
Computational Fluid Dynamics SG2212, Mechanics 1

Study questions

2010-03-12

1. Describe the Euler and the Lagrange coordinate systems and derive the
expression for rate of change of a given quantity F in the Euler coordinate
system.

2. State the definition of the material derivative,
D

Dt
, and explain the mean-

ing of its different components.

3. State the compressible continuity, momentum and energy equations in
nondimensional form and give the definition of the flow parameters.

4. What is the definition of a Newtonian fluid? Give the expression for
viscous stress tensor for such fluid (define the coefficients involved). What
is the Stokes hypothesis in this context?

5. Consider the incompressible Navier-Stokes equation in 2D:

a) derive the boundary-layer equation in x-direction,

b) which condition for the pressure field is found from the boundary-layer
approximations applied to the y-momentum equation?

6. Describe when a system of partical differential equations together with
initial and boundary conditions is well posed. Give one example of an
equation with initial and boundary conditions that is well posed, and one
example that is not well posed.

7. Show that the heat equation

∂u

∂t
= ν

∂2u

∂x2

is parabolic.

8. Describe in words how the solution of elliptic, parabolic and hyperbolic
equations behave, i.e. what physical processes are described by such equa-
tions. Discuss which of the types allow wave-like solutions.

9. Derive the difference formula and the corresponding leading error term
for the second derivative using a central three-point scheme. What is the
order of that scheme?

10. Consider the integration of an ordinary differential equation u′ = λu.

a) (2p) Write down the explicit and implicit first-order Euler discreti-
sation. Discuss briefly the main difference between the two methods,
and comment on advantages and disadvantages.
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b) (4p) Derive the region of absolute stability for the explicit Euler
scheme. Sketch the solution in the complex plane z = λ∆t. Is the
scheme absolutely stable?

c) (1p) Set λ = −1. Which integration scheme(s) would you use and
what is the maximum possible time step? Motivate your answer.

11. Derive the region of absolute stability for the implicit Euler scheme using
the test equation u′ = λu. Sketch the solution in the complex plane
z = λ∆t. Is the scheme absolutely stable?

12. You want to solve the ordinary differential equation u′ = λu with λ =
3
√
−1. Which integration scheme(s) would you use? Motivate your an-

swer.

13. Consider the advection-diffusion equation

∂u

∂t
+ a

∂u

∂x
= ν

∂2u

∂x2
.

Discretise this equation in space using central schemes and in time using
the explicit first-order Euler scheme.

a) Write down the discretised equation. Use as abbrevations σ =
a∆t/∆x and β = ν∆t/∆x2.

b) Perform a von-Neumann stability analysis using the Fourier modes
ûξe

iξx. In particular, compute the amplification factor Ĝ(ξ∆x). A
condition for stability depending on β alone can then be derived
by setting ξ∆x = π. Another condition relating σ and β can be
found close to ξ∆x = 0 using the expansions sin ξ∆x ≈ ξ∆x and
cos ξ∆x− 1 ≈ −1

2
(ξ∆x)2. Neglect terms of order (ξ∆x)4 and above.

What are then the conditions for stability in terms of σ and β?

c) Can you derive an explicit condition for the maximum time step?
Does it depend on the spatial grid spacing ∆x?

14. On the example of the flow around an airplane wing, discuss – as a func-
tion of the angle of attack – the regions in which viscosity is important
and regions which can be treated inviscidly. Which equations would you
use in the different regions of the flow?

15. Write down the compressible Euler equations in conservative form. Briefly
discuss the physical meaning of the individual terms, and the physical
concept that leads to the formulation of the equations. Write down the
system in such a way that it is completely closed, i.e. the same number
of equations as the number of unknowns. Of what type are the unsteady
Euler equations (no derivation needed)? What are the conservative vari-
ables? What are the primitive variables?
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16. Define and use the Rankine-Hugoniot jump condition to compute the
shock speed for the following problem

ut + uux = 0 −∞ < x < ∞, t > 0

u(x, 0) =

{

1 x ≤ 0

0 otherwise .

How would the solution look like if the initial condition is reversed, i.e.

u(x, 0) =

{

1 x ≥ 0

0 otherwise .

17. Define the entropy condition for a scalar conservation law.

ut + f(u)x = 0 −∞ < x < ∞, t > 0

with a convex flux function f(u). The shock is moving with speed s and
the state to the left is given by uL and the state to the right by uR.

Why do we need an entropy condition ?

18. Investigate the one-sided difference scheme

un+1
j = un

j − a
∆t

∆x
(un

j − un
j−1)

for the advection equation

ut + aux = 0

Consider the cases a > 0 and a < 0.

a) Prove that the scheme is consistent and find the order of accuracy.
Assume ∆t/∆x constant.

b) Determine the stability requirement for a > 0 and show that it is
unstable for a < 0.

19. Apply the Lax-Friedrichs scheme to the advection equation

ut + aux = 0

that is,

un+1
j =

1

2
(un

j−1 + un
j+1) −

a∆t

2∆x
(un

j+1 − un
j−1)

a) Write down the modified differential equation.

b) What type of equations is this?

c) What kind of behavior can we expect from the solution?

20. Sketch the effect of diffusive and dispersive errors on the advection of
a top-hat (a signal with discontinuity) signal. What terms are known to
cause such errors? If you consider the advection of a pure sine wave, what
are the effects of diffusive and dispersive errors?
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21. The three-point centered scheme applied to

ut + aux = 0, a > 0

yields the approximation

un+1
j = un

j +
a∆t

2∆x
(uj+1 − uj−1)

Show that this approximation is not stable even though the CFL condition
is fulfilled.

22. What does Lax(–Richtmyer) equivalence theorem state?

23. What is the condition on the n × n real matrix A(u) for the system

ut + Aux = 0

to be hyperbolic?

24. The barotropic gas dynamic equations

ρt + ρux = 0 (1)

ut + uux +
1

ρ
px = 0

where
p = p(ρ) = Cργ

and C a constant, can be linearized by considering small perturbations
(ρ′, u′) around a motionless gas.

a) Let ρ = ρ0 + ρ′ and u = u0 + u′ where u0 = 0. Linearize the system
(1) and show that this yields the following linear system (the primes have
been dropped)

ρt + ρ0ux = 0

ut +
a2

ρ0

ρx = 0 (2)

where a is the speed of sound. a and ρ0 are constants.

b) Is the system given by (2) a hyperbolic system? Motivate your answer.

c) Determine the characteristic variables in terms of ρ and u.

d) Determine the partial differential equations that are fulfilled by the
characteristic variables, i.e. the characteristic formulation.

e) Let −∞ < x < ∞ (no boundaries) and the initial conditions at t = 0
are

ρ(0, x) = sin(x) u(0, x) = 0 .

Determine the analytical solution of equation (2) for t > 0. Hint: Start
from the characteristic formulation.
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25. The linearized form of the barotropic gas dynamics equations (1) is given
by

(
ρ
u

)

t

+

(
0 ρ0

a2/ρ0 0

)

︸ ︷︷ ︸

A

(
ρ
u

)

x

= 0, (3)

where a is the speed of sound. a and ρ0 are constants.

a) Draw the domain of dependence of the solution to the system (3) in a
point P in the x-t plane.

b) The system is solved numerically on a grid given by xj = j∆x, j =
0, 1, 2... and tn = n∆t, n = 0, 1, 2, ..... using an explicit three-point scheme,
see the figure below.

Draw the domain of dependence of the numerical solution at P (in the
same figure as a)) of the three-point scheme in the case when

i) the CFL condition is fulfilled

ii) the CFL condition is NOT fulfilled.

Assume that P is a grid point.

26. Consider the Euler equations in 1D

ρt + ρux + uρx = 0

ut + uux +
1

ρ
px = 0

pt + ρc2ux + upx = 0 .

How many boundary conditions must be added at the

inflow boundary when the flow is

a) Supersonic

b) Subsonic

outflow boundary when the flow is

c) Supersonic

d) Subsonic

Motivate your answer!
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27. Consider the shock tube problem described by the isentropic Euler equa-
tions in one space dimension:

(
ρ
ρu

)

t

+

(
ρu

ρu2 + p

)

x

= 0 . (4)

At t = 0 a membrane is separating a region with a high-pressure gas from
a region with gas at a lower pressure.

a) Describe how the solution is evolving as a function of time once the
membrane is removed.

b) What type of discontinuity is excluded when solving equation (4) in-
stead of the full Euler equations, and why?

28. Give at least one reason for using artificial viscosity when solving a con-
servation law using the MacCormack scheme. Why does one not use any
artificial viscosity in an upwind discretisation?

29. Projection on a divergence-free space

a) Show that a vector field wi can be decomposed into

wi = ui +
∂p

∂xi

where u is divergence free and parallel to the boundary.

b) Apply this to the Navier-Stokes equations, show that the pressure term
disappears and recover an equation for the pressure from the gradient
part.

30. From the differential form of the Navier-Stokes equations obtain the Navier-
Stokes equations in integral form used in finite-volume discretizations.

31. Finite volume (FV) discretization

(a) Derive the finite volume (FV) discretization on arbitrary grids of the
continuity equation (∂ui/∂xi = 0),

(b) derive the FV discretization for the Laplace equation on a Cartesian
grid,

(c) show that both are equivalent to a central difference approximation
for Cartesian grids.

32. State the difficulties associated with the finite-volume discretizations of
the Navier-Stokes equations on a co-located grid and show the form of
the spurious solution which exist.

33. Staggered grid

(a) Define an appropriate staggered grid that can be used for the dis-
cretization of the Navier-Stokes equations,



Computational Fluid Dynamics SG2212, Mechanics 7

(b) write down the FV discretization of the Navier-Stokes equations on
a staggered cartesian grid,

(c) discuss how to treat noslip and inflow/outflow boundary conditions.

34. Time dependent flows.

(a) Define a simple projection method for the time dependent incom-
pressible Navier-Stokes equations

d

dt

(
u

0

)

+

(
N(u) G

D 0

)(
u

p

)

=

(
f

0

)

(b) show in detail the equation for the pressure to be solved at each time
step and discuss the boundary conditions for the pressure.

35. Iterative techniques for linear systems.

(a) Define Gauss-Seidel iterations for the Laplace equation, give the con-
vergence rate and derive an approximation for number of iterations
required for error reduction of O(h2).

(b) Describe the idea behind multigrid methods.

(c) Dedcribe the 2-level multigrid method for the Laplace equation.

36. Coordinate transformation

(a) Define the coordinate transformation from a Cartesian one (x, y, z) to
a general one (ξ, η, ζ). State the Jacobian matrix of transformation
and describe a practical way of computing it.

(b) Derive the transformation of the 2D Navier-Stokes equations

from
∂U

∂t
+

∂F

∂x
+

∂G

∂y
= 0 to

∂U′

∂t
+

∂F′

∂ξ
+

∂G

∂η
= 0,

and give the vectors U′,F′ and G′ in terms of U,F and G.

37. Compact finite-difference scheme

Consider the general approximation of type

β(f ′

i+2 + f ′

i−2) + α(f ′

i+1 + f ′

i−1) + f ′

i =

c

6h
(fi+3 − fi−3) +

b

4h
(fi+2 − fi−2) +

a

2h
(fi+1 − fi−1),
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(a) and derive the equations
which should be satisfied to
get different order of accu-
racy for discretization of first
derivative f ′

i .

(b) By Fourier analysis of the dif-
ferencing error of the scheme
above derive an expression for
the modified wavenumber.

(c) What do the curves in the fig-
ure tell us?
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38. Unstructured Node-Centered finite volume.

(a) Define the dual grid.

(b) Present a finite-volume approxima-
tion of ut = uxx +uyy. Examine the
consistency of the scheme and give
the order of the accuracy (use the
grid given here).

3
1

45

6

7
2

h

h

(c) Show that the ux at node c can be approximated by the following
finite-volume approximation and proof that its accuracy is O(h) (first
order),

(ux)c ≈
1

Vc

∑

i

uc + ui

2
δyi.

(Vc is the volume of the dual grid)
C

1
2

3

4

5

39. Upwind discretization

(a) Consider equation ut + aux = 0, where a is the convective veloc-
ity. Give a first-order accurate upwind discretization of his equation
which is stable independent of the sign of a.

(b) Define a flux spliting scheme for discretization of one-dimensional
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Euler equations

∂U

∂t
+

∂E

∂x
= 0, U =





ρ
ρu
Et



 , E =





ρu
ρu2

(Et + p)u



 .

40. You want to solve the Helmholtz equation

u′′(x) − a2u(x) = b (5)

on a domain |x| ≤ 1 using a Chebyshev collocation method.

a) Write down the general series ansatz for the solution uN (x).

b) Using the derivative matrix D, derive the discretised version of equa-
tion (5) as a function of the vector uN of the solution at the grid
points xj.

c) Given are the inhomogeneous boundary conditions u(−1) = −1 and
u(1) = 1. Transform equation (5) into an equation with homo-
geneous boundary conditions via introducing a function uB . Use
uB = x:

- Explain why this is a good choice for uB?

- Explain how the discretised system from b) is changing and how
you would then incorporate the homogeneous boundary condi-
tions.

d) Now consider the boundary conditions to be u(−1) = −1 and u′(1) =
1. Directly solving this problem with inhomogeneous boundary con-
ditions, how would you incorporate the boundary conditions then?

41. Consider the advection equation ut + aux = 0 on a periodic domain with
L = 2π.

a) Derive a Fourier-Galerkin approximation. Go through all steps in-
volved, i.e. expansion in trial functions, definition of the residual,
multiplication with test functions, simplifications.

b) Derive a Fourier-collocation approximation of the same equation.
Use a derivative matrix D

F
to express the spatial derivatives.

c) Can you describe how to compute the Fourier derivative matrix D
F

d) Are there any differences to be expected from a numerical solution
of a) and b)?

42. Describe the pseudo-spectral method. What is the difference of the eval-
uation of a non-linear term wj = ujvj by using a true Galerkin approxi-
mation for ŵGAL

k or the pseudo-spectral evaluation ŵPS
k ?

Are there possibilities to avoid these problems?


