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Lecture notes - basic numerics

In the first part of the course the following topics will be covered (briefly)

• Model problems and classification

• Finite differences

• Analysis of discretized equations

• Properties of different numerical methods applied to certain test problems

Most of the material here can be found in more details in copies from Tannehill,
Anderson and Pletcher and R.J. LeVeque.

1 Model problems and classification

Model problems: often the full problem is reduced to a model problem which
essentially has the same properties but is simpler with respect to both analytical
and numerical treatment.

1.1 Mathematical classification

There are three main classes of partial differential equations

• Elliptic equations

• Hyperbolic equations

• Parabolic equations

Why are we interested in classifying our problems or equations ? There are a
number of reasons

1. The solution to different kind of problems or equations behaves differently.

2. The number of boundary conditions and type of initial data depend on
the kind of equation to be solved.

3. The choice of a numerical method depends on what kind of equation you
want to solve.

The classification will be illustrated by a few examples that are important for
this course.
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1.1.1 First order linear system of partial differential equations

U t +AUx = 0

where U is a vector ∈ R
n and A is an n× n matrix with constant elements.

The system is

• Hyperbolic if the eigenvalues of A, λ(A), are real and distinct

• Elliptic if the eigenvalues, λ(A), are purely imaginary

Example 1

Linear wave equation

ut + aux = 0, a ∈ R, constant

a is real and this is a hyperbolic equation.

Example 2

Prandtl-Glauert equations

They describe compressible, inviscid flow over a thin airfoil.

(1−M2
∞)Φxx + Φyy = 0 (1)

where M∞ is the free stream Mach number and Φ is the velocity potential.

M∞ =
U∞
c∞

where c∞ is the speed of sound in free stream and U∞ is the velocity in the free
stream (far from the airfoil).

To classify this PDE, rewrite equation (1) as a first order system. Let u = Φx

and v = Φy, where u and v are the velocity components in the x- and y-
directions, then (

u
v

)
x

+

(
0 − 1

M2∞−1

−1 0

)
︸ ︷︷ ︸

A

(
u
v

)
y

= 0 (2)

The eigenvalues of A are

λ1,2 = ±
√

1
M2∞ − 1

This system is

• Hyperbolic if M∞ > 1, supersonic flow

• Elliptic if M∞ < 1, subsonic flow
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1.2 Second order linear system of partial differential equations

U t +AUxx +BUx +BU +D = 0

where U is a vector ∈ R
n and A,B,C,D are n × n matrices with constant

elements.

The system is

• Parabolic if Re(λ(A)) < 0

Example 3

Heat equation
ut + αuxx = 0

This equation is parabolic if α < 0. With α > 0 this equation is called the
backward heat equation and it has no well-defined solutions. The problem is
not well-posed.

1.3 Characteristic behavior of the solution to different kind of
equations

• Hyperbolic equations - transport properties (advection along characteris-
tics), develop discontinuous solutions (if a non-linear problem)

• Parabolic equations - smoothing properties

• Elliptic equations - no marching (in time) properties

1.3.1 Hyperbolic equations

Examples of hyperbolic equations:

Linear wave equation: ut + aux = 0

Burger’s equation: ut + uux = εuxx

Euler equations (here in 1D):
 ρρu
E




t

+


 ρu
ρu2 + p
(E + p)u




x

= 0

where ρ is the density, u is the velocity, p is the pressure and E is the (total)
energy.

Prandtl-Glauert equations for supersonic flow:

(1−M2
∞)Φxx + Φyy = 0 M∞ > 1
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Example 1

Linear wave equation (advection equation)

ut + aux = 0, a ∈ R > 0, t > 0
u(x, 0) = u0(x), −∞ < x <∞

To understand the advection properties of the solution, look at the time deriva-
tive of u(X(t), t) along the ray X(t)

d

dt
u(X(t), t) = {chain rule} = ut(X(t), t) +

dX

dt
ux(X(t), t) = 0 if

dX

dt
= a

This mean that the solution, u, is constant along a characteristic with the slope
1/a and the solution to the linear wave equation is

u(x, t) = u0(x− at)

i.e. the initial value of u is simply advected with constant velocity a.

Example 2

Burger’s equation (non-linear)

ut +
(
1
2
u2

)
x

= εuxx

This equation was introduced as the simplest model equation that captures
some key features of gas dynamics (Euler equations).

Here we will look at the inviscid Burger’s equation (ε = 0), written in quasilinear
form

ut + uux = 0, t > 0
u(x, 0) = u0(x), −∞ < x <∞

Look again at the time derivative of u(X(t), t) along the ray X(t)

d

dt
u(X(t), t) = ut(X(t), t) +

dX

dt
ux(X(t), t) = 0 if

dX

dt
= u

In this case, the solution, u, is constant along a characteristic with the slope
1/u. That is, the characteristics depend on the solution and has no longer a
constant slope.

Typical for non-linear hyperbolic equations is that even though initial data is
smooth a discontinuous solution can develop. This has to be considered when
solving this kind of problems numerically.
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1.3.2 Parabolic equations

Example of parabolic equations:

Heat equation: ut + αuxx = 0

Navier-Stokes equations (2D, incompressible):

ux + vy = 0 continuity equation

ut + uux + vuy = −1
ρ
px + ν(uxx + uyy) momentum equation in x

vt + uvx + vvy = −1
ρ
py + ν(vxx + vyy)) momentum equation in y

They have parabolic properties because of the viscous terms ν(uxx + uyy) and
ν(vxx + vyy), where ν is the kinematic viscosity.

Example 3

Advection-diffusion equation

ut + aux + αuxx = 0, α < 0

where α is called the diffusion constant.

This equation has a transport property due to aux but also a smoothing prop-
erty due to αuxx. So, e.g. if the initial data is discontinuous the discontinuity
will smear out and eventually become smooth.

Numerical problems can occur if e.g. α is large (fast diffusion process) since
very small time steps are needed to capture the process.

1.3.3 Elliptic equations

Example of elliptic equations:

Laplace equation: uxx + uyy = 0

Prandtl-Glauert equations for subsonic flow:

(1−M2
∞)Φxx + Φyy = 0, M∞ < 1

Stokes equations for slow, steady, viscous flow:

uv + vy = 0
px = µ(uxx + uyy)
py = µ(vxx + vyy)

where µ = ρν is called dynamic viscosity.
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Example 4

Prandtl-Glauert equations

(1−M2
∞)Φxx + Φyy = 0

In this case there is no marching property. The solution in one point is influ-
enced by the solution in all other points in the domain including the boundary
conditions. This means that elliptic equations has to be solved numerically for
all points simultaneously. This can be very memory consuming if the equation
is discretized on a fine mesh with many grid points.

2 Finite differences

Discretization by finite differences:

The dependent variables are considered to exist only at discrete points, grid
points.

Derivatives are approximated by differences which leads to an algebraic repre-
sentation of the PDE and its solution.

2.1 Discretization in space

In 2D we divide the space into a finite number of grid points. We obtain a grid
or mesh.
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Figure 1: 2D uniform mesh

If Lx and Ly are the total length of the computational domain in the x and
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y-directions, then

∆x =
Lx

Nx− 1
∆y =

Ly

Ny − 1

where Nx and Ny are the total number of grid point in each direction.

To represent the solution on the mesh we define a grid function, uij , which is
an approximation to the exact solution, u(xi, yj), in the grid point (xi, yj) as

uij ≈ u(xi, yj)

The idea of finite differences is to approximate derivatives by differences:

First order derivatives

Central differences (
∂u

∂x

)
ij

≈ ui+1j − ui−1,j

2∆x
≡ D0,xuij(

∂u

∂y

)
ij

≈ uij+1 − uij−1

2∆y
≡ D0,yuij

Skew differences

Forward difference
(
∂u

∂x

)
ij

≈ ui+1j − uij

∆x
≡ D+,xuij

Backward difference
(
∂u

∂x

)
ij

≈ uij − ui−1j

∆x
≡ D−,xuij

Second order derivatives

Central difference(
∂2u

∂x2

)
ij

≈ ui+1j − 2uij + ui−1j

∆x2
= D+,xD−,xuij(

∂2u

∂y2

)
ij

≈ uij+1 − 2uij + uij−1

∆y2
= D+,yD−,yuij(

∂2u

∂x∂y

)
ij

≈ ui+1j+1 − ui+1j−1 − ui−1j+1 + ui−1j−1

4∆x∆y
= D0,xD0,yuij
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2.2 Discretization in time

We can also discretize in time-space as

x∆x jLx ( )
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j,n+1

j,n−1

t

(n)

∆ t

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

Figure 2: Time-space mesh

In this case we write the grid function as

un
j ≈ u(xj , tn)

or in 2D and time
un

ij ≈ u(xi, yj , tn)

There are two approaches to approximate the time derivative

• Explicit

• Implicit

Illustrate by an example.

Heat equation

ut − αuxx = 0, 0 < x < 1
u(x, 0) = u0(x)
u(0, t) = 0, u(1, t) = 0

When we discretize in space we obtain the semi-discrete problem

duj

dt
=

α

∆x2
(uj+1 − 2uj + uj−1) = αD+D−uj
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Explicit discretization in time by the forward Euler scheme

un+1
j − un

j

∆t
= αD+D−un

j

Why do we call this explicit ? Rewrite the scheme as

un+1
j = un

j + ∆tαD+D−un
j = (1 + ∆tαD+D−)un

j

If we know uj ∀j at t = tn then we can compute un+1
j ∀j for one j at the time.

Implicit discretization in time by the backward Euler scheme

un+1
j − un

j

∆t
= αD+D−un+1

j

Why do we call this implicit ? Rewrite the scheme as

(1−∆tαD+D−)︸ ︷︷ ︸
A

un+1
j = un

j

We have to solve for all un+1
j at the same time, i.e. a linear system of equations,

Aun+1
j = un

j has to be solved at each time step.

Explicit vs implicit schemes?

Explicit schemes

+ Easier to implement

- Often severe restrictions on the time step

Implicit schemes

- Harder to implement since we have to construct the matrix, A

- Have to solve a (large) linear system of equation in every time step - time
and memory consuming

+ Often larger time steps than with an explicit method

There are no general rules when it comes to choosing between an explicit or
implicit method. It is very much problem dependent.

3 Analysis of discretized equations

What conditions do we have to impose on our numerical scheme in order to
obtain an accurate approximation of the PDE ?

• Consistency - order of accuracy

• Stability - von Neumann analysis

• Convergence - Lax equivalence theorem
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3.1 Consistency

How well does the finite difference approximation approximate the PDE ?

Definition:

A finite difference representation of a PDE is said to be consistent if we can
show that the truncation error vanishes as the mesh is refined, i.e.

lim
∆x,∆y→0

(PDE-FDE) = lim
∆x,∆y→0

TE = 0

where FDE is the finite difference equation (numerical scheme or approxima-
tion) and TE is the truncation error. The truncation error is defined as the
difference between the PDE and the finite difference representation, FDE.

Example 1

Approximate the linear wave equation

ut + aux = 0, a < 0

by forward finite difference

un+1
j − un

j

∆t
+ a

un
j+1 − un

j

∆x
= 0 (FDE)

How can we find the truncation error ? Replace the approximate solution,
un

j , by the exact solution, u(xj , tn) = u(x, t), in the finite difference equation,
(FDE).

TE =
u(x, t+ ∆t)− u(x, t)

∆t
+ a

u(x+ ∆x, t)− u(x, t)
∆x

Taylor expand the terms in the expression for the truncation error around
u(xj , tn) = u(x, t) = u. Then we obtain

TE =
1
∆t

(u+ ∆tut +
∆t2

2
utt +O(∆t3)− u) + a

∆x
(u+ ∆xux +

∆x2

2
uxx +O(∆t3)− u) =

{ut + aux = 0} =
∆t
2
utt +

a∆x
2
uxx +O(∆t2,∆x2)

Use the PDE to obtain a relation between utt and uxx

ut = −aux, utt = −auxt = −autx

utx = −auxx, utt = a2uxx

Use this relation in the expression for the truncation error

TE =
a2∆t
2
uxx +

a∆x
2
uxx +O(∆t2,∆x2) =

∆t
2

(
a2 +

a∆x
∆t

)
uxx︸ ︷︷ ︸

leading term

+O(∆t2,∆x2) ≈ O(∆t,∆x)
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In this case,
lim

∆x,∆y→0
TE → 0

and the numerical approximation of the linear wave equation is consistent.

We can also use the truncation error to define the order of accuracy of the
numerical method.

Definition:

If the leading term in the truncation error is of order O(∆tp,∆xq) the numerical
approximation has the order of accuracy p in time and q in space.

In the example above, p = 1 and q = 1 and the approximation is first order
accurate in time and space.

3.2 Stability

A stable numerical approximation is an approximation for which errors from
any source (round-off, truncation) are not permitted to grow as the calculation
proceeds from one time step to the next.

We will use von Neumann analysis to analyze the stability of a numerical
scheme. This kind of analysis only apply to linear problems with constant co-
efficients and neglect effects of boundary conditions (we assume periodic prob-
lems).

Illustrate by an example

Example 1 Solve linear wave equation

ut + aux = 0, a > 0

by a backward difference

un+1
j − un

j

∆t
+ a

un
j − un

j−1

∆x
= 0 (FDE)

We are interested in the growth of the numerical error defined in a grid point
as εnj = Nn

j −Dn
j where Nn

j refers to the computed numerical solution and Dn
j

is the exact solution to the finite difference equation, (FDE).

To find an equation for the numerical error, insert the computed numerical
solution, Nn

j = εnj +Dn
j into the (FDE).

1
∆t

(Dn+1
j + εn+1

j −Dn
j − εnj ) +

a

∆x
(Dn

j + εnj −Dn
j−1 − εnj−1) = 0

Since Dn
j is the exact solution to the (FDE) we obtain

1
∆t

(εn+1
j − εnj ) +

a

∆x
(εnj − εnj−1) = 0 (3)
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A good way of representing the error is by Fourier series

εnj =
∞∑

k=−∞
En(k)eikj∆x

where En(k) is the amplitude, k = 2π/λ is the wave number, λ is the wave
length and i =

√−1. Since this is a linear problem it suffices to consider an
arbitrary single wave number, i.e. let

εnj = Eneikj∆x

Insert εnj into the equation for the numerical error, (3)

1
∆t

(En+1eikj∆x − Eneikj∆x) +
a

∆x
(Eneikj∆x − Eneik(j−1)∆x) =

1
∆t

(En+1 − En) +
a

∆x
(En − Ene−ik∆x) = 0

We can rewrite this to obtain an equation for the amplitude of the error

En+1

En
= 1− a∆t

∆x
(1− e−ik∆x)︸ ︷︷ ︸

G(k∆x)

and the condition for the error to decay is that∣∣∣∣En+1

En

∣∣∣∣ = |G(k∆x)| ≤ 1, ∀k

where G(k∆x) is called the amplification factor.

The amplification factor can be used to find conditions on ∆x and ∆t such that
|G(k∆x)| ≤ 1. In the example above we find that

a∆t
∆x

= CN ≤ 1

where CN is called the Courant number and the condition that CN ≤ 1 is
called the CFL-condition (Courant-Friedrichs-Levy, 1920).

If we solve the same equation as in Example 1 but with a < 0 using the same
numerical scheme, we can not find any ∆t or ∆x such that |G(k∆x)| ≤ 1. In
this case the numerical approximation is unconditionally unstable and will not
produce a solution to the PDE.

3.3 Convergence

Convergence: If the solution to the finite difference equation approaches the
exact solution to the partial difference equation as the mesh is refined, i.e.

un
j → u(x, t)

at any point xj = j∆x
at any time tn = n∆t
as ∆x,∆t→ 0
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the numerical solution is convergent.

Convergence is often very difficult to check since we do not have the exact
solution to the PDE. However there is a theorem by Lax called

Lax equivalence theorem

Given a well-posed initial value problem and a finite difference approximation,
then if the difference approximation satisfies

i Consistency: lim∆x,∆t→0 TE = 0

ii Stability: |G(k∆x)| ≤ 1

⇐⇒ (Necessary and sufficient)

iii Convergence: un
j → u(x, t) as ∆x,∆t→ 0

4 Properties of different numerical schemes applied
to a test problem

Look at four different numerical approximations to the linear wave equation.

ut + aux = 0, a > 0
u(x, 0) = u0(x)

where u0(x) is a square wave, see figures.

• Lax-Friedrichs scheme (first order)

• Upwind scheme (first order)

• Lax-Wendroff scheme (second order)

• Beam-Warming scheme (second order)

They are all stable, consistent and hence convergent for this test problem, still
they will give us four quite different numerical solutions.

Typical for first order methods is that numerical diffusion is added to the numer-
ical solution by the numerical scheme. Typical for second order approximations
is that the numerical scheme produces solutions with spurious oscillations.

Lax-Friedrichs scheme

un+1
j =

1
2
(
un

j−1 + un
j+1

)− a∆t
2∆x

(
un

j+1 − un
j−1

)
In this case the numerical solution will be “smeared” out compared to the exact
solution. See Figure 3.
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Figure 3: Numerical solution computed using Lax-Friedrichs method (solid line
+ ) compared to the exact solution (dashed line)

Upwind scheme

un+1
j = un

j − a∆t
∆x

(
un

j − un
j−1

)
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Upwind scheme

x

u(
x,

0.
8)

Figure 4: Numerical solution computed using Upwind method (solid line + )
compared to the exact solution (dashed line)

Also, in this case the numerical solution is “smeared” compared to the exact
solution (see figure above). However, the solution is less smeared out than the
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numerical solution obtained with Lax-Friedrichs scheme.

Lax-Wendroff scheme

un+1
j = un

j − a∆t
2∆x

(
un

j+1 − un
j−1

)
+

(a∆t)2

2∆x2

(
un

j+1 − 2un
j + un

j−1

)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

x

u(
x,

0.
8)

Lax−Wendroff scheme

Figure 5: Numerical solution computed using Lax-Wendroff method (solid line
+ ) compared to the exact solution (dashed line)

Note the oscillations that appear in front of the jumps. This is typically for
second order numerical schemes and is related to a dispersion error introduced
by the numerical approximation.

Beam-Warming scheme

un+1
j = un

j − a∆t
2∆x

(
3un

j − 4un
j−1 + un

j−2

)
+

(a∆t)2

2∆x2

(
un

j − 2un
j−1 + un

j−2

)
In this case the oscillations appear behind the jumps as can be seen in the figure
below.

Computational Fluid Dynamics 5C1212 Mekanik/NADA, Spring 2004 (KG)16

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5
Beam−Warming scheme

x

u(
x,

0.
8)

Figure 6: Numerical solution computed using Beam-Warming method (solid
line + ) compared to the exact solution (dashed line)

Can we explain the fact that these numerical approximations of the same dif-
ferential equation produce quite different solutions ?

4.1 Modified equation

To understand the qualitative behavior of a numerical method, we will try to
answer the following question. Can we find a PDE (modified equation) to which
our numerical approximation un

j is a better approximation than to the original
PDE that we are attempting to solve ?

In fact it is possible to find a PDE that is exactly satisfied by the numerical
approximation un

j by using Taylor series expansion in the same way as we do
to compute the local truncation error. However, this PDE will have infinite
number of terms involving higher and higher powers of ∆t and ∆x. If this
series is truncated at some proper point, a PDE is obtained called the modified
equation. This PDE will give us an indication of the behavior of the numerical
approximation un

j .

The derivation of the modified equation will be illustrated by two examples.

Example 1

Solve the linear wave equation

ut + aux = 0, a > 0 (PDE)
u(x, 0) = u0(x)
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by the Lax-Friedrichs method

un+1
j =

1
2
(
un

j−1 + un
j+1

)− a∆t
2∆x

(
un

j+1 − un
j−1

)
(FDE)

To find the modified equation we proceed in the same way as we did when
we computed the truncation error. Replace the approximate solution un

j by a
function v = v(xj , tn) and Taylor expand. Then we obtain

vt + avx = −1
2
∆t (vtt − (

∆x
∆t

)2vxx)︸ ︷︷ ︸
O(∆t)

+O(∆t2,∆x2)︸ ︷︷ ︸
O(∆t2)

If we let ∆t/∆x be fixed, we have terms of order ∆t and ∆t2. Since ∆t is small
we can truncate this series.

Drop terms of order O(∆t) or smaller, then the equation

vt + avx = 0

is approximated to O(∆t) by the finite difference equation (FDE).

Drop terms of order O(∆t2) or smaller, then the equation

vt + avx = −1
2
∆t(vtt − (

∆x
∆t

)2vxx)

is approximated to O(∆t2) by the finite difference equation (FDE). This means
that this equation is approximated by the finite difference approximation, (FDE),
more accurate than the original equation, (PDE).

If we express the vtt term in the equation above in terms of x-derivatives, we
obtain the modified equation, (MPDE), for the Lax-Friedrichs method

vt + avx = −1
2
∆t(a2 − (

∆x
∆t

)2)vxx (MPDE)

The modified equation is a advection-diffusion equation

vt + avx︸︷︷︸
convection

= εvxx︸︷︷︸
diffusion

(4)

Solutions to the advection-diffusion equation translates the wave at the proper
speed a, see Figures 3 and 4. However, the term, εvxx, will diffuse and smear
the solution. The diffusive term will vanish as the mesh is refined.

Example 2

Solve the linear wave equation

ut + aux = 0, a > 0 (PDE)
u(x, 0) = u0(x)
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by the Beam-Warming scheme

un+1
j = un

j −
a∆t
2∆x

(
3un

j − 4un
j−1 + un

j−2

)
+

(a∆t)2

2∆x2

(
un

j − 2un
j−1 + un

j−2

)
(FDE)

If we do as in the previous example we will obtain the following modified equa-
tion

vt + avx =
a∆x2

6

(
2− 3a∆t

∆x
+ (
a∆t
∆x

)2
)
vxxx (MPDE)

This equation is a dispersive equation on the form

vt + avx︸︷︷︸
convection

= γvxxx︸ ︷︷ ︸
dispersion

(5)

and the solution has a very different character compared to the advection-
diffusion equation (4). How does the solution to a dispersive equation, (5),
behave ?

Look for a solution on the form

v(x, t) = V eikx+ωt

Inserted in equation (5), we obtain the dispersion relation

ω = −ik(a+ γk2)

and the solution can be written

v(x, t) = V eik(x−(a+γk2)t)

This is a traveling wave where components with different wave numbers, k,
travel with different speeds. This can clearly be seen if we compare the solution
given by equation (4.1) to the solution of the linear wave equation which is a
traveling wave with constant speed, a

u(x, t) = u0e
ik(x−at)

A numerical scheme of second order modifies the wave speed from a constant a
to in this case a+ γk2, which is not constant but depend on the wave numbers
k.

Note, that in the special case when CN = a∆t/∆x = 1, both the diffusive term
in equation (4) and the dispersive term in equation (5) will vanish.


