived and diffracted around the tip and reflected with the
upper shock wave. A vortex can be seen forming due the shear flow. A Mach
stem is formed as the shocks reflect. It is shifted upwards due to the asymmetric
reflection (b). At the bottom of the image the Mach reflection coming from
the lower wing tip can be seen. Arrows indicate wave direction. Each image is
from a separate run.
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Figure 5.14 shows schlieren photographs of shock waves exiting the chan-
nels. The shocks have clearly different velocities as they arrive at different in-
stants. This suggests that the inner body is eccentric with the annular channel
being slightly narrower at the part of the channel corresponding to the position
of the faster shocks and vice versa. To ensure that asymmetric construction
of the matrix did not give rise to the irregularities, the matrix was gradually
rotated between several runs. The shock pattern was unchanged with rotation
and it was concluded that the matrix construction was good. The struts were
adjusted accordingly to the schlieren photographs. By trial and error the arrival
of the shock fronts at the end of the matrix could be improved. Figure 5.14 (a)
shows the shock pattern before alignment: the whole lower half of the shock is
faster than the upper. Figure 5.14(b) shows the pattern after alignment: the
general shape is much improved. Photomultiplier records measuring the light
of the implosion pulse showed a large increase in strength after the alignment
indicating a more symmetric implosion. Figure 5.15 shows reflections around
the right encircled wing-tip in Fig. 5.14(a).

5.4. Converging test section

A second test section was designed to create shocks with spherical symmetry.
The section is joined to the main shock tube and consists of a converging pipe
with a smoothly changing cross section. The idea is to form the wall in such
a way that the shock wave foot remains normal to the wall without reflection
(or with minimal reflection) and that the shock front has a spherical shape as
it leaves the section. If the pressure is evenly distributed behind the shock and
all parts of the shock front propagates at the same speed, the front will be
close to spherical. The existence of such a solution was discussed and proved
by Dumitrescu (1983, 1992); Saillard et al. (1985). Fig. 5.16 shows a sketch of
the principle: a plane shock wave enters the tube and where the cross section
changes disturbances move along the curved shock progressively increasing the
curvature and gradually accelerating it. In order for the shock front not only
to have a circular symmetry in the propagation axis plane but also to have the
same speed at all parts, to ensure a continued spherical shock front, a series
of calculations were made to find the wall shape. The final design is shown in
Fig. 5.17. It consists of an extended inlet tube (with shock-sensors) followed
by a smooth contraction and a small conical end. Eq. 5.1 provides the shape
of the contracting surface in parameter form. The cone half angle is 21◦.

x = Asinθ

y = B − R(1 − cosθ)

}

for 0 ≤ θ ≤ 0.35π (5.1)

where A=300.7 mm, B = 40 mm and R = 57.3 mm. The transformation part
was constructed by casting a plastic material around a steel mold. The cast
part is housed in a steel tube with a flange and fastened to the shock tube. It is
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Figure 5.16: Sketch of the conversion of a planar shock to a spherical. Axial
symmetry applies.

291 mm in total length and terminates in a straight cone of 21 mm. The cone
is made of steel truncated 0.4 mm from its tip leaving a circular opening with a
radius of 0.3 mm. The opening is covered with a 1.5 mm thick quartz window
fixed to its position by a threaded brass sleeve. The conical part is shown in
section in Fig. 5.18. The sleeve contains optical fibre mounts. One fibre is
mounted coaxially, viewing straight into the tube. A second fibre views the
opening at an oblique angle covering a volume stretching no more than 0.5 mm
into the tube. The surface inside the contraction and cone is smooth in order
to avoid disturbances introduced into the very sensitive converging process.

S
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S


250 250 100 270 21100

Ø 0.6Ø 80

Figure 5.17: Convergence section for three-dimensional implosion. Inlet tube
with shock sensors S1, S2 and S3, a smoothly changing contraction and 21 mm
conical end cone. The end diameter of the conical section is 0.6 mm. A quartz
window closes the tube. Measures in millimetres.
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Figure 5.18: Drawing of the conical end and fittings. Courtesy of Nils Tillmark.

5.5. Spectroscopic instrumentation and its calibration

Two spectrometers have been used in the experiments, both on loan from the
KTH Physics Department. They are both of echelle type and the diffracted
light is recorded on an intensified charge-coupled device (ICCD). The final
spectrum is analysed though computer software. The first spectrometer, which
was used for the measurements on the cylindrical implosions (Paper 1) was a
Mechelle 7500 (Multichannel Systems, Sweden) equipped with in Andor Istar
ICCD. Details about the specific and echelle spectrometers in general can be
found in Lindblom (1998). The spectrometer was able to record spectra in the
wavelength interval 180 − 880 nm. The sensitivity of the CCD is dependent
on wavelength, which needs to be accounted for when analysing the data. Fig-
ure 5.19(a) shows the ICCD sensitivity. The test section glass window also
limits the light transmission, to between roughly 350 and 880 nm. The trans-
mittance of the 15 mm thick borosilicate glass is presented in Figure 5.19(b).
During the measurements the spectrometer exposure was started by the laser
triggering system with a precision of 10 ns relative the emission peak, which
for synchronisation purposes was measured separately with a photomultiplier
tube.

The second spectrometer (Aryelle 200, Lasertechnik Berlin) used an im-
proved version of the Andor Istar ICCD. A wavelength calibration was made
with a mercury lamp with the aid of the supplied software. In order to recon-
struct the spectrum a radiometric calibration against a calibrated deuterium
lamp and, for the longer wavelengths, against a tungsten lamp with known
filament temperature (3000 ± 50 K) was carried out. The temperature of the
tungsten filament was measured using two pyrometers and calculated by mea-
suring the resistance Rref at room temperature of the lamp and using tabu-
lated values of R/Rref vs T . The value of T is very sensitive to Rref , and
great care was taken to measure it. The lamp tension was measured at thes
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Figure 5.19: (a) Relative CCD wavelength sensitivity of the Mechelle 7500
system and (b) transmittance of the test section borosilicate window.

the bulb socket and the zero resistance was determined to R0 = 0.28 kΩ by
extrapolation of R = U/I to U = 0, see Fig. 5.20.

The measured spectrum of the deuterium lamp is shown in Fig. 5.21 to-
gether with the given calibrated emission. The quickly decreasing sensitivity
in the deep UV is due to the optical fibre as the manufacturer gives the ICCD
sensitivity in the ultraviolet region as fairly constant. The red calibration us-
ing the tungsten lamp was patched with the ultraviolet calibration to create
a single calibration file. The good agreement between the overlapping regions
of the separate calibrations shown in Fig. 5.21 is taken as an indication of a
successful calibration.
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Figure 5.20: Radiometric calibration: (a) Determination of zero resistance
Rref and filament temperature. Rref is determined through extrapolation to
U = 0 (red dashed line). The temperature can subsequently be estimated from
R/Rref . (b) Patching region of ratio between measured and known spectra for
tungsten filament (dashed, red) and deuterium lamp (full line).
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Figure 5.21: Raw spectrum of deuterium lamp compared to the given calibrated
emission (blue dashed line).
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Figure 5.22: Relative sensitivity for the Aryelle system, including optical fi-
bre (FC400 solarisation-resistant fibre) and observation window (quartz). The
decrease per order is visible: the orders are denser at lower wavelengths.

The resulting sensitivity function is shown in Fig. 5.22. The periodicity is
due to the varying sensitivity of each diffraction order. The sensitivity drasti-
cally drops below 250 nm and above 950 nm, reducing the accuracy in those
parts of the spectrum.



CHAPTER 6

Numerical calculations

Numerical calculations were made with Euler solvers unstructured triangu-
lar grids with or without adaptive mesh refinement. Three different solvers
were used: a single-component and a multi-component solver and a single-
component solver taking into account equilibrium ionisation. First- and sec-
ond order finite volume discretisation schemes were used. The convective flux
was in all cases calculated using the artificially upstream flux vector splitting
(AUFS) scheme introduced by Sun & Takayama (2003), whose fundamental
idea is to overcome the disadvantages of up-winding schemes by introducing
artificial wave speeds into the flow which simplifies the discretisation. The
single-component solvers are briefly described here while the multi-component
solver is described in paper 6 including more details on the discretisation and
mesh adaption also relevant for the single-component case. The 2D Euler equa-
tions for compressible inviscid flow:

Ut + Fx + Gy = 0 (6.1)

where the vector U contains the conserved variables while F and G are
the fluxes in x− and y−directions:

U =









ρ
ρu
ρv
ρE









, F =









ρu
ρu2 + p

ρvu
ρEu + pu









, G =









ρv
ρuv

ρv2 + p
ρEv + pv









(6.2)

where ρ is the mass density, ρu and ρv and ρE the energy per unit volume.
The energy per unit mass is the sum of the specific internal energy and the
kinetic energy E = e + |u|2/2. The equations were discretised on an unstruc-
tured triangular mesh. Referring to the grid cell illustrated in Figure 6.1, Eq.
6.2 may be formulated and calculated over the normal interfaces between the
cells. Variables denoted L refer to the states inside the cell and R to those in
the neighbouring cells. We have:

53
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Figure 6.1: A grid cell i. UL
i is the state in the cell while UR

j , j = 1, 2, 3, are
the states in neighbouring cells.

Ut + Fn = 0 ↔ Ut + AUn = 0 (6.3)

where A is the Jacobian matrix Aij = ∂Fi/∂Uj and n refers to the normal
direction. The matrix A has four real eigenvalues corresponding to the four
wave speeds of the system, (un − a, un, un, un + a), where un = unx + vny is
the normal velocity across the interface. Provided that un < c somewhere, the
system therefore contains waves going both upstream and downstream which
makes up-winding difficult. However, observed from some frame of reference
all waves propagate in the same directions. By introducing the artificial wave
speeds s1 and s2 corresponding to such a moving frame of reference the flux
can be rewritten to simplify the discretisation. After some manipulation the
flux becomes:

F = (1 − S)F1 + SF2 = (1 − S)

[

1

2
(PL + PR) + δU

]

+ S
[

Ud(ud
n − s2) + Pd

]

(6.4)

where S = s1/(s1−s2), δU artificial viscosity, P = (0, pnx, pny, pun) and d
is either L (if s1 > 0) or R (if s1 ≤ 0) , depending on whether the corresponding
wave goes into or out of the cell. The pressure is acquired from the internal
energy: e = p/(γ − 1) = E − u2/2 while the temperature is attained from the
perfect gas law.



6. NUMERICAL CALCULATIONS 55

The artificial viscosity term is:

δU =
1

2ā




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

pL − pR

(pu)L − (pu)R

(pv)L − (pv)R

ā2

γ−1(pL − pR) + 1
2 ((pU2)L − (pU2)R)









(6.5)

where U2 = u2 + v2 and ā = (aL + aR)/2 is the average speed of sound of
domains L and R. The artificial wave speeds were chosen as

s1 =
uR

n + uL
n

2
(6.6)

s2 =

{

min(0, uL
n − aL, u∗

n − c∗) s1 > 0
max(0, u∗

n + c∗, uR + vR) s1 ≤ 0
(6.7)

u∗ =
1

2
(uL

n + uR
n ) +

aL − aR

γ − 1
(6.8)

c∗ =
1

2
(aL + aR) +

1

4
(γ − 1)(uL

n − uR
n ) (6.9)

For details of the derivation the reader is to directed to Sun & Takayama
(2003). The solution update for the grid i between time-steps n and n + 1 is
then calculated by a first-order method:

Un+1
i = Un

i −
3

∑

k=1

∆t

hk
Fk (6.10)

6.0.0a. Ionising shocks. Ionisation effects are introduced by modifying the en-
ergy and state equations accordingly. In the calculations only one level of
ionisation was included since it was apparent that the number of ions with
charge state i = 2 or more were negligible for cylindrical shock waves with the
initial parameters of the experiments. However, we present here the general
equations for any number of stages of ionisation. Local thermodynamic equi-
librium is assumed to be established everywhere in the flow and the additional
variables are the ionisation fractions αi.

The primitive variables are the same, as is the up-winding scheme with
modifications to the speed of sound which is presented further below. In the
non-ionising case, the pressure is acquired directly from the energy and the
temperature from the equation of state. A similar approach is taken in this
case. The equation of state and internal energy, neglecting Coulomb forces and
excitation energy, are now

p = (1 + αe)ρRT (6.11)

and
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e =
3

2
(1 + αe)RT + R

!
∑
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∑
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Ij

k



 (6.12)

where αe is the average ionisation fraction and Ij are the ionisation potentials
as defined in chapter 2. With the additional variables αi the system is closed
with the Saha equations which can be expressed as functions of T and ρ and
solved in the same manner as presented by Trayner & Glowacki (1995):

αi+1

αi
=

1

αe

(

2πme

h2

)3/2 mH(kT )3/2

ρ

2Qel
i+1

Qel
i

exp

(

−
Ii+1

kT

)

(6.13)

where mH is the mass of the neutral atom. Solving the equation in terms of a
given primitive variable ρ instead of p is preferred, since the latter is a derived
variable. The temperature and ionisation fractions for each grid are carefully
balanced and calculated from the given primitive variables during each time-
step. An iterative method is used to find the ionisation and temperature that
fulfils the energy requirement 6.12 as well as the set of Saha equations 6.13.
This implies finding the root of the transcendental equation T−f(αe(T, ρ)) = 0,
where the numerically evaluated function f is determined from the known
energy 6.12. Explicitly written out this becomes

T −



e − R
!
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

αi(T, ρ)
i
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k


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
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[

3

2
(1 + αe(T, ρ))R

]−1

= 0 (6.14)

Equation 6.14 may be solved by a bi-section method with initial lower bound
T = T0 and upper bound set to the ideal non-ionising temperature. Once the
temperature and ionisation fractions are found, the pressure is extracted from
the equation of state 6.11.

The artificial wave speeds s1 and s2 are chosen in the same manner as
previously, but the speed of sound now becomes the equilibrium speed of sound,
ae = (∂p/∂ρ)s, which can be calculated from derivatives of α (see Appendix
A).

6.0.0b. Single ionisation. When only one stage of ionisation is likely to be
present, Eqs. 6.13-6.14 can be simplified to significantly reduce calculation time.
Such a scheme has been presented in Aslan & Mond (2005). Only one Saha
equation remains, for i = 1 where α0 = 1 − α1, which does not need itera-
tion. In this temperature range, the partition function ratio can be adequately
approximated by a constant (2Q1/Q0 ≈ g0 ≈ 11) and Eq 6.13 reduces to
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α2
1

1 − α1
= g0

(

2πme

h2

)
3

2 mH(kT )3/2

ρ
exp

(

−
I1

kT

)

= g0C
T 3/2

ρ
exp

(

−
I1

kT

)

(6.15)
where the constant C ≈ 1.603× 10−4 kg·m−3·K−3/2 for argon.

The approximation of the partition function ratio as a constant carries
a certain error, which is exemplified in Fig. 6.2. The post-shock conditions
resulting from the approximation are compared to those where the partition
functions included a summation over the first few terms. As evident, the error
is reasonably small until M ≈ 30. Above that Mach number second stage
ionisation becomes significant (compare with Fig. 2.3) and the model validity
is in any case becoming questionable. The calculations are made with initial
pressure 0.1 atm and T = 300 K.
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Figure 6.2: Error caused on shock relations by the assumption Q1/Q0 = 11
(dashed line) compared to Q1/Q0 = f(T ): (a) post-shock temperature; (b)
pressure; (c) degree of ionisation and (d) shock compression.



CHAPTER 7

Conclusions and contributions

This is a short summary of the results presented in the papers in Part II.

7.1. Cylindrical shock waves

• A new system of shaping the circular shock wave was introduced: the
convergence chamber was divided into channels using wing profiles which
split the incoming shock wave. For some wing lengths and widths, the
shock waves exit the channels as straight sections and a polygonal shape
is created.

• Spectrometric studies on shock convergence were made using polygo-
nal shock waves. The shape had shown to produce more repeatable
results in terms of the light emitted by the implosion than circular.
Blackbody radiation was measured during the beginning of the implo-
sion light pulse, showing a peak value of 6,000 K, which is lower than
expected. Light was collected from an unnecessarily large area, which
is significantly colder than the hot central core.

• The dynamics of symmetric polygonal shapes were studied in order to
compare with theoretical studies on the peculiar behaviour of polygonal
shock waves. The repeating and alternating formation of the initial
polygon due to Mach reflections in the corners was seen and found to
match the theory.

• Calculations using geometrical shock dynamics for converging cylindri-
cal and spherical shock waves were performed taking in account real gas
effects during the convergent process. Ionisation, electronic excitation
and coulombic forces were taken into account.

• The design of the apparatus creating cylindrical shock waves was stud-
ied numerically by axi-symmetric Euler calculations: it was found that
the 90◦ bend and contraction works to create strengthened converging
cylindrical shock waves. The initially diffracted shock at the bend is
weak and attenuated, but the shock reflected at the end wall turns into
the flow field created by the diffraction, overtakes and merges with the
diffracted shock. This strong shock converges efficiently, the flow driven
by the high pressure created by the reflected shock in the annular chan-
nel. Three-dimensional effects due to the bend are initially large, but
quickly diminish although they are not completely damped.
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• The convergence of circular cylindrical shock waves was studied to de-
termine the self-similarity exponent for shocks in three different gases,
argon, nitrogen and propane. According to established theory, the ex-
ponent depends on the ratio of specific heats, γ. The experiments con-
firmed the variation and the acquired values agreed well with theory.
The Mach numbers in these experiments were kept low so γ of the gas
would not change due to real-gas effects (before implosion).

7.2. Spherical shock waves

• A new experimental section was designed and constructed for the shock
tube. It consists of a transformation section with smoothly convergent
cross-section ending with a straight cone. The wall curve was designed
to slowly change the shape of the plane shock wave into the shape of a
spherical disc (imagine a part of a spherical shell cut out by a cone with
its apex in the sphere centre) when exiting the transformation section.
Numerical calculations were made to test the shape and found to work
well for a range of Mach numbers. In the first version of the experiment
no sensors were inserted to avoid disturbing the flow.

• The radiation from the imploding shock in the conical section was
measured for shock waves in air. Significantly stronger radiation was
recorded than in the cylindrical case for the same initial Mach number.
In the first part of the implosion light pulse a strong continuum was
seen, while bound-bound line radiation of argon appeared in the cooling
phase. Compared to the cylindrical case, more radiation from unwanted
sources appeared: e.g. iron and aluminium from the shock tube and di-
aphragm. Preliminary results show a highest blackbody temperature of
about 2.7 × 104 K.

• The work on the spherical test section opens possibilities and raises sev-
eral questions. Further experiments should be made to more accurately
clarify what level of shock strengthening is achieved, which could be
done by e.g. measuring the propagation. The end of the cone could
be reconstructed to enable clearer measurements. Instead of an abrupt
wall at the end of the cone, a small cavity or tube could be attached,
into which the strengthened shock could propagate. The light emission
could then be studied by placing the collecting fibres perpendicular to
the axis instead of along it. On the numerical side, the addition of
viscosity and/or a collisional-radiative model to the Euler calculations
could provide better understanding of the fast processes around focus.
With more accurate calculations the shape of the convergent section
could be optimised.



CHAPTER 8

Papers and authors contributions

Paper 1
Thermal radiation from a converging shock implosion.
M. Kjellander (MK), N. Tillmark (NT) & N. Apazidis (NA).
Phys. Fluids 22, 046102 (2010).

This paper is a spectrometric and photometric study of the light emission pro-
duced by converging shock waves in argon. For repeatability purposes, polyg-
onal shape shocks were created. The experiment was set up by MK and NT
with assistance from Olli Launila and Lars-Erik Berg, KTH Applied Physics
and performed by MK. Numerical calculations complemented the study, per-
formed by NA and MK. The paper was written by MK and NA, with feedback
from NT. Parts of this work has been presented at:

27th International Symposium on Shock Waves,
19 – 24 July 2009, S:t Petersburg, Russia

Paper 2
Shock dynamics of imploding spherical and cylindrical shock waves with real gas
effects.
M. Kjellander, N. Tillmark & N. Apazidis.
Phys. Fluids 22, 116102 (2010).

This paper is a study on the high temperature gas processes close to the centre
of convergence of cylindrical and spherical shock waves in monatomic gases.
The method of characteristics was used, with a gas model accounting for ion-
ization and Coulomb effects. The initial idea was proposed by NA and the
calculations were performed mostly by MK. Theoretical derivations were made
by MK and NT. The paper was written by MK with feedback from the co-
authors.
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Paper 3
Regular versus Mach reflection for converging polygonal shocks.
V. Eliasson (VE), M. Kjellander & N. Apazidis.
Shock Waves 17, 43–50 (2007).

Different reflection patters in polygonal shock waves were investigated. Square
and triangular shocks were created by cylindrical rods placed in the path of the
shocks. The experimental setup and work was mainly done by VE, but also
by MK: MK set up and performed the experiments with the cylinders placed
at 61.5 mm from the centre with higher optical magnification. The paper was
written by VE with feedback from NA. Parts of this work was presented at:

60th Annual Meeting of the American Physical Society
- Division of Fluid Dynamics,
18 – 20 November 2007, Salt Lake City, Utah, United States

Paper 4
Polygonal shock waves: comparison between experiments and geometrical shock
dynamics.
M. Kjellander, N. Tillmark & N. Apazidis.
In proceedings: 28th International Symposium on Shock Waves, 2011, Univer-
sity of Manchester, Manchester, United Kingdom

Schlieren photography is used to compare the dynamics of polygonal shocks
with theory. Symmetric shock waves with 6, 8 and 12 sides were studied. The
experimental set-up was made by MK and NT, the experiments were performed
by MK. The writing was made by MK, with feedback from NA. This work has
been presented at:

28th International Symposium on Shock Waves,
17 – 22 July 2011, Manchester, United Kingdom

Paper 5
Experimental determination of the self-similarity constant for converging cylin-
drical shocks.
M. Kjellander, N. Tillmark & N. Apazidis.
Phys. Fluids 23, 116103 (2011).

This is a continuation of previous experiments concentrating on the dynam-
ics of converging cylindrical shock waves. The self-similarity exponent for the
motion of cylindrical imploding shock waves was measured for different gases.
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The setup and experiments were made made by MK with support from NT.
MK wrote the paper with feedback from NT and NA.

Paper 6
Numerical assessment of shock tube with inner body designed to create cylin-
drical shock waves.
M. Kjellander & N. Apazidis
Technical report

This is a numerical study on the performance of the cylindrical convergence
chamber. The numerical code was written by MK and NA; MK performed the
calculations and wrote the report.

Paper 7
Generation of spherical converging shocks in a shock tube by wall shaping.
M. Kjellander, N. Tillmark & N. Apazidis.
Manuscript.

A study on the convergence of shock waves in a smoothly convergent shock
tube designed to create a spherical shape of the shock during the last stage of
implosion. The design of the setup was made by the authors jointly. MK per-
formed the experiments and wrote the paper, with feedback from NT and NA.
Olli Launila and Lars-Erik Berg, KTH Applied Physics, provided invaluable
contributions to the spectrometric setup and interpretation of the results.
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APPENDIX A

Specific heat and speed of sound from α

In the case of no Coulomb interactions the specific heats and equilibrium speed
of sound can be rewritten in terms of derivatives of αi, which simplifies the
numerical work in some cases where these are practically already calculated.
The equilibrium speed of sound ae,

a2
e =

(

∂p

∂ρ

)

s

= γ

(

∂p

∂ρ

)

T

(A.1)

where γ = cp/cv. We aim to express ae in terms of known quantities and deriva-
tives. The heat capacities are found from the enthalpy and energy. Neglecting
electronic excitation, these are

h =
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2
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∑
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(A.2)
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so that
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∂h

∂T

)

p

=
5

2
(1 + αe)R +
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+ R
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(A.4)

and

cv =

(

∂e

∂T

)

v

=
3

2
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(A.5)

where
(

∂αe

∂T

)

F

=
!

∑

i=1

(

∂αi
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)

F

(A.6)
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With the equation of state Eq. 2.11 the speed of sound can then be written

a2
e = γ

(

∂p

∂ρ

)

T

=
cp

cv

(

∂p

∂ρ

)

T

=
cp

cv

∂

∂ρ

(

ρ(1 + αe)RT
)

T
=

=
cp

cv

[

(1 + αe)RT + ρRT

(

∂αe

∂ρ

)

T

]

(A.7)

The above expression together with A.4 and A.5 is used to calculate ae. All
thermodynamic variables are known but the derivatives of αi has to be eval-
uated numerically around the current state of the gas p, ρ, T, αi. A simple
evaluation can be made as

(

∂αi

∂F

)

G

=
αi(F + dF1, G) − αi(F − dF2, G)

dF1 + dF2
(A.8)



APPENDIX B

Coulomb effects on thermodynamic variables

In a partly ionised gas Coulomb forces between the charged particles lead to
departures from the ideal state. When the effect is weak, consideration to
the Coulomb interactions may be taken in form of correction terms to the
thermodynamic variables. Different models exist for different gas conditions:
here is a derivation using the Debye-Hückel model for the ion charges for weak
Coulomb interactions. To derive the corrections due to the Coulomb forces on
the thermodynamic state and the species distribution, the electrostatic energy
contribution to the free energy is found, which in turn gives the desired correc-
tions. The electrostatic potential around a point charge is found by considering
the other particles not as individual charges but as a uniform charge cloud and
solving the Poisson equation. The derivation of the potential may be found
in e.g. Griem (1962), Ebeling (1976) or Salzmann (1998). The electrostatic
energy of a gas in a volume V resulting from this first approximation is given
as

Ec = −
kTV

8πr3
D

(B.1)

The parameter rD is the Debye radius which is a characteristic of the surround-
ing charge cloud and determines the sphere of influence of the ion charge, which
for a single-temperature plasma may be written

rD =

[

q2

ε0kT
(ne +

!
∑

i

niz
2
i )

]−1/2

=

[

q2

ε0kTV
(Ne +

!
∑

i

Niz
2
i )

]−1/2

(B.2)

where q is the elementary charge, ε0 is the vacuum permittivity, zi=i is the
charge state of the ion i. Note that several of the cited authors have used other
unit systems, while SI units are used here. The number of particles of ionic
end electronic components Ni and Ne in the volume V and number densities
ni = NiV and ne = NeV are defined as usual. Outside the Debye sphere, which
is the sphere around the ion with a radius rD, the ion is effectively screened
by the cloud. A typical validity requirement for the statistical Debye-Hückel
model is that several ions must be present within a Debye sphere.
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The influence of the Coulomb forces on the free energy is expressed as a
correction term to the ideal gas energy, F = Fig + FC , which derives from the
electrostatic energy. Using E = −T 2∂/∂T (F/T ), the correction to the free
energy becomes

FC = −
kTV

12πr3
D

(B.3)

B.0.1. Equation of state

The pressure follows from the free energy as p = (∂F/∂V )Ni,T . The ideal
translational contribution to the pressure is given in Eq. 2.11. The correction
term is then found from Eq. B.3,

δpC = −

(

∂FC

∂V

)

Ni,T

=
kT

12πr3
D

−
kTV

12πr3
D

3

2V
= −

kT

24πr3
D

(B.4)

For completeness the total pressure including the Coulomb correction is then
written

p = pig + pC = ρ(1 + αe)RT + δpC (B.5)

B.0.2. Saha equation

The Saha equation may be derived from minimising the free energy considering
the ionisation reaction where the (i+1)th electron is removed from the atomic
species A,

Ai " Ai+1 + ē , i = 0, 1, 2, ... $−1 (B.6)

where $ denotes the atomic number of A. The free energy of the ideal gas Fig is
given by statistical mechanics. With the Coulombic correction the free energy
of a partially ionised gas in local thermodynamic equilibrium becomes

F = Fig + FC = −
!

∑

i=1

NikT ln
Zie

Ni
− NekT ln

Zee

Ne
+ FC (B.7)

where Zi and Ze are the partition functions of the ions and free electrons.
Differentiating and setting (δF )V,T = 0 gives

δF =
∑

j

∂(Fig + Fc)

∂Nj
δNj =

∑

j

(

∂Fig

∂Nj
+ µj,C

)

δNj = 0 (B.8)

where µC,j = ∂FC/∂Nj and the summation j is made for j = i, j = i + 1 and
j = e.
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According to the reaction in Eq. B.6 δNi = −δNi+1 = −δNe and Eq. B.8
becomes

(

∂Fig

∂Ni
−

∂Fig

∂Ni+1
−

∂Fig

∂Ne
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(

Zi+1ZeeNi
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− 1 = −
µC,i − µC,i+i − µC,e

kT
(B.9)

Defining the reduction in ionisation potential due to the Coulomb interactions
as

∆Ii+1 ≡ µC,i − µC,i+i − µC,e (B.10)

Eq. B.9 becomes

Ni+1Ne

Ni
=

Zi+1Ze

Zi
exp

(

∆Ii+1

kT

)

(B.11)

This can be written in terms of the particles densities nj by dividing with the
volume V and using that Nj = njV :

ni+1ne

ni
=

1

V

Zi+1Ze

Zi
exp

(

∆Ii+1

kT

)

(B.12)

The partition functions for a monatomic ion consist of one translational and
one internal part, Zi = Ztr

i Zel
i , the latter accounting for the excited electrons

within the ion. The translational contributions is

Ztr
i = V

(

2πmikT

h2

)3/2

(B.13)

where mi is the molecular weight of the i:th ion, k the Boltzmann constant and
h the Planck constant. Since the weight difference of the successive ions are
negligible the translational part of the partition functions cancel in Eq. B.11
and B.11. The electronic contribution can be written (Zel’dovich & Raizer
2002) as

Zel
i =

∑

l

e−εl,i/kT = e−ε0,i/kT
∑

l

e−(εl,i−ε0,i)/kT = e−ε0,i/kT Qel
i (B.14)
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where ε0 is the ground state of ion i and the summation is taken over all energy
states. In other words the transformed partition function Qel relates the energy
of each electronic level to the ground state of the individual ions instead of to
the ground state of the atom. The energy differences of the succesive ionic
ground states are equal to the ionisation potentials, ε0,i+1 − ε0,i = Ii+1.

The partition function of the free electrons has one temperature-dependent
contribution from the translational energy and one constant contribution re-
lated to the spin, Zspin = 2. The total electron partition function is then

Ze = 2V

(

2πmekT

h2

)3/2

(B.15)

where me is the electron weight. Inserting Eqs. B.13, B.14 and B.15 into Eq.
B.12 yields the Saha equation:
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= 2
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Qel
i
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(B.16)

Using the particle fractions αi = ni/nH and αe = ne/nH this is rewritten as

αi+1αe
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Noting that ρ ≈ nHmH , Eq. B.17 has the same form as Eq. 6.13. The equation
of state B.5 can be used to rewrite the equation as a function of temperature
and pressure,
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)3/2 (kT )5/2
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(B.18)

The potential reduction according to the Debye-Hückel method is received by
taking the derivative of Eq. B.3:

∆Ii+1 =
∂FC

∂Ni
−

∂FC

∂Ni+1
−

∂FC

∂Ne
=

(i + 1)q2

4πε0rD
(B.19)

B.0.3. Energy and enthalpy

The expression for the energy may be calculated from E = −T 2∂/∂T (F/T )
using the partition functions. Again F = Fig + FC , with Fig for a partially
ionised monatomic gas in local thermodynamic equilibrium given in Eq. B.7.
The Coulombic correction from the elecrostatic potential is given in Eq. B.1.
Dividing the partition functions in their translational and electronic parts, Z =
ZtrZel yields
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Inserting the total number of heavy particles NH =
P!

i=0
Ni the above yields
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The last term is rewitten using Eq. B.14,
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Using that the masses of the ionic species are approximately equal to the atomic mass
Mi ≈ MA → NHk ≈ mRA and the energy is rewritten

Eig =
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The enthalpy per unit mass h = e + p/ρ is similarily divided into an ideal and
Coulombic part: h = eig + eC + (pig + pC)/ρ. The ideal contribution to the enthalpy
is acquired directly from Eq. B.5 and Eq. B.23:
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where the energy of the electronic excitation is

Wi = kT 2

„
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«

V,N

(B.25)

The two Coulomb corrections have been derived above and we have

hC = eC + pC/ρ =
1

ρV
EC + pC/ρ = −

kT
8πρr3

D

−
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= −
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D
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High energy concentration in gas is produced experimentally by focusing
cylindrical shock waves in a specially constructed shock tube. The energy
concentration is manifested by the formation of a hot gas core emitting light at
the center of a test chamber at the instant of shock focus. Experimental and
numerical investigations show that the shape of the shock wave close to the
center of convergence has a large influence on the energy concentration level.
Circular shocks are unstable and the resulting light emission varies greatly
from run to run. Symmetry and stability of the converging shock are achieved
by wing-shaped flow dividers mounted radially in the test chamber, forming
the shock into a more stable polygonal shape. Photometric an spectroscopic
analysis of the implosion light flash from a polygonal shock wave in argon is
performed. A series of 60 ns time-resolved spectra spread over the 8 µs light
flash show the emission variation over the flash duration. Blackbody fits of
the spectroscopic data give a maximum measured gas temperature of 5, 800 K
in the beginning of the light flash. Line emissions originating in transitions in
neutral argon atoms from energy levels of up to 14.7 eV were also detected.

1. Introduction

Converging shock waves have the ability to generate high energy concentra-
tions at the implosion focus, and have been studied since the first analytical
treatment by Guderley (1942). Experimentally, converging cylindrical shock
waves were first produced by Perry & Kantrowitz (1951) in an annular shock
tube with a tear-formed inner body. Further experiments in tubes following the
basic principles of their design have been made by Wu et al. (1977), Takayama
et al. (1987), Watanabe & Takayama (1991), Eliasson et al. (2006) and others.
Shock waves of initially moderate strengths are, when converged, able to heat
the gas at the focus to temperatures where the gas becomes radiating. The light
emission allows temperature determination from spectrometric measurements.
Spectrometric measurements on converging shock waves have been made by
several authors, primarily using detonations to instigate the shocks.
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Knystautas et al. (1969) made experiments with converging detonation
waves in a cylindrical chamber filled with an acetylene-oxygen gas at an initial
pressure of 120 Torr. They measured the intensity of the luminescent center at
two wavelengths and compared to a blackbody radiator, estimating a maximum
temperature of 189,000 K.

Roberts & Glass (1971) measured the emission from converging shock
waves in a hemispherical chamber filled with a oxygen-hydrogen gas at high
pressures (6.8-27.2 atm). The shock waves were generated with an explod-
ing wire in the center of the chamber. The radiation was continuous with a
blackbody temperature of ∼5,000 K. They also noticed that the temperature
reported by Knystautas et al was estimated too high due to erroneous use of
Wien’s law. The work was continued by Roig & Glass (1977), who presented
time resolved blackbody temperatures from measurements on six wavelength
regions, with similar peak temperatures (4,500-6,000 K).

Saito & Glass (1982) made further spectrometric measurements with a
hemispherical implosion chamber filled with a hydrogen-oxygen mixture. To
initiate the shock, they used an exploding wire at the center or explosives
attached directly at the walls. Time-resolved recordings on the radiation in-
tensity were made at eight wavelengths in the visible region. The emission was
found to be continuous and comparisons with the blackbody function yielded
temperatures in the range 10,000-13,000 K for the exploding wire runs and
15,000-17,000 K for the explosive runs.

Matsuo et al. (1985) conducted spectrometric measurements on converging
shock waves in air. Strong shock waves were created by detonation in the
center of a circular test chamber, which reflected at the walls and focused.
The light emission at the focus was measured and compared to the blackbody
function. Time-resolved intensity was measured with photomultiplier tubes
at a number of separate wavelengths between 400 and 500 nm and revealed
blackbody temperatures in the range of 13,000-34,000 K.

The present work aims to study the nature of the light emission from
converging cylindrical shock waves in argon and to estimate the temperatures
achieved at the focus. As opposed to the previously listed, the shock waves are
not generated by explosives or wires, but in a shock tube designed along the
same principles as those of Perry & Kantrowitz (1951) and Takayama et al.
(1987). The light pulse at the center of the test chamber is investigated pho-
tometrically and spectroscopically. A new echelle-type spectrometer is used in
order to measure the complete spectrum between 300 and 900 nm.

Fig. 1 shows the hot luminescent region of compressed argon produced by
a strong polygonal imploding shock of final Mach number M ∼ 10 created
from an initial shock at Mach number M = 3.8 in the shock tube facility at
KTH Mechanics. The illumination of the test section is provided by the gas
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radiation. The wing shaped profiles serve as shock stabilizers, as described
below.

Figure 1: Hot luminescent gas core at the middle of the convergence chamber.

The converging cylindrical shock will produce a high energy concentration
under the condition that its symmetry is preserved during the convergence
process. It is interesting to note that the most natural circular shape of the
converging shock is unstable. Perry and Kantrowitz showed experimentally
that a converging cylindrical shock becomes unstable once its strength exceeds
Mach 2.4. A small deviation from a circular shape tends to increase and even-
tually produce a plane portion on the shock front. This leads to a loss of
symmetry and a substantial decrease in the focusing effect since various parts
of the shock front arrive at different instants and locations in the focal region.

Strong converging shocks have an inherent property to form plane sides and
sharp corners. It has been shown theoretically, numerically and experimentally,
among others by the present researchers, that curved strong converging shocks
tend to planarity. A strong shock that is initially curved tends to form a
polygonal front with plane sides and corners at the focal regions where the
shock strength increases drastically. Sturtevant & Kulkarny (1976) showed
experimentally the formation of plane sides of an initially smooth shockfront
at the focal region of a parabolic reflector.

Paradoxically this inherent property of strong shocks that leads to an un-
stable behavior of a cylindrical shock can and is used in the present study
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to form dynamically stable polygonal shock fronts. It has been shown the-
oretically, experimentally and numerically that a symmetric polygonal shock
is dynamically stable, see e.g. Schwendeman & Whitham (1987), Apazidis &
Lesser (1996), Apazidis et al. (2002), Apazidis (2003), Eliasson et al. (2007a),
Eliasson et al. (2007b). The shock front will undergo a periodic transformation
between n and 2n sided polygonal form retaining the symmetry of the shock
structure which is vital for the high energy concentration at the focal point. As
shown by Eliasson et al. (2007b) these polygonal shock waves create light emis-
sions that are more repeatable in strength compared to circular shock waves.
Since reproducibility between each shock tube run is very important for the
presented measurements, polygonal shock waves are preferred.

The form of the imploding shock may be controlled by various methods,
e.g. by a specific form of the reflector boundary or by small objects placed in
the chamber such as small cylinders, see Eliasson et al. (2007a), Eliasson et al.
(2007b). The present study makes use of biconvex wing profiles to shape the
shock waves.

Having the shock wave converge in monatomic argon instead of in air has
been shown to produce significantly higher luminosity (Perry & Kantrowitz
(1951)). The spectrometric measurements presented here are performed using
argon as test gas and helium as driver gas.

By this method of shaping the shock front and using the combination of
helium and argon as driver and test gases, we have been able to produce gas
conditions in the focal region resulting in a formation of hot luminescent gas
core at the center of the chamber. The radiation from the light flash, distinctly
visible to a naked eye in daylight, has been recorded and investigated. The
intensity of the radiation has been monitored by a photomultiplier and the
spectrum of the light flash recorded by a spectrometer and analyzed. The
duration of the flash obtained from the photomultiplier is about 8−10 µs. The
intensity increases abruptly at the beginning of the time interval and falls off
gradually with time.

A quantitative estimate of the temperature variations during the flash is
performed by dividing the flash into a number of spectra with short exposure
times of 60 ns. The temperature has its highest value at the time of shock focus,
whereafter it continuously decreases. Apparent blackbody temperatures of the
gas are deduced from fits of the measured spectra, revealing the temperature
variation over the flash duration with a peak of ∼ 6000 K.

2. Experimental setup

The present work utilizes the same shock tube as that used in previous exper-
iments by the group, but with modifications on the shock shaping geometry
in the test section. The tube is specifically designed to create a converging
cylindrical shock structure. The light created by shock implosion in the gas
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Figure 2: Schematic drawing of the shock tube: A, driver section ; B, inlet
pipe; C, transformation section; D, annular tube; E, test section. S1 and S2,
shock sensors; W1 and W2, glass windows framing the test section.

is measured both with an echelle type spectrometer and a photomultiplier,
recording the spectrum in the wavelength interval 300-880 nm and the total
intensity variation over time, respectively. Flow visualization is provided with
a schlieren optics system. The shock propagation in air and argon is compared
with the numerical results.

2.1. Shock tube

The basic shock tube configuration has been described in detail in previous work
(Eliasson et al. (2006), Eliasson et al. (2007a), Eliasson et al. (2007b)) therefore
only a brief outline of the apparatus is presented here. Only the modifications
or changes of the original setup are described in detail. A schematic of the
apparatus is given in Fig. 2. The shock tube is made up of a short cylindrical
driver section (A) and a driven section, separated by a rupturable membrane.
The latter section consists of four parts: a long inlet pipe with circular cross
section (B), a channel transformation part (C) changing the cross section from
circular to annular, an intermediate section (D) where a plane annular shock is
established and where the shock speed is measured and a cylindrical test cham-
ber (E) where the shock moves radially towards the center. The central part
of the test section is framed by 15 mm thick glass windows (Schott Borofloat
33) giving optical access to the shock focusing region.

Either air or helium are used as driver gases. Test gases are either air or
argon of commercial grade (ARCAL TIG-MIG, purity rate 99.99%, Air Liq-
uide). An aluminum diaphragm (thickness 0.5 mm) separates the two sections.
Increasing the pressure difference forces the diaphragm towards a knife-edged
cross located in the inlet of the driven section and causes the diaphragm to rup-
ture. Good quality aluminum membrane and a sharp edged cross ensure small
variation in the bursting pressure, ±25 kPa at a nominal pressure difference
of 1.7 MPa. The pressures in driver and driven sections are monitored with
electronic pressure transducers ( Druck DPI 150). For an initial low pressure
p1 = 10 kPa in the driven section, different gas combinations give shock Mach
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Figure 3: Test section: (a) drawing of the wing profiles, where the outer ring
represents the annular channel; (b) photograph of the test section with the
profiles installed in the chamber.

numbers between Ms=2.3 and Ms=3.8 in the annulartube before entering the
test chamber.

2.2. Test section and shock wave shaping

The test section is divided into radial channels by flow dividers. These are
50 mm long biconvex wing profiles with the chord along the radius of the
chamber. The leading edges are mounted flush with the inner surface of the
annular channel and the trailing edges of the profiles are positioned 20 mm
from the channel center. Fig. 3 shows the biconvex wings mounted in the test
section. The form of the circular cylindrical shock wave entering the channels
is changed due to the new flow conditions with shocks normal to the profiles.
Complex interaction between the flow along the walls and in the center changes
the shape of the shocks propagating from inlet to outlet. If arranged properly,
the shock wave attains polygonal structure with almost plane sides when leaving
the channels.

Previous work (Eliasson et al. (2006), Eliasson et al. (2007a), Eliasson et al.
(2007b)) in the same shock tube used circular objects or polygonal reflectors
in the test section. The purpose of the wings is to improve the shock shape
and allow the same blockage ratio regardless of the number of wings - and
consequently the number of sides of the polygonal shock wave - by altering the
thickness of the wings from case to case. The present study has a configuration
with eight wings, creating an octagonal shock wave. The number eight is
a compromise between demands on repeatability and ability to concentrate
energy. The completely circular shock wave is optimal for concentration but
suffers from low repeatability. A polygonal shock with eight sides is stable and
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Figure 4: Arrangement of the schlieren optics. L, lens, M, mirror and S, the
schlieren stop. S1 and S2 are the pressure sensors used for triggering and
measuring the shock speed in the annular tube.

at the same time close to an optimal but unstable circular form. It has also
been observedTakayama et al. (1987) that the supporting struts of the inner
body introduce disturbances in the flow that eventually destabilize the circular
shape. In the shock tube at KTH, two sets of four struts are used, one set
rotated 45◦. The influence of the struts is diminished if eight wings are placed
corresponding to the strut positions.

2.3. Flow visualization

A schlieren system, schematically drawn in Fig. 4 is used to visualize the flow
in the test section. The light source is a laser whose beam is directed into
the inner body of the annular section through one of the support struts, and
expanded to illuminate the test section through the glass window. On the
receiving side the collimated light is focused on a schlieren stop. To be able
to detect density gradients in all radial directions a metal microsphere is used
as a stop. Photographs are taken with either a CCD camera (PCO SensiCam)
electronically connected to the timing system or a digital still camera (Nikon
D80) with an open shutter. The SensiCam can take either single or multiple
exposures. In the single-exposure mode an Nd:YAG laser (New Wave Orion)
is employed as light source, while a continous argon-ion laser (Spectro-Physics
BeamLok 2060) is used in the other mode.

The optical setup is shielded from unwanted stray light. Using an open
shutter causes the still camera to take double exposure of the test section, the
first enlightened by the laser source the second by the light created during the
implosion. The unwanted exposure due to the implosion light flash is damped
by placing filters in front of the camera and compensating with increased laser
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Figure 5: Spectrometric setup. The spectrometer is triggered by the shock
wave passing and deflecting the HeNe laser beam, detected by a photodiode.
The time between the signal and capture is determined with a delay unit.

power. The shock sensor S2 (see Fig. 4) is connected to a digital delay generator
(Stanford Research Systems DG535), which in turn triggers the Nd:YAG laser.
The laser pulse is about 5 ns long. Only one schlieren image is taken at each test
run. The S2 sensor and the photomultiplier are connected to an oscilloscope.
The latter is used to time-correlate the images with the time of the shock
focusing; both the Nd:YAG laser pulse and the light emission flash are recorded
by the oscilloscope.

2.4. Spectrometric arrangements

A schematic drawing of the setup is presented in Fig. 5. Light generated at
the shock focus is collected by two optical fibers with their openings flush to
the glass. One fiber feeds a photomultiplier while the other is connected to a
spectrometer (Mechelle 7500, Multichannel Systems, Sweden) with an ICCD
camera (Andor Istar). Light is collected from a conical volume with a mean
radius of 7 mm around the center. The spectrometer is able to record spectra in
the wavelength interval 180− 880 nm. However, the test section glass window
limits the light transmission to between 350 and 880 nm. The spectrometer
makes use of an echelle grating, that divides the spectrum into several vertically
separated diffraction orders. The complete spectrum is reconstructed by soft-
ware. The separation causes the sensitivity to drop close to the edges of each
order, as can be seen in Fig. 15. The spectrometer was wavelength calibrated
during the experiments using a Hg lamp. Deviation from theoretical positions
of twelve Hg lines are minimized by a least-square fit method.
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The spectrometer unit is triggered by an optical method using a small
HeNe laser. The laser beam is directed through the test section 25 mm from
its center. It is then reflected back through the windows by a mirror inside
the inner body and falls on a photodiode. When the beam is deflected by the
passing shock wave the change of beam direction is detected as an intensity
change by the photodiode. The signal is amplified and used as a trigger signal
for the digital delay generator (DDG). A delay is set on the DDG and the output
signal opens the ICCD camera shutter on the spectrometer. Simultaneously
the light emission from the focused shock is registered with the photomultiplier.
The signals from the photomultiplier, the photodiode amplifier and the ICCD
camera trigger pulse are monitored and recorded with a digital oscilloscope. In
order to synchronize the shutter opening times with the light flash as measured
with the photomultiplier tube, the unknown time delay of the trigger system
was measured with a pulse laser and determined with an accuracy of 10 ns.

3. Experimental Results and Discussion

Two sets of experiments were made. A first set using the schlieren setup to
determine the shock propagation and degree of symmetry and repeatability
that could be achieved with the shock shaping system. This was made for two
combinations of gases: air as both test and driver gas, resulting in a shock
strength of Ms = 2.3 in the annular section, and argon as test gas and helium
as driver gas (Ms = 3.8). The second set of runs was with the spectrometric
setup, measuring the light pulse from a shock converging in argon. The initial
low pressure for all cases was 10.0 kPa.

3.1. Shock wave propagation

Schlieren images were taken for one set using air as both driver and test gas,
and one using argon as test gas and helium as driver gas. The propagation time
of the shock wave from sensor S1 to the center of the test section was 542±2 µs
using air as test gas and 363±5 µs using argon, corresponding to initial Mach
numbers of 2.3 and 3.8 in the annular channel. Fig. 6 shows the propagation
of the converging shock wave through the test section in air. The six images
are obtained from different shock tube runs. The ∆t given in the captions is
the time of the image capture relative to the focusing instant as measured by
the photomultiplier.

Image 6(a) shows the shock wave entering the central, open part of the test
section after passing through the channels, having attained a roughly plane
shape, thereby forming an eight-sided polygon. As the separate fronts exit the
channels each plane shock reflects from those emerging from the adjacent chan-
nels. When the incoming waves reflect, Mach stems appear at the intersection.
As the incident shocks and Mach stems are almost plane, they propagate at
almost constant velocities. Initially short, the stems have higher speeds than
the adjacent waves 6(b and c). Eventually the Mach stems form a new octagon,
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(a) ∆t = −17.4 µs (b) ∆t = −11.0 µs (c) ∆t = −6.6 µs

(d) ∆t = −3.9 µs (e) ∆t = −2.6 µs (f) ∆t = +17.4 µs

Figure 6: Schlieren images of converging cylindrical shock waves in air at 13.3
kPa. The Mach number of the initial annular shock was Ms = 2.3. The time
between image capture and focusing instant is displayed under each image.
Images (a)-(e) show the converging shocks before focusing, while (f) shows the
reflected diverging shock. The distance between opposite wing tips is 40 mm.

rotated by 22.5◦, which is accomplished in Fig. 6(d). Thereafter the process
repeats itself. Much of the acceleration of the polygonal shock wave is therefore
due to the Mach reflections. Fig. 6(f) shows the outgoing, reflected shock which
is stable, in contrast with the converging shock. The outgoing shock tends to
obtain a circular form but is influenced by the flow ahead, created by the initial
converging shock.

An idealized drawing of the reflections is showed in Fig. 7, corresponding
to Fig. 6 (a) and (b) or (c). The system exhibits both stationary and moving
shocks. At the trailing edge, stationary oblique shocks appear due to the
supersonic flow induced by the preceding shock wave, traveling from left to
right in the picture. Vortices are created at the trailing edge due to the not
completely simultaneous arrivals of the shock fronts on each side of the wing.
These follow the flow downstream and may be seen in the middle of the ”flower
leaves” in Figs.6 (b)-(e). It should be stressed that Fig. 7 is an idealized
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picture which does not contain all the unsteady interactions resulting from the
not completely symmetric reflection.
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Figure 7: Idealized diagram over the shock interactions responsible of forming
the polygonal shape. Detail from Fig. 6(c) inserted.

(a) (b)

Figure 8: Two examples of the multiply exposed schlieren photographs used
for determining shock position and velocity; (a) in air and (b) in argon. The
light spot seen in the middle of (b) is the luminescent gas core.
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The radius of the shock wave is measured as the average of the radial
distance to the midpoint of the eight main principal shocks that make up the
polygon. This has the effect that initially the radius is measured to the mid-
point of each original side of the polygon. When the Mach stems overtake
the original shocks, the radius is taken as the distance from the center to the
stems. If perfect symmetry would apply, this is equivalent to the radius of the
largest circle that can be inscribed inside the shock wave. The experimental
data points are collected from several multiple-exposure schlieren images, of
which two examples are presented in Fig. 8. The central bright spot in (b) is
the light flash from the implosion. Figs. 9 and 11 present time-diagrams of the
measured positions.
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Figure 9: Propagation of polygonal shock wave in air (+) and argon (o) com-
pared with circular Guderley solutions (dashed lines). Power law fits (full lines)
to the experimental data are added for comparison.

The polygonal shock wave converges slower than a circular with the same
initial Mach number and radius. This can be demonstrated using the power-law
solution for circular and spherical shock waves by Guderley,

r

R0

=

(

1 −
t

tC

)a

(1)

where R0 is the initial radius and tC the time needed for the shock front to reach
the center. For a circular cylindrical shock wave converging in air, a ≈ 0.834
(Guderley (1942)), which has been confirmed experimentally (Takayama et al.
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Figure 10: Mach number from fits to experimental data (full lines) and circular
cylindrical Guderley solution (dashed lines). The upper curves represent the
shock in argon with initial Ms = 3.8 and the lower in air, with initial Ms = 2.3.
The experimental fit represents averaged Mach number of the polygonal wave.

(1987)). To compare with the circular case, a fit of Eq. 1 was made to the ex-
perimental data. The propagation of the polygonal shock wave approximately
follows Eq. 1, and the exponent acquired from the fit was a ≈ 0.875±0.010.
The circular Guderley solution has smaller exponent and approaches the focus
faster. The same was found for the shock wave in argon, where the experimen-
tal data gave a ≈ 0.862±0.015, to be compared with the circular a ≈ 0.816
(Lazarus & Richtmyer (1977)). Figure 9 shows the measured effective radii
of converging polygonal shocks compared to the circular Guderley solution.
The corresponding experimental Mach numbers obtained from the power law
fits are compared to the Guderley solutions in Fig. 10. The circular solution
was given the same starting position and velocity as the experimental fit at
R0 = 18.5 mm. As apparent from the figures, the circular shock accelerates
and converges faster.

The converging process of polygonal shock waves was described by Schwen-
deman & Whitham (1987) using geometrical shock dynamics. Their treatment
predicted the Mach number ratio of the shock fronts making up any two suc-
cessive octagons as M1/M0 = 1.201 for air (γ = 1.4). Designating the Mach
number of the incident shocks M1, of the Mach stems from the initial reflection
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Figure 11: Linear fits to the shock front position to determine Mach numbers
of incident shock and Mach stems for shock wave in air (+) and in argon (o).

M2 and of the Mach stems appearing at the second reflection M3, correspond-
ing ratios may be estimated from the experimental data. Linear fits for air
resulted in M2/M1 ≈ 1.20 ± 0.02 and M3/M2 ≈ 1.19 ± 0.03. For the shock
wave in argon, M1/M0 = 1.22 ± 0.03.
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Figure 12: Deviation of the shock wave shape versus radius.

As the amount of the energy concentration is coupled to the ability to focus
the polygonal shock an interesting parameter is the asymmetry appearing in
the focusing process. Fig. 12 shows the deviation ∆r from the mean radius of
the converging shock wave, normalized by the mean radius r. R0 is the radius
of the central, open section, 18.5 mm. There is an asymmetry in the polygonal
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shape, originating from when the shock enters the open section: as seen in
Fig. 6(a), the fronts arrive at marginally different times. This makes the shape
slightly elongated. The radius and deviation presented in Fig. 12 have been
calculated as the mean values of the distances from the center point to the mid
point of each of the eight main shock fronts. The value is an indication of the
ability to keep the symmetric polygonal shape.

3.1a. Photomultiplier records. The light flash has a total duration of roughly
10 µs. Photographs of the emitting gas core at the instant of shock implosion
are shown in Fig. 13. The images are taken from an oblique angle to show
the extent of the core. The shutter was left open and the only light source
was the luminescent gas itself. The emitting volume at the focus is seen to
have the form of a thin cylinder, stretching the full 5 mm span between the
framing windows of the test section. This result indicates that the polygonal
shock convergence in the test chamber preserves the two-dimensional structure
of the shock to the end of the focusing process.

(a) (b)

Figure 13: Photographs of the light emitting gas core: (a) photo showing the
full view of the test section; (b) a photo taken from a closer distance.

Photomultiplier records from more than a hundred runs using various com-
binations of gases show a fairly reproducible strength of light intensity for each
set of gas combinations. The set presented in Fig. 14 shows the signals from
twenty runs using helium and argon as driver and test gas, respectively. The
negative peak signal strength varies little, with a mean value of -0.49 V and
standard deviation 0.02 V. The spread increases after the collapse. The actual
fall time is short, about 12 ns, but is preceded by a small decrease in output
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voltage prior to the peak. This indicates that the gas behind the shock starts
to emit light at least 100 ns before the actual focusing instant.

0 1 2 3 4 5
-0.5

-0.4

-0.3

-0.2

-0.1

0

Time  (µs)

V
ol

ta
ge

  
 (

V
)

Figure 14: Photomultiplier records of light emissions from converging polygonal
shock waves in argon with helium as driver: mean value and standard deviation
(dashed lines) from twenty runs.

Summarizing, although the flow divider matrix produces a slightly asym-
metric converging shock wave, it manages to create the desired shock wave
shape and behavior. Photomultiplier records show a good reproducibility in
light emission intensity, whereas the circular shock produces highly fluctuating
results(Eliasson et al. (2007b)).

3.2. Spectrometric results

A series of spectrometric measurements of the light emission during the focusing
in argon have been made. The initial pressure in the test section was 10.0±0.05
kPa and the high pressure 1.67±0.03 MPa. Helium was used as the driver
gas, resulting in a shock Mach number Ms = 3.8 in the annular section. The
variation of the Mach number between different runs was less than one percent.
The photomultiplier records shown in Fig. 14 were acquired during these runs.

The emission has both been measured in its entirety and divided into a
sequence of 60 ns long exposures. Fig. 15 shows a time-integrated spectrum,
taken with the shutter open during the whole emission interval. The data
shows continuum radiation, on which a series of emission lines is superimposed.
The emission lines originate from electron transitions between excited states in
neutral argon atoms. The effects of the echelle prism in the spectrometer can
be seen in the bumpy appearance of the continuum. Each parabola corresponds
to one order and shows the sensitivity drops at the edges of each order. These
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drops are due to the equipment construction, and are not related to the light
emission.
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Figure 15: Raw time-integrated emission spectrum of the entire light flash. A
continuum and two groups of lines from electron transitions in neutral argon
atoms were especially notable.

Time-resolved spectra with 60 ns exposure times have also been made.
The measured spectra have a lower signal-to-noise ratio due to the very short
exposure time. An overview of filtered spectra is presented in Fig. 16. The
displayed time is the time difference between the sharp peak of the photomul-
tiplier signal, signifying the implosion of the shock wave, and the opening of
the shutter.

In the beginning of the light flash, a continuum is detected. After about
1 µs the single emission lines that also can be seen in the time-integrated
spectrum start to appear. As the gas is cooling, the continuum starts to fade
away leaving only the neutral argon lines to be measured. After about 7 µs
no emission could be sensed with the spectrometer with the current exposure
time.

A number of emission lines originating from electron transitions in neutral
argon were detected. The identified transitions start from either the 3p54p
or 3p55p manifolds, and terminate in the first level of excited states in ar-
gon, 3p54s. Transitions from the 3p55p level were only observed in the time-
integrated spectrum; the significantly lower intensities drowned in the noise in
the 60 ns window spectra. Possible transitions from these states to the ground
state have wavelengths below the detection range.
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Figure 16: Time-resolved spectra of the light flash. The spectra, taken with
exposure times of 60 ns, show the evolution of the continuum and the appear-
ance of the argon emission lines. The spectra have been corrected for CCD
sensitivity. Each spectrum is taken at a separate run.

3.2a. Comparison with blackbody radiation. The continuum spectra were com-
pared with the blackbody function,

I(λ, T ) =
2hc2

λ5

1

exp (hc/λkT ) − 1
(2)

where h is Planck’s constant and c the speed of light. A least squares method
was employed and corrections made for the quantum efficiency of the camera
and the transmission losses in the glass window. Since the spectra suffer from
noise, they were first treated with a digital moving-average filter. The filtered
spectra agree reasonably well with the blackbody spectra over the whole spec-
tral range. The highest apparent blackbody temperature, 5,800±200 K, was
found for an exposure starting about 100 ns into the flash. As the measured
continuum spectra get weaker the signal-to-noise ratio decreases. The last
spectrum to be compared with a blackbody curve was recorded at ∆t = 2100
ns, indicating a temperature of 4,600±200 K. Later spectra do show a small
rise above the base level, but are excluded due to imprecision in temperature
estimation. Fig. 18 shows two typical filtered spectra with blackbody fits. The
blackbody curves have been corrected for the overall wavelength sensitivity
curve of the CCD but not for the order sensitivity.

4. Numerical calculations

The present experimental investigation of the flow field in the test chamber has
been complemented by a numerical study. The numerical solution is obtained
by the artificially upstream vector splitting scheme (AUFS), for solving the
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Figure 17: Spectra taken during 60 ns at three different times after the implo-
sion instant: (a) photomultiplier signal with marks indicating the time of each
spectrum; (b) ∆t =310 ns; (c) ∆t =1790 ns; (d) ∆t =3230 ns. The intensity
scales differ between the graphs.

2D Euler equations, introduced by Sun & Takayama (2003). The complex
geometry of the test chamber with the wing-shaped objects placed radially
in the chamber requires a robust and stable flow solver with sufficient flow
resolution which is able to model the demanding boundary conditions.

4.1. Meshing of the computational domain

The AUFS scheme is implemented on an unstructured triangular mesh with
automatic mesh refinement applied along boundaries, sharp edges and down-
stream of the wing profiles closer to the center of the test section to provide for
a high flow resolution in these regions. A mesh with approximately 3.5 × 105

nodes and enhanced resolution in the critical areas was able to resolve the
minute flow details observed in the experiments.

The size of the mesh cells in the vicinity of the wing tip is shown in Fig.
20. The region around the tiny circle at the right tip of the left horizontal wing
in Fig. 20(a) is magnified in (b) showing the triangular mesh in the vicinity
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Figure 18: Filtered spectra with blackbody curve fits. The blackbody curves
are corrected for the quantum efficiency of the camera and the glass window
transmission losses. The time at start of exposure and blackbody temperature
are: (a) ∆t =310 ns, T=5400 K; (b) ∆t =3230 ns, T=4650 K.
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Figure 19: Temperatures acquired from blackbody fits of time-resolved spectra
with 60 ns exposure time. Each data point represents measurements made on
separate runs. The temporal errors are ± 20 ns.

of the tip. This mesh size can be readily compared with the size of the shock
structure shown in Fig. 6.

4.2. Problem formulation

In our calculations we have used the ideal gas model as well as the gas model
accounting for the ionization effects. The influence of the ionization in argon
showed to be negligible for the present case with maximum temperatures below
7,000 K. For temperatures and pressure levels under the present flow conditions
the ionization degree α in argon, obtained from the Saha equation does not
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Figure 20: The computational domain (a) and a magnification small a circular
region around the right tip of the left horizontal wing (b).

exceed α = 10−5. For such conditions the ideal gas model and the model
accounting for ionization produce the same flow field in the chamber. The
ideal gas model is however not valid for the extreme conditions at the very
center and the influence of various levels of ionization on shock dynamics of
strong converging cylindrical and spherical shocks in argon is investigated in
detail theoretically and numerically in a separate study by the present authors.
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Figure 21: Comparison of a detail of a schlieren photograph Fig. 6(d), com-
putational mesh and numerical schlieren image computed at the same instant
∆t = −3.9 µs prior to implosion.

4.3. Numerical results

Calculations for air and argon were performed with initial (at the chamber
boundary) Mach numbers 2.7 and 4.1 respectively. These initial Mach num-
bers at the chamber boundary result in shock propagation in the central part
that is well correlated with the experimental measurements. Experimental and
numerical Mach number values as the shock approached the center of conver-
gence are found to be around M = 10 for argon. Meshes with the order of
3.5×105 nodes are able to successfully produce the complex flow details visible
in the experimental images. Fig 22 illustrates the converging shock fronts in air
with initial Mach number M = 2.7 at various times from the implosion instant
at t = 0. The time difference between each of the subfigures in Fig. 22 showing
the global shock system in the chamber is ∆t = 13 µs. Shock structure in the
central part of the chamber is shown in Fig. 23.

The numerical schlieren images are calculated for the time instants corre-
sponding to the experimental images displayed in Fig. 6.

As we see the numerical scheme is able to capture and reproduce the flow
details visible in the experimental images for converging as well as in the ex-
panding shock.

Fig. 21 shows a comparison of experimental (white on black) and numer-
ical (black on white) schlieren images. A blow up of a detail in Fig. 23(d)
is compared to corresponding calculated shock structure at the same time in-
stant ∆t = −3.9 µs before implosion. The computational sell size is given
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(b) ∆t = -39 µs.(a) ∆t = -52 µs.

(d) ∆t = -13 µs. (f) ∆t = 13 µs.(e) ∆t = 0 µs.

(c) ∆t = -26 µs.

Figure 22: Numerical schlieren images of the global shock system in the air-
filled chamber at equidistant times. Initial Mach number M = 2.7.

for reference. As seen experimental and calculated shock structures are well
correlated.

Fig. 24 shows the effective radius of the converging shock front as function
of time. The radius is chosen as the radius of the largest circle enclosed by
the polygonal shock. The numerical result agrees well with the experimentally
deduced radius, which is reproduced from the experimental results presented
earlier.

5. Conclusions

The specially designed shock tube has been modified to create polygonal shock
waves in order to improve the stability and reproducibility of the experiment.
A matrix with eight concave flow dividers reshaped the shock waves into a
octagonal form, which proved to be stable and repeatable in terms of focusing
time and intensity of the light signal. The polygonal shocks were also found to
retain their 2D structure to the end of the focusing process, as evident from
photographs of the light-emitting core, see Fig. 13.
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Figure 23: Numerical schlieren images of the central part of the air-filled cham-
ber showing the converging shock fronts at the time instants corresponding to
the experimental schlieren photographs shown in Fig. 6. Initial Mach number
M = 2.7.

The structure of converging polygonal shocks was recorded by experi-
mental schlieren images of the flow and the corresponding effective radii and
Mach numbers were obtained through multiple-exposure images. The numer-
ical scheme implemented on an unstructured triangular mesh with automatic
mesh refinement was able to capture the flow details and agreed well with the
experimental schlieren images as well as values of the effective convergence ra-
dius as seen in Fig. 24. The speed of shock convergence was compared to the
circular cylindrical Guderley solution as well as to the predictions based on
Whitham’s theory applied to polygonal converging shocks. It was found that
the octagonal shock in the present case was somewhat slower than the circular
shock, see Fig. 9. We also shown that Whitham’s approximate theory correctly
predicts the Mach number increase of a converging octogonal shock in air.
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Figure 24: Effective radius of converging and diverging polygonal shock fronts.
Experimental and numerical data for the shock in air with air as driver gas (+,
full line) and argon with helium as driver gas (◦, dashed line).

The main goal of the present study was to investigate the nature of light
emission in the final stages of focusing procedure. Both photometric and spec-
trographic measurements of the light emission during the implosion of the con-
verging polygonal shock wave have been made. The duration and the form
of the light flash was recorded by a photomultiplier. The light intensity in-
creased abruptly to the maximum value and vanished gradually within 10 µs,
see Fig. 14. The emission was measured spectrometrically and was both time-
integrated over the whole flash and broken down in discrete 60 ns windows.
The whole wavelength-resolved spectrum from 300 to 900 nm was measured.
The spectrum of the flash was found to consist of a quickly appearing contin-
uum which, after 1 µs into the pulse, is accompanied by strong single lines from
electron transitions in neutral argon. The continuum appeared to agree well
with the blackbody function and corresponding blackbody temperatures were
obtained through fits of individual spectra from each of the 60 ns windows, giv-
ing the temperature variation over the pulse, see Fig. 19. The exact source of
the continuum is currently not known. The light emitted during the flash may
originate from the surface of an opaque, partly ionized gas. Non-uniformity
of the temperature distribution also affects the validity of the measurements:
the area of the radiating part of the gas is changing in an unknown manner,
while light is collected from the whole radiating volume. Estimates of absolute
values of intensity are therefore difficult to achieve. It should also be noted,
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that the highest measured temperature was acquired some time after the ac-
tual implosion, when the total light strength has dropped significantly from its
peak. The final Mach number calculated from experiments indicates temper-
atures of above 9,000 K before the actual implosion. As the light is collected
from a larger volume it is expected that lower temperatures are detected. Fu-
ture measurements should be spatially resolved to find the radial distribution
of light and temperature.

Flannigan & Suslick (2005) measured the time-integrated sonoluminescence
spectra from an argon bubble in liquid. One of the current hypotheses explains
the the light production in the cavitating bubble by shock waves causing the
extreme conditions in the final stages of the bubble collapse. The spectrum
measured by Flannigan and Suslick is very similar to the spectrum measured
here, with a continuum superimposed with line emission from the 3p54p →

3p54s transitions also found in the present study. This is a concrete example
that converging shock waves are at least able to create gas conditions that
generate similar radiation to that of sonoluminescence.

Several authors have made measurements on the light from imploding
shocks, concluding that the gas at the focus behaves as a blackbody radi-
ator (Roberts & Glass (1971), Roig & Glass (1977), Saito & Glass (1982),
Matsuo et al. (1985)), based on measurements at discrete wavelengths. The
present study confirms the blackbody form of the radiation, but it is difficult
to make quantitative comparisons due to different initial pressures and shock
wave strengths. Compared to the cited authors, we have used initial pressures
lower by several orders of magnitude.

Although no quantitative results could be found from the line emissions,
they do give valuable information. The upper states from where the transitions
originate, are energy levels ranging from 13.1 eV to 14.7 eV. In comparison,
the ionization level of argon is 15.8 eV. The transitions from excited states
appear after roughly 1 µs and are still detectable after the continuum radiation
disappears.
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Strong cylindrical and spherical shock implosion in a monatomic gas is
considered. A simple solution is obtained by Whitham’s geometrical shock
dynamics approach modified to account for the real gas effects. The real gas
effects are introduced by jump relations over the shock and include several lev-
els of ionization, Coulomb interaction as well as internal energy of the excited
electrons. It is shown that ionization has a major effect on temperature and
density behind the converging shock as well as on the shock acceleration. The
temperature and acceleration being substantially reduced and density substan-
tially increased as compared to the ideal non-ionizing case. The ionization
effect on the pressure behind the converging shock is less pronounced. It is also
shown that for the considered test case of initial Mach number M0 = 8 the gas
becomes completely ionized behind the spherical shock at approximately 1% of
the initial radius from the focal point and its speed being decreased by a factor
of 1.8 as compared to the ideal case.

1. Introduction

Despite decades of extensive research shock focusing remains an exciting phe-
nomenon still able to provide surprising results. One of the main reasons for
continuing interest in shock focusing is its ability to create extremely high tem-
peratures and pressures at the implosion focus. The main goal of the present
study is to investigate the influence of the real gas effects such as ionization on
the flow parameters behind the converging shock. The solution is based on the
geometrical shock dynamics approach following Whitham as well as on jump
relations including real gas effects.

An analytical solution to cylindrically and spherically converging shocks
was obtained by Guderley Guderley (1942), whose self-similar solution was
based upon the assumption of an already strong initial shock. He found that
the radius of a converging shock wave approaching the center from a large
distance, was related to the time to the implosion instant raised to a small
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power. The strength of the shock wave therefore approaches infinity as it
converges. Guderley’s solution was extended to initially infinitesimally weak
shock waves by Ponchaut et al. Ponchaut et al. (2006). Another solution
to the problem was found independently by Chester Chester (1954), Chisnell
Chisnell (1955) and Whitham Whitham (1973), using the approximate theory
of shock dynamics which agrees well with the Guderley solution. The different
approaches, as well as a numerical Euler solution, were recently compared by
Hornung et al. Hornung et al. (2008) and all found to agree well. Good
agreement was also found experimentally by Takayama, Kleine and Grönig
Takayama et al. (1987).

The shock propagation has been well predicted by the power-law solution
and Whitham’s approach. However as the converging shock strength increases
the real gas effects become significant. These effects need to be accounted for in
order to correctly describe the post shock conditions and acquire information
on the attainable pressures and temperatures by shock focusing.

Both previous solutions use the non-reactive Rankine-Hugoniot equations,
which will overestimate the attainable temperature as the shock strength in-
creases. In a real monatomic gas, energy is transferred into internal energy,
electronic excitation, ionization and, for higher temperatures, radiation.

The aim of the present study is to investigate the real gas effects as the
shock wave implodes on the focus. The present study is initiated following re-
cent experimental work on converging cylindrical imploding shocks in argon at
our shock tube facility at KTH, Kjellander et al. (2010). Whitham’s approach
of shock dynamics will be adopted, modifying the jump equations accordingly,
to account for ionizational and excitational equilibrium behind the shock. For
the present conditions, radiation is deemed to play a minor part and is ne-
glected.

As the strength of the converging shock increases the non-reactive Rankine-
Hugoniot shock relations will result in non-equilibrium gas conditions in the so-
called frozen zone immediately behind the converging shock front. Relaxation
to equilibrium conditions will then take place in a relaxation zone behind the
shock. The structure of this zone as well as the balance equations governing
the relaxation process in monatomic gases have been investigated in detail by
a large number of researchers during the past decades, for example Petschek &
Byron (1957), Gross (1965), Wong & Bershader (1966), Biberman et al. (1971),
Kaniel et al. (1986).

The goal of the present work is not to investigate the details of the relax-
ation process but to obtain the flow variables behind this zone where the gas
is brought to local thermodynamical equilibrium (LTE). Within the relaxation
zone the electron gas and the gas consisting of heavy particles have different
temperatures, but as equilibrium is reached they attain a single temperature.
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The approximation of LTE is used for the cases when the thickness of the re-
laxation zone is small compared to the radius of the converging shock. The
thickness of the relaxation zone, as well as the relaxation time, depend on the
shock strength and initial conditions. Approximate relaxation times and zone
thickness in pure argon may be found in Zel’dovich & Raizer (2002). For ex-
ample for M = 10 and initial pressure of p1 = 10 mm Hg the thickness of
the relaxation zone is about 6 cm, whereas it decreases with stronger shocks
and higher initial pressures. For M = 13 and initial pressure of p1 = 10 mm
Hg the zone thickness is reduced to 0.2 cm. The present study was initiated
in connection with our experimental work on cylindrical shock focusing in ar-
gon, Kjellander et al. (2010). In the experimental case the initial pressure was
p1 = 75 mm Hg, that is approximately 7 times higher than the initial pressure
in Zel’dovich & Raizer (2002). The thickness of the relaxation zone is inversely
proportional to the gas density that is the zone thickness cited above is reduced
by a factor of 7 in our experimental case giving a thickness of approximately
1 cm at M = 10. In our experiments with the initial values of r0 = 7 cm and
M0 = 3.7 the Mach number of 10 was obtained in the last stages of the focusing
process when the radius of the converging cylindrical shock was about 0.5 cm.
The relaxation zone can thus not be considered as thin with respect to the shock
curvature in our experiments and a full analysis of the zone structure would be
required. The present theory is therefore applied to initially stronger shocks
with larger initial radii. With the increasing shock strength the thickness of
the relaxation zone is decreased exponentially and for M = 30 its extension is
comparable with the shock thickness, see Biberman et al. (1971). The values of
the initial Mach number, pressure and convergence radius that are appropriate
for the present thin relaxation zone approximation are discussed in section II
in connection with the computed example.

The paper is organized as follows. General assumptions and notations as
well as shock dynamics and the set of jump equations, which together are used
to calculate the shock propagation and temperature evolution are formulated in
section II and III. A short summary is in section IV. The resulting calculations
are presented in section V, with details on which effects were accounted for and
which were not. Two cases are considered - cylindrical and spherical converg-
ing shocks to highlight the differences between the 2D and 3D convergence.
The influence of the real gas effects on temperature, density and pressure are
discussed by comparison to the ideal non-reacting case.

2. Shock dynamics

A cylindrical or spherical shock wave of an initial Mach number M0 and radius
r0 propagates towards the center of the circle or sphere in a monatomic gas.
The shock position has a radius r with an area A(r). The Mach number M
and the thermodynamic equilibrium conditions behind the shock are to be
determined for all shock positions.
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The problem is treated with the geometric shock dynamics as presented by
Whitham, taking in consideration changes introduced by a variable area, but
neglects nonlinear interactions with the flow behind the shock. The method
uses the simplification that the shock wave propagates along rays being C+

characteristics. This approximation has been shown to provide accurate results
Whitham (1973), Apazidis et al. (2002), Hornung et al. (2008) especially for
continuously accelerating shocks. Consider a shock propagating down a tube
with a cross section A(r). The problem formulation can be approximated as
quasi one-dimensional if the area change is not too rapid. The characteristic
equation along the C+ characteristic states that (Whitham 1973)

dp

dr
+ ρa

du

dr
+

ρa2u

u + a

1

A

dA

dr
= 0 (1)

where p is the pressure, u the velocity and a the speed of sound. With cylin-
drical and spherical geometries, A(r) ∝ rν−1, where ν = 2 or ν = 3 for the
respective case. Using the Rankine-Hugoniot relations for a gas with constant
composition this can be reformulated into an area-Mach-number relation:

Mλ(M)

M2
− 1

dM

dr
= −

1

A

dA

dr
= −

ν − 1

r
(2)

where λ and µ are defined as:

λ(M) =

(

1 +
2

γ + 1

1 − µ2

µ

) (

1 + 2µ +
1

M2

)

(3)

µ2 =
(γ − 1)M2 + 2

2γM2
− (γ − 1)

(4)

This approach has shown good agreement with experimental shock front propa-
gation data and the exact solution provided by Guderley’s approach. However,
as the shock approaches the center, the perfect gas assumption predicts the
temperature and pressure to increase exponentially towards infinity and the
shock relations leading to the simplifications in Eqs. (2) - (4) are no longer
valid. In order to allow for real gas effects a solution is instead sought by inte-
grating Eq. (1) directly. The gas conditions p, ρ, u and a are still found from
the shock relations, but with allowance for said effects they need to be calcu-
lated using an iterative method described below. Differentiating and inserting
the expression for the surface area A(r) = 2π(ν − 1)rν−1 yields:

dp + ρadu = −
ρa2u

u + a

(ν − 1)

r
dr (5)

Integrating between states 1 and 2, corresponding to two Mach numbers M1

and M2 we get
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∫ 2

1

u + a

ρa2u
dp +

∫ 2

1

u + a

au
du = −(ν − 1) ln

r2

r1

(6)

Using equivalent notation to Hornung et al. (2008), we note that the radius of
the shock wave at two consecutive time instants can be expresssed as

r2 = f1−2r1 (7)

f1−2 = exp

(

−
1

(ν − 1)

[
∫ 2

1

u + a

ρa2u
dp +

∫ 2

1

u + a

au
du

])

(8)

Starting from an initial Mach number M1 and radius r1, the shock front prop-
agation can now be calculated. The change in radius as the shock wave accel-
erates to a new Mach number M2 = M1 + dM is acquired by calculating the
post-shock conditions for M1 and M2, inserting into Eq. (7) and evaluating
the integral numerically.

The front of the shock is a region with a thickness of a few mean free
paths in which a frozen condition is reached, where the energy is transferred to
translational temperature of the neutral gas and no atoms have been ionized.
Behind this region is a relaxation zone in which the gas is ionized and reaches
thermodynamical equilibrium. We can motivate the use of the equilibrium
conditions in the calculation of the shock propagation above if the extent of
this zone is small compared to the curvature of the shock. The calculation of
the equilibrium values is presented in the next section.

3. Shock jump relations

Shock jump relations accounting for various combinations of dissociation, radi-
ation or ionization have been studied extensively, see for example Resler et al.
(1952), Kozlov & Stupitskii (1968), Michaut et al. (2004) or Nieuwenhuijzen
et al. (1992). We limit the present study to a monatomic gas model taking
in consideration ionization, electronic excitation and departures from a perfect
gas due to Coulomb interactions. The gas is assumed to be in local thermody-
namic equilibrium (LTE). Radiative contributions to the energy and pressure
are presumed negligible. Ionization of the species A is considered up to #:th
level. The upper bound for # is the atomic number of the species. The volumet-
ric particle density of ions in stage i is denoted ni and the total particle density
of heavy particles is denoted nH . The fraction of heavy particles in ionization
stage i (with i=0 referring to the neutral state) is denoted αi = ni/nH . Hence

!
∑

i=0

ni = nH or
!

∑

i=0

αi = 1 (9)
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Due to charge conservation, the electron number density ne and mean level of
ionization αe, or equivalently, the average number of free electrons per heavy
particle, can be expressed as

αe =
!

∑

i=1

iαi (10)

ne =
!

∑

i=1

ini = nH

!
∑

i=1

iαi = nHαe (11)

Writing the common equations describing a one-dimensional normal shock in
a frame of reference following the shock front, the conservation of mass, mo-
mentum and energy are

ρ1u1 = ρ2u2 (12)

ρ1u
2
1 + p1 = ρ2u

2
2 + p2 (13)

h1 +
u2

1

2
= h2 +

u2
2

2
(14)

where ρ denotes the volumetric mass density, u the velocity relative to the
shock front and p the total pressure. With the ionic contribution the enthalpy
per mass h can be written Zel’dovich & Raizer (2002)

h =
5

2
(1 + αe)RT + R

!
∑

i=1

αi

i
∑

j=1

Ij

k

+ RT 2

!
∑

i=0

αi
∂ lnQel

i

∂T
+ δhC (15)

where R is the specific gas constant and k is the Boltzmann constant. Since
LTE is assumed, all species have the same temperature: T is the absolute
temperature of electrons and heavy particles alike. The second term is the
potential energy of ions, where Ij is the j:th ionization potential. For argon,
I1 ≈ 15.8 eV, I2 ≈ 27.6 eV, and so on NIST (2008). The sum indicates that to
ionize an atom to the i:th level, the energy I1 +I2+ ...+Ii is required to remove
each successive electron. The third term in Eq. (15) accounts for energy of
electronically excited states, including in neutral atoms, and is determined by
statistical methods from the electronic partition functions Qel. The last term,
δhC , is due to contributions from the Coulomb interactions.

The equation of state with the Coulomb forces making a contribution δpC

takes the form

p = ρ(1 + αe)RT + δpC (16)
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The LTE distribution of species is found from the law of mass action, here
rewritten in a more convenient form as a set of Saha equations using the particle
fractions,

αi+1

αi
=

1 + αe

αe

(

2πme

h2

)3/2 (kT )5/2

p − δpC

2Qel
i+1

Qel
i

× exp

(

−
Ii+1 − δIi+1

kT

)

(17)

where me is the mass of an electron, h is Planck’s constant and Qel
i is the

electronic partition function of species in ionization stage i.

The derivation of the Saha equations can be found in e.g. Zel’dovich &
Raizer (2002) or Cambel & Jennings (1967). We solve them for αe with known
T and p using the iterative method presented by Trayner & Glowacki (1995).
The values of each αi can then be found from the requirements on charge
neutrality and nucleus conservation.

The Saha equation as well as the excitational energy term involve the elec-
tronic partition functions and they were computed in the following manner.
The electronic partition function consists of a summation over all possible en-
ergy levels the electrons may populate:

Qelec =
∞
∑

i=1

gie
−ei/kT (18)

This is an infinite sum over the energy levels ei with corresponding degeneracies
gi: if a cutoff is not made, the sum diverges. Various methods of cut-off may
be found in the literature, including summing over an arbitrary number of
levels. We have employed one of the most common methods: cut-off at the
reduced potential due to Coulombic screening according to the Debye-Hückel
model. Coulomb interactions between the charged particles reduces the energy
required to remove an electron from its orbit around a nucleus see Zel’dovich &
Raizer (2002), Gündel et al. (1991), Griem (1963). This gives a natural cut-off
point at this effective potential, as electrons cannot occupy bound states above
this limit.

When this model is used, consistency requires that the Coulomb forces are
considered in the same manner when evaluating the thermodynamic variables
see Mihalas & Mihalas (1999), Zaghloul (2003). The Debye screening radius
expressed in the variables used in section II:

rD = [ε0kT/(e2nH(αe +
!

∑

i=1

i2αi))]
1/2 (19)
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where ε0 is the vacuum permittivity, e the electron charge and T the temper-
ature in Kelvin. The reduction in ionization potential and the enthalpy and
pressure contributions Griem (1962) then become:

δIi+1 =
(i + 1)e2

4πε0rD
(20)

δhC = −
kT

ρ6πr3
D

(21)

δpC = −
kT

24πr3
D

(22)

The summation of Eq. (18) is taken for all states lying below the reduced
potential, that is, for which ei < Ii − δIi. Practically this means an extra
step in the calculation of the equilibrium distribution: the number of levels to
include in calculation of each ionic partition function is guessed, and Eq. (17)
is solved as before. The resulting distribution is used to calculate the potential
reduction according to Eqs. (19) and (20). From this the number of levels
to include can be determined as described earlier in this paragraph. If this
differs from the guessed values, the new ones are used for another iteration.
For comparison calculations have also been made disregarding Coulomb forces,
in which case the summation of the partition function is made over all known
states. Data for the electronic levels have been taken from Bond (1954) and
NIST (2008).

The shock relations can be calculated by solving Eqs. (12) - (17). The
system is closed with respect to the unknowns, but an iterative method is nec-
essary. The pre-shock conditions, ρ1, p1, u1, h1 are known. A shock adiabatic
is presented in Fig. 1(a) for the initial conditions p1 = 0.1 atm and T1 = 300
K. The adiabatic starts deviating from the non-reacting asymptote ρ/ρ1 = 4
around M = 10. The local maximum occurs slightly before the maximum of
the first ionization stage, which occurs at M35 as seen in Fig. 1(b).

4. Summary of the solution procedure

The shock propagation and post-shock conditions of the converging shock waves
are calculated in the following manner: an initial Mach number and radius are
predetermined. Then, for small increments in Mach number Mi+1 = Mi +dM ,
corresponding new radii are acquired from Eq. (7) by finding the post-shock
conditions behind a wave of strength Mi+1 as described in section III. The
integration continues until either a final Mach number or radius of choice is
reached. Calculations were performed with successively smaller dM until no
noticeable change was seen.
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Figure 1: Shock adiabatic (a) and post-shock equilibrium ionization (b) for
a shock passing through argon at p1 = 0.1 atm and T1 = 300 K, allowing
for ionization and excitation. Dashed-dotted lines show the same excluding
excitation. Four stages of ionization were accounted for.

The equilibrium speed of sound, necessary for the integration of Eq. (7),
may be expressed as in Eq. (23) below, whose derivatives are evaluated numer-
ically.

a2
e =

(

∂p

∂ρ

)
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5. Results

This study was initiated following the experimental work by the present au-
thors on cylindrical shock convergence, Kjellander et al. (2010). Although the
solutions of the specified problem for different initial radii only concerns a scal-
ing of the presented solution, the validity of the method does depend on the
radius. Behind a strong shock there is a non-equilibrium zone where the ioniza-
tion occurs. This zone must be small in comparison to the change of curvature
dr in the integration of Eq. (7)for the method to be motivated. Although
the current work started in connection with the experiments at our shock tube
facility the present theory cannot be applied to this case. In the experimental
case with M0 = 3.7 and r0 = 70 mm the relaxation time is substantially longer
than the time dt the shock needs to propagate a distance dr. The flow is es-
sentially frozen and ionization equilibrium is not reached until after the shock
has focused, reflected and diverged. It is obvious that the present approach is
not useful for this case, however as the Mach number increases the relaxation
zone gets considerably smaller. At M ≈ 30, see Biberman et al. (1971), its
width is comparable to the shock thickness and the present approximation of
immediate equilibrium may be applied. Even at lower Mach numbers when
the thickness of the relaxation zone is of order of few millimeters the present
approximation may be justified for shocks with sufficiently large, compared to
the zone thickness, radius.

As an example we have considered the convergence processes of a cylindri-
cal and a spherical shock with specific initial conditions. Initial gas and shock
conditions were the same in both cases: the gas was argon with initial temper-
ature T1 = 300 K and pressure p1 = 75 mm Hg or p1 = 0.1 atm. The initial
Mach number was chosen to M0 = 8. The initial shock conditions were thus
chosen to fulfill the thin relaxation zone approximation, that is the radius of
the converging shock was assumed to be large compared to the thickness of the
relaxation zone. The values of the initial radius for the present conditions are
discussed in greater detail below. The calculations were performed including
and excluding excitation. Ions up to and including the fourth stage were con-
sidered, as it became evident that higher stages were essentially unpopulated
for the considered Mach numbers and initial conditions.

The shock relations for the stated initial conditions are shown in Figs. 2
- 3 while the Mach number and temperature evolution for the cylindrical and
spherical converging shocks are presented in Fig. 4.

Figures 2 and 3 show the equilibrium conditions behind a normal shock
wave in argon with initial temperature T1=300 K and pressure p1=0.1 atm.
The dashed lines are the Rankine-Hugoniot relations for perfect gas without
ionization, depending only on the Mach number. The full lines show relations
including ionization and excitation while the dashed-dotted lines omit excita-
tion. As seen, the ionization has a strongly limiting effect on the temperature as



Shock dynamics of strong imploding cyl. and sph. shock waves 125

energy is transferred from translational to potential energy. Whereas the com-
pression approaches an asymptotic value (ρ2/ρ1 = 4 for γ = 5/3) for constant
composition gas this is not the case for the ionizing shock. The compression is
dependent on how large the potential ionization and excitation energies are rel-
ative to the translational energy. The creation of a local maximum corresponds
to the increasing number of particles as the first ionization stage approaches its
maximum. The free electrons lead to an increased translational energy relative
to the potential energy, resulting in a local decrease in compression Zel’dovich
& Raizer (2002) (cited earlier). The compression resumes to increase as the sec-
ond stage ionization ramps up.. As seen from Fig. 3(a) the ionization does not
have the same striking effect on pressure as it has on the temperature behind
the shock as compared to perfect gas conditions without ionization. We can
also see that the inclusion of the excitational term in the energy equation has a
minor effect on the flow parameters. It has most influence on the compression
ratio, which is increased due to the additional energy transferred to internal
modes. Fig. 3(b) shows the first ionization degrees for the the considered case
as well as the remaining degree of neutral atoms. The first ionized stage has its
maximum at M ≈ 35, while most neutral atoms have been ionized at around
M ≈ 50.

Propagation of the converging ideal and ionizing cylindrical and spherical
shocks is compared in Figs. 4(a) and 4(b). Since the solution of Eq. (7)
boils down to coupling Mach number to a radius, the cylindrical and spherical
solutions are basically identical and only a coordinate transformation differs
the two cases. However when the Mach number and temperature behind the
shock are shown as functions of the convergence radius the difference between
the cylindrical and spherical convergence is fully illuminated with the latter
case producing substantially higher Mach number values and temperatures for
the same value of the convergence radius. The shock fronts in gas including
ionization and excitation are seen to accelerate substantially slower as compared
to the ideal solution. Fig. 4(a) shows that the Mach number is reduced by a
factor of 1.3 for the cylindrical shock and by a factor of 1.8 for the spherical
shock at r/r0 = 0.01 or 1% of the initial radius from the focal point as compared
to the ideal case in the present example. The slowdown of the shock due to
ionization is then further increased as the shock converges on the focus. As it is
also seen from Fig. 4(b) the decrease in temperature behind both cylindrical and
spherical shocks as compared to the ideal case is even more drastic. Fig. 2(b)
together with Fig. 3(b) shows that the deviation from the ideal case starts long
before the gas is completely ionized. According to Fig. 3(b) a shock with a
10 % ionization fraction, α1 = 0.1 has a Mach number, M ≈ 18 at the initial
conditions considered here. At this value of the Mach number the temperature
behind the shock is reduced by a factor of 2 as compared to the ideal case,
according to Fig. 2(b). For stronger shocks the temperature reduction becomes
significantly larger.
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excitation. The dashed lines show the ideal relations for comparison.

We now address the question of the proper initial radius for the thin relax-
ation zone approximation to be valid. As seen from Fig. 4(b) the Mach number
behind the cylindrical shock is M ≈ 12 whereas it is M ≈ 15 behind the spher-
ical shock at r/r0 = 0.1. For M ≈ 13 and initial pressure of p1 = 0.013 atm
the relaxation zone thickness in argon is estimated to approximately 0.2 cm,
see Zel’dovich & Raizer (2002). In our case the initial pressure is p1 = 0.1 atm
or approximately 7 times higher which reduces the zone thickness to 0.03 cm.
Suppose that the shock radius at this position is 100 times greater than the
zone thickness, that is r = 3 cm giving an initial shock radius of approximately
r0 = 30 cm for the present example with the initial Mach number M0 = 8.
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Finally, Fig. 5 shows the equilibrium gas composition behind the converging
spherical shock as function of the convergence radius.

6. Conclusions

The implosion of spherical and cylindrical shock waves were studied theoret-
ically using shock dynamics with allowance for real gas effects. This specific
investigation was limited to monatomic gases, but Eq.(8) is general and effects
such as dissociation can be included by modifying the jump relations accord-
ingly. Here, ionization, excitation and Coulomb interactions in the resulting
electron-ion gas were considered. The major effect on resulting temperature,
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Mach number and compression during shock focusing due to ionization was
shown and calculated for the specific case of initial M0 = 8 and p1 = 0.1 bar.
The inclusion of ionization has a strongly limiting effect on the temperature,
as kinetic energy is transferred to other energy modes. Acceleration of the
converging shock front is also significantly decreased as compared to the ideal
non-ionizing case. Ionization has also a major effect on the compression ratio
which is substantially increased as compared to the non-reacting case. The ion-
ization does not have the same striking effect on the pressure. Fig. 3(b) shows
that for the considered test case, the first ionization stage reaches its maximum
M ≈ 35. From Fig. 4(a), this corresponds to 0.001% of the initial radius for
the cylindrical case and 1% for the spherical case. As mentioned previously the
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present study investigates the overall effect of ionization behind the converging
cylindrical and spherical shocks and does not consider the detailed structure
of the relaxation zone which is assumed to be thin as compared to the shock
radius.
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The onset of Mach reflection or regular reflection at the vertices of a converging
polygonal shock wave is investigated experimentally in a horizontal annular
shock tube. The converging shock waves are visualized by schlieren optics.
Two different types of polygonal shock convergence patterns are observed. We
compare the behavior during the focusing process for triangular and square-
shaped shocks. It is shown that once a triangular shaped shock is formed, the
corners in the converging shock will undergo regular reflection and consequently
the shape will remain unaltered during the focusing process. A square shaped
shock suffers Mach reflections at the corners and hence a reconfiguring process
takes place; the converging shock wave alternates between a square and an
octagon formation during the focusing process.

1. Introduction

Shock wave focusing has been studied in several research communities since
the beginning of the 1940’s when a similarity solution was presented for a con-
verging cylindrical shock wave in Guderley (1942). Analytical, numerical and
experimental investigations have been performed since then, for example see
Schwendeman & Whitham (1987) and Takayama et al. (1984). It is well known
that a converging cylindrical shock wave is unstable. It is unstable in the sense
that it looses its original shape if it is perturbed by disturbances in the flow.
The disturbed shape tends to produce a polygonal structure with plane sides
and sharp corners. The polygonal shape will lack symmetry if the perturba-
tions in the flow are not symmetric or strong enough. It is, however, possible to
generate converging shocks with polygonal symmetric shapes that are stable,
i.e. shapes that evolve during the focusing process in a predictable way. Such
stable shapes were generated analytically and numerically in Schwendeman &
Whitham (1987), numerically in Apazidis & Lesser (1996), experimentally and
numerically in Apazidis et al. (2002), Eliasson et al. (2006) and Eliasson et al.
(2007). Depending on the type of reflection that occurs at the vertices of the
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polygonal shapes, some of these shapes will transform continuously during the
focusing process, changing from a n-corner shape into a 2n-corner shape and
then back again. The new plane segments emerging from corners as a result
of Mach reflection have higher Mach number than the adjacent sides. They
travel faster and absorb the adjacent sides. When such two segments finally
meet, they build a new corner. The new polygon has the same number of sides
at the end of each cycle but is rotated with respect to the old polygon so that
the corners are opposite to the midpoints of the old sides. This reorientation
process is due to the nonlinear interaction between the local velocity and the
shape of the shock front. For example, a square shaped shock wave will trans-
form into an octagon and then back to a square again, with the second square
oriented opposite to the first square. The above reconfiguration process which
stems from the Mach reflection at the corners constitutes, in fact, the basis for
the Mach number increase on the shock front; each time the reconfiguration
cycle is completed the Mach number over the shock front is increased stepwise,
see Schwendeman & Whitham (1987) and Apazidis & Lesser (1996). Some
elements of this 2D process, that is the tendency to form planar pieces, is also
visible for converging spherical shocks, see Schwendeman (2002).

There exists however another mechanism of symmetric polygonal shock fo-
cusing in which the Mach number remains bounded. A self similar solution for
the focusing process of 2D equilateral triangular shock waves was investigated
in Betelu & Aronson (2001). This solution shows that the corners of the trian-
gular shock wave undergo regular reflections and preserve the triangular shape
during the whole focusing process for certain values of Mach numbers and ini-
tial conditions. The energy density is bounded for this solution which means
that the Mach number will approach a constant value at the focus. Triangular
shocks are thus undergoing regular reflection at the vertices. This is in contrast
to symmetric polygonal shocks with number of sides greater than three, that
suffer Mach reflection at the vertices, where the Mach number increases as the
shock approaches the focus. If the stability criteria for the triangular shock
wave are violated, then a reconfiguring process takes place in which the corners
develop into plane sides and the plane sides into corners as mentioned earlier.

There are several criteria for transition from a regular reflection (RR) to a
Mach reflection (MR). Three of these were proposed in von Neumann (1943)
and since then many more have been suggested, see e.g. Ben-Dor (1992, 2006).
The length scale concept was introduced in Hornung et al. (1979) and is the
criterion that agrees best with pseudo steady flow in experimental shock tube
facilities. The ongoing research on transition conditions for RR↔MR is mo-
tivated by difficulties in matching theoretical results with experimental. One
problem is the persistence of regular reflections well past the theoretical max-
imum limit and many publications address this problem, see e.g. Barbosa &
Skews (2002).
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Following the ideas in Betelu & Aronson (2001), we investigate two differ-
ent types of reflection, RR or MR, that can occur at the vertices of a converging
polygonal shock wave. The polygonal shock waves are generated in the same
shock tube and with the same method as in Eliasson et al. (2007). In the present
study we generate triangular and square shaped shocks. Their focusing behav-
ior is compared and it is found that while the triangular shock preserves its
form and orientation the square shock transforms to an octagon and then back
to a square shape which is rotated 45◦ with respect to the initial configuration.
According to the previous numerical work, see e.g. Schwendeman & Whitham
(1987) and Apazidis & Lesser (1996), this reconfiguration process continues
until the shock wave reaches the focusing center.

We start by describing the experimental setup and the method used to
create the polygonal shock waves, followed by the experimental results. Finally
we conclude and summarize the results.

2. Experimental setup

The experimental setup consists of a 2.4 m long horizontal annular shock tube
where the shock wave is generated and focused. A laser (an air-cooled Nd:Yag,
NewWave Orion) is used as a light source for the visualization equipment that
consists of a schlieren system with a CCD camera, (PCO SensiCam, 12 bits,
1280 x 1024 pixels, pixel size: 6.7 x 6.7 µm). See Fig. 1 for a schematic overview
of the experimental setup. The shock tube consists of two main parts, a high
pressure chamber and a low pressure channel. The two parts are separated
by a 0.5 mm thick aluminum membrane. As the high pressure chamber fills
up with gas, the membrane will break at a given pressure difference. After the
membrane breaks, a plane shock wave is formed and starts to travel downstream
in the shock tube through the low pressure channel. The low pressure channel
is divided into three sections; an inlet section where the plane shock wave is
formed, a transformation section where the plane shock wave becomes annular
and the test section which is located at the rear end of the shock tube where
the shock wave is focused and reflected. The annular part of the shock tube is
composed of an inner body mounted coaxially inside the wider diameter outer
tube. The inner body is represented by the dotted line at the low pressure
channel shown in Fig. 1. The inner body consists of a cone followed by a
cylindrical tube and is suspended by two sets of four supports. The two sets
are placed 30.75 cm apart and the supports are shaped as wing profiles to
minimize the disturbances on the flow. The second set of supports is rotated
45◦ relative to the first set. The cross-section area of the shock tube is held
constant through the inlet section and into the transformation section and is
then reduced by 50% in the test section.

The shock wave enters the test section radially through a sharp 90◦ bend
and then the focusing and reflection process takes place. The test section has
glass windows to enable visualization of the focusing and reflection process.
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1

2 3 4 5

6

7
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9 10 11

Figure 1: Schematic overview of the experimental setup: 1. shock tube, 2.
high pressure chamber, 3. low pressure channel: inlet section, 4. low pressure
channel: transformation section, 5. low pressure channel: test section, 6. shock
speed sensors, 7. laser, 8. schlieren system, 9. CCD camera, 10. lens, 11.
schlieren edge.

The outer boundary of the test section is circular with a radius of 80 mm. The
width of the air gap in the test section, between the two facing glass windows,
is 5 mm.

The present experimental study uses air as gas in both the high and low
pressure part of the tube. The pressure in the low pressure channel is 13.3 kPa
and in the high pressure chamber about 1500 kPa. This pressure difference
produces strong shocks at Mach number Ms = 2.3, measured in the annular
part of the shock tube before the shock wave enters the test section. Further
details of the experimental setup can be found in Eliasson et al. (2006).

2.1. Method to create polygonally shaped converging shock waves

A polygonally shaped converging shock wave is created by disturbing the shape
of the initially cylindrical converging shock wave. The disturbances are pro-
duced by small metal cylinders placed inside the test section. Depending on
the size and the positions of the cylindrical obstacles it is possible to tailor
the shape of the cylindrical converging shock wave into a desirable polygonal
shape, as shown in Eliasson et al. (2007). Two different diameters of cylinders
are used in this experiment, 10 mm and 15 mm, see Fig. 2 (a). They are
placed at two radial positions, r1 = 46.5 mm and r2 =61.5 mm. Two different
geometrical setups are used, an equilateral triangular and a square pattern, see
Figures 2 (b) and (c).
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(a) (b) (c)

Figure 2: (a) Two sizes of cylinders were used, 10 and 15 mm in diameter. (b)
The equilateral triangular pattern and in (c) the square pattern of cylindrical
obstacles.

3. Experimental results

Two different geometrical shapes of shock waves are generated; triangular and
square shaped shocks. To visualize the focusing process, the schlieren system
together with the CCD camera is used to take single exposures at various time
delays for each run in the shock tube. The reason for taking only one exposure
during each run in the shock tube is due to limitations in the light source
equipment and the CCD camera. The time delay unit, a Stanford Research
System DG535, enables schlieren exposures of the converging and reflecting
shock at different time instants inside the test section. The size of the visualized
area is 75 mm in diameter. The repeatability is good and the error in the shock
speed, Us, between consequent runs in the shock tube is about 0.5%. The
results from the various setups are presented and discussed in the following
two sections.

3.1. Diffraction of a cylindrical shock wave from three cylinders

Three cylinders with diameters of 15 mm are placed inside the test section
in an equilateral triangular pattern, see Fig. 2 (b), at a radial position of
r1 = 46.5 mm. Schlieren photographs showing the convergence process of
the diffracted shock wave are shown in Fig. 3. Each photograph is from an
individual run in the shock tube and Ms is 2.3. In the beginning, the shock wave
has a hexagonal shape, see Figs. 3 (a) – (c), consisting of the disturbed plane
parts and undisturbed convex parts. The plane parts are Mach shocks, formed
after the shock is diffracted over the cylindrical obstacle. The undisturbed parts
will decrease and finally disappear as the focusing process continues; hence the
shape of the shock wave becomes triangular, see Fig. 3 (d). In this frame the
sides of the triangle are not planar but slightly curved.
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(a) t = 0 µs (b) t = 5 µs (c) t = 10 µs

(d) t = 13 µs (e) t = 13 µs (f) t = 14 µs

(g) t = 14 µs (h) t = 15 µs (i) t = 15 µs

Figure 3: Schlieren photographs at different time instants. Each photograph
is from an individual run in the shock tube. The cylindrical shock wave is
diffracted over three cylinders with diameters of 15 mm placed at r = 46.5 mm
from the convergence center. The grey circles represent the cylinders.

As the shock wave approaches the center of convergence, the sides eventu-
ally become planar, see Figs. (d) – (f ). Due to the angle between the reflected
sides, the incident angle, and the shock Mach number, a regular reflection oc-
curs at the corners of the triangle and the triangular shape remains unaltered
until it has focused completely, see Figs. 3 (g) – (i). There are three pairs
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of photographs, (d) and (e), (f ) and (g) and (h) and (i), that are taken at
the same time instant but are slightly different in position. This is due to the
fact that each shock is from an individual run in the shock tube and that will
produce small variations in the conditions, thus showing the same time instants
but slightly different positions. This is more pronounced closer to the center
of focusing since the shock waves move faster there.

In the next experimental setup, the three cylinders are moved to the second
radial position, r2 = 61.5 mm, outside the frame of the visualized area, and
then the above described experiment is repeated. Schlieren images are shown in
Fig. 4. The converging shock wave behavior is similar to the previous case. In
addition, two photographs of the reflected shock wave are shown in Figs. 4 (h)
and (i). In (h), the outgoing shock wave has a somewhat disturbed triangular
shape. Later, the reflected shock wave becomes influenced by the still incoming
flow, and the shape changes into a shape that resembles the shape of the in-
going shock wave in an early stage, as the one shown in (a). The shock shape
in (i) is less hexagonal and more cylindrical than the shock wave in (a). In
Eliasson et al. (2006), the reflected shock wave first had a cylindrical shape
that later became influenced by the incoming flow and changed into a shape
that was similar to the shape of the converging shock wave in an early stage.

In the third experiment, the 15-mm diameter cylinders in the previously
mentioned setup are replaced by 10-mm diameter cylinders. Schlieren pho-
tographs can be seen in Fig. 5. Compared to the previous case, it is seen that
the Mach stem is more pronounced in an earlier stage for this setup. The over-
all shape of the shock wave is less disturbed than in the previous case, it is
more cylindrical than hexagonal. Still, as the shock wave converges it attains
a triangular shape and when that shape is reached it does not change, rather
it decreases until it has reached the center of focus.
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(a) t = 0 µs (b) t = 4 µs (c) t = 7 µs

(d) t = 17 µs (e) t = 22 µs (f) t = 31 µs

(g) t = 32 µs (h) t = 43 µs (i) t = 83 µs

Figure 4: Schlieren photographs at different time instants. Each photograph
is from an individual run in the shock tube. The cylindrical shock wave is
diffracted over three cylinders with diameters of 15 mm placed at r = 61.5 mm
from the convergence center.

3.2. Diffraction of a cylindrical shock wave from four cylinders

For a square shaped shock in air, the angle of incidence is π/4 and according
to the detachment criterion, see Betelu & Aronson (2001), a regular reflection
will be possible only for Ms ≤ 1.24. An increase in Mach number will always
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(a) t = 0 µs (b) t = 6 µs

(c) t = 12 µs (d) t = 21 µs

(e) t = 22 µs

Figure 5: Schlieren photographs at different time instants. Each photograph
is from an individual run in the shock tube. The cylindrical shock wave is
diffracted over three cylinders with diameters of 10 mm placed at r = 61.5 mm
from the convergence center.
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end with Mach reflection at the corners of the polygonal shock wave and hence
the previously mentioned reconfiguring process will take place.

Four cylinders are positioned as the corners in a square, at a radial position
of r2 = 61.5 mm, and then the above mentioned experiments are repeated. The
Mach number used in the present study, Ms = 2.3, is higher than the limiting
value for a regular reflection, resulting in a Mach reflection at the corners of the
square shaped shock wave during the focusing process. Earlier results (Eliasson
et al. (2007)), also using Mach numbers higher than the limiting value for a
regular reflection, show that when a converging shock wave obtains a square-like
shape it will reconfigure between a square and an octagon during the focusing
process. In Fig. 6, schlieren photographs are shown for the setup with 15
mm diameter cylinders. In Fig. 6 (a), the shock wave has just reached the
visualization area and the undisturbed parts still remain cylindrical. Thereafter
the shock wave approaches a square-like shape, shown in Figs. 6 (b) – (c). The
sides of the square are divided into several shorter pieces, that together produce
an almost planar side, see (c). The individual pieces constructing one side
originate from the undisturbed part of the shock wave in between two Mach
stems emanating from the diffraction over the cylindrical obstacle. As the
convergence process continues, the sides of the square blend into one slightly
curved smooth part. Later, the slightly curved sides become planar and Mach
stems are formed at the corners. At this time the reconfiguring process starts.
The Mach stems at the corners can be seen in Fig. 6 (g) and an octagonal shape
is seen in (h). The first cycle of the reconfiguration process is ended when a
square shaped shock wave with an orientation opposite to (d) – (g) is formed
as shown in (i).

In Fig. 7 three images from the case with 10 mm diameter cylinders are
shown. The behavior is similar to the previous case meaning the shock wave will
first develop planar sides and then start to reconfigure and change orientation.
The last image, (c), shows the first reoriented shock wave. Whether the last
visible shock wave originates from the disturbance caused by the four cylinders
or by the four supports located at the rear part of the annular part in the
shock tube has been investigated. The square formation of cylinders is rotated
angularly compared to the four supports to make sure that it is possible to
tell which one is acting as disturbance generator. The orientation of the square
shaped shock wave, visible in the last stage of the focusing process, tells us that
it is the disturbance from the four cylinders that is responsible for the shape
of the shock wave. It has been shown earlier that the supports for the annular
parts of horizontal shock tubes cause disturbances that are visible when the
shock wave is close to the center of convergence, see Takayama et al. (1984,
1987); Watanabe & Takayama (1991).
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(a) t = 0 µs (b) t = 10 µs (c) t = 18 µs

(d) t = 20 µs (e) t = 22 µs (f) t = 28 µs

(g) t = 31 µs (h) t = 31 µs (i) t = 31 µs

Figure 6: Schlieren photographs at different time instants. Each photograph
is from an individual run in the shock tube. The cylindrical shock wave is
diffracted over four cylinders with diameters of 15 mm placed at r = 61.5 mm
from the convergence center.
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(a) t = 0 µs (b) t = 10 µs (c) t = 20 µs

Figure 7: Schlieren photographs at different time instants. Each photograph
is from an individual run in the shock tube. The cylindrical shock wave is
diffracted over four cylinders with diameters of 10 mm placed at r = 61.5 mm
from the convergence center.

4. Conclusions

An experimental investigation of converging triangular and square shaped shock
waves was performed in an annular horizontal shock tube. A schlieren system
combined with a CCD camera was used to visualize the focusing process. The
system took snapshots of the converging shock wave at different time instants.
An initially cylindrical converging shock wave was perturbed by cylindrical ob-
stacles inside the test section. The obstacles were configured in an equilateral
triangular or a square formation. As a result two different types of shock con-
vergence behavior were observed. In a triangular case, a triangle-shaped shock
was formed and converged with unaltered form and orientation during the rest
of the focusing process, indicating that the vertices of the triangle undergo reg-
ular reflection. A square formation produced a square-like shock. The corners
of the shock suffered Mach reflection and a reconfiguring process took place.
After one cycle a new square, oriented opposite to the old one was formed. The
present experimental results complement previous results, both analytical and
numerical, see Betelu & Aronson (2001), Schwendeman & Whitham (1987) and
Apazidis & Lesser (1996).

is not resolved in the present experimental setup. This would require a res-
olution of a wide range of length scales, which was not possible at the moment
of this experiment.
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The propagation of converging polygonal shock waves are documented us-
ing schlieren photography in order to compare with geometrical shock dynam-
ics. Shock waves shaped as symmetric polygons of 6, 8 and 12 sides are created
in a shock tube. The results are compared with the theoretical predictions and
show good agreement.

1. Introduction

The propagation of converging polygonal shocks was studied theoretically and
numerically by Schwendeman & Whitham (1987). Using the approximate the-
ory of geometrical shock dynamics (GSD), they found solutions of the behaviour
of cylindrical polygonal shock waves. They showed that an initial polygonal
shape repeats at different intervals during the converging process. We have
conducted experiments creating similarly shaped shock waves and compared
with their work.

Polygonal shocks have been studied previously at the department of Me-
chanics, (Apazidis & Lesser 1996; Apazidis et al. 2002; Eliasson et al. 2007a,b)
using different measured to control the shape of the shock. The method to
shape the shocks in the present work was used in spectrometric investigations
(Kjellander et al. 2010). The measurements required good repeatability and
the polygonal shocks proved to be more stable from run to run. However, we
found the peculiar behaviour of the re-orienting polygons interesting enough
in itself to warrant some additional study. The purpose with this paper is to
present results on the dynamics of the shocks and how they stand a comparison
with GSD.

151



152 Malte Kjellander, Nils Tillmark & Nicholas Apazidis

2. Theory

This section is a short summary of the paper by Schwendeman & Whitham
(1987), which is recommended for further reading. In the strong shock approx-
imation, the area-Mach number relation becomes

A = f(M) ∝ M−n, (1)

where n = 5.074 for γ = 1.4. The predicted behaviour of a converging shock
wave is displayed in Fig. 1(a). The initial shock wave consists of a number of
plane fronts of strength M0 making up a polygon, here a hexagon. At each
corner the plane sides reflect against each other, with Mach stems appearing
at the intersections. These will move with a stronger Mach number M1 and
eventually form a new polygon rotated with the angle ∠BON whereupon the
process starts over. The converging process is equivalent for other polygons
where Mach reflections occur in the corners. A triangular shock experiences
regular reflection; this has been subjected to studies by Betelu & Aronson
(2001), Eliasson et al. (2007b). Reflected shocks also appear, but for the sake
of brevity they will be ignored for the length of this work.

The increase in Mach number at each repeated interval P was shown to
be, with P = 0 being the initial polygon:

rP

r0

= (
M0

MP

)n (2)

The radii rP are measured from the centre to the side mid-points, and not to
the vertices. Further, the Mach number ratios can be expressed as:

MP

M0

= µP , (3)

where the constant µ is dependent on the number of sides in the polygon.
Values for µ obtained by Schwendeman & Whitham are tabulated in Table 1
at the end of the paper.

3. Experiment

The experiments were performed in the same shock tube facility as the pre-
viously conducted studies at KTH Mechanics cited above. The experimental
setup is illustrated in Fig. 2. The tube is a plane-annular-cylindrical construc-
tion akin to that of Takayama et al. (1987), designed to create cylindrically
converging shocks. A co-axially aligned inner body transforms the incoming
plane shock wave into an annular shape. The annular channel ends into a
chamber with a sharp 90◦ bend. The test section consists of the central part
of the chamber which is framed on both sides by glass windows.

A conventional parallel-light schlieren system was used for visualisation.
Light is provided with either an Nd:YAG pulse laser or a continuous HeNe
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Figure 1: (a) Converging process of hexagonal shock wave, after Schwendeman
& Whitham (1987). The plane shocks AB and BC of Mach number M0 reflect
against one another, forming the Mach stem DE. DE propagates at a higher
Mach number M1, overtaking the adjoining shocks and eventually forming the
side FG in a new hexagon, P=1. Image (b) Shows a schlieren image of the
middle step illustrated in (a), of an octagonal shock (detail from Kjellander
et al. 2010).

laser. A metal sphere with a diameter of 0.67 mm is used as a schlieren stop
and photographs taken with a SensiCam PCO CCD camera or a Nikon D80
system camera. The SensiCam allows images to be taken with several individ-
ual exposures. The continuous HeNe laser is comparatively weak, resulting in
relatively long individual exposures, around 0.2 µs. The shock Mach number
was measured in the annular channel by two platinum film temperature sen-
sors. These are inserted flush with the outer wall of the channel, separated by
25 cm.

To form the shock wave into the desired polygonal forms, the test section
has been divided into separate radial channels. Shaped as circular segments,
50 mm long, flow dividers were inserted with their centre lines aligned radially.
The outer edges are touching the annular channel entering the test section, and
the inner edges ends 20 mm from the centre. Through reflections and change of
curvature due to the wing-shaped dividers, the initially curved shock is divided
into straight segments at the exit of the radial channels. This method was used
in Kjellander et al. (2010), where more details may be found. A drawing of
the layout of the test section with an octagonal configuration of flow dividers
is provided in Fig. 2(b).

4. Results and Discussion

Symmetric polygonal shock waves with six, eight and twelve sides were gener-
ated. Test gas was air and the initial low pressure was p1=13.3 kPa. Shock
strength was M=2.4 in the annular channel. As the shocks waves reached the
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Figure 2: Experimental setup: (a) sketch of the end of the shock tube and the
schlieren setup. L, lens, M, mirror and S, the schlieren stop. S1 and S2 are the
shock sensors. Image (b) shows a sketch of the test section from the front with
an octagonal channel configuration.

trailing edges of the flow dividers in the test section, they had accelerated to
M=3.0. A series of stronger shocks were made with the twelve-sided config-
uration, with M=3.0 in the annular section and M=4.9 at the trailing edges.
The Mach number at the edges becomes the initial Mach number of the sides
making up the first, starter polygon. Single and multiple exposure schlieren
photographs were taken to study the dynamics.

P = 0,  t = 0 µs P = 0,  t ≈ 11.5 µs P = 0,  t = 0 µs(a) (b) (c)

Figure 3: Schlieren photographs of octagonal shocks.

Figure 3 shows three polygonal shock waves at different times with a config-
uration of eight wings. In image (a) the shock wave has just passed the trailing
edges and each side started reflecting against the adjoining sides. This corre-
sponds roughly to the first iteration of the octagon, P=0. The Mach number
of the incident shock is M0=3. In the second image the appearing Mach stems
have overtaken the incident shocks and the front retaken an octagonal shape,
rotated by 22.5◦. New small Mach stems have already appeared. The process
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is repeated and a third octagon, interval P = 2, appears, now reoriented with
the vertices in the same positions as the original. The shape of the shock is not
entirely symmetric, which is most visible in the perturbed front in (b). The
photograph in Fig. 1(b) is an intermediate step between Fig. 3(a) and (b).

10

0

(mm) (mm)

(a)

10

0

(b)

Figure 4: Multiply exposed schlieren images of hexagonal (a) and dodecagonal
(b) shock waves. The wings have been outlines in (b), while they are off the
picture in (a). For the two cases, the time between each exposure was 1.8 µs
and 1.4 µs, respectively, while each exposure was 0.3 µs, in both cases.

Figure 4 shows multiple-exposure photos of initially six- (a) and twelve-
sided (b) shocks. The radius and Mach-number variation with radius were
deduced from photographs exposed at ten different intervals 0.8-1.8 µs apart,
with each exposure being 0.1-0.3 µs long. Figure 5(a) shows the radius of
two dodecagonal shock waves of different initial Mach numbers. The radii were
measured along two diagonals, one between the focal point and an initial vertex
and another between the centre and an initial side midpoint (corresponding to
lines ON and OB in Fig. 1), thereby showing the propagation of the initia.l
and new sides corresponding to AB and DE. Different symbols have been used
in the figure to clarify when reflections occur: each symbol is used for one side
from its creation until it is completely overtaken by the adjoining shocks. The
fronts had almost constant velocity until reflection. For example, the circles
represent the position of original incoming shock front AB propagating from N
to F, again referring to Fig. 1.

As the individual parts of the shock were not accelerating, the acceleration
of the overall shock took part through reflections where faster shocks appeared.
This is a slight simplification, as the supposedly straight shocks always have
a small curvature and not entirely constant velocity. As this effect was visi-
bly small, linear fits were made to determine M0, M1, M2 and M3, the Mach
numbers of each successive iteration. The twelve-sided shape experienced more
recognisable iterations than the other configurations. In the octagonal case,
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Figure 5: (a) Position of converging dodecagonal shock waves of two different
initial Mach numbers, M0 =3.0 and M0 =4.9. The radial position along two
diagonals, ON and OB, are plotted, see Fig. 1. (b) Radius of different segments
of the same octagonal shock wave. Full lines: initial sides, dashed lines: new
sides appearing through the Mach reflections. The lines are best fits to the
different segments.

N GSD1 This paper
6 1.289 -
8 1.201 1.21±0.03 M0 = 3.0

1.14±0.04 M0 = 3.0
12 1.126 1.15±0.04 M0 = 4.9

Table 1: Table over values of µ = MP+1/MP for polygons with number of sides
N . No meaningful experimental value for N = 6 could be obtained.

Mach numbers up to M2 could be measured. Table 1 shows the obtained val-
ues compared to the theoretical. The experimental values are averaged over
all available ratios Mp+1/Mp, several runs and along three sides for each run.
Figure 5(b) demonstrates the variation in one single run. The hexagonal case
was problematic: the shock fronts were far from straight when arriving in the
test section. The flow dividers were too short for straight shocks to form. This
means that a quantitative comparison with the idealised case is not reasonable
and no computation of the ratios were performed.

The degree symmetry of the shock waves was highly sensitive to the inner
body alignment. This initial asymmetry may be seen in Figs. 3(a) and 4(b),

1Schwendeman & Whitham (1987)
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where vortices created during the shear at the trailing edge are seen. Care
was taken to align the body to produce as symmetric shock shapes as possible.
During the presented experiments, the initial relative deviation from the radius,
measured as (ri,max−ri,min)/ri, where ri is the radius of the sides i making up
the polygon, was about 3%. We believe it is possible to gain better symmetry,
but this was deemed adequate for our purposes. It is also possible to use the
flow dividers as a test of symmetry, also when circular shock waves are to be
studied. In any case, to avoid effect of asymmetry, the quantitative results
of the radius and Mach number ratios were only taken from sections where
adjacent shocks arrived in the open section at virtually the same instant.

5. Conclusions

Converging polygonal shock waves were studied using schlieren optics. The
octagonal and dodecagonal shapes showed the predicted alternating pattern,
but the hexagonal shape was not achieved due to how the flow dividers were
constructed. The dynamic process of the alternating polygons were observed
and the Mach number increase measured and compared with geometrical shock
dynamics, showing reasonable agreement. Slightly higher values for µ was
found experimentally than theoretically, but the error of margin is too large
to draw any conclusions. Increasing the Mach number showed no significant
change.
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Guderley’s self-similarity solution r = r0(1 − t/t0)α for strong converging
cylindrical shocks is investigated experimentally for three different gases with
adiabatic exponents γ = 1.13; 1.40; 1.66 and various values of the initial Mach
number. Corresponding values of the similarity exponent α which determines
the strength of shock convergence are obtained for each gas thus giving the
variation of α with γ. Schlieren imaging with multiple exposure technique
is used to track the propagation of a single shock front during convergence.
The present experimental results are compared with previous experimental,
numerical and theoretical investigations.

1. Introduction

The first study on converging shock waves was performed by Guderley (1942),
who presented his well-known self-similarity solution of strong converging cylin-
drical and spherical shock waves close to focus. The solution for the shock
radius r at a certain time t may be written in the self-similar form: r =
r0(1 − t/t0)α, where r0 = r(t = 0) and t0 = t(r = 0) are the initial radius
and time of implosion, respectively. The similarity constant α determines the
strength of convergence, or equivalently the curvature of the r−t trajectory.
The constant α, which depends on the adiabatic exponent γ is in general a ra-
tional number which Guderley determined to be α ≈ 0.835 for cylindrical and
α ≈ 0.717 for spherical shock waves in air. A great number of analytical and
numerical studies have since followed, expanding the solution and refining the
calculated convergence exponent with an increasing number of digits (Butler
1954; Stanyukovich 1960; Fujimoto & Mishkin 1978; Nakamura 1983; Hafner
1988; Van Dyke & Guttman 1982; Ponchaut et al. 2006). Lazarus & Richtmyer
(1977) provided solutions to a wide range of adiabatic exponents, which was
even further expanded by Lazarus (1981).

Approximate geometrical methods neglecting the influence of the flow be-
hind the shock wave were developed independently by Chester (1954), Chisnell
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(1957) and Whitham (1957). The approach, often referred to as the CCW
method, agrees well with Guderley’s solution and provides an explicit expres-
sion for α = f(γ). Finally, a comparison of the solutions of self-similar theory,
geometric shock dynamics as well that of a numerical Euler solver was presented
by Hornung et al. (2008), showing good agreement.

Experimental investigations to confirm the similarity constant have been
fewer. The first cylindrically converging shocks were produced by Perry &
Kantrowitz (1951) in a shock tube and many later works - including the present
- made use of similar methods. Matsuo and collaborators (Matsuo & Nakamura
1980, 1981) examined the converging shocks in air created by exploding shells in
a cylindrical frame. Using ionization probing systems they compared the shock
trajectories with Guderley’s self-similar solution and found them to practically
collapse but did not present a determination of the parameter from their data.

Baronets (1984) studied the formation and propagation of cylindrical shocks
in argon and xenon (γ = 1.66) created by pulsed induction discharges in a cylin-
drical chamber. Using visual methods to acquire the trajectories of the shocks
waves, he found that the self-similar parameter varied with shock velocity. Ac-
cordingly, wave speeds less than 2 km/s resulted in a linear propagation (α = 1),
whereas for higher velocities - about 6 km/s, the exponent approached the an-
alytical 0.816. He also measured a self-similar exponent for diverging shocks
created by a spark discharge, and found α = 0.84 ± 0.02 (Baronets 1994).

Takayama et al. (1987) conducted several experiments where cylindrical
shock waves in two different shock tubes working on similar principle as that
of Perry & Kantrowitz. They measured α by doing least square fits to streak
camera recordings of a shock waves in air (γ = 1.4) with initial Mach numbers
in the range 1.1−2.1. They presented obtained values of 0.832+0.028/−0.043
for the tube in Aachen and 0.831±0.002 for the other tube, in Sendai.

Although the present paper is concerned with cylindrical shocks, it might
be worth mentioning that Hosseini and Takayama found the exponent α=0.738
for converging spherical shock waves in air. Shocks created at the center of a
chamber diverged and reflected on the chamber wall and then converged. The
discrepancy from the theoretical 0.717 was due to that the shocks converged
through a flow field induced by the preceding diverging blast wave.

To the best of the authors’ knowledge, no experiments have been published
that have measured the self-similarity constant for different adiabatic exponents
and Mach numbers in the same device. Guderley’s solution is so frequently
employed that this provided the motivation for the the present experiments,
which aim to: i) capture the variation of α with the adiabatic exponent γ and
ii) to determine if α depends on the shock Mach number. All experiments
were performed in the same shock tube and three different gases were used:
argon, nitrogen and propane. Schlieren photography was used to track the
shock fronts and least square fits were made to the self-similar solution to
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determine the similarity constant α from the experimental data. To measure
the instant of focusing the light emission of the shocked gas at the center of
convergence was registered by a photomultiplier tube. As discovered by Perry
& Kantrowitz, the converging shocks create high enough temperatures to make
the gas emit light. Later studies, e.g. by Roberts & Glass (1971); Saito & Glass
(1982); Matsuo et al. (1985); Eliasson et al. (2007); Kjellander et al. (2010),
have shown that the light intensity displays a sharp peak at collapse, which in
the present paper was used to set the focusing instant. The light emission is
intriguing on its own merits, and the interested reader is referred to the cited
papers.

2. Experiment

2.1. Shock tube

A schematic drawing of the shock tube is shown in Fig. 1. The shock tube
is made of steel and consists of a 0.35 m long driver section A and a 2 m
long driven section, separated by a rupturable membrane. The driven section
consists of several parts: an inlet pipe B (1.3 m long) with a 80 mm diameter
circular cross section followed by a transformation section C (0.17 m), where
the channel cross section changes from circular to annular, expanding the outer
channel radius to 160 mm and a co-axial annular section, D (0.53 m) with a
constant 10 mm clearance between the facing walls. The channel cross section
area is constant throughout all sections. A cylindrical test chamber, E, where
the shock moves radially towards the center is connected to the end of section D.
The test section is 5 mm wide and framed by glass windows (Schott Borofloat
33) to give optical access to the shock focusing region. The central body of
the annular section is held in place by 8 wing shaped support struts crossing
the annular space. The struts are located in two flow axial-normal planes
containing 4 struts each. The struts are separated 90◦ in the plane and the
strut pattern is displaced 45◦ between the planes to minimize strut interference
with the flow. The annular section also contains platinum film stripe sensors
to measure the shock velocity.

2.2. Flow visualization

A schlieren system, schematically drawn in Fig. 2 visualizes the flow in the
test section. The light source in the experiments is a continuous He-Ne laser.
The beam is led into the inner body of the annular section through one of the
hollow support struts and expanded to a collimated beam passing through the
test section and the glass window. On the receiving side the light is focused on
a schlieren stop. To detect density gradients in the flow in all radial directions
a metal micro sphere is used as a stop. Photographs are taken with a CCD
camera (PCO SensiCam) electronically connected to the timing system. The
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Figure 1: Schematic drawing of the shock tube. A: driver section, B : inlet
pipe, C : transformation section, D : annular channel, E : test section, a: high
pressure transducer port, b: driver gas inlet port, c: low pressure transducer
port, d : test gas inlet port, e: vacuum pump port. S1 and S2: shock sensors,
W1 and W2: glass windows framing the test section.

camera takes ten exposure in a single image, enabling tracking the single shock
front.
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Figure 2: Arrangement of the schlieren optics. M: mirror, L1: collimating lens,
L2: focusing lens f = 1350 mm, L3: imaging lens f = 180 mm. S1 and S2 are
the pressure sensors used for triggering and measuring the shock speed in the
annular channel.

The shock sensor S2 (see Fig. 2) is connected to a digital delay genera-
tor (Stanford Research Systems DG535). The camera software handling the
exposures receives a trigger signal from the delay unit. A digital oscilloscope
records the signals from the sensors S1 and S2 to determine the shock speed.
To measure the time of focusing a photomultiplier tube mounted close to the
test chamber registers the light emitted by the imploding shock. When the
shocks collapse the emitted light starts with a sharp peak indicating the focus-
ing moment.
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3. Numerical calculations

Axisymmetric numerical calculations were performed to investigate the shock
structure in the test section. Calculations were performed on two meshes: one
representing the whole shock tube and a second finer mesh covering the end of
the annular channel and the test section. Specifically we were interested in the
influence of the transformation section from plane to annular and the 90◦ bend
into the test section. The aim was to certify that a shock wave with constant
strength is formed in the annular section and to asses the three-dimensional
effects introduced by the bend into the test section.

The axisymmetric Euler equations were solved using the in-house numer-
ical code. The code is based on the upstream flux vector splitting (AUFS)
scheme introduced by Sun & Takayama (2003) for solving the Euler equations.
The numerical scheme is implemented on an unstructured triangular mesh and
enhanced by automatic mesh refinement and is able to cope even with most de-
manding boundary geometries including sharp corners and edges. The perfect
gas law was used.

3.0a. Simulation 1: Full tube. These simulations were made for two reasons:
(i) to provide initial conditions for the second simulation case and (ii) to verify
that the experimental test cases created a stable shock wave with a constant
velocity in the annular section, such that no expansion wave caught up with the
front before entering the test section. The computational domain is sketched
in Fig. 3. The number of grid cells were increased until solution convergence
was reached. The computation was run until the shock reached the 90◦ bend
and the test section was therefore not resolved. Final number of grid cells was
about 105. Initial conditions were set corresponding to experimental case !1
through !8, see Table 1.

The results showed that the shocks have the same strength in the annular
section as in the circular section for all test cases. The Mach numbers from
the simulations agree within 4% with those measured in the experiments and
the strength of the shock waves were not changed significantly in the channel,
indicating that the transformation section works as designed.

5535170130033

Ø 160Ø 140
Ø 80

Figure 3: Bounded region for the axisymmetric simulation of the flow through
the entire tube. The axis of symmetry is the dash-dotted line.
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3.0b. Simulation 2: Test section. The domain of simulation is sketched in
Fig. 4. The grid consists of about 7 × 105 cells. This case is a continuation of
the full tube simulation but with finer mesh - the initial conditions were taken
from the full tube simulation for test case !4: when the shock wave was at the
position corresponding to x = 50 mm in Fig. 4, the results were interpolated to
new domain. At x = 0 supersonic inflow boundary conditions corresponding to
the post-shock state were applied while the remaining boundaries were treated
as solid walls. Figure 5 shows a series of numerical schlieren images at differ-
ent time instants for a shock wave in nitrogen with incoming shock strength
Ms = 2.4 in the annular channel. When the incoming shock front arrives at
the bend, the inner (lower) part diffracts into the test section, while the outer
(upper) part continues until it reflects against the rear wall, see Fig. 5 (i)-(ii).
A high pressure zone is created behind the reflected shock.

5

10

70

100
x

r

Figure 4: Bounded region for the axisymmetric calculation of shock focusing
in the test section. The axis of symmetry is the dash-dotted line.

The reflected shock propagates at a higher velocity and overtakes and
merges with the initial diffracted shock: this process is seen in Fig. 5 (iii) where
the reflected and diffracted shocks are connected with triple point. When the
reflected shock has completely merged with the diffracted shock - which is the
same as saying that the triple point has reached the wall - Mach reflection
occurs, see Fig. 5 (iii). The shock front is thus made up of two shocks with
the triple moving back and forth between the walls transversally: the triple
point is moving towards the right in (iv), towards the left in (v) and (vii) and
is reflecting from the left wall in (vi).

As the front converges, the curvature decreases and the reflected waves
behind it become weaker. In order to quantify the strength of the triple point
and the reflected cross-directional wave, the difference between the pressures
behind the two parts of the shock front - called pA and pB - was calculated
in relation to the maximum pressure jump over the shock (pi − p1). Figure 6
shows the results together with an idealized sketch explaining the designations.
The sketch is a simplification of the physical situation: in fact there is not
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only one but several crosswise waves behind the shock front - however, as one
is much stronger than the others the weaker are therefore ignored. Initially,
(at r ≈ 65 mm) the ratio is as large as 70% since pA and pB are taken as
the pressures behind the diffracted and reflected shock, respectively. The value
then decreases to an asymptotic value of 15%. The corresponding asymptotic
ratio in Mach numbers of the two parts making up the shock front - called MA

and MB- is less than 10%.

Turning focus to the flow behind the shock wave: the induced flow into the
test section is complex and driven by the large pressure increase caused by the
reflected annular shock. Before the shock front reaches r ≈ 40 mm the flow
in the whole section is changing rapidly, but once the shock has reached this
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Figure 5: Numerical schlieren images of the converging shock pattern in the
axisymmetric test section. Time in microseconds from entrance of shock into
test chamber. The dashed line crossing the image shows where the start of
the measurement section is in the physical shock tube. Image (viii) shows the
diverging shock wave after focus.
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Figure 6: Three-dimensionality of the converging shock wave due to cross-wise
waves. Relative variation of the two parts making up the shock front. The
inlaid image shows a simplified sketch of the situation. The pressure pi is the
largest of pA and pB at corresponding shock radius.

point the flow stabilizes to a state which appears almost steady, driven by the
high pressure in the bend section. After the expansion at the 90◦ corner, the
flow is straightened through a series of semi-stationary oblique shocks localized
around r = 60 mm, see Fig. 5 (vi)-(viii), experiencing first regular and then
Mach reflection. Once past this section the flow direction deviates with less
than 10% from the radial direction. Figures 7 (a) and (b) show velocity and
pressure as functions of radius along the vertical mid line (at x = 102.5 mm) of
the test-section. The pressure, velocity and density variations in the x-direction
were found to be less than 10% at any point r < 40 mm.

To compare with the Guderley solution, the propagation of the shock front
in the mid cross-section of the test section is shown in Fig. 8 (circles). The
discontinuity of the trajectory around r = 60 mm corresponds to the first
diffracted wave being overtaken and merged with the stronger shock reflected
at the back wall. Two self-similar plots (α = 0.835) are added for comparison.
They have the same collapse time as the Euler solution, but different initial
radii. One has initial radius r = 70 mm and the other initial radius r = 40.
The solution starting at r = 40 mm shows that the Euler solution behaves like
the self-similar solution in the central part of the test section.
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Figure 7: Vertical velocity v (a) and pressure (b) along the vertical centerline of
the test section at five different times. Those plotted with full lines correspond
to images (v), (vi) and (vii) in Fig. 5, while the dashed lines show the flow
at intermediate times. The negative sign in front of v is to clarify that the
flow is going down toward the centerline, while the positive direction is defined
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Figure 8: Propagation of the front of the shock: radius from calculations
(circles) compared with two theoretical self-similar trajectories (full lines,
α=0.835), one trajectory with starting point at radius r=70 mm and another
with starting point at r=40 mm, both with the same final focus instant t0 ≈ 81
µs as the Euler solution.
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Table 1: List of performed test cases.

! γ Test gas Driver Ms p1 p4

(kPa) (kPa)
1 1.13 C3H8 N2 1.9 50.0 900
2 1.13 C3H8 N2 2.1 25.0 900
3 1.40 N2 air 1.9 30.0 850
4 1.40 N2 air 2.4 13.3 1800
5 1.40 N2 He (5% air) 2.8 35.0 1900
6 1.66 Ar air 1.9 37.0 850
7 1.66 Ar air 2.4 20.0 1800
8 1.66 Ar He (5% air) 2.8 48.0 1900

4. Results

In the experiments three gases with different heat capacities ratios were used:
argon (Ar, γ = 1.66), nitrogen (N2, γ = 1.40) and propane (C3H8, γ = 1.13).
Several initial Mach number Ms, as measured by the shock sensors in the
annular channel, was tested for all gases. The Mach number variation, including
measurement errors, within each test case was ±0.05. The performed test cases
are listed in Table 1.

The test gases were of industrial grade and the purity was 99.9% for argon,
99.99% for nitrogen and 98.5% for propane. To avoid the risk of igniting the
C3H8 the high pressure section was evacuated from air and then filled with N2

as driver gas. With the present leak rate the oxygen in the low pressure section
amounted to less than 0.1%.

Figure 9 shows two schlieren image sequences of the converging shock prop-
agation in argon each with different initial Mach number. In the center of
Fig. 9(b) the light created at the shock focusing instant is clearly seen. Shocks
in propane however did not produce any light that could be detected with the
photomultiplier tube.

4.1. Chemical stability of propane

The chemical stability of propane under the present conditions was examined.
With the given initial Mach number range as presented in Table 1 the nor-
mal shock relations give a gas temperature below 1000 K, a temperature under
which the gas is stable. However, the complex diffraction and reflection pattern
could result in areas with locally extreme conditions. Using inputs from the
numerical calculations, the most extreme conditions during the shock focusing
down to r = 2 mm were chosen to calculate possible decomposition. Lifshitz
& Frenklach (1974) applied a reduced reaction scheme for calculations in the
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Figure 9: Multiple exposure images of the converging shock for two different
initial Mach numbers: (a), Ms = 1.9±0.01 and (b) Ms = 2.4±0.01 where also
the light emitted by shock focusing is seen in the center.

temperature range T = 1100 − 1700 K; we adopted the same model, which
consists of 10 species and 11 reactions. The reaction rate constants used in
their work were adopted in the present study. It was found that no decompo-
sition occurred for any of the test cases for the convergence range used in the
evaluation of α.

4.2. Evaluation procedure

Quantitative data for the shock deviation and propagation were acquired from
the schlieren images. Each shock front was manually located by fitting curved
sector segments to the fronts in a graphical application. After this procedure
the radius and the deviation from circular symmetry of each shock front could
be found by image processing in Matlab. In this way the position of the sep-
arate fronts could be extracted with good precision. Figure 10 illustrates the
technique applied. Figures 11, 12 and 13 show the relative error of the obtained
shock radius.

4.3. Shock instability

The cylindrical shock in an annular shock tube with supports for the central
body is well known to be unstable due to the perturbations introduced when
the shock passes the supporting struts (Takayama et al. 1987; Eliasson et al.
2006). It is necessary to know the deviation from the circular shape as it
strongly affects the convergence. The breakdown of the shock shape causes a
deviation from the self-similarity. The deviation of the shock radius for the
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Figure 10: Extraction of shock front position from schlieren images.
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Figure 11: The shock front relative deviation from a cylindrical form as function
of the shock radius in argon. + : Ms = 1.9, © (blue online): Ms = 2.4, ∗ (red
online): Ms = 2.8.
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Figure 12: The shock front relative deviation from a cylindrical form as function
of the shock radius in nitrogen. + : Ms = 1.9, © (blue online): Ms = 2.4, ∗
(red online): Ms = 2.8.
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Figure 13: The shock front relative deviation from a cylindrical form as function
of the shock radius in propane. Ms = 1.8 − 1.9.
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various cases is presented in Figs. 11-13. It was noticed that the shock waves
in propane developed shock-shocks earlier than those in argon and in nitrogen.

4.4. Comparison with theory

Data acquired from the schlieren photographs were used to determine α from
the self-similar solution:

r

r0

=

(

1 −
t

t0

)α

(1)

The initial radius r0 = r(t = 0) was taken as the radius of the outmost
shock front in a given data set. The radius was measured from the point of
focus, which was not necessarily exactly in the geometric center of the test
section. The change of position of the focal point from run to run was in the
order of a millimeter. As mentioned in the previous paragraph, the breakdown
of circular symmetry causes the acceleration to decrease as the shock front
becomes more square like, resulting in an increased α.

To acquire the proper values of α and t0 for completely circular shock
waves, fits were made for data points where the deviation from the circular
shape was less than 5 − 10%. This means that t0 is calculated from such data
points instead of the actual time of collapse t".

The values of t0 and α are calculated from the experimental data points
using the least-square procedure by minimizing the deviation from the self-
similar solution. The results for argon, nitrogen and propane are shown in
Figs. 14-16, both in linear and logarithmic scale. In case of the self-similar
solution the dependence of ln(r/r0) vs αln(1 − t/t0) should be linear. As we
can see from Figs. 14(b)-16(b) this is the case for the acquired values of t0 and
α.

Figure 14 displays radius vs time diagrams for shocks in argon for three
different initial Mach numbers. Figure 15 shows shocks in nitrogen, also for
three different initial Mach numbers, while Fig. 16 shows the results for propane
at Ms ≈ 1.9. In Figs. 14(a)-16(a) fits to the self-similar solution for each
individual shock are shown as dashed lines. In the logarithmic plots self-similar
solutions using mean values of α from the least-square fits to all runs in each
gas are plotted as full lines. Dashed lines show 5% larger and smaller α-values.

To estimate the error caused by the evaluation explained above, the pro-
cedure was repeated from start for a single case. The result for a randomly
selected run - in argon - was α1 = 0.813 ± 0.004 and α2 = 0.811± 0.003. This
emphasizes the necessity to average over many runs.

The shock Mach number as function of the radial distance is presented in
Figs. 18-19 for several values of the initial Mach number. The Mach number
according to the self-similar solution is plotted along with the experimental
data, using as starting Mach number the Mach number at r = 50 mm obtained
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Figure 14: Shock position as function of time for different initial Mach numbers
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Figure 15: Shock position as function of time for different initial Mach numbers
in nitrogen. + : Ms = 1.9, © (blue online): Ms = 2.4 and ∗ (red online):
Ms = 2.8. Linear (a) plot with fitted self-similar paths (dashed lines) and
logarithmic (b) where the full line has slope α = 0.836 and the dashed lines
show the variation of α with ±5%.

in the numerical calculations. The point where the experimental data starts to
deviate from the theoretical curves corresponds reasonably with breakdown of
circular symmetry of the shock front.
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Figure 16: Shock position as function of time for different initial Mach numbers
in propane. + : Ms = 1.8 − 1.9. Linear (a) plot with fitted self-similar paths
(dashed lines) and logarithmic (b) where the full line has slope α = 0.88 and
the dashed lines show the variation of α with ±5%.

In Table 2 the results for α, averaged over five or more runs, are tabulated
and compared with previous analytical and experimental values. The present
values agree well with the analytical and experimental results, although we
do not see the velocity-dependence reported by Baronets (1984) for shocks
in argon. The acquired values (circles) are plotted in Fig. 20 together with
analytical data (Lazarus 1981, Table 6.4, p. 331). The error bars represent
the standard deviation of the acquired values for the individual runs. The
expression in Eq. 2, derived by Chisnell (1957) and Chisnell (1998) is plotted
as a dashed line for comparison:

α

1 − α
= 1 +

2

γ

(

2γ

γ − 1

)
1

2

(2)
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Figure 17: The shock Mach number as function of the distance to the focus in
Ar for three initial Mach numbers. + : Ms = 1.9, © (blue online): Ms = 2.4,
∗ (red online): Ms = 2.8. Lines represent the theoretical self-similar profiles
with α = 0.816.

γ
α, Analytical α, Experimental α,
Other authors Other authors This paper

1.13 0.877812 0.88 ± 0.02
1.40 0.83531 0.831±0.0023 0.84 ± 0.01
1.66 0.81561 0.820 to 1.04 0.81 ± 0.01

Table 2: Values of the self-similar exponent α acquired from the present study:
comparison with analytical works and previous experiments.

4.5. Influence of three-dimensional flow

The Guderley problem is one-dimensional, while the experiments have three-
dimensional qualities. The variations in the transverse angle and eventual
instability of the circular shape are caused by perturbations mainly introduced
by the supporting struts. This distortion of the circular shape is manifested
close to the center and we avoided this problem by limiting the determination

1Lazarus (1981)
2Interpolated by the authors.
3Takayama et al. (1987)
4Baronets (1984), the large range depended on shock velocity, see text.
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Figure 18: The shock Mach number as function of the distance to the focus
in N2 for initial Mach numbers: + : Ms = 1.9; © (blue online): Ms = 2.4; ∗
(red online): Ms = 2.8. Lines represent the theoretical self-similar profiles with
α = 0.835.

of the curvature of the r-t trajectory to the region where the shock waves were
circular. With a vertical shock shock tube configuration, as used by Hosseini
et al. (2000), this region would presumably be expanded toward the focus as
compared to in a strut-supported horizontal tube.

Depth-variations - variations in the x-direction - are primarily caused by
the sharp bend configuration as shown by the numerical calculations. The
variations were quantified by the numerical tests and were deemed sufficiently
small and hence were neglected.

The final structure of the hot radiating gas core at the center of the con-
vergence has been previously investigated by Kjellander et al. (2010). The
photographs show the luminescent gas core as a straight thin (diameter 0.2
mm) cylinder stretching over the entire 5 mm width between the facing win-
dows of the test chamber. This indicates the 2D nature of the converging shock
in the immediate vicinity of the focus.

Another option to improve the stability and avoid two- or three-dimensional
effects could be a gas lens, which has been studied theoretically by Dimotakis
& Samtaney (2006). They suggested a two-dimensional gas-lens configuration
was able to produce circular shocks (recently Vandenboomgaerde & Aymard.
(2011) applied the same theory for a three-dimensional lens).
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Figure 19: The shock Mach number as function of the distance to the focus in
propane, initial Ms ≈ 1.9. The line is Guderley’s solution with α = 0.878 for
comparison.

5. Conclusions

The propagation of cylindrical shock waves was studied to experimentally determine
the exponent α in equation (1) for different adiabatic constants γ. The experiments
were made in a shock tube with a cylindrical chamber with radius 70 mm. Numerical
simulations were performed to investigate how well this shock tube configuration
could create two-dimensional cylindrical converging shock waves. The results showed
that, although the initial shape was profoundly three-dimensional, about halfway to
the center the differences had evened out and the shock approached a plane two-
dimensional shape converging in a self-similar manner.

Test gases were argon, nitrogen and propane. The runs were performed at dif-
ferent initial Mach numbers in the range Ms = 1.9− 2.8 for argon and nitrogen. The

initial Mach number for propane was Ms ≈ 1.9. Schlieren photography was used
to trace the shock propagation and fits were made to the self-similar function. The

propagation of the shocks followed the Guderley solution well down to a radius of

3− 6 mm (depending on gas and Mach number) from the focus, where perturbations
broke down the circular shape. Fits to determine α were made to the part of the

shock which was still circular in order to compare with the theory (for shock posi-

tions r ≈ 30 to r ≈ 5 mm). The variation with γ, presented in Fig. 20, was captured
and the values agreed reasonably well with analytical solution. No dependence on

Mach number was seen.
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Figure 20: Acquired experimental values and standard deviation of α compared
to the analytical solution (full line; values from Ref. Lazarus (1981)) and
geometrical shock dynamics (dashed line, Eq. 2, taken from Chisnell (1957,
1998)).
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body designed to create cylindrical shock waves
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Sweden

Technical report.

1. Introduction

This report contains a description of the numerical methods and a case study
on the shock tube at KTH Mechanics designed to create cylindrical converging
shocks. Inviscid, compressible and non-reactive Euler equations for multiple
species have been discretized and solved with an upwinding explicit algorithm.
The method is cheap but resolves shocks with good accuracy and is able to
solve contact surfaces. As the purpose is primarily related to the front shock
propagation the neglect of viscosity, which has large effects in the flow behind
the front shock, is therefore deemed justified. To further enhance the shock
resolution a simple mesh adaption algorithm has also been included.

The first experimentally created cylindrical shock waves were produced by
Perry & Kantrowitz (1951) using a body shaped as a tear-drop in the end
of a shock tube. Similar designs have been used by Wu et al. (1977), Kleine
(1985) and Takayama et al. (1987). The basic design of the devices is the
same: they differ in the details. Specifically, the differences between the three-
dimensional bends from an annular to a cylindrical shape have large influences
on the efficiency of strengthening the converging shocks.

The tear drop inner body of device of Perry & Kantrowitz was supported
by struts which give rise to disturbances as the shock wave passes them. The
tube in Sendai (Takayama et al. 1987) is an improvement of the design. Instead
of a tube with a constant outer diameter, the cross-section is transformed to an
annular channel with a long passage way where the disturbances from the struts
have time to be attenuated before a relatively sudden bend forces the shock to
assume a cylindrical shape in a compartment which will be called ”convergence
chamber” here. The tube at KTH, shown in Fig. 1, was constructed resem-
bling the tube in Sendai, with a few significant differences: the transformation
between the plane and annular section is made in such a way that the total
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cross section area is constant, with the idea that the shock wave then retains
its original strength instead of being attenuated. The bend design is the most
significant difference. Instead of a smooth transformation with constant gap,
a sharp bend is inserted and the width of the convergence chamber is half that
of the annular channel height (5 mm compared to 10 mm).

330

Ø 80

1300

Driven section Annular section

Test section/convergence chamber

Driver section

170 530 5

Ø 160 Ø 140

Figure 1: The dimensions of the shock tube. Measures in mm.

Questions have been raised on the usefulness of similar bend designs as
they invariably introduce three-dimensional qualities in the form of reflected
waves travelling between the walls of the test section (Takayama 1977; Watan-
abe & Takayama 1991). If these lateral waves are too strong, it will greatly
diminish the usefulness of the design. As it was reported that smooth bends
were preferable it is of interest to examine how well the sharp bend works. The
aim of the present study is primarily to numerically study the performance of
the contracting bend of the shock tube at KTH Mechanics but also the flow
through the whole tube.

Chapter 1 contains a description of the numerical code used for the cal-
culations, including tests of code performance. Chapter 2 contains the study
on the shock tube as a whole and the test section in particular. A parametric
study varying the test gas and initial shock Mach number was performed and
evaluated. The flow in the bend is discussed and the effect of three-dimensional
influences are studied. The acceleration of the shocks are compared with the
self-similar solution of Guderley (1942).



CHAPTER 1

Numerical modelling

The flow in the shock tube is simulated using the compressible and inviscid
Euler equations. The fluid is treated as a non-reactive mixture of a number of
ideal gases. At the centre of the test section, where the shock wave is converged
and reflected back into the shocked flow, non-equilibrium and real gas effects
are expected for cases with higher initial shock velocities and the present models
are not able to fully predict the conditions at the centre after the implosions.
As the purpose is to investigate the ability of the tube configuration to create
intensified shock waves, the actual conditions after focus are not considered
and real gas effects are neglected.

1. Gas model

A system consisting of N species is considered. Each species is considered as a
thermally perfect gas,

ps = ρsRsT (1)

es = ρscv,sT (2)

where ps is the partial pressure, Rs the specific gas constant, es the internal
energy per unit mass and cv,s the specific heat capacity at constant volume of
species s. The specific gas constants are found from the universal gas constant
R through the species molar mass Ms as Rs = R/Ms. The heat capacity is
considered constant for the purposes of this study. As per the assumptions,
all species are in thermodynamical equilibrium with a common translational
temperature T . The gas mixture conditions are calculated from the individual
species in the usual manner: the global density ρ is the sum of the separate
densities, the pressure p is the sum of the partial pressures according to Dalton’s
law and the internal energy per unit mass of the whole mixture e is the sum of
the internal energy of each species:
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ρ =
N

∑

i=1

ρs (3)

p =
N

∑

i=1

ps =
N

∑

i=1

ρsRsT (4)

e =
N

∑

i=1

es

ρ
=

N
∑

i=1

ρs

ρ
cv,sT (5)

The specific gas constant R and heat capacity ratio γ of the gas mixture
are calculated from the reduced specific heats,

cp =
N

∑

i=1

ρs

ρ
cp,s (6)

cv =
N

∑

i=1

ρs

ρ
cv,s (7)

R =
N

∑

i=1

ρs

ρ
Rs = cp − cv (8)

γ =
cp

cv
(9)

The speed of sound of the mixture is then calculated from c2 = γRT .

2. Governing equations

The Euler equations for inviscid compressible 2D/axisymmetric flow written in
conservative form:

∂ηU

∂t
+

∂ηF

∂x
+

∂ηG

∂y
= W (10)

where the vector U contains the conserved variables while F and G are the
fluxes in x- and y-directions. The terms for axisymmetric swirl-free flow are
the right hand source term W = [0, ..., 0, p, 0]T and η=y (for a purely two-
dimensional flow, W = 0, η = 1). The conserved variables and fluxes:
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(11)
where ρs = ρ1, ...., ρN is the mass density of each species s = 1, 2, ..., N , ρu and
ρv are the x− and y−momentum and ρE is the energy per unit volume. It is
assumed that each species follow the same bulk flow u = (u, v). To solve the
system of equations it is necessary to express the pressure of the gas mixture p
and the temperature T as functions of the conserved variables U. The energy
of the gas mixture per unit mass is the sum of the specific internal energy and
the kinetic energy: E = e + |u|2/2, and

ρE =
N

∑

i=1

ρscv,sT + ρ
|u|2

2
(12)

from where the temperature can be extracted. Once T is known, the partial
pressures are found from the ideal gas law (Eq. 1) and the global pressure from
Dalton’s law (Eq. 4).

3. Finite volume discretisation

The partial differential equation Eq. 10 is discretised on an unstructured tri-
angular mesh and solved using an upwinding explicit scheme. Figure 2 shows a
sketch of a grid cell i and explanation of the stored variables. For the purpose
of interpolation the flow variables are set at the cell centers (x, y)i. Designating
the domain of the triangle i as A and its boundary as ", the triangular cell i is
treated as a control volume in which Eq. 10 is integrated. Applying Green’s
formula gives:

∫

A

∂ηU

∂t
dA = −

∫

A

∇ · (F,G)ηdA +

∫

A

WdA

= −

∫

!

(F,G) · nηd" +

∫

A

WdA (13)

where n is the normal vector of the boundary. Approximating the variables in
the whole cell with the cell center values, U=Ui and W=Wi, the left hand
side and the source term are easily integrated. Let F̂k = F̂(Ui,Uk) be the
normal flux at the edge k and let Ay

i and Lu
k be defined as
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Variable Description (k, j = 1, 2, 3)
(x, y)i Cell center coordinates

Ai Area of cell i
(xv, yv)j Vertice coordinates
[nx, ny]k Normal vector of edge k

hk Cell height from edge k
Lk Length of edge k
Ui Conserved variables in cell i
Uk Conserved variables in cell k
F̂k Numerical flux at edge k
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Figure 2: A grid cell i with neighbour cells k = 1, 2, 3. Explanations of the
variables in the table.

Aη
i =

∫

A

ηdA and (14)

Lη
k =

∫

"

ηd". (15)

which in the pure two-dimensional case equal the cell area and side length:
Aη

i = Ai and Lη
k = Lk for η = 1. Using the notation in Fig. 2 for coordinates

of the cell vertices, (xv,1, yv,1), (xv,2, yv,2) and (xv,2, yv,2) and a corresponding
notation for the edge vertices of edge k, (xv,k,1, yv,k,1) and (xv,k,2, yv,k,2), the
axisymmetric values Aη

i = Ay
i and Lη

k = Ly
k can be evaluated as

Ay
i =Ai

yv,1 + yv,2 + yv,3

3
= Aiyi and (16)

Ly
k =Lk

yv,k,1 + yv,k,2

2
. (17)

Assuming the flux to be constant along the edges, the flux integral turns
into a sum over all sides and with the above assumptions the Eq 13 turns into:

Aη
i

∂Ui

∂t
= −

3
∑

k=1

F̂kLη
k + AiWi (18)

which yields, after first-order time discretisation:

Ut+∆t
i = Ut

i − ∆t
3

∑

k=1

Lη
k

Aη
i

F̂(Ut
i,U

t
k) + ∆t

Ai

Aη
i

Wi (19)
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Explicitly written out for the two-dimensional and axisymmetric cases,
respectively, the schemes to solve Eq. 19 become

Ut+∆t
i =Ut

i − ∆t
3

∑

k=1

2F̂(Ut
i,U

t
k)

hk
and (20)

Ut+∆t
i =Ut

i − ∆t
3

∑

k=1

(yv,k,1 + yv,k,2)F̂(Ut
i,U

t
k)

hkyi
+ ∆t

Wi

yi
(21)

where it has been used that 2Ai = Lkhk. It should be noticed that yi "= 0 for
a cell with finite size.

The numerical fluxes are calculated by interpolating (first- or second-order)
the flux functions in the neighbour cells on the edges and using the artificial
upstream flux-splitting method (AUFS) introduced by Sun & Takayama Sun
& Takayama (2003). The one-dimensional form of Eq. 10 is (U)t + (F )n = 0
and the N +3 eigenvalues of the Jacobian matrix A = ∂F/∂U are λ1 = un− c,
λ2, .., λN+2 = un and λN+3 = un + c, with un = unx + vny being the normal
velocity. Provided that un < c somewhere, the system therefore contains waves
going both upstream and downstream which makes up-winding difficult. The
AUFS splitting method is based on introducing artificial wave-speeds s1 and s2

such that the flux at the edges can be split in one vector containing only non-
negative or non-positive wave speeds and another containing only stationary
waves and waves moving at the speed of sound, one in each direction. For
details of the derivation and merits of the splitting method we refer to the
cited reference.

Referring again to Fig. 2, consider the numerical flux at the edge between
a cell i and its neighbouring cell k. The numerical flux is split as follows, using
the normal velocity un = unx + vny and tangential velocity vn = −uny + vnx:

F̂(Ui,Uk) = (1−S)F̂1+SF̂2 = (1−S)

[

1

2
(Pi + Pk) + δU

]

+S
[

Ud(ud
n − s2) + Pd

]

(22)
where S = s1/(s1−s2), s1 and s2 being the artificially introduced wave-speeds.
The system also introduces an isentropc artificial viscosity δU which is defined
below. The pressure term is P = (0, ..., 0, pnx, pny, pun). The second vector F̂2

only contains waves going in a single direction and d is either i (if s1 > 0) or
k (if s1 ≤ 0), i.e. the values of the flux depends only on the conserved values
in the cell from which the waves are going. With the artificially added wave
speeds the eigenvalues of the new system ∂F1,2/∂U become λ1 = un − c− s1,2,
λ2, .., λN+2 = un − s1,2 and λN+3 = un + c− s1,2, where s1,2 are chosen so that
the eigenvalues are strictly non-positive or non-negative. The choice used here:
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s1 =
ui

n + uk
n

2
(23)

s2 =

{

min(0, ui
n − ci, u∗

n − c∗) if s1 > 0,

max(0, u∗
n + c∗, uk + vk) if s1 ≤ 0.

(24)

where

u∗ =
1

2
(ui

n + uk
n) +

ci − ck

γ − 1
(25)

c∗ =
1

2
(ci + ck) +

1

4
(γ − 1)(ui

n − uk
n) (26)

Finally, the artificial viscosity term is:

δU =
1

2ā
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ā2

γ̄−1
(pi − pk) + 1

2
((pU2)i − (pU2)k)



















(27)

where U2 = u2 + v2 and ā = (ai + ak)/2 and γ̄ = (γi + γk)/2.

3.1. Boundary conditions

The types of boundaries used here are solid wall, axis of symmetry and in- or
outflow boundaries. At the wall slip conditions are enforced using ghost cells in
the standard manner. The flow variables ρ, ρe and the tangential velocity are
given symmetric values in the ghost cells, while the normal velocity is set anti-
symmetric. In- and outflows are treated as determined by the waves passing
the boundaries in the standard manner: at supersonic inflows all conserved
variables are pre-set as all waves are entering the domain from the outside. At
supersonic outflows all waves are exiting and the flow variables at the boundary
are extrapolated from the interior. At subsonic inflows the flow directions
and total temperature and pressure are preset. The speed of sound at the
boundary is calculated from the outgoing Riemann invariant acquired from the
interior cells, which allows the conserved variables to be extracted from the
set total conditions. Finally, at subsonic outflows the pressure is specified, and
the densities and momentum are extrapolated from the interior. All terms in
the energy are then known. Symmetric boundary conditions are fulfilled by
employing reflected ghost cells in the same manner as the solid walls.
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3.2. Mesh refinement

The Euler solver was coded in Matlab and run on a single CPU: the calculations
are very cheap but quite limited regarding grid size. This is in most cases not a
problem as the intended use of the code covers simple geometries, but to better
resolve the front shocks an adaptive mesh refinement was also implemented.
The initial meshes are prepared using DistMesh, a delauney triangulation code
for MATLAB developed by Persson & Strang (2004).

The general purpose of the refinement is to increase the number of cells
around discontinuities, especially shock waves. The following basic algorithm
was implemented, and is a simplified method based on Berger & Oliger (1984):

1. Select the target level of refinement according to some selection criteria
2. Divide all selected cells
3. Repeat 1–2 until the target level of refinement is reached
4. Select the cells to be de-refined by means of a sensor function and some

selection criteria
5. Divide all selected cells
6. Repeat 4–5 until the target level of refinement is reached

The whole process is then repeated at every nstep time-step.

3.2a. Cell division. Triangles marked for selection (see below) are divided by
adding three new vertices at the mid point of each edge. The triangle is sub-
sequently divided into four equilateral triangles by connecting the new vertices
with edges. To conform with the matrix-based flux calculations which are de-
pendent on a set number of edges per triangles, the neighbouring cells which are
not set for refinement are split in half to connect the courser and finer regions.
Figure 3 illustrates the process. The method was chosen over other strategies
as the four-way splitting keeps the aspect ratio of the triangles and although
the connecting half-splitting worsen it, the initial meshes have well-behaved
aspect ratios and skew triangles have not been found to cause trouble.

*
*

*

Figure 3: Division strategy: stars show cells marked for refinement. As the top
right cell is not marked for refinement, it is split in half as one cell may only
have three nodes. Some cells are gray for illustrational purposes.
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3.2b. Cell selection. A simple sensor function Ci was used to determine which
cells are to be refined, indirectly based on density gradients in order to resolve
discontinuities. For each cell:

Ci =

3
∑

k=1

(ρi − ρk)

3
∑

k=1

(ρi + ρk)

(28)

The sensor is then compared to preset values in order to determine what
target level of refinement for each cell. The criteria for de-refinement use the
same function but the values are set lower to avoid cells flipping back and forth
between being refined and de-refined when the sensor is close to the limits. Eq.
28 was chosen as it is fast to compute and showed to work fine. To prevent
resolved discontinuities to propagate into less refined regions, a buffer zone of
refined cells needs to be created around each discontinuity. This was arranged
by simply smearing the sensor function in space before cell selection. Except
the sensor function, a number of selection criteria were implemented to create
a smooth refinement:

• No more then one level of refinement may differ between two neighbour-
ing cells.

• If a cell has two or three neighbouring cells set for refinement, that cell
too will be refined.

• If half-split cell (i.e. a triangle divided in two) is set for refinement,
it will first be joined with its split partner and the united cell will be
divided in four.

3.2c. De-refinment. When the mesh is de-refined, the original configuration is
saved such that cells set for de-refinement are only united with triangles that
also belonged to the same original triangle. A separate matrix stores the indices
of each cell and which cells have been split from it so the process can be run
backwards. The determination of cells to be reunited is made with the same
sensor function as for refinement, but the selection criteria is more demanding
than for splitting:

• To unite a split cell, all four split cells must be selected by the sensor
function

• At least two of the neighbour of the compund cell must either also be
set for de-refinement or be a half-split cell.
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4. Test of numerical scheme

A number of tests were run to assess how well the code can predict different
flow cases relevant for the purpose of the study. Standard shock tube prob-
lems were run with different gas and pressure combinations based on previous
experiments. Benchmark tests with a plane shock interacting with wedges of
different inclinations were also performed.

4.1. Shock tube tests

Shock tube calculations were performed to try the stability and accuracy of
the code when multiple species were used. The computational domain was a
two-dimensional 1 m tube with height 5 cm. The membrane was positioned
at the tube mid point and the states in the high and low pressure sections are
designated state 4 and 1 respectively. The tests are tabulated in Table 1, where
the Mach number of the front shock is compared with its theoretical value. The
initial temperature was for all cases T1 = T4 = 293 K.

! Driver Test gas p4 p1 p4/p1 MS T2 p2 MS

(kPa) (kPa) (K) (kPa) (1D)

1 air air 10 1 10 1.61 408 2.85 1.61
2 air air 1500 15 100 2.37 591 96.2 2.37
3 air air 1500 1.5 1000 3.2 860 17.7 3.15
4 air air 1500 0.15 10000 4.1 1230 19.5 3.85
5 Air mix Air mix 10 1 10 1.61 409 2.85 1.61
6 Air mix Air mix 1500 15 100 2.38 593 96.2 2.37
7 Air mix Air mix 1500 1.5 1000 3.2 860 17.7 3.15
8 Air mix Air mix 1500 0.15 10000 4.1 1220 19.5 3.85
9 He Ar 850 25 34 3.0 1050 267 2.96

10 He Ar 1700 10 170 4.4 1988 236 4.37
*11 He Ar 1700 0.13 13077 8.35 6640 11.3 8.20
12 He+6% air Ar 1700 13 131 3.83 1595 236 3.87
13 He+6% air Ar 1700 1.3 1308 5.7 3177 53 5.77

*14 He+6% air Ar 1700 13 131 3.86 1578 236 3.87
*15 He+6% air Ar 1700 1.3 1308 5.74 3225 52.5 5.77
*16 He+6% air Ar 1700 0.13 13077 7.5 5400 9.1 7.48
17 N2 C3H8 900 50 18 1.96 359 201 1.95

*18 N2 C3H8 1700 5 340 3.27 490 55.9 3.20

Table 1: Shock tube problem calculated using the Euler-solver. The gas ”Air
mix” is a mixture consisting of 78.03% N2, 20.95% O2, 0.90% Ar and 0.03%
CO2. The star in front of a number signifies that mesh refinement was used.
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Tests 5-8 were performed with an air mixture and compared with runs 1-4
where air as a single species was used The mixture composition was 78.03%
N2, 20.95% O2, 0.90% Ar and 0.03% CO2. The composition was altered to
yield mixture values of γ and R equal to those set for the single-species air.
These tests were made to check the performance of the multi-species composi-
tion compared to the single-gas composition and to see whether or not greatly
varying partial pressures introduce errors. Cases 5-8 were carefully compared
with the cases 1-4 with one-species air and the results for virtually identical.

The final state of test 12 at t = 0.25 ms is shown in Fig. 4. The test was
run on mesh of around 150 cells in the length-wise direction. As for all cases
9–18 the low and high pressure sections are filled with different species. The
front shock is resolved sharply and the expansion agree well with theory, but
the contact surface is smeared, which is partly due to courser mesh refinement
and partly numerical smearing.
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Figure 4: Final state for test 12 at t=0.25 ms. The high pressure section is
filled with a mixture of air and helium at 1700 kPa and the low pressure section
with argon at 13 kPa. Comparison with the ideal 1D-solution (dashed red).
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The values used for γ and R for the different species are tabulated in Tab. 2.
These values were used throughout this report.

Gas γ R (J/kgK)

N2 1.40 297
O2 1.40 260
Ar 1.66 208
He 1.66 2080
air 1.40 287

C3H8 1.13 189
CO2 1.13 189

Table 2: Specific heat ratios and specific gas constants used for the calculations.

4.2. Shock reflection

The benchmark test proposed in Shock Waves Vol. 2 No. 4 and reported by Takayama
& Jiang (1997) was performed. The computational domain is 1x1 m, with an inserted
inclination which starts at x = 0.25 m. A from the left incoming shock wave with
Mach number 2.0 reflects upon the wedge and the simulation is run until the shock
is at x = 0.9. Two test cases are performed: one with an angle 46◦ and another with
49◦, chosen purposefully around the transition between Mach and regular reflection.
Initial values are p1 = 30 kPa, T1 = 300 K with a shock wave at x=0.1. The conditions
behind are determined by the normal shock relations. A supersonic inlet boundary
condition is at x = 0, while the remaining boundary is treated as slip wall (there is no
need for an outflow boundary as the simulation is stopped prior to the shock reaching
the wall).

The test was run on an unstructured grid of 65×103 cells without mesh adaption.
Isopycnics for the two cases are presented in Fig. 5. The shock passing over the 49◦

wedge reflects regularly, while the emergence of a Mach stem is seen in the 46◦-case.
This agrees well with experiments and theory. Glaz et al. (1985)

Additional tests were made with the same configuration, but with with 2nd-order

interpolation of the fluxes and mesh adaption on a courser base mesh of <10×103

cells. The results are plotted in Figs. 6. The calculation time is faster, but the results

sharper to those of the finer static mesh. A small Mach stem can be discerned in

in the 49◦ case, which was missing in the test without mesh refinement. Comparing
with the reported interferograms in the previously cited paper (Takayama & Jiang

1997), good agreement were seen and the results deemed satisfactory.
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Figure 5: Isopycnics of shock reflection on a wedge with angle 46◦ (a) and 49◦

(b). Values in kg/m3.
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Figure 6: Isopycnics of shock reflection on a wedge with angle 46◦ (a) and 49◦

(b). 2nd order in space, automatic mesh refinement. Values in kg/m3.



CHAPTER 2

Calculations: cylindrical shock tube at KTH

Two sets of numerical studies were performed: 1)the whole tube flow was
solved for a number of cases and, more importantly, 2) more refined tests were
performed on the sharp bend and the convergence chamber. All runs were
performed using the axisymmetric Euler solver presented above (the radial
coordinate y will be referred to as r in this part) with adaptive mesh refinement.
The maximum level of refinement was set to two (i.e. up to 16 times higher
cell density) and the refining was performed each fifth time-step.

The two main purposes of the whole tube study was to provide initial
conditions for finer tests on the 90◦ bend and convergence chamber and to
answer the following questions: 1) whether the shock waves kept their strength
through the transition section or not; and 2) if the shock when passing through
the annular section achieved a plane form and had constant velocity.

The study on the bend and test section aimed to answer the questions
raised about the ability of the design to create strong converging shocks at all
and how dominant the three-dimensional effects are.

1. Shock tube

A number of test cases were run on the domain sketched in Fig. 7, with
different initial conditions corresponding to previous and planned experiments.
The numerical domain is the upper half (r >= 0) of the shock tube. All non-
symmetric boundaries are treated as slip walls and the initial conditions are
determined by the states 1 and 4.

55301701300330

Low pressure stateHigh pressure state 14

40

70
10

x
r

Figure 7: Computational domain for the whole shock tube.

The numerical test showed that, for all cases, the shock wave retained its
strength through the transformation section and moved at a constant velocity.
The reflected expansion did not catch up with the shock and the shock wave

199
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! Driver Test gas p4 p1 MS MS

(kPa) (kPa) (from experiments)

1 He+6% air Ar 1550 10 3.9 3.9
2 N2 C3H8 900 50 2 1.9
3 N2 C3H8 900 25 2.2 2.1
4 air N2 850 30 1.9 1.9
5 air N2 1800 13.3 2.4 2.4
6 He+6% air N2 1900 35 2.8 2.8
7 air Ar 850 37 1.95 1.9
8 air Ar 1800 20 2.5 2.4
9 He+6% air Ar 1550 10 3.9 3.9

10 He Ar 1550 0.88 6.2 6.1

Table 3: Tests with the shock tube configuration. T1=T4=293 K. Air was
treated as a single species. Numerical and experimental MS is measured in the
annular section. Errors on measured Mach number are about 2% for experi-
mental data.
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Figure 8: Mach number distribution in the tube for a run in air, initial MS=2.4,
at the moment just before shock focusing. The Mach number in the transfor-
mation section is high since the contact surface has just passed it and it is filled
with cold expanded gas at a high velocity.

focused and reflected in the convergence chamber long before upstream distur-
bances reached the end section. As the flow in the annular section was uniform
for all cases, simple initial and boundary conditions could be applied for the
finer test section runs.
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Figure 9: Wave diagram of run 9, He/air-Ar run, MS=3.8. To the right of the
horizontal x-scale the radial position in the test section has been added: focus is
at r = 0. The intersection between the x and r-scales represents the 90◦ bend.
The ”complex region” is the transformation section; neither the standing waves
or the unsteady waves passing it can be well represented one-dimensionally.

2. Test section

The numerical domain is shown in Fig. 10. For later references, the origin is
placed in the inner corner at the centreline of the convergence chamber, marked
with an O in the figure. The number of initial grid points was around 7× 104.
The calculations were started with a standing shock wave of strength MS at
x = −15 mm with the post-shock conditions determined from the normal shock
relations. The flow velocity behind the shock was super-sonic in the laboratory
frame in all cases but one. The shock was given a relatively long passage
before the bend to numerically stabilize the shock before entering the bend
(in hindsight it proved to be un-necessarily long). Before the simulation was
started the mesh was refined to prevent initial smearing of the shock front. The
simulation was run until the shock reached the axis of symmetry.

Table 4 provides a list of the performed test cases. The Mach number
was varied from a weak shock of MS = 1.2 to a highest value MS = 5 for
air and MS = 7 for argon. The higher Mach numbers approached the limit
where the perfect gas law is still applicable. As the shock accelerates in the
convergence section the validity of the gas law had to be checked afterwards
as the maximum shock velocity was not known exactly beforehand. Also, the
perfect gas law is reasonably valid for higher Mach numbers in argon than in
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Figure 10: Computational domain and initial conditions. The inlet is treated
as a supersonic inflow for all cases, except for case 1, where it is subsonic. The
other walls are treated as slip walls. The conditions in state 2 are determined
from the normal shock relations for a shock of strength MS propagating into a
gas in state 1.

air. In air vibrational and rotational excitation as well as dissociation become
significant at comparably low temperatures.

! Test gas p1 (kPa) MS

1 air 10 1.2
2 air 10 1.9
3 air 10 2.8
4 air 10 3.8
5 air 10 5.0
6 Ar 10 1.9
7 Ar 10 2.8
8 Ar 10 3.8
9 Ar 10 5.0

10 C3H8 10 1.9

Table 4: Sharp bend and convergence tests. T1=293 K for all cases. Air was
treated as a single species.
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2.0a. Shock propagation and mechanisms in the bend. The propagation of the
shock through the test section is illustrated by the numerical schlieren (shade
of gray depending on |∇ρ|) images presented for a case in argon with MS=2.8
(Figs. 11) and air, MS=5.0 (Fig. 12). The presented cases are representative
for all cases as the basic flow is similar. When the shock front enters the bend,
the lower part of the shock is diffracted around the corner while the upper part
continues and reflects off the end wall. The reflected shock propagates back
into the annular channel and down into the test section where it overtakes the
diffracted shock. The merged shocks converges towards the centre. As a result
of the reflections, a triple point on the shock front is moving back and forth
between the walls. Due to these three-dimensional shock interactions the shock
front is not completely straight.

Figure 11: Numerical schlieren of flow in the convergence chamber, shock in
argon, MS = 2.8.

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix ) (x )

Here follows an elaborated description of the argon case. In image (i), the
lower part of the shock has diffracted around the corner while the upper part
which has not been reached by the signals generated at the corner1propagates
uninterrupted until is reflects on the end wall, which has just happened in the
image (i). The snapshots in Fig. 11 (ii) and (iii) are also shown in Fig. 13
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in the form of isobars and flow direction. In Fig. 11(ii) resp. Fig. 13(b)
the reflected shock is seen propagating through the expansion generated at the
corner, curving downwards in the process. The high pressure generated by
the reflection of the incoming shock, about 200 kPa, to be compared with 48
kPa behind the incoming shock, is gradually weakened through the expansion.
When the reflected, curved shock eventually overtakes the diffracted shock, it
is weaker than the incoming shock in the annular section - the pressure behind
it is roughy 28 kPa. The immidiate loss at the bend can be evalutated by this
attenuation.

Figure 12: Numerical schlieren of flow in the convergence chamber, shock in
air, MS = 5.

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix )

The high pressure zone works to drive the front shock and the flow behind
it. Whereas the shock returning through the annular section (top, images Fig.
11(iii) and (iv)) completely halts the flow in the upper section, the higher
pressure in the corner area drives a flow into the convergence chamber and
provides energy for the converging shock. The flow is not uniform, as evident

1The propagation path of this information, corresponding to the characeristic coming from
the bend, can be discerned as the density gradients in Fig. 11(i) and (ii).
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Figure 13: Isobars and flow direction (b) and (c) at time instants corresponding
to Fig. 11 (i) and (i) respectively. Shock in argon, MS = 2.8. The arrow
indicate direction and magnitude of the flow velocity. In (a) is a snapshot of
the adaptive mesh at the time of (b).

(a) (b) (c)

by the standing shocks around r ≈ 50−60 mm which eventually reach a steady
state, Fig. 11(vi) through (x ). In argon the standing shock is normal to the
wall, while in the cases in air several oblique shocks are instead present, which
can be seen in Fig. 12. Figs. 14, 15, 16 and 17 show the centre-line flow (along
x = 2.5 mm) for the different cases at different time instants.

For MS=1.2 case in air Fig. 14 shows how the initial diffraction around
the corner results in a subsonic pressure wave. It appears like it coalescs into
a shock; this is however not the case. The diffracted wave is overtaken by
the reflected shock around r = 40 mm before it has time to break into a
shock. As the flow behind is entirely subsonic no expansions or shocks are to
be found. In all other cases the flow is supersonic and standing shocks appear
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in the outer region where gas enters the convergence chamber. In all cases, the
flow approaches a pseudo-steady state (which can also be seen in the schlieren
images in Fig. 11). The flow in argon had a tendency to stabilize at earlier
times. In argon the standing shock tended to be normal to the wall, while
several oblique shocks appear in air runs.
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Figure 14: Flow condition behind shock front at different times: (a) pressure,
(b) density, (c) temperature and (d) radial velocity. Air, MS=1.2.
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Figure 15: Flow condition behind shocks waves in air at different times: MS =
2.8: (a) pressure, (b) density, (c) temperature and (d) radial velocity. MS =
5.0: (e) pressure, (f) density, (g) temperature and (h) radial velocity.
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Figure 16: Flow condition behind shocks waves in argon at different times:
MS = 1.9: (a) pressure, (b) density, (c) temperature and (d) radial velocity.
MS = 3.8: (e) pressure, (f) density, (g) temperature and (h) radial velocity.
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Figure 17: Flow condition behind shocks waves in at different times: In argon,
MS = 5.0: (a) pressure, (b) density, (c) temperature and (d) radial velocity.
In propane, MS = 1.9: (e) pressure, (f) density, (g) temperature and (h) radial
velocity.
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2.0b. Three-dimensionality. Due to the reflections, several waves are propa-
gating behind the front in the lateral direction and triple points move laterally
along the shock front. One triple point is dominant over the others and divide
the shock front in two all the way to focus. It is most easily visible in (iii)
through (vi). As the front shock accelerates and the cross-wise waves become
smeared out through reflections and the strong 3-d effects are diminishing with
radius. To assess the influence of the predominant triple point, the Mach num-
ber of the two parts of the front on either side of the it is plotted in Fig. 18 for
two cases in argon, MS =1.9 and 5. The Mach number along the inner (left)
and outer wall, designated A and B, is plotted together with the centre-line
Mach number.
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Figure 18: Oscillation of shock front Mach number along three different cross-
sections of the test domain: inner wall, outer wall and middle - the cross-
sections are sketched in (b). Two shocks in argon (a): MS = 5.0 and MS = 1.9.
Figure (b) shows the weaker shock from (a) in a different scale.

Figure 19 shows the variation of pressure behind the shock front and Mach
number of the front for different initial Mach numbers along the inner and outer
walls (A and B as sketched in Fig 18(b)). The peculiar periodical behaviour
is a result of the cross-wise waves: the reflection of the main triple point is
manifested by the differences going to zero.

2.0c. Shock strength intensification. The acceleration of the shock waves is
plotted in Fig. 20 which shows the shock front Mach number in the mid-
dle of the test section (cross-section C, see above). In the outer part of the
region the Mach number changes violently around r = 65 − 70 mm but soon
starts oscillating around the analytical solution to the ideal problem. The Mach
number still wobbles due to the cross-wise waves, but the plotted comparison
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Figure 19: Shock waves in air (a, b) and argon (c, d): pressure (a, c) and Mach
number variation (b, d) over the shock front in the x-direction (depth). The
jumps show where the major triple point reflects at the inner and outer walls.

(dashed lines) with the self-similar solution starting at r = 50 mm shows that
the agreement with the self-similar solution is very good except for the weakest
shock in air, MS = 1.2, which is showed specifically in the inlaid figure in Fig.
20.

Figure 21 show the Mach number of the accelerated shock front at a radius
of 1 mm. As expected from the self-similar exponent, the shocks in gases with
higher heat capacity ratios are intensified more. Although the amplification
seems linear, Fig. 21(b) shows that this is indeed not the case; the ratio M(r =
1mm)/MS has a maximum which for argon is between MS = 4 and 5. The
increasing influence of 3D effects for higher Mach numbers has a deteriorating
effect on the shock intensification. The low amplification of the MS = 1.2
shock is due to that a shock front in the convergence chamber is not formed
until later than in the other cases, as explained in section 2.0a.
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Figure 20: Strength of shock as it converges: shocks in air (a) and argon (b).
Dashed lines: comparison with Guderley’s solution (dashed), starting at r = 50
mm. The inlaid image in (a) shows two self-similar paths for MS = 1.2; one
starting at r = 50 mm and a second (finer dashes) starting at r = 40 mm,
showing how the weak shock does not converge according to the self-similar
solution until later than the other cases.
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Figure 21: Resulting shock Mach number at radius r = 1 mm for various initial
Mach numbers MS ; (a) shows the actual shock Mach number while (b) displays
the amplification.
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3. Conclusions

Calculations were performed to assess the performance of the circular shock
tube at KTH designed to produce strong converging cylindrical shock waves.
The flow in the entire tube was calculated long beyond the time of focus in
the convergence chamber to get an overview of the full problem. The main
questions were whether the shock and flow in the annular section are constant
and uniform and if the reflected expansion has time to catch up and interfere
with the shock before the convergence. On both questions the answers were
favourable: the shock front, after passing through the transformation section
through a series of reflections, retained a uniform annular-plane shape and
proceeded with its original velocity. The reflected expansion wave did not, for
any case, reach the front shock before focus.

The 90◦ bend design is able to produce strong convergent cylindrical shocks
which are greatly intensified. The incoming shock wave reflects off the back
wall, and into the test section. When hitting the wall the shock a high pressure
zone is created in the corner which acts as a reservoir driving the flow into
the test section. A downside is the non-planarity of the resulting converging
shock. Cross-wise waves are propagating between the walls in the test-section,
attached to the front at a triple point, which moves along a zig-zag line towards
the centre. The strength of these cross-wise waves was quantified by consider-
ing the local Mach number and pressures on each side of the triple point. It
was found that the effects became relatively weaker as the shock converged.
The influence of these cross-wise waves were also larger for larger initial Mach
numbers, although close to focus the relative strength of these waves was of
the same order for all initial Mach numbers - an exception was the case for
MS=1.2 in air, where the cross-waves were attenuated. For the worst cases,
at r = 10 mm, the Mach number variation over the shock front was less then
10%.

The acceleration of the shock in the test section was compared with the
similarity solution of Guderley for the ideal 1D case. Despite losses due to
lateral flow, the acceleration showed a surprisingly good agreement with the
theory, and we conclude that the sharp bend with a contraction is efficient at
producing strong converging shocks.
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1. Introduction

Converging shock waves have have been studied during the past seventy years,
the research driven by the ability to focus the energy of the shock wave to
the convergence focus where extremely high pressures and temperatures can
be achieved. The research was initiated in 1942 by Guderley who published
a self-similar solution of the amplification of strong converging spherical and
cylindrical shock waves close to the center of convergence. Another solution
to the problem was presented by Stanyukovich (1960), and since then a large
number of analytical and numerical studies have been conducted, e.g. Butler
(1954). Lazarus & Richtmyer (1977), Wang (1982). When the shock waves
converge they accelerate as they approach the focal point, where extreme con-
dition are created as the shock front converge and reflects, passing through the
already heated gas once more. Ideally the acceleration is infinite but when real
length scales are introduced the theory naturally breaks down when the size
becomes too small: in practice however, the acceleration and achievable energy
concentrations seem to be mainly limited by the symmetry and stability of the
shock wave.

Perry & Kantrowitz (1951) made the first experiments with converging
shocks. Using a shock tube with a tear-drop inner body plane shock waves
were shaped into a cylindrical form. They found that the shock strength was
amplified to such a degree that the gas emitted a sharp light flash at shock
implosion. Further experiments in tubes following the basic principles of their
design have been made by Wu et al. (1977), Takayama et al. (1987), Watanabe
& Takayama (1991), Eliasson et al. (2006) among others.

The pressure and temperature concentrations are not only interesting from
an academic point of view and studies on practical applications have been
made, e.g. diamond synthesis (Glass & Sharma 1976) ,attempts to initiate
fusion reactions (Glass & Sagie 1982; Terao et al. 1995). Currently converging
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shocks are used to shatter kidney stones in vitro, although the potential future
applications in medical, material science and other fields warrant more studies
in the field.

All else equal, spherical shock waves focus the energy more efficiently than
cylindrical shock waves. Previous studies at the Department of Mechanics at
KTH involved creation of cylindrical shocks in a shock tube with a shock-
shaping end section similar to those of Kleine and Takayama. The aim of the
present study is to create a spherical convergence process by forming the plane
shocks into a spherical segment and compare the results with the cylindrical
studies. Setchell et al. (1972) used a setup with a shock tube ending with a
uniform cone. Although the strength of the shock increased, it was done by
successive Mach reflections at the wall and axis. The diffraction cycle continued
through the whole length of the cone. The diffraction process in the two-
dimensional equivalent, a wedge, was recently thoroughly studied by Bond et al.
(2009). To overcome such diffraction losses Dumitrescu (1983) and Saillard
et al. (1985) theorized about a continuously changing wall to smoothly curve the
shock front before entering a conical end section. Dumitrescu (1992) provided
a proof of the existence of such a shape, its form determined with Whitham’s
ray-tube theory (1959). Recently Zhai et al. (2010) applied the same method
to create cylindrical shock waves.

In this study, we present a three-dimensional device such as envisioned by
Dumitrescu. However, as he pointed out, viscous boundary layer effects are
expected to be so influential in the narrow channel that a rigorous calcula-
tion of an ideal shape is a superfluous task. We instead opted to use a simple
smooth curve which was first tested numerically and tweaked until it produced
nearly spherical shocks. Such a transformation section was manufactured and
attached to a circular shock tube with a cross-sectional diameter of 80 mm.
The transformation ends into a 21 mm long cone with 21◦ angle. The tip
of the ending cone is cut and a quartz window allows optical measurements.
In this first prototype no intruding sensors have been placed inside the con-
vergence section to avoid introducing disturbances which might break up the
highly sensitive symmetry. When the shock wave converges to the end point
of the contraction a bright light pulse is emitted as the gas is heated to high
temperatures. Non-intrusive spectrometric and photometric measurements of
these light pulses were made for a range of different initial pressures and Mach
numbers. Runs have been made in argon with initial shock Mach numbers
ranging from MS ≈ 1.5 to MS ≈ 6. We present some preliminary results show-
ing spectra from the light emission indicating blackbody temperatures of up to
∼27, 000 K created by the implosion of a shock with initial Mach number 3.9.
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Figure 1: Circular shock tube used in the experiments. Legend, tube parts:
(A) high pressure section; (B) inlet tube; (C) transformation section; (D) end
cone. Connections: (1) driver gas inlet and pump; (2) pressure transducer; (3)
membrane rupture indicator; (4) pressure transducer; (5) test gas valve; (6)
vacuum pump. (S1) − (S3): shock sensors. Measures in centimeters.

2. Experimental setup

2.1. Shock tube

The experiments were conducted in the shock tube illustrated in Fig. 1. The
tube has a circular cross section with diameter 80 mm and consists of a 0.33
m long high pressure section, 2 m long inlet tube, a transformation section
270 mm long ending into a 21 mm cone with 21◦ angle. The shape of the
transformation is parameterized as

{

x = Asinθ

y = B − R(1 − cosθ)
(1)

where 0 ≤ θ ≤ 0.35π, A = 300.7 mm, B = 40.0 mm and R=57.3 mm. It
is made of a plastic cast held in place by a steel housing. The end cone is
manufactured in steel with the tip cut 0.4 mm from its apex leaving a circular
opening with radius 0.3 mm. The opening is sealed with 1.5 mm thick quartz
window mounted in a frame of the steel tube and secured by brass sleeves.
Argon of 99.99% purity was used as the main test gas and a few runs were
made with nitrogen. The air is repeatedly evacuated and the tube filled with
test gas. The membrane is opened mechanically: the high pressure section is
filled with the driver gas through the inlet at (1) until the membrane bursts.
The pressure pushes the membrane against a cross-knife which creates an even
opening at a pressure-difference determined by membrane strength. The mem-
branes used in the experiments were made from aluminum or mylar plastic
film. The filling with driver gas - either helium or air - is made slowly to create
uniform conditions in the high pressure section and avoid heating the driver.
A second pump is connected to the high pressure section to evacuate the air
in case pure helium is used as driver. A pressure transducer (Druck DPI 150)
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Figure 2: Schematic diagram of the spectrometric setup. The photomultiplier
(PM) tube detects the first light from the shock wave, triggers a delay unit
which in turn triggers the spectrometer. An oscilloscope stores the signals
from the PM-tube and the shock sensors S1 − S3.

connected at (2) measured the breaking pressure, which varied with maximum
5% for any given membrane type.

2.2. Diagnostics

A conductor with an insulating core is inserted through the tube wall in the
low pressure section immediately behind the diaphragm, Fig. 1, connection (3).
When the diaphragm is ruptured it is split in four leaf-shaped parts which hit
the tube inner wall: the conductor is placed so that one leaf impacts on its tip
creating a short-circuit to the tube which gives an indication of the start of the
run.

The shock Mach number in the plane section is measured by shock sensors
placed at three locations, x = 1.60, 1.85 and 2.10 m from the membrane (S1, S2,
S3). The sensors are made of temperature-sensitive platinum film connected
to high-pass amplifiers registering the sharp temperature gradients caused by
passing shock waves.

Two optical fibers are mounted observing the opening through the window:
one is placed along the axis of the tube directly against the window and a second
at an angle, also directly against the glass. The fibers are used to collect light to
photomultiplier tubes and/or a spectrometer. The spectrometer is an echelle
type spectrometer, Aryelle 200 (Lasertechnik Berlin) with an ICCD camera
(Andor Istar DH734 F.18). A solarization resistant fiber is used to enable
UV recordings: as one unit the spectrometric setup can measure the light of
wavelengths between 250 and 850 nm.

Figure 2 shows a diagram of the spectrometric arrangement. The spectrom-
eter was triggered with an external trigger using a pulse generator (Stanford
Systems DGP). Two ways to trigger the DGP were used: either the signal from
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the photomultiplier tube when it detected the first light or with one of shock
sensors. Neither way is optimal: using the photomultiplier a total delay of 200
ns occurs between the beginning of the implosion light pulse and the beginning
of the spectrometer exposure such that the very beginning of the light pulse can
not be measured. Using the signal from the shock sensor makes it difficult to
time precisely, as the time between the shock passing the sensor and reaching
the end point varies with ∼2 µs.

The signals from the shock sensors and photo-multipliers were recorded on
digital oscilloscopes (Tektronix TDS 2014).

2.2a. Spectrometer calibration. Wavelength calibration was made with a mer-
cury lamp with the aid of the supplied software. The spectrometer has an
echelle grating which splits the spectrum into an array of roughly a hundred
different orders on the CCD. Within each of these orders the intensity varies
towards the edges. To properly reconstruct the spectrum a radiometric cali-
bration against a known source is necessary. A relative calibration was made
with a calibrated deuterium lamp (Avantes D-Cal) and a wolfram lamp with
known filament temperature (3000 ± 50 K). The temperature of the wolfram
filament was measured using two pyrometers and calculated by measuring the
resistance Rref at room temperature of the lamp and using tabulated values of
R/Rref vs T . The value of T is very sensitive to Rref , and care was taken to
measure it. The tension of the lamp was measured as close to the filament as
possible, and the zero resistance was determined by extrapolation of R = U/I
to U = 0. The resulting sensitivity curve for the spectrometer is shown in
Fig. 3.
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Figure 3: Relative sensitivity for the Aryelle system, including optical fiber.
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3. Calculations

The problem is simulated using the compressible and inviscid Euler equations.
The fluid is treated as a non-reactive mixture of a number of ideal gases. The
aim with the calculations is to predict the performance of the contraction, the
symmetry of the shock waves and the shock acceleration. Ideal calculations
can not predict the extreme conditions at focus after the shock has reflected
at the end, and only the dynamics of the converging shock have been studied.
Written in conservative form, the axisymmetric Euler equations are

∂yU

∂t
+

∂yF

∂x
+

∂yG

∂y
= W (2)

where the vector U contains the conserved variables while F and G are the
fluxes in x− and y−directions. The right hand side contains the axi-symmetric
source term W = [0, ..., 0, p, 0]T . The conserved variables and fluxes are written
as follows:
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
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


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(3)
where ρ1, ...., ρN are the mass densities of each species, ρu and ρv are the x−
and y−momentum and ρE the energy density. It is assumed each species follow
the same bulk flow u = (u, v) and diffusion is neglected. The energy of the gas
mixture per unit mass is the sum of the specific internal energy and the kinetic
energy: E = e1 + ... + eN + |u|2/2, where the internal energy of each species
ei = cp,iT . Each species are assumed to individually fulfill the ideal gas law
and the pressure is acquired from Dalton’s law. The equations are discretized
on an unstructured triangular mesh and solved with the flux-splitting AUFS
schemed devised by Sun & Takayama (2003).

3.1. Boundary conditions

At the wall slip conditions are enforced using ghost cells. The flow variables
ρ, ρe and the tangential velocity are given symmetric values in the ghost cells,
while the normal velocity is set anti-symmetric. In- and outflows are treated as
determined by the waves passing the boundaries in a standard manner. At su-
personic inflows all conserved variables are pre-set. At subsonic inflows the flow
directions and total temperature and pressure are preset. The speed of sound
at the boundary is calculated from the outgoing Riemann invariant acquired
from the interior cells, which allows the conserved variables to be extracted
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from the pre-determined total conditions. Symmetric boundary conditions are
fulfilled by employing reflected ghost cells in the same manner as the solid
walls.

3.2. Test section

Several simulations were performed to tweak the shape of the transformation
section prior to constructing it. The shape given in Eq. 1 was settled for and
a parametric study was made to estimate its performance. The computational
domain is sketched in Fig. 4. The origin is set to the end point on the x-
axis, which is the axis of symmetry. The section x > −21 mm is the straight
end cone and the end diameter at x = 0 is 0.6 mm. An initial shock wave
of strength MS is placed at x = −300 mm; the gas state on the shocked side
determined from the Rankine-Hugoniot jump equations. For all cases, T1 = 293
K, corresponding to the ambient laboratory temperature. Symmetry and wall
boundary conditions apply on all sides except the inlet, which is either sub- or
supersonic depending on MS .

160 290
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40

x

M
S

Inlet

Shocked state Undisturbed state

y
2 1

Figure 4: Computational domain.

The main goal of these simulations is twofold: to determine for different
initial Mach numbers, (1) how circular and symmetric the shock waves are
when exiting the transformation section and entering the end cone and (2)
what degree of shock strengthening can be achieved?

Figure 5 shows numerical schlieren images at different time instants for
a run with MS = 3.9, p1 = 10 kPa. The curving of the shock front begins
at the foot and transplants towards the axis. As it propagates into the end
cone it appears entirely circular by visual inspection. The deviation from a
completely circular shape as a function of average radius inside the end cone
is plotted in Fig. 6 for several initial Mach numbers. The geometry used for
the calculation is shown in an inset image. The radius is measured from the
virtual apex, situated 0.8 mm from the end wall and averaged for all angles
0◦ < θ < 21◦, whereas the radial deviation ∆r is the maximum deviation
from said average. The deviation oscillates around 4% for the whole Mach
number range, although the fluctuations grow as the shock approaches to the
end wall. It appears that the transformation section shapes the shock into
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Figure 5: Numerical schlieren of the shock at different times. Calculations were
made in the half-plane but the image is mirrored for clearer view.

an almost circular shape as it enters the cone, with little variation in Mach
number. However, perturbations behind the shock wave eventually break down
the symmetry just before collapse.

The acceleration of the shock front is plotted in Fig. 7. Self-similar curves
are added for comparison according to Guderley’s solution r = r0(1 − t/t0)α,
where r is the radius and t the time, r0 and t0 = t(r = r0) the initial radius
and time of focusing. The self-similarity constant for spherical shocks in argon
(γ = 1.66) is α = 0.688. The numerical solution agrees well with the self-similar
path. For all Mach numbers the calculations show that the shape fulfills the
design criteria well: an almost spherical shock wave propagating according
to the self-similar convergent solution is formed. The shape is not flawless:
unstable oscillations in the shock shape appear during the last millimeters.
However, since in reality viscous effects will affect the flow the inviscid equations
are not expected to yield more accurate predictions anyway, further tweaking
to the shape was deemed gratuitous. Density contours behind the shock wave
reveal the degree of asymmetry: Fig. 8 displays a few snapshots for a run with
MS=3.9, p1 = 10 kPa. Initially the density contours are close to circular, but as
the shock wave progresses they become increasingly uneven. The origin of the
dynamic instability shown in Fig. 6 can be seen. The deviation ∆r/r ≈ 0.075
corresponds to that of a 18-sided polygon: at r ≈ 0.5 mm the shock front
consists of two straight shocks normal to the wall meeting each other on the
axis, corresponding to a cone-shaped shock in three dimensions. At this point
the shock has accelerated to M ≈ 25, a total amplification of ≈ 6.
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Figure 8: Isopycnics for shock wave with initial MS = 3.9 as it converges. The
plots have been mirrored over the x-axis.

3.3. Whole tube

Simulations were made on the whole shock tube, with the computational do-
main as the shock tube with dimensions shown in Fig. 1. The origin is placed
on the central axis at the membrane. All boundaries except the symmetric
boundary were treated as slip walls. The purpose is to get a general feel of
the shock tube flow. The initial conditions were determined from experiments,
with a high and low pressure section of different gases and pressures, shown
in Tab. 1. Results of the simulations are shown in the section Experiments -
shock propagation.
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4. Experiments

Several series of experiments were performed with argon as test gas. The
propagation of the shock wave was measured for Mach numbers ranging from
1.8 to 6.0 and compared with calculations to confirm whether uniform flow with
a constant velocity shock wave is formed. When the shock focuses, a bright
light pulse is created in the hot gas and photometric measurements using two
photomultiplier tubes connected to both optical fibers were made. A series of
spectrometric measurements were made for initial Mach number and pressure
MS = 3.9, p1 = 10 kPa, where spectra were measured at different times during
the whole light pulse. Several experiments with weaker and stronger shock
waves, in the range MS = 1.5 − 2.4 and MS = 5.9 − 8 were also conducted,
and a few spectra measured. A series of runs in nitrogen were also performed,
where the light was investigated.

4.1. Shock propagation

The driver section is quite short which makes it vital to check whether the
reflected expansion wave overtakes the shock front before convergence. One-
dimensional calculations were made for the test cases in a tube with the same
length but without changing cross-section using the standard methods (Oer-
tel 1966). In all cases the shock reached the end wall long before upstream
disturbances could reach the shock front. Numerical Euler calculations were
performed for the shock tube geometry to compare with experimental data.
The initial values for the calculations and experiments are listed in Tab. 1.

! Driver Test gas p4 p1 MS

kPa kPa

1 air Ar 330± 15 10.00± 0.01 1.8 ± 0.05
2 He+6% Ar 1550± 50 10.00± 0.01 3.9 ± 0.05
3 He Ar 1550± 50 0.88 ± 0.01 6 ± 0.1

Table 1: Tests on shock propagation, for all cases T1=T4=293 K. Measured
experimental data of high and low pressures p4 and p1 and Mach number MS

with maximal variation between runs.

Numerical wave diagrams determined from the Euler calculations are shown
Fig. 9 and 10. The time instants when the shock sensors detected the shock
waves are indicated with circles and the photomultiplier signals detecting shock
focus by squares. The corresponding shock sensor and photomultiplier records
are shown in Fig. 11. In the MS = 6 case the reflected shock wave meets
the contact surface before the reflected expansion. The shock breaks at the
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interface, a transmitted shock passes through it and a reflected shock returns
downstream and converges. This second convergence is registered experimen-
tally, but the timing is wrong. Significant numerical smearing of the contact
surface makes quantification of the flow after the converging difficult. The
main result however, is that the front shock converges in all cases without
disturbances catching up with it.
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Figure 9: Numerical wave diagram of case !1 in air-argon, MS = 1.8, p1 = 23
kPa, along the central axis of the tube. Circles indicate detection of shock waves
passing the shock sensors and the square the instant of focusing as recorded by
the photomultiplier tube. The diaphragm is positioned at x = 0 and bursts at
t = 0.
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waves passing the shock sensors and squares the instant of focusing as recorded
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Figure 11: Shock sensor and photomultiplier signals from three experiments
in argon, (a) MS = 1.8; (b) MS = 3.9; and (c) MS = 6. The three shock
sensors (black –, red – –, blue–·–) detect sharp temperature gradients whereas
the photomultiplier (uppermost line) records the light emission at focus.
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4.2. Photomultiplier records

The light pulse at the implosion was measured with each fiber connected to a
separate photomultiplier (PM) tube. In our setup the output PM signal drops
as the light intensity increases. Fig. 12 shows the readouts from both fibers
from the same run in argon, MS=3.9 at p1 = 10.0 kPa. The red dashed line
shows the signal from the axially mounted fiber while the full black line shows
the signal from the oblique fiber. Both photomultipliers were supplied with the
same bias voltage (–1000 V). Two distinguishing differences can be seen. The
oblique fiber, viewing at most 0.5 mm into the chamber detects a sharp dip
(corresponding to a peak in measured light) at shock implosion and a fading
light for about 50 µs. The axially mounted fiber detects a rise in light intensity
before the implosion: the light emitted from behind the shock front is seen
before the shock converges to the end. About 16 µs after implosion a second
peak in intensity occurs. The nature of the light in each peak will be further
discussed below.
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Figure 12: Photomultiplier records from shock in argon at MS = 3.9 at p1 =
10.0 kPa. Two photomultipliers were used, one was fed with light from fiber 1,
viewing along the central axis of the tube, and the second from fiber 2, viewing
only the 0.6 mm opening. The combined signals show that the shock becomes
illuminating before hitting the glass, but the sharp first dip is created at the
shock convergence The axially mounted fiber registers light emanating from
further inside. Especially noticeable is the second large dip.

The light pulses show only minor variation between different runs for all
tested Mach numbers and pressures. Figure 13 shows measured light pulses for
different Mach numbers and pressures. For each case signals from several runs
are plotted together to show run-to-run variations. It is apparent that the shock
implosion is stable in the sense that very similar signals are generated; the first
dip due to the immediate implosion shows the highest degree of repeatability.
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Figure 13: Photomultiplier records of runs in argon (axial fiber), (a) MS = 3.4
at initial pressure p1 = 20.0 kP; (b) MS = 3.9, p1 = 10.0; (c) MS = 4.3,
p1 = 5 kPa.; and (d) MS = 5.7, p1 = 1.00. The first dip corresponds to the
convergence of the shock at the cone end.

The second peak is not visible with the fiber viewing the glass at an oblique
angle; hence the emitting source is further inside the cone. A small variational
study was performed to see the dependency on pressure and Mach number.
Table 2 shows a number of runs comparing the delay between peaks and Fig. 14
shows the corresponding photomultiplier records. Increasing either the pressure
or Mach number while keeping the other constant increases the time between
the peaks. The weakest shock showed no second dip at all: it had either merged
with the first or the conditions of its generation were not created.
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Figure 14: Photomultiplier records comparing the appearance of the second
peak. Same initial pressures p1 = 10 kPa with varying Mach numbers (a) and
same initial Mach numbers MS = 3.9 for different pressures (b).

MS p1 (kPa) Time between peaks (µs, ±0.2)
2.1 10 one peak only
2.5 10.0 4.5
3.9 10.0 14
4.1 10.0 17
3.9 2.2 6.6
3.9 17 14.5

Table 2: Time between first and second peak in photomultiplier signals.

4.3. Spectrometric results

4.3a. Time-resolved, MS=3.9, p1=10 kPa. Runs with p1 = 10 kPa and MS=3.9
created emission of roughly 50 µs duration. The spectra from the light pulses
were measured at different time instants relative to the shock implosion (Fig. 15).
The spectrometer only allows one exposure per run, but the high degree of re-
peatability as shown by the photomultiplier records allow this method to give
a reasonable accurate overview of a single event. Fig. 15 shows calibrated spec-
tra where each separate exposure lasts 100-3,000 ns. Each spectrum has been
normalized by dividing the measured intensity with the exposure time. The
spectrometer was triggered by the light collected in the obliquely mounted fiber
connected to the photomultiplier tube. In Fig. 16(a) the average signal over
ten runs is shown together with the standard deviation limits (dashed lines).
In Fig. 16(b) the start of the exposure times for each spectrum in Fig. 15 is
shown in a generic photomultiplier signal from the axially mounted fiber.
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The spectra obtained in the beginning of the light pulse resemble blackbody
radiation and fits were made to Planck’s function:

Iλ(λ, T ) =
2hc2

λ5

1

exp (hc/λkT )− 1
(4)

where Iλ is the intensity per unit wavelength λ, h is Planck’s constant, c the
speed of light and k Boltzmann’s constant. Least square fits to the spectra
obtained from 0.25 to 7 µs after implosion show good agreement with the Planck
curve. The fitted curves are plotted as dashed lines. The fits show apparent
blackbody temperatures of maximum 27, 000± 1, 000 K at approximately 250
ns after the maximum light intensity (see Fig. 16) and about 10, 000 K as
the time increased to 7 µs. Due to trigging limitation the maximum intensity
region has not yet been investigated spectrometrically. At about 11 µs after
the implosion, the continuum is replaced by two bands at 310-320 nm and
380-400 nm, which are believed to emanate from aluminum, see Fig. 15 (f).
In order to capture the spectrum during the second light peak a longer delay
time as well as a longer exposure time, texp = 3 were chosen. The resulting
spectrum shows a large number of lines at longer wavelengths originating from
electronic excitations in neutral argon, see Fig. 15 (g). It should be noted that
in this setup the photomultiplier collects light from the oblique fiber and it
can thus not be verified that this spectrum was really taken during the second
light peak, although the repeatability suggests it. At 20 µs after the maximum
light peak, the spectrum resembles the ones measured during the period of low
intensity between the first and second light intensity peaks, see Fig. 15(f) and
Fig. 16(b). Lines from neutral argon are still present.

4.3b. Nitrogen run. A few experiments using nitrogen as test gas were made. A
photomultiplier record of a run with initial pressure and Mach number p1 = 1.7
kPa and MS = 5.3 respectively is shown in the inset image in Fig. 17. The
radiation intensity was measured with the axial fiber and a striking result is that
the second light peak present in argon is entirely missing. The light spectrum
was integrated over the whole light pulse and a typical result is presented in
Fig. 17. No continuum radiation is present but a large number of bands and
lines are seen. Two prominent bands of aluminum lines are found at 290–320
nm and 380–410 nm. Three successive bands of AlO emissions are seen in 450–
540 nm. A persistent sodium line appeared at 583 nm, with two harmonics. In
the infrared region several pairs of lines possibly originating in atomic iron are
also present. No nitrogen lines are found, which may be explained by the fact
that excited energy modes in nitrogen have far longer lifetimes than the time
frames involved here.
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(c) ttrig=3 µs, texp= 0.1 µs
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(d) ttrig=4 µs, texp= 0.1 µs
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(e) ttrig=7 µs, texp= 0.4 µs
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Figure 15: Spectra from converging shock in argon. Initial MS=3.9, p1=10
kPa. The spectra are taken during separate runs at different times relative to
the shock implosion, ttrig, and with varying exposure times, texp. For (a)-(e),
blackbody curve fits (dashed, red) are also plotted in the spectra. Note that
(g) is taken during the second intensity peak.
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Figure 16: Photomultiplier signals of shock in argon at MS = 3.9; (a) signal
from the oblique fiber, showing the averaged signal of ten runs, with standard
deviation limits (dashed lines) and (b); signal from the axial fiber, a generic
signal showing start time of spectrometer exposure (arrows) for the spectra in
Fig. 15.

4.3c. Argon spectra for higher and lower initial Mach numbers. Referring to
the wave diagram in Fig. 10(b): the original shock is after implosion reflected
and propagates upstream the tube. It meets the contact surface and breaks,
creating a transmitted and a reflected shock traveling downstream towards the
convergence section. This creates a second converging shock which reaches the
tip of the conical section around 300 µs after the first shock implosion. The
photomultiplier records this second convergence, as seen in Fig. 11(c). The
light from this second implosion was measured with the spectrometer and the
result is shown in Fig. 18. A continuum spectrum with apparent blackbody
temperature of 7, 400±200 K is superimposed on lines from transitions between
the 4s− 4p shells in Ar. It is the same persistent lines seen in the spectrogram
for the runs with MS=3.9 as well as the previous cylindrical experiments (Kjel-
lander et al. 2010), albeit many times stronger.

Runs with weaker shock waves were made using mylar film as diaphragms.
With initial Mach numbers in the range between 1.5 and 2 significantly weaker
light intensities are expected. From these runs, the strongest blackbody spec-
trum shows peak temperatures of 10, 000 ± 1, 500 K. Below this temperature
the blackbody spectrum is too weak in comparison with the strong ”noise”
spectrum which is most clearly visible in the nitrogen runs but is also present
here.
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Figure 17: Spectrum of shock in nitrogen, MS = 5.3, p1 = 1.7 kPa. Inset
image shows a typical photomultiplier signal (axial fiber) of the light pulse.
The spectrometer exposure time was set to cover the whole pulse.

5. Discussion

The fiber collecting light for the spectrometer looks along the central axis of
the tube. If the radiating gas is transparent, light is collected from an ex-
tended volume of gas with large gradients of temperature and pressure making
quantitative analysis difficult. During the 4 µs between the first four spectra
in Fig. 15 the reflected shock wave has propagated approximately 1 cm back
into the tube so the size of the hot region increased significantly. However, the
measured intensity levels of the four spectra scale equally with the theoreti-
cal blackbody intensity, which indicates that the fiber only sees light from the
surface of a dense gas appearing as a blackbody which screens the colder area
further inside the tube. This lasts until about 5 µs after shock collapse. At this
time the spectrum (see Fig. 15e) has a higher intensity than would be expected
from the intensities of the earlier spectra. This supports the idea that at later
times the fiber sees a deeper volume emitting light.
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Figure 18: Spectrum taken from shot in argon during convergence of the
reflection of the diverging shock, 300 µs after initial focus of the primary
shock wave. A continuum spectrum with apparent blackbody temperature
of T = 7, 400 ± 200 K is superimposed on lines from transitions between the
4s − 4p shells.

5.0d. Shock strength amplification. As the shock velocity was not measured in
the end cone an estimate of the shock strengthening has to be made. For the
MS = 3.9 case, the ideal calculations show a final Mach number of ∼25 when
the front is less than 1 mm from the glass surface. The shape of the shock
wave quickly brakes down during the last millimeter and does not further ac-
celerate in the exponential manner of a spherical shock. In reality viscous and
non-ideal effects are expected to negatively affect the symmetry and M ≈ 25 is
therefore taken as an upper limit. After reflection at the end, the gas between
the shock wave and the glass is excited to frozen conditions, determined by the
Rankine-Hugoniot equations. Ionization proceeds, decreasing the temperature
as electrons are separated from the atoms. The measured blackbody tempera-
ture of 27, 000 K correspond to the frozen temperature behind a reflected shock
of M ≈ 11 − 12, which is taken as the lower limit. It should be noted that
the measured temperature is not inconsistent with an upper limit of M = 25.
Although the frozen temperature behind a reflected shock of that strength is in
excess of 1×105 K, the equilibrium temperature after ionization is only around
33, 000 K. Several theoretical studies (Bond 1954; Hoffert & Lien 1967; Biber-
man et al. 1971) and experimental studies (Petschek & Byron 1957; Brimelow
& Glass 1974) on the shock structure in argon have been made, covering the
relevant Mach ranges and a successful model of the processes has been created.
Using the collision model of Hoffert & Lien the relaxation time to the ionization
equilibrium behind a reflected shock with incident Mach number M = 25 can
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be estimated to less than 10 ns. Further, the maximum measured temperature
was acquired about 250 ns after the maximum peak in light intensity, where
no spectroscopic measurements were made. A factor complicating the matter
is that several different physical phenomena are involved in the plasma cooling
process: ionization relaxation, expansion caused by the reflected shock wave
and radiation. As the highest temperatures are concentrated to a very small
space close to the window it is expected that radiative cooling rapidly lowers
the temperature as most radiation can escape from the hot core. To answer
the raised questions a collisional-radiative model accounting for ionization and
radiation could be incorporated in the numerical calculations. In other words
the maximum acceleration and temperature in the focusing shock is still an
open question.

Figure 19: Viewing glass damage caused by the focused shock.

5.0e. Absorption and emission spectra. Absorption lines on a blackbody spec-
trum may signify a colder gas in front of the blackbody source. In the spectra
taken close after the focusing instant, Fig. 15(a)-(c), there are abbsorption lines
centered around 252 and 288 nm. These are presumably Si lines, indicating
that part of the quartz surface has been vaporized. Later on, about 5–7 µs
after the peak, absorption lines around 310 and 390 nm appear, see Fig. 15(e).
These lines seem to be directly related to the band emissions appearing around
10-11 µs (f). The bands probably origin in aluminum indicating a possibility
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that aluminum from broken membranes during previous runs have been trans-
ported to the cone1, where it is subsequently vaporized by the shock. The
absorption and emission lines reappear in Fig. 15(g) and (h) respectively, dur-
ing and after the second peak in light intensity. Fig. 19 shows the damage on
the viewing glass. The viewing part of the glass was shifted after each run.
With an undamaged surface facing the tube opening the aluminum can not
have been deposited on the glass during previous runs. An explanation could
be that there is a shock-evaporated Al-gas between the glass surface and the
upstream moving shock. Initially the gas immediately behind the shock has
a higher temperature relative the Al-gas and absorption lines appear as the
strong blackbody radiation first passes through the aluminum. At later time
the temperature relation is inversed, resulting in Al-emission lines.

5.0f. Second peak in intensity. It was first speculated that the second intensity
peak is a result of reflections creating a high-temperature region, but test shots
with nitrogen (see e.g. inset image in Fig. 17) did not produce a similar second
peak and neither do calculations indicate any such occurrence. The spectrum
taken during this time Fig. 15(g) shows increased emission-lines and continuum
(not blackbody) from argon but it has not been further analyzed. The intensity
seems too low compared to measured PM-signals which suggests that there is
radiation outside the range of the spectrometer.

5.0g. Comparison with previous experiments. Roberts & Glass (1971) mea-
sured the light emission from explosive-driven shocks in a spherical chamber
where the shock waves were initiated in the center by ignition of the com-
bustible test gas and left to reflect on the periphery and converge back to the
center. Saito & Glass (1982) continued the experiments and improved upon
the measurements. Photographs of the 350-600 nm spectrum were made and
they concluded that the plasma emitted as a blackbody. They also made time-
resolved recordings of the emission at eight separate wavelengths and found a
maximum temperature of 17,000 K. Although the observed area was almost
identical in size as in the present experiments direct quantitative comparisons
can not be made due to the difference in test gas and that, in their case, the
shock wave converged in a gas already pre-heated by the combustion. In both
experiments however, a clear blackbody spectrum was seen.

6. Conclusions

Spherical shock waves were created in a regular circular shock tube using a
smooth converging transformation of the tube wall designed to shape the plane
shock into the form of a spherical segment. Numerical calculations were made
to find a shape of the transformation section that achieved that goal. Shock
tube runs using argon and nitrogen as test gas were made. The light created at

1Aluminum dust can be found on the wall inside the tube after many runs.
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the implosion focus was measured with photomultipliers and spectrometer. For
a series in argon at initial Mach number MS = 3.9 strong blackbody spectra of
apparent temperatures of up to 27, 000 K were measured, indicating a minimum
final shock Mach number of M ≈ 12, but most probably the real value is much
higher. The spectra were not measured during the time of most intense light,
and the estimate of M = 12 makes use of the frozen temperature. Ionization
relaxation at the high pressures and temperatures involved is such a fast process
that possibly only the temperature after equilibrium ionization was measured.
A second peak in light intensity was detected, seemingly from an argon plasma
continuum and emission-lines. The precise origin of the second peak is not
known. It appeared in argon for MS > 2.1, but not at all in nitrogen.
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