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Stockholm framlägges till offentlig granskning för avläggande av teknologie
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c©Enrico Deusebio 2013

Tryckt av Eprint AB 2013



Numeriska simuleringar av roterande och stratifierad tur-
bulens

Enrico Deusebio
Linné Flow Centre, KTH Mechanics, Royal Institute of Technology
SE-100 44 Stockholm, Sweden

Sammanfattning
En grundlig vetenskaplig först̊aelse av turbulens saknas fortfarande, fastän
fenomenet har studerats i fem hundra år. Vid sidan av observationer och ex-
periment kan beräkningar med hjälp av kraftfulla datorer idag ge oss en del
insikter i turbulensens dynamik. I denna avhandling presenteras simuleringar
av s̊aväl homogen turbulens som turbulens i strömningar i närvaro av en vägg.
I b̊ada fallen studeras en roterande och stratifierad fluid, s̊a som är fallet i
geofysikaliska strömningar där jordrotationen och den vertikala densitetsvaria-
tionen har stort inflytande.

För homogen turbulens undersöker vi hur energiutbytet mellan olika turbulenta
skalor p̊averkas av stark men ändlig rotation och stratifiering. Till skillnad fr̊an
kvasigeostrofisk turbulens, visar vi att det existerar en energikaskad mot min-
dre skalor som initieras vid den skala vid vilken turbulensen exciteras. Vid
stora skalor är denna process av underordnad betydelse, men vid mindre skalor
kommer den att dominera. Vid dessa skalor ser man därför att v̊agtalsspek-
trum av den turbulenta energin genomg̊ar en överg̊ang fr̊an k−3 till k−5/3.
Tv̊apunktsstatistik visar en god överenstämmelse med mätningar fr̊an atmos-
fären, vilket talar för att energikaskaden mot mindre skalor är en betydelsefull
process i atmosfären.

Ett gränsskikt i ett roterande system i vilket rotationsaxeln är normal mot
väggen brukar kallas ett Ekmanskikt, vilket kan ses som en modell för de
gränsskikt som utvecklar sig i atmosfären och oceanerna. Vi studerar den
turbulenta dynamiken i Ekmanskiktet med hjälp av numeriska simuleringar,
med speciellt fokus p̊a de strukturer som utvecklas vid måttliga Reynoldstal.
För neutralt skiktade fluider visar vi att det finns en turbulent kaskad av he-
licitet i det logaritmiska skiktet. Vi fokuserar ocks̊a p̊a effekten av en stabil
skiktning som uppst̊ar p̊a grund av en vertikal temperaturgradient. Om skikt-
ningen inte är alltför stark, observerar vi en turbulent dynamik som i stort sett
överenstämmer med existerande teorier och modeller som används för atmos-
färiska gränsskikt. För starkare skiktning visar vi att det finns samexisterande
turbulenta och laminära omr̊aden som visar sig i snett löpande band i förh̊al-
lande till medelhastigheten, i stor likhet med vad som nyligen observerats i
andra strömningar som genomg̊ar transition mellan ett laminärt och turbulent
tillst̊and.
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Numerical studies in rotating and stratified turbulence

Enrico Deusebio
Linné Flow Centre, KTH Mechanics, Royal Institute of Technology
SE-100 44 Stockholm, Sweden

Abstract
Although turbulence has been studied for more than five hundred years, a thor-
ough understanding of turbulent flows is still missing. Nowadays computing
power can offer an alternative tool, besides measurements and experiments,
to give some insights into turbulent dynamics. In this thesis, numerical sim-
ulations are employed to study homogeneous and wall-bounded turbulence in
rotating and stably stratified conditions, as encountered in geophysical flows
where the rotation of the Earth as well as the vertical density variation influence
the dynamics.

In the context of homogeneous turbulence, we investigate how the transfer of
energy among scales is affected by the presence of strong but finite rotation and
stratification. Unlike geostrophic turbulence, we show that there is a forward
energy cascade towards small scales which is initiated at the forcing scales.
The contribution of this process to the general dynamic is secondary at large
scales but becomes dominant at smaller scales where it leads to a shallowing
of the energy spectrum, from k−3 to k−5/3. Two-point statistics show a good
agreement with measurements in the atmosphere, suggesting that this process
is an important mechanism for energy transfer in the atmosphere.

Boundary layers subjected to system rotation around the wall-normal axis are
usually referred to as Ekman layers and they can be seen as a model of the
atmospheric and oceanic boundary layers developing at mid and high latitudes.
We study the turbulent dynamics in Ekman layers by means of numerical sim-
ulations, focusing on the turbulent structures developing at moderately high
Reynolds numbers. For neutrally stratified conditions, we show that there ex-
ists a turbulent helicity cascade in the logarithmic region. We focus on the effect
of a stable stratification produced by a vertical positive temperature gradient.
For moderate stratification, continuously turbulent regimes are produced which
are in fair agreement with existing theories and models used in the context of
atmospheric boundary layer dynamics. For larger degree of stratification, we
show that laminar and turbulent motions coexist and displace along inclined
patterns similar to what has been recently observed in other transitional flows.

Descriptors: Geostrophic turbulence, stable stratification, rotation, wall-
bounded turbulence, gravity waves, atmospheric dynamics, direct numerical
simulations
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Preface

This thesis contains numerical investigations of stratified and rotating turbu-
lence, both with and without the presence of walls. A brief introduction on
the basic concepts and methods is presented in the first part. The second part
contains six articles and one internal report. The papers are adjusted to com-
ply with the present thesis format for consistency, but their contents have not
been altered as compared with their original counterparts.

Paper I. A. Vallgren, E. Deusebio & E. Lindborg, 2011
Possible explanation of the atmospheric kinetic and potential energy spectra.
Phys. Rev. Lett., 107:26, 268501.

Paper II. E. Deusebio, A. Vallgren & E. Lindborg, 2013
The route to dissipation in strongly stratified and rotating flows. J. Fluid
Mech., 720, 66-103, 2013

Paper III. E. Deusebio, A. Augier & E. Lindborg, 2013
Third order structure functions in rotating and stratified turbulence: analytical
and numerical results compared with data from the stratosphere. Submitted to
J. Fluid Mech.

Paper IV. E. Deusebio, G. Boffetta, S. Musacchio & E. Lindborg,
2013
Dimensional transition in rotating turbulence Submitted to Phys. Rev. E

Paper V. E. Deusebio, G. Brethouwer, P. Schlatter & E. Lindborg,
2013
A numerical study of the unstratified and stratified Ekman layer. Under revi-
sion for publication in J. Fluid Mech.

Paper VI. E. Deusebio & E. Lindborg, 2013
Helicity in the Ekman boundary layer. Submitted to J. Fluid Mech. Rapids

Paper VII. E. Deusebio, 2012
The open-channel version of SIMSON Internal Report
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Part I

Introduction





CHAPTER 1

Turbulence and numerical simulations

“Observe the motion of the surface of the water which resembles that of hair,
and has two motions, of which one goes on with the flow of the surface, the
other forms the lines of the eddies; thus the water forms eddying whirlpools
one part of which are due to the impetus of the principal current and the other
to the incidental motion and return flow1.” It was between the XV and the
XVI century that the first attempt of a scientific study of turbulent motions was
done by the Italian Leonardo da Vinci. More than five hundred years later, tur-
bulence is still not fully understood and many of its aspects remain mysterious.
Richard Feynman describes turbulence as one of the most important unsolved
problem of classical physics (Feynman 1964). The note left by Leonardo da
Vinci already contains a description of some important characteristic features
of turbulence: the presence of eddies and swirling motions which, in a rather
chaotic manner, superimpose on the main motion of the fluid. It was the same
observation which led Reynolds (1895), almost four hundred years later, to de-
scribe turbulent motions statistically by decomposing the velocity field into a
mean and a fluctuating part. Indeed, the perhaps most important insight into
the essentials of turbulence goes back to less than a hundred years ago, with
the observations of Richardson (1922)

Big whirls have little whirls
that feed on their velocity,
and little whirls have lesser whirls
and so on to viscosity

Far from being trivial, Richardson’s observation constitutes the ground on
which all the following theories were based (e.g. Kolmogorov 1941a). Large
eddies break down into smaller eddies in an inviscid process which continues
until kinetic energy is converted into heat at the very smallest scales of motions
where viscosity dominates. Thus, turbulent flows possess many scales, both in
space and in time, and they own their intrinsic complexity to the interplay
among these scales.

From a historical perspective, most of the advances in the understanding
of turbulent processes were made in the past hundred years, since the pioneer
work of Reynolds (1886). Besides the experimental investigations, a substantial

1see Richter, J. P. 1970. Plate 20 and Note 389. In The Notebooks of Leonardo Da Vinci.
New York: Dover Publications.
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4 1. TURBULENCE AND NUMERICAL SIMULATIONS

Figure 1.1. da Vinci sketch of a turbulent flow

amount of work has also been dedicated to theoretical investigations of turbu-
lence. Several approaches were proposed and undertaken. Strongly influenced
by the view of turbulent motions as chaotic and unpredictable, the early studies
mainly aimed at a statistical characterization of the dynamics.

Perhaps the most important contribution to a quantitative statistical de-
scription of turbulent flows is the theory proposed by Kolmogorov (1941a). As
eddies break down into smaller eddies, they lose any preferable orientation and
the anisotropy of the large scales of the flow is progressively lost. Kolmogorov
(1941a) suggested that statistical quantities in the cascade neither depend on
the direction nor on the spatial coordinates, but they attain an universal form
which depends only on the energy flux through the cascade, ε, and, at small
scales, on the viscosity ν. Despite its simplicity, Kolmogorov (1941a) theory
has been able to make quantitatively accurate predictions.

The apparent chaotic and unpredictable nature of turbulent flows seems
to be in contrast with the deterministic nature of the Navier-Stokes equations
which govern the fluid motions. Besides the statistical approach, other ap-
proaches have also been proposed, postulating the presence of more organized
patterns. The structural approach aims at identifying coherent structures which
cyclically appears in the flow and sustain the turbulent motions. The deter-
ministic approach, on the other hand, views a turbulent process as a nonlinear
dynamical system which exhibits a high dependence on initial conditions and
apparently chaotic solutions which, however, project onto particular objects in
phase-space, called “strange attractors”.

In the last fifty years turbulence research has benefited from the powerful
tool of digital computers, which complementary to experiments, can be used
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to study turbulence in detail. This thesis shows how such an approach can
be effectively employed in order to shed light on turbulent dynamics. As op-
posed to experiments, numerical simulations give full information of flow fields
and also allow a perfect control of external conditions (e.g. boundary con-
ditions). Moreover, they also allow us to study idealized and “non-physical“
setups where different factors/phenomena influencing the turbulent dynamics
can be separated.

The first attempt to carry out a direct flow computation was made in the
beginning of the XX century by Richardson (1922), who undertook the first
historical weather forecast ever done. The measured atmospheric data were
advanced in time by using a rather simple mathematical model able to capture
the main features of the atmosphere, predicting the flow evolution in the next
six hours. All the computations were done by hand. Unfortunately, because
some smoothing techniques were not applied on the original data, Richardson’s
forecast failed dramatically. Nevertheless, it represents a mile-stone in the
soon-to-appear era of numerical simulations.

It was only in the beginning of the 1960 that the technology of the digital
computers were sufficiently developed to allow for the first numerical compu-
tations. Lorenz (1963) studied a simple version of the Navier-Stokes equations
in his pioneer work based on machine computations. The system studied by
Lorenz (1963) was nonlinear and deterministic, as the Navier-Stokes equations.
Moreover, it shared some common features with turbulent motions, such as high
sensitivity to initial conditions and chaotic solutions. The work of Lorenz re-
solved the apparent paradox that deterministic systems can behave chaotically,
delineating the beginning of the modern view of turbulence as “deterministic
chaos”.

From a numerical perspective, the most challenging aspect of turbulence
is its intrinsic feature of containing a large range of scales that interact with
each other. If one aims at correctly simulating turbulent flows, all the scales,
from the large energy-containing scales to the very smallest scales, must be
represented, posing severe computational requirements. In the atmosphere, for
instance, the largest scales are of the order of thousand kilometres. On the
other hand, viscosity acts at millimetre scales. To represent such a vast span of
scales in a simulation is, of course, impossible. Also numerical computations of
turbulent flows in typical engineering applications, such as flows around aircraft
or cars, are still out of reach. The largest scale of turbulence is often referred
to as the integral length scale L, whereas the smallest scale is the Kolmogorov
scale, defined as η = ν3/4/ε1/4. The Kolmogorov scale is usually interpreted
as the scale at which viscosity acts and dissipates the downscale-cascading
energy. A fundamental parameter in fluid dynamic applications is the Reynolds
number, Re = UL/ν, which quantifies the relative importance between inertial
and viscous forces. Here, U is a characteristic large scale velocity. The ratio
between the largest scale, L, and the smallest viscosity affected scale, η, can be
related to the Reynolds number as L/η ∼ Re3/4. Values of Re are typically of
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the order of 109 in geophysical applications and 106 in engineering applications,
making the computation of such flows out of reach at the present point.

The first pioneer direct numerical simulations of a homogeneous and
isotropic turbulent flow dates back to the beginning of the 70s, with the work
of Orszag & Patterson (1972). The scale separation simulated was indeed very
limited, with 643 grid points, very far from being of practical interest. Early
attempts to numerically describe turbulent flows were instead deeply connected
with the development of mathematical models of turbulent motions.

The idea of replacing the exact Navier-Stokes equations with its fil-
tered/averaged counterparts goes back to the decomposition of Reynolds
(1895). The filtered scale-independent Reynolds Averaged Navier-Stokes
(RANS) equations, still exact, contain terms which are not closed and therefore
need to be modelled. In other words, a model for the turbulent fluctuations
must be constructed. The first attempt to model turbulence was proposed by
Boussinesq (1877), who suggested an analogy between turbulent motions and
the Brownian motion of gas molecules. He postulated that the effect of turbu-
lent motions in the flow can be modelled by a fictitious eddy-viscosity. Despite
its simplicity and its limitations, the general idea of Boussinesq is still widely
used in many current turbulent models.

Besides the efforts on improving the models of RANS, new approaches
were also proposed in the early 70s, such as Large-Eddy Simulations (LES)
(Smagorinsky 1963; Deardorff 1970). The underlying idea of these new ap-
proaches was to resolve the turbulent scales to a certain extent and model the
remaining part, the so called sub-grid scales. However, as pointed out by Rey-
nolds (1990), before the 90s computational power had not increased enough
to make even LES feasible, and only RANS were actually used in engineering
applications. However, since LES became feasible, it has been the subject of
an increasing amount of studies and represents the perhaps most promising
technique of modelling turbulent flows. Recent developments in the field of the
LES includes the dynamic procedure proposed by Germano (1992) and Ger-
mano et al. (1991), various forms of “synthetic-velocity” (Domaradzki & Saiki
1997), approximate deconvolution models (Stolz & Adams 1999) and explicit
algebraic models (Gatski & Speziale 1993; Rasam et al. 2011).

In the 90s, computational resources had reached a maturity which made
DNS at reasonably high Reynolds numbers possible. Besides the study of ho-
mogeneous isotropic turbulence at high Reynolds numbers, turbulent flows in
the presence of solid walls were also investigated. The first DNS of a fully
turbulent channel flow was performed by Kim et al. (1987). Interestingly, such
a study was shortly preceded by a DNS of the curved channel by Moser &
Moin (1987). The turbulent flat-plate boundary layer was first investigated by
Spalart (1988). In the following years, a large number of studies were carried
out. The complexity of the flows gradually increased by considering compress-
ible, even reacting, flows and several non-trivial geometries. The evolution of
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the geometries also led to the development of new numerical methods able to
deal with curved and irregular walls.

Nevertheless, as noted by Moin & Mahesh (1998), it was still impossible
to simulate flows with Reynolds numbers comparable to experiments. The
development of massively parallel machines over the last decade has made it
feasible to increase the Reynolds number by almost one order of magnitude. In
the field of isotropic and homogeneous turbulence, a DNS at resolution 40963

was performed by Kaneda et al. (2003). In the field of wall-bounded flows, a
simulation of a channel flow at a friction Reynolds number2 Reτ = 2000 was
performed by Hoyas & Jiménez (2006), whereas its turbulent boundary layer
counterparts were studied by Schlatter et al. (2009) at a Reθ, defined with the
momentum thickness3 θ in place of L, of Reθ = 2500 and Sillero et al. (2013) at
Reθ = 6000. Nowadays, the Reynolds number that can be reached in numeri-
cal simulations and in experiments are comparable, allowing for a comparison
and a complementary analysis (Schlatter & Örlü 2010; Segalini et al. 2011).
More importantly, the increase of the Reynolds number allows us to gain im-
portant insights in the turbulent dynamics, revealing important features, such
as intermittency (Benzi et al. 1993; Frisch 1996; Biferale & Toschi 2001), the
presence of coherent structures (Del Álamo et al. 2006) and interactions among
the different scales of the flow (Hoyas & Jiménez 2006; Mathis et al. 2011).

In the spirit of the discussion above, in this thesis we aim at studying
the turbulent dynamics in the presence of rotation and stratification by means
of high-resolution numerical simulations. Such conditions are very important,
especially in a geophysical perspective. A thorough understanding of turbu-
lent processes should mainly focus on how energy is exchanged among differ-
ent scales. This is important both from a scientific and a practical point of
view. Critical evaluations as well as related improvements of large-scale atmo-
spheric and oceanic models cannot be achieved unless the physics and the main
mechanisms underlying atmospheric and oceanic dynamics are understood. In
chapter 2, a short survey of the background on turbulence strongly affected
by rotation and stratification is given. Chapter 3 presents a short overview
on wall-bounded turbulence and on the effect of system rotation and stable
stratification. In chapter 4, a summary of the main findings is offered. Finally,
chapter 5 concludes with some general remarks and outlooks.

2defined as Reτ = uτL/ν. uτ =
√
τw/ρ is the friction velocity with τw being the shear stress

at the wall.
3defined as

∫∞
0

(
1− u

U∞

)
u

U∞
dy.



CHAPTER 2

Rotating and stratified turbulence: a geophysical
perspective

Atmospheric and oceanic flows are highly affected by both rotation and strat-
ification. Rotation is exerted through Coriolis forces which mainly act in hori-
zontal planes whereas stratification largely affects the motion along the verti-
cal direction through the Archimede’s force. Depending on the mean density
profile, stratification can either enhance or suppress vertical motions. Strati-
fication in the atmosphere is usually stable above the boundary layer (Vallis
2006; Gill 1982), i.e. a fluid particle which is displaced in the vertical direc-
tion tends to return to its initial position. Whereas highly rotating flows tend
to form structures which are elongated in the vertical direction (Taylor 1923),
highly stratified flows favour thin structures elongated in the horizontal direc-
tion. Such structures are usually referred to as pancake structures (Lindborg
2006; Brethouwer et al. 2007). It is the interplay between these two regimes
that gives rise to the variety of dynamics seen in the atmosphere.

In the most general case, the governing equations for the flows in the atmo-
sphere and in the oceans are the compressible Navier-Stokes equations. Fluid
density may change from place to place, affected by other scalar quantities
such as pressure, temperature, humidity and salinity. Nevertheless, a good in-
sight into the turbulent dynamics can be gained by reducing the complexity of
the problem by making a few assumptions. Following the standard derivation,
we restrict ourselves to the incompressible Navier-Stokes equations under the
Boussinesq approximation on a f -plane. These can be written as

Du

Dt
= −∇p

ρ0
− fez × u+ bez, (2.1a)

Db

Dt
= −N2w, (2.1b)

∇ · u = 0 , (2.1c)

where u is the velocity vector, f = 2Ω is the Coriolis parameter with Ω being
the rotation rate in the f -plane, ez is the vertical unit vector, p is the pressure

and D/Dt represents the material derivative. N =
√
gρ−1

0 dρ/dz is the Brunt-

Väisälä frequency, with g being the gravity acceleration, ρ0 a reference density
and dρ/dz the background density vertical gradient, and b = gρ/ρ0 is the
buoyancy, where ρ is the fluctuating density. In general, b = b(T, S), where T

8



2.1. GEOSTROPHIC TURBULENCE 9

is the (potential) temperature and S the salinity. In the following, however, we
will assume for simplicity that only T affects b and therefore that b = gT/T0

(Vallis 2006). In (2.1) we have omitted diffusion terms which act only at very
small scales. In the following sections, we simplify this system for the different
atmospheric and oceanic regimes, shortly reviewing the main theories and the
main open questions concerning turbulence in geophysical flows.

2.1. Geostrophic turbulence

Atmospheric and oceanic dynamics are forced at very large scales. In the at-
mosphere, available potential energy associated with the poleward temperature
gradient is converted to kinetic energy by baroclinic instability which develops
on scales of the order of thousand kilometres. The general circulation of the
oceans is mainly driven by surface fluxes of momentum at similar spatial scales.
At such large scales, Earth rotation strongly affects the flow. Moreover, the
stratification is generally quite strong, both in the atmosphere and in the oceans
(Pedlosky 1987; Vallis 2006).

The relative importance of Coriolis forces and buoyancy forces compared
to inertial forces are often quantified by the Rossby and the Froude numbers,
defined as

Ro =
U

fL
and Fr =

U

NL
. (2.2)

Here, L is a characteristic horizontal scale and U a characteristic velocity.
Note that the use of a horizontal length scale rather than a vertical length
scale in the definition of Fr is not standard in geophysical sciences (see e.g.
Gill 1982). However, as will be discussed in the following, recent advancements
in the understanding of stratified turbulence suggest that the Froude number
defined with a vertical length scale always remains of the order of unity, even in
strongly stratified regimes (Billant & Chomaz 2001). On the other hand, Fr,
defined as in (2.2), is in most geophysical applications a small parameter. In the
atmosphere, typical values of Fr are of the order of 10−3 and typical values of
Ro are of the order of 10−1 (Deusebio et al. 2013b). Thus, in equations (2.1) the
horizontal pressure gradient is mainly balanced by Coriolis forces (geostrophic
balance), whereas the vertical pressure gradient is mainly balanced by buoyancy
forces (hydrostatic balance).

For strong rotation rates, an asymptotic analysis with Ro as a small pa-
rameter is possible. For the details of such a derivation, we refer the reader
to any geophysical fluid dynamic textbook, such as Vallis (2006) or Pedlosky
(1987). At zero order, the velocity field, u0, is perfectly horizontal, divergence-
free and in geostrophic balance. At first order in Ro, material conservation of
the Charney potential vorticity (Charney 1971),

q0 = −∂u0

∂y
+
∂v0
∂x

+
f

N2

∂b0
∂z

, (2.3)
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is satisfied, i.e.
Dq0
Dt

= 0, (2.4)

where the material derivative retains only the horizontal advection contribu-
tions. In the following the subscript “0” will be dropped, for simplicity. As-
suming hydrostatic balance and rescaling the vertical coordinates with f/N , it
is possible to rewrite q in terms of the stream function1, ψ, as q = ∇2ψ. In
the literature, equation (2.4) is often referred to as the quasi-geostrophic (QG)
equation. The zero order expansion also conserves energy, that is

DE

Dt
= −∇ · (pu) , (2.5)

where E =
(
u2 + v2 +N−2b2

)
/2. Therefore, the QG equation conserves inde-

pendently two quadratic quantities, energy and potential enstrophy, where the
latter is defined as half of the square of potential vorticity, q2/2.

The energy and enstrophy wave number spectra, E(k) and Z(k), are re-
lated as

E(k) = k−2 · Z(k), (2.6)

where k is the modulus of the three-dimensional wave-vector k, whereas E(k)
and Z(k) are the energy and enstrophy content in mode k, respectively.
This distinctive property of the QG equation, also shared with strictly two-
dimensional flows, is the basis of its most interesting feature: the inverse en-
ergy cascade. As shown in a visionary paper of Kraichnan (1967), the presence
of two related quadratic invariants in two-dimensional flows leads to a global
energy transfer towards large scales, as opposed to three-dimensional flows in
which energy is transferred towards small scales. Enstrophy, on the other hand,
is transferred towards small scales in a forward cascade.

As shown in figure 2.1, if energy and enstrophy are injected at a scale kf ,
energy cascades upscale in the energy inertial range whereas enstrophy is trans-
ferred downscale in the enstrophy inertial range. Following similar arguments
as Kolmogorov (1941a), Kraichnan (1967) argued that inertial range statistics
at a particular scale l = 2π/k are universal and do not depend on the viscosity
ν. In the energy inertial range they only depend on the upscale flux of energy,
ε. Simple dimensional considerations suggest a scaling for the energy spectrum
as

E(k) = Kε2/3k−5/3. (2.7)

Note that such an expression is similar to the one derived by Kolmogorov
(1941a). However, the direction of the energy transfer is different, downscale
in three-dimensional turbulence and upscale in two-dimensional turbulence.
In a similar way, assuming that the statistics in the enstrophy range have a
universal form which only depends on the enstrophy small-scale dissipation

1being the zero order divergence free, the stream function uh = ∇× ψez completely define
the horizontal velocity.
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Figure 2.1. Sketch of the energy spectrum in two-
dimensional and in QG turbulence (figure taken from Vallis
2006).

leads to an energy spectrum of the form

E(k) = Cη2/3k−3. (2.8)

The dimensionless constants, K and C, are assumed to be universal and are
often referred as Kraichnan and Kraichnan-Batchelor constant, respectively.
The theory of Kraichnan (1967) has been tested numerically in a number of
studies. Early investigations (Legras et al. 1988; Ohkitani 1990; Maltrud &
Vallis 1993; Ohkitani & Kida 1992) indicated that the energy spectrum may be
steeper in the enstrophy range as compared to Kraichnan’s prediction. How-
ever, as computational resources allowed larger resolutions, (2.8) was recovered
(Boffetta 2007; Vallgren & Lindborg 2011). As for the enstrophy inertial range,
recent high-resolution numerical simulations have confirmed the existence of an
inverse energy cascade, even though a somewhat steeper spectrum than (2.7)
has been obtained by some investigators. This steeper spectrum is likely to
be a result of formation of large scale coherent vortices (Scott 2007; Vallgren
2011).

To what extent can the theory of QG turbulence explain large-scale at-
mospheric and oceanic dynamics? Indeed, the inverse energy cascade of QG
flows poses the question on how energy can be dissipated in rotating and strat-
ified systems such as the Earth. Dissipation of kinetic and potential energy
can only be achieved by means of molecular viscosity and diffusion which act
at very small scales. In the atmosphere, for instance, these scales can be es-
timated to be of the order of few centimetres or even millimetres. How to
reconcile the picture of a large-scale inverse energy cascade dynamics with the
presence of small scale dissipation is a problem that has become increasingly
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important as the resolution of numerical models has increased. Since QG dy-
namics is not able to support a forward energy cascade, non-balanced motions,
which do not satisfy the geostrophic and hydrostatic balance, must be taken
into account. How energy can be transferred from balanced quasi-geostrophic
motions to ageostrophic motions is a fundamental question that we attempt to
answer by means of high-resolution numerical simulations in Paper I and II.

2.2. Stratified turbulence

As flow scales decrease, the effects of rotation and stratification are reduced.
In the atmosphere rotation becomes of secondary importance at scales of the
order of tens of kilometres. However, at such scales stratification is still very
important and typical Froude numbers are very small.

In the last decade there has been important advances in the understanding
of turbulence in the presence of strong stratification. Thanks to novel numerical
experiments it has been possible to resolve the issue regarding the direction
of the energy cascade in the strongly stratified regime. In the early works
it was suggested that strong stratification favours an inverse energy cascade.
By rescaling the equations of motions as done by Riley et al. (1981), Lilly
(1983) argued that strong stratification leads to the suppression of vertical
motions and a two-dimensionalisation of the flow. In this limit, an inverse
cascade would therefore be observed, as predicted by Kraichnan (1967). Lilly
(1983) suggested that in the atmosphere energy in decaying three-dimensional
convective turbulent patches would, due to the effect of the stable stratification,
be transferred upscale and feed the growth of two-dimensional structures.

Despite the appeal of such a theory, advances in the understanding of
strongly stratified turbulence in the last decade have proved that Lilly’s view
is wrong. In the limit of zero Fr, Billant & Chomaz (2001) showed that the
Navier-Stokes equations allow for self-similar solutions with a vertical length
scale lz ∼ U/N , proposing an alternative scaling of the equations than the one
used by Lilly (1983) and Riley et al. (1981). Introducing different vertical and
horizontal length scales, lz and lh respectively, and using the assumption of
hydrostatic balance, we can make the estimate: b ∼ U2/lz and w ∼ bU/N2lh ∼
UlhFr2/lz. Thus, the following scalings for the advective terms should hold

u
∂

∂x
∼ U

lh
, w

∂

∂z
∼ Fr2

U lh
l2z

∼ U

lh

Fr2

δ2
, (2.9)

where δ = lz/lh. Thus, if the estimate of Billant & Chomaz (2001) is used
for lz, it follows that Fr ∼ δ and the vertical component of the advective
term is of leading order and cannot be neglected as done in the analysis of
Lilly (1983) and Riley et al. (1981). Billant & Chomaz (2001) introduced two
different Froude numbers in their analysis, Fh and Fv, based on the horizontal
and vertical length scales. Whereas Fh is a small quantity in strongly stratified
turbulent flows, Fv always stays on the order of unity.
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Thus, a stratified system retains its intrinsic three-dimensionality and never
approaches the two-dimensional manifold. Moreover, Billant & Chomaz (2000)
showed that in stratified flows two-dimensional solutions are unstable with re-
spect to a new type of instability, called the zig-zag instability, and therefore
tend to become three-dimensional (Augier et al. 2013). The theoretical findings
of Billant & Chomaz (2001) have recently been confirmed in a number of nu-
merical studies (Riley & deBruynKops 2003; Lindborg 2006; Waite & Bartello
2006; Brethouwer et al. 2007; Augier et al. 2012). Riley & deBruynKops (2003)
studied the decaying of Taylor-Green vortices numerically in strongly stratified
mediums. They found that the suppression of vertical motions induced by the
stable stratification provides a decoupling of layers, leading to large vertical
gradients. From an initial condition where Fv & 1, Fv increases and becomes
of the order of unity, allowing for Kelvin-Helmotz instabilities (KH) to develop.
Indeed, KH provides a physical mechanism which allows for a transfer of energy
downscale. Also box simulations of forced strongly stratified turbulence have
confirmed that stratification favours a direct cascade (Lindborg 2006; Waite &
Bartello 2006; Brethouwer et al. 2007). In agreement with the prediction of
Lindborg (2006), the two-dimensional horizontal kinetic and potential energy
spectra in the inertial range are found to scale as

EK(kh) = C1ε
2/3
K k−5/3

h , EP (kh) = C2εP k
−5/3
h /ε1/3K , (2.10)

where εK and εP represent the kinetic and potential energy dissipation. C1

and C2 are found to be of the order of unity and have similar values, i.e.
C1 ≈ C2 = 0.51± 0.02 (Lindborg 2006). Using dimensional arguments, Billant
& Chomaz (2001) suggested a scaling for the vertical energy spectrum

E(kz) = C N3 k−3
z , (2.11)

with the dimensionless constant C being of the order of unity. As noted by
Brethouwer et al. (2007), numerical and also experimental investigations of
stratified turbulence are very demanding in terms of Reynolds numbers. It
is only very recently that computational power has become strong enough to
recover (2.11) in numerical simulations (Augier et al. 2012). In the inertial
range of the turbulent cascade, the effect of viscosity is supposedly negligible.
However, at moderate Reynolds numbers, the constraint on the vertical length
scale due to stratification leads to severe limitations. The viscous term related
to the second order vertical derivative can be estimated as

ν
∂2

∂z2
ui ∼ ν

U

l2z
∼ ν

U2

lh

Re

δ
=

U2

lh

1

ReFr2
, (2.12)

which shows that the effective Reynolds number in stratified flows is reduced by
a factor Fr2. Thus, even though Re is large, viscosity may affect the dynamics
if stratification is very strong.

2.3. Three-dimensional turbulence

As the scales of the flow reduce even further, also stratification becomes of
minor importance and classical three-dimensional Kolmogorov turbulence is
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recovered. The transition between these two regimes is usually assumed to be
the so-called Ozmidov length scale, defined as (Ozmidov 1965)

lO =
ε1/2

N3/2
, (2.13)

where ε is the energy flux towards small scales. The Ozmidov length scale
is usually interpreted as the largest scale at which overturning motions are
possible. Indeed, numerical simulations indicate that kO = 2π/lO is the wave
number at which the energy spectrum shows a transition from a k−3 depen-
dence, relation (2.11), to a k−5/3 dependence (Augier et al. 2012). Using the
estimates of Billant & Chomaz (2001) and the estimate lh ∼ u3/ε (Lindborg
2006), the following relations can be derived,

lh
lO

∼ Fr−3/2 and
lz
lO

∼ Fr−1/2. (2.14)

The Ozmidoz length scale in the oceans has been estimated to be of the order
of metres (Gargett et al. 1981), whereas in the atmosphere, typical values may
vary between one metre, in strongly stratified atmospheric boundary layers
(Frehlich et al. 2008), and ten metres, in the upper troposphere (Lindborg
2006). At smaller scales, classical three dimensional turbulence develops and
the Kolmogorov (1941a) theory is valid. Vertical and horizontal energy spectra
scale as

E(k) = Cε2/3k−5/3, (2.15)

with a direct energy cascade from large to small scales. The Kolmogorov con-
stant, C ≈ 1.6, is of the order of unity (Grant et al. 1962; Kaneda et al. 2003).
Viscosity becomes important only at scales of the order of centimetres or even
millimetres, where dissipation takes place.

2.4. Rotating turbulence

Even though rotating turbulence often appears in geophysical flows coupled to
stratification, understanding how system rotation alone modifies the turbulent
dynamics is very important. Rotating turbulence has been the subject of a
vast number of studies in the literature (e.g. Ibbetson & Tritton 1975; Cambon
et al. 1997; Smith & Waleffe 1999; Moisy et al. 2011). Besides the geophysical
context, rotating turbulent also arises in a series of engineering problems, e.g.
turbo-machinery. One of the most interesting features of flows subjected to
system rotation is the presence of structures which are highly elongated in the
direction of the rotation vector Ω (Taylor 1923; Hopfinger et al. 1982; Bartello
et al. 1994; Davidson et al. 2006). In the following, we will assume that Ω
is aligned with the vertical axis z. If the rotation is strong, the leading-order
balance in equation (2.1) is between the Coriolis term and the pressure gradient.
The vertical component of the curl of (2.1) reduces to

f∇h · u = f

(
∂u

∂x
+
∂v

∂y

)
= −f

∂w

∂z
= 0, (2.16)
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where ∇h is the horizontal divergence operator. If we further assume that
there is hydrostatic balance in the vertical direction, e.g. balance between the
pressure term ρ−1∂p/∂z and the gravitational acceleration g, we find that also
the vertical derivatives of u and v vanish in a constant density fluid. This
is commonly referred to as Taylor-Proudman effect (Proudman 1916; Taylor
1923).

In a slightly weaker form, the Taylor-Proudman effect means that rotat-
ing flows are strongly anisotropic and exhibit very weak vertical gradients, i.e.
vertically elongated structures develop. Columnar vortices have been observed
in a number of experiments (Hopfinger et al. 1982; Davidson et al. 2006), even
though the mechanisms underlying their formation are yet not fully under-
stood (Waleffe 1993; Staplehurst et al. 2008). Davidson et al. (2006) show
that elongated structures grow in the vertical from an initial state of decay-
ing three-dimensional turbulence when system rotation is applied. The growth
rate of the vertical integral length scale was found to be proportional to the
rotation rate, lz ∼ Ωt, suggesting that linear inertial wave can have a role on
the formation process of columnar structures (Staplehurst et al. 2008).

Indeed, waves are thought to have a crucial importance in the dynamics of
strongly rotating flows (Waleffe 1993; Embid & Majda 1998). However, linear
mechanisms cannot explain the transfer of energy towards large scales and the
growth of the vertical integral length scale, which is an intrinsically nonlinear
phenomenon. The two-time scale analysis of Embid & Majda (1998) suggests
that, at large rotation rates, transfer of energy among scales is dominated by
triadic interactions of resonant waves (Waleffe 1993). Resonance takes place
between three inertial waves which satisfy

k1 + k2 + k3 = 0 and ω1 + ω2 + ω3 = 0, (2.17)

where ki is the wave vector and ωi = fkz,i/ |ki| is the frequency of the i-
th inertial wave. Cambon et al. (1997) showed that transfer of energy tends
to concentrate energy close to the plane kz = 0 (as also suggested by the
instability hypothesis of Waleffe 1993). This means that vertically elongated
structures develop. Modes belonging to the plane kz = 0, for which ω = 0,
constitute, however, a closed resonant-set, meaning that energy into/out of the
kz = 0 plane can only be transferred through off-resonant triad interactions
(Waleffe 1993). An intriguing question is whether purely 2D dynamics with an
inverse energy cascade would be recovered as Ro → 0 (Chen et al. 2005). It
is thought that two-dimensionalisation of the flow takes place through quasi-
resonant triads, for which (2.17) is approximately satisfied only to a certain
degree (Cambon et al. 1997). On the other hand, it is worth pointing out that
the analysis of Embid & Majda (1998) is built on the assumption that two
separate time-scales exist in the flow: a slow advection time scale ta ∼ L/U ,
and a fast rotational time scale tw ∼ ω = fkz,i/ |ki|, for which tw & ta.
However, as kz → 0, the two time scales become similar and the analysis of
Embid & Majda (1998) is likely to breakdown at kz/kh ≈ u/lhf = Ro (Bellet
et al. 2006), similar to what observed in stratified turbulence (Lindborg &



16 2. TURBULENCE, A GEOPHYSICAL PERSPECTIVE

Brethouwer 2007) where a traditional two time-scales analysis breaks down at
kh/kz ∼ U/ (Nlh) = Fr.

The fact that vertically-elongated structures develop in rotating flows
poses severe limitations on experimental and numerical investigations of such
a regime. Boundary layer dynamics at solid walls together with the vertical
experimental confinement influence experiments conducted in rotating tanks
(Ibbetson & Tritton 1975; Hopfinger & van Heijst 1993; Morize & Moisy 2006).
In a similar way, numerical simulations can be affected by the choice of the
vertical size of the computational domain, Lz. Numerical codes generally use
periodic boundary conditions in all three directions. The finite box height lim-
its the lowest wave number which can be represented, k̃ = 2π/Lz. Confining Lz

therefore prevents energy to be transferred to wave numbers that are smaller
than k̃. Recent studies of non-rotating unstratified turbulence have shown an
interestingly dynamics when the vertical size of the computational domain is
reduced, where features of 3D and 2D turbulent dynamics mix and superim-
pose (Celani et al. 2010). How this picture would change in the presence of a
system rotation is the subject of Paper IV.

2.4.1. Symmetry breaking in rotating flows

One intriguing aspect of rotating flows is that the Coriolis term breaks the
reflectional invariance of the Navier-Stokes equations. A quantity is said to be
reflectional invariant if it does not change under transformations which flip the
direction of one axis, e.g.

(x′, y′, z′) → (x, y,−z). (2.18)

Vectorial quantities should be referred to the appropriate system of reference,
e.g.

(u′, v′, w′) → (u, v,−w). (2.19)

Equations (2.1) are clearly not invariant with respect to the transformation
(2.18) and (2.19), because of the Coriolis term. As a consequence, positive and
negative vortical motions exhibit different properties in rotating flows. Ex-
periments in rotating tanks of barotropic vortices show completely different
flow evolution and patterns depending on the sign of the vorticity (van Heijst
& Kloosterziel 1989; Hopfinger & van Heijst 1993). Motions with a positive
vorticity with respect to the direction of the rotation vector are referred to
as cyclonic, whereas motions with a negative vorticity are referred to as anti-
cyclonic. A dominance of cyclonic motions has been observed in a number of
studies of rotating turbulence, both in numerical simulations (Bartello et al.
1994; Smith & Waleffe 1999) and experiments (Hopfinger et al. 1982; Moisy
et al. 2011). One way of quantifying the breaking of symmetry is by means
of the skewness of the vorticity component parallel to the rotation rate vec-
tor (Bartello et al. 1994):

S(ωz) =
〈ω3

z〉
〈ω2

z〉3/2
. (2.20)
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Gence & Frick (2001) showed that, if rotation is applied to a fully devel-
oped isotropic three-dimensional turbulence, the numerator 〈ω3

z〉 has a positive
growth in time, thus giving evidence of a dominance of cyclonic motions during
the transient spin-up process. Stability analysis may also provide an indication
of the dominance of cyclonic motions. The inviscid Rayleigh criterion in an
inertial frame of reference suggests that barotropic cyclonic vortices are more
stable than their anti-cyclonic counterparts, in agreement with the observations
(Kloosterziel & van Heijst 1991). Sreenivasan & Davidson (2008) also found
that the Ro threshold for blobs to evolve into columnar vortices is lower for
anti-cyclonic motions, which are thus less likely to appear.

Even though several explanations have been proposed for the dominance
of cyclonic motions and this subject has been the object of an increasing atten-
tion in recent years, the understanding of the symmetry breaking in rotating
turbulence is just“little more than a superficial cartoon” (Davidson et al. 2012).
An intriguing question also concerns the limit of very strong rotation and strat-
ification, discussed in §2.1. In this limit the Navier-Stokes equations reduce to
the QG equation, (2.4), which, interestingly, is parity-invariant. Thus, in the
QG limit there can be no cyclonic/anti-cyclonic symmetry breaking.

Even though we are not able to offer a new explanation in this thesis, we
anyway address the symmetry breaking in rotating turbulence in Paper III and
IV. We propose the use of an another quantity which may be of interest in
place of ωz, that is the statistics of the azimuthal velocity difference δuT =
t · (u (x+ r)− u (x)), where t is an horizontal unit vector perpendicular to
the separation vector r in the cyclonic direction. ωz is in fact a small-scale
quantity in three-dimensional turbulence, meaning that its value is dominated
by contributions at small-scales, and therefore a measure based on (2.20) may
be Re-dependent. On the other hand, statistics of δuT retain the dependence
on the separation scale r and can thus be more informative.

2.5. Towards the atmosphere...

Even though the separate turbulent regimes (three-dimensional, stratified and
geophysical turbulence) have been widely studied in the last decade, investi-
gations of the transition from one dynamics to another are rather scarce. In-
deed, within the context of numerical simulations, the available computational
resources impose severe constraints on the scale separations, and simulating
more than one regime has not been possible until very recently.

In order to shed light on atmospheric and oceanic dynamics, such investiga-
tions are very important. One issue which is still an object of a vivid debate is
the so-called Nastom-Gage spectrum. By using sensors mounted in commercial
aircraft, Nastrom et al. (1984) were able to measure the kinetic and potential
energy spectra in the atmosphere from scales of the order of few kilometres up
to scales of the order of thousand kilometres. The striking outcome of their
work was the observation that the atmospheric energy spectrum clearly divides
into two separate regimes (see figure 2.2): at synoptic scales (∼ 1000 km) a
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Figure 2.2. Atmospheric spectra of kinetic energy of the
zonal and meridional wind components and potential energy
measured by means of the potential temperature. The spectra
of meridional wind and potential temperature are shifted one
and two decades to the right, respectively. Reproduced from
Nastrom & Gage (1985).

spectrum of the form ∼ k−3 is found, whereas at mesoscales (∼ 100 km) much
shallower spectra are observed, ∼ k−5/3, with a smooth transition around 500
km. More than twenty-five years later, it is still debated what dynamics are
producing these spectra.

While the k−3 range can be explained by a quasi-geostrophic turbulent
dynamics, the k−5/3 range is more mysterious and intriguing, since such a
spectrum may arise from both stratified and geostrophic turbulence (Vallis
2006). However, the underlying dynamics is completely different in the two
cases, with a downscale cascade of energy in the former case and an upscale
cascade of energy in the latter case. Early studies, e.g. Lilly (1983), interpreted
the k−5/3 range as a stratified upscale energy cascade. Nevertheless, recent
progress in stratified turbulence theory rather suggests that the k−5/3 range is
a result of a downscale energy cascade. In spite of this, Lilly’s interpretation
has recently been revived by some experiments in electromagnetically forced
thick layers, suggesting that the presence of large-scale coherent vortices might
suppress vertical motion and allow for an inverse cascade (Xia et al. 2011).
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In order to determine the direction of the cascade in the k−5/3 range, other
statistical quantities can be used in place of the energy spectrum. One such
quantity is the longitudinal third-order structure function,

〈δuLδu · δu〉 = 〈(uL (x+ r)− uL (x))

(u (x+ r)− u (x)) · (u (x+ r)− u (x))〉 , (2.21)

where uL is the velocity component parallel to r and 〈·〉 denotes the ensemble
average. As opposed to the energy spectrum, the sign of 〈δuLδu · δu〉 differs
depending on the direction of the cascade, and therefore has been used to study
the atmospheric dynamics (Lindborg 1999; Cho & Lindborg 2001). In three-
dimensional turbulence, an exact relation can be derived (Kolmogorov 1941b;
Antonia et al. 1997),

〈δuLδu · δu〉 = −4

3
εKr. (2.22)

Its counterpart in two-dimensional turbulence was derived by Lindborg (1999)
who found that 〈δuLδu · δu〉 is positive and has a cubic dependence in the
enstrophy cascade range,

〈δuLδu · δu〉 = 1

4
ηr3, (2.23)

and a linear dependence in the energy cascade range,

〈δuLδu · δu〉 = 2Pr. (2.24)

Here, η is the enstrophy dissipation and P the energy injection rate. Analyses
of the third-order structure functions calculated from measurements in the
lower stratosphere (Cho & Lindborg 2001) have shown a positive nearly-cubic
dependence at large scales, and a negative linear dependence at small scales,
supporting the idea of a direct cascade of energy. Moreover, by using (2.23)
and (2.24), Cho & Lindborg (2001) estimated the downscale enstrophy and
energy transfer2, which were found to be of the order of 2× 10−15 s−3 and 6×
10−5 m2 s−2, respectively. However, it is questionable whether the use of (2.23)
and (2.24), which were derived in the context of two-dimensional turbulence, is
justified, especially in the mesoscales. As suggested by the analysis of Billant
& Chomaz (2001), vertical gradients may be important.

That the k−5/3 range can be explained by a direct energy cascade poses
the question where the energy feeding such a cascade could come from. As
noted in the previous section, purely geostrophic dynamics is not consistent
with a downscale energy transfer. In order to investigate such a process, high-
resolution numerical simulations are needed, able to resolve both geostrophic
and stratified turbulent dynamics. In the last decade, several numerical studies
have been devoted to shed some lights into the dynamics, both using idealised
box simulations (Kitamura & Matsuda 2006; Vallgren et al. 2011) and atmo-
spheric models (Skamarock 2004; Takahashi et al. 2006; Hamilton et al. 2008;
Waite & Snyder 2009).

2in equation (2.24) P is interpreted as the downscale energy flux
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Figure 2.3. Comparison of the longitudial third-order struc-
ture function 〈δu3

L+ δuLδuT 〉 (left) from idealized geostrophic
turbulence simulations (Vallgren et al. 2011) and (right) from
measurements in the lower stratosphere (reproduced from Cho
& Lindborg 2001). + Positive values and ◦ negative values.

In paper I, II and III, we propose a possible interpretation of the large-
scale turbulent dynamics in the atmosphere. Motivated by the robustness of
the transition of the energy spectrum, somewhat independent of the location
and altitude, we hypothesise that it must be generated by a strong physical
mechanism. Thus, in order to investigate the underlying dynamics, we carry
out idealised box-simulations of rotating and stratified turbulence forced only
at large scales. As opposed to quasi-geostrophic dynamics, finite rotation rates
lead to a finite downscale cascade of energy. The small scales dissipation is
found to increase with increasing Ro. The energy cascade originates from the
largest scales of the system but becomes visible only at small-scales, where it
leads to a shallowing of the energy spectra to a k−5/3 dependence, consistent
with observations (Nastrom & Gage 1985). The third-order structure function
〈δu3

L + δuLδu2
T 〉, where uT is the horizontal velocity component perpendicular

to r, switches sign at the transition wave number (figure 2.3), in agreement
with Cho & Lindborg (2001). Negative signs with a linear dependence are
attained at small scales, confirming the presence of a direct cascade of kinetic
energy. On the other hand, the longitudinal velocity-temperature-temperature
structure function,

〈δuLδT
2〉 = 〈(uL (x+ r)− uL (x)) · (T (x+ r)− T (x))2〉, (2.25)

is always negative and shows a linear dependence in r, consistent with the
findings of Lindborg & Cho (2000) in the atmosphere (figure 2.4). As already
noted by Lindborg & Cho (2000), this result is surprisingly clean. In Paper III,
we make the interpretation that this is an indication of a downscale cascade
of potential energy and, from the measurements, we estimate the downscale
potential energy flux, ΠP , in the stratosphere to be 2× 10−2 m2s−3.
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CHAPTER 3

Stratified and rotating turbulence in the presence of
walls

Most flows in engineering applications and in nature develop over surfaces.
From a practical point of view, the study of turbulence in the vicinity of a
solid wall is therefore of essential importance. Early experimental investiga-
tions (e.g. Reynolds 1886) were mainly devoted to wall-bounded turbulence.
An inhomogeneous direction, normal to the wall1, substantially increases the
complexity of the problem, as compared to the homogeneous case. From a
numerical point of view, more complex numerical schemes and discretisations
are needed in order to deal with solid boundaries. It was only as late as in the
end of the 80s that computational resources had reached a level that allowed
for wall-bounded turbulence simulations.

3.1. The scales of motions in wall-bounded turbulence

As in the isotropic homogeneous case, turbulent flows over solid walls possess
many scales. Figure 3.1 (taken from Deusebio et al. 2013a) shows a horizontal
component of the velocity in a wall-parallel plane close to the wall (figure 3.1a)
and far from the wall (figure 3.1b). The turbulent dynamics is highly inhomoge-
neous and very different patterns are observed depending on the distance from
the wall. In closed flows, such as channel or pipe flows, the largest turbulent
length scale is set by geometrical constraints, such as the channel height h or
the pipe diameter d. In boundary layers, on the other hand, where the flow is
bounded at one side only, the largest scales are rather set by the boundary layer
thickness. Away from the surface (figure b), a multitude of eddies of different
size can be observed, with small-scale structures embedded in larger structures.
Turbulence is close to be homogeneous and energy containing eddies are much
larger than the scale at which energy is dissipated, which is of the order of the

local Kolmogorov length scale, η =
(
ν3/ε

)1/4
. Here, ε is the local dissipation

rate. On the other hand, figure 3.1b shows that close to the wall the dynamics
is dominated by a population of streamwise-elongated regions of high and low
velocity. These small-scale structures, which are often referred to as streaks, are
common to all turbulent flows developing over a solid surface. Their size scales

1hereafter denoted by y. The reader shall note that here we change the vertical axis from z
to y in order to be consistent with the convention in wall-bounded turbulence studies, e.g.
Spalart (1989).
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with the local shear stress τw and the kinematic viscosity ν. Thus, energy-
containing eddies and viscous scales coincide and no inertial range, as observed
in three-dimensional turbulence, is observed very close to the wall. The length
scale which can be formed from τw and ν,

l+ = ν

√
ρ

τw
=

ν

uτ
, (3.1)

is often referred to as the viscous unit and uτ = (τw/ρ)
1/2 is usually referred

to as the friction velocity, which is the relevant reference velocity close to the
wall. Streaks display a spanwise spacing of about ≈ 100 l+, with remarkable
agreement between different flows. The ratio between the largest turbulent
length scale δ and the viscous scale l+ is referred to as the friction Reynolds
number,

Reτ =
δ

l+
=
δuτ

ν
. (3.2)

Figure 3.1. Horizontal component of the velocity parallel to
the direction of the mean shear stress at the wall in a wall-
parallel plane (taken from Deusebio et al. 2013a). a) Plane at
y+ = y/l+ = 12 b) Plane at y+ = y/l+ = 800.

The fact that there are two widely separated length scales, l+ close to the
boundary and δ far from the boundary, is the foundation of the theory of inner
and outer scaling (Millikan 1938; Townsend 1976). Turbulence statistics at
wall distances comparable to δ are assumed to be universal and to scale with
δ and the outer velocity U∞ (outer scaling). On the other hand, at distances
comparable to the viscous unit l+, statistical quantities are assumed to scale
with l+ and uτ (inner scaling). In the lower part of the inner region, y < 5 l+,
friction dominates and du+/dy+ ≈ 1, where the superscript + refers to a
generic quantity normalised using inner scaling quantities. Thus, close to the
wall velocity increases linearly with height, i.e. u/uτ = y/l+. This layer is
usually referred to as the viscous sub-layer. Above y+ ≈ 5, du+/dy+ is not of
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the order of unity, although inner scaling still applies. This region is referred to
as the buffer layer. The two scalings match in an intermediate region (Millikan
1938). In such a layer, the velocity gradient ∂u/∂y must become independent
of ν and δ, and scale only with uτ and the distance from the wall y, i.e.
∂u/∂y ∼ uτ/y. This leads to a logarithmic profile for the velocity,

u+ =
1

κ
log y+ + C, (3.3)

where κ is the von Kármán constant. Figure 3.2 shows a prototype of the
horizontal velocity profile in wall-bounded flows. The different regions, viscous
sub-layer, buffer layer, logarithmic region and outer layer can be observed. Ever
since the discovery of the log-layer in wall-bounded flows, there has been a large
debate concerning whether there exists a true constant κ which is universal to
all wall-bounded flows. Indeed, results spanning several decades in Re num-
bers, ranging from experiments (Österlund et al. 2000; Monkewitz et al. 2007;
Marusic et al. 2010), numerical simulations (Hoyas & Jiménez 2006; Schlatter
et al. 2009; Spalart et al. 2009) and measurements in the atmosphere (Businger
et al. 1971; Andreas et al. 2006), have shown a relatively modest variation of
κ, ranging from 0.35 to 0.42. It is worth pointing out that these references
are not exhaustive and they are only a very small part of the vast number of
studies aimed at determining κ. An accurate description of this layer is, in
fact, of great practical interest, since most of the turbulent dissipation at high
Re occurs in the log-layer.

Although the inner/outer scaling theory has been very successful in pre-
dicting mean profiles, its applicability to higher moments is more questionable.
In figure 3.3, the horizontal and vertical fluctuations scaled by u2

τ are shown for
several Re (Spalart et al. 2009; Deusebio et al. 2013a). Even very close to the
wall, at y+ ≈ 12, the intensity of the near-wall peak located at y+ ≈ 12 does
not collapse for the different Re and it clearly increases with Re, suggesting
that there is a large-scale influence in the near-wall scaling. The variation of
the maximum of urms with Re has received a great deal of attention in re-
cent years and some empirical relations have been proposed, generally in the
functional form of a logarithm (e.g. Marusic & Kunkel 2003). As shown by
figure 3.1, footprints of the large-scale structures can be seen close to the wall,
suggesting that the outer structures penetrate deeply into the boundary layer
and affect the near-wall turbulence scaling. Several studies have focused on the
interaction between large and small scales, involving spectral analysis (Hoyas
& Jiménez 2006) as well as quantification of the small-scale modulations due to
large scale structures (Schlatter & Örlü 2010; Mathis et al. 2011). In order to
study such interactions a large separation of scales, and therefore a large Re,
is desirable. Recent advancement in experimental techniques as well as new
facilities able to achieve extremely high Re will therefore provide extremely
valuable data needed to study the interaction between outer and inner scalings
in wall-bounded flows (Hultmark et al. 2012; Marusic et al. 2013; Rosenberg
et al. 2013).
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Figure 3.2. Total horizontal wind
√
u2 + w2/uτ profile in

viscous scaling. Thin lines represent the law of the wall u+ =
y+ and the logarithmic region u+ = 1/0.41 log y++5.5.
(thick) Deusebio et al. (2013a) at Re = 400, 1600 (thin)
Spalart et al. (2009) at Re = 1000, 1414, 2000, 2828.

From a numerical point of view, an accurate simulation of turbulent flows
should resolve all the turbulent scales, from the smallest to the largest. In
wall-bounded flows, turbulent motions are naturally forced by the wall-normal
mean shear. Kinetic energy is extracted from the mean flow and transferred to
the turbulent field. One of the most interesting features of wall-bounded turbu-
lence is that most of the turbulent kinetic energy is produced very close to the
wall, at y+ ≈ 12, where velocity gradients are large (Pope 2000). Thus, unlike
homogeneous turbulence, energy is injected at very small-scales. As a conse-
quence small-scale dynamics is of primary importance in wall-bounded flows.
How energy diffuses to larger scales, how outer structures interact with the
near-wall structures and vice versa are problems that are not fully understood
and whose understanding are crucial in order to improve turbulence modelling
for wall-bounded flows (Jiménez 2012).

Whereas small-scale structures show very common characteristics among
all wall-bounded flows, the large scales are, on the other hand, very sensitive
to flow geometry. Therefore, there is no general rule that determines their size
and one has to be very careful in choosing the dimension of the computational
domain, which artificially confines the largest scales in a DNS. Convergence
tests should always be performed in order to check the effects of changes in
the domain size, although this may often become unfeasible as high Re are
considered.



26 3. STRATIFIED AND ROTATING WALL TURBULENCE

u r
m
s/u

τ

y+
10−1 100 101 102 103 104
0

1

2

3

uh,rms

vrms

Figure 3.3. Total horizontal ( )
√
u′2 + w′2 and vertical

( )
√
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Arrows in the direction of increasing Re.

3.2. Numerical grids in wall-bounded flows

Since the first simulations in the 70s (Orszag & Patterson 1972), numerical
simulations of turbulent flows have heavily relied on the use of spectral methods
(Canuto et al. 1988). As opposed to finite difference methods (FD) where the
solution is approximated on a finite grid, spectral methods (SM) approximate
the solution by using an expansion of known globally-defined ansatz functions.
Instead of solving for the values at the grid points, spectral methods solve
for the expansion coefficients. The only approximation which is introduced is
the truncation of the spectral expansion, whereas differential operators acting
on the solution are exact. Due to the fact that a priori known functions are
chosen, SM are not very flexible and only flows in fairly simple geometries
can be studied. However, as compared to the algebraic convergence of the
solution provided by finite difference methods, spectral methods allow for an
exponential converge which had made them particularly useful, especially for
turbulence simulations.

Several kind of ansatz functions can be used for the spectral expansion.
The early studies of homogeneous isotropic turbulence (e.g. Orszag & Patterson
1972) widely employed Fourier modes. Apart from the existence of fast trans-
form algorithms (Fast Fourier Transforms, hereafter FFTs), Fourier modes also
have the advantage of allowing for very simple formulations of partial differ-
ential equations since they are the eigenfunctions of the differential operator.
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However, for wall-bounded flows Fourier modes are not suitable in the wall-
normal direction, due to the inhomogeneous boundary conditions and the need
for a non-equispaced grid (since wall structures are much finer as compared
to the outer ones). In the early numerical studies of wall-bounded turbulence,
Chebyshev polynomials were instead used and applied to Gauss-Lobatto grids

yj/L = cos

(
π
j − 1

N − 1

)
j = 1, · · · , N, (3.4)

which allowed both to retain the use of FFTs and to provide a non-uniform
distribution, with a clustering of points at the upper and lower boundaries,
y = ±1. Such a grid is particularly suitable for flows confined by two solid
walls, e.g. channel flows. However, if one aims at studying open flows which
are bounded by only one solid wall, the clustering of points at the free-boundary
is a waste.

One way to overcome this problem is to use the method of Spalart et al.
(2008) who employed Jacobi polynomials in the variable ζ = exp (−y/Y ), i.e.
in a vertical grid exponentially stretched by a factor Y. Hoyas & Jiménez (2006)
employed seven-point compact finite differences in place of the Chebyshev poly-
nomials. In this way, they were able to adapt the grid spacing to the local
viscous length scale η. Nevertheless, the employed solution algorithm still im-
poses a clustering of points at the upper boundary. In paper VII, we propose
an alternative method in order to study open flows which satisfy the upper
boundary condition

∂u

∂y
=
∂w

∂y
= v = 0, (3.5)

with u and w being the streamwise and spanwise velocities, respectively. We
retain the use of Chebyshev polynomials and the use of Gauss-Lobatto grids.
However, we recast the study of open flows by considering flows which possess
symmetries around y = 0. The free-shear condition, when applied at y = 0, can
in fact be viewed as a symmetric condition for u and w and an antisymmetric
condition for v. Thus, we can use only even Chebyshev polynomials in the
expansion of u and w, and only odd Chebyshev polynomials in the expansion
of v. If vertical stratification is present, the scalar field must have the same
parity of the v equation and must therefore be odd. The spacing of the Gauss-
Lobatto grid at y = 0 is coarse and the clustering of points at the free-shear
boundary, now at y = 0, is thus avoided.

3.3. Rotating wall-bounded flows

Wall-bounded flows subjected to rotation around the vertical axis are very
important in a geophysical perspective. Indeed, the derivation of the solution
of a laminar rotating boundary layer of V. W. Ekman (1905) was inspired by
observations that in Arctic regions icebergs move with an angle of 30o−40o with
respect to the geostrophic wind (Nansen 1905). Far from the solid boundary,
the main balance in the Navier-Stokes equations is between the Coriolis term
and the pressure gradient, leading to the geostrophic balance −∇p = ρfey×G.
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Here, ey is the wall-normal unit vector and G is the geostrophic wind vector.
As the surface is approached, viscous shear stresses become of leading order.
For a laminar parallel flow in steady conditions, the horizontal components of
the Navier-Stokes equations reduce to

fw′ = ν
∂2u′

∂x2
and − fu′ = ν

∂2w′

∂z2
, (3.6)

where the prime ′ indicates the fluctuation around the geosotrophic wind, u−G.
If vanishing boundary conditions for the velocity u′ are applied at infinity, i.e.

u′, w′ → 0 as y → ∞, (3.7)

the system (3.6) admits self-similar solution with respect to the scaled vertical
coordinate y/δE , where δE =

√
2ν/f . In his landmark paper, Ekman (1905)

derived the solution to (3.6) and (3.7),

u′ = Gx − e−y/δE {Gx cos (y/δE)−Gz sin (y/δE)}

w′ = Gz − e−y/δE {Gx sin (y/δE) +Gz cos (y/δE)} .
(3.8)

Ekman’s work (1905) had such an importance that boundary layers subjected
to a rotation around the vertical axis are nowadays referred to as Ekman layers
in his honour. One of the most interesting features of the Ekman layer, in
contrast to non-rotating boundary layers, is that the wind direction varies with
height. Figure 3.4 shows the odograph of the horizontal velocities, equation
(3.8), which is usually referred to as the Ekman spiral. The wall shear-stress
has an angle of 45o with respect to the geostrophic wind direction, consistent
with the observation of Nansen (1905) that icebergs move in a direction which
is neither aligned with the geostrophic wind nor the oceanic current. It is worth
pointing out that the condition (3.7) is rather demanding, especially in numer-
ical simulations and experiments where the flow is usually confined vertically
by the height of the domain, Ly. By replacing the boundary conditions (3.7)
with the free-shear condition (3.5), the solution to (3.6) has the form (Deusebio
et al. 2013a)

u = +C1 cosh (y/δE) + C2 sinh (y/δE)

w = −C2 sinh (y/δE) + C1 cosh (y/δE) ,
(3.9)

where the coefficients C1 and C2 depend on the rescaled domain height, χ =
Ly/δE , as

C1 =
−ug coshχ cosχ− wg sinhχ sinχ

cosh2 χ cos2 χ+ sinh2 χ sin2 χ
(3.10)

C2 =
+ug sinhχ sinχ− wg coshχ cosχ

cosh2 χ cos2 χ+ sinh2 χ sin2 χ
. (3.11)

As χ→ ∞, solution (3.9) exponentially converges to the Ekman solution (3.8).

Flows are very rarely laminar, especially in the atmosphere where the Ek-
man Reynolds number, ReE = GδE/ν, is of the order of 106. As the flow
becomes turbulent, the Ekman spiral tends to shrink in the direction perpen-
dicular to the geostrophic wind and the angle α between the wall shear-stress
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Figure 3.4. Ekman spiral for a laminar Ekman bound-
ary layer and a turbulent Ekman boundary layer.

and the geostrophic wind consequently reduces (figure 3.4) as an effect of the
more efficient momentum transfer close to the wall (Coleman et al. 1990; Shin-
gai & Kawamura 2002). Both in laminar and turbulent cases, the Ekman
spiral shows a small overshoot of the geostrophic wind velocity at intermediate
heights, which can also be observed in the maximum of the velocity profile
shown in figure 3.2. This is usually referred to as the low-level jet. It should be
pointed out that it does not originate from an excess of momentum which dif-
fuses vertically, as in common jets, but rather arises as an effect of the system
rotation.

An open question which is yet to be answered concerns the size and the
nature of the largest structures of a turbulent Ekman boundary layer. In at-
mospheric boundary layers, large-scale structures have been observed and they
are thought to be important on transport processes (Lemone 1973; Etling &
Brown 1993). Experiments in a cylindrical annulus (Faller 1963; Faller & Kay-
lor 1966; Tatro & Mollo-Christensen 1966) have also shown that large-scale
instabilities develop. Stability analysis of the laminar Ekman solution (3.8)
shows that there are two kinds of instabilities: a viscous parallel instability
appearing at ReE = 55 and an inviscid instability arising for ReE > 115 as-
sociated with inflectional points in the velocity profile (Faller & Kaylor 1966;
Lilly 1966; Caldwell & Atta 1970). For both instabilities, the perturbation
has the form of rolling structures which have a negative inclination, for the
parallel instability, and a positive inclination, for the inviscid instability, with
respect to the geostrophic wind (Lilly 1966). However, whether similar large-
scale structures are also present in turbulent flows is an open question. Early
DNSs of turbulent Ekman layers at ReE = 400 (Coleman et al. 1990) did not
show any evidence of large-scale roll cells, unless convective motions driven by
a moderate heating of the lower surface were present in the flow (Coleman et al.
1994). It is unclear whether the choice of the domain size may have prevented
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Figure 3.5. Average 5o × 5o of the spin Ω ∼ ωy/2 (day−1,
with sign reversed in the Southern hemisphere): cyclones (an-
ticyclones) are indicated by blue, positive values (red, negative
values). Figure taken from Griffa et al. (2008).

their development. More recent flow visualisations of Ekman layers in DNSs at
ReE = 775 indicate that there are large-scale structures which are not aligned
with the direction of the geostrophic wind. Such structures were not observed
in earlier DNSs (Shingai & Kawamura 2004). In paper V, we address the issue
of large-scale structures in Ekman boundary layers at high ReE .

Rotating boundary layers present interesting differences with respect to
their non-rotating counterparts. As pointed out in §2.4.1, rotational terms
break the parity invariance of the Navier-Stokes equations, as also observed
from (3.6). Besides experiments and numerical simulations (see section §2.4.1),
this symmetry breaking is also clearly seen in the large scale dynamics of the
Earth atmosphere. Satellite images show that motions in low-pressure systems
are preferentially counter-clockwise in the northern hemisphere and clock-wise
in the southern hemisphere. Preference for cyclonic or anticyclonic motions is
observed both in the atmosphere (Cho & Lindborg 2001) and in the oceans
(see figure 3.5 taken from Griffa et al. 2008). However, it is not obvious that
the breaking of reflectional symmetry observed in large-scales atmospheric dy-
namics can also be observed at smaller scales, for which Coriolis forces have
a negligible effect. In this thesis, we present evidences that Ekman layers, in
contrast to non-rotating boundary layers, can have a non-zero mean helicity
and that a helicity cascade of a definite sign develops. We thus show that,
as a consequence, the symmetry breaking can be observed down to the very
smallest scales of motions, the Kolmogorov length scale η, which is of the order
of one millimetre. Helicity, which is defined as the scalar product of velocity
and vorticity

H = u · ω, (3.12)

was first introduced by Moffatt (1969) who showed that it is an inviscidly
conserved quantity in a barotropic fluid, i.e. for which p = p(ρ). However,
unlike energy and enstrophy, helicity does not have a definite sign and if the
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equations satisfy reflectional symmetry, positive and negative helicity events
occur with the same probability, leading to a zero mean helicity.

Because of its conservation property, helicity has historically aroused scien-
tists curiosity, especially in the context of turbulence (Brissaudw et al. 1973). In
geophysical applications, helicity is significant in tornados (Tsinober & Levich
1983; Lilly 1986) and is used to predict their development (Thompson 2005).
Several studies have focused on understanding the helicity dynamics (Tsinober
& Levich 1983; Chen et al. 2003; Mininni & Pouquet 2009) and how helicity
affects the turbulent dynamics (Biferale et al. 2012). These studies exclusively
focused on homogeneous turbulence. However, as shown in Paper VI, the pres-
ence of a wall is crucial for the generation of helicity in rotating flows. It can
be easily shown that, unlike non-rotating boundary layers, the Ekman solution
is helical (Zhemin & Rongsheng 1994). From the laminar solution (3.8), we
find that

H = G2 e
−2y/δE

δE
+G2 e

−y/δE

δE

(
sin

y

δE
− cos

y

δE

)
, (3.13)

is large and positive for y < 3.94δE . In wall-bounded flows, being either laminar
or turbulent, the injection of helicity is produced by the pressure gradient,
−∇p = 2Ωey × G, which gives an overall injection of helicity over the entire
boundary layer of (Deusebio & Lindborg 2013)

2

∫ ∞

0
Ωey ×G · ωdy = 2Ω

∫ ∞

0
G · ∂u

∂y
dy = 2ΩG ·G. (3.14)

The total injection can only be balanced by the mean and turbulent viscous
helicity dissipation, εH and εh respectively,

εH = 2ν

(
du

dy

dωx

dy
+

dw

dy

dωz

dy

)
εh = 2ν

∂u′
i

∂xk

∂ω′
i

∂xk
. (3.15)

Here, the bar denotes an ensemble average. Thus, helicity of a definite sign, in-
jected at large scale, is transferred towards small scales, where it is ultimately
dissipated. In paper VI, we study the helicity dynamics in a turbulent Ek-
man boundary layer, presenting evidences that there exists a helicity cascade
in atmospheric boundary layers. This suggests that symmetry breaking in geo-
physical flows can be seen down to the smallest scale, i.e. the Kolmogorov
length scale. Measurements in the atmosphere may also provide valuable data
for studying the helicity dynamics at high Re.

3.4. Stratified wall-bounded flows

Turbulent dynamics close to the Earth surface influence the way heat, momen-
tum, moisture and pollution are exchanged and mixed. The study of how stable
stratification affects near-wall turbulence is crucial in order to understand how
the atmospheric boundary layer dynamics change during nights with clear sky
and/or in polar regions, when net radiative cooling at the ground is large with
values of the order of 60Ws−2 (Derbyshire 1999). Under these conditions, sta-
ble stratification significantly suppresses turbulent motions (figure 3.6). Mahrt
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Figure 3.6. Figure taken from Banta et al. (2007). Time
series of ground-level ozone (blue line, 1-min values in ppb)
at Cornelia Fort Airpark, Nashville, Tennessee, for 15-22 Jul
1999 (times UTC). Daytime hours are marked by the maxima
in O3 concentrations, and nights are the periods of mini- mum
concentrations. NO measurements (red line, ppb) available
after 17 Jun document local-source activity at this site at
night.

(1998) divides the stable stratified boundary layer into two separate classes
based on their phenomenological characteristics: the weakly stable boundary
layer and the very stable boundary layer. The weakly stable boundary layer is
relatively well understood and is characterized by continuous turbulence which
is affected by buoyancy. On the other hand, the very stable boundary layer is
somewhat more mysterious and less understood. Turbulence may be strongly
damped and virtually absent (Zilitinkevich et al. 2008) and occasional bursts
of turbulence can also be observed (Kondo et al. 1978). Atmospheric mod-
els need to be improved in order to take into account phenomena that arise
in highly stably stratified conditions, as suppression of vertical motions, re-
laminarisation and appearance of gravity waves. Numerical simulations can
provide an alternative tool, besides in-field measurements and experiments, to
study the strongly stratified regime. This regime has recently been studied in
a number of numerical investigations (e.g. Armenio & Sarkar 2002; Nieuwstadt
2005; Flores & Riley 2010; Garćıa-Villalba & del Álamo 2011; Deusebio et al.
2011).
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For the weakly stable boundary layer, the so-called Monin-Obukhov simi-
larity theory (Obukhov 1946; Monin & Obukhov 1954) has provided the founda-
tion for our understanding of atmospheric flows, even for unstable stratification.
The Monin-Obukhov similarity theory was introduced by Obukhov (1946) and
Monin & Obukhov (1954) who proposed that in a region close to the surface,
for which momentum and heat fluxes are approximately constant, statistical
quantities are only functions of the distance y from the surface, the friction
velocity uτ , the wall heat flux qw and the buoyancy parameter g/T0. Using
Buckingham (1914)’s theorem, dimensionless quantities are thus functions of
one independent dimensionless parameter: y/L, where L is the Monin-Obukhov
length given by

L = −u3
τT0

κgqw
. (3.16)

The von Kármán constant κ is historically included in the definition of L.
According to (3.16), L is positive in stable conditions (qw < 0) and is negative
in unstable conditions (qw > 0). When appropriately normalised, the mean
velocity gradient,

φm =
κy

uτ

∂u

∂y
, (3.17)

and mean temperature gradient,

φh =
κuτy

qw

∂T

∂y
, (3.18)

shall therefore be universal functions of y/L. φm and φh are generally approx-
imated by linear expressions y/L (see e.g. Monin et al. 1975),

φm
( y
L

)
= 1 + Cm

y

L
and φh

( y
L

)
= 1 + Ch

y

L
. (3.19)

As y/L → 0, i.e. vanishing stratification, the log law (3.3) is recovered from
(3.19). In very stable cases, Wyngaard (1973) argued that as a consequence of
suppression of vertical motions, the wall distance y cannot enter into the Monin
& Obukhov (1954) dimensional analysis. Thus, statistical quantities should
become independent of y, e.g. φm ∼ y/L. Nieuwstadt (1984) and Holtslag &
Nieuwstadt (1986) also proposed to extend the validity of the Monin-Obukhov
similarity theory beyond the surface layer by considering a local version of L
instead, i.e. Λ = T0τ3/2/gv′T ′, where τ and v′T ′ are the local turbulent shear
stress and turbulent heat flux, respectively, at a certain height y. Observations
in the atmosphere (Businger et al. 1971; Kaimal et al. 1976; Nieuwstadt 1984;
Metzger & Klewicki 2001) have shown a remarkable agreement with (3.19), both
in stable and unstable conditions. Recent numerical simulations at moderate
Re have also confirmed the Monin-Obukhov theory for stably stratified flows,
both with system rotation (Deusebio et al. 2013a) and without (Garćıa-Villalba
& del Álamo 2011).

The Monin-Obukhov length scale L also offers an interesting physical in-
terpretation. The wall-bounded turbulent dynamics of stratified flows is a
competition between the production of turbulent kinetic energy due to shear
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and conversion to potential energy. L provides a measure of the relative im-
portance of these two mechanisms. Assuming that the mean velocity follows
the log-law (3.3), the Monin-Obukhov length scale can be interpreted as the
distance at which the production,

u′v′
∂U

∂y
≈ u3

τ

κy
, (3.20)

and the turbulent kinetic to potential energy conversion,
g

T0
v′T ′ ≈ g

T0
qw, (3.21)

are in balance.

At the wall, shear is generally very strong and dominates the dynamics.
Even though the temperature/density gradients are sometimes largest at the
wall, near-wall structures are little affected by stable stratification (Deuse-
bio et al. 2011) and approximately preserve their spacing of ≈ 100 l+, also
in strongly stratified continuously turbulent flows. An interesting question is
what happens when stratification is so strong that the point y = L approaches
the near-wall region. If y = L provides an estimate of the height at which buoy-
ancy becomes of leading order, then as L approaches the near-wall region, the
entire boundary layer dynamics becomes buoyancy affected. For very strong
stratification, continuously turbulence cannot be sustained, and portions of the
flow relaminarise. Figure 3.7 shows the streamwise velocity (defined with re-
spect to the shear stress at the wall) in a horizontal plane close to the wall for
an Ekman layer at large stability (Deusebio et al. 2013a). Large portions of
the flow undergo relaminarisation which appears in the form of inclined lam-
inar bands. Thus, the flow exhibits strong spatial intermittency. For an even
stronger stratification, the inclined patterns further break down into turbulent
spots. Similar inclined-bandy structures as the one shown in figure 3.7b have re-
cently been observed in a number of studies of wall-bounded transitional flows,
ranging from subcritical low-Re Couette flow (Prigent et al. 2002; Barkley &
Tuckerman 2005; Duguet et al. 2010) to stratified open channel flow, rotating
Couette flow and magnetohydrodynamic channel flow (Brethouwer et al. 2012).
However, the mechanisms underlying their formation and their dynamics are
not entirely clear (e.g. for a discussion about their inclination see Duguet &
Schlatter 2013).

Several criteria for the onset of relaminarisation in strongly stratified flows
have been proposed, adopting non-dimensionless parameters such as the gradi-
ent Richardson number (Miles 1961),

Ri =
g

T0

∂T

∂y

(
∂u

∂y

)−2

> 0.25, (3.22)

the flux Richardson number (Armenio & Sarkar 2002),

Ri =
g

T0

v′T ′

u′v′

(
∂U

∂z

)−1

> 1, (3.23)
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Figure 3.7. Instantaneous flow field of the streamwise veloc-
ity component u in a wall parallel plane, at y+ ≈ 12. From
left to right stratification increases as: L+ ≈ 900, L+ ≈ 600
and L+ ≈ 250. Taken from Deusebio et al. (2013a).

or the Nusselt number (Garćıa-Villalba & del Álamo 2011),

Nu =
qwh

∆TκT
≈ 1 . (3.24)

Here, κT is the kinematic diffusivity. More recent studies have proposed cri-
teria based on the Monin-Obukhov length scale, L, rescaled by an outer scale
(Nieuwstadt 2005) or the viscous length scale (Flores & Riley 2010). If wall-
bounded turbulence is sustained by a near-wall cycle (e.g. Hamilton et al. 1995),
inhibition of the near-wall dynamics by buoyancy forces can result in the global
relaminarisation of the flow. Thus, it is likely that the criterion should involve
near-wall quantities (Flores & Riley 2010). As pointed out by de Wiel et al.
(2012), when the flow is driven by external forces, e.g. a pressure gradient,
a partial or total relaminarisation is followed by a flow acceleration. As a re-
sult of larger shear stresses, turbulence can be triggered again and a global
intermittency can arise (Garćıa-Villalba & del Álamo 2011).

Ekman boundary layers are of great importance in geophysical flows and
understanding how stratification affects their dynamics is crucial for many prac-
tical applications. Before the development of computational power, the main
source of data was, of course, observations. Even though measurements are able
to provide valuable data at very large Re, uncertainties of boundary conditions
and unstationarities pose severe limitation to their reliability. Numerical simu-
lations offer a new complementary tool to study stratified Ekman layers. The
first numerical simulations of an unstratified turbulent Ekman boundary layers
was shortly after followed by its stably (Coleman et al. 1992) and unstably
(Coleman et al. 1994) counterparts. Shingai & Kawamura (2002) extended
the study of Coleman et al. (1992) by investigating the structure of the Rey-
nolds stresses and the heat fluxes. However, only very limited ReE , i.e. up to
ReE = 424, were considered. More recent numerical investigations have relied
on turbulence models in order to increase ReE (Taylor & Sarkar 2007, 2008b;
Zilitinkevich & Esau 2007). However, caution should always be taken when
using turbulence models to study strongly stratified flows. LESs significantly
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underpredict turbulent transport processes in regions where the stratification
is strong and the vertical scales become small (Taylor & Sarkar 2008a). If
near-wall dynamics is crucial in the relaminarisation process, transitional flows
are also likely to be affected by the use of turbulence models. Therefore, DNSs
remain the most accurate and trustworthy tool in the investigation of the sta-
bly stratified boundary layer. However, recent progress in the understanding
of strongly stratified regime in wall-bounded flows have not considered Ekman
boundary layers but have mainly focused to other flow cases (Nieuwstadt 2005;
Garćıa-Villalba & del Álamo 2011; Brethouwer et al. 2012; Flores & Riley 2010;
Deusebio et al. 2011), as channel and open-channel flows. In Paper V, we fill
this gap by carrying out a study of the Ekman boundary layer by means of
DNSs, ranging from unstratified conditions to very large stability.



CHAPTER 4

Summary of the papers

4.1. Homogeneous turbulence close to geostrophic conditions

We investigate the energy transfer in strongly stratified and rotating systems
in order to shed some light on the processes underlying the route to dissipation
in geophysical flows. To this end, we carry out numerical simulations of homo-
geneous turbulence in triply periodic domains forced only at large scales. The
high resolutions employed allow us to study more than one dynamical regime
within the same simulations.

In paper I, we consider the so-called Primitive Equations, i.e. the Boussi-
nesq system in which hydrostatic balance is assumed in the vertical, and we
show that two related cascade processes emanate from the same large scale
energy source: a downscale cascade of potential enstrophy coexisting with a
downscale energy cascade. We find that the amount of energy which is go-
ing into the downscale energy cascade decreases monotonically with increased
rate of rotation and vanishes in the limit of Ro → 0, reflecting the fact that
in quasi-geostrophic turbulence energy is transferred towards large scales. At
large scales the dynamics is dominated by a forward enstrophy cascade and
energy spectra scale as ∼ k−3. The forward energy cascade, hidden at large
scales, becomes visible only at smaller scales, where it leads to a shallowing
of the spectra from ∼ k−3 to ∼ k−5/3. This is similar to observations in the
atmosphere (Nastrom & Gage 1985), where a transition of kinetic and potential
energy spectra from ∼ k−3 to ∼ k−5/3 is observed in the mesoscale range, at
about 500 kilometres.

In paper II, we extent the study to the full Boussinesq system, thus remov-
ing the assumption of hydrostatic balance in the vertical direction. We show
that the Primitive Equations can be obtained from the Boussinesq equations by
taking the limit Fr2/Ro2 → 0. When Fr2/Ro2 is small the difference between
the results from the BQ and the PE simulations is found to be small. We find
that larger degree of stratification favours a downscale energy cascade, even
though the effect of stratification, within the range of parameters representa-
tive for large-scale atmospheric dynamics, is weaker as compared to rotation in
determining the amount of energy going up- and down-scale. We further inves-
tigate the dynamics by considering vertical spectra and we find that Charney
isotropy lz/lh ∼ f/N is approximately valid at larger wave numbers than the
the transition wave number. We study the transfer of energy and enstrophy
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throughout the turbulent cascade and find that, for intermediate degrees of ro-
tation and stratification, a constant energy flux and a constant enstrophy flux
coexist within the same range of scales. In this range, the enstrophy flux is a
result of triad interactions involving three geostrophic modes, while the energy
flux is a result of triad interactions involving at least one ageostrophic mode,
with a dominant contribution from interactions involving two ageostrophic and
one geostrophic mode. The role of inertia-gravity waves is studied through anal-
yses of time-frequency spectra of single Fourier modes. Only at large scales,
distinct peaks at frequencies predicted for linear waves are observed, whereas at
small scales no clear wave activity is observed, suggesting that wave dynamic is
negligible within the turbulent cascade. We further analyse the transfer terms
and show that resonant-wave triadic interactions cannot explain the downscale
energy transfer.

In Paper III, we study the third-order structure functions, focusing at a
comparison with measurement in the lower stratosphere. In the range of scales
with a downscale energy cascade of kinetic and available potential energy we
find that the third order structure functions display a negative linear depen-
dence on separation distance r, in close agreement with the observations in the
atmosphere. However, it is also found that terms including the vertical veloc-
ity cannot be neglected when the energy flux is estimated. Estimates based on
measured structure functions which only include the horizontal velocity com-
ponent can therefore only provide an order of magnitude estimate of the energy
flux. We also calculate the third order velocity structure functions that are not
parity invariant and therefore display a cyclonic-anticyclonic asymmetry. In
close agreement with the results from the stratosphere we find that these func-
tions have an approximate r2-dependence, with strong dominance of cyclonic
motions.

In Paper IV, we discuss the effect of vertical confinement in homogeneous
rotating turbulence. Vertical confinement is achieved by imposing the vertical
periodicity of the flow and by preventing energy to be transferred towards larger
vertical scales. Thus, boundary effects arising at solid walls are neglected. In
agreement with previous findings, we find that both confinement and rotation
favour an inverse energy cascade. However, we show that for moderate rotation
rates the direct energy cascade can be recovered by vertically extending the
computational box, i.e. reducing the lowest vertical wave number which can
be represented in the simulation.

4.2. Wall bounded stratified turbulence

As described in paper VII, an existing code, used to study turbulent channel
flows, has been largely modified in order to efficiently simulate flows which are
bounded by one solid wall only, as for instance the Ekman boundary layer.
The Gauss-Lobatto grid in the wall-normal direction, used in conjunction to
a spectral discretisation based on Chebyshev polynomials, leads to a cluster-
ing of points at the free boundary, which is superfluous in open flows since
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turbulence is usually weak or non-existent at the upper boundary. By restrict-
ing ourselves to flows with a free-shear surface, we note that equation (3.5)
can be viewed as a symmetric conditions for u and w, and a anti-symmetric
condition for v at ỹ = (y − Ly)/Ly = 0. Thus, we modify the numerical al-
gorithm such that, depending on the considered variable, only one parity of
the Chebyshev polynomials is retained. Since Gauss-Lobatto grids are coarser
at ỹ = 0, the clustering of points at the free-shear surface is avoided. In or-
der to guarantee the speed-up of the code, an alternative formulation of the
Fast Fourier/Chebyshev transforms which accounts for the symmetry is pre-
sented. Since we aim at carrying out direct numerical simulations at reasonably
high Reynolds numbers, the modifications have been implemented both in a
one-dimensional (plane by plane) and two-dimensional (stencil) parallelisation
strategy. As an effect of the more efficient discretisation, we show that the
number of points in the vertical direction can be reduced, leading to an overall
speed-up of the code.

In paper V, we use this code to carry out a series of high-resolution nu-
merical simulations of the turbulent Ekman layer at moderately high Rey-
nolds number, 1600 < ReE < 3000. We present results for both neutrally,
moderately and strongly stably stratified conditions. For unstratified cases,
large-scale structures penetrating from the outer region down to the wall are
observed. These structures have a clear dominant frequency and can be re-
lated to periodic oscillations or instabilities developing near the low-level jet.
We investigate the effect of stratification and ReE on one-point and two-point
statistics, focusing on the turbulent length scales. In the strongly stratified
Ekman layer we observe coexisting large-scale laminar and turbulent patches
appearing in the form of inclined bands, consistent with other wall-bounded
flows. For weaker stratification, continuously sustained turbulence affected by
buoyancy is produced. We discuss the scaling of turbulent length scales, the
height of the Ekman layer, the friction velocity, the shear angle at the wall and
the heat flux. The boundary layer thickness, the friction velocity and the shear
angle are shown to depend on Lf/uτ , whereas the heat fluxes shows a better
scaling when plotted versus L+ = Luτ/ν.

The helicity dynamics in neutrally stratified Ekman boundary layers is in-
vestigated in Paper VI. We define cyclonic and anticyclonic helicity with respect
to the sign of Ω ·eyH , where Ω is the rotation vector and ey is the wall normal
unit vector, positive for cyclonic helicity and negative for anticyclonic helicity.
We find that there is a preference for cyclonic helicity in the lower part of the
Ekman layer and anticyclonic helicity in the uppermost part. We derive the
evolution equations for the mean field helicity and the mean turbulent helicity
and show that the pressure term injects cyclonic helicity at a rate 2ΩG2 over
the total depth of the Ekman layer, where G is the geostrophic wind far from
the wall. A substantial part of the mean field helicity is transferred to turbulent
helicity which is ultimately destroyed by viscous effects. The helicity spectrum
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displays a dependence close to ∼ k−5/3 in an intermediate range of scales. Al-
though the limited extent of this range prevents an accurate comparison with
theoretical predictions, results suggest the existence of a forward helicity cas-
cade in the log-layer of Ekman boundary layers, as the one occurring in the
atmosphere and oceans.



CHAPTER 5

Conclusions and outlook

Since their maturity, digital computers have allowed for a number of advances in
the understanding of turbulent processes. Their use have greatly increased over
the years and is expected to increase even further in the future. In this thesis, it
has been shown how numerical simulations can be used to study wall-bounded
and homogeneous turbulence affected by stratification and rotation, allowing
for some insights into the atmospheric and oceanic turbulent dynamics.

5.1. Turbulence close to geostrophy: A key for improving
weather forecast...

We have analysed the dynamics in strongly stratified and rotating turbulence
by means of box simulations of homogeneous turbulence, ranging from the QG
limit to small but finite rotation rates and degrees of stratification. The use of
an idealised setup made it possible to study the backbone mechanism for the
energy transfer underlying rotating and stratified turbulence dynamics, free of
the additional complexities present in measurements and global atmospheric
models, such as topography, cloud dynamics, etc. Numerical simulations, al-
though sometimes non-physical, allow to arbitrarily remove or separate the
different contributions and to identify the key factors controlling the dynamics.

Unlike QG turbulence, where almost all turbulent energy cascades upscale,
finite rotation rates lead to a leakage of energy towards small scales and, as
a consequence, a forward energy cascade. This process can explain the exis-
tence of a ∼ k−5/3 range in the atmosphere, interpreted as a downscale energy
cascade range, and solve the apparent paradox of how and where dissipation
can take place in flows close to geostrophic conditions. Even though motions
which are not in geostrophic balance are, at large scales, small compared to
the geostrophic motions, they have a crucial role in transferring the energy
downscale. Great care should thus be taken in representing such motions in
atmospheric models.

Despite the idealised setup, energy spectra and structure functions show
remarkable agreement with measurements in the atmosphere, suggesting that
the scenario of a hidden cascade emanating from the largest scales can explain
the observations. Recent analyses of data of global circulating models (GCMs)
also show strong similarities with these findings (Augier & Lindborg 2013).
One open question is whether such a process may occur also in the oceans.
Indeed, observations are more difficult and there is great uncertainty regarding
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the kinetic energy budget (Ferrari & Wunsch 2009). Nevertheless, baroclinic
instabilities have a key-role in oceanic dynamics as well and a double cascade of
energy originates at the deformation radius (Scott & Wang 2005). Moreover,
spectra found in the oceans are consistent with the hypothesis of stratified
turbulence (Riley & Lindborg 2008). Thus, the dynamical process described in
this thesis may also be important in oceanic dynamics.

Numerical simulations can also provide a tool to investigate the energy
transfer in rotating turbulent flows. Our results suggest that rotating turbulent
flows are not incompatible with the presence of a forward energy cascade. The
small-scale dissipations was always observed to monotonically increase with the
aspect ratio. Thus, in order to reproduce the forward energy cascade dynamics,
computational boxes with large vertical extent may be required. Although
our analysis has mainly focused on moderate rotation rates, saturation of the
small-scale dissipation has never been observed, even when the rotation rate
was large. It is of interest to test whether the direct energy cascade would fully
recover also at small Ro. This may, however, require very tall boxes and can
be computationally very expensive.

The understanding of how energy is transferred in geophysical flows is of
primary importance, not only from a fundamental perspective. Existing atmo-
spheric (and oceanic) models can be evaluated against theoretical predictions,
allowing for an assessment of their actual capabilities and deficiencies. Perhaps
even more importantly, an understanding of the dynamics governing geophysi-
cal flows can provide useful hints and tools to improve the existing models.

Computational power is nowadays at a level that allows us to represent
more than one dynamical regime within the same simulation. In the present
study, the transition between a strongly-rotating strongly-stratified regime to
a strongly stratified regime has been the main focus. There are indeed other
transitional dynamics of practical interests, as, for instance, the transition be-
tween strongly stratified dynamics and three-dimensional turbulence. The lat-
ter involves the non-trivial interplay of different length scale involved in the
dynamics, as the buoyancy scale lb and the Ozmidoz length scale lO (Augier
et al. 2012).

Further studies using simple setups may also allow us to shed some light
on other issues of practical interest, as, for instance, how predictability changes
in highly rotating and stratified turbulent flows. Observations, which are then
used as input of GCMs, always suffer from a limited degree of accuracy. Un-
derstanding how fast an initial error spreads and contaminates the entire flow
is crucial in order to assess the actual reliability of models. Which type of dy-
namics mainly affects the error propagation can also provide useful guidelines
for improving numerical predictions.
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5.2. Wall-bounded turbulence and atmospheric boundary
layers

We have carried out a series of direct numerical simulations of the Ekman
boundary layer, considering neutrally and stably stratified conditions. Thanks
to the advancement in computational power, moderately high Reynolds num-
ber could be simulated in computational boxes larger than what has been used
in previous studies. For neutrally stratified conditions, our results show the
presence of large-scale turbulent structure which has not been observed before,
possibly prevented by the use of limited computational domains. It is not clear
whether such large-scale structures are of similar nature as the large-scale struc-
tures observed in other wall-bounded flows. Our results show that they exhibit
a strong degree of coherency in the vertical direction and that their signatures
can be found close to the wall, therefore suggesting a significant influence on
the near-wall dynamics. The strong vertical coherency might also indicate that
their origin is connected to a global instability of the flow. Ongoing work is
aimed at studying the stability of the turbulent Ekman boundary layers in
order to verify such a conjecture.

Stable stratification was introduced in the flows by imposing a temperature
difference in the vertical direction and its effect on the wall-bounded turbulent
dynamics was investigated. For moderate degrees of stratification, statistically
steady continuously turbulent states are observed. The height of the boundary
layer drastically reduces and it was shown to agree with theoretical predictions.
Despite the limited Re, statistical quantities also showed reasonable agreement
with the Monin-Obukhov similarity theory in an intermediate range of scales.

On the other hand, when stratification is very strong the flow partially re-
laminarises and laminar and turbulent motions coexist, similar to what is found
in other studies of transitional flows. The dynamics of laminar/turbulent pat-
terns is, at current state, not fully understood and further studies should be
aimed to better describe this regime. One open question concerns the condition
for the appearance of laminar regions. In strongly stratified flows, our simula-
tions show laminar patches already at L+ ≈ 500, thus larger than the criterion
suggested by Flores & Riley (2010) for open-channel flows, i.e. L+ ≈ 100.
However, since only one moderately high Re was considered in the study, it is
not possible to assess whether the L+ criterion is appropriate and what should
be the actual value at which laminar regions appear. Although computation-
ally expensive, reliable studies of the relaminarisation process should always
consider boxes large enough to fit the presence of both laminar and turbulent
patches, as in the current study.

The database produced by numerical simulations gives a full knowledge of
the flow, which can be very valuable. In the present context, it has been used
to study the helicily dynamics in atmospheric boundary layers (Deusebio &
Lindborg 2013). It has been found that the Ekman boundary layer is highly
helical and that a downscale helicity turbulent cascade exists within the loga-
rithmic region. This remarkable result suggest that signatures of the breaking
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of parity invariance observed in large-scale geophysical flows are transferred
downscale to the smallest scale of motions of the flow, i.e. to the Kolmogorov
scale. This new finding also opens the possibility of testing theories on the
helicity cascade at very large Reynolds numbers by means of measurements
in an atmospheric boundary layer, where Re is typically of the order of 106,
unfeasible in numerical simulations.
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