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Abstract

Atmospheric and oceanic flows are strongly affected by rotation and stratifica-
tion. Rotation is exerted through Coriolis forces which mainly act in horizontal
planes whereas stratification largely affects the motion along the vertical direc-
tion through buoyancy forces, the latters related to the vertical variation of the
fluid density. Aiming at a better understanding of atmospheric and oceanic
processes, in this thesis the properties of turbulence in rotating and stably
stratified flows are studied by means of numerical simulations, with and with-
out the presence of solid walls.

A new code is developed in order to carry out high-resolution numerical
simulations of geostrophic turbulence forced at large scales. The code was
heavily parallelized with MPI (Message Passing Interface) in order to be run
on massively parallel computers. The main problem which has been investi-
gated is how the turbulent cascade is affected by the presence of strong but
finite rotation and stratification. As opposed to the early theories in the field of
geostrophic turbulence, we show that there is a forward energy cascade which is
initiated at large scales. The contribution of this process to the general dynamic
is secondary at large scales but becomes dominant at smaller scales where leads
to a shallowing of the energy spectrum. Despite the idealized set-up of the sim-
ulations, two-point statistics show remarkable agreement with measurements in
the atmosphere, suggesting that this process may be an important mechanism
for energy transfer in the atmosphere.

The effect of stratification in wall-bounded turbulence is investigated by
means of direct numerical simulations of open-channel flows. An existing full-
channel code was modified in order to optimize the grid in the vertical direction
and avoid the clustering of grid points at the upper boundary, where the solid
wall is replaced by a free-shear condition. The stable stratification which results
from a cooling applied at the solid wall largely affects the outer structures
of the boundary layer, whereas the near-wall structures appear to be mostly
unchanged. The effect of gravity waves is also studied, and a new decomposition
is introduced in order to separate the gravity wave field from the turbulent field.

Descriptors: Geostrophic turbulence, stable stratification, rotation, wall-
bounded turbulence, gravity waves, atmospherical dynamics, direct numerical
simulations
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Preface

This thesis deals with the numerical investigation of the property of stratified
and rotating turbulence, both with and without the presence of walls. A brief
introduction on the basic concepts and methods is presented in the first part.
The second part contains three articles and one internal report. The papers
are adjusted to comply with the present thesis format for consistency, but their
contents have not been altered as compared with their original counterparts.

Paper 1. A. Vallgren, E. Deusebio & E. Lindborg, 2011
Possible Explanation of the Atmospheric Kinetic and Potential Energy Spec-
tra. Physical Review Letters, 107:26, 268501.

Paper 2. E. Deusebio, A. Vallgren & E. Lindborg, 2012
The route to dissipation in strongly stratified and rotating flows. Submitted -
Journal of Fluid Mechanics

Paper 3. E. Deusebio, P. Schlatter, G. Brethouwer & E. Lindborg,
2011
Direct numerical simulations of stratified open channel flows J. Phys., Conf.
Ser., 318, 022009.

Paper 4. E. Deusebio, 2010
The open-channel version of SIMSON Internal Report
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Part I

Introduction





CHAPTER 1

Turbulence and numerical simulations

“Observe the motion of the surface of the water which resembles that of hair,
and has two motions, of which one goes on with the flow of the surface, the
other forms the lines of the eddies; thus the water forms eddying whirlpools
one part of which are due to the impetus of the principal current and the other
to the incidental motion and return flow1.” It was between the XV and the
XVI century that the first attempt of a scientific study of turbulent motions
was done by the Italian Leonardo da Vinci. More than five hundred years
later, turbulence is still an object of vivid and active research. A subject yet
not understood and in certain aspects mysterious. Richard Feynman describes
turbulence as one of the most important unsolved problem of classical physics
(Feynman 1964). The note left by Leonardo da Vinci already contains a de-
scription of some important characteristic features of turbulence: the presence
of eddies and swirling motions which, in a rather chaotic manner, superimpose
on the main motion of the fluid. It was the same observation which led Rey-
nolds (1895), almost four hundred years later, to describe turbulent motions
statistically by decomposing the velocity field into a mean and a fluctuating
part. Indeed, the perhaps most important insight into the essentials of tur-
bulence goes back to less than a hundred years ago, with the observations of
Richardson (1922)

Big whirls have little whirls
that feed on their velocity,
and little whirls have lesser whirls
and so on to viscosity

Far from being trivial, Richardson’s observation constitutes the ground on
which all the following theories were based (e.g. Kolmogorov 1941b). Large
eddies break down into smaller eddies in an inviscid process which continues
until energy is converted into heat at the very smallest scales of motions where
viscosity dominates. Thus, turbulent flows possess many scales, both in space
and in time. Indeed, turbulent flows own their intrinsic complexity to the
interplay among these scales.

From an historical perspective, most of the advances in the understanding
of turbulent processes were made in the past 150 years, since the pioneer work

1see Richter, J. P. 1970. Plate 20 and Note 389. In The Notebooks of Leonardo Da Vinci.

New York: Dover Publications.
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4 1. TURBULENCE AND NUMERICAL SIMULATIONS

Figure 1.1. da Vinci sketch of a turbulent flow

of Reynolds. Besides the experimental investigations, a substantial amount of
work has also been dedicated to theoretical investigations of turbulence. Several
approaches were proposed and undertaken. Strongly influenced by the view of
turbulent motions as chaotic and unpredictable, the early studies mainly aimed
at a statistical characterization of the dynamics.

Perhaps the most important contribution to a quantitative statistical de-
scription of turbulent flows is the theory proposed by Kolmogorov (1941b). As
eddies break down into smaller eddies, they lose any preferable orientation and
the anisotropy of the large scales of the flow is progressively lost. Kolmogorov
(1941b) suggested that statistical quantities in the cascade do not depend nei-
ther on the direction nor on spatial coordinates, but they attain an universal
form which depends only on the energy flux, ε, through the cascade and, at
small scales, on the viscosity ν. Despite its simplicity, Kolmogorov (1941b)
theory has been able to make quantitatively accurate predictions.

The apparent chaotic and unpredictable nature of turbulent flows seems
to be in contrast with the deterministic nature of the Navier-Stokes equations
which govern the fluid motions. Besides the statistical approach, other ap-
proaches have also been proposed, postulating the presence of more organized
patterns. The structural approach aims at identifying coherent structures which
cyclically appears in the flow and sustain the turbulent motions. The deter-
ministic approach, on the other hand, views a turbulent process as a nonlinear
dynamic system which exhibits a high dependence on initial conditions and
apparently chaotic solutions which, however, project onto particular objects in
phase-space, called “strange attractors”.
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In the last fifty years turbulence research has benefited from the powerful
tool of digital computers, which complementary to experiments, can be used to
study turbulence in detail. This thesis shows how such an approach could effec-
tively be employed in order to shed light on turbulent dynamics. As opposed
to experiments, numerical simulations allow us to obtain full information of
the flow fields and to perfectly control the external conditions (e.g. boundary
conditions). Moreover, they also allow us to study idealized and “non-physical“
setups where different factors/phenomena influencing the turbulent dynamics
can be separated.

The first attempt to a direct flow computation was made in the beginning
of the XX century by Richardson (1922), who undertook the first historical
weather forecast ever done. The measured atmospheric data were advanced in
time by using a rather simple mathematical model able to capture the main fea-
tures of the atmosphere, predicting the flow evolution in the next six hours. All
the computations were done by hand. Unfortunately, because some smoothing
techniques were not applied on the original data, Richardson’s forecast failed
dramatically. Nevertheless, it represents a mile-stone in the soon-to-appear era
of numerical simulations.

It is only from the beginning of the 1960 that the technology of the digital
computers were sufficiently developed to allow for the first numerical compu-
tations. Lorenz (1963), in his pioneer work, studied a simple version of the
Navier-Stokes equations, based on machine computations. The system studied
by Lorenz (1963) was nonlinear and deterministic, as the Navier-Stokes. More-
over, it also shares some common feature with turbulent motions, such as high
sensitivity to initial conditions and chaotic solutions. The work of Lorenz re-
solved the apparent paradox that deterministic systems can behave chaotically,
delineating the beginning of the modern view of turbulence as “deterministic
chaos”.

From a numerical perspective, the most challenging aspect of turbulence
is its intrinsic feature of containing a large range of scales that interact with
each other. If one aims at correctly simulating turbulent flows, all the scales,
from the large energy-containing scales to the very smallest scales, must be
represented, posing severe requirements on the computational demands. In
the atmosphere, for instance, the largest scales at which energy is injected are
of the order of thousand kilometres. On the other hand, viscosity acts only
at centimetre scales. To represent such a vast span of scales in a simulation
is, of course, impossible. Also numerical computations of turbulent flows in
engineering applications, e.g. flows around airplanes or cars, are nowadays
out of reach. The largest scale of turbulence is often referred to as the integral
lengthscale L, whereas the smallest scale is the Kolmogorov scale, defined as η =
ν3/4/ε1/4. The Kolmogorov scale is usually interpreted as the scale at which
viscosity acts and dissipates the downscale cascading energy. One fundamental
parameter in fluid dynamic applications is the Reynolds number, Re = UL/ν,
which quantifies the relative importance between inertial and viscous forces.
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Here, U is a characteristic large scale velocity. The ratio between the largest
scale, L, and the smallest viscosity affected scale, η, can be related to the
Reynolds number as L/η ∼ Re3/4. Values of Re in engineering applications are
typically of the order of 106, making the computation of turbulent flows out of
reach at the present point.

The first pioneer direct numerical simulations of a homogeneous and
isotropic turbulent flow dates back to the beginning of the 70s, with the work
of Orszag & Patterson (1972). The scale separation simulated was indeed very
limited, with 643 grid points, very far from being of practical interest for real
applications. The available computational resources at that time were not able
to meet the large Reynolds number of practical interest and, therefore, the
early attempts to numerically describe turbulent flows were deeply connected
with the development of mathematical models of turbulent motions.

The idea of replacing the exact Navier-Stokes equations with its fil-
tered/averaged counterparts goes back to the decomposition of Reynolds
(1895). The filtered scale-independent Reynolds Averaged Navier-Stokes
(RANS) equations, still exact, contain terms which are not closed and there-
fore need to be modelled, that is to say, a model for the turbulent fluctuations
must be constructed. The first attempt to model turbulence was proposed by
Boussinesq (1877), who suggested an analogy between turbulent motions and
the Brownian motion of gas molecules. Similarly, he postulated that the effect
of turbulent motions in the flow can be modelled by a fictitious eddy-viscosity.
Despite its simplicity and its limitations, the general idea of Boussinesq is still
widely used in many current turbulent models.

Starting from the 70s, the development of computational powers also led to
an increased interest in new more accurate models, with the aim of bridging the
gap between available computational resources and engineering applications.
Beside the efforts on improving the models of RANS, new approaches, such as
Large-Eddy Simulations (LES), were proposed (Smagorinsky 1963; Deardorff
1970). The underlying idea of these new approaches was to resolve the tur-
bulent scales to a certain extent and model the remaining part, the so called
sub-grid scales. As pointed out by Reynolds (1990), before the 90s computa-
tional power had not increased enough to make even LES feasible, and only
RANS were used in engineering practical applications. However, since LES
became feasible, it has been the subject of an increasing amount of studies
and represents the perhaps most promising technique of modelling turbulent
flows. Recent developments in the field of the LES includes the dynamic pro-
cedure proposed by Germano (1992) and Germano et al. (1991), varius forms
of “synthetic-velocity” (Domaradzki & Saiki 1997), approximate deconvolution
models (Stolz & Adams 1999) and explicit algebraic models (Gatski & Speziale
1993; Rasam et al. 2011).

In the 90s, computational resources had indeed reached a maturity which
made DNS at reasonably high Reynolds numbers possible. Besides the study of
homogeneous isotropic turbulence at high Reynolds numbers, turbulent flows
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in the presence of solid walls were also investigated. The first DNS of a fully
turbulent channel flow was performed by Kim et al. (1987). Interestingly, such
a study was shortly preceded by a DNS of the curved channel by Moser &
Moin (1987). The turbulent flat-plate boundary layer was first investigated by
Spalart (1988). The following years were extremely intense and a large num-
ber of studies were produced. The complexity of the flows gradually increased
by considering compressible, even reacting, flows and several non-trivial ge-
ometries. The evolution of the geometries also led to the development of new
numerical methods able to deal with curved and irregular walls.

Nevertheless, as noted by Moin & Mahesh (1998), Reynolds numbers at
that time were still rather low. The development of massively parallel machines
over the last decade has made it feasible to increase the Reynolds number by
almost one order of magnitude. In the field of isotropic and homogeneous tur-
bulence, DNS at resolutions of 40963 were performed by Kaneda et al. (2003).
In the field of wall-bounded flows, channel flows at a friction Reynolds number2

Reτ = 2000 were performed by Hoyas & Jiménez (2006), whereas its turbulent
boundary layer counterparts were studied by Schlatter et al. (2009) at a Reθ,
defined with the momentum thickness3 θ in place of L, of Reθ = 2500 and
Sillero et al. (2010) at Reθ = 6000. Nowadays, the Reynolds number that can
be reached in numerical simulations and in experiments are comparable, allow-
ing for a comparison and a complementary analysis (Schlatter & Örlü 2010;
Segalini et al. 2011). More importantly, the increase of the Reynolds number
allows us to gain important insights in the turbulent dynamics, revealing im-
portant features, such as intermittency (Benzi et al. 1993; Frisch 1996; Biferale

& Toschi 2001), the presence of coherent structures (Del Álamo et al. 2006) and
interactions among the different scales of the flow (Hoyas & Jiménez 2006).

In the spirit of the discussion above, in this thesis we aim at studying
the turbulent dynamics in the presence of rotation and stratification by means
of high-resolution numerical simulations. Such conditions are very important,
especially in a geophysical perspective. A thorough understanding of turbulent
processes should mainly focus on how energy is exchanged among the different
scales. This is important both from a scientific and a practical point of view.
Critical evaluations as well as related improvements of large-scale atmospheric
models cannot be achieved unless the physics and the main mechanisms of
the atmospheric dynamics are understood. In chapter 2, a short survey of
the background on turbulence strongly affected by rotation and stratification
is given. Chapter 3 offers a short overview on wall-bounded turbulence and
on the effect of a stable stratification. In chapter 4, the papers are presented.
Finally, chapter 5 concludes with some general remarks and outlook.

2defined as Reτ = uτL/ν. uτ =
√

τw/ρ is the friction velocity with τw being the shear stress

at the wall.

3defined as
∫

∞

0

(

1−
u

U∞

)

u
U∞

dy.



CHAPTER 2

Rotating and stratified turbulence: a geophysical

perspective

Atmospheric and oceanic flows are highly affected by both rotation and strat-
ification. Rotation is exerted through Coriolis forces which mainly act in hori-
zontal planes whereas stratification largely affects the motion along the vertical
direction through the Archimede’s force. Depending on the mean density pro-
file, stratification can either enhance or suppress vertical motions. Stratification
in the atmosphere is usually stable above the boundary layer (Vallis 2006; Gill
1982), i.e. a fluid particle which is displaced in the vertical direction tends to
return to its initial position.

Whereas highly rotating flows tend to form structures which are elongated
in the vertical direction (Taylor 1923), highly stratified flows favour thin struc-
tures elongated in the horizontal direction. Such structures are usually referred
to as pancake structures (Lindborg 2006; Brethouwer et al. 2007). It is the in-
terplay between these two regimes that gives rise to the variety of dynamics
seen in the atmosphere.

In the most general case, the governing equations for the flows in the atmo-
sphere and in the oceans are the compressible Navier-Stokes equations. Fluid
density may change from place to place, affected by other scalar quantities
such as pressure, temperature, humidity and salinity. Nevertheless, great in-
sight into the turbulent dynamics can be gained by reducing the complexity
of the problem by making a few assumptions. Following the standard deriva-
tion, we restrict ourself to the incompressible Navier-Stokes equations under
the Boussinesq approximation on a f -plane. These can be written as

Du

Dt
= −∇p

ρ0
− fez × u+Nbez, (2.1a)

Db

Dt
= −Nw, (2.1b)

∇ · u = 0 , (2.1c)

where u is the velocity vector, f = 2Ω is the Coriolis parameter with Ω being
the rotation rate in the f -plane, ez is the vertical unit vector and p is the
pressure. N =

√
g/T0dT/dz refers to the Brunt-Väisälä frequency, with being

g the gravity acceleration, T0 a reference temperature and dT/dz its vertical
gradient. b = gρ/(Nρ0) is the rescaled buoyancy, where ρ and ρ0 are the

8



2.1. GEOSTROPHIC TURBULENCE 9

fluctuating and background densities, respectively. With such a definition, b
has the unit of measure of a velocity. D/Dt represents the material derivative.
In (2.1) we have omitted diffusion terms which act only at very small scales.
In the following sections, we simplify this system for the different atmospheric
and oceanic regimes, shortly reviewing the main theories and the main open
questions concerning turbulence in geophysical flows.

2.1. Geostrophic turbulence

Atmospheric and oceanic dynamics are forced at very large scales. In the at-
mosphere, the available potential energy related to the polewards temperature
gradient is converted to kinetic energy by baroclinic instability which develops
on scales of the order of thousand kilometres. The general circulation of the
oceans is mainly driven by surface fluxes of momentum which also attain simi-
lar spatial scales. At such large scales, Earth rotation strongly affects the flow.
Moreover, the stratification is generally quite strong, both in the atmosphere
and in the oceans (Pedlosky 1987; Vallis 2006).

The relative importance of Coriolis forces and buoyancy forces compared
to inertial forces are often quantified by the Rossby and the Froude numbers,
defined as

Ro =
U

fL
and Fr =

U

NL
. (2.2)

Here, L is a characteristic horizontal scale and U a characteristic velocity.
These parameters are indeed small in large-scale geophysical applications. For
instance, in the atmosphere, reasonable values of Ro and Fr are of the order
of 0.1, for Ro, and 0.001, for Fr (Deusebio et al. 2012). Thus, in equations
(2.1) the horizontal pressure gradient is mainly balanced by Coriolis forces
(geostrophic balance), whereas the vertical pressure gradient is mainly balanced
by buoyancy forces (hydrostatic balance).

For strong rotation rates, an asymptotic analysis in Ro as a small parameter
is possible. For the details of such a derivation, we refer the reader to any
geophysical fluid dynamic textbook, such as Vallis (2006) or Pedlosky (1987).
At zero order, a horizontal divergence-free flow u0 which perfectly satisfies
geostrophic balance is recovered. At first order in Ro, the material conservation
of the Charney potential vorticity q0 (Charney 1971),

q0 = −∂u0
∂y

+
∂v0
∂x

+
f

N

∂b0
∂z

, (2.3)

is satisfied, i.e.
Dq0
Dt

= 0, (2.4)

where the material derivative retains only the horizontal advection contribu-
tions. In the following the subscript “0” will be dropped, for simplicity. As-
suming hydrostatic balance and rescaling the vertical coordinates with f/N ,
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Figure 2.1. Sketch of the energy spectrum in two-
dimensional and in QG turbulence (figure taken from Vallis
2006).

it is possible to rewrite q in terms of the stream function1 ψ as q = ∇2ψ.
In literature, equation (2.4) is often referred to as the quasi-geostrophic (QG)
equation. The zero order expansion also conserves energy, that is

D

Dt

u2 + v2 + b2

2
= − ∂

∂x
pu− ∂

∂y
pv − ∂

∂z
pw , (2.5)

if appropriate boundary conditions are chosen. Therefore, the QG equation
conserves independently two quadratic invariants, energy and potential enstro-
phy, where the latter is defined as half of the square of potential vorticity,
q2/2.

Moreover, the spectral counterparts of these two quantities, energy and
enstrophy, are related by

E(k) = k2 · Z(k). (2.6)

Here, k is the modulus of the three dimensional wave-vector k, whereas E(k)
and Z(k) are the energy and enstrophy content in mode k, respectively.
This distinctive property of the QG equation, also shared with strictly two-
dimensional flows, is indeed the basis of its most interesting feature: the pres-
ence of an inverse cascade of energy. As shown in a visionary paper of Kraich-
nan (1967), the presence of two related quadratic invariants in two-dimensional
flows leads to a global energy transfer towards large scales, as opposed to three-
dimensional flows. Enstrophy, on the other hand, is transferred towards small
scales in a forward cascade.

1being the zero order divergence free, the stream function uh = ∇× ψez completely define

the horizontal velocity.
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As shown in fig. 2.1, if energy and enstrophy are injected at a scale kf ,
energy cascades up-scale in the energy inertial range whereas enstrophy is trans-
ferred downscale in the enstrophy inertial range. Following similar arguments
as Kolmogorov (1941b), Kraichnan (1967) argued that inertial range statistics
at a particular scale l = 2π/k are universal and do not depend on the viscosity
ν. In the energy inertial range they only depend on the energy injection rate,
which is equal to the up-scale flux of energy, ε. Simple dimensional considera-
tions suggests a scaling for the energy spectrum as

E(k) = Kε2/3k−5/3. (2.7)

Note that such an expression is similar to the one derived by Kolmogorov
(1941b). In a similar way, assuming that the statistics in the enstrophy range
have a universal form which only depends on the enstrophy small-scale dissi-
pation leads to an energy spectrum of the form

E(k) = Cη2/3k−3. (2.8)

The dimensionless constants, K and C, are assumed to be universal and are of-
ten referred as Kraichnan and Kraichnan-Batchelor constant, respectively. The
theory of Kraichnan (1967) has been tested numerically in a number of studies.
Early investigations (Legras et al. 1988; Ohkitani 1990; Maltrud & Vallis 1993;
Ohkitani & Kida 1992) indicated a steeper energy spectrum in the enstrophy
range as compared to Kraichnan’s prediction. However, as computational re-
sourses allowed larger resolutions, (2.7) was recovered (Boffetta 2007; Vallgren
& Lindborg 2011). As for the energy inertial range, recent high-resolution nu-
merical simulations have confirmed the existence of an inverse energy cascade,
even though a somewhat steeper spectrum than (2.8) has been obtained by
some investigators. This steeper spectrum is likely to be a result of formation
of large scale coherent vortices (Scott 2007; Vallgren 2011).

Can QG dynamics alone explain the large scale atmospheric and oceanic
dynamics? Indeed, the inverse energy cascade of strongly rotating flows leaves
an empty gap on how energy can be dissipated in rotating systems such as
the Earth. Dissipation of kinetic and potential energy can only be achieved by
means of molecular viscosity and diffusion which act at very small scales. In the
atmosphere, for instance, these scales can be estimated to be of the order of few
centimetres or even millimetres. How to reconcile the picture of a large-scale
inverse energy cascade dynamics with the presence of small scale dissipation is a
problem that has become increasingly important as the resolution of numerical
models has increased. Since QG dynamics is not able to support a forward
energy cascade, non-balanced motions must be taken into account. How energy
can be transferred from balanced quasi-geostrophic motions to ageostrophic
motions is a fundamental question that, in the following, we attempt to answer
by means of high-resolution numerical simulations.
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2.2. Stratified turbulence

As the flow scales decrease, the effects of rotation and stratification are reduced.
In the atmosphere rotation becomes of secondary importance at scales of the
order of tens of kilometres. However, at such scales stratification is still very
important and typical Froude numbers are very small.

In the last decade there has been important advances in understanding of
turbulence in the presence of strong stratification. Thanks to novel numerical
experiments it has been possible to resolve the issue regarding the direction
of the energy cascade in the strongly stratified regime. In the early works
it was suggested that strong stratification favours an inverse energy cascade.
By rescaling the equations of motions as done by Riley et al. (1981), Lilly
(1983) argued that strong stratification leads to the suppression of vertical
motions and a two-dimensionalisation of the flow. In this limit, an inverse
cascade would therefore be achieved, as predicted by Kraichnan (1967). Lilly
(1983) suggested that in the atmosphere energy in decaying three-dimensional
convective turbulent patches would, by effect of the stable stratification, be
transferred up-scale and feed the growth of two-dimensional structures.

Despite the appeal of such a theory, the advances in the understanding
of strongly stratified turbulence in the last decade have proved Lilly’s view to
be wrong. In the limit of zero Fr, Billant & Chomaz (2001) showed that the
Navier-Stokes equations allow for self-similar solutions with a vertical length-
scale lz ∼ U/N , proposing an alternative scaling of the equations than the
one used by Lilly (1983) and Riley et al. (1981). Introducing different vertical
and horizontal lengthscales, lz and lh respectively, we find from the hydro-
static condition an estimate for b ∼ U2/Nlz and from (2.1b) an estimate for
w ∼ bU/Nlh ∼ UlhFr

2/lz. Thus, the following scalings for the convective
terms hold

u
∂

∂x
∼ U

lh
, w

∂

∂z
∼ Fr2

U lh
l2z

∼ U

lh

Fr2

δ2
, (2.9)

where δ = lz/lh. Thus, if the estimate of Billant & Chomaz (2001) is used
for lz, it follows that Fr ∼ δ and the vertical component of the convective
term is of leading order and cannot be neglected as done in the analysis of
Lilly (1983) and Riley et al. (1981). Billant & Chomaz (2001) introduced two
different Froude numbers in their analysis, Fh and Fv, based on the horizontal
and vertical lengthscales. Whereas Fh is a small quantity in strongly stratified
flows, Fv stays on the order of unity.

Thus, a stratified system retains its intrinsic three-dimensionality and never
approaches the two-dimensional manifold. Moreover, Billant & Chomaz (2000)
showed that in stratified flows two-dimensional solutions are unstable with re-
spect to a new type of instability, called zig-zag instability (Billant & Chomaz
2000), and therefore tend to become three-dimensional. The theoretical find-
ings of Billant & Chomaz (2001) have recently been confirmed in a number
of numerical studies (Riley & deBruynKops 2003; Lindborg 2006; Waite &
Bartello 2006; Brethouwer et al. 2007). Riley & deBruynKops (2003) studied
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the decaying of Taylor-Green vortices numerically in strongly stratified medi-
ums. The authors found that the suppression of vertical motions induced by
the stable stratification provides a decoupling of layers, leading to large verti-
cal gradients. Consequently, Fv increases and becomes of the order of unity,
allowing for Kelvin-Helmotz instabilities (KH) to develop. Indeed, KH pro-
vides a physical mechanism which allows for a transfer of energy downscale.
Also box simulations of forced strongly stratified turbulence have confirmed
that stratification favors a direct cascade (Lindborg 2006; Waite & Bartello
2006; Brethouwer et al. 2007). In agreement with the prediction of Lindborg
(2006), the two-dimensional horizontal kinetic and potential energy spectra in
the inertial range are found to scale as

EK(kh) = C1ε
2/3
K k

−5/3
h , EP (kh) = C2εP k

−5/3
h /ε

1/3
K , (2.10)

where εK and εP represent the kinetic and potential small-scales energy dissi-
pation. C1 and C2 are found to be of the order of unity and have similar values,
i.e. C1 ≈ C2 = 0.51 ± 0.02 (Lindborg 2006). Using dimensional arguments,
Billant & Chomaz (2001) suggested a scaling for the vertical energy spectrum

E(kz) = C N3 k−3
z , (2.11)

with the dimensionless constant C being of the order of unity. As noted by
Brethouwer et al. (2007), numerical and also experimental investigations of
stratified turbulence are very demanding in terms of Reynolds numbers. At-
tempts to recover the vertical energy spectrum have more or less failed, possibly
due to the insufficient scale separations. In the inertial range of the turbulent
cascade, the effect of viscosity is supposedly negligible. However, at moderate
Reynolds numbers, the constraint on the vertical lengthscale due to stratifica-
tion leads to severe limitations. The viscous term related to the second order
vertical derivative can be estimated as

ν
∂2

∂z2
ui ∼ ν

U

l2z
∼ ν

U2

lh

Re

δ
=
U2

lh

1

ReFr2
, (2.12)

which shows that the effective Reynolds number in stratified flows is reduced
by a factor Fr2. Thus, even though Re is large, viscosity may nevertheless
affect the dynamics if stratification is very strong.

2.3. Three dimensional turbulence

As the scales of the flow reduce even further, also stratification becomes of
less importance and classical three-dimensional Kolmogorov turbulence is re-
covered. The transition between these two regimes is usually assumed to be
the so-called Ozmidov lengthscale, defined as (Ozmidov 1965)

lO =
ε1/2

N3/2
, (2.13)

where ε is the energy flux towards small scales. The Ozmidov lengthscale
is usually interpreted as the largest scale at which overturning motions are
possible. Using the estimates of Billant & Chomaz (2001) and the estimate
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lh ∼ u3/ε (Lindborg 2006), the following scaling can be found

lh
lO

∼ Fr−3/2 and
lz
lO

∼ Fr−1/2. (2.14)

The Ozmidoz lengthscale in the oceans has been estimated to be of the order
of metres (Gargett et al. 1981), whereas in the atmosphere, typical values may
range between one metre, in strongly stratified atmospheric boundary layers
(Frehlich et al. 2008), and ten metres, in the upper troposphere (Lindborg
2006). At smaller scales, classical three dimensional turbulence develops and
the Kolmogorov (1941b) theory is valid. Vertical and horizontal energy spectra
scale as

E(k) = Cε2/3k−5/3 (2.15)

with a direct energy cascade from large to small scales. The Kolmogorov con-
stant C is of the order of unity. Viscosity becomes important only at scales of
the order of centimetres or even millimetres, where dissipation takes place.

2.4. Towards the atmosphere...

Even though the separate turbulent regimes (three-dimensional, stratified and
geophysical turbulence) have been widely studied in the last decade, investi-
gations of the transition from one dynamics to another are rather scarce. In-
deed, within the context of numerical simulations, the available computational
resources impose severe constraints on the scale separations, and simulating
more than one regime has not been possible until very recently.

In order to shed light onto atmospheric and oceanic dynamics, such inves-
tigations are fundamental and crucial. One issue which is still an object of a
vivid debate is the so-called Nastom-Gage spectrum. By using sensors mounted
in commercial aircrafts, Nastrom et al. (1984) were able to measure the kinetic
and potential energy spectra in the atmosphere from scales of the order of
few kilometres up to scales of the order of thousand kilometres. The striking
outcome of their work was the observation that the atmospheric energy spec-
trum clearly divides into two separate regimes (see fig. 2.2): at synoptic scales
(∼ 1000 km) a spectrum of the form ∼ k−3 is found, whereas at mesoscales
(∼ 100 km) much shallower spectra are observed, ∼ k−5/3, with a smooth tran-
sition around 500 km. More than twenty years later, it is still debated which
dynamics are producing these spectra.

While the k−3 range can be described by a quasi-geostrophic turbulent
dynamics, the k−5/3 range is more mysterious and intriguing. In particular,
such a spectrum may arise from both stratified and geostrophic turbulence.
However, the underlying dynamics is completely different with a direct cascade
of energy in the former case and an inverse cascade of energy in the latter case.
Early studies, e.g. Lilly (1983), interpreted the k−5/3 range as a stratified in-
verse energy cascade. Nevertheless, the recent progress in stratified turbulence
rather suggests that the k−5/3 range is a result of a direct energy cascade. In
spite of this, Lilly’s interpretation have recently been revived by some experi-
ments in electromagnetically forced thick layers, suggesting that the presence
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Figure 2.2. Atmospheric spectra of kinetic energy of the
zonal and meridional wind components and potential energy
measured by means of the potential temperature. The spectra
of meridional wind and potential temperature are shifted one
and two decades to the right, respectively. Reproduced from
Nastrom & Gage (1985).

of large-scale coherent vortices might suppress vertical motion and allow for an
inverse cascade (Xia et al. 2011).

In order to determine the direction of the cascade in the k−5/3 range, other
statistical quantities can be used in place of the energy spectrum. One such a
quantity is the third order structure function DLLL

〈δuLδuLδuL〉 = 〈(uL (x+ r)− uL (x))
3〉 (2.16)

where uL stands for the velocity component parallel to r, and 〈·〉 denotes the
ensemble average. As opposed to the energy spectrum, the sign of DLLL differs
depending on the direction of the cascade, and therefore has been used to study
the atmospheric dynamics (Lindborg 1999; Cho & Lindborg 2001). In three-
dimensional turbulence, an exact relation can be derived (Kolmogorov 1941a)

DLLL = −4

5
εKr. (2.17)

Its counterpart in two-dimensional turbulence was derived by Lindborg (1999)
who found that DLLL is always positive and has a cubic dependence in the
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Figure 2.3. Comparison of the longitudial third order struc-
ture function DLLL (left) from idealized geostrophic turbu-
lence simulations (Vallgren et al. 2011) and (right) from mea-
surements in the lower stratosphere (reproduced from Cho &
Lindborg 2001).

enstrophy range

DLLL =
1

8
ηr3, (2.18)

and a linear dependence in the energy range

DLLL =
3

2
Pr, (2.19)

with η being the enstrophy dissipation and P being the energy injection rate.
Analyses of the third order structure functions calculated from measurements
in the lower stratosphere (Cho & Lindborg 2001) have shown a positive nearly-
cubic behaviour at large scales, and a negative linear dependence at small scales,
supporting the idea of a direct cascade of energy.

That the k−5/3 range can be explained by a direct energy cascade poses
the question where the energy feeding such a cascade could come from. As
noted in the previous section, purely geostrophic dynamics is not consistent
with a downscale energy transfer. In order to investigate such a process, high-
resolution numerical simulations are needed, able to resolve both geostrophic
and stratified turbulent dynamics. In the last decade, several numerical studies
have been devoted to shed some lights into the dynamics, both using idealized
box simulations (Kitamura & Matsuda 2006; Vallgren et al. 2011) and atmo-
spheric models (Skamarock 2004; Takahashi et al. 2006; Hamilton et al. 2008;
Waite & Snyder 2009).

In the following, we attempt to propose a possible interpretation of the
large-scale turbulent dynamics in the atmosphere. Motivated by the robustness
of the transition of the energy spectrum, somewhat independent of the location
and altitude, we hypothesize that it must be generated by a strong physical
mechanism. Thus, in order to investigate the underlying dynamics, we carry
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out idealized box-simulations of rotating and stratified turbulence forced only
at large scales. As opposed to quasi-geostrophic dynamics, finite rotation rates
lead to a finite downscale cascade of energy. The small scales dissipation is
found to increase with increasing Ro. The energy cascade starts from the
largest scales of the system and becomes evident only at small-scales, where it
leads to a shallowing of the energy spectra to a k−5/3 dependence, consistent
with observations (Nastrom & Gage 1985). Third order structure function
(in fig. 2.3), in agreement with Cho & Lindborg (2001), switches sign at the
transition wavenumber. Negative signs with a linear dependence are attained
at small scales, confirming the presence of a direct cascade of energy.



CHAPTER 3

Stratified turbulence in the presence of walls

Most of the flows in engineering applications and in nature develop over sur-
faces. From a practical point of view, the study of turbulence in the vicinity of
a solid wall is crucial. Indeed, early experimental investigations (e.g. Reynolds
1886) were mainly devoted to wall-bounded turbulence. The presence of - at
least - one inhomogeneous direction (normal to the wall, hereafter denoted by
y) substantially increases the complexity of the problem, as compared to the
homogeneous case. From a numerical point of view, more complex numerical
schemes and discretizations are needed in order to deal with solid boundaries.
It was as late as in the end of the 80s that computational resources had reached
a level able to allow for wall-bounded turbulence simulations.

As in the isotropic homogeneous case, also turbulent flows over solid walls
possess many scales. The largest scales (eddies) are usually set by the geo-
metrical dimension of the flow, δout. In channel flows, for instance, they are
proportional to the channel-height h whereas in boundary layers they are pro-
portional to the boundary layer displacement thickness δ∗. On the other hand,
close to the solid wall, very small structures develop which rather scale with
the local shear stress τw. The lengthscale which can be formed by using τw and
the kinematic viscosity ν,

l+ = ν

√
ρ

τw
=

ν

uτ
(3.1)

is often referred to as the viscous unit. Here, uτ =
√

τw
ρ represents the friction

velocity. The ratio between the viscous unit and the geometrical dimension of
the flow is referred to as the friction Reynolds number

Reτ =
δout
l+

=
δoutuτ
ν

. (3.2)

The presence of two different scales in the flow is indeed the idea underlying
the hypothesis of the existence of the inner and outer scaling. Turbulence
statistics at wall distances comparable to δout are universal and scale with δout
and the outer velocity U∞. On the other hand, close to the wall, at distances
comparable to the viscous unit l+, statistics scale in inner units, l+ and uτ .
In the lower part of the inner region, y < 5 l+, velocity increases linearly with
height, u/uτ = y/l+. Such layer is usually referred to as viscous sub-layer.
The two scalings match in an intermediate region. In such a layer, the velocity

18
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Figure 3.1. Typical mean streamwise velocity profile in the
wall-normal direction for a turbulent wall-bounded flow (figure
taken from Deusebio 2010).

gradient ∂u/∂y must become independent of ν and δout, and scale only with uτ
and the distance from the wall y. This suggests the presence of a logarithmic
profile for the velocity, as seen in fig. 3.1.

In wall-bounded flows, turbulent motions are naturally forced by the wall-
normal mean shear which extracts kinetic energy from the mean flow and trans-
fers it to turbulent kinetic energy. Indeed, one of the most interesting feature
of wall-bounded turbulence is that most of turbulent energy is produced very
close to the wall, at y+ ≈ 12, where the velocity gradient is large. Thus,
energy is injected at very small-scales, as opposed to homogeneous isotropic
turbulence. How energy diffuses to larger scales, how outer structures interact
with the near-wall structures and vice versa are issues not fully understood
and whose understanding is crucial in order to improve turbulence modeling
for wall-bounded flows (Jiménez 2012).

3.1. Numerical grids in wall-bounded flows

Since the first simulations in the 80s, numerical simulations of turbulent flows
have heavily relied on the use of spectral methods (Canuto et al. 1988). As
opposed to finite difference methods (FD) where the solution is approximated
on a finite grid, in spectral methods (SM) the solution is approximated by
an expansion of known globally-defined ansatz functions. Instead of solving
for the values at the grid points, spectral methods solve for the expansion
coefficients. The only approximation which is introduced is the truncation of
the spectral expansion, whereas differential operators acting on the solution
are exact. Due to the fact that a priori known functions are chosen, SM are
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not very flexible and only flows in fairly simple geometries can be studied.
However, as compared to the algebraic convergence of the solution provided by
finite difference methods, spectral methods allow for an exponential converge
which had made them particularly useful, especially for turbulence simulations.

Several different bases can be used for the spectral expansion. The early
studies of homogeneous isotropic turbulence (e.g. Orszag & Patterson 1972)
widely employed Fourier modes. Apart from the existence of fast transform
algorithms (Fast Fourier Transforms, hereafter FFTs), Fourier modes allow for
very simple formulations of Partial Differential Equations (PDE) since they
are the eigenfunctions of the differential operator. However, for wall-bounded
flows, the inhomogeneity as well as the need for a non-equispaced grid (since
wall structures are much finer as compared to the outer ones) make Fourier
modes not suitable for wall-bounded turbulent simulations, at least in the wall-
normal direction. In the early numerical studies of wall-bounded turbulence,
Chebyshev polynomials were instead used and applied to Gauss-Lobatto grids

xj/L = cos

(
π
j − 1

N − 1

)
j = 1, · · · , N, (3.3)

which allowed both to retain the use of FFTs and to provided a non-uniform
distribution, with a clustering of points at the upper and lower boundaries,
y = ±1. Such a grid is particularly suitable for flows confined by two solid
walls, e.g. channel flows. However, if one aims at studying open flows which
are bounded by only one solid wall, the clustering of points at the free-boundary
is a waste.

One way to overcome this problem would be to use the method of Spalart
et al. (2008) who employed Jacobi polynomials in the variable ζ = exp (−y/Y ),
i.e. in an vertical grid exponentially stretched by a factor Y. Hoyas & Jiménez
(2006) employed seven-point compact finite differences in place of the Cheby-
shev polynomials. In such a way, they were able to adapt the grid spacing to
the local viscous lengthscale η. Nevertheless, the employed solution algorithm
still imposes a clustering of points at the upper boundary. In paper 4, we
propose an alternative method in order to study open-flows which satisfy the
upper boundary condition

∂u

∂y
=
∂w

∂y
= v = 0, (3.4)

with u and w being the streamwise and spanwise velocities, respectively. We
retain the use of Chebyshev polynomials. However, by noting that (3.4) can be
viewed as a symmetric condition around the centreline (i.e. y = 0), we restrict
ourself to flows which have symmetric u,w and antisymmetric v. Thus, we only
consider even Chebyshev polynomials for u,w and odd polynomials for v. If a
vertical stratification is present, the parity of the equation for v requires that
the scalar field is odd.
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Figure 3.2. Streamwise velocity fluctuation close to the wall,
at y+ = 10 for unstratified case (top) and stratified case (bot-
tom) with h/L = 1.2. The color ranges from 0.44 (blue) to
0.62 (red).

3.2. Stratified wall-bounded flows

The study of how stable stratification affects near-wall turbulence is crucial
in order to understand how the atmospheric boundary layer dynamics changes
during nights with clear sky and/or in polar regions, where the ground is cooled
and the flow is subjected to a stable stratification. Turbulent dynamics influ-
ence how heat, momentum, moisture and pollution are exchanged and mixed
close to the Earth surface. Atmospheric models need to be improved in order
to take into account phenomena that arise in highly stably stratified flows, such
as suppression of vertical motions, re-laminarization and appearance of gravity
waves.

The effect of a stable stratification on wall-bounded turbulence have re-
cently been addressed by a number of numerical experiments. Nieuwstadt
(2005) and Flores & Riley (2010) focus on the turbulence collapse due to a
strong cooling at the lower wall. Armenio & Sarkar (2002) and Garćıa-Villalba

& del Álamo (2011) studied the property of statistically steady continuously
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turbulent flows strongly affected by stratification. Despite the fact that the tem-
perature/density gradients are larger at the wall, near-wall structures are little
affected by stable stratification. Figure 3.2 shows the instantaneous stream-
wise velocity in a plane very close to the wall for both an unstratified case
and a stratified case. Streaky structures dominate both flows, in agreement
with previous studies in wall-bounded turbulence. Moreover, such structures
preserve their spacing of about 120 l+ in both cases. Indeed, the wall dynamics
of stratified flows is a competition between the production of turbulent kinetic
energy due to shear and turbulent destruction, or rather, conversion to poten-
tial energy. At the wall, shear is indeed very high and dominates the dynamics.
A measure of the relative importance of these two mechanisms is given by the
ratio of the wall-normal distance and the so-called Monin-Obukhov lengthscale

y/L = y
gv′ρ′

u3τρ0
. (3.5)

Assuming that the mean velocity is logarithmically increasing with height, the
Monin-Obukhov lengthscale can in fact be interpreted as the distance at which
the production

u′v′
∂U

∂y
(3.6)

and the turbulent destruction
g

ρ0
v′ρ′ (3.7)

are in balance. Here, g stands for the gravitational acceleration, U for the mean
velocity and the primes ·′ for the turbulent fluctuations. The overline · denotes
an ensemble average.

As we move further away from the wall, shear decreases and the role of
stratification becomes more important. Due to the inhibition of the vertical
motion, the transfer of momentum in the vertical direction due to turbulent
motions is reduced. However, in steady conditions, the total streamwise mo-
mentum vertical flux,

−u′v′ + ν
∂U

∂y
, (3.8)

must stay constant. Thus, if u′v′ reduces because of stratification, the flow
must accelerate in such a way that shear increases. Figure 3.3 shows a cross-
flow cut of the instantaneous streamwise velocity for an unstratified and a
stratified case. The structures which populate the outer region of the flow
become more confined in the vertical direction as stratification is increased.
Indeed, structures well-correlated in the vertical direction can be seen to a less
extent in the stratified case as compared to the unstratified case. Moreover,
they also become narrower, supporting the idea of the existence of self-similar
structures which grow both in the vertical and in the spanwise direction.
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Figure 3.3. urms-field in a cross-flow plane, i.e. y − z, for
an unstratified case (top) and a stratified case (bottom) with
h/L = 1.2. The color ranges from 0 (blue) to 0.85 (red). Figure
taken from Deusebio et al. (2011)



CHAPTER 4

Summary of the papers

Paper 1

Possible Explanation of the Atmospheric Kinetic and Potential Energy Spectra

In three dimensions (3D) there is a downscale energy cascade while there
is an up-scale cascade in two dimensions (2D). In the Earth atmosphere where
strong rotation and stratification are predominant, the 2D type of dynamics
are important and a large fraction of the energy which is released at thousand
kilometre scales goes into an up-scale cascade. However, a fraction of the energy
may go downscale. As an idealized model for the atmospheric dynamics, we
consider the primitive equations with strong system rotation. By carrying out
a set of box simulations of turbulence forced only at large scales, we show that
this fraction may not be negligible although it decreases with increased rotation
rates. We also show that such a downscale energy cascade generates a transition
in the wavenumber energy spectrum, from ∼ k−3 to ∼ k−5/3, consistent with
observations. Also the third-order structure function agrees qualitatively with
the observation in the atmosphere and presents a switch of sign at the transition
scale. The negative sign and the linear dependence suggest a direct cascade as
the mechanism underlying the k−5/3 range in the atmosphere.

Paper 2

The route to dissipation in strongly stratified and rotating flows

We investigate the energy transfer in strongly stratified and rotating tur-
bulent flows forced at large scales by means of box simulations of the prim-
itive equations and the Boussinesq system. As opposed to QG-dynamics, a
downscale energy cascade develops for finite rotation rates. The simulations
of the Boussinesq system allow us to study the influence of a finite Froude
number in the dynamics as well as the role of inertia-gravity wave motions.
At large scales quasi-geostrophic dynamics is observed with both filamentation
and large scale coherent vortices. However, also small scale turbulent patches
appear in the dynamics. In these regions, the local vertical Froude number
is of the order of unity, consistent with recent results in stratified turbulence.
At large scales, potential and kinetic energy spectra attain scaling in agree-
ment with QG-dynamics, ∼ k−3, with a transition to k−5/3 at smaller scales

24



PAPER 3 25

resulting from the downscale cascade of energy. The small scale dissipation
increases with decreasing rotation rates. On the other hand, stratification
favours a downscale energy cascade, even though its effect is weaker as com-
pared to the effect of rotation. At small but finite Rossby number, an energy
and an enstrophy inertial cascade coexist in the same range of scales. The
cascade of enstrophy is supported by interactions among geostrophic modes,
whereas the cascade of energy is supported by interactions involving at least
one ageostrophic mode. The effect on inertia-gravity waves in the cascade is
studied. Frequency spectra of individual Fourier modes show clear signs of pe-
riodic motions only at large scales, while small-scale frequency spectra attain
rather flat behaviour. The possible role of resonant triad interactions within
the turbulent cascade is investigated. However, results show that such mech-
anism is of secondary importance and the downscale energy cascade is rather
supported by turbulent-like interactions.

Paper 3

Direct numerical simulations of stratified open channel flows

We carry out direct numerical simulations (DNSs) of open-channel flows
in order to study the influence of a stable stratification on wall-bounded tur-
bulence at moderate Reynolds numbers, i.e. Reτ = 360. A negative heat-flux
at the lower wall is forced in order to provide a positive vertical temperature
gradient. The stable stratification is quantified by the ratio h/L, with h being
the open-channel height and L being of the Moin-Obukhov lengthscale. At
the Reτ under consideration, values of h/L higher than 1.25 provides relam-
inarization of the flow, consistent with previous investigations. In this study,
we focus on turbulent regimes, investigating how a stable stratification affects
wall-bounded turbulent structures. Near-wall streaks are weakly affected and
preserve the same spanwise spacing as in neutral cases, around λ+z ≈ 120. On
the other hand, the largest structures in the outer region are damped and they
become narrower as stratification increases. We also study the role of grav-
ity waves in open-channel flows. Comparison with full channel flows are also
presented. A new method able to highlight their presence is proposed. The
method is based on the fact that gravity waves are able to carry energy but not
heat-flux. Gravity waves develop mostly in the centre of the full channel where
they account for almost 90% of the total vertical fluctuation. Such structures
are very elongated in the spanwise direction with preferential streamwise wave-
length of about λx ≈ 2− 3, in agreement with previous studies. On the other
hand, open-channel flows show smaller signatures of wave activity in the outer
layer, possibly due to the presence of the open-channel boundary condition
which might inhibit their development. A wall-normal correlation analysis of
the different Fourier modes is also performed. In neutral cases, the most well-
correlated modes correspond to the outer streamwise elongated structures. For
stratified cases, also gravity waves are expected to maintain high coherence in
the vertical direction. This is confirmed by the results that, for stratified cases,
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show the presence of a new kind of modes beside the outer modes, with spatial
extents matching the ones of the gravity waves.

Paper 4

The open-channel version of SIMSON

An existing pseudo-spectral code designed for numerical simulations of
channel flows, called SIMSON, is modified in order to provide a better wall
normal discretization for open-channel flows. The clustering of points at the
free-shear boundary is avoided by using half Chebyshev polynomials: odd poly-
nomials are used for the wall-normal velocity component while even polynomi-
als are used for the other two components. The main code modifications are
discussed. The performances and the validation of the code are presented.
The improved grid allows the wall-normal resolution to be reduced leading to
an overall speed-up of the code. In order for the code to be run on parallel
machines, both one-dimensional and two-dimensional parallelization have been
implemented. We also present some new features that have been implemented
in order to meet the requirements of stratified flow simulations, such as a new
CFL condition which accounts for an active scalar and damping regions for
gravity waves.



CHAPTER 5

Conclusions and outlook

Since their maturity, digital computers have allowed for a number of advances in
the understanding of turbulent processes. Their use have greatly increased over
the years and is expected to increase even further in the future. Indeed, numer-
ical simulation is a powerful tool, complementary to experiments, to be used
in the context of turbulence research. In this thesis, we show how numerical
simulations can effectively be used to study wall-bounded and homogeneous
turbulence affected by stratification and rotation, allowing for some insights
into the mechanisms of atmospheric turbulent dynamics.

5.1. Geostrophic turbulence

We have analysed the energy transfer in strongly stratified and rotating tur-
bulence by means of box simulations of homogeneous turbulence, ranging from
the QG limit to small but finite rotation rates and stratification. Forcing, nec-
essary to obtain a steady turbulent cascade, was applied only at large scales.
In QG turbulence, almost all the energy injected cascades up-scale. However,
for finite rotations a forward energy cascade establishes. The amount of en-
ergy cascading downscale and up-scale is mainly controlled by the rotation
rate. Stratification has a weaker effect as compared to rotation and favours a
downscale cascade of energy. At small but finite rotation rates, the downscale
energy cascade leads to a transition in the energy spectrum from k−3 to k−5/3.
The transition moves towards small scales as rotation rates are increased, as
a result of the smaller amount of energy which cascades towards small scales.
At small Ro, the geostrophic dynamics is little affected by the presence of an
energy cascade, and a constant enstrophy flux range is observed, as expected
in purely QG turbulence. The enstrophy cascade in supported by geostrophic
interaction only. On the other hand, the downscale transfer of energy can only
be achieved by interaction with at least one ageostrophic mode.

The use of an extremely idealized setup made it possible to study the
backbone mechanism for the energy transfer underlying rotating and stratified
turbulence dynamics, free of the additional multiple complexities present in
measurements and global atmospheric models. Further studies using this rather
simple setup may allow us to shed some light on other issues of practical interest,
as, for instance, how predictability changes in highly rotating and stratified
turbulent flows. Once the founding mechanism are understood, extensions
to more complex cases are possible, but with a more critical perception of the
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physical dynamics and of possible spurious effects, as incorrect parametrization
of the atmospheric processes. Indeed, analyses of more realistic data are needed
in order to verify whether the hypothesis and the ideas proposed in this thesis
can, to a larger extent, be applied to atmospheric dynamics.

5.2. Wall-bounded turbulence: towards the atmospheric
boundary layer...

We have carried out direct numerical simulations of a turbulent open-channel
flow and focused on the effect of an imposed external stable stratification on the
structures of wall-bounded turbulence. Near-wall streaks are weakly affected
and exhibit the same properties as the ones observed in the unstratified case.
Larger differences are observed further away from the wall, where the shear
diminishes and the effect of the stable stratification increases. Structures in
the outer region become more confined in vertical direction, as expected by the
suppression of the vertical motions, but also in the spanwise direction. Gravity
waves mainly develop in the centre of the channel, thanks to the combined
effect of the decrease of the shear and the reduction of the turbulence. How-
ever, the stress free upper boundary may prevent the development of gravity
waves. Indeed, gravity wave activity is shown to be substantially stronger in
full channels as compared to half channels.

Open-channel flows have been used as a model for the stably stratified
atmospheric boundary layer dynamics in a number of recent numerical stud-
ies. Despite the similarities which connect open-channel flows and atmospheric
boundary layers, one important difference has not been accounted for yet: the
presence of a system rotation. Aiming at bridging simulations and reality, a
rather natural follow-up of this study would be the investigation of the Ekman
layer. Moreover, the increase of Re may also allow us to gain important insights
on the wall-bounded turbulent dynamics and on the interactions between dif-
ferent scales. As the scale separations increases, footprints of outer structures
on the near-wall cycle and vice-versa are expected to become more evident.
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We hypothesize that the observed wave number spectra of kinetic an potential
energy in the atmosphere can be explained by assuming that there are two
related cascade processes emanating from the same large scale energy source,
a downscale cascade of potential enstrophy, giving rise to a k−3-spectrum at
synoptic scales and a downscale energy cascade giving rise to a k−5/3-range at
mesoscales. We also hypothesize that the amount of energy which is going into
the downscale energy cascade is determined by the rate of system rotation,
with zero energy going downscale in the limit of very fast rotation. To test
these hypotheses we carry out a set of simulations of a system with strong
rotation and stratification which is forced at a large scale. We find that the
amount of energy which is going into the downscale energy cascade decreases
monotonically with increased rate of rotation and show that the downscale
energy cascade generates a transition in the wave number spectrum, from∼ k−3

to ∼ k−4/3, consistent with observations. We also show that the transition
between the two dynamic regimes is associated with a change of sign of the third
order structure function of velocity differences, consistent with observations
from the lower stratosphere.

The wavenumber spectra of horizontal wind and temperature in the atmo-
sphere (Fig. 1) display a range at synoptic scales (∼ 500 − 2000 km) with an
approximate k−3-dependence and a range at mesoscales (∼ 2− 500 km) with a
k−5/3-dependence, where k is the horizontal wavenumber (Nastrom et al. 1984;
Nastrom & Gage 1985; Cho et al. 1999; Frehlich & Sharman 2010). The spec-
trum of horizontal wind can be taken to be equal to the kinetic energy spectrum
while the spectrum of temperature can be translated into a potential energy
spectrum, where the potential energy here is related to the restoring Archimedes
force on a fluid element that is vertically displaced in a static stable atmosphere.
A spectrum of the form k−5/3 is found in 3D turbulence with a downscale en-
ergy cascade (Kolmogorov 1941b), but also in 2D turbulence with an up-scale
energy cascade (Kraichnan 1967). Charney (1971) showed that strong rotation
and stratification lead to a dynamics, which he named geostrophic turbulence,
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that is very similar to 2D turbulence in that there is a second quadratic in-
variant apart from energy. In 2D turbulence the second invariant is enstrophy
(half the square of vorticity) while in geostrophic turbulence it is potential
enstrophy, defined as half the square of potential vorticity, a quantity repre-
senting geostrophically balanced motions for which the velocity is tangential to
the local isobar. In 2D/geostrophic turbulence enstrophy/potential enstrophy
cascades downscale which gives rise to a k−3-spectrum at higher wavenumbers
than a characteristic forcing wavenumber while a k−5/3-spectrum is found at
lower wavenumbers.

Figure 1. Atmospheric spectra of kinetic energy of the zonal
and meridional wind components and potential energy mea-
sured by means of the potential temperature. The spectra
of meridional wind and potential temperature are shifted one
and two decades to the right, respectively. Reproduced from
Nastrom & Gage (1985).

It has been hypothesized that the mesoscale k−5/3-spectrum is produced
by an upscale energy cascade (Gage 1979; Lilly 1983; Falkovich 1992). This
hypothesis presumes that there is an important energy source at kilometer
scales (Lilly 1989) in addition to baroclinic instability at thousand kilometre



Possible Explanation of the Atmospheric Energy Spectra 41

scales (Vallis 2006). Apart from the difficulty in identifying the nature of this
energy source, there are several other difficulties associated with this hypoth-
esis. Since the effect of the Earth’s rotation is not very strong at such small
scales, one has to assume that it is the effect of strong stratification that pre-
dominantly gives rise to the up-scale energy cascade (Lilly 1983). Numerical
simulations of stratified turbulence have shown that strong stratification alone
does not favour an up-scale cascade but rather a downscale cascade (Riley &
deBruynKops 2003; Lindborg 2006; Brethouwer et al. 2007; Laval et al. 2003).
Moreover, some success has been made in reproducing the transition from a
k−3-range to a k−5/3-range in general circulation models (Takahashi et al. 2006;
Hamilton et al. 2008), mesoscale models (Skamarock 2004; Skamarock & Klemp
2008) and idealized box simulations (Kitamura & Matsuda 2006; Molemaker &
McWilliams 2010), without the introduction of any small-scale energy source.
Despite this evidence pointing against the upscale cascade hypothesis, it was
recently revived on the basis of the results of an experiment in a layer of fluid
with electromagnetic small-scale forcing (Xia et al. 2011). The authors con-
cluded that ”it is possible that the suppression of 3D vertical eddies induces an
inverse energy cascade through the mesoscales in the Earth atmosphere”. It is
remarkable that no scientific consensus yet has been reached on the important
issue whether the energy cascade through the mesoscale range is up-scale or
downscale.

We take a similar point of view as Tung & Orlando (2003), who argued that
a weak downscale energy cascade is generated from the large-scale forcing, but is
shadowed by the downscale cascade of potential enstrophy, which is producing
a spectrum of the form E(k) ∼ η2/3k−3 at synoptic scales, where η is the flux of

potential enstrophy (Charney 1971). At a transition wave number kt ∼
√
η/ǫ,

where ǫ is the downscale energy flux, the energy cascade will become visible
and the spectrum will gradually change to E(k) ∼ ǫ2/3k−5/3. While Tung &
Orlando (2003) assumed that the weak energy cascade is produced already in
the limit of zero Rossby number (very strong rotation), we make the hypothesis
that it is a finite Rossby number effect. To test this hypothesis, we consider
the so called primitive equations

Duh

Dt
= −∇hp− fez × uh, (1a)

0 = −∂p
∂z

+Nb, (1b)

Db

Dt
= −Nw, (1c)

∇ · u = 0 , (1d)

where u is the velocity vector, uh is the horizontal part of u, w is the vertical
velocity component, ez is the vertical unit vector, p is the pressure, N is the
Brunt-Väisälä frequency, b = gρ/(Nρ0) is the buoyancy, where ρ and ρ0 are the
fluctuating and background densities, respectively, g is the acceleration due to
gravity and f is the Coriolis parameter. We reformulate the system in terms
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of the potential vorticity and two ageostrophic components:

q = − ∂u

∂y
+
∂v

∂x
+
f

N

∂b

∂z
, (2a)

a1 = − f

N

∂v

∂z
+
∂b

∂x
, (2b)

a2 =
f

N

∂u

∂z
+
∂b

∂y
, (2c)

where u and v are the velocity components in the x- and y-direction, re-
spectively. The equations have been subject to nondimensionalization using
geostrophic scaling (Charney 1971), i.e.

x ∼ L, y ∼ L, z ∼ f/NL, t ∼ L/U,

u ∼ U, v ∼ U, w ∼ RoUf/N, b ∼ U, (3)

q ∼ U/L, a1 ∼ RoU/L, a2 ∼ RoU/L,

where Ro = U/fL is the Rossby number.

Including small scale and large scale friction, the system can be rewritten as
follows

∂q

∂t
=
∂

∂y

(
∂u2

∂x
+
∂uv

∂y
+Ro

∂uw

∂z

)

− ∂
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(
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+
∂v2

∂y
+Ro

∂vw

∂z

)
(4a)

− ∂

∂z
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∂ub

∂x
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∂vb

∂y
+Ro

∂wb
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+ νS∇8q − νLq,

Ro
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Apart from the viscous parameters, the Rossby number constitutes the sin-
gle adjustable parameter that enters the equations, whereas the Froude num-
ber, Fr = U/LN , is implicitly set to zero through the assumption (1b) of
hydrostatic balance (Billant & Chomaz 2001). The inviscid, unforced system
conserves total energy,

(
u2 + v2 + b2

)
/2. In the limit Ro = 0, it reduces to

Charney’s equation which apart from energy also conserves potential enstro-
phy, q2/2 (Charney 1971).

The system (4) is solved using a pseudo spectral method, with full dealias-
ing, in a triply-periodic (2π × 2π × 2π) domain with a resolution of 10243 grid
points. Observe that the box is cubic in the space where the vertical coordi-
nate is stretched by a factor of N/f . Translated to mid-latitude atmospheric
dynamics this would correspond to a real space box aspect ratio of f/N ∼ 0.01.
The velocities are recovered by inverting the non-dimensional counterpart of
(2) which contains the Rossby number but not the Froude number. A ran-
dom forcing is introduced in the potential vorticity equation. The forcing is
white noise in time and restricted to the wave number shell k ∈ [3, 5], i.e. it
is isotropic in the space where the vertical coordinate has been stretched. The
potential enstrophy injection rate, η, is perfectly controlled and is set to unity.
Consequently, the energy injection rate, P , is also a controlled parameter. We
carry out six simulations for Ro = [0, 0.025, 0.05, 0.075, 0.1, 0.2] and the cor-
responding values νS = [2.4, 1.9, 1.9, 1.9, 4.0, 6.2] · 10−18 of the small scale
viscous parameter, while the large scale viscous parameter has the same value
νL = 0.12 in all simulations. The Rossby number can also be interpreted as
Ro = η1/3/f . Cho & Lindborg (2001) made the estimate η ∼ 10−15s−3 from
structure function analyses in lower stratosphere. If this value is representative
for the atmosphere we would obtain Ro ∼ 0.1 at midlatitude. The reason why
we have increased νS in the two highest Rossby number simulations is that a
larger amount of energy is going downscale in these simulations. To make sure
that dissipation takes place at the resolution scale, ∆x, we need a νS scaling
as ∼ ǫ1/3(∆x)22/3, where ǫ is the downscale energy flux.

The total spectral energy flux can be calculated as

Π(k) = −
k∑

k′=0

Im
[
kx

(
û2û∗ + ûvv̂∗ + ûbb̂∗

)

+ky

(
v̂2v̂∗ + ûvû∗ + v̂bb̂∗

)
(5)

+Rokz

(
ûwû∗ + v̂wv̂∗ + ŵbb̂∗

)]
,

where the hat denotes the Fourier transform and k′ =
√
k2x + k2y + k2z . In

Fig. 2a, we see Π(k) normalized by the energy injection rate P . There is a
monotonic decrease of Π/P with increased rate of rotation. For all Rossby
numbers, there is a range of constant positive flux, ǫ, showing that there is a
downscale energy cascade. In each constant energy flux range there is negligible
dissipation. For Ro = 0 less than one thousandth of the injected energy is
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going downscale. For Ro > 0, we we find that ǫ ∝ Ro1.5P , approximately.
In Fig. 2b, we see the horizontal spectra of total energy. For both Ro = 0.2
and Ro = 0.1 we find a clear range where the total energy spectrum scales as
E(k) = Cǫ2/3k−5/3, with C ≈ 1.1 for Ro = 0.2 and C ≈ 1.4 for Ro = 0.1.
We find that the ratio between the kinetic and potential energy is a little bit
larger than two in this range, consistent with previous simulations of stratified
turbulence (Lindborg 2006). For Ro = 0, the spectrum is slightly steeper
than, but close to, Kη2/3k−3 with K ≈ 2.2, consistent with the prediction of
Charney (1971) and previous simulations of geostrophic turbulence (Vallgren
& Lindborg 2010). For Ro = 0.025, the spectrum is slightly more shallow than
k−3.

The sign and the magnitude of the kinetic energy flux, ǫK , can be estimated
by measuring third order velocity structure functions, which are third-order
statistical moments of differences between the velocity components measured
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Figure 2. a) Energy flux as a function of wavenumber k nor-
malized by the energy injection rate. The magnitude of the flux
is increasing with increasing Rossby number. From bottom to
top: Ro = [0, 0.025, 0.05, 0.075, 0.1, 0.2], b) energy spectrum
for different Rossby numbers with the same colours as in a.
The k−3- (dashed) and k−5/3-slopes (dotted) are indicated.
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Figure 3. Third order structure function D, for different
Rossby numbers, with the some colors as in figure 2. a) Neg-
ative range normalized by the kinetic energy dissipation rate,
b) positive range normalized by the enstrophy injection rate.
The theoretically predicted slopes are indicated.

at two points which are separated by a distance r. Kolmogorov (1941a) de-
rived the relation DLLL = −4ǫKr/5, for the longitudinal third order structure
function of isotropic 3D turbulence, where L refers to the direction of the sepa-
ration vector r. For 2D turbulence a similar derivation, Lindborg (1999) gives
DLLL = −3ǫKr/2 where ǫK in this case is negative since the cascade is up-scale.
In the enstrophy cascade range of 2D turbulence one finds that DLLL = ηr3/8,
where η here is the enstrophy flux (Lindborg 1999). Wind data from the lower
stratosphere were used to calculate the sum D = DLLL + DLTT , where T
refers to a velocity component perpendicular to r (Cho & Lindborg 2001). It
was found that D has a negative linear dependence on r at mesoscales. At
r ≈ 300 km, D switches sign and at synoptic scales there is a narrow range
where D approximately scales as ∼ r3. In Fig. 3a we see that D is preferen-
tially negative in the higher Rossby number runs, with a change of sign moving
towards larger scales with increasing Rossby number. In the highest Rossby
number runs we find that D ≈ −2ǫKr, in the forward energy cascade range,
which is the relation that was used to estimate ǫK (Cho & Lindborg 2001). In



46 A. Vallgren, E. Deusebio & E. Lindborg

Fig. 3b we see that D is preferentially positive for the lowest Rossby number
runs for which D ∼ r3, with a particular good agreement for Ro = 0.

With a forcing acting at a particular wave number kf the enstrophy and the

energy injection rates are approximately related as η = k2fP . With ǫ ∼ Ro3/2P

we can thus estimate the transition wave number as kt ∼
√
η/ǫ ∼ Ro−3/4kf .

In the atmosphere, the most unstable wave number of baroclinic instability can
be estimated as kf ∼ 2π/(4LR), where LR is the Rossby deformation radius.

If the relation ǫ ∼ Ro3/2P also would hold in the atmosphere, we would thus
obtain a transition wave number kt ∼ πRo−3/4/(2LR) and a corresponding
transition scale Lt ∼ 4LRRo

3/4. With LR = 1000 km and Ro = 0.1, we obtain
Lt ∼ 700 km, in reasonable agreement with observation (Figure 1).

In agreement with previous simulations (Molemaker & McWilliams 2010;
Hamilton et al. 2008; Skamarock & Klemp 2008; Koshyk & Hamilton 2001) and
data analysis (Lindborg 2007), our simulations show that the kinetic energy
content in horizontally divergent modes is of the same order of magnitude as
the content in rotational modes, in the mesoscale range. Koshyk & Hamilton
(2001) interpreted the energy content in the divergent modes as a signal of
gravity waves. In a future study, we will address the issue of the possible
importance of gravity waves by carrying out frequency analyses.

In conclusion, our numerical experiment shows that the same type of spec-
trum as found in the atmosphere can be generated from a single energy source
in a system with strong stratification and strong but finite rotation. The experi-
ment suggests that the atmospheric k−5/3 mesoscale spectrum can be explained
by the existence of a downscale energy cascade whose strength is regulated by
the Rossby number. Moreover, the simulations show a third-order structure
function, D, which is consistent with observations from the lower stratosphere.

Computer time provided by SNIC (Swedish National Infrastructure for
Computing) is gratefully acknowledged.
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We investigate the route to dissipation in strongly stratified and rotating sys-
tems through high resolution numerical simulations of homogeneous turbulence
in a triply periodic domain forced at large scales. For large rotation rates, quasi-
geostrophic dynamics are recovered with a forward enstrophy cascade and an
inverse energy cascade. As the rotation rate is reduced, a fraction of the energy
starts to cascade towards smaller scales, leading to a shallowing of the hori-

zontal spectra from k−3
h to k

−5/3
h at the small scale end. The high resolutions

employed allow us to capture both ranges within the same simulation. At the
transition scale, kinetic energy in the rotational and in the horizontally diver-
gent modes attain comparable values. The divergent energy is several orders
of magnitude larger than the quasi-geostrophic divergent energy given by the
Ω-equation. The amount of energy cascading downscale is mainly controlled
by the rotation rate, with a weaker dependence on the stratification. A larger
degree of stratification favours a downscale energy cascade. For intermediate
degrees of rotation and stratification, a constant energy flux and a constant
enstrophy flux coexist within the same range of scales. In this range, the en-
strophy flux is a result of triad interactions involving three geostrophic modes,
while the energy flux is a result of triad interactions involving at least one
ageostrophic mode, with a dominant contribution from interactions involving
two ageostrophic and one geostrophic mode. Dividing the ageostrophic motions
into two classes depending on the sign of the linear wave frequency, we show
that the energy transfer is for the largest part supported by interactions within
the same class, ruling out the wave-wave-vortex resonant triad interaction as
a mean of the downscale energy transfer. The role of inertia-gravity waves
is studied through analyses of time-frequency spectra of single Fourier modes.
At large scales, distinct peaks at frequencies predicted for linear waves are
observed, whereas at small scales no clear wave activity is observed. Triad in-
teractions show a behaviour which is consistent with turbulent dynamics, with
a large exchange of energy in triads with one small and two large comparable
wavenumbers. The exchange of energy is mainly between the modes with two
comparable wavenumbers.
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1. Introduction

Flows in the atmosphere and in the oceans develop over an extremely wide
range of scales, both in time and space. The atmosphere is largely forced at
scales of the order of thousand kilometres, where baroclinic instability converts
available potential energy, related to the meridional temperature gradient, to
kinetic energy. Similarly, the general circulation of the oceans is mainly driven
by surface fluxes of momentum at scales as large as 1000 km. On the other
hand, the dissipation of energy can only be achieved by molecular friction and
diffusion. As opposed to the large-scale forcing, viscosity and diffusivity act at
very small scales, which can be estimated to be of the order of centimetres. How
energy can cascade from the largest to the smallest scales, over a range of about
eight orders of magnitude, is not fully understood (Muller et al. 2005). Even
though the nonlinearities in the Navier-Stokes equations provide a mechanism
for energy transfer between scales, the routes to dissipation are presently not
clear. The general problem of how energy can be transferred from the very
largest to the very smallest scales in geophysical flows has recently been the
subject of several studies (Muller et al. 2005; Waite & Bartello 2006; Molemaker
et al. 2010).

At synoptic scales, on the order of thousand kilometres, atmospheric dy-
namics are highly affected by both rotation and stratification. The relative im-
portance of Coriolis forces and buoyancy forces as compared to inertial forces
are often quantified by the Rossby and the Froude numbers, defined as

Ro =
U

fL
, Fr =

U

NL
. (1)

Here, U is a characteristic velocity, L a characteristic length, f = 2Ω sin θ is
the Coriolis parameter, with Ω being the rotation rate and θ the latitude, and
N is the Brunt-Väisälä frequency. In the limit of very strong rotation and
stratification, the Navier-Stokes (NS) equations can be reduced to the so-called
quasi-geostrophic (QG) equation, stating that the potential vorticity, q, is ma-
terially conserved (Charney 1971). Therefore, QG conserves independently two
quadratic invariants: total energy, which is the sum of potential and kinetic en-
ergy, and potential enstrophy, defined as q2/2. In this limit there is an inverse
cascade of energy dominating the large scales and a forward cascade of enstro-
phy dominating the small scales, just as in two-dimensional turbulent flows
(Kraichnan 1967). The energy spectrum scales as k−5/3 in the energy inertial
range and as k−3 in the enstrophy inertial range. Recent high-resolution numer-
ical simulations (Scott 2007; Boffetta & Musacchio 2010; Vallgren & Lindborg
2011) have mainly confirmed this picture, although some anomalous effects due
to large scale vortices have also been reported (Scott 2007; Vallgren 2011).

Cambon et al. (1997) studied the effect of system rotation on the downscale
energy transfer. As the rotation rate is increased, the energy cascade is inhib-
ited and the forward energy transfer terms are damped, leading to a reduction
of the small scales dissipation. Indeed, the inverse-cascade dynamics of strongly
rotating and stratified systems seem to be inconsistent with small-scale energy
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dissipation, posing the intriguing question on how and where the energy trans-
fer to small scales takes place (Muller et al. 2005). An interesting perspective
is offered by the hypothesis that finite rotation rates lead to a transfer of en-
ergy from balanced, geostrophic motions to unbalanced motions (Bartello 1995;
Waite & Bartello 2006; Molemaker et al. 2010). The QG equation is not able
to capture this process. Therefore, Boussinesq system should rather be con-
sidered. When hydrostasy is assumed in the vertical direction, the Boussinesq
system is often referred to as Primitive Equations. Stability analysis of a non-
geostrophic and non-hydrostatic Eady problem shows the appearance of new
kind of instabilities apart from the classical baroclinic instability. Such instabil-
ities may lead to a transfer of energy from geostrophic to ageostrophic motions
(Molemaker et al. 2005). Viúdez & Dritschel (2006) studied the breakdown
of a baroclinic geostrophic jet, finding the emission of unbalanced wave mo-
tions with frequencies close to the inertial frequency. Moreover, it has recently
been shown that forced Eady flows can relax to statistically stationary states
only if ageostrophic motions are taken into account (Molemaker & McWilliams
2010). That is to say, QG flows cannot establish efficient and steady routes to
dissipation.

Numerical simulations of strongly stratified flows (Riley & deBruynKops
2003; Waite & Bartello 2004; Lindborg 2006; Brethouwer et al. 2007) have
shown that a forward energy cascade can develop and that a steady route
to dissipations can be maintained, also in weakly rotating systems (Lindborg
2006; Waite & Bartello 2006). Using an eddy-damped quasinormal Markovian
(EDQNM) closure, Godeferd & Cambon (1994) argued that a stable strat-
ification may create a strongly anisotropic structure which prevents the de-
velopment of an inverse cascade of energy. As already noted by Lilly (1983),
stratification results in a decoupling of the dynamics into layers, leading to large
gradients in the vertical direction. The resulting Kelvin-Helmholtz instabilities
(KM) provide a mechanism for a downscale energy cascade. Whereas the hor-
izontal Froude number, Frh = U/Nlh, is very small, KH instabilities keep the
vertical Froude number, Frv = U/Nlv, of the order of unity (Billant & Chomaz
2001; Riley & deBruynKops 2003), naturally setting the flow layers thickness.
Here, lh and lv are the characteristic horizontal and vertical length scale, re-
spectively. The ratio α = lv/lh = Frh/Frv is a very small quantity in strongly
stratified flows, which means that flow structures are highly elongated in the
horizontal direction and very confined in the vertical. Such structures are often
referred to as pancake structures. Waite & Bartello (2006) studied the vertical
length scales for stratified and rotating geostrophic turbulence. For small Ro,
they found that the scaling suggested by Charney (1971), lv ∼ lh f/N , applies.
On the other hand, for Ro > 0.1, Frv became of the order of unity and inde-
pendent of Ro and Fr, in agreement with the prediction of Billant & Chomaz
(2001) for stratified turbulence. As in three-dimensional turbulence, both ki-
netic and potential horizontal wavenumber energy spectra of strongly stratified

flows scale as k
−5/3
h . Lindborg & Brethouwer (2007) showed that in this range,
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rotational and divergent modes, often referred to as wave and vortical modes,
have comparable magnitude. In contrast to what has been suggested in many
studies (e.g. Lelong & Riley 1991), they showed that there is no strict dynamic
decoupling between these two types of modes. The reason for this is that they
develop on comparable time scales, as suggested by the analysis of Billant &
Chomaz (2001).

Observations in the oceans and in the atmosphere support the hypothesis
that there is a downscale energy cascade over a wide range of scales. In the
oceans, Ménesguen et al. (2009) studied the structure of long-lived anticyclonic
lens-shaped vortices known as Meddies through fine resolution geoseismic sec-
tions and high-resolution numerical simulations. They were able to demonstrate
the presence of a downscale energy cascade over roughly one decade, extend-
ing up to scales on the order of 3 km. In the atmosphere, wind and potential
temperature spectra calculated from aircraft measurements (Nastrom & Gage
1985; Cho & Lindborg 2001) show two distinct range of scales. At synoptic
scales, between 500 and 1000 km, a k−3

h spectrum is found, consistent with
a 2D-like turbulent dynamics within the enstrophy range. In the mesoscale
range, below 500 km, the spectra shallow significantly, attaining scaling expo-
nents close to −5/3. Third-order structure function analysis has revealed that
there is a downscale energy flux in this range (Cho & Lindborg 2001).

The transition from a k−3
h to a k

−5/3
h spectrum have been simulated both

in idealized numerical simulations (Kitamura & Matsuda 2006; Vallgren et al.
2011) and atmospheric models (Skamarock 2004; Takahashi et al. 2006; Hamil-
ton et al. 2008; Waite & Snyder 2009). Vallgren et al. (2011) simulated the
primitive equations in a triply periodic domain forced only at large scales. The
ratio between the energy going down- and up-scale was found to increase with
Ro and the small-scale dissipation was found to scale as Ro3/2. The increasing
amount of energy going downscale as Ro was increased led to a shallowing of

the energy spectra to k
−5/3
h , consistent with observations.

At the present point, it is not entirely clear whether the forward energy
cascade is a result of stratified turbulence or resonant interacting waves. Sev-
eral theories based on the assumption that waves play a central role in the
route to dissipation have been proposed. In the atmosphere, Waite & Snyder
(2009) simulated an idealized baroclinic wave life cycle, finding a shallowing
of the kinetic energy spectra due to the divergent contributions. The authors
argued that waves spontaneously emitted in the dynamics propagate vertically
and lead to the shallowing of the energy spectra. In the ocean, spectra show
remarkable similarities from place to place, as described by Garrett & Munk
(1979), who proposed a model (later improved by Munk 1981) for describing
the frequency and vertical wavenumber spectra (hereafter referred to as GM
spectra). A k−2

z spectrum down to scales of roughly 10 m is predicted, followed
by a steepening to k−3

z for wavelengths smaller than 1 m. The GM spectrum is
usually interpreted as the results of the superposition of saturated waves: the
transition to k−3

z is assumed to be set by the onset of wave instabilities, i.e.
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waves reaching the critical steepness urms/cx > 1, where urms is the velocity
fluctuation and cx is the phase velocity of the wave. Nevertheless, it must be
noted that vertical spectra of the form N2k−3

z is also predicted by theories of
stratified turbulence (Billant & Chomaz 2001). Such a prediction has recently
been confirmed by direct numerical simulations (Augier et al. 2012) of strongly
stratified flows at scales larger than the Ozmidov length scale without the pres-
ence of any clear strong wave signals. That stratified turbulence may also be
an important dynamical process in the oceans is supported by the observations
and the simulations of Ménesguen et al. (2009).

The nonlinear terms in the Navier-Stokes equations allow energy to be
transferred among the different modes, involving triads in spectral space.
Through resonant interaction waves can support an energy transfer towards
small scales without involving any turbulent-like motions (Bellet et al. 2006).
Phillips (1981) and Staquet & Sommeria (2002) reviewed the condition and
the mechanism for sub-harmonic parametric instability (SPI) for which a long
wave (k0) resonantly interact with two high wavenumber secondary waves
(k1, k2 >> k0) which have half the frequency with respect to the primary
wave (ω1 = ω2 = −ω0/2). The transfer of energy is mainly directed from the
long wave to the short ones, feeding their growth. Resonance could possibly
occur also between two waves with similar frequency and a vortical mode with
zero frequency (Lelong & Riley 1991; Bartello 1995). As predicted by statistical
equilibrium analysis, energy is expected to flow from large-scale to small-scale
inertia-gravity waves. According to the analysis of Bartello (1995), resonance
interactions between three waves are of secondary importance. Ageostrophic
energy can instead cascade downscale thanks to the wave-wave-vortex interac-
tions.

Within the context of turbulence theory, triad interactions have historically
been the objects of a great deal of modelling efforts (see for instance Leith &
Kraichnan 1972). Ohkitani & Kida (1992) carried out the first detailed numer-
ical study of triad interactions in forced isotropic turbulence. Similar analyses
were also carried out in the context of two-dimensional turbulence, covering
both the enstrophy and the energy ranges (Ohkitani 1990; Maltrud & Vallis
1993; Vallgren 2011). The main question addressed in these studies is whether
the transfer of energy is local in wavenumber space. Somewhat surprisingly, all
the aforementioned studies showed that turbulence is an intimately non-local
process, involving large exchange of energy in triads with two large comparable
wavenumbers and one small wavenumber. Despite the high non-locality, energy
exchange is mainly between the two large wavenumbers, whereas the small one
only acts as a catalyser.

In this paper, we will mainly address two issues. First, we aim at extending
some recent results by Vallgren et al. (2011), obtained within the framework of
the primitive equations, by considering the full Boussinesq system with finite
stratification, i.e. where there is no hydrostatic balance. The main focus is to
understand whether and how the route to dissipation is modified by a finite
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horizontal Froude number. Comparisons with the primitive equation are made,
mainly focusing on energy and enstrophy spectra and fluxes. The simulations
we have carried out give a good picture of the dynamics which take place
for several Ro and Fr, spanning reasonable values for large scale atmospheric
flows. Secondly, we study the possible influence of wave motions in the forward
energy cascade. To do this, the full Boussinesq system is the appropriate set
of equations. In fact, the primitive equations do not correctly represent wave
modes that have a long vertical and a short horizontal wavelength, which have
fast frequencies and for which the hydrostatic approximation holds to a smaller
degree. Nevertheless, as we will show in the following, the dynamics appear to
be very similar in the two cases, indicating that these modes may be of minor
importance in the overall dynamics. Frequency analyses of time series from
both geostrophically balanced modes and ageostrophic modes are carried out
in order to find signatures of wave motions. We also study triad interactions
in order to understand which modes contribute the most to the energy transfer
towards small scales and whether resonant wave interactions or turbulent-like
process are dominant.

The paper is organized as follows: section 2 gives the theoretical back-
ground and the formulation of the problem; in section 3 the numerical details
and parameters are summarized; in section 4 we present some flow fields in
physical space; in section 5, energy spectra and fluxes are presented with com-
parisons between the primitive equations and the Boussinesq systems; section
6 focuses on analysing wave motions and frequency spectra; in section 7 the
transfer of energy among wavenumbers through triad interactions is studied.
Conclusions are finally given in Section 8.

2. Theoretical formulation

We start from the inviscid three dimensional Navier-Stokes equations within
the Boussinesq approximation in a rotating frame for an incompressible flow,

Du

Dt
= −∇p

ρ0
− fez × u+Nbez, (2a)

Db

Dt
= −Nw, (2b)

∇ · u = 0 , (2c)

where δi3 is the Kronecker’s delta, u is the velocity vector, w is the vertical ve-
locity component, ez is the vertical unit vector, p is the pressure, b = gρ/(Nρ0)
is the rescaled buoyancy, where ρ and ρ0 are the fluctuating and background
densities, respectively. In atmospheric applications, potential density is used
in place of ρ (Vallis 2006). The buoyancy is here rescaled in such a way that
it has the same dimension as velocity rather than acceleration.

The system (2) is made dimensionless using geostrophic scaling. For
geostrophic flows, the horizontal pressure gradient is mainly balanced by the
Coriolis force, whereas the vertical pressure gradient is mainly balanced by
buoyancy force. Following Charney (1971), the vertical scale is rescaled by
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N/f . The following estimates apply:

x ∼ L, y ∼ L, z ∼ f/NL, t ∼ L/U,

u ∼ U, v ∼ U, w ∼ RoUf/N, b ∼ U.
(3)

The system (2) can be rewritten introducing the Charney potential vorticity q
and the two ageostrophic components, a1 and a2:

q = − ∂u

∂y
+
∂v

∂x
+
∂b

∂z
, (4a)

a1 = −∂v
∂z

+
∂b

∂x
, (4b)

a2 =
∂u

∂z
+
∂b

∂y
, (4c)

where a1 and a2 measure the departure from the thermal wind balance (Vallis
2006). The geostrophic scaling for q, a1 and a2 reads

q ∼ U/L, a1 ∼ RoU/L, a2 ∼ RoU/L. (5)

Using the definitions (4), we recast (2) into the three prognostic equations

∂q

∂t
=

∂

∂y

(
∂u2

∂x
+
∂uv

∂y
+Ro

∂uw

∂z

)
− ∂

∂x

(
∂uv

∂x
+
∂v2

∂y
+Ro

∂vw

∂z

)

− ∂

∂z

(
∂ub

∂x
+
∂vb

∂y
+Ro

∂wb

∂z

)
+ νS∇8q − νLq, (6a)

Ro
∂

∂t

(
a1 +

Fr2

Ro2

∂w

∂y

)
= a2 −

∂w

∂x
+

∂

∂z

(
∂uv

∂x
+
∂v2

∂y
+Ro

∂vw

∂z

)

− ∂

∂x

(
∂ub

∂x
+
∂vb

∂y
+Ro

∂wb

∂z

)

− Fr2

Ro

∂

∂y

(
∂uw

∂x
+
∂vw

∂y
+Ro

∂ww

∂z

)

+RoνS∇8a1 −RoνLa1, (6b)

Ro
∂

∂t

(
a2 −

Fr2

Ro2

∂w

∂x

)
=− a1 −

∂w

∂y
− ∂

∂z

(
∂u2

∂x
+
∂uv

∂y
+Ro

∂uw

∂z

)

− ∂

∂y

(
∂ub

∂x
+
∂vb

∂y
+Ro

∂wb

∂z

)

+
Fr2

Ro

∂

∂x

(
∂uw

∂x
+
∂vw

∂y
+Ro

∂ww

∂z

)

+RoνS∇8a2 −RoνLa2, (6c)

0 =
∂u

∂x
+
∂v

∂y
+Ro

∂w

∂z
, (6d)

where both a small scale hyperviscosity, associated with a fourth-order Lapla-
cian, and large scale linear drag have been employed in order to provide a mean
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to dissipate energy at small and large scales. The use of hyperviscosity allows
us to reduce the range of small scales at which viscosity plays a dominant
role. Large scale friction is needed in order to avoid that an energy condensate
develops at large scales as a result of the inverse energy cascade. Note that
for simplicity, the set of equations (6) has been derived assuming that there is
a large scale and a small scale diffusivity associated with the buoyancy which
is equal to the corresponding large scale and small scale viscosity νL and νS ,
respectively.

Taking the scalar product of (2a) and u, multiplying (2b) by b, and sum-
ming the resulting equations, we can derive the total energy equation in a
periodic frame

d

dt

∫
u2 + v2 + Fr2w2 + b2

2
dxdydz = −ε, (7)

where ε is the sum of the small scale and large scale energy dissipation, εS and
εL, respectively. The total energy of the system is the sum of kinetic energy,
(u2 + v2 + Fr2w2)/2, and potential energy, b2/2.

Equations (6a-6c) constitute a geostrophically scaled version of the Boussi-
nesq system (BQ). In the limit of zero Fr, the primitive equation system (PE)
solved by Vallgren et al. (2011) is recovered. Applying the geostrophic scaling
(3) at the vertical momentum balance (2a) gives

Fr2
Dw

Dt
= −∂p

∂z
+ b, (8)

where
D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+Row

∂

∂z
. (9)

From equation (8), it is clear that setting Fr to zero is equivalent to applying
the hydrostatic assumption (Billant & Chomaz 2001). Interestingly, the poten-
tial vorticity equation (6a) does not depend on Fr and therefore has the same
expression both in the PE and in the BQ. Neglecting the viscous terms and
using the definitions (4), (6a) can be rewritten as

Dq

Dt
=Ro

(
a1
∂b

∂y
− a2

∂b

∂x
+ q

∂w

∂z
− ∂b

∂y

∂w

∂y
− ∂b

∂x

∂w

∂x
− 2

∂b

∂z

∂w

∂z

)

+Ro2
(
a1
∂w

∂x
+ a2

∂w

∂y

)
. (10)

Note that whereas the Ertel potential vorticity (e.g. Pedlosky 1987) is a con-
served quantity also in PE and BQ, the same does not apply to the Charney
potential vorticity which we consider here. However, in the limit Ro → 0, the
above expression reduces to

Dq

Dt
= 0, (11)

stating that q is a materially conserved quantity (Charney 1971). In the limit
Ro→ 0 and Fr2/Ro→ 0, the equations (6b) and (6c) lose their time derivative
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and reduce to algebraic equations from which the ageostrophic wind may be
directly computed from geostrophically balanced fields (see e.g. Gill 1982).

Retaining only the linear terms in (6b) and (6c) and using (2c), we can de-
rive the well known wave equation for inertia-gravity waves (Gill 1982; Pedlosky
1987; Vallis 2006). The corresponding dispersion relation reads

ω2
d =

k2x + k2y + k2z

Fr2
(
k2x + k2y

)
+Ro2k2z

. (12)

Note that the dimensional counterpart of (12) would read

ω̃2
d =

N2
(
k̃2x + k̃2y

)
+ f2k̃2z

k̃2x + k̃2y + k̃2z
, (13)

which is the common expression which may be found in any geophysical fluid
dynamic book (Gill 1982; Pedlosky 1987; Vallis 2006). The tilde, ·̃, now refers
to dimensional quantities.

In the limit of zero Fr, the dispersion relation (12) becomes singular for
small kz, i.e. for vertically long, barotropic waves. Infinitely fast wave motions
may therefore appear in the primitive equations. On the other hand, in the
Boussinesq system wave frequencies are bounded between Ro−1 and Fr−1, as
is clear from equation (12).

The total energy spectrum

E(k) =
û(k)û∗(k) + v̂(k)v̂∗(k) + Fr2ŵ(k)ŵ∗(k) + b̂(k)b̂∗(k)

2
, (14)

decouples into a geostrophic part associated with q and an ageostrophic part
associated with a1 and a2. We find that

E(k) =
∑

k

q̂(k)q̂∗(k)

2k2
+

{
â1(k)
â2(k)

}[
E22 E23

E23 E33

]{
â1(k)
â2(k)

}∗

, (15)

where k =
√
k2x + k2y + k2z . The energy can therefore be divided into a

geostrophic and an ageostrophic part, EG and EA, respectively. In Appendix
A, the explicit form of the matrix E is given. Following Bartello (1995), we will
now classify the nonlinear interactions involving geostrophic and ageostrophic
modes. According to (15), the rate of change of the geostrophic energy, EG,
can be rewritten as

∂EG

∂t
=
∑

k

1

2k2

(
∂q̂(k)

∂t
q̂∗(k) +

∂q̂∗(k)

∂t
q̂(k)

)
, (16)

where the rate of change of q due to non-linear terms can be separated into
three contributions

∂q̂(k)

∂t
= NLGG(k) +NLGA(k) +NLAA(k), (17)
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with the subscripts standing for the nonlinear terms arising from the interaction
of the two classes of motions: geostrophic (G) and ageostrophic (A). Explicitly,

NLGG(k) =
∑

p,q
k=p+q

ΓGG(k,p,q)q̂(p)q̂(q), (18a)

NLGA(k) =
∑

p,q
k=p+q

∑

i

ΓGAi
(k,p,q) [q̂(p)âi(q) + âi(p)q̂(q)] , (18b)

NLAA(k) =
∑

p,q
k=p+q

∑

i,j

ΓAjAi
(k,p,q) [âi(p)âj(q) + âj(p)âi(q)] , (18c)

where the explicit expression of the coefficients Γi,j(k,p,q) can be found
from the nonlinear terms in (6). Multiplying (17) by q̂∗(k)/2k2, we obtain
the geostrophic energy budget

∂EG(k)

∂t
= TGGG(k) + TGGA(k) + TGAA(k), (19)

where TGGG, TGGA and TGAA represent the transfers into geostrophic energy
due to nonlinear interactions involving two geostrophic, one geostrophic and
one ageostrophic and two ageostrophic modes, respectively. In a similar way
we arrive at an expression for EA,

∂EA(k)

∂t
= TAGG(k) + TAGA(k) + TAAA(k). (20)

The transfer functions satisfy the following conservation relations
∑

k

TGGG(k) = 0,

∑

k

TGGA(k) + TAGG(k) = 0,

∑

k

TAGA(k) + TGAA(k) = 0,

∑

k

TAAA(k) = 0,

∑

k

k2TGGG(k) = 0,

(21)

where the last relation is an expression of the fact that potential enstrophy is
conserved by interaction involving only geostrophic modes. From the energy
transfer functions, it is also straightforward to define the enstrophy transfer
functions. Since the enstrophy spectrum is given by

Q(k) =
q̂(k)q̂∗(k)

2
, (22)

the enstrophy transfer functions can easily be found from (19) as

T η
GGG(k) = k2TGGG(k), T η

GGA(k) = k2TGGA, (k)
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T η
GAA(k) = k2TGAA(k). (23)

The transfer functions give information about the amount of en-
ergy/enstrophy flowing into or out of a certain mode. Nevertheless, they do
not preserve the information about where such energy comes from and which
wavenumbers are involved in the exchange. In order to shed some lights on the
dynamics physical process, such kind of information is however crucial. There-
fore we will also consider the triad interaction terms as functions of k = |k|,
p = |p| and q = |q|. For example, we denote by TGGG(k, p, q) the transfer
function which is calculated by averaging the relevant triad interactions over
k, p and q. Note that according to the definitions, such transfer functions are
symmetric with respect to p and q.

The energy/enstrophy flux

Π(k) = −
|k|=k∑

|k|=0

T (k) and Πη(k) = −
|k|=k∑

|k|=0

T η(k) (24)

are often used in place of their generic transfer function T (k) and T η(k). It
is therefore quite natural to classify the fluxes in a similar manner as done for
the transfer terms. In particular, a special attention will be paid to the energy
and enstrophy fluxes due to the geostrophic interactions only,

ΠG(k) = −
|k|=k∑

|k|=0

TGGG(k) and Πη
G(k) = −

|k|=k∑

|k|=0

T η
GGG(k). (25)

3. Simulations

3.1. Numerical methodology

The system (6) is discretized in a triply-periodic isotropic domain, allowing for
Fourier representation of the variables in all the three spatial directions. Ob-
serve that the box is cubic in a space where the vertical coordinate is stretched
by a factor of N/f . A pseudo-spectral method is used, providing an exponen-
tial convergence of the numerical solution. Nonlinear terms in the equations
(6) are advanced in time using a low-storage fourth-order Runge-Kutta scheme.
Linear terms are instead separately solved using an exact implicit procedure
(Canuto et al. 1988). In order to prevent aliasing errors, the 2/3-dealiasing
rule was applied to nonlinear terms (6).

Velocities and buoyancy are recovered from q, a1 and a2, using the following
inversion relations:

∇2b =
∂q

∂z
+ Ro

(
∂a1
∂x

+
∂a2
∂y

)
, (26a)

∂u

∂z
= − ∂b

∂y
+ Roa2, (26b)

∂v

∂z
=
∂b

∂x
− Roa1, (26c)
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∂2w

∂2z
=
∂a1
∂y

− ∂a2
∂x

. (26d)

However, for kz = 0, the inversion relations (26) becomes singular and, as
shown by (4b) and (4c), a1 and a2 are not independent, i.e. a1,y = a2,x. For
the mode kz = 0 we instead solve for q, w and b, using the equations (6a),
(8) and (2b), respectively. The horizontal velocity components can then be
recovered from the potential vorticity inversion

∇2uh = −∇× qez, (27)

whereas a1 and a2 are calculated from their definitions, (4b) and (4c), respec-
tively.

A random forcing is introduced in the potential vorticity equation only, i.e.
no ageostrophic motions are directly forced. The forcing scheme is the same as
used by Vallgren & Lindborg (2011). The scheme is white noise in time, so that
no particular time scale is forced. The forcing is perfectly decorrelated to the
velocity field, allowing us to exactly control the enstrophy and the energy injec-
tion rates into the system. The enstrophy injection rate, η, is set to unity in all
the simulations, which means that we can regard time as non-dimensionalised
using η1/3. The forcing is isotropic in the vertically-stretched space and is ap-
plied to large scales only, corresponding to the wavenumber band k ∈ [3 , 5].
The forcing has a Gaussian distribution over this range. The simulations are
initialized with random flow fields and they are run long enough for a steady
energy cascade to develop.

To allow for very high resolution simulations, the numerical code was par-
allelized with the use of Message Passing Interface (MPI) and run on up to
4096 processors, resulting in a linear scalability. Inviscid energy conservation
tests, equation (7), have been carried out without applying any forcing and
providing an increasing conservation of energy up to machine precision as time
step was progressively reduced. In the limit of zero Ro, results in agreement
with quasi-geostrophic numerical simulations (Vallgren & Lindborg 2011) were
obtained.

3.2. Choice of the numerical parameters

The numerical and physical parameters used in the simulations are listed in
table 1. The box is chosen as (Lx × Ly × Lz) = (2π × 2π × 2π), using 1024
modes in each direction. The physical parameters in table 1 were extracted
from the simulations after that a steady direct energy cascade was obtained.
The values of Ro and Fr were chosen to span a realistic range representative
for atmospheric applications. Boer & Shepherd (1983) estimated the enstrophy
flux from global FGGE data, giving a value on the order of 10−15 s−3 . Cho
& Lindborg (2001) made a similar estimate using the third order structure
functions measured in the lower stratosphere. Such a value gives a Rossby
number, Ro = η1/3/f , on the order of 0.1 for mid-latitude dynamics. A realistic
value of N is on the order of 10−2s−2 (Vallis 2006), corresponding to a ratio,
f/N , of about 0.01. With the aim of reproducing dynamics representative of
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run Ro Fr νL νS · 1018 εL/P εS/P ∆tTS TTS

PE2 0.2 0 0.012 6.2 0.30 0.36 - -
PE1 0.1 0 0.012 4.0 0.43 0.14 - -
PE05 0.05 0 0.012 4.0 0.46 0.05 - -
PE025 0.025 0 0.012 4.0 0.25 7.5 · 10−3 - -
PE0 0 0 0.012 4.0 0.43 5.4 · 10−4 - -

aBQ2 0.2 0.01 0.012 6.2 0.43 0.27 - -
aBQ1 0.1 0.01 0.012 4.0 0.76 0.08 - -
aBQ05 0.05 0.01 0.012 4.0 0.70 5.9 · 10−3 - -

bBQ001 0.1 0.001 0.012 6.2 0.72 0.086 1.4 · 10−3 3.20
bBQ01 0.1 0.01 0.012 4.0 0.76 0.08 1.9 · 10−2 18.3
bBQ1 0.1 0.1 0.012 4.0 0.86 0.064 1.8 · 10−2 20.3

ST - - 0.012 20 0.06 0.90 - -

Table 1. Summary of the simulations. The physical param-
eters have been calculated after a steady direct cascade was
established. Large and small scale dissipation have been made
dimensionless with respect to the energy injection rate P . Note
that for most of the runs, energy was still growing due to the
inverse cascade.

the atmosphere, we have carried out simulations with f/N = Fr/Ro ∈ [0 , 1].
As shown by Vallgren et al. (2011), in the limit of zero Fr, an increasing amount
of energy cascades towards small scales as Ro is increased. Therefore, in order
to keep the dissipation range well-resolved, the small-scale viscosity has to be
somewhat increased with increasing Ro.

We divide the simulations into four sets called PE, aBQ, bBQ and dBQ.
Each run is named accordingly, followed by a number x. In the PE simulations,
Fr is set to zero and x refers to the Rossby number which is varied between 0
and 0.2. In the aBQ runs, Fr is set to 0.01 and the Rossby number, indicated
by the suffix x, is varied in the same way as in the PE set. In the bBQ, Ro is
instead kept fixed to 0.1, whereas the Froude number, indicated by x, is varied
from 0.001 to 0.1. Finally, a non-rotating simulation of the primitive equations
has also been run and named ST in order to investigate the vertical spectrum,
as discussed in the section 5. In order to investigate the role of gravity waves
and inertial waves, time series of individual Fourier modes are collected for the
bBQ set after that a forward cascade is established. The sampling time step
∆tTS and the covered time interval TTS are given in table 1.

4. Flow fields

We start by presenting some snapshots from the simulations in order to give a
feeling of the physical process that we investigate. In figure 1 (left), a horizontal
cut of the potential vorticity flow field is shown for the aBQ1 run, i.e. Ro = 0.1
and Fr = 0.01. The overall dynamics at large scales resemble the QG dynamics
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(see for instance fig. 9 of Vallgren & Lindborg 2010) with a large scale vortex
surrounded by small-scale filaments. Figure 1 (middle) displays a vertical cut
of the large-scale vortex. Interestingly, this structure shows a large degree of
coherence in the vertical direction, displaying similarities with the large scales
vortices found by Vallgren & Lindborg (2010) and the related barotropization
of the flow. Nevertheless, some differences can also be observed. Unlike the QG
simulation results, the core of the vortex is dominated by small scale structures
which can be observed both in the horizontal and in the vertical cuts. Moreover,
patches of small scale turbulence can also be observed all over the flow. A
particularly intense small-scale chaotic region is found in the top right corner
of the horizontal potential vorticity cut in figure 1 (left). As shown by the
horizontal cut of a2 in figure 1 (right), in such a region the ageostrophic motions
become more intense than in other regions, increasing of about one order of
magnitude.

Molemaker et al. (2010) reported snapshots of their non-hydrostatic non-
geostrophic forced Eady flow, where characteristic structures of QG dynamics
as filaments and small scales three-dimensional turbulence were both observed.
They argued that a forward energy cascade is needed for the system to reach a
balanced state when a constant energy input is introduced into the flow. They
showed that dissipative turbulent patches arise as the result of instabilities de-
veloping along potential vorticity fronts. The horizontal and vertical structures
of the turbulent patches in figure 1 (left) and 1 (middle) are illustrated in the
close-up shown in figure 2, where both the potential vorticity field and the local
vertical Froude number, defined as

FrL =

√
ω2
x + ω2

y

2N
, (28)

are shown in an horizontal (parallel to the x-direction) and vertical plane.
In (28), ωx and ωy represent the dimensional horizontal vorticities. In the
horizontal plane, the potential vorticity and FrL, show small-scale structures
which follow very similar patterns. More importantly, FrL attains values of
the order of unity, which is required for KH instabilities to develop (Billant
& Chomaz 2001). Also in the vertical plane, very similar observations can be
made. It is also worth noticing how confined are the structures in the vertical
direction as compared to the horizontal direction (bottom panels in figure 2).

5. Energy spectra and spectral fluxes

5.1. Horizontal spectra

Simulations were run long enough to allow for the formation of a steady down-
scale energy cascade with a nearly constant small scale dissipation. Figure 3
(left) shows the time evolution of both kinetic and potential energy in the run
PE1. Qualitatively, the same picture were obtained in all the other runs. To
start with, the kinetic energy grows twice as fast as the potential energy, as an
effect of the Charney isotropic forcing (Vallgren & Lindborg 2010). However,
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Figure 1. Potential vorticity q (left and middle) and the sec-
ond ageostrophic component a2 (right) cuts. (left) and (right)
horizontal cuts at z = 3.14; (middle) vertical cut at y = 2.4,
corresponding to the location of the large scale vortex. Dark
helping lines show the position of the vertical and horizontal
cut planes.

Figure 2. Close-up of the turbulent patch in the top right
corner of figure 1. (left) potential vorticity and (right) local
Froude number FrL. Both the horizontal (top) and the vertical
(bottom) cuts are shown. The colourmap of the local Froude
number ranges from 0 (blue) to 1.8 (red).

whereas potential energy saturates quickly at very early stages, kinetic energy
continues to increase and levels off only at a later stage. In the quasi-steady
state, there is considerably more kinetic energy than potential energy. Similar
results were also obtained by Vallgren & Lindborg (2011) in quasi-geostrophic
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Figure 4. Comparison of the two-dimensional horizontal to-
tal energy spectra for PE (left) and aBQ (right) runs for sev-
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0.05; Ro = 0.0 (only PE runs). In (thin) helping

lines with k
−5/3
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simulations. However, kinetic energy tends to level off at earlier times as Ro is
increased. In spite of the fact that the kinetic energy is still growing, small-scale
dissipation attains nearly constant values rather soon, at times comparable to
the time required by the potential energy to saturate. The kinetic energy dis-
sipation is observed to be larger than potential energy dissipation.

We begin by examining the horizontal two-dimensional energy spectra,
shown in figure 4, both for the PE (left) and aBQ (right) sets. The spectra

were calculated by averaging over circles with constant kh =
√
k2x + k2y. The

curves in figure 4 (left) compare well with the results of Vallgren et al. (2011),
who studied the one-dimensional horizontal spectra. Consistent with the re-
sults of Vallgren et al. (2011), the spectra at low Ro scale as k−3

h for a large
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Figure 5. Kinetic and potential energy spectra for the PE
(left) and aBQ (right) runs with Ro = 0.1. total energy;

kinetic energy; potential energy.

span of wavenumbers. As Ro is increased, departures from the k−3
h dependence

are observed, and the slopes are close to −5/3 at small scales. This is a di-
rect consequence of the increasing amount of energy which cascades downscale.
Even though a qualitatively similar behaviour can be observed in the left and
right panels, it should be noted that there are smaller departures from the
quasi-geostrophic curves in the BQ runs as compared to the PE runs at the
same Rossby number.

As shown by figure 5, at large scales kinetic energy dominates over the
potential energy and it accounts almost completely for the total energy content.
Similar results were also found in numerical simulations of the QG equation
(Vallgren & Lindborg 2011). However, it should also be noted that the
gap between kinetic and potential energy tends to increase in the BQ runs as
compared to the PE runs and equipartition occurs only at small scales.

Since the results of the PE and BQ simulations are qualitatively very sim-
ilar as Ro is changed, henceforth in this section we focus only on PE runs.
Results from BQx runs do not differ qualitatively, and analogous conclusions
would therefore apply. A question yet to be answered regarding the atmo-

spheric energy spectrum and its transition from k−3
h to k

−5/3
h at scales of about

500 km concerns the importance of geostrophic (rotational) and ageostrophic
(divergent) motions. Following Lelong & Riley (1991), we rewrite the velocity
as

u = ez ×∇hψ + {∇hφ+ wez} , (29)

where the first term is horizontally non-divergent whereas the second carries
all the horizontal divergence of the field. The first term in (29) is associated
with the potential vorticity whereas the second term is associated with the
ageostrophic components a1 and a2. In the QG limit, the divergent part
vanishes due to the incompressibility condition (2c). At large scales, where
QG is a good approximation, the rotational part should therefore be dominant.
Lindborg (2007) calculated the rotational and divergent energy spectra from
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measurements in the upper troposphere and lower stratosphere and found that
rotational modes are totally dominant at synoptic scales but the contributions
from the two types of modes are of the same order of magnitude at mesoscales.
Lindborg & Brethouwer (2007) found that energy is equipartitioned between
rotational and divergent modes in the turbulent cascade of strongly stratified
flows. In figure 6 (left), the kinetic energy spectrum is shown together with
the rotational and divergent contributions. At large scales, the rotational part
dominates, whereas the divergent part is several orders of magnitude smaller.
The rotational spectrum scales as k−3

h in this range. On the other hand, the

divergent energy spectrum is rather flat, a little shallower than k
−5/3
h . Owing

to the different slopes, rotational and divergent energy spectra are doomed to
meet at a transition wavenumber ktr. As this scale is approached, the rotational
spectrum shallows whereas the divergent spectrum steepens slightly and both

tend to ∼ k
−5/3
h . For higher wavenumbers, the energy content in rotational and

divergent modes is of the same order of magnitude, consistent with the results
on stratified turbulence of Lindborg & Brethouwer (2007) and Lindborg (2007).

Setting Ro = 0 and Fr = 0 in equations (6b) and (6c), one may derive the
so called Ω-equation for the vertical velocity (e.g. Gill 1982),

∇2w =− ∂2

∂y∂z

(
∂u2

∂x
+
∂uv

∂y

)
+

∂2

∂x∂z

(
∂uv

∂x
+
∂v2

∂y

)

−
(
∂2

∂x2
+

∂2

∂y2

)(
∂ub

∂x
+
∂vb

∂y

)
. (30)

An interesting question is whether the divergent spectrum which is obtained by
solving the Ω-equation is comparable to the total divergent spectrum. In figure
6 (left) we investigate this. The divergent spectrum which is obtained from (30)
is several orders of magnitude smaller than the total divergent spectrum. This

clearly shows that the transition from ∼ k−3
h to ∼ k

−5/3
h cannot be explained

within a higher order QG model.

The Rossby number dependence of the divergent energy spectrum is inves-
tigated in figure 6 (right). As is clear from the plot, an increase of Ro leads
to a larger amount of divergent energy. It can be argued that this energy is
directly linked to the forward energy cascade whose strength increases with Ro.
Note that for small Ro the slopes are somewhat shallower than −5/3 at small
wavenumbers but tend to steepen with increasing wave number.

5.2. Vertical spectra

We now turn to the vertical spectra, shown in fig 7. In a similar way as
the horizontal spectra, the vertical spectra display many similarities between
PE and BQ runs as Ro is increased. In QG dynamics, the vertical spectrum
has a similar form, ∼ η2/3k−3

z , as the horizontal spectrum. In the current
simulations, the slopes are found to increase with Ro from −3 to −5/3. We
find it somewhat surprising that the vertical spectra also show such a transition.
In contrast to this result, the vertical spectra of strongly stratified turbulence
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Figure 6. (left) Divergent ( ) and rotational ( ) part
of the kinetic energy ( ) for the PE02 run. The QG
divergent energy, given by (30), is shown as well for refer-
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Figure 7. Comparison of the one-dimensional vertical total
energy spectra for PE (left) and aBQ (right) runs for sev-
eral Ro numbers. Ro = 0.2; Ro = 0.1; Ro =
0.05; Ro = 0.0 (only PE runs). In (thin) helping

lines with k
−5/3
h and k−3

h .

which is not affected by system rotation is expected to scale as k−3
z (Billant &

Chomaz 2001). In order to investigate if this is the case, we carried out an
additional simulation where the linear terms pertaining to the Coriolis forces
in equation (2) are set to zero. Setting Ro to unity in (3) allows us to retrieve
the scaling for strongly stratified flows suggested by Billant & Chomaz (2001).
Hydrostasy was assumed in the vertical by imposing Fr equal to zero. In
figure 8 (left) the vertical spectrum for this simulation is shown together with
the vertical spectrum pertaining to the PE01 run. In agreement with previous
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Figure 8. (left) Comparison of vertical spectra for primitive
equations with rotation Ro = 0.1 ( ) and without rotation
( ). (right) Measure of the Charney isotropy according to
(32) for several Ro for the aBQ runs. Ro = 0.2; Ro =
0.1; Ro = 0.05.

studies in the field of stratified turbulence, a spectrum of the form

E(k̃z) = CN2k̃−3
z (31)

is recovered, with C ≈ 1. Here k̃z is the dimensional vertical wavenumber.
This result suggests that the shallowing of the vertical spectrum is an effect of
the system rotation.

Vallgren & Lindborg (2011) tested the validity of Charney isotropy (Char-
ney 1971) in high-resolution numerical simulations of QG turbulence. They
found that the ratio between the one-dimensional vertical spectrum and the
corresponding horizontal spectrum

R(k) =
Ez(k)

Eh(k)
, (32)

is approximately equal to unity, except at the forcing and dissipating scales. In
equation (32), Eh(k) is the one-dimensional horizontal spectrum and Ez(k) is
the one-dimensional vertical spectrum, where k in the vertical spectrum is the
vertical wavenumber stretched by a factor of f/N . As Ro is increased, Charney
isotropy is expected to apply to a smaller degree. In figure 8 (right), R(k) is
plotted for several Ro. In all the cases, a plateau is observed at relatively large
scales. Its width however reduces with Ro, whereas its amplitude increase
approximately linearly with Ro.

5.3. Energy and enstrophy fluxes

Vallgren et al. (2011) showed that within the primitive equations framework,
the amount of energy cascading towards small scales is a function of Ro. In
particular, they found that the small scale dissipation scaled as εS ∼ Ro3/2 P ,
where P is the energy injection. Here, we extend their analysis and investigate
the influence of a finite Fr. The total energy flux (24) is plotted in figure 9
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Fr = 0.001; Fr = 0.01; Fr = 0.1.

(left) for the aBQx runs. In agreement with the observations of Vallgren et al.
(2011), the amount of energy cascading towards small scales increases with
Ro. Notwithstanding, the quantitative magnitude and the Ro-dependence are
different. In figure 10 the small-scale dissipation εS is shown both for PE and
BQ, spanning values of Ro between 0.025 and 0.2. The QG energy flux is found
to be several order of magnitude smaller (Vallgren et al. 2011). As can be clearly
seen, finite stratification and the departure from the hydrostatic approximation
lead to somewhat smaller energy fluxes towards small scales. This is also
confirmed in figure 5, where a larger amount of kinetic energy is found at large
scales. For large Ro, the difference between PE and BQ is relatively small. In
particular, at Ro = 0.2, the hydrostatic approximation leads to an increase of
dissipation of roughly 30%. On the other hand, larger differences, of about one
order of magnitude, are found at smaller Ro. However, it is worth pointing
out that Fr was kept constant to 0.01 in the aBQ runs. When Ro ∼ Fr,
the primitive equations are not expected to be a good approximation of the
dynamics, as seen from equations (6b) and (6c).

The convergence of the BQ to the PE for Fr approaching zero is illustrated
in figure 9 (right) where the energy flux for the bBQ runs is shown. The Rossby
number is kept fix to 0.1, whereas Fr is varied from 0.001 to 0.1. The PE limit is
plotted as well, for reference. The fact that an increased degree of stratification
leads to a larger energy flux towards small scales seems inconsistent with the
idea that stratification suppresses the vertical velocity and increases the two-
dimensionality of the system, which according to several studies, e.g. Lilly
(1983), should lead to an inverse cascade of energy. However, this result is
in agreement with a number of recent studies on stratified turbulence (Riley
& deBruynKops 2003; Lindborg 2006; Brethouwer et al. 2007), showing that
stratification favours a downscale energy cascade. It should be noted, however,
that the Froude number dependence of the energy flux is weak as compared to
the Rossby number dependence, as seen in figure 9.
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Figure 11. Kinetic (left) and potential (right) energy flux
function of the wavenumber k for aBQ runs. Ro =
0.2; Ro = 0.1; Ro = 0.05.

Figure 11 shows the spectral flux of potential and kinetic energy, respec-
tively, for the aBQx runs. Note that separate fluxes do not attain constant
values to the same degree as the total flux shown in figure 9. This implies
that there is a kinetic to potential energy transfer. In figure 12, the transfer of
energy from kinetic to potential energy

TKP (k) = −
∑

|k|=k

Re
(
ŵb̂∗

)
(33)

is shown. At large scales there is a net transfer from potential to kinetic energy
(dotted lines being the negative part), as is also seen in figure 11. This is
consistent with atmospheric dynamics where energy at large scales is fed by
the baroclinic instability which converts potential energy to kinetic energy.
Interestingly, this transfer do not depend on Ro. However, at smaller scales,
the transfer changes sign which means that there is a net transfer from kinetic
energy to potential energy. This is also seen in figure 11 (right), where, within
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the turbulent forward cascade, ΠP is seen to slightly increase. This result is in
agreement with the numerical simulations of Molemaker et al. (2010).

In order to better understand the role of ageostrophic motions, we separate
the contribution of purely geostrophic motions from the total energy flux. In
figure 13 (left), the geostrophic energy flux is shown together with its comple-
ment to the total flux, Π − ΠG. The geostrophic energy flux attains negative
values over the whole range, with large contributions only at large scales. Here,
it accounts for almost the entire flux, with its complement being one order of
magnitude smaller and positive. Clearly, geostrophic interactions support the
inverse cascade, whereas ageostrophic motions allow for a drain of energy down-
scale. At wavenumbers larger than 10, the geostrophic flux becomes negligible
and its complement Π−ΠG accounts for the entire downscale energy transfer.
A further decomposition of the complement energy flux to the geostrophic en-
ergy flux, Π−ΠG, shows that its dominant contribution is from the interactions
between two ageostrophic modes and one geostrophic mode.

Similar conclusions apply also to the potential enstrophy fluxes which are
shown in figure 13 (right). In QG turbulence, potential enstrophy is a conserved
quantity. Unlike energy, it cascades downscale and is finally dissipated at small
scales where viscosity dominates. However, within the framework of the prim-
itive equations and the Boussinesq system it is not a conserved quantity and
therefore its flux, Πη, does not generally go to zero as k → ∞. Nevertheless,
the geostrophic counterpart of the potential enstrophy flux, Πη

G, goes to zero,
as shown by the conservation relations (21). At large scales, the geostrophic
potential enstrophy flux is the dominant contribution and attains a value of
the order of unity, showing that the injected enstrophy cascades downscale.
The complement to the total potential enstrophy flux is two orders of magni-
tude smaller in this range, but increases with wavenumbers. At the transition
wavenumber, it attains values as large as the geostrophic part. At these scales,
departures from the QG prediction can be observed also for the geostrophic
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Figure 13. (left) Geostrophic energy flux ΠG ( ) and
its complement to the total energy flux Π−ΠG ( ) for the
bBQ1 run. (right) Geostrophic enstrophy flux Πη

G ( ) and
its complement to the total enstrophy flux Πη−Πη

G ( ) for
the bBQ1 run.

counterpart which shows a small bump located at large wavenumbers. Never-
theless, its magnitude stays on the order of unity.

A major finding of this study is that at finite but small Ro and Fr the
forward enstrophy cascade and the forward energy cascade may coexist in the
same range of scales. This is clearly shown in figure 14 where the total potential
enstrophy flux (dashed lines) and the total energy flux (solid lines) are shown
together for the aBQ05 and aBQ1 runs. This is remarkably true for the lower
Ro where both fluxes attain constant values for the whole span of scales. Nev-
ertheless, whereas all the enstrophy cascades downscale, only a small portion of
energy cascades towards small scales, the rest being transferred up-scale in the
inverse energy cascade. It is worth noticing that despite the fact that there is
a reasonably clean enstrophy downscale cascade, energy spectra deviates from
the QG limit, as shown by figure 4.

6. Wave motions

We now investigate the role of inertia-gravity waves in the dynamics. Due to
the singularity which is present for barotropic modes in the PE, only runs from
the BQ will be considered in the following. It should be pointed out that the
random forcing we introduce in the flow excites gravity waves, since all the
frequencies are forced. The waves are, however, not directly forced since the
forcing is only applied to the potential vorticity equation. The excitement of
gravity waves at the forcing scale is crucial in order to be able to investigate
the possible role of gravity waves in the downscale energy cascade.

The wave motions are studied through frequency analyses. Due to storage
limitations together with the high resolutions employed, time series of only
a limited number of spectral components were collected. A logarithmically
spaced span of 40 wavenumbers between 1 and 330 were considered both in the
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horizontal and in the vertical direction. In each horizontal circle, 15 equally-
spaced wavenumbers were collected. Frequency spectra were computed from
time series collected from each individual mode and the spectra were averaged
over the horizontal circles. From (12), it is easy to see that wave frequencies
can just lie between Ro−1 and Fr−1. Therefore, if one aims at resolving all the
possible waves, time resolutions of at least π Fr as well as time spans of 4π Ro
are required. As the separation between Ro and Fr increases, this poses severe
requirements on storage capabilities.

From (16), it is evident that the contributions from the geostrophic and
ageostrophic motions are decoupled and the total energy can be divided in the
two components EG and EA. Waves pertain just to ageostrophic motions and
therefore their signatures are expected to be observed only in EA. Wave activ-
ity is particularly intense in two regions: barotropic modes and shear modes,
corresponding to pure gravity waves and pure inertial waves, respectively. As
Fr is increased from 0.001 to 0.1, the importance of gravity waves on the overall
ageostrophic spectrum becomes smaller. Moreover, also the range of wavenum-
bers largely affected decreases as Fr becomes comparable to Ro. On the other
hand, the extent of the region pertaining to inertial waves is not very affected
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Figure 15. Examples of the time-frequency spectrum for
(left) a large scales (kh = 10, kv = 2) and (right) a small scales
(kh = 50, kv = 50) Fourier mode. geostrophic spectrum
EG; ageostrophic spectrum EA. Vertical helping dashed
lines represent the inertial frequency f , the dispersion relation
frequency ωd and the Brunt-Väisälä frequency N (from left to
right).

by changes in Fr. It is worth noticing that the region where wave motions are
most important does not coincide with the forcing wavenumbers.

In figure 15 the frequency energy spectra for two particular modes, a large
scale mode, (kh, kz) = (10, 2), and a small scale mode, (kh, kz) = (50, 50), are
shown for Ro = 0.1 and Fr = 0.01. In the large scale mode, geostrophic energy
dominates at low frequencies, attaining values that are about two orders of
magnitude larger than the ageostrophic counterpart. At the inertial frequency,
the geostrophic spectrum starts to decay, whereas the ageostrophic spectrum
stays rather flat and peaks in a range between Ro−1 and Fr−1. In this region,
ageostrophic energy dominates. The distinct peak corresponds to motions with
a particular frequency, i.e. waves, which closely match with the frequency ωd

of the dispersion relation (12). When we turn to the small-scale mode, we
note that no distinct peak can be observed and both the geostrophic and the
ageostrophic spectra show a rather flat behaviour with comparable magnitude.

According to equation (12), the dispersion frequency ωd is constant along
straight lines in a kh − kz plane. In order to investigate whether waves
with a particular frequency can be observed, the geostrophic energy spectrum,
EG(kh, kz, ω), and the ageostrophic energy spectrum, EA(kh, kz, ω), have been
averaged over modes that have similar ωd. Seven frequency bands were chosen,
centred around ωd and logarithmically ranging from Ro−1 up to Fr−1. In
order to separate contributions from large scales and small scales motions, the
averaged spectra were divided into large scales spectra, with k =

√
k2h + k2z <

10, and small scales spectra, with k > 10. In figure 16 the averaged spectra
are shown. The large scales geostrophic part shows a rather flat behaviour at
high frequencies. This is clearly due to the forcing that is prescribed to be
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Figure 16. Averaged time frequency geostrophic (top) and
ageostrophic (bottom) power energy spectra. The left figures
refers to the large scales modes, whereas the right figures refers
to the small scales modes. Note that for the figure on the top
left, the frequency axis has been rescaled with the dispersion
relation frequency ωd, which differs from curve to curve, in
order to highlight the peaks due to wave motions.

white noise in time, i.e. all the frequencies are excited. Notwithstanding, the
small scales geostrophic spectra (shown in the top right plot of figure 16) do
not conserve the memory of the forcing and large decaying rates are found at
high frequencies, with EG(ω) ≈ ω−4. The cut-off frequency at which the small
scale spectrum starts to decay is of the order of the rotation rate f , showing
that most of the energy is concentrated at frequencies smaller or comparable
to f .

In the bottom left panel of figure 16, the large scales ageostrophic frequency
spectra are plotted. The distinct peaks at ω = ωd show that wave activity is
important in this range of wavenumbers. Note that both the geostrophic
and ageostrophic large scales spectra show a small but distinct peak at ωd =
Fr−1. This is a spurious effect of an accumulation of energy in the barotropic
mode, kz = 0, which leads to the formations of a strong wave signature at
ωd (kz = 0) = Fr−1, contaminating all modes through non linear interactions,
both in the geostrophic and ageostrophic part. Nevertheless, for the collected
modes, the amount of energy around ω = Fr−1 is very small, around 10−6

times smaller than the total. We therefore conclude that these motions are not
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Figure 17. (top) Transfer of energy into the geostrophic
modes at large scales (left) and small scales (right). TGGG(k)
(blue); TGGA(k) (red); TGAA(k) (black). (bottom) Transfer of
energy into the ageostrophic modes at large scales (left) and
small scales (right). (blue) TAGG(k); (red) TAGA(k); (black)
TAAA(k). Thick lines represent low-pass filtered counterparts.

dynamically important. When we turn to the small-scale ageostrophic spectra
in the bottom right plot of figure 16, distinct peaks cannot be observed. Instead,
spectra show a rather flat behaviour on a relatively large range of frequencies.
Our general conclusion is thus that wave activity is important at large scales,
corresponding to wave numbers close to the forcing scale, but is negligible at
the small scale.

7. Triad interactions

We start by analysing the exchange of energy between geostrophic and
ageostrophic modes. The quantities in the following were computed from in-
dividual flow fields and then averaged using six realizations of the run aBQ1.
In the top plots of figure 17, the transfer into geostrophic energy separated in
its three different contributions, as given by equation (19), is shown. Despite
the averaging, curves still show a somewhat spiky behaviour. Low-pass fil-
tered counterparts characterized by smoother trends are also shown in thicker
lines. At large scales, the contribution from TGGG dominates, leading to an up-
scale cascade of energy. At smaller scales, the three parts attain comparable
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Figure 18. Transfer of energy into the geostrophic modes
(top) and into the ageostrophic modes (bottom) due to the in-
teraction between one geostrophic mode and two ageostrophic
modes. (Left) figures pertain to the large scales and (right)
figures pertain to the small scales. Total interaction TGAA(k)
and TAGA(k) black ; interaction within the same class TG±±(k)
and T±G±(k) (blue); interaction between the different class
TG±∓(k) and T±G∓(k) (red). Thick lines represent low-pass
filtered counterparts.

magnitudes with TGGG being preferentially negative and TGAA preferentially
positive.

On the other hand, the large-scale transfer of energy into ageostrophic
energy is mainly due to positive contributions of TAGG. This result is consistent
with the statistical mechanical analysis of Bartello (1995), suggesting that this
term is mainly responsible for the transfer of energy from geostrophic motions
to ageostrophic motions in the so-called process of “geostrophic adjustment”.
Nevertheless, our analysis also shows that there is another term of comparable
magnitude, namely TAGA. It attains negative values, removing energy from the
large scales and producing a downscale transfer of energy. Note that if potential
vorticity were a conserved quantity, the interaction term TAGA would only allow
energy exchange between two ageostrophic modes, leaving the geostrophic mode
unchanged, and the corresponding interaction term TGAA would therefore be
zero. This is not the case in our simulations, as can be seen in the top plot
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of figure 17. However, TGAA is one order of magnitude smaller than TAGA,
consistent with the analysis of Bartello (1995).

The total energy transfer at small scales is dominated by two contributions,
TAGA and TAAA. It should be noted that the scales in the top right and
bottom right plots of fig 17 are different. The magnitude of the ageostrophic
energy transfer terms at small scales is one order of magnitude larger than
their geostrophic counterparts. Both TAGA and TAAA presents the possibility
of involving resonant wave interactions. With respect to the term TAGA, if
resonance were to happen, the interaction would have to involve two waves
with equal but opposite frequencies. As shown in Appendix B, wave motions
can be classified according to the two eigenmodes of the linear part of (6b) and
(6c). Resonance must occur between one wave of the first class (pertaining to
the first eigenmodes) and one of the second class of waves (pertaining to the
second eigenmodes). In the bottom panels of figure 18, the term TAGA has been
further decomposed into the terms pertaining to the interaction T±G± within
the same class and the terms pertaining to the interaction T±G∓ between the
two different classes. Resonant wave interactions can only make contributions
to T±G∓ and not to T±G±. The interaction within the same class accounts
for almost the whole TAGA term, with T±G∓ being two orders of magnitude
smaller than T±G±. This clearly shows that resonant wave-wave interactions
cannot explain the downscale transfer of energy. At large scales, the interactions
within the same class and the interaction between the classes show comparable
magnitude, with the former being preferentially negative and the latter being
preferentially positive. An analogous decomposition of TGAA is also shown
in the top plots of figure 18. Interactions within and between classes show
similar behaviour with comparable magnitude over the whole range of scales,
suggesting that there is no preferable type of interaction.

In order to further study how energy is exchanged among wavenumbers as
well as the locality of the energy transfer in wavenumber space, we consider
the triad energy transfer integrated over spherical shells in wavenumber space,
T (k, p, q). Roughly one hundred shells were chosen, logarithmically spanning
the interval [1, 300]. In figure 19, TAGA(k, p, q) is shown in a p − q plane at
k = 110, i.e. within the turbulent cascade. At this location, the effect of
viscosity is negligible and the term TAGA constitutes the largest contribution,
as shown in figure 17. As in turbulent flows, the energy transfer term TAGA in
a p − q plane concentrates in two regions, corresponding to one wavenumber
of comparable magnitude respect to k and the other wavenumber being very
small, i.e. strongly non-local triads. In agreement with the results of Ohkitani
& Kida (1992) and Maltrud & Vallis (1993), the transfer of energy, however,
is between the two comparable wavenumbers, whereas the small wavenumber
does not exchange energy within the triad but rather acts as a catalyser. It is
worth pointing out that such triads may satisfy the resonant condition. Simple
geometrical considerations reveal that the three wavenumbers involved in such
triads lay along the same line in wavenumber space. From the dispersion
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Figure 19. (left) Absolute value of the energy transfer func-
tion TAGA(k, p, q) in a p−q plane at k = 110. Note that p and
q are rescaled with k. The colour axis has a logarithmic scale.
(right) example of a dominant triad interaction, corresponding
to the red spot in the left figure.

relation (12), it is therefore evident that waves in these modes possess the
same frequencies. However, Lelong & Riley (1991) showed that the transfer
of energy in a vortex-wave-wave interaction between the two waves tends to
zero when the horizontal projection of the wave wavenumbers are parallel to
each other, as in this case. Thus, also the spectral transfer of energy strongly
supports the conjecture that transfer of energy between scales is a result of
turbulent dynamics.

We now turn to the transfer of energy at small scales among ageostrophic
modes represented by TAAA. Despite being smaller in magnitude, this term is
of leading order at very small scales, as shown by figure 17. According to (21),
such a term is conservative and thus only moves energy among scales. Its role
mainly consists in extracting energy from the middle range of wavenumbers to
feed the dissipation range, in agreement with the finding of Waite & Bartello
(2004). In order to obtain some insight in the dynamics of such a process,
we investigate the quantity TAAA(k, p, q) in figure 20. As before, the p − q
plane at k = 110 is displayed. Triad interactions show a somewhat more sparse
behaviour as compared to figure 19. Also in this case, regions pertaining to one
large wavenumber (comparable to k) and one small wavenumber show intense
transfer which is local and mainly between the two large wavenumbers of the
triad. Such transfer is downscale and consistent with a turbulent dynamics.
Besides, large energy transfers are also obtained in regions corresponding to
interactions with wavenumbers larger than k, which lead to the net transfer of
energy towards large wavenumber seen in figure 17. Interestingly, most of the
energy transfers is found in regions for which p ≈ k+ q or q ≈ k+p, i.e. nearly
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Figure 20. (left) Absolute value of the energy transfer func-
tion TAAA(k, p, q) in a p − q plane at k = 110. Note that p
and q are rescaled with k. The colour axis has a logarithmic
scale. (centre) and (right) examples of two dominant triad
interactions corresponding to the red spots in the left figure.

parallel vectors in a wavenumber space. Figure 20 shows the transfer of energy
in such a triad. As opposed to a typical turbulent cascade, transfer of energy
is highly non-local, with energy flowing out of the two smaller wavenumbers
and into the largest wavenumber. Since the wavenumber vectors are aligned,
waves possess all similar frequencies. Resonance condition is therefore hardly
satisfied, suggesting that wave-wave-wave resonant interactions are of minor
importance also in this type of energy transfer.

8. Conclusions

We have studied the route to dissipation in strongly stratified and rotating
flows, covering a range of values of Ro and Fr, representative for large scale
atmospheric flows. In agreement with the simulations of Vallgren et al. (2011),
finite rotation rates led to departures from the quasi-geostrophic dynamics. As
Ro is increased, the amount of energy cascading up-scale decreases and a frac-
tion of the injected energy starts to cascade downscale. Thus, a finite Rossby
number may reconcile the apparent paradox that energy dissipation should be
absent in flows conforming to QG dynamics to lowest order. Interestingly, the
forward energy cascade towards small scales leads to a shallowing of the energy

spectra, from ∼ k−3
h to ∼ k

−5/3
h , in agreement with the observations of Nastrom

& Gage (1985). At large scales, the rotational spectrum scales as ∼ k−3
h , in

agreement with QG dynamics, whereas the divergent spectrum is several orders

of magnitude smaller and is somewhat more shallow than k
−5/3
h . At the wave

number where the magnitudes of the rotational and divergent spectra become
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comparable, the rotational spectrum shallows and both spectra approximately

scale as k
−5/3
h .

Spectral fluxes indicate the existence of an inertial range of scale where
the energy is inviscidly transferred from the large scales to the very smallest
scales. The amount of energy cascading downscale strongly increases with Ro
and weakly decreases with Fr. This is consistent with the hypothesis that
strong rotation leads to an inverse energy cascade, whereas strong stratifica-
tion favours a forward energy cascade. The primitive equation set therefore
represents the limiting case for strongly stratified flows, for which the related
small-scale dissipation is the upper limit. The separate kinetic and potential
energy fluxes show that there is a transfer of energy from potential to kinetic
energy at large scales and a kinetic to potential energy transfer at smaller scales
where the energy cascade is dominant.

Despite the fact that potential enstrophy is not a conserved quantity in
PE and BQ, intermediate Rossby number simulations show a range of scales
in which both the enstrophy and the energy flux are constant. A forward
cascade of energy and potential enstrophy coexist. For Ro = 0.05 and Fr =
0.01, such a range extends over a decade. Enstrophy cascades downscale by
triad interactions involving three geostrophic modes while energy is cascading
downscale by interactions involving at least one ageostrophic mode, with a
dominant contribution from interactions involving two ageostrophic and one
geostrophic mode.

Structures characteristic of QG dynamics as filamentation and large-scale
baroclinic vortices are observed in the flow. However, small-scale turbulent
patches can also be found where the dissipation of energy is particularly intense.
The local Froude number in the turbulent patches is of the order of unity,
suggesting that KH instability is a potentially important mechanism supporting
a direct energy cascade.

The role of internal gravity waves was investigated through time frequency
analyses of time series from single Fourier modes. Frequency spectra from low
wave number modes, k < 10, of ageostrophic motions show distinct peaks at the
characteristic wave frequency. At higher wave numbers, k > 10, no such peaks
could be observed, indicating that waves become less important at scales where
the energy cascade becomes dominant. That the downscale energy cascade is
dominated by turbulent motions rather than waves is also confirmed by the
investigation of triad interactions. Energy is mainly transferred by interactions
between two ageostrophic and one geostrophic mode. If these interactions had
been the result of resonant wave interactions the two ageostrophic modes would
correspond to two waves with frequencies of equal magnitude but opposite signs.
Our analysis clearly shows that this cannot be the case. The contribution to the
energy transfer from interactions involving such motions is at least two orders
of magnitude smaller that the total transfer. We therefore conclude that the
motions of the downscale energy cascade in strongly stratified and rotating
systems are genuinely turbulent.
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Appendix A.

According to (14), the energy content in spectral space can be written in the
quadratic form

E(k) =





û(k)
v̂(k)
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1 0 0 0
0 1 0 0
0 0 Fr2 0
0 0 0 1
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. (34)

Here, the superscript ·H refers to the Hermitian transpose. Using the inversion

relations (26), we can express the primitive variable û(k), v̂(k), ŵ(k) and b̂(k)
from the prognostic variable q̂(k),â1(k) and â2(k) as
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Energy can therefore be written as

E(k) = ũH
Eũ (36)

where ũ = {q̂ , â1 , â2} and
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 , (38)

showing the decoupling between geostrophic and ageostrophic mode.

Appendix B.

By retaining only the linear part, equations (6b) and (6c) can be written as

 k2z + k2y

Fr2

Ro2 −Fr
2

Ro2 kxky

−Fr
2
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, (40)
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which can be recast in an eigenvalue problem for the complex frequency λ

(B− λA)a = 0. (41)

where a = [â1 , â2 ]
T
. The discriminant of (41) gives the dispersion relation

(12), i.e. λ1,2 = ±iωd. The matrix M whose columns are the eigenvectors of
(39) is a linear operator which allows to project a on the eigenvector basis

a = Me e = M
−1a (42)

where e is the projection of a in the eigenvector basis. The first component of
e pertains to waves with positive frequency whereas the second component of e
pertains to waves with negative frequencies. We divide the transfer term TAGA

into two parts, T±G± and T±G∓, where the first part contains contributions
involving the same eigenvectors and the second part contains contributions
involving two different eigenvectors. To calculate these two parts we need
to separate the ageostrophic fields into two fields associated with each of the
eigenvectors. This can easily be done by projecting a1 and a2 on the eigenvector
basis, setting either the first class or the second class of modes to zero and finally
transforming back to the normal basis which the inversion relations (26) can
be applied to.
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We carry out numerical simulations of wall-bounded stably stratified flows. We
mainly focus on how stratification affects the near-wall turbulence at moderate
Reynolds numbers, i.e. Reτ = 360. A set of fully-resolved open channel flow
simulations is performed, where a stable stratification has been introduced
through a negative heat flux at the lower wall. In agreement with previous
studies, it is found that turbulence cannot be sustained for h/L values higher
than 1.2, where L is the so-called Monin-Obukhov length and h is the height
of the open channel. For smaller values, buoyancy does not re-laminarize the
flow, but nevertheless affects the wall turbulence. Near-wall streaks are weakly
affected by stratification, whereas the outer modes are increasingly damped
as we move away from the wall. A decomposition of the wall-normal velocity
is proposed in order to separate the gravity wave and turbulent flow fields.
This method has been tested both for open channel and full channel flows.
Gravity waves are likely to develop and to dominate close to the upper boundary
(centreline for full channel). However, their intensity is weaker in the open
channel, possibly due to the upper boundary condition. Moreover, the presence
of internal gravity waves can also be deduced from a correlation analysis, which
reveals (together with spanwise spectra) a narrowing of the outer structures as
the stratification is increased.

1. Introduction

Stably stratified boundary layers have been studied for a long time and are
still subject of current research (Nieuwstadt 2005; Flores & Riley 2010; Garćıa-

Villalba & del Álamo 2011). In order to understand how heat, momentum,
moisture and pollutants are exchanged with the earth surface, the study of the
atmospheric boundary layers is crucial. An important property of such a flow
is its stability: buoyancy forces, due both to humidity and temperature, are
present and they actively interact with the flow. During daytime, positive heat
fluxes develop at the ground and lead to convective motions. On the other
hand, during night time and/or in polar regions, negative fluxes (cooling) are
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prevalent, and the flow is usually stably stratified. How turbulence is affected
by a stable stratification, its suppression for very high stability as well as the
influence of internal gravity waves and their interaction with the underlying
turbulence, are not fully resolved issues. Nieuwstadt (2005) and Flores & Riley
(2010) carried out Direct Numerical Simulations (DNSs) in order to study the
turbulence collapse in open-channel cases when a constant heat-flux is forced at
the lower wall. Armenio & Sarkar (2002) considered Large-Eddy Simulations
(LESs) of a full channel at very high stability, where the stratification was
imposed by a constant temperature difference in the vertical direction. The
authors found that turbulence remains very active close to the wall, even for
very strong stratification, whereas in the centre of the channel wave motions
were dominating. Similar results were also recently obtained by Garćıa-Villalba
& del Álamo (2011), who addressed the problem through DNSs of full channels.
Nevertheless, they could not reach continuously turbulent states at such strong
stratification as studied by Armenio & Sarkar (2002). As they point out, the
turbulence collapse is highly dependent on box sizes, and further investigations
on this subject would need boxes large enough to fit both laminar and turbulent
patches. Which parameter should be used to determine whether turbulence is
suppressed by stable stratification is still disputed: Nieuwstadt (2005) uses
the gradient Richardson number provided by the stability analysis Ri < 0.25,
Flores & Riley (2010) suggest L/l+ ≈ 102 as a criterion, whereas Garćıa-

Villalba & del Álamo (2011) quantifies how close the flow is to re-laminarization

through the Nusselt number Nu. Garćıa-Villalba & del Álamo (2011) also
investigated the structures which develop in statistically quasi-stationary limits,
finding an intermediate region where the Monin-Obukhov theory seems to apply
well. On the other hand, near-wall structures were found to rather scale in
viscous units and to be weakly affected by the stable stratification.

In this work, we extend some of these studies, mainly focusing on the sta-
tistically steady regimes. We address them through a set of both fully-resolved
open channel DNSs and full channel LESs, where a stable stratification is in-
troduced through either a cooling at the lower wall or a constant temperature
difference between the upper and the lower walls. Flow structures are studied
using correlations analysis, both in the horizontal plane and along the vertical
direction. Moreover, in order to better quantify and characterize the gravity
wave activity, a new decomposition able to separate the background turbulence
from the wave part is developed.

2. Numerical Scheme

The governing equations of the system are the incompressible Navier-Stokes
equation within the Boussinesq approximation. Including also the terms related
to sub-grid stress modelling, the mathematical model reads

∂ui
∂t

+ uj
∂ui
∂xj

= − ∂p

∂xi
+

1

Re
∇2ui +Riθδi2 +

∂τLES
ij

∂xj
, (1)
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∂ui
∂xi

= 0, (2)

where the temperature θ satisfies an advection-diffusion equation:

∂θi
∂t

+ uj
∂θi
∂xj

=
1

RePr
∇2θi +

∂qLES
j

∂xj
. (3)

Here, u,v and w are the velocity along the streamwise, wall-normal and span-
wise directions, respectively. Note that when LES is considered, the physical
quantities u,v,w and θ must be regarded as the filtered counterparts. The
Reynolds number, Richardson number and Prandtl number are here defined
as:

Re =
uτL

ν
, Riτ =

gαθrefh

u2τ
, P r =

ν

κ
, (4)

where ν and κ are the momentum and thermal diffusivity respectively, g is the
acceleration due to gravity and α is the thermal expansion coefficient. The ref-
erence temperature θref is chosen to be the temperature difference between the
upper and lower walls. These equations are discretized using a pseudo-spectral
method, assuming periodicity and Fourier expansions in the wall-parallel plane,
whereas Chebyshev polynomials are used in the wall-normal direction (Cheva-
lier et al. 2007). For the open channel, the upper boundary condition, namely
v = ∂u/∂y = ∂w/∂y = 0, allows us to use half the number of Chebyshev poly-
nomials, either the symmetric or anti-symmetric ones. This method yields a
better distribution of the collocation points which avoids the clustering at the
free-slip surface, reducing the wall-normal resolution as well as the computa-
tional time (Deusebio 2010).

When LES is considered, the dynamic Smagorinsky model (Germano et al.
1991) has been used in order to estimate the deviatoric part of τLES

ij , as in the
simulation of Armenio & Sarkar (2002). The sub-grid heat fluxes were similarly
modelled using an eddy-diffusivity which was deduced from the eddy-viscosity
by applying a constant turbulent Prandtl number Prt = 0.6. The deviatoric
part of the SGS terms and the sub-grid scalar fluxes are therefore assumed to
be aligned to the strain rate and to the mean scalar gradient, respectively.

In table 1, the different simulation cases are summarized. Slightly different
setups were adopted in order to meet the reference cases: while the stratifica-
tion was introduced through a negative heat-flux at the wall in the open channel
simulations, a constant temperature difference between the lower and the up-
per wall was prescribed in the full channel. Moreover, whereas all the open
channel simulations were always started from a neutral flow, in the full channel
cases the stratification was progressively increased among the runs, as done by
Armenio & Sarkar (2002) and Garćıa-Villalba & del Álamo (2011). In order to
compare with the works by Nieuwstadt (2005) and Flores & Riley (2010), the
stratification in the open channel flows is quantified by the non-dimensional
inverse of the Monin-Obukhov scale:

h

L
= −hgαq0

u3τ
. (5)
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Case SGS model Resolution Box Size Reτ Ri h/L

OCH0 No 768 x 129 x 768 8πh x h x 4πh 360 0 0
OCH1 No 768 x 129 x 768 8πh x h x 4πh 360 55 0.71
OCH2 No 768 x 129 x 768 8πh x h x 4πh 360 113 1.2
OCH3 No 768 x 129 x 768 8πh x h x 4πh 360 167 1.5
CH0 Smag. 64 x 97 x 64 4πh x 2h x 2πh 180 0 0
CH1 Smag. 64 x 97 x 64 4πh x 2h x 2πh 180 44 0.85
CH2 Smag. 64 x 97 x 64 4πh x 2h x 2πh 180 87 1.44

Table 1. Summary of the simulations.

All the simulations have been run for a sufficiently long time for the flow to
reach an almost statistically stationary state. Whereas the velocity field ad-
justs relatively quickly when stratification is introduced, the temperature field
converges extremely slowly and long times are therefore required to achieve the
same heat flux at the upper and lower walls.

3. Results
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Figure 1. Mean profiles. a) streamwise velocity; b) temper-
ature. baseflow; h/L = 0.71; h/L = 1.20.

The collapse of turbulence in ground-cooled open channel flows is first in-
vestigated. Results are in agreement with the finding by Nieuwstadt (2005)
and Flores & Riley (2010). The temporal evolution of the turbulent kinetic
energy shows that turbulence is completely suppressed by the stable stratifica-
tion for h/L values higher than 1.2, and the flow relaminarizes. On the other
hand, values lower than 1.2 allow for a continuously turbulent state which is,
however, affected by buoyancy. In the latter case, the turbulent kinetic energy
first decreases, due to a temporary collapse of turbulence at the wall, and then
increases to a value which is the same as for the unstratified case.



Direct numerical simulations of stratified open channel flows 95

a)
u

rms
/uτ

y/
h

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

b)
v

rms
/uτ

y/
h

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

c)
w

rms
/uτ

y/
h

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

d)
y/

h
θ

rms
 / (dθ

,y|
0

 h)
0 0.005 0.01 0.015 0.02

0

0.2

0.4

0.6

0.8

1

Figure 2. Root mean square profiles. a) streamwise velocity;
b) wall-normal velocity; c) spanwise velocity; d) temperature.

baseflow; h/L = 0.71; h/L = 1.20.

In Fig. 1, the mean velocity profile and the mean temperature profile are
shown for unstratified and stratified cases. Close to the wall the mean veloc-
ity is not affected by the stratification. This is not surprising, reflecting the
fact that the pressure gradient, and therefore the wall-shear stress, is the same
in the two cases. In the outer region, however significant differences can be
observed. As the stratification is increased, the velocity profile steepens pro-
gressively and, especially very close to the upper boundary, attains a parabolic
(laminar) shape. This is related to the fact that the turbulent wall-normal mo-
mentum transport, u′v′, becomes less efficient due to reduced vertical motions.
A similar conclusion can also be drawn from the temperature profile, which
approaches a linear dependence, i.e. the one found in the laminar case. Also
one point statistics (Fig. 2) fall on top of each other in the near-wall region,
departing more and more as we move far from the wall: significant decreases
of the fluctuations are observed close to the upper boundary for all the three
velocity components. Interestingly, close to the upper boundary temperature
fluctuations show non-monotonic behaviour with increasing stratification, due
to the combined effect of turbulence reduction and of the consequent increase
of temperature gradients.
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3.1. Two point lateral spectra

In Fig. 3 the lateral (spanwise) pre-multiplied spectra are shown, defined as

φii(kz, y) = Eii(kz) · kz, (6)

where Eii is the Fourier transform of the auto-correlation Bii(y, r) =
〈ui(x, y, z)ui(x, y, z+ r)〉x/u2i,rms(y). The spectra in Fig. 3 are plotted as func-

tions of y+ and λ+z . In the unstratified case, the footprint of near-wall streaks,
which scales in viscous units, can be recognized as well as the outer structures
which scale in outer units. The streak spacing in the Buu spectra appears to be
roughly λ+ = 120, which agrees with previous simulations and experiments of
wall-bounded flows (Jiménez 1998). Moreover, it can be noted that the spacing
deduced by the Bvv spectra is roughly half of the one found in Buu, as it has
already been observed by Kim et al. (1987) and Jiménez (1998). When we turn

a) b)

Figure 3. Lateral pre-multiplied spectra (normalized by the
local root mean squared) for the streamwise uu (left) and wall-
normal vv (right) fluctuations; a) unstratified and b) stratified
cases.

to the stratified lateral pre-multiplied spectra some important observations can
be made. First of all, the structures very close to the wall seem to be only
slightly influenced by stratification. In spite of the fact that the stratification
is largest there (where the temperature gradient is largest), the shape of the
spectra close to the wall does not change significantly when compared to the un-
stratified case. This is true both for the uu and vv spectra. However, significant
differences arise in the outer region where it is found that structures become
significantly narrower as the stratification is introduced. This is particularly
evident in the spanwise spectra uu where the energy maximum, corresponding
to the outer structures, goes from λ+ ≈ 750 down to λ+ ≈ 280. Note that the
normalized spectra do not tell us whether the peak-shift is due to a damping of
the largest structures or to an intensification of the narrower structures. How-
ever, the non-normalized counterpart of Fig. 3 shows that energy concentrates
more and more towards smaller scales when compared to the unstratified cases.
Large structures are damped and the smaller ones enhanced. The inhibition
of vertical motion not only favours thinner structures in the vertical direction,
but also narrower structures in the spanwise direction. On the other hand, it
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can be noted from the longitudinal spectra (not shown) that the length scales
in the streamwise direction do not seem to be affected by stratification.

Similar conclusions can also be drawn from flow visualizations. In Fig. 4,
the streamwise velocity field in a y− z plane is shown both for a stratified and
an unstratified case. Buoyancy forces and stable stratification mainly affect the
outer region, where they damp structures that would extend throughout the
whole domain otherwise. These structures penetrate the buffer region from well
above and they correspond to the so-called global modes identified in several
works, e.g. Garćıa-Villalba & del Álamo (2011), Hoyas & Jiménez (2006) and
Örlü & Schlatter (2011). In Fig. 5, the wall-normal velocity integral length

a)

b)

Figure 4. Instantaneous streamwise velocity u field in a y−z
plane (Ly, Lz) = (h, 4πh) for an a) unstratified and b) strati-
fied case with h/L = 1.2.

scale in spectral space, defined as:

Ly(kx, kz) =

∫ h

0

∫ h

0

Re (v̂(kx, kz, y)v̂(kx, kz, ỹ))

vrms(y)vrms(ỹ)
dỹdy (7)

is displayed. Flores & Jiménez (2006) used this quantity in order to charac-
terize structures well correlated in the wall-normal direction for smooth and
rough walled unstratified flows. This measure was computed for several open
channel flow fields, averaged and then, due to the rather noisy behaviour, top-
hat filtered. In Fig. 5, both stratified (h/L = 1.2) and unstratified cases are
shown. First, it can be noted that the magnitude of Ly decreases as the strati-
fication is increased, due to the inhibition of the wall-normal motions. For the
unstratified cases the most correlated modes are rather elongated structures
in the streamwise direction, i.e. modes with kx small. These structures can
still be seen when stratification is introduced, however they tend to move to
higher kz, corresponding to the fact that they become narrower, as also shown
in Fig. 3. More interestingly, a new peak also appears which is located at a
rather small kz. It is likely that this peak is associated with gravity waves,
i.e. motions which are expected to have a higher degree of coherence in the
wall-normal direction. The streamwise wave length of these modes, λx ≈ 2,
agrees with the finding of Garćıa-Villalba & del Álamo (2011).



98 E. Deusebio, P. Schlatter, G. Brethouwer & E. Lindborg

a) b)

Figure 5. Color plot of the magnitude of the wall-normal
velocity integral length scale Ly(kx, kz) for a) unstratified
(OCH0) and b) stratified (OCH2) open channel flows.

3.2. Gravity waves

In order to detect gravity wave activity, time series of individual Fourier coef-
ficients were collected. We here propose and apply a decomposition of the flow
field which is able to separate the turbulent part from the wave part, allow-
ing for a characterization of the different contributions separately. With the
aim of testing the novel procedure, LES of channel flows were therefore carried
out with conditions similar to the ones used by Armenio & Sarkar (2002) and

Garćıa-Villalba & del Álamo (2011) (Table 1), who observed strong gravity
wave activity in the central region of a full channel.

a)
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Figure 6. In and out-phase components of the wall-normal
velocity with respect to the temperature for a) full channel
flows (CH2) and b) open channel flows (OCH2). total;

in-phase component; out-phase component.

For any given Fourier mode, it is in general possible to decompose the
wall-normal velocity in a in- and out- phase component with respect to the
temperature. For small amplitude gravity waves, a linear analysis predicts a
90-degree phase-shift between the wall-normal velocity and the active scalar
(temperature) and therefore a solely out-phase component should be expected.
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Using complex operators, the in-phase and out-phase components can be de-
fined as:

vIP (kx, kz, y, t) = Re(v̂(kx, kz, y, t)θ̂1
∗
(kx, kz, y, t)),

vOP (kx, kz, y, t) = Re(v̂(kx, kz, y, t)iθ̂1
∗
(kx, kz, y, t)),

(8)

where (·)∗ stands for the complex conjugate. The second order momentum
v2rms can be obtained through Parceval’s relation equally in spectral space or
in physical space, and, using the fact that in- and out-phase components are
perpendicular to each other, it can be split in the two contributions:

v2rms =

∫∫
vIP (kx, kz, y)v∗IP (kx, kz, y)dkxdkz+

∫∫
vOP (kx, kz, y)v∗OP (kx, kz, y)dkxdkz (9)

In Fig. 6, the different contributions are plotted for a stratified full and open
channel case. Unstratified cases (not shown) reveal a very similar behaviour to
Fig. 6 close to the wall. However, in the central region significant differences
arise. The peak of vrms in fig 6a) at the centreline was already found both

by Armenio & Sarkar (2002) and Garćıa-Villalba & del Álamo (2011) who re-
lated it to gravity wave activity. The proposed decomposition provides support
for this hypothesis, showing that the main contribution comes from the out of
phase component, e.g. the one where gravity waves should be found. Neverthe-
less, it turns out that in this central region turbulence is weaker but still active,
accounting for 10% of the magnitude of vrms. Note that in the outer regions
of unstratified cases, the two components contribute with the same amount to
the total variance, showing significant differences with Fig. 6. When we turn
to open channel cases, an increase of the relative contribution of the out-phase
component can clearly be seen close to the upper boundary. However, the dif-
ference is not as large as in the case of full channel flows, possibly due to the
boundary condition which forces both v and θ to zero. A similar conclusion
can also be drawn from the probability density function of the angle between
the wall-normal velocity and the temperature, which is shown in Fig. 7. In-
terestingly, the flow can be divided into three regions: close to the wall and
at the upper boundary (centreline for the full channel cases) the phase-shift
approaches roughly π/2, whereas in between these two regions a broader peak
is attained around −π, consistent with Komori et al. (1983) and McBean &
Miyake (1972). Note that the peak in the outer region attains a value of 0.26
for the full channel and around 0.14 for the open channel, indicating that there
is a reduced gravity wave activity in the open channel as compared to the full
channel.

4. Conclusions

DNSs and LESs of wall-bounded turbulent flows at high stratification have
been carried out for both open channel and full channel flows at moderate
Reτ = 180, 360. Following previous studies (Nieuwstadt 2005; Flores & Riley
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a) b)

Figure 7. Magnitude-weighted PDFs of the phase shift be-
tween the Fourier coefficients of temperature and wall-normal
velocity. a) full channel flows (CH2); b) open channel flows
(OCH2). Colour from 0 (blue) to 0.14 (red)

2010), such flows can be regarded as a model for the atmospheric boundary
layer. First of all, the turbulence collapse has been analysed. In agreement
with previous works (Nieuwstadt 2005; Flores & Riley 2010), for the considered
Reτ re-laminarization of the flow occurs when the ratio of the channel height
with the Monin-Obukhov length is around 1.2. However, as pointed out by
Flores & Riley (2010), the ratio at which re-laminarization is observed depends
on the Reynold number and the condition cannot be used as a general criterion
for the turbulence collapse.

We have analysed the structures that develop in this stably stratified
regime. The structures close to the wall seem to be unaffected by the presence
of the stratification and near-wall structures for the unstratified and stratified
cases fall on top of each other. As we move further from the wall, the stratifica-
tion starts to play an important role and the flow structures significantly differ.
Outer layer structures become narrower as the stratification increases and the
comparison between the unstratified and the stratified case with h/L = 1.2
shows a ratio between their spanwise width of about 3. Nevertheless, their
streamwise length is hardly changed.

In order to characterize wave-like structures, a decomposition able to sepa-
rate turbulent and wave contribution has been proposed. In agreement with the
findings of Garćıa-Villalba & del Álamo (2011), wave-like motions are mainly
expected in the centre of the channel, and they localize in spectral space around
wavelength λx ≈ 2−3, λz ≈ ∞, i.e. structures which are extremely long in the
spanwise direction. Gravity waves were observed in open channel cases as well,
however their magnitude attained smaller values, possibly due to the presence
of the boundary condition. Wall-normal correlation analysis has been shown to
be able to lead to similar results, showing both the appearance of gravity waves
as well as the narrowing of the outer wall-normal-well-correlated structures as
the stratification was increased.
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In the following we present an improved modification of SIMSON (a pseudo-
Spectral solver for IncoMpressible bOuNdary layer flows) for dealing with open-
channel flows. For such class of flows, the Gauss-Lobatto grid in the wall-
normal direction leads to a clustering of points at the free boundary. Apart
from being superfluous, this clustering may also pose a stronger restriction to
the CFL condition for a stable numerical scheme. Motivated by the fact that
an open-channel flow corresponds to a full channel which is symmetric around
the centreline, we modify the numerical scheme such that only one parity of the
Chebyshev polynomials are used in the solution algorithm. Note that in such a
way the clustering of points at the free surface (now the centreline) is avoided.
For the streamwise and spanwise components only even Chebyshev polynomials
are used, whereas for the wall-normal component and the additional scalars only
odd Chebyshev polynomials are used. In order to guarantee the speed-up of
the code, an alternative formulation of the Fast Fourier/Chebyshev transforms
which accounts for the symmetry is presented. Since we aim at carrying out
direct numerical simulations at reasonably large Reynolds numbers, the modifi-
cations have been implemented both in a one-dimensional and two-dimensional
parallelization strategy. Using the improved discretization, we show that the
wall-normal resolution can be reduced, leading to an overall speed-up of the
code. Moreover, a new CFL condition which accounts for the presence of an
active scalar as well as fringe regions which avoids spurious reflections of gravity
waves have also been implemented.

1. Introduction

Open channel flow has been used as a model in order to understand and study
turbulence in oceanic and atmospheric flows which are bounded by one solid
wall (Nieuwstadt 2005; Handler et al. 1999). At the lower boundary, the no-
slip condition u = v = w = 0 is imposed while at the upper boundary the
open-channel condition ensures that the flow is shear free and no fluid leaves
the domain, i.e. v = ∂u/∂y = ∂w/∂y = 0. Here, u,v and w are the stream-
wise, wall-normal and spanwise velocities, respectively. The flow is driven by
a constant pressure gradient which is balanced by the viscous stress, τp, at
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the lower wall. The Poiseuille solution satisfies the open-channel condition at
the centreline, and therefore for laminar cases the open channel flow resembles
the half laminar channel flow. However, for turbulent flows this resemblance
is lost and the open channel flow may rather be seen as one side of a channel
which is symmetric around the centreline. Handler et al. (1999) have employed
the open channel condition in order to study the behaviour of a passive scalar
close to the free shear boundary, while Nieuwstadt (2005) has used it in direct
numerical simulations of stable stratified turbulence.

The present report deals with the modifications that have been imple-
mented on an existing Navier-Stokes solver, called SIMSON, in order to im-
prove the numerical scheme for open-channel flow simulations. SIMSON is a
very efficient pseudo-spectral code that has been developed and used over al-
most twenty years at KTH Mechanics, both for direct numerical simulations
(DNS) and large-eddy simulations (LES). For further details we refer to Cheva-
lier et al. (2007) and references therein.

The modifications mainly address two aspects of the code. First, the wall-
normal discretization has been modified in order to avoid the clustering of
points at the upper boundary. In fact, the code relies on a Gauss-Lobatto grid
along y which is optimal for channels with solid walls at both boundaries but
not for the open channel. Secondly, some features needed to handle and deal
with stratified flows, namely a modified CFL condition and damping regions
for internal waves, have also been developed and implemented.

The report is organized as follow: in section 2, the open-channel version of
SIMSON is described. Validation and results are presented. In section 3, the
features developed in the code for stratified flows are summarized.

2. The open-channel version of SIMSON

Although the open channel boundary condition is already present in SIMSON
(Chevalier et al. 2007), its current implementation is not optimal. The code uses
a Fourier decomposition along the streamsiwse coordinate x and the spanwise
coordinate z, whereas Chebyshev polynomials are used along the wall-normal
coordinate y. In order to efficiently implement a solver based on these methods,
the y discretization requires a Gauss-Lobatto grid, i.e. points distributed as:

yj/L = cos

(
π
j − 1

N − 1

)
j = 1, · · · , N. (1)

Such a grid leads to an accumulation of points close to the upper and lower
boundaries and a coarser grid in the middle. Whereas the narrow spacing at
the lower boundary is preferable due to the sharp velocity gradients at the
wall, it is not needed at the free-shear boundary, where a smoother solution is
attained. It is possible to distort such a grid through mapping transformations
as described by Laurien & Kleiser (1989). However, this breaks the tridiagonal
structure of the matrix which arises when solving Poisson equations in a Gauss-
Lobatto grid, leading to significant reductions of the numerical efficiency.
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In order to allow for coarser grid spacing at the upper boundary without
any degradation of the performances, a different approach has been followed
here. As noted above, the open channel with a stress free upper boundary can
be regarded as a full symmetric channel flow, where we only retain the upper
or lower part. As pointed out by Corral & Jiménez (1995), one can use only
half of the Chebyshev collocation points

yj/L = cos

(
π

2

j − 1

N − 1

)
j = 1, · · · , N. (2)

The equations can be solved just for the odd/even Chebyshev polynomials,
depending on the parity of the considered variable. In such a way, a better
distribution of grid points is achieved which is narrower at the wall and coarser
in the free-stream. In order to resolve the turbulent structures close to the wall,
ten points within the region y < 10ν/uτ are required. Here, uτ represents the

friction velocity defined as uτ =
√
τw/ρ, with τw being the shear stress at the

wall and ρ the density, and ν represents the kinematic viscosity. On the other
hand, in the outer region a spacing of the order of the Kolmogorov length,

η =

(
ν3

ε

)1/4

, (3)

is required to resolve the outer turbulent structures. Here, ε refers to the kinetic
energy dissipation.

The implementation of such an algorithm in SIMSON mainly involves the
implementation of an efficient Fast Chebyshev Transform which relies just on
half of the grid points1, and the implementation of a solution algorithm which
accounts for a particular symmetry.

In section 2.1, the symmetric formulation of the problem is summarized,
while section 2.2 is devoted to the description of the symmetric fast Chebyshev
transforms (and their antisymmetric counterpart). In section 2.3 the main
modifications introduced in the code are discussed. Finally, the validation is
presented in section 2.4.

2.1. Symmetries

Let x,y and z be the axes oriented towards the streamwise, wall-normal and
spanwise direction respectively. The velocities u,v and w are defined accord-
ingly. In the wall-normal direction, the computational domain including the
full symmetric channel spans from y = −h to y = h with the symmetry plane
at y = 0. Since we will study the stratified open channel flow we will include an
active scalar equation. We consider the incompressible Navier-Stokes equations
within the Boussinesq approximation, which can be written as

∂ui
∂t

= − ∂p

∂xi
+ ǫijkujωk − ∂

∂xi

(
1

2
ujuj

)
+

1

Re
∇2ui +Riθδi2 + Fi (4)

1and a Fast Inverse Chebyshev Transform which relies just on half modes - the even or odd

ones
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∂ui
∂xi

= 0, (5)

where the active scalar θ is supposed to obey a diffusion equation

∂θ

∂t
+ uj

∂θ

∂xj
=

1

Pe
∇2θ, (6)

where ǫijk is the alternating tensor and Fi is the generic volume force along
the i -axis. The equations have been made dimensionless using the centreline
velocity Ucl, the channel height h and the temperature difference ∆T = θupper−
θlower. The three dimensionless quantities that arise are the Reynolds number

Re =
Uclh

ν
, (7)

the Richardson number

Ri =
gα∆Th

U2
cl

(8)

and the Peclet number

Pe =
Uclh

κ
= RePr, (9)

where κ is the thermal diffusivity and Pr = ν/κ the Prandtl number, g the
gravitational acceleration and α the (thermal) compressibility coefficient.

Following Chevalier et al. (2007), the momentum equation (4) can be re-
duced to a form where the only physical unknowns are the wall-normal velocity
v and the wall-normal vorticity ω,

[
∂

∂t
− 1

Re
∇2

]
∇2v =

(
∂2

∂x2
+

∂2

∂z2

)
H2 −

∂

∂y

[
∂H1

∂x
+
∂H3

∂z

]
(10)

[
∂

∂t
− 1

Re
∇2

]
∇2ωy =

∂H1

∂z
− ∂H3

∂x
(11)

with the Hi vector is defined as

Hi = ǫijkωjuk + Fi +Riθδi2. (12)

For a channel which is symmetric around the centreline, we can easily infer
that the velocities u and w have to be even functions in y and their Chebyshev
expansions contain only even polynomials. From eq. (5), it follows that the
wall-normal velocity v has to be odd. The wall-normal vorticity

ωy =
∂u

∂z
− ∂w

∂x
(13)

is even since derivation with respect to x or z does not change the symmetry.
On the other hand, derivation in y inverts the parity. The ∇2 operator does
not change the symmetry. Streamwise and spanwise vorticities

ωx =
∂w

∂y
− ∂v

∂z
, (14)

ωz =
∂v

∂x
− ∂u

∂y
, (15)
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are therefore odd functions, whereas the non-linear terms

H1 = ωyw − ωzv, H3 = ωxv − ωyu, (16)

are even and
H2 = ωzu− ωxw (17)

is odd.

From these considerations it follows that the equation for v must be odd
whereas the equation for ωy must be even. Since the buoyancy term appears
in the vertical momentum equation, the active scalar (e.g. temperature) must
be an odd function.

The parity of the variables can be used in order to optimize the code. Since
a large amount of the computational time is spent on transforming variables
between physical and spectral space, improving the transform algorithms is of
primary importance.

Modifications in physical space can be implemented quite easily by ex-
tending the computations to only one side of the channel. On the other hand,
modifications in spectral space require a more careful analysis. This includes,
for instance, the calculation of derivatives, which in the code is made in spectral
space according to:

û(1)m =
2

cm

∞∑

p=m+1
p+m odd

pûp. (18)

where ûp and û
(1)
p represents the Chebyshev p-th coefficient of the variable and

its first derivative, respectively. From the expression above it is easy to see that
this operation changes the parity of the function: even derivative coefficients
are linked to the odd ones and vice-versa. Similar considerations apply to the
integration. A new implementation of these subroutines is therefore needed.

The main modification of the code has been made in the subroutine
linearbl where the Poisson wall-normal equation for each mode is solved. Fol-
lowing the standard procedure outlined in Chevalier et al. (2007), the generic
function can be decomposed in Fourier modes along x and y according to:

φ(x, y, z, t) =
∑

α,β

φ̂(α, β, y, t)ei(αx+βz), (19)

where α and β are the streamwise and spanwise wavenumber respectively. For
sake of simplicity, the temperature equation is now dropped. The same con-
siderations that follow can straightforwardly be applied to the scalar without
any further complications. Both equations (10) and (11) can be written in a
compact form,

∂

∂t
φ̂ =

1

Re

(
D2 − k2

)
φ̂− ĥ, (20)

where k2 = α2+β2, ĥ is the Fourier component of the nonlinear term. Equation
(20) can either be odd or even depending on whether the wall-normal velocity
or the wall-normal vorticity is considered. Time discretization of (20) through
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an explicit Runge-Kutta scheme for the nonlinear part and a Crank Nicolson
scheme for the linear part leads to:[
1− an + bn

2Re

(
D2 − k2

)]
φ̂n+1 =

[
1 +

an + bn
2Re

(
D2 − k2

)]
φ̂n+anh

n+bnh
n−1,

(21)
which can be rewritten as a Poisson equation

D
2 −

(
k2 +

2Re

an + bn

)

︸ ︷︷ ︸
λ


 φ̂

n+1 = fn. (22)

The structure of the matrix is particularly simple with only three non-zero
diagonals when spectral methods based on Chebyshev expansion are applied
to Gauss-Lobatto grids, allowing for very efficient algorithms. Depending on

which variable is considered, φ̂ can be expressed with either odd Chebyshev
polynomials

φ̂ =

(N−1)/2∑

j=0

â2k+1T2k+1, (23)

or even Chebyshev polynomials

φ̂ =

(N+1)/2∑

j=0

â2kT2k. (24)

The number of odd polynomial expansions is one less than the number of even
ones, reflecting the fact that odd variable are zero at the centreline. Introducing
the above ansatz and using the orthogonality of Chebyshev polynomials with
respect to the inner product

〈f , g〉 =
∫ 1

−1

f g
1√

1− y2
dy, (25)

we arrive at the simple relation

â
(2)
k − λâk = f̂k, (26)

where â
(2)
k is the Chebyshev coefficient of the second derivative of the function,

i.e.
φ

′′

=
∑

âkT
′′

k =
∑

â
(2)
k Tk. (27)

It can be shown that â
(2)
k and âk are related as (Canuto et al. 1988)

â
(2)
k =

1

ck

∞∑

p = k + 2
p+ k even

p
(
p2 − k2

)
âp. (28)

Eq.(28) shows that even (odd) coefficients of the second derivatives are deter-
mined only by even (odd) coefficients of the function itself. The systems for the
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odd and even Chebyshev coefficients decouple and if parity is considered only
one system needs to be solved. Using the identity (28) and after making some
rearrangements as outlined in Canuto et al. (1988), it is possible to reduce (26)
to a tridiagonal system:

− cj−2ν

4j (j − a)
âj−2 +

(
1 +

νβj
2 (j2 − 1)

)
âj −

ν

4j (j + 1)
âj+2

=
cj−2

4j (j − a)
f̂j−2 −

βj
2 (j2 − 1)

f̂j +
βj+2

4j (j + 1)
f̂j+2, j = 2, . . . , Ny, (29)

where

βj =

{
1, 0 ≤ j ≤ Ny − 2
0, j > Ny − 2

cj =

{
2, j = 0
1, j > 0

. (30)

In order to solve eq. (11) and (10), appropriate boundary conditions have
to be imposed. A few important modifications of the algorithm are introduced
at this stage, reflecting the fact that when a given parity is considered, the
freedom on choosing boundary conditions at both walls is obviously lost.

In the original version of SIMSON, the boundary conditions are imposed
through a rather efficient and flexible algorithm, which relies on the solution
of both homogeneous equations with inhomogeneous Dirichlet boundary con-
ditions and inhomogeneous equations with homogeneous boundary conditions.
Explicitly, for each symmetry, the following systems are solved for the wall-
normal velocity:

(
D2 − λ2

)
φn+1
p = fn+1 with φp(yL) = 0 (31a)

(
D2 − λ2

)
vn+1
p = φn+1

p with vn+1
p (yL) = 0 (31b)

(
D2 − λ2

)
φn+1
h = 0 with φh(yL) = 1 (31c)

(
D2 − λ2

)
vn+1
ha = φn+1

h with vn+1
ha (yL) = 0 (31d)

(
D2 − λ2

)
vn+1
hb = 0 with vn+1

hb (yL) = 1 (31e)

and for the wall-normal vorticity
(
D2 − λ2

)
ωn+1
p = fn+1

ω with ωp(yL) = 0 (32a)
(
D2 − λ2

)
ωn+1
h = 0 with ωh(yL) = 1 (32b)

For each symmetry, the solutions of the Dirichlet problems are then super-
imposed such that the conditions at the boundaries are satisfied. Note that
even if the boundary conditions at the lower wall are homogeneous (no-slip
condition), the partial symmetries could be inhomogeneous there and thus the
functions vhb and ωh may be different from zero. However, when both symme-
tries are summed up, the homogeneity is recovered. More details can be found
in Chevalier et al. (2007).

When symmetric problems are considered, some operations can be avoided,
leading to an increase of the speed of the code. For a given variable, we can
avoid to compute a certain symmetry and also skip some of the equations.
When a symmetry is considered and homogeneous conditions are applied at
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the lower boundary (no-slip condition), the solution cannot contain functions
such vhb and ωh since this would lead to inhomogeneity at the walls. In fact,
vhb and ωh do not sum with the other parity. For these reason, we can avoid
to compute them. The solution of the system for v and ωy, can then be simply
written as:

v̂ = v̂p + C1 ˆvha (33)

ω̂y = ˆωyp (34)

where the constant C1 has to be determined in order to satisfy the continuity
at the boundary ∂v/∂y = 0.

Particular attention is needed for the wavenumber (α = 0, β = 0) for
which the equations for u and w cannot be inverted. In this case, u and w are
directly obtained as the solutions of four Dirichlet problems, as equations (32).
However, also in this case, one does not need to solve for the homogeneous
equations with inhomogeneous boundary conditions.

2.1.1. The pressure

It is worth noticing that the solution procedure which relies on equations (10)
and (11) does not require the pressure to be computed. However, the pressure
can still be found through the solution of an elliptic Poisson equation

∇2 (p+ E) =
∂Hi

∂xi
(35)

where E is the total kinetic energy
(
u2 + v2 + w2

)
/2 (see Chevalier et al. 2007).

Computation of the pressure is sometimes desirable, for example when one
would like to compute energy fluxes.

An adopted solution algorithm for the pressure which accounts for the
symmetries along the wall-normal direction has also been implemented. Con-
sidering the parities of the variable discussed above, it follows that the elliptic
equation (35) is symmetric around the centreline. Therefore, the pressure has
to be even. The boundary conditions at the upper and lower walls can be
derived from the momentum equation along y:

∂p

∂y
= −∂v

∂t
+

1

Re

∂2v

∂xj∂xj
− uj

∂v

∂xj
+Riθ + F2 (36)

The Neumann boundary condition leads to a system which is slightly different
from the ones considered when Dirichlet boundary conditions are applied and
therefore different subroutines are called in the code. At the lower boundary
(36) reduces to:

∂p

∂y
= Riθ + F2. (37)

At the centreline equation (37) vanishes because of the symmetry. This can be
seen in (36) by rewriting the non linear term as:

uj
∂v

∂xj
= uωz − wωx +

∂E

∂y
(38)
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and noting that all the terms vanish because of symmetry ( ωx, ωz and v are
odd whereas E is even).

2.2. The fast symmetric Chebyshev transform

Pseudo-spectral codes need to continually switch from spectral to physical space
which covers a substantial part of the total computational time. Therefore, a
fast and efficient Chebyshev transform has to be implemented which makes use
of only one half of points.

To implement the Chebyshev transform for symmetric series one needs to
consider the odd and even cases separately. Whereas the even transform can
easily be reduced to a normal Chebyshev transform on half of the domain, the
odd one requires a more careful analysis.

2.2.1. The forward symmetrical transform

The Chebyshev transform of a series u(x) is commonly defined as

ak = 〈u , Tk〉 =
∫ 1

−1

u(x)Tk(x)
1√

1− x2
dx (39)

where Tk(x) is the k-th Chebyshev polynomial

Tk(x) = cos (k arccosx) with − 1 ≤ x ≤ 1. (40)

Through the mapping θ = arccos(x)− π/2, eq. (39) can be reduced to

ak =

∫ π/2

−π/2

ũ(θ) cos (k (θ + π/2)) dθ, (41)

showing the similarity with the Fourier transform which would be recovered
when the limits of the integral are replaced by [−π, π]. If Gauss-Lobatto grids
are used, the similarity extends also to the discrete form and efficient algorithms
for computing the DFT can directly be applied. If u is symmetric (antisymmet-
ric) around x = 0, also the function ũ(θ) = u(x) = u(cos(θ−π/2)) is symmetric
(antisymmetric) around θ = 0. The following expressions can be derived for an
even or an odd k

ak = (−1)
k
2

∫ π/2

−π/2

ũ(θ) cos (kθ) dθ for k even, (42)

ak = (−1)
k+1

2

∫ π/2

−π/2

ũ(θ) sin (kθ) dθ for k odd. (43)

If u is symmetric, just even modes are non-zero, whereas antisymmetric u have
only non-zero odd modes.
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Let us first consider the symmetric case. Putting k = 2k̃, with k̃ = 0, . . . ,
N/2+1 in (39) and mapping with the transformation θ = arccos(x), we obtain

ak̃ =

∫ π

0

ũ(θ) cos
(
2k̃θ
)
dθ =

= 2

∫ π/2

0

ũ(θ) cos
(
2k̃θ
)
dθ =

=

∫ π

0

ũ(θ̃) cos
(
k̃θ̃
)
dθ̃ (44)

where θ̃ = 2θ, have been used. The even transform can thus be reduced to a
Chebyshev transform on half of the domain, using just half of the points.

However, for odd modes the integral cannot be reduced to a Chebyshev
transform as straightforwardly. Even Chebyshev polynomials are, in fact, “con-
ventional“ Chebyshev polynomials when mapped on half of the domain. Un-
fortunately, this correspondence does not hold for the odd ones. In this case,
however, we can use the recurrence relationship between Chebyshev polynomi-
als

Tk+1 = 2xTk − Tk−1 (45)

in order to get an expression which involves just even modes. Using (45) the
k-th coefficient, given by (39), can be rewritten as:

ak+1 =

∫ 1

−1

u(x)Tk+1
1√

1− x2
dx

=

∫ 1

−1

u(x) (2xTk − Tk−1)
1√

1− x2
dx

= 2

∫ 1

−1

u(x)xTk
1√

1− x2
dx−

∫ 1

−1

u(x)Tk−1
1√

1− x2
dx

= 2

∫ 1

−1

u(x)xTk
1√

1− x2
dx− ak−1 (46)

Relation (46) gives a recurrence relationship for the coefficients of the expan-
sion. Note that if the function u(x) is odd, the function u(x)x is even and
(44) can be used in order to efficiently computed ak+1. The first mode needs
particular attention:

a1 =

∫ 1

−1

u(x)x
1√

1− x2
dx =

1

2

∫ 1

−1

2u(x)x
1√

1− x2
dx (47)

and can thus be reduced to the expression (46) by putting ak−1 = 0 and
normalizing by 2.
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2.2.2. The inverse symmetric transform

The inverse transform is obtained through the expansion formula

u(x) =

Ny∑

0

akTk =

Ny∑

0

ak cos (k arccos(x)) (48)

Assuming a Gauss-Lobatto grid and using the fact that just the even coefficients
are non-zero, the expression (48) can be rewritten as:

u(xj) =

Ny∑

0

ak cos (k arccos(xj))

=

Ny/2∑

0

ak̃ cos
(
2k̃ arccos(xj)

)

=

Ny/2∑

0

ak̃ cos

(
2k̃
jπ

Ny

)

=

N∗∑

0

ak̃ cos

(
2k̃

jπ

N∗

)
. (49)

Once again, we note that this expression has exactly the same form of (48),
where Ny is replaced by N∗ = Ny/2.

To derive the odd inverse Chebyshev transform we start from (48) with
only non-zero odd coefficients:

u(xj) =

Ny/2−1∑

k=0

a2k̃+1T2k̃+1 =

=

Ny/2−1∑

k=0

a2k̃+1

(
T2k̃ + T2k̃+2

) 1

2x
, (50)

where the recurrence relation (45) has been used. This can be shortly rewritten
as

u(xj) =



Ny/2∑

k=0

c2kT2k


 1

2x
(51)

where the coefficient c2k is defined as:

c2k =





a1 k = 0

a2k+1 + a2k−1 k = 1, · · · , Ny/2− 1

a(Ny−1)/2 k = Ny/2

(52)

Note that the expression above has the same form as the symmetric inverse
Chebyshev transform, eq. (49), and can be easily computed.
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2.2.3. Speed-up

Since the procedures outlined in subsection 2.2.1 and in subsection 2.2.2 make
use of remapped full Chebyshev transform, very efficient FFT packages can
be used, as for instance FFTw or VECFFT. Even transforms do not require any
pre/post processing and therefore the speed-up scales as 2 logN/ logN/2 when
compared to full transforms. Odd transforms require some pre- and post-
processing, both in the forward and backward transforms.

Figure 1. Speed-up achieved using symmetrical and anti-
symmetrical transforms, compared with the full Fast Cheby-
shev Transform (from VECFFT). The curves are normalized
with the time required by the full Fast Chebyshev Transform.

Full Fast Chebyshev Transform; Symmetric Fast
Chebyshev Transform (even); Symmetric Fast Chebyshev
Transform (odd); Matrix Symmetric Chebyshev Trans-
from (even); Matrix Symmetric Chebyshev Transfrom
(odd)

In order to test the new implementations, symmetric and antisymmetric
series have been transformed back and forth with both the new algorithm and
the full one. A comparison of the time spent on the transforms is shown
in figure 1 for different number of points. The direct transform computed
through an highly optimized matrix-matrix product (using the BLAS package)
is also shown. In the latter case, the operations are performed more efficiently,
optimizing the cache memory management, and, for low numbers of points,
such a strategy can actually be faster than FFT algorithms. However, as figure
1 shows, this is true for very small number of points. On the other hand,
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the symmetric Chebyshev transform becomes faster as the number of points
increases. As expected, the anti-symmetric transform is slightly slower since
pre- and post- processing are required. A rough estimate of the number of
operations can be obtained, both for even and odd symmetries:

itsym ∼ N

2
log

N

2
, (53)

itasym ∼ N

2

(
2 + log

N

2

)
. (54)

Note that the curves in figure 1 are not monotonic since the VECFFT factorization
can involve subsequence of 2,3 or 5 elements and depending on the number of
points slightly different results can be obtained.

2.3. Changes in SIMSON

The code has been optimized in order to handle symmetric channel flow effi-
ciently, reducing both computational and storage costs. While the computa-
tional cost can be reduced by modifying the incompressible solver, namely bla,
a reduction of the storage costs also requires modifications of programs for pre-
and post- processing. In order to modify the existing codes as less as possible,
the data processing is done in the usual way on the full symmetric channel and
the main modifications occurs just for the I/O operations where the lower part
of the channel is either mapped back or eliminated.

In bls (the code which generates the initial velocity fields), a new feature
has been added which enforces symmetries around the centreline within the
flow. The half channel is then stored. The program which allow visualizations
of the flowfield, rit , has also been modified in order to handle symmetric
flow fields. It is worth mentioning that the flow fields carry information about
the y symmetry, and they are therefore not fully compatible with the previous
version of SIMSON. Nevertheless, compatibility of the current version with the
previous ones has been assessed, i.e. rit can still read old version files.

The main modifications occur in the solver bla. As shown by Li (2009),
the time step is mainly spent in two subroutines: nonlinbl and linearbl. The
former calculates the nonlinear term in physical space for a y-constant plane
(x− z): a do cycle then iterates it over the whole channel. This structure leads
to straightforward modifications of the code. The upper limit of the do cycle is
chosen such that only half of the channel is computed. The upper limit nypp
is therefore replaced by the following expression

Ny

(1 + nfysym)xnproc
+min(nproc, 2)− 1 + nfysym, (55)

where parallel communication protocols, for shared memory parallel machines
(OpenMP) and distributed memory parallel machines (MPI), can be either
used. Statistics are computed in physical space in a similar manner as in
nonlinbl, and can therefore be optimized in the same way.
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On the other hand, linearbl requires a more careful analysis. Each call of
this subroutine solves the wall-normal Poisson equation for the Fourier modes
with a constant β. A do cycle then iterates over the spanwise wave-numbers.
In the original code, even though odd and even modes are decoupled, as (29)
shows, the even and odd systems are built (with setmatchr) and solved (with
trid) together. However, if an overall speed-up is to be obtained, a new sub-
routine which solve each parity separately is to be written. Note that such an
implementation can still be used when symmetric cases are not considered. In
this case, the Poisson solver restricted to only one parity needs to be called
twice, once for the even coefficients and once for the odd coefficients.

The computation of the solution of the homogeneous equations with inho-
mogeneous boundary conditions, not needed in symmetric cases, can be easily
avoided.

2.3.1. Parallelization

SIMSON currently supports parallel algorithms which use protocols both for
shared (OpenMP) and distributed (MPI) memory. The main subroutines that
have been parallelized are the ones where most of the computational time is
spent: nonlinbl and linearbl. When distributed memory are considered,
the Fourier modes on x and z are distributed among the different processors.
Thus, data repartition takes place on x and z but not on y; i.e. each mode
is completely stored in a given processor. However, communication is needed
whenever transforms to/from physical and spectral space are computed, i.e. in
nonlinbl, since they require for a given y location the whole x− z plane.

Depending on the size of the problem two different strategies are possible:
the so-called 1D and 2D parallelization. The former splits the data in stripes
along x, each stripe for each processor. However, if the number of processors
is larger than the modes along z, such a partition cannot be used and a better
strategy is to divide the x − z plane into squares; i.e. the 2D parallelization.
Note that whereas the former requires communication only along z, the lat-
ter requires communication along both x and z. For further details on the
parallelization, please refer to Li (2009).

Since the open-channel code aims at fully-resolved numerical simulations of
turbulent stratified flows, parallelization is crucial and the open-channel code
can support both 1D and 2D parallelization for distributed memory machines as
well as the OpenMP protocol for shared memory machines. Parallel tests have
been made on massively parallel machines such as the SNIC systems Neolith
and Lucidor. Binary agreement, with and without parallelization, confirms the
assessed reliability.
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2.4. Validation

2.4.1. Orr-Sommerfeld modes

In order to validate the code, the temporal evolution of modal perturba-
tions is analysed. Both two- and three-dimensional eigenfunctions of the Orr-
Sommerfeld operator are introduced as initial conditions. Their amplification or
decay rate is then computed and compared with the solution of the linear eigen-
value problem. It is worth noticing that for the Reynolds number under consid-
eration, Re = 6000, the most unstable mode, the so-called Tollmien-Schlichting
waves (TS), is anti-symmetric in y with respect to the wall-normal direction
and they are therefore not suitable for our test. For the two-dimensional case,
the Orr-Sommerfeld system with α = 1 and β = 0 was solved and the least
stable even mode was selected. For the three-dimensional case, we considered
α = 1 and β = 2. The shape of the eigenfunctions is shown in figure 2a) and
2b) for the two- and three-dimensional case, respectively. The linear calcula-
tion were made with an Orr-Sommerfel solver developed by Philipp Schlatter,
at the Institute of Fluid Dynamics, ETH Zurich and the imaginary part of the
respective eigenvalues describing the temporal growth/decay can be found in
table 2.4.1.

Figure 2. Shape of the eigenfunction as function of y, both
for the two-dimensional case (α = 1,β = 0) and three-
dimensional one (α = 1,β = 2). streamwise component
u; wall-normal component v; spanwise component
w.

The initial conditions were then obtained by superimposing the selected
modes to the parabolic profile. The amplitude of the eigenmodes Ae was chosen
as small as Ae = 0.001Ucl, in order to make non-linear interactions negligible
and allow the comparison with the linear analysis. The simulations were then
run for 100 time units τ = h/U .

Figure 3 shows the evolution of the disturbance in time. The straight
line in the logarithmic plot clearly shows the exponentially-decaying behaviour
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Figure 3. Evolution of the eigenfunction amplitudes. Note
that a clear exponentially decaying behaviour can be seen thr-
ough out the all simulations. Two-dimensional mode;

Three-dimensional mode.

Case Linear calculations Simulation

2D −0.571481510 · 10−1 −0.57145599768035 · 10−1

3D −0.445527027 · 10−1 −0.44555041095550 · 10−1

Table 1. Decaying rate for the most unstable two and three-
dimensional odd (respect to v) eigenfunction at Re = 6000.
2-dimensional with (α = 1,β = 0); 3-dimensional with (α =
1,β = 2)

throughout the whole simulation as expected, both for the two- and the three-
dimensional cases. The slope of the line corresponds to the imaginary part of
the temporal eigenvalue. The values extracted from the simulations, which can
be found in tab. 2.4.1 show good agreement with the linear analysis up to the
4-th significant digit.

2.4.2. Turbulent open channel flow at Reτ = 180

In order to test the code for turbulent cases, we performed fully-resolved turbu-
lent open-channel simulations, comparing the results to a published reference
case. Handler et al. (1999) studied the effect of isothermal and constant heat
boundary condition at the free-surface of open-channel flows at Reτ = 180,
high enough for turbulence to be sustained. Initial conditions with randomly
distributed noise around the Poiseuille profile led to continuously turbulent
states. The box size including only one-half of the symmetric channel was cho-
sen to (Lx, Ly, Lz) = (4h, h, 3/2h). In order to fully resolve all the scales, the
resolution 128 x 129 x 128 was applied. Note that the resolution is the same as
used by Handler et al. (1999), but the grid collocation is now narrower close to
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the wall and coarser in the free-stream. Simulations have been run for 1500 τ
and statistics were computed from t = 500τ . τ represents the time unit h/U .
Another simulation has also been run where the number of points in the region
close to the wall was matched with the reference case, i.e. the resolution was
decreased to 128 x 97 x 128. Figure 4 shows the profile of the mean streamwise
velocity (left) and of the velocity variances (right). A very good agreement is
obtained between the curves from Handler et al. (1999) and the curves from
both the high resolution as well as the low resolution runs.
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Figure 4. Comparison of statistical quantity with the refer-
ence case (Handler et al. 1999). Current simulation (res.
128 x 129 x 128); Handler et al. (1999) (res. 128 x 129
x 128); decreased resolution (res. 128 x 97 x 128)

Note that if we were to use the old version of Simson, we would not be able
to decrease the resolution. If we compare the time needed for each full 4-stage
iteration (the code was run on 32 processors), the following values are obtained:
1.1 seconds for the old version; 0.7 seconds and 0.5 seconds for the symmetric
versions with 129 and 97 grid points in y, respectively. Therefore, a gain on
the order of 50% has been achieved for the time needed for each full step.
In addition, whenever the CFL condition is restricted by the resolution in y, a
further gain might be obtained. In fact, at the upper boundary velocities do not
vanish as they do at the lower wall and - for full Gauss-Lobatto grids - the CFL
condition is indeed more severe at the upper boundary. Therefore, avoiding
the clustering of points at the shear-free surface can significantly improve the
stability condition and allow for a larger time step.

3. Stratified flows

Open channel flow simulations with stable stratification have recently been
used in order to understand atmospheric turbulence close to the Earth’s surface
(Nieuwstadt 2005). In the following, we will describe two main modifications
introduced into the code in order to handle stratification: a new CFL restriction
of the time step which accounts also for the effect of stratification and the
implementation of a fringe region at the top of the domain which is intended
to prevent spurious reflections of internal gravity waves at the upper boundary.
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3.1. New CFL condition

The CFL condition currently implemented in SIMSON is not accounting for the
effect of buoyancy forces when active scalars are considered. This effect can be
rather important, especially for unstable stratifications when density gradients
actually drive the flow and produce turbulent kinetic energy. Following the
procedure outlined by Chevalier et al. (2007), the Boussinesq equations can be
linearized around a baseflow as

∂ui
∂t

+ u0j
∂ui
∂xj

= − ∂p

∂xi
+

1

Re

∂2ui
∂xj∂xj

+Riθδi2, (56)

∂θ

∂t
+ u0j

∂θ

∂xj
+ u2

dθ0
dx2

=
1

Pe

∂2θ

∂xj∂xj
, (57)

where the subscript 0 stands for the mean flow quantities. Henceforth, for sim-
plicity, we will restrict ourself to the two-dimensional case, where no spanwise
variation is assumed. After same rearrangements, as in (2.1), the linear system
can be rewritten in the matrix form as

∂ũ

∂t
= Lũ+Gũ, (58)

where

L =

[
∇2

Re 0

0 ∇2

Pe

]
G =

[
−u0j ∂

∂xj
Ri∇2

H
dθ0
dy ∇−2 −u0j ∂

∂xj

]
(59)

and

ũ =

{
∇2v
θ

}
. (60)

Note that in eq. (58), the right hand side has been split in two contribution cor-
responding to the different time discretization which have been used: implicit
Crank-Nicolson for the linear part (L) and explicit forth-order Runge-Kutta
for the non-linear one (G). Assuming that Fourier modes are used in all three
directions, the matrices L and G in (59) can be written as

L̂ =

[
−α2+γ2

Re 0

0 −α2+γ2

Pe

]
and Ĝ =

[−i(u0α+ v0γ) −Riα2

− 1
α2+γ2

dθ0
dy −i(u0α+ v0γ)

]
,

(61)
where α and γ stand for the horizontal and vertical wavenumber respectively.
Assuming that Pr = 1 (and therefore Re = Pe), the linear system (59) can be
easily diagonalized and its eigenvalues are

λ1,2 = i

(
u0α+ v0γ ±

√
Ri

α2

α2 + γ2
dθ0
dy

)
. (62)

Comparing this expression with the one found by Chevalier et al. (2007), we
note that an additional term is present, namely

√
Ri

α2

α2 + γ2
dθ0
dy

, (63)
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which accounts for the contributions of an active scalar. Note that the factor
which depends on the spatial wavenumber

α2

α2 + γ2
=

1

1 + γ2

α2

is always positive and smaller or equal to 1. An upper bound for the additional
term in (63) can therefore be set to

√
Ri
dθ0
dy

. (64)

This condition is implemented in the code and leads to stable integration in
buoyancy driven flows, e.g. Rayleigh-Bernard convection.

3.2. Internal waves and the fringe region

In stable stratified flows internal gravity waves can develop and travel through-
out the whole domain. Such waves may interact with the underlying turbulence
and may affect the energy transfer from one region to another, especially in the
vertical direction. The symmetric condition at the upper boundary, which en-
forces the wall normal velocity to vanish there, may lead to spurious reflections
of incoming internal waves.

Indeed, gravity waves are seen in nature as well. They can either be pro-
duced by turbulence, as described Taylor & Sarkar (2007), or by topography,
e.g. mountain waves (as in Klemp & Lilly 1978). In these cases, however, en-
ergy is mainly transferred towards the upper atmosphere and just a negligible
amount goes back towards the ground. Simulations that aim at reproducing
geophysical wall bounded flows should therefore avoid spurious reflection at the
upper boundary.

A number of studies have been devoted to non-reflective boundaries which
may be required when wave propagation is involved. Israeli & Orszag (1981)
give a good survey of different strategies that one can use in numerical sim-
ulations in order to prevent spurious reflections. The most elegant one is to
enforce boundary conditions which let waves propagate through the boundary.
However, this usually requires knowledge either of the time-history of the flow
at the boundary (Bennett 1976) or some guesses on the wave phase velocity
itself (Givoli & Neta 2003). For stratified flows, Klemp & Durran (1983) de-
rived an elegant condition not relying on any knowledge of the time evolution
but on the correlation between the pressure and the vertical velocity at the
upper boundary. However, such a condition was derived within some approxi-
mations (e.g. the Brunt-Väisälä frequency N2 being constant) which may not
be satisfied in open channel simulations.

Other possible strategies which aim at reducing the effect of the wave re-
flection rely on damping regions placed at the top of the domain which are able
to smoothly reduce upward travelling internal waves. The damping effect can
either be obtained by an increased fictitious viscosity (e.g. Rayleigh-damping
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regions as in Klemp & Lilly 1978) or by forcing terms proportional to the ve-
locity fluctuations around a mean value (e.g. sponge regions as in Clark 1977).
Whereas the former method behaves as a filter which damps short waves, the
latter method does not discriminate different wavelengths. Moreover, since
the extra-forcing terms are explicitly discretized in time, Rayleigh regions pose
rather severe time step restriction. For these reason, we use sponge regions.
Nevertheless, it is necessary to point out that both methods, Rayleigh and
sponge regions, are non-physical and caution is needed when using them.

The forcing term has therefore been chosen proportional to the velocity
fluctuation

Fi = −f(y)
(
u− Ū

)
(65)

where Ū is the velocity averaged over a x-z plane. The damping strength has a
finite positive value within the damping region and vanishes outside. Therefore,
it must be y dependent. In order to allow for exponential convergence, infinitely
differentiable C∞ functions must be employed. The following smooth step
function has been chosen:

f(y) =

{
0, y ≤ ys

F0/ (1 + exp (1/(x− 1) + 1/x)) , ys < y < h
(66)

which smoothly increase from 0, at the beginning of the sponge, to F0 at the
upper boundary.
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Figure 5. Fourier transform with respect to y of the wall-
normal velocity v

In order to assess this method, a continuous small-amplitude periodic forc-
ing is introduced close to the lower wall in a stable stratified quiescent flow.
Internal gravity waves are therefore generated. Ri = 40 was prescribed, giving
a dimensionless Brunt-Väisäla frequency of

N =
√
Ri ≈ 6.32 (67)

In order to obtain internal gravity waves that propagate upward, forcing fre-
quencies lower than N have to be used. Higher values give exponential decay
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in the vertical direction. Thus, we generate waves with ωgw = 5 and with
a streamwise wavenumber initially chosen to α = 3 2π

h . For a constant tem-
perature gradient and small-amplitude waves, an analytical expression for the
vertical wavenumber which involves α and ω can be found

ω = N
α√

α2 + γ2
= N

1√
1 + γ2

α2

, (68)

giving a wall-normal wavenumber γ ≈ 2.32 2π
h ≈ 14.6h−1. Figure 5 shows the

Fourier transform with respect to y of the wall-normal velocity. Since y is an
inhomogeneous direction, a Blackman-Harris window was applied before calcu-
lating the Fourier Transform. As expected, a dominant wall-normal wavelength
can be observed which corresponds to ky ≈ 15.71, matching quite closely with
the one predicted by equation (68). Note that a perfect match is prevented by
the fact that the height of the box is not an integer multiple of the theoretical
wavelength λy = 2π/ky.
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y

Figure 6. Vertical velocity v in a vertical plane x− y at t =
0.2τ and t = 18τ . Internal gravity waves are generated by the
volume forcing applied close to the lower wall and propagate
vertically.

Figure 6 shows the vertical velocity in a x-y plane for two different time
units, to the left at an early stage and to the right at a sufficiently late time
to allow the interaction of upward and reflected downward waves. As we can
clearly see, a fairly large amount of energy is reflected back towards the ground:
the oblique shape cannot be observed any longer, replaced by quasi-standing
waves which arise from the interaction of upward and downward waves.

Figure 7 shows the flow fields where half of the domain along y is oc-
cupied by a sponge region, whose strength has been increased from left to
right, F0 = 1, 10, 100. For small values waves still reach the upper boundary
and a consistent amount of energy is reflected. However, such a value is far
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x

y

Figure 7. Vertical velocity v in a vertical plane x − y after
that a statistically steady state is achieved. Internal gravity
waves are forced close to the lower wall. The strength of the
fringe placed at the top of the domain increases from left to
right: F0 = 1, 10, 100

smaller than in the case where no damping region is present (figure 6), and
oblique waves propagating along the wall-normal direction can now be recog-
nized. As F0 increases, the waves become more strongly damped and a very
limited amount of energy is able to reach the upper boundary and reflect back.
However, if F0 is too large, a reflection starts to occur close to the fringe bound-
ary itself. There is therefore an optimal value for which the damping is high
enough to prevent the waves to reach the upper boundary, but, on the other
hand, not strong enough to generate reflection at the fringe boundary.

The optimal strength is a function of the internal gravity wave wavenum-
ber. In the simulations described above just one particular wavenumber in the
streamwise direction, namely α = 6π, was considered. In order to study how
the performance of the sponge region changes with the streamwise wavenumber,
a parametric study has been carried out. Instead of continuously introducing
internal gravity waves, the periodic forcing is applied only for very short time,
leading to the development of a wave packet which propagates upward. In this
way, we can easily find the amount of energy reflected back towards the ground
as:

Ereflected = min
y=ys

〈p′v′〉 (69)

where ys is the location where the sponge region starts. In the ideal case, this
quantity should be equal to zero.

Figure 8 shows the ratio between the reflected energy for various damping
strength and for α = (1, 2, 3, 4) · 2π. A clear trend can be seen in figure 8:
the higher the wavenumber, the smaller the optimal strength. In fact, due to
the effect of the viscosity, high wavenumber waves are naturally damped and
cannot reach the upper wall. Strong sponge regions move the reflection point
towards the lower wall and lead to higher downward energy flux at y = ys. As
the wavelength increases, viscosity cannot efficiently damp the waves and due
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Figure 8. Reflected energy function of the fringe strength
for different value of the streamwise wavenumber. For each
wavenumber the curve are normalized with the maximum for
that particular α. α = 2π; α = 4π; α = 6π;

α = 8π.

to the symmetric condition, a considerable amount of energy is reflected back.
Fairly strong sponge regions are therefore required.

Even though sponge regions can effectively reduce the amount of reflected
energy, they cannot completely nullify it. The minimum downward energy flux
at the fringe boundary can be reduce by increasing the height of the damp-
ing region, but, since there are no free lunches, at the price of an increased
computational cost.
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