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Abstract

In the present work the velocity and temperature boundary layers over a heated
rotating disk have been studied. For this purpose a rotating-disk apparatus
with a possibility to heat the disk by radiation towards the bottom surface has
been built. The temperature distribution of the air above the disk has been
measured with constant current anemometry at different radial positions. A
thermal video system and liquid crystals were used to measure the temperature
on the disk surface. Velocity measurements have been conducted with hot-wire
anemometry using a single hot wire oriented in different directions in order
to measure two velocity components. The measured velocity and temperature
profiles agree well with theory in the laminar region. As the radius is increased,
the profiles indicate that Reynolds analogy is valid for this flow if no artificial
disturbances are introduced. The disturbance distributions calculated from the
measured temperature data do agree with the eigenfunctions obtained from the
linear stability analysis. Investigations of the disturbance growth shows that
the disturbances are more instationary with heating applied than in the case
without heating. The visualizations of the disk temperature with the liquid
crystals show that there is a rapid increase of heat transfer close to transition.
The liquid crystals also provided a simple way to investigate the influence of
different roughness elements on the heat transfer.

Sammanfattning

Temperatur- och hastighetsgränsskikten ovanför en roterande skiva har un-
dersökts. För detta ändamål har en experimentuppställning med en roterande
skiva byggts. Skivan värmdes upp medelst lampor som riktades mot skivans
undersida. Temperaturen i luften ovanför skivan har mätts med varmtr̊ads
anemometri vid olika radiella positioner. S̊aväl en termisk videoutrustning
som flytande kristaller användes för att mäta temperaturen p̊a skivans yta.
Hastighetsmätningar utfördes med konstant temperatur anemometri med en
enkeltr̊adsprob som vreds i olika riktningar för att mäta tv̊a hastighetskom-
ponenter. De uppmätta hastighets- och temperaturprofilerna överensstämmer
väl med teorin i det laminära omr̊adet. När radien ökas visar profilerna att
Reynolds analogi är giltig för strömningen över en roterande skiva om ingen ar-
tificiell störning av strömningen görs. Störningsfördelningarna beräknade fr̊an
temperaturmätningarna överens-stämmer väl med den teoretiska förutsägelsen
fr̊an den linjära stabilitetsanalysen. Genom att studera störningstillväxten har
det kunnat konstateras att störningsfältet är mer instationärt när skivan är
uppvärmd än i fallet utan uppvärmning. Visualiseringarna av skivans temper-
atur med flytande kristaller visar att värmetransporten fr̊an skivan ökar kraftigt
i närheten av den radiella positionen för transition. Med de flytande kristallerna
var det ocks̊a enkelt att studera hur olika störningselement p̊a skivan p̊averkar
värmetransporten fr̊an densamma.
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Glossary of symbols

Ak matrix [eq.A.6] and [eq.A.1]
Bk matrix [eq.A.6]
D differentiation with respect to z (d/dz)
E voltage in Kings law [eq.3.1]
E0 reference voltage in Kings law [eq.3.1]
Ec compensated value of the anemometer voltage [eq.3.5]
Em measured value of the anemometer voltage [eq.3.5]
Ei

k node component [eq.A.15]
E system matrix [eq.A.17]
F body force [eq.2.1]
Gk inhomogeneous righthand side [eq.A.15]
~G vector [eq.A.17]
h the thickness of the aluminium disk (fig.B.1), heat transfer coefficient
I the identity matrix
k summation index [eq.A.6], heat conductivity
k1 parameter in Kings law [eq.3.1]
k2 parameter in Kings law [eq.3.1]
l (fig.B.1)
L scaling parameter [eq.A.5]
L system matrix [eq.A.8]
n parameter in Kings law [eq.3.1]
N number of nodes in the computational domain [eq.A.6]
Nu Nusselt number (hr∗/k)
p instantaneous non-dimensional pressure field
p∗ instantaneous dimensional pressure field
p̄ non-dimensional pressure disturbance
p̄∗ dimensional pressure disturbance
p̃ the amplitude of the eigenfunction for pressure disturbance
P non-dimensional pressure in base flow
P ∗ dimensional pressure in base flow
Pr Prandtl number (ν/σ)
Q heat transfer rate
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GLOSSARY OF SYMBOLS 7

r, θ, z non-dimensional cylindrical coordinates
r∗, θ, z∗ dimensional cylindrical coordinates
r∗e the local radius at which the disturbance analysis is conducted
r coordinate vector [eq.2.1]

R nondimensional radius (r∗e(Ω/ν)
1/2)

Re Reynolds number (UL/ν)
s computational node parameter (s = 1 + L/z∞) [eq.A.5]
St Stanton number (Nu/Re/Pr)
t non-dimensional time
t∗ dimensional time
T non-dimensional temperature in base flow (T (z) = (T ∗(z∗)− T ∗

air)/∆T )
T ∗ dimensional temperature in base flow
Tf temperature of the fluid [eq.3.5]
Tr reference temperature at calibration [eq.3.5]
Ts temperature of the hot-wire sensor [eq.3.5]
T ∗

air temperature of the ambient air at z∞
T ∗

disk temperature of the heated rotating disk
∆T temperature difference between the disk and the air at z∞ (T ∗

disk − T ∗

air)
u vector notation for velocity [eq.2.1]
u, v, w instantaneous non-dimensional velocity in the r, θ, z system of coordinates
u∗, v∗, w∗ instantaneous dimensional velocity in the r∗, θ, z∗ system of coordinates
ū, v̄, w̄ non-dimensional velocity disturbances in the r, θ, z system of coordinates
ū∗, v̄∗, w̄∗ dimensional velocity disturbances in the r∗, θ, z∗ system of coordinates
ũ, ṽ, w̃ the eigenfunctions for the velocity disturbances
U, V,W non-dimensional velocity field for base flow in the r, θ, z system of coordinates
U∞ velocity of the flow (fig.3.3)
Umeas velocity measured by hot wire
Un velocity normal to hot wire [eq.C.2]
Ut velocity tangential to hot wire [eq.C.2]
U1 velocity measured by hot wire [eq.3.3]
U2 velocity measured by hot wire [eq.3.3]
yk distance between two nodes (zk − zk−1)
zk horizontal node value
z∞ far away boundary in the horizontal direction
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α wave number in the r direction, angle between hot wire and flow direction (fig.3.3)
αi imaginary part of the wave number in the r direction
αr real part of the wave number in the r direction
ᾱ (α− i/R) [eq.2.19]
β wave number in the θ direction
βi imaginary part of the wave number in the θ direction
βr real part of the wave number in the θ direction
γ the rim lift-up (fig.B.1)
γ1 parameter in [eq.2.21]
γ2 parameter in [eq.2.21]
δ (fig.B.1)
ζ non-dimensional axial coordinate inside the disk
η̃ eigenfunction for the normal vorticity (η̃ = αṽ − βũ)
κ the thermal expansion coefficient

λ
√

(α2 + β2) [eq.2.19]

λ̄
√

(αᾱ − β2) [eq.2.19]
ρ density
σ thermal diffusivity
τ instantaneous non-dimensional temperature field
τ̄ non-dimensional temperature disturbance
τ̃ the amplitudes of the eigenfunction for the temperature disturbance
φi system parameter [eq.A.1]
~φk vector of system parameters [eq.A.6]
Φ vector of vectors of system parameters [eq.A.8]
ν kinematic viscosity
ψk computational parameter [eq.A.3, A.12, A.13]
ω disturbance frequency
ωi imaginary part of the disturbance frequency
ωr real part of the disturbance frequency
Ω angular velocity
Ω angular velocity vector [eq.2.1]



Chapter 1

Introduction

1.1 Background

Heat transfer is an important ingredient in many engineering situations as for
instance energy conversion, material processing or cooling of electronic equip-
ment.

When a disk is rotating in still air, the air closest to the disk is driven by friction
and rotates with the disk. Since the air is rotating, the centrifugal force gives
rise to a radial velocity component. This radial velocity component is zero at
the disk surface, since the disk surface is not moving radially, and zero far away
from the disk. The radial outflow gives an axial flow downwards, as can be
deduced from continuity.

This flow has been studied extensively over the years. In 1921, an exact solution
to the Navier-Stokes equations was published by von Kármán. That solution is
valid for laminar flow and has been confirmed many times over the years. Flow
visualizations have also been made, showing a flow structure with laminar flow
near the centre of the disk, outwards spiralling vortices as the radius is increased
and further out, transition to turbulence (see figure 1.1). Since these crossflow
vortices are similar to the ones occuring in the boundary layer over a yawed
plate, the rotating disk has been used to model such flows, especially to obtain
a better understanding of the transition scenario.

The reason for this resemblance is that in the flow over a plate with a swept
edge there exists a pressure gradient in the spanwise direction, driving a velocity
component orthogonal to the free-stream comparable with the radial component
on the rotating disk.

However, recently an absolute instability for the rotating-disk flow was found
theoretically as well as experimentally. Theoretical studies of the swept edge
flow show that such flows are not subject to absolute instabilities in the same
sense as the disk flow; for this reason, transition studies on the rotating disk
may not give total understanding of the transition scenario in swept edge flow.
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10 CHAPTER 1. INTRODUCTION

Figure 1.1: Smoke visualization on the rotating disk (Kohama 1978, private
communication 1997). From the centre and out, the laminar, vortex and tur-
bulent region are clearly seen.

In the rotating disk case, transition seems to be triggered by disturbances grow-
ing at a fixed radial position due to the mentioned absolute instability. On the
other hand, in the yawed plate case, transition might be triggered by secondary
instabilities growing when the primary disturbances have grown large enough.
The growth in the flow over a yawed plate has a convective nature, i.e. the
disturbances grow as they follow the flow downstream.

It is important to understand the transition scenario since the properties of a
flow drastically change from the laminar to the turbulent region. One of the
important features of turbulence is its high rate of mixing that makes a turbulent
flow a more efficient transporter of e.g. heat than a laminar flow. In the 19th
century the so-called Reynolds analogy between the transport of a passive scalar
(like heat in air or salt in water) and momentum was established. It states that
the transport of the scalar and the momentum transport (i.e. drag at a surface)
is linearly dependent on each other. This is not a universal rule but a rule of
thumb. It is well known that the heat transfer predicted by Reynolds analogy
can be enchanced by streamwise vortices.

One of the most convenient ways to increase heat transfer with streamwise vor-
tices is to use vortex generators to generate counter-rotating vortices, i.e. two
neighbouring vortices that rotate in opposite directions. A vortex generator is
any object or disturbance that disturbs the flow enough to generate vortices;
it is common to use some kind of obstruction for this purpose. On the rotat-
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ing disk the vortices occuring naturally are co-rotating, i.e. all vortices rotate
in the same direction. This makes it plausible that an optimal heat transfer
enchancing vortex generator for the disk flow should probably be designed in
order to generate vortices rotating only in one direction, namely the direction
of the naturally occuring vortices.

1.2 Literature review

Flow instability and transition

The Navier-Stokes equations for laminar flow over a rotating disk in still air was
solved by von Kármán (1921). Gregory et al. (1955) made china-clay visualiza-
tions and visualized vortices, stationary to the disk, prior to transition. Numer-
ous experimental investigations on critical and transitional Reynolds numbers
have been made, e.g. Kobayashi et al. (1980), Kohama (1984) and Wilkinson
& Malik (1985). Theoretical linear stability analysis has been performed, e.g.
Kobayashi et al. (1980) and Malik (1985) giving critical Reynolds numbers and
vortex angles in good agreement with experiments. In almost all experiments,
transition occurs at Reynolds numbers in close agreement with each other. The
non-dimensional radius defined as r = r∗

√

Ω/ν has a value of 513 ±3% at the
observed position of transition.

In smoke visualizations by Kohama (1984) (see figure 1.1) secondary instabilities
of the vortices can be seen. Transition was believed to be triggered by secondary
instabilities growing rapidly once the level of the primary disturbance is high
enough. Balachandar et al. (1992) performed a theoretical anlysis of the sec-
ondary instability. An important result from their investigation is that there
exists a threshhold value which the primary type 1 disturbance must exceed,
if the secondary disturbance is to be amplified. The threshhold value of the
root-mean-square of the velocity in the circumferential direction is around 9%
of the velocity of the disk surface.

Theoretically, disturbances can only exist for distinct combinations of frequency
in time and wavenumbers in the radial and circumferential directions. These
distinct combinations can be brought together to different families or branches
of solutions to the dispersion relation. The type seen in the visualizations cited
above is usually called the type 1 instability.

Faller (1991) presented a theoretical analysis as well as an experimental inves-
tigation of a more disturbed flow. He suggested that if the flow is sufficiently
disturbed, transition is triggered by the so called type 2 instability, which is
unstable for smaller non-dimensional radii but less amplified than the type 1
instability.

Since the structures seen in visualizations are stationary to the disk, most of the
work that has been performed has emphasized stationary disturbances. Ling-
wood (1995) presented an analysis showing that the boundary layer on the
rotating disk becomes absolute unstable for travelling disturbances at a non-
dimensional radii in good agreement with the experimental transition radii re-
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ported by e.g. Kohama (1984) or Wilkinsson & Malik (1986). She has also
made an experimental investigation (Lingwood 1996) supporting her theoreti-
cal results. Her results state that when the non-dimensional radius has a value
above 507, disturbances will grow in time for a fixed radial position. This value
is in good agreement with the experimental values mentioned above.

The flow becomes absolute unstable due to interaction between travelling dis-
turbances originating from two different types of instabilities, the previous men-
tioned type 1 together with the heavily damped type 3 instability. The physical
interpretation of the absolute instability is that the trailing edge of a wavepacket
propagating in the flow has a velocity upstream with the same magnitude as the
velocity with which the wave-packet is convected downstream, i.e. the radial
position of the trailing edge becomes steady.

The turbulent velocity boundary layer was first studied by von Kármán (1921).
In Dorfman (1963) an overview of the work done until then can be found. Later
work has been performed by e.g. Cham & Head (1968) and Cebeci & Abbott
(1975).

In the present study, measurements were done in the flow over a heated rotating
disk. In such a case, bouyancy might effect the flow. In the study by Sreeni-
vasan (1973) it can be seen that bouyancy compresses the tangential velocity
and temperature profiles and increases the maximum of the radial and conse-
quently the axial velocities. However, with the parameter values of the present
experiment, the effect of bouyancy is very small.

Since the temperature is varying through the boundary layer, so does the vis-
cosity, which is dependent on temperature. Hence, the velocity profiles change
when the disk is heated and with them the stability properties. Theoretical
studies of such effects have been done by e.g. Kohama & Kobayashi (1980) for
a heated curved wall with Görtler instability and Wall & Wilson (1997) for a
heated flat plate boundary layer. For a fluid with a viscosity that increases with
temperature both these flows seem to be stabilized.

The influence of heating (as well as suction and compressibility) on the stability
of the rotating disk boundary layer has been studied by Seddougui & Bassom
(1996). Their analysis is restricted to the non-dominant type 2 modes. As be-
fore, heating stabilized the flow. Lingwood (1997b) found that suction increases
the value of r for the onset of absolute instability in the rotating disk flow (i.e.
stabilizes the flow).

Heat transfer and drag

Millsaps & Pohlhausen (1952) presented a similarity solution to the energy
equation for the laminar flow over an isothermal heated rotating disk. Later
theoretical work has been performed by e.g. Sreenivasan (1973) on the effect of
bouyancy as mentioned above and Wang (1990), who studied the case with a
concentrated heat source at the centre of the disk.

The total heat transfer has been measured in several investigations from the 50’s
and forward, e.g. Cobb & Saunders (1953), Richardson & Saunders (1963) and
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Counterrotating vortices

Vortex generators

Flow

Figure 1.2: Delta wing vortex generators and counter rotating vortices on a flat
plate.

Northrop & Owen (1988). Measurements of the local heat transfer have been
made by Popiel & Boguslawski (1975) and Elkins & Eaton (1997). The local heat
transfer follows the theoretical prediction well in the laminar region. After the
laminar region there is a large increase in the transition region and once the flow
is fully turbulent, the local heat transfer grows slowly with the nondimensional
radius. The local Nusselt number, defined as hr∗/k = Qr∗/∆Tk, where Q is the
heat transfer rate (W/m2) and k the heat conductivity of air, varies as r and r1.6

in the laminar and turbulent region respectively. In the laminar region, where
the Nusselt number varies as r, the physical heat transfer is actually constant
for an isothermal disk. There exists a similarity solution for the temperature
over an isothermal disk for all r and since the temperature difference is constant,
so should the heat transfer. In the turbulent region the physical heat transfer
increases slowly with r. In the laminar and turbulent region the results by
Popiel & Boguslawski (1975) and Elkins & Eaton (1997) agree fairly well.

In the transition region between the laminar and the turbulent regions the
heat transfer rate increases abruptly. The position for this sharp increase is
reported at r=442–500 by Popiel & Boguslawski (1975) and at r=538–600 by
Elkins & Eaton (1997). The discrepancy between the experiments could be
due to the smoothness and low disturbance level in the experiments of Elkins
& Eaton and the different temperature difference used. The temperature of
the disk was much larger in the experiments of Popiel & Boguslawski than in
the experiments of Elkins & Eaton; this influences the effective viscosity in the
boundary layer. The viscosity used to establish relationships between the heat
transfer and the non-dimensional radius was in both cases calculated from the
viscosity of the ambient air far away from the disk. In addition to this, changing
the temperature difference most probably changes the stability properties via
the mean velocity profiles as mentioned above.

Matsubara & Alfredsson (1996) and Kohama & Ohta (1995) are examples of
experiments where naturally occuring vortices (in a rotating channel resp. over
a heated water surface) increase the heat or vapour transfer from a surface. For
some parameter combinations in the rotating channel case, the heat transfer
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from one of the walls increases without the same increase in drag, i.e. the
Reynolds analogy is not valid in that case.

Studies on the use of vortex generators (see figure 1.2) to increase heat transfer
is reviewed by Jacobi & Shah (1995). They cite various investigations where the
heat transfer has been largely increased with a smaller increase in drag using
different vortex generators in channel flows and boundary layers. One important
conclusion from their review is that the height of the vortex generator has to
be of the same order as the local boundary layer thickness if the heat transfer
is to be increased.

Rahman & Fagri (1992) made a numerical investigation of the flow and heat
transfer in a thin liquid film on a rotating disk. Their investigation is restricted
to laminar flow and was initiated from a need of evaporators in microgravity
environments. In this case the centrifugal force on the disk is utilized both for
establishing the flow necessary for efficient evaporating and to create the thin
liqiud film that is to be evaporated. In such an application increase of heat or
vapour transport by vortex generators could be very useful.

Drag measurements have been done by e.g. Theodorsen & Regier (1948). They
measured the global drag and by differentiation they could calculate the local
drag. The drag shows the same characteristics as the heat transfer, i.e. a low
drag in the laminar region (linear in radius as the velocity), a fast increase in the
transition region and finally the turbulent region, where the drag is increasing
a little faster with r than in the laminar region. Later investigations confirm
their results, except for the exact postition of the transition region.

The heat transfer and drag results show that Reynolds analogy is valid for the
rotating-disk flow in the laminar and turbulent regions. However, it is not clear
whether the transition seen in drag neasurements and the transition seen in heat
transfer measurements are positioned at the same radial position, even though
they seem to be positioned close to each other.

1.3 Present work

The present work was initiated by Professor Y. Kohama1. The main idea was
to study how the streamwise vortices seen in flow visualizations on the rotating
disk effect the heat transfer from the disk to the surrounding air. It is known
that streamwise vortices can be utilized to increase the heat transfer without a
corresponding increase in drag, i.e. the energy necessary to drive the flow. Such
an effect could be important in many applications where a rotating disk is used
in warmer or colder air, e.g. in rotating turbomachinery or computer disks.

The work was perfomed at the Low Turbulence Wind Tunnnel Laboratory at
the Institute of Fluid Science, Tōhoku University, Sendai, Japan under the
supervision of prof. Y. Kohama. It is presented as a diploma thesis at the
Royal Institute of Technology, Stockholm.

First, the relevant theoretical analysis is presented in chapter 2. This includes

1Institute of Fluid Science, Tōhoku University, Sendai, Japan
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the laminar temperature and velocity profiles above the disk and a linear sta-
bility analysis of that flow.

In chapter 3 the experimental setup and the experimetnal techniques that have
been used are described. Measurements were conducted of air velocity and
temperature and the temperature of the disk.

The results are presented in chapter 4 and discussed in chapter 5.

Three appendices are included in the report. The first describes the numer-
ical method used in the stability analysis, the second is on the temperature
distribution inside the disk and how the shape of the disk is influenced by the
non-homogenous temperature. Finally the third one discusses the use of a single
hot wire for multi-component velocity measurements.



Chapter 2

Theoretical consideration

In this chapter, the theoretical analysis that will be compared with the experi-
mental measurements, is considered.

2.1 Laminar base flow

There exist similarity solutions for the laminar base flow above an infinite rotat-
ing plane and this problem was first solved by von Kármán (1921). Comparing
these similarity solutions with the experimental results can give a first indica-
tion of whether the measurements with the available experimental equipment
are trustworthy.

The starting point of the analysis is the Navier-Stokes equation in a rotating
frame of reference along with the continuity equation given in vector notation;
r is the coordinate vector, Ω is the angular velocity vector and F is the body
force vector. The dimensional stars will be omitted for simplicity.

∂u

∂t
+ (u · ∇)u+ 2Ω× u+Ω× (Ω× r) = −

1

ρ
∇p+ ν∇2u+

1

ρ
F (2.1)

∇ · u = 0 (2.2)

The theoretical calculation of the laminar base flow starts by considering an
infinite plane with its upper side exposed to air. The ambient air has kinematical
viscosity ν and density ρ. The plane is rotating with an angular velocity Ω
around its vertical axis. Cylindrical coordinates (r∗, θ, z∗), fixed to the disk, are
introduced.

The disturbance analysis will be conducted locally, and thus a radius r∗e and a
Reynolds number R are defined. The radius r∗e is the location of the analysis
where r = R and the Reynolds number is given by R = r∗e(Ω/ν)

1/2, which is a
non-dimensional radius. The following reference quantities can now be defined:

16
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Ω

z*

r*

θ

Figure 2.1: The orientation of the cylindrical coordinates (r∗, θ, z∗) and the
direction of the angular velocity Ω.

velocity r∗eΩ

length (ν/Ω)1/2

pressure ρr∗2e Ω2

(2.3)

The coordinates are non-dimensionalized using the length scale above as follows.

r = r∗(Ω/ν)1/2

z = z∗(Ω/ν)1/2
(2.4)

The orientation of the axis for the cylindrical coordinates and the origin can be
seen in figure 2.1.

With the reference quantities (2.3), it is possible to non-dimensionalize the base
flow along with the pressure field (U∗, V ∗,W ∗, P ∗) to the non-dimensional base
flow along with the pressure field (U(z), V (z),W (z), P (z)). Here U(z), V (z)
and W (z) are the velocities in the radial, circumferential and vertical directions
respectively. The resulting relations are given below in (2.5).

U∗ = r(νΩ)1/2U(z)

V ∗ = r(νΩ)1/2V (z)

W ∗ = (νΩ)1/2W (z)

P ∗ = ρνΩP (z)

(2.5)

Note that W ∗ has been non-dimensionlized in a different way compared to U∗

and V ∗, making W ∗ independent of the radius. Introducing the definitions
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above (2.5) into the Navier-Stokes equation (2.1) and the continuity equation
(2.2), the following equations are derived.

U2 − (V + 1)2 + U ′W − U ′′ = 0

2U(V + 1) + V ′W − V ′′ = 0

P ′ +WW ′ −W ′′ = 0

2U +W ′ = 0

(2.6)

The prime denotes differentiation with respect to z.

Since the cylindrical coordinates are fixed to the disk, the boundary conditions
imposed at the disk surface (z = 0) are that all velocity quantities should be
zero. Far away from the disk the velocity quantities should approach the velocity
of the air.

z = 0 U = 0, V = 0, W = 0

z → ∞ U → 0, V → −1
(2.7)

There also exists a similarity solution for the temperature above an infinite ro-
tating heated plane. Following Sparrow & Gregg (1959), we start by introducing
the dimensional temperature T ∗. The governing equation for temperature is de-
rived from the energy equation.

∂T

∂t
+ (u · ∇)T = σ∇2T (2.8)

The dimensional stars have been omitted for simplicity and σ denotes the ther-
mal diffusivity for the air. With this model we assume constant fluid conductiv-
ity, zero internal heat generation, negligible viscous dissipation and negligible
compressibility effects.

The temperature of the disk is called T ∗

disk, the temperature of the ambient air
far away from the disk T ∗

air and the temperature difference between the disk and
the ambient air will in the following be denoted ∆T ∗ = T ∗

disk−T
∗

air. With these
definitions in mind, the following relation for the non-dimensional temperature
T (z) is formed.

T (z) =
T ∗(z∗)− T ∗

air

∆T ∗
(2.9)

The non-dimensional temperature T (z) is introduced into the energy equation
(2.8) and the following equation is obtained.

T ′′ = PrWT ′ (2.10)
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Here Pr is the Prandtl number defined as Pr = ν/σ.

The boundary conditions for T ∗(z∗) are T ∗(0) = T ∗

disk and T ∗(z∗) → T ∗

air when
z∗ → ∞. With (2.9) the boundary conditions are expressed in T (z).

z = 0 T = 1

z → ∞ T → 0
(2.11)

Both the equations for the velocity (2.6) and the equation for temperature (2.10)
can be written as a system of first order equations. These systems were solved
with a Runge-Kutta method. In order to fulfill the boundary conditions when
z → ∞, a Newton-Raphson iteration for the unknown derivatives at the disk
surface, U ′(0), V ′(0) and T ′(0), was used. The boundaries for the computational
domain are the disk surface (z = 0) and a boundary sufficiently far away from
the disk. The result from the computation of V (z), U(z), W (z) and T (z) is
shown in figure 2.2.

2.2 Linear stability analysis

Velocity disturbances

The vortices, that can be seen in flow visualizations such as the one shown
in figure 1.1, appear when the primary instabilities have grown enough in the
radial direction. The following analysis is based on Malik (1985).

An instantaneous dimensional velocity and pressure field (u∗, v∗, w∗, p∗) are de-
fined. Each component consists of a laminar part (U∗, V ∗,W ∗, P ∗) (see section
2.1) and a perturbation part with zero average (ū∗, v̄∗, w̄∗, p̄∗). The resulting
definitions are as follows, using the relations from (2.5).

u∗ = r(νΩ)1/2U(z) + ū∗

v∗ = r(νΩ)1/2V (z) + v̄∗

w∗ = (νΩ)1/2W (z) + w̄∗

p∗ = ρνΩP (z) + p̄∗

(2.12)

With these definitions in mind it is now possible to derive an instantaneous non-
dimensional velocity and pressure field (u, v, w, p) by introducing the reference
quantities (2.3). The velocities are divided by the reference velocity, r∗eΩ and
the pressure is divided by the reference pressure, ρr∗2e Ω2. The non-dimensional
steady part of each component is kept together with a non-dimensional derived
quantity. The non-dimensional perturbation quantities are called (ū, v̄, w̄, p̄).
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Figure 2.2: Calculated similarity solutions in (a) U(z), in (b) V (z), in (c) W (z)
and in (d) T (z).
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u(r, θ, z, t) =
r

R
U(z) + ū(r, θ, z, t)

v(r, θ, z, t) =
r

R
V (z) + v̄(r, θ, z, t) (2.13)

w(r, θ, z, t) =
1

R
W (z) + w̄(r, θ, z, t)

p(r, θ, z, t) =
1

R2
P (z) + p̄(r, θ, z, t)

Now the perturbation quantities (ū, v̄, w̄, p̄) are assumed to have the following
form.

(ū, v̄, w̄, p̄) = [ũ(z), ṽ(z), w̃(z), p̃(z)] exp{i(αr + βRθ − ωt)} (2.14)

There are two wavenumbers in space, α and β, in the radial and the circumfer-
ential direction respectively and one frequency, ω.

By introducing (2.13) and (2.14) into the Navier-Stokes equation (2.1), together
with the continuity equation (2.2), and combine, rearrange and linearize with
respect to the perturbations, the following four equations are obtained (η̃ is the
normal vorticity).

αũ+ βṽ +Dw̃ = 0 (2.15)

η̃ = αṽ − βũ (2.16)

[i(D2 − λ2)(D2 − λ̄2) +R(αU + βV − ω)(D2 − λ̄2)−

R(ᾱU ′′ + βV ′′)− iWD(D2 − λ̄2)− iW ′(D2 − λ̄2)−

iUD2]w̃ + [2(V + 1)D + 2V ′]η̃ = 0

(2.17)

[2(V + 1)D − iR(αV ′ − βU ′)]w̃+

[

i(D2 − λ2) +R(αU + βV − ω)− iWD − iU
]

η̃ = 0
(2.18)

where

D = d/dz

ᾱ = α− i/R

λ2 = α2 + β2

λ̄2 = αᾱ + β2

(2.19)
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As can be seen η̃ is the normal vorticity from which ũ and ṽ can be calculated.
In the derivation of (2.17) and (2.18) the assumption R ≫ 0 is used, which
makes it possible to replace r with R and neglect terms O(1/R) or smaller.

The boundary conditions imposed on these equations are w̃, w̃′ and η̃ = αṽ−βũ
to vanish at the disk surface (z = 0) and when z is approaching infinity they
should decay exponetially. The boundary conditions are presented below.

z = 0 w̃ = 0, Dw̃ = 0, η̃ = 0 (2.20)

z → ∞ D3w̃ − γ1D
2w̃ − λ̄2Dw̃ + γ1λ̄

2w̃ = 0

z → ∞ D3w̃ + [λ̄2 − (γ1 + γ2)]D
2w̃ +

[γ1γ2 − λ̄(γ1 + γ2)]Dw̃ + λ̄γ1γ2w̃ = 0

z → ∞ Dη̃ − γ1η̃ = 0

where

γ1 = 1

2
W (∞)− [{ 1

2
W (∞)}2 + λ2 − iR(β + ω)]

1

2

γ2 = 1

2
W (∞) + [{ 1

2
W (∞)}2 + λ2 − iR(β + ω)]

1

2

(2.21)

The equations (2.17) and (2.18) are separable in r, θ, z, t and together with the
boundary conditions (2.20) they constitute an eigenvalue problem for α, β, ω
with the two eigenfunctions w̃ and η̃.

The numerical method for solving the eigenvalue problem is presented in ap-
pendix A.

Having specified R and put ωr = βi = αi = 0, the main object is to calculate
the modulus of the eigenfunctions. Here the indices r and i stand for the real
and the imaginary part respectively. The eigenfunctions are complex, where the
eigenfunctions ũ and ṽ are computed from η̃ and the continuity equation.

The starting point is to calculate neutral stability curves, i.e. αi = βi = ωr =
ωi = 0. This is done by iterating with αr and βr until φ1(0) = 0 is fulfilled,
as described in appendix A. Setting ω to zero implies neutral disturbances
stationary to the disk. In figure 2.3 the neutral stability curve is shown in a
(R,αr) plane and in a (R, βr) plane respectively.

The neutral stability curve consists of two branches, type 1 instabilities and
type 2 instabilities. Inside these branches the solution is unstable with ωi > 0
and here we find the most amplified solution for a specified R. Outside these
branches the solution is stable with ωi < 0.

The obtained values from the neutral stability curves can be used as starting
guesses to calculate the most amplified disturbance. As the disturbance with
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Figure 2.3: Neutral stability curve in a (R,αr) plane and in a (R, βr) plane
respectively.

the largest amplification is the main concern ωi has to be maximized. This is
done by having good starting guesses for αr and βr and then iterate with these
until the boundary condition φ1(0) = 0 is fulfilled again with a ωi as large as
possible.

Case 1 is the most amplified solution for R = 300, case 2 and case 3 are neutral
solutions to compare with for R = 400. In table 2.1 the relevant data is shown
for the three different cases used.

case R αr βr ωi

case 1 300 0.382 0.0774 0.000600

case 2 400 0.578 0.116 0

case 3 400 0.200 0.0532 0

Table 2.1: For all the three cases the following is valid αi = βi = ωr = 0

In figure 2.4a the absolute normalized values of ṽ is shown for the three different
cases. The three different curves almost coincide and are almost independent of
R.

In figure 2.4b the absolute value of the eigenfunctions ũ, ṽ and w̃ are normalized
with the maximum value of ṽ for case 1 is shown. This figure shows the diffrent
character of the eigenfunctions and that the eigenfunction of the circumferential
velocity ṽ has the largest amplitude.
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Figure 2.4: In (a) the absolute normalized value of the eigenfunction ṽ for case
1, case 2 and case 3 with respectively solid line, dashed line and dash-dotted line
are shown. In (b) absolute values of the eigenfunctions ũ, ṽ and w̃ normalized
with the maximum value of ṽ for case 1 with solid line, dashed line and dash-
dotted line respectively, are shown.

Temperature disturbance

Once the wavenumbers and velocity eigenfunctions are known, the temperature
disturbance eigenfunction can be calculated.

As with the velocity above, the temperature field is divided into a stationary
part, T and a fluctuating part, τ̄ . The instantaneous temperature field τ is thus
written:

τ = T + τ̄ (2.22)

Assuming that τ̄ can be written on the following form,

τ̄ = τ̃ (z) exp{i(αr + βRθ − ωt)} (2.23)

and introducing (2.22) with (2.23) into the nondimensional form of the energy
equation (2.8), the following ordinary differential equation for τ̃ can be derived:

[

D2 − PrWD + iRPr (ω − αU − βV )− λ2
]

τ̃ = RPrT ′w̃ (2.24)

where we remember the definitions from (2.19) and prime denotes differentiation
with respect to z. The boundary conditions are:

z = 0 τ̃ = 0
z → ∞ τ̃ → 0

(2.25)

Equation (2.24) was solved with a second order finite difference scheme for α,
β, ω and w̃ obtained from the velocity disturbance calculation. In order to
fulfill the boundary condition as z → ∞, the numerical solution was put equal
to the damped mode of the equation that is obtained when z → ∞ in (2.24)
for the far away boundary of the computational domain. The amplitude of the
eigenfunction for the most unstable eigenmode for R=300 is shown in figure 2.5.
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Figure 2.5: Amplitude of the temperature disturbance eigenfunction τ̃ for the
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Chapter 3

Experimental apparatus

and techniques

3.1 The disk apparatus

The experimental apparatus is shown in figure 3.1. The rotating disk used
in the present study was made of aluminium; it was 19 mm thick and had a
diameter of 400 mm. The flatness of the disk was measured with a measuring
gauge fitted to the traverse system and was found to be ±10 µm when the disk
was painted. The disk was mounted horizontally on a hollow stainless steel
shaft in a steel frame which was bolted to the floor. An AC-motor was used to
rotate the disk and the rotating speed of the disk could be choosen arbitrarily
up to 2000 rpm. Since the vibration level of the apparatus increased slightly at
rotating speeds above 1500 rpm, most measurements were made at a rotating
speed of approximately 1400 rpm. At this rotating speed the radius for absolute
instability calculated by Lingwood (1997a), r = 507, corresponds to a physical
radius r∗ of 160 mm. The rotating speed was checked with a stroboscope during
measurements. During each measured profile, the rotating speed was constant
within 0.2%.

With six adjustment screws on the flange connecting the disk to the axis, the
angle between the plane of the disk and the axis could be adjusted in order to get
them orthogonal. These adjustments were made by letting the disk rotate slowly
and watching the probe and its mirror image on the disk with the probe close
to the disk (100 µm or closer). The screws were adjusted so that no change of
the distance between the probe and its image could be seen during the rotation.
Control measurements of the disk showed that this method, although fast and
simple, was at least as accurate as other more complicated methods also tried
(measuring gauges and laser-based equipment).

Four 500 W heating lamps, mounted symmetrically on the steel frame below the
disk, were used for the heating. Since the disk was rotating, this arrangement
made it possible to achieve an axial symmetric temperature distribution on the

26
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Figure 3.1: Experimental setup

disk. Numerical simulations of the temperature inside, and on the surfaces of,
the disk (see appendix B) show that such an arrangement can give a close to
isothermal temperature on the upper surface of the disk.

By carefully adjusting the lamps radial position as well as their radiation angles
and power, it was possible to get a within ±1.5 K uniform temperature distri-
bution in the radial direction when the disk temperature was 20 K over ambient
temperature. With the thermal video system it could be seen that the axis
together with the flange gave rise to an area with higher temperature close to
the centre of the disk. This high temperature region was due to heat transferred
from the axis, which was heated by the lamps, to the disk via the flange. To
get rid of this undesired phenomenon, a cone made of polished aluminium that
covered the axis was installed. This cone reflected the radiation that otherwise
would heat the axis up towards the bottom side of the disk. With this cone
mounted, it was possible to achieve a within ±0.5 K isothermal temperature on
the disk. This was considered sufficiently close to isothermal conditions.

To minimize the influence of the flow from the bottom side of the disk, as well as
isolate the heat from the lamps, an aluminium cover over the lamps was built.

It can be expected that the heating arrangement used gives rise to an increased
bowl shape of the disk, since the bottom side is warmer and consequently ex-
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pands more than the upper side. However, the magnitude of this rim lift-up
effect from the heating is smaller than the disks own imperfection, as can be
concluded from the simple analysis in appendix B.

3.2 Instrumentation and techniques

Data acqusition and evaluation

All data were sampled with a NEC 9801 computer equipped with a Microscience
ADM 1498BPCAD-board. A photo-coupler was used to get a signal with a peak
every time the disk passed a fixed position. This arrangement made it possible
to fix the signal from the measurment equipment to a frame of reference fixed to
the disk. At every measuring point, signals from 30 revolutions of the disk were
sampled and saved. The sampling frequency was choosen close to 512Ω/2π, i.e.
one revolution of the disk corresponded to approximately 512 sampling points.
The exact number was given by the signal from the photo-coupler.

Before sampling, the signal was amplified and filtered at half the sampling fre-
quency with a DISA 55D26 filter. The raw data was saved on disk for later
evaluation on Macintosh computers.

During measurements the signal was observed with an oscilloscope in order to
avoid disturbances introduced by other experimental equipment via the power
network.

Traverse

A 3D manual traversing system (Mitutoyo CX-652) was used. In order to mea-
sure two velocity components with one single wire, the traversing system was
equipped with a rotation device that made it possible to rotate the probe in
a plane parallel to the disk. The accuracy of the traverse was 10 µm for the
translations and 0.5◦ for the rotation.

All measurements were made with the probe fixed to the laboratory.

To find the vertical position relative to the disk, the probe was observed with
a telescope and positioned close to the disk. For a trained eye, ”close to the
disk” was a constant distance to the disk from day to day. The exact value
of this distance was given by the vertical shift needed to get the best possi-
ble correspondence between the measured laminar profiles and the theoretical
predictions.

Velocity measurements

For most of the velocity measurments reported in chapter 4, the anemome-
ter used was a DISA 55M01 main unit with a 55M10 constant temperature
anemometer bridge. The wire used with this bridge was a 2.5 µm diameter,
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Figure 3.2: Calibration curve for velocity. The dots that resembles a solid line
between 3 and 20 m/s are the calibration points, the dashed line is eq. (3.1).
Parameter values in this case are E0 = 6.45 V, n = 0.490, k1 = 0.0149 Vn and
k2 = 1.61 V1/2.

0.5 mm long platinum wire. The probe with the prongs as well as some simple
equipment necessary to solder and etch the wire had to be built. A few of the
measurements were conducted with a constant temperature anemometer built
by Flow Research Institute in Tokyo together with a 5 µm diameter, 1 mm long
tungsten wire.

When using Constant Temperature Anemometry, CTA, the wire is kept at a
constant temperature (higher than the air temperature) by a bridge circuit
with a feedback loop keeping the resistance of the wire constant. Since the
temperature/resistance of the wire is constant, the convection from the wire
to the air is a function of the voltage over the wire, which is measured. The
convection is of course increasing as the velocity is increased.

The wires were calibrated with DISA 55D44–46 calibration equipment consisting
of a pressure control, a nozzle and a pressure converter. The NEC 9801 computer
was used to sample the anemometer signal as well as a signal from the calibration
equipment, linear with velocity. This data was later fitted to a modified form
of King’s law (Johansson & Alfredsson 1982):

U = k1
(

E2 − E2
0

)1/n
+ k2 (E − E0)

1/2
(3.1)

A typical result is shown in figure 3.2. In order to measure two mean velocity
components with one single wire (the single wire was preferred for simplicity),
the method described below was used. The velocity measured by a hot wire can
be expected to vary as

Umeas = U∞ cosα (3.2)

where Umeas is the velocity measured by the hot wire, U∞ the velocity of the
fluid and α is the angle between the hot wire and the flow direction (see figure
3.3). This relationship can be expected to be valid if α is sufficiently close to zero
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and the velocity is high enough. For lower velocities and angles differing much
from zero, the velocity component parallel with the wire gives deviations from
(3.2). From figure 3.4 it can be concluded that (3.2) is a good approximation
for −45◦ < α < 45◦ for the wires used, if the velocity is high enough.

If the flowfield is expected to be stationary or periodical with a known phase
(the latter is the present case), this knowledge makes it possible to measure
two velocity components with a single wire by making two measurements at the
same position with different angles between the wire and the flow.

Let the two measurements be conducted with an angle difference ϕ and the
flow angle to an arbitrary reference direction be α. For simplicity the direc-
tion choosen here is orthogonal to one of the hot-wire directions. With these
assumptions the velocity measured in the two measurements can be written as
(with indices 1 and 2 referring to the two measurements):

U1 = U∞ cosα

U2 = U∞ cos(α − ϕ)
(3.3)

from which the flow-angle and velocity can be solved as:

α = arctan

[

1

sinϕ

(

U2

U1

− cosϕ

)]

U∞ =
U1

cosϕ

(3.4)

This method was used to measure the radial and tangential velocity component.
The axial component, which is fairly small, was not taken into account. At large
distances from the disk, the axial component is typical 1% of the tangential
velocity at the disk (i.e. Ωr∗).
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Figure 3.4: Velocities measured by the hot wire as a function of the flow angle
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Of course the deviation from the cosine law (3.2) at ”low velocities” gives an
error, which increases as the velocity decreases. However, in this case, the
velocity is high close to the disk and decreases as the height over the disk is
increased. The angle difference ϕ should be chosen so that ∂α/∂(U2/U1) is
small in order to get a small error in α from an error in U2/U1. The derivative
is shown in figure 3.5 and as can be seen from that plot, ϕ should be 90◦.
But since both α and α − ϕ must be within the range where (3.2) is valid, an
intelligent choice of ϕ has to be made. In the present case, ϕ = 45◦ was chosen.
As can be seen in chapter 4, the method gives good results close to the disk,
where the velocity is large, but an increasing deviation from the theoretical
prediction with increasing height over the disk is evident.

Quantitative velocity measurements were only performed for the isothermal case
and when necessary, the measurements were compensated for drifting room
temperature with the formula below, derived in [24]:

E2
c = E2

m

(

1 +
Tf − Tr
Ts − Tf

)

(3.5)

where Ec is the compensated value of the anemometer tension, Em is the mea-
sured value, and indices f , r and s correspond to the temperature of the fluid,
the reference temperature at calibration and the temperature of the hot-wire
sensor, respectively. The sensor temperature was calculated from the overheat
ratio.
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Air temperature measurements

The temperature was measured with Constant Current Anemometry (CCA).
The anemometer used was a DISA 5501 main unit together with a 55M20 tem-
perature bridge. The wire used was a 2.5 µm diameter, 1 mm long platinum
wire. With constant current anemometry a constant current through the wire
is used. To measure velocity, the current is choosen so high that the wire is
heated to a temperature much higher than the air temperature. The voltage
over the wire is then a measure of the heat convection from the wire to the flow
(as mentioned earlier this convection is increasing with increasing velocity).

For temperature measurements, the current is choosen so low that the wire is
barely heated. Then the voltage over the wire can be measured to give the
resistance of the wire, which is linearly dependent of the temperature.

The current through the wire was choosen so that a velocity change from 0 to
20 m/s at a constant temperature gave an error smaller than 1% of ∆T ∗ in the
temperature measurements. When the current had been choosen, the system
was calibrated using a Slowly Decreasing Temperature Chamber (SDTC) built
for the purpose. The SDTC consisted of a small (0.3 dm3) isloated box made of
styrofoam. The air inside the box was heated to approximately 50◦C whereafter
the probe was mounted inside the box together with a thermometer. As the air
in the box was cooled, calibration data could be obtained.

The calibration data was fitted to a straight line as shown in figure 3.6. The
thermometer used for the calibration was later used for the measurements of
the ambient temperature far away from the disk during the measurements.

Surface temperature measurements

Two different techniques were used in order to measure the temperature of the
disk surface. One was a thermal video system, ALVIO TVS, and the other was
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Figure 3.6: Calibration curve for the temperature mesurements obtained with
the SDTC. The stars are the calibration points, the line is the least square fit
to these points, in this case T = 61.36− 4.73E.

liquid crytals.

The liquid crystals used were obtained from Japan Capsule Products Limited.
They were delivered as a self adhesive film and could easily be applied to the
surface. The range of the sheet used was 33.8–36.8◦C with five colours indicating
different temperatures in the interval.

To document the liquid crystal visualizations the disk was photographed in
stroboscopic light from a Sugawara Digital Strobo S-125. Each flash from this
stroboscope lasts 2 µs and the stroboscope was triggered with the signal from
the photocoupler. The camera used was a Nikon F50 camera equipped with a
50 mm lens fitted to the stand also used for the thermograph camera. With
ASA 400 film and shutter 1.8, a time of 1/2 second gave a clear exposure.

In order to measure the surface temperature without touching or applying any-
thing to the surface, a thermal video system was used. It uses the spectral
information of the radiation emitted from the surface to determine the temper-
ature of a surface; for this reason the disk was painted black. The results from
the measurements are presented for the user on a small videoscreen as a picture
where it is possible to get the measured temperature at specific points as well
as the temperature on the measured area as a contourplot.

The thermal video system was not fast enough to resolve the small structures
stationary to the disk that could be visualized with the liquid crystals together
with the stroboscopic light. However, the thermal video system could be used
to measure the mean temperature for a fixed radius during measurements.

Before measurements, the thermal video system was used to adjust the power
and positions of the heating lamps to achieve as an isothermal disk as possible.
It was also used to confirm that the rotating speed and the heat conduction
inside the disk were high enough to equalize temperature differences that could
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occur due to the circumferential non-uniformity of the heating distribution.

The accuracy of the thermal video system was checked by measuring the disk
temperature with the thermal video system and the thermometer mentioned
above simultaneously. The readings agreed within ±0.05 K.



Chapter 4

Results

4.1 Velocity and temperature profiles

The measurements reported in this section were, with one exception, made at
a rotating speed of 1400 rpm. The exception is the velocity profile at r=638,
which was measured at a rotating speed of 1800 rpm. The measured profiles are
compared with the theoretical prediction from section 4.1 and the deviations
from the theoretical profiles give some information about increased drag and
heat transfer in the transition region.

All profiles are shown non-dimensionalized as follows:

quantity non-dimensionalization

length χ = χ∗

√

Ω
ν

velocity χ =
χ∗

Ωr∗

temperature T =
T ∗ − T ∗

disk

∆T

Table 4.1: Non-dimensionalization. The variable χ∗ denotes the physical vari-
able to be non-dimensionalized and χ the value after non-dimensionalization.

The velocity profiles were measured with no heating applied. This means that
it is necessary to be careful when the velocity and temperature profiles are
compared, but still some conclusions about drag and heat transfer can be made.

All points in the profiles are averaged over 30 revolutions of the disk.

Measured velocity profiles for different radii are shown in figure 4.1 together
with the theoretical prediction. For the tangential velocity component, the
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Figure 4.1: Measured radial (a) and tangential (b) velocities at different laminar
r, ◦ = 249, △ = 311, ▽ = 374, ⋄ = 436. The line is the laminar von Kármán
solution.

correspondence between measured data and theory is good close to the disk.
Higher up in the boundary layer, there is an increasing deviation from the
theoretical prediction, probably due to the axial velocity component but mostly
the deviation of the hot-wire sensitivity from the cosine law (3.2) discussed in
section 3.2. A relatively larger discrepancy can be seen in the radial component.
This is due to the lower velocity; the absolute error can be expected to be
approximately equal for the two components.

The measured temperature profiles shown in figure 4.2 also agree with the the-
oretical curve, even though there is a deviation from the theoretical curve in
the upper part of the boundary layer, indicating that there were errors in the
method used to measure the ambient temperature far away from the disk. It was
measured with the thermometer, previously used for calibration, positioned ap-
proximately 0.4 m above the disk. The measured reference value of the ambient
temperature seems to be too low.

As the radius is increased, the velocity and temperature profiles deviate from
the small-radii ones. In figure 4.3 it can be seen that there is a gradual change
in the velocity profile, which is due to transition from laminar to turbulent flow.
The velocity profile at r = 436 seems to be unaffected and at r = 561 the profile
is fully turbulent. The same scenario is seen in the temperature profile, see
figure 4.4. The temperature profile at r = 453 is still laminar, and the profile at
r = 552 is fully turbulent. Since the velocity and temperature profiles change
at approximately the same r, there is no large region with large heat transfer
and low drag. All r have been calculated using the same viscosity, namely the
viscosity of the ambient air.
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Figure 4.2: Measured temperatures at different r. The dots are from r = 200,
250, 299, 352 and 402, whereas the diamonds are r = 453. The line is the
laminar theoretical solution.
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Figure 4.3: Measured radial velocities at different r: ⋄ = 436, ◦ = 468, × = 499,
+ = 561 and ⊕ = 638. The line is the laminar von Kármán solution.
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Figure 4.4: Measured temperatures at different r: ⋄ = 453, ◦ = 502, × = 527,
+ = 552 and ⊕ = 601. The line is the theoretical solution for the laminar case.

As seen in fig 4.3 and 4.4 the velocity and temperature gradients at the wall
seem to change att approximately the same radial position. This indicates that
Reynolds analogy is valid at the wall for most of the disk surface, including
most of the area where streamwise vortices are present in the flow over the disk.
(The slope of the temperature profile, ∂T/∂z at z = 0, gives the heat transfer,
the same is valid for the velocity profile and the drag: the larger the change of
velocity/temperature with z, the larger the drag/heat transfer.) This can be
conluded since it is already known that Reynolds analogy is valid in the laminar
and turbulent region respectively.

4.2 Disturbance distributions and growth

In order to study how the heating of the disk surface influenced the distur-
bances, measurements were made with the hot wire positioned as in figure 4.5
at a height of approximately 0.5 mm. At this height, there was a maximum in
the disturbance amplitude for the smallest radius. For larger radii, the max-
imum had not moved far, less than 50 µm up or down. The hot-wire signal
was sampled and compensated for the different temperatures. This was done by
compensating with different air temperatures for the three heated cases until the
mean velocities were in as good agreement as possible with the mean velocity
measured with no heating applied. It was assumed that the velocity or temper-
ature profile did not change because of the heating. These mean velocities are
shown as a function of the radius in figure 4.6. From these signals, the distur-
bance amplitudes shown in figure 4.7 have been calculated. As can be seen, the



4.2. DISTURBANCE DISTRIBUTIONS AND GROWTH 39

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

Vmeas

Ω

Rim of the disk

AAAA
AAAA
AAAA

Computer
King’s Law

Hot-Wire

Figure 4.5: Hot-wire position for the measurements reported in figures 4.7, 4.8,
4.9, 4.10 and 4.11.

growth characteristics do not differ a lot for the different disk temperatures.

If the data from many rotations of the disk are phase-averaged (rotational-
averaged) before the disturbance amplitudes are calculated, the results shown
in figure 4.8 are obtained. If figure 4.8 is compared with figure 4.7, it can be
concluded that the the stationary character of the disturbances is much smaller
for the heated case than in the unheated case, since unsteady disturbances will
cancel each other in the averaging that has been done before the rms-values in
figure 4.8 were calculated. This indicates that other factors than the roughness
of the disk surface play an important role in triggering the disturbances when
the disk is heated. Buoyancy could be such a factor.

In figures 4.9 and 4.10, velocity signals for different radial positions for the
unheated and heated case are shown. By comparing the velocity signals for
r∗=0.13 m it is clearly seen that initially the disturbance is larger and more
homogenously distributed round the disk for the unheated case than for the
heated case.

For larger radii it is seen that the amplitude develops in different ways for the
heated and unhetated cases. In the heated case, secondary instabilities are
clearly seen as kinks in the signal for r∗=0.15 m. In the unheated case, there
are almost no kinks in the signal, even for r∗=0.16 m. In both cases, the flow
is turbulent at r∗=0.17 m. Also, at r∗=0.16 m, the almost harmonic oscillation
of the signal from the flow over the heated disk has little resmeblance with the
disturbed signal for the heated case at the same radial position.

The velocity signals shown in figures 4.9 and 4.10 show that the disturbance from
the non-orthogonality between the disk and its axis is dominant up to a radius
of 0.14 m. The amplitude of this disturbance is approximately 1.5 % of the disk
speed at r∗=0.1 m. Since the slope of the tangential velocity gradient (see figure
4.1(b)) is around one, the movement of the disk in the vertical direction should
be around 1.5 % of one vertical length unit under present conditions. One length
unit at 1400 rpm is approximately 0.3 mm and 1.5 % of this is about 5 µm, a
value in good correspondance with the measured value of the out of flatness of
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Figure 4.6: Mean values of Vmeas after temperature compensation. The disk
temperature is 0, 10, 20 and 40 K over room temperature for the solid, dashed,
dotted and dash-dotted line, respectively.

the disk mentioned in chapter 3.

As can be seen in the spectra shown in figure 4.11, the frequency distributions
do not differ much except at r∗ = 0.16 m where the signal from the flow over the
heated disk has a larger amount of energy at high frequencies, indicating a more
turbulent flow at this stage. The spectra are taken from the signal corresponding
to two rotations of the disk. This indicates that the propagation velocity and
wavelength of the unsteady disturbances are such that the frequency measured
by the hot wire fixed to the laboratory is the same as the frequency which is
given by the steady vortices, that is seen in the spectra as the large peak near
ω/Ω=30.

The actual frequencies and propagation velocities of the unsteady disturbances
cannot be measured with one single probe fixed to the laboratory. From
rotational-averaged velocity and temperature measurements, the disturbance
distributions for disturbances stationary to the disk can be calculated. Such
distributions for the circumferential velocity are shown figure 4.12 together with
eigenfunction obtained in chapter 2.2. As can be seen in figure 4.12, there
is a large discrepancy between the measured distribution and the theoretical
prediction. The explanation to this deviation is given below.

As can be seen in figure 4.9, the low frequency disturbance arising from the
skewness of the disk is dominant up to fairly high radii. For this reason, it
can be expected that the disturbance distributions shown in figure 4.12a arises
from the non-orthogonality between the disk and its axis. As can be seen in
that figure, the disturbance distribution actually follows the derivative of the
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Figure 4.7: Disturbance growth for Vmeas . The disk temperature is 0, 10, 20,
40 K over room temperature for the solid, dashed, dotted and dash-dotted line
respectively.
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Figure 4.8: Disturbance growth for rotational-averaged Vmeas . The disk tem-
perature is 0, 10, 20 and 40 K over room temperature for the solid, dashed,
dotted and dash-dotted line, respectively.



42 CHAPTER 4. RESULTS

6543210

rad

r∗ = 0.1 m

r∗ = 0.13 m

r∗ = 0.14 m

r∗ = 0.15 m

r∗ = 0.16 m

r∗ = 0.17 m

Figure 4.9: Velocity signals used for the results shown in figures 4.7, 4.8 and
4.11. The signals correspond to one revolution of the disk and are taken with
no heating applied at 1400 rpm.
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Figure 4.10: Same as for figure 4.10 except that the disk temperature is 40 K
warmer than the temperature far away from the disk.
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Figure 4.11: Frequency spectras for the velocity signal 0.5 mm over the disk for
the unheated disk (solid) and when the temperature of the disk is 40 K over
ambient temeprature (dashed). The rotating speed is 1400 rpm and the radial
position 0.1 m, 0.13 m, 0.14 m, 0.15 m, 0.16 m and 0.17 m from (a) to (f).
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Figure 4.12: Measured disturbance distributions calculated from rotational-
averaged velocity data compared with the eigenfunction of the stationary
(ωr = 0) eigenfunction with the highest temporal amplification (largest ωi)
at R = 300, α = 0.382, β = 0.0774 and ωi = 0.000600i. The non-dimensional
radii for the measurements are: 249, 311 (· · ·) and 374 (▽) in (a) and 436, 468,
499, 561 and 638 from (b) to (f).
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Figure 4.13: Measured disturbance distributions calculated from rotational-
averaged temperature data compared with the eigenfunction of the stationary
(ωr = 0) eigenfunction with the highest temporal amplification (largest ωi) at
R = 300, α = 0.382, β = 0.0744 and ωi = 0.000600i. The non-dimensional radii
for the measurements are: 352, 402, 453, 502, 527 and 552 from (a) to (f).
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Figure 4.14: Contour plots of the temperature in the zθ-plane. The nondimen-
sional radii is 352, 402, 453, 502, 527, 552 from (a) to (f). To obtain the physical
picture, the plots should be stretched in the θ direction by a factor ranging from
64 to 113 in the different plots.



4.3. LIQUID CRYSTAL VISUALIZATION 47

velocity. This is the expected distribution since the hot wire measures the
velocity at varying height over the disk as the disk is rotating.

In order to avoid disturbances arising from the skewness of the disk, the tem-
perature data was digitally high-pass filtered before further processing. As can
be seen in 4.13, the resulting temperature distributions shows good correspon-
dence to the theoretical eigenfunction at radii where the flow is critical but not
absolute unstable, i.e. for 285 < R < 507.

When the non-dimensional radius is increased further, both the temperature
and velocity disturbance distributions develop a two-peak structure due to the
vortices and as the flow becomes fully turbulent, the disturbance is more ho-
mogenously distributed through the boundary layer.

In figure 4.14 the temperature disturbance are shown in a zθ-plane. Here it is
clearly seen that the disturbances develop a two-peak structure as the radius
increases. The number of vortices with no heating applied is around 30, as in
previous investigations. However, with heating applied the number of vortices
seem to decrease and with a disk temperature 40 K over the ambient air, the
number of vortices on the disk is around 26.

4.3 Liquid crystal visualization

The flow above the heated rotating disk can be divided into three different
regions depending on the character of the flow. From the centre and outwards
we have called them the laminar region, the vortex region and the turbulent
region.

With the temperature sensitive crystal film the decreased or increased surface
temperature of the disk is visualized. The flow field is only indirectly visualized
by this method. The blue colour is the warmest, the red colour is the coldest
and in between there exists three different green shades.

In figure 4.16 for 1800 rpm a fairly sharp difference between two colours of the
temperature sensitive crystal in the radial direction can be seen. For this case
the colour difference occurs around r∗ = 142− 144 mm. This is the boundary
between the vortex region and the turbulent region on the disk, which we from
now on denote the turbulence front. In the turbulent part of the flowfield the
heat transfer from the disk increases and cools down the surface of the disk
more rapidly, than the vortex part of the flowfield. These visualizations were
repeated with the angular velocity ranging from 1200 to 2000 rpm and the
non-dimensional radial position of the temperature difference was found to be
r = 510 with a small scatter around this value.
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Figure 4.15: Normalized velocity signals from hotwire measurements for r∗ =
138, 140, 142, 144, 146 and 148 mm, with decreasing radius downwards in the
figure.

In figure 4.15 single realizations of normalized hot-wire signals for 1800 rpm
at different radial positions are shown including the whole turbulence front in
figure 4.16. The turbulence front is located between r∗ = 142 and r∗ = 144. At
the smaller radii the vortex patterns in the hot-wire signal can clearly be seen,
but as the radius increases secondary instabilities appear as kinks. Even further
out turbulent spots appear near the front and finally a complete breakdown to
turbulence occurs. As the character of the velocity signal is the main interest
there is no need for calibrating the hotwire and as the drift of the hot-wire is
not relevant the more robust tungsten wire was used.

In smoke visualizations like the one in figure 1.1 the stationary vortices, which
appear as a smoke pattern on the disk, can be seen. This is also possible with
the crystals as the vortices influence the heat transfer. Inside the turbulence
front in figure 4.16 there is a vortex region and here a striped curved pattern
is observed, which is due to a variation in cooling originating from the vortices.
This effect of the vortices comes from the fact that cold air from above force
hot air near the disk surface upwards in a circular motion. The vortices are
stationary to the disk, which means that it is possible to capture the pattern
by a camera using stroboscopic light.

In figure 4.17 for 1800 rpm two roughly cylindrical surface roughnesses have
been introduced. The surface roughness consists of a claylike substance with an
approximately constant diameter of 4.5 mm and with a height of 0.4 mm, which
can be easily changed. Behind each roughness a wake appears and the turbu-
lence front moves towards smaller radii. Initially the wake probably consists of
two counter-rotating vortices. As the vortices, that occur without roughness,
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Figure 4.16: Temperature sensitive crystal visualization for 1800 rpm.

Figure 4.17: Temperature sensitive crystal visualization for 1800 rpm with two
surface roughness elements, which have a height of 0.4 mm.
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Figure 4.18: Temperature sensitive crystal visualization for 1800 rpm with two
surface roughness elements, which have a height of 0.08 mm.

Figure 4.19: Temperature sensitive crystal visualization for 1800 rpm with two
surface roughness elements which have a height of 0.4 mm, where one of the
elements trails the other.
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are co-rotating one of the wake vortices dies out and the other one survives
increasing the heat transfer from the disk surface.

Figure 4.18 for 1800 rpm shows a visualization when the height of the rough-
nesses are 0.08 mm. Here there are no wakes behind the roughnesses and the
result resemble that in figure 4.16. Obviously the height of the roughnesses
are important when considering the influence on the heat transfer. The figures
4.17 and 4.18 evidently show the existence of a threshold for the height of the
roughnesses to increase the heat transfer, which has also been pointed out by
Jacobi & Shah (1995).

In figure 4.19 for 1800 rpm the position of the roughnesses and the effect on the
heat transfer are investigated. The second roughness is placed behind the first
one at the same radius. The wakes behind the roughnesses grow to one wake
and increase the heat transfer in a larger region than in the one roughness case.

A peculiar phenomenon observed is that outside the surface roughness, at al-
most the same circumferential position as the roughness, the turbulence front
is pushed further out in the radial direction. A possible explanation is that
the roughness element changes the velocity profile in such a way that the on-
set of the absolute instability moves outward, but in order to fully explain this
phenomena, more investigations are needed.



Chapter 5

Discussion

5.1 Air velocity and temperature measurements

This study is focused on the flow structure near the surface of a rotating disk.
In the rotating-disk flow the large velocities are dominant near the surface and
higher up in the boundary layer the velocities gradually decrease. The smaller
velocities are more easily influenced by disturbances from the surounding envi-
ronment and generally speaking it is in the upper part of the boundary layer
that the measured results deviate in comparison with theory.

An existing problem that affects the hot-wire measurements, when using a probe
fixed to the laboratory frame, is the non-orthogonality between the rotating disk
and its axis. This skewness becomes a dominant disturbance in the disturbance
distribution when the flow disturbances not yet have developed.

There is a good agreement between the measured laminar velocity profiles and
their respective theoretical similarity solutions, that can be seen in figures 4.1.
The deviation from theory can be found in the upper part of the boundary layers
where the velocities are small. This deviation is mostely due to the deviation
that occurs when small velocities are measured and the hot-wire sensitivity
equation 3.2 is used. No compensation for the small axial velocity component
has been done and this can also cause small deviations. Since the radial velocity
is lower than the tangential velocity the disturbances described above affect the
measurements of the radial velocity more.

A good agreement can also be found in the measured laminar temperature
profiles in comparison to the theoretical similarity solution, seen in figure 4.2.
As for the velocities, the deviations take place in the upper part of the boundary
layer probably due to errors in measuring the ambient air temperature together
with the temperature variations in the ambient air approaching the disk.

The flow fields become transitional and finally turbulent when the radius in-
creases. This scenario is captured in the profiles for the tangential velocity and
the temperature, which deviate from the laminar ones and become fully tur-
bulent, as seen in figures 4.3 and 4.4. This means that the velocity gradient
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(dV/dz) and the temperature gradient (dT/dz), which are proportional to the
drag and the heat transfer respectively, increase rapidly in the same region. The
conclusion is that there is no region in the disk flow with large heat transfer and
low drag.

To check whether the flow is influenced by different disk temperatures a study of
the disturbance amplitude growth with increasing radius has been made. Con-
sidering the character of the disturbance amplitude growth without averaging,
the temperature difference does not affect it, as can be seen in 4.7. However the
effect becomes apparent when the signal is rotational averaged before the am-
plitudes of the disturbances are calculated. Doing this the stationary character
is enhanced and the fluctuating part of the signal is suppressed. In this case it
is obvious from comparing figures 4.7 and 4.8 that the stationary character is
smaller in the heated case.

In figures 4.9 and 4.10 the hot-wire signals coresponding to one revolution for
different radii with ∆T = 0 K and ∆T = 40 K, are shown. In both cases the
skewness of the disk can be seen. It is important to remember that the signals are
peak-normalized and the disturbance caused by the skewness in reality becomes
less dominant when the radius is increased and the flow disturbances become
more dominant. Nevertheless the disturbance from the skewness is dominant
up to at least r∗ = 0.14 m. The stationary vortices or primary istabilities and
the kinks or the secondary instabilities can also be seen and they appear earlier
in the heated case.

One parameter not considered in the theoretical analysis is the buoyancy. The
buoyancy can affect the triggering of the disturbances in the disk flow. As con-
cluded from the disturbance growth the primary instabilities seen in figure 4.10
are not completely stationary. This indicates that instabilities with ωr 6= 0 by
buoyancy. It is known from e.g. Balachandar et al. (1992) that there exist
non-stationary disturbances with larger growth rates than the stationary dis-
turbances. If such non-stationary disturbances are triggered by buoyancy this
could be an explanation to the observation from figures 4.9 and 4.10 that sec-
ondary instabilities are more developed in the heated case than in the unheated
case.

In the frequency distribution figure 4.11 of the above mentioned hot-wire signals
the heating effect appears only in the measurements for r∗ = 0.16 m, where
there is more energy at high frequencies for the heated case. This indicates that
transition is a more convective process in the heated case than in the unheated
case. The stationary vortices is seen as a large peak around ω/Ω = 30.

After high-pass filtering in order to filter away disturbances from the non-
orthogonality between the disk and its axis, a good correspondence between
measured temperature distubance distributions and results from linear stability
theory has been obtained for a limited range of radii, as can be expected since
the disturbances decay for smaller radii and the flow becomes turbulent at larger
radii.

As has been reported in 4.2, the number of vortices seems to decrease with
heating applied as compared to the case without heating. A possible explanation
to this phenomenon could be that with heating applied, a buoyancy instability
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is present and triggers the vortices, rather than stationary imperfectnesses that
triggers the vortices when no heating is applied.

5.2 Liquid crystal visualizations

In the liquid crystal visualizations, the heating was cut off when the disk had
been heated to the desired temperaturer and after this, the disk cooled because
of the convection. It can be seen in the photographs shown in figures 4.16–
4.19 that under these circumstances, there is a distinct temperature difference
between the laminar and turbulent region. This is seen as a colour change of
the liquid crystals.

The hot-wire signals in figure 4.15 shows that the position of this surface-
temperature decrease is close to the transition position. The radial position
of the temperature decrease is r = 510 (using room temperature viscosity) with
a small scatter around this value for different rotating speeds between 1200 and
2000 rpm (the scatter is less than one percent). This is tantalizingly close to
the value 507 where the absloute instability should trigger transition according
to Lingwood (1997a).

From the photographs it can also be concluded that the stationary vortices seen
in smoke visualizations such as figure 1.1 changes the disk temperature locally
(because of locally varying heat transfer). This is seen as a striped pattern
prior to the temperature decresase in the photographs. The amplitude of this
striped local temperature variation depends on both the amplitude of the linear
primary disturbances and the heat conductivity of the liquid crystal film.

If the flow is subject to a disturbance of sufficient amplitude, by e.g. a large
enough roughness element, the surface temperature decreses in a wake behind
this element. If the wake is studied in detail, it can be seen that initially it
consists of two or more stripes but further downstream, one of these develop
more than the others. The stripes seen initially are probably due to vortices and
separation bubbles but as the disturbances develop downstream, the most am-
plified disturbances are the ones similar to the naturally occuring disturbances,
i.e. corotating vortices. For this reason, vortices rotating in the other direction
are supressed.

The radial position of the temperature decrease did not change much because
of the disturbance element, and when it did, it was positioned further out than
in the undisturbed case. This indicates that the transition scenario for the
flow does not change much due to the introduced disturbance. Studying the
wake, it can be seen that the leading edge spirals outwards and crosses the
temperature decrease under an angle. However, observing the trailing edge of
the disturbance, it is clear that it approaches the temperature decrease under
an angle. This behaviour of the trailing edge of a wave-packet is the behaviour
described by Lingwood (1996) for a flow that is subject to an absolute instability.

The experiments where the height of the roughness element was varied show,
that if a large enough roughness element is applied to the surface, heat transfer
can be increased in a wake behind this element. By applying many elements
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around the disk it should be possible to increase heat transfer for the whole
of the disk surface outside these elements. If the Reynolds number where the
elements are applied is undercritical, the disturbances might decay and a new
set of elements will be needed to increase the heat transfer all the way out to
the turbulence front.

It is also clear that there exists a threshold height of the elements if the heat
transfer is to be increased behind them. Those experiments were made at one
rotating speed and one radial position for the roughnesses only (namely 1800
rpm and r∗ = 0.1 m). This threshold height seemed to be around 0.4 mm, i.e.
1.4 length units in the nondimensional axial coordinate. This is a value in close
agreement with the observations of Jacobi & Shah (1995) that the height of
the roughness element has to be of the same magnitude as the boundary layer
thickness in order to effect the heat transfer.

Theodorsen & Regier (1948) observed that roughness on the disk surface only
changed the non-dimensional radius for the rapid increase of drag towards the
centre of the disk. From the liquid crystal visualizations, it was observed that
a large enough roughness element increases the heat transfer from the disk to
the air from the element and out. Such a possibility could be very important
in some applications, e.g. the micro-gravity evaporator studied by Rahman &
Fahgri (1992).
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University, Sendai, Japan where the support, help and heartiness we received
from the staff and the students at Kohama Laboratory made our stay in Japan
enjoyable and productive. Thank you very much, we will never forget you.

A very special thank to Dr & Mrs M. Kobari together with Tetsu and Reiko for
sharing their family spirit with us.

We would also like to thank the staff in the fluid mechanics laboratory at Royal
Institute of Technology, Stockholm for support and help during the writing.

Alex wants to thank his family and friends for their warm support and en-
couragements during the stay in Japan. From the bottom of my heart thank
you Katarina, Rosie, Marie, Stefan, Richard, Peter, Johan, Lillen. I also want
to send a thought to my dear and unfortunately deceased grandmother Märta
Cederholm, who always have supported me during my years in education.

Fredrik wants to thank some of the friends and family supporting him via per-
sonal visits, letters or e-mails during the stay in Japan. Thank you Albin, Ali-
cia, Anders, David, David, Gustaf, Gitte, Henrik, Johan, Lena, Lovisa, Maria,
Maria, Mia, Ola and Olle. Fredrik also wants to thank the staff and management
at Boghammar Marin for the skills and attitude he developed there.

Economical support for the stay in Japan was received from the Gadelius’ foun-
dation (AC), the Sasakawa foundation (FL), the School of engineering physics
at KTH and the Anna Whitlock’s memorial foundation.

56



Appendix A

Numerical methods

This appendix considers the numerical analysis used to solve the governing
equations along with the boundary conditions for the velocity disturbance and
the temperature disturbance, where the numerical method is based on Malik
(1985).

Equations (2.17) and (2.18) can be represented as a system of first order equa-
tions with a system matrix A as follows.

d~φ

dz
= A~φ, ~φ = (φ1, φ2, φ3, φ4, φ5, φ6)

T (A.1)

where

φ1 = w̃ φ2 =
dφ1
dz

φ3 =
dφ2
dz

(A.2)

φ4 =
dφ3
dz

φ5 = αṽ − βũ φ6 =
dφ5
dz

In this way it is possible to solve the problem by for example a Runge-Kutta
or finite difference method. By means of the Euler-Maclaurin formula a fourth
order finite difference scheme is derived and is used to solve the system (2.17)
and (2.18) together with the boundary conditions (2.20).

ψk − ψk−1 =
1

2
yk(

dψk

dz
+
dψk−1

dz
)−

1

12
y2k(

d2ψk

dz2
−
d2ψk−1

dz2
) +O(y5k) (A.3)

where

ψk = ~φ(zk), yk = zk − zk−1 (A.4)

To be able to resolve the system the following node distribution is used

zk =
L(k − 1)

Ns− (k − 1)
(k = 1, 2, . . . , N + 1) (A.5)
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where z∞ is the far away boundary, L is a scaling parameter, s = 1+L/z∞ and
N is the number of nodes in the computational domain. The values used are
20, 1.8 and 200 for z∞, L and N respectively.

With the finite difference scheme the following matrix equation is obtained for
each level containing two node values. All matrices Ak, Bk and I are 6×6
matrices, where I is the identity matrix.

[I−
1

2
ykAk +

1

12
y2kBk]~φ

k − [I+
1

2
ykAk−1 +

1

12
y2kBk−1]~φ

k−1 = 0

(A.6)

(k = 2, 3, . . . , N + 1)

Above Ak and Bk are the matrices for node k. The components (B)ij of B is
given by

(B)ij =
d(A)ij
dz

+
6

∑

l=1

(A)il(A)lj (A.7)

The above equation system (A.6) for each node pair along with the boundary
conditions (2.20) are written in block tridiagonal form.

LΦ = 0 ,Φ = (~φ1, . . . , ~φN+1)
T (A.8)

The system (A.8) can now be solved, but to avoid trivial solutions the system is
made inhomogeneous by replacing the imposed boundary condition at the disk
surface φ1(0) = 0 with φ3(0) = 1. It is now possible to solve the system and with
Newton’s method an iteration for the unknown quantities to fulfil φ1(0) = 0,
can be made. The unknown quantities are the eigenvalues, which are called
{x, y}.

φ1r(0) +
∂φ1r(0)

∂x
∆x+

∂φ1r(0)

∂y
∆y = 0 (A.9)

φ1i(0) +
∂φ1i(0)

∂x
∆x+

∂φ1i(0)

∂y
∆y = 0

The derivatives with respect to x and y are calculated by taking into account
(A.8) and differentiate this relation with respect to x and y.

L
∂Φ

∂x
= −

∂L

∂x
Φ (A.10)

L
∂Φ

∂y
= −

∂L

∂y
Φ

where
{x, y} ∈ {αr, βr} (A.11)
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Equation (2.24) is solved with finite differences using a symmetric node distri-
bution. The following second order methods to represent the derivatives are
used.

(ψ′′)k =
ψk+1 − 2ψk + ψk−1

y2k
+O(y2k) (A.12)

(ψ′)k =
ψk+1 − ψk−1

2yk
+O(y2k) (A.13)

yk = zk+1 − zk = zk − zk−1 (A.14)

Introducing equations (A.12) and (A.13) into equation (2.24) the result is ex-
pressed in the following form for each node level.

E3
kφk−1 + E2

kφk + E3
kφk+1 = Gk (A.15)

where
φk = τ̃ (zk) (k = 1, 2, . . . , N) (A.16)

The equation (A.15) for each node level along with the boundary conditions
(2.25) are written as a system resulting in an almost tridiagonal system matrix

E and where ~G is the inhomogeneous righthand side.

EΦ = ~G, Φ = (φ1, . . . , φN )T , ~G = (G1, . . . , GN )T (A.17)

The system A.17 can be solved and the eigenfunction τ̃ can be obtained for
specified α, β, ω, Pr and R.



Appendix B

Simple rim lift-up analysis

When the disk is heated from the bottom, the rim of the disk can be expected
to warp because of the temperature gradient through the disk. In the present
case this effect is fairly small, as can be seen from the analysis below.

The local Nusselt number from the disk is known to vary approximately as
Nu= 0.0188r1.6 [7] for turbulent flow. If r∗=200 mm, ∆T=20 K and the ro-
tating speed is 1400 rpm this gives a local heat transfer rate of 1.4 kW/m2. In
aluminium (k=238 Wm/K) this gives the temperature gradient normal to the
surface as ∂T/∂z = 6.1 K/m. Finally the temperature difference between the
horizontal surfaces for the present disk becomes 0.12 degrees. All material data
has been taken from [26].

It is easy to derive an expression for the bowl radius of an infinite, circular
plane with a temperature difference between its surfaces. The warmer surface is
δ = lκ(Thot−Tcold) longer than the colder one where κ is the thermal expansion
coefficient (23.2−6 K−1 for aluminium) and l is the radius of the cold disk (see
figure B.1). The easily derived expression is (see figure B.1) ℜ = hl/δ. The rim
lift-up, γ, becomes 2ℜ sin2(l/2ℜ). In the present case, this gives a ℜ of 7.1 km
and a 2.8 µm lift-up of the rim. This is probably an overestimate, since the heat
transfer is smaller closer to the center of the disk than the value used above.
Bearing this in mind, the value 2.8 µm is encouragingly small. At 1400 rpm,
the rotating speed most usually used in the experiments, 2.8 µm corresponds to
less than one percent of one length unit in the axial coordinate.

No measurements of the deflection of the disk while rotating or heated could be
performed.

To justify the assumptions about the temperature gradient above some simple
numerical simulations were done, see figure B.2. In those calculations, the
steady heat-equation was solved for the interior of the disk. Assuming an axial
symmetric heat radiation on the bottom of the disk, the problem becomes two-
dimensional with the two coordinates: r, zero at the centre and one at the rim,
and ζ, which is zero at the bottom surface of the disk and one on the upper
surface.

On the bottom side, the boundary condition was choosen to simulate a circular

60



61

h

γ l

l+δ

ℜ

Figure B.1: Variable definitions for the simple rim-lift up analysis.

thin radiation source positioned below the disk (see figure B.3). On the upper
surface of the disk, the heat transfer from the disk were taken from the values
measured by Elkins & Eaton (1997) and on the rim of the disk, a suitable heat
transfer coefficient was choosen. The effect of variations of the rim heat transfer
coefficient was not very large.

As can be seen in figure B.2 the temperature difference between the bottom and
upper side is close to the value 0.12 m estimated above.

A second reason for the numerical simulation of the temperature inside the
disk was to investigate whether it was possible to achieve a close to isothermal
temperature on the upper surface of the disk. As can be seen in figure B.2 the
surface temperature only varies approximately 0.5 K in the radial direction. The
variation of the temperature on the surface of the physical disk was somewhat
higher.
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Figure B.2: Calculated temperature in the interior of the disk used in the present
experiments. In the case shown, the diameter of the radiator ring shown in figure
B.3 is the same as the disk and the ring is situated 0.1 m below the disk. The
radiation power of the ring is 2 kW and the rotating speed of the disk is 1500
rpm.
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Figure B.3: The radiation source used in the calculation presented in figure B.2.



Appendix C

Single hot-wire

multicomponent

measurements

Here we study the following relation between the velocity measured by the hot-
wire and the angle between the hot-wire and the flow direction:

U2
meas = U2

∞

(

cos2φ+ k2sin2φ
)

(C.1)

or alternatively:

U2
meas = U2

n + k2U2
t (C.2)

where Un and Ut are the velocity components normal and tangential to the wire,
respectively. In the present case, the parameter k varies with velocity as seen
in figure C.1. In the figure, k has been calculated by a least square fit of (C.1)
to directional sensitivity measurements made with the DISA calibration nozzle
such as the one in figure 3.4 (the two figures are actually made from the same
sets of data).

As can be seen in figure C.1, k is approximately 0.23 at large velocities which is
close to the value of 0.2 typically obtained for hot wires with a length/diameter
ratio of 200. From our tests, k seems to increase as the velocity is decreased. If
the two velocity components are orthogonal and their instantanous values are
taken to be Ũ and Ṽ , they can be decomposed into one stationary part and one
fluctuating part as previously:

ũ = U + u

ṽ = V + v
(C.3)

If the two wire directions used are parallel to the two velocity components direc-
tions, inserting (C.3) into (C.2) and time averaging (here denoted by overlined
symbols) gives a set of two easily solved linear equations in ū2 and v̄2 (i.e. u 2

rms
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Figure C.1: The dependecy of k on velocity. The stars are measured k values,
the line is 0.77e0.45U + 0.23.

and v 2
rms):

U2
1 + ū21 = U2 + ū2 + k2

(

V 2 + v̄2
)

U2
2 + ū22 = V 2 + v̄2 + k2

(

U2 + ū2
)

(C.4)

where indices 1,2 denote the velocity signals from the two measurements. The
wire is directed normal to the U-component during the first measurement and
normal to the V-component during the second.

If, however, the two wire directions do not agree with the directions of the
components, an additional measurement is needed. If the quantities Un and
Ut in (C.2) are expressed in U + u and V + v, the cross-correlation uv enters
the equation after time averaging of the equations. This adds one unknown
and consequently, one more measurement for a third orientation of the hot wire
is required. Unfortunately only two angles were measured during the present
measurements.

During the present work, the idea was to use the rotational-averaged velocity
data and calculate the disturbance amplitude for those stationary to the disk
with the method described in section 3.2. As can be seen in figure 4.12 the
results from these measurements do not agree very well with the linear stability.
Unfortunately no third measurement is available so we cannot use the method
described in this appendix to calculate the disturbance amplitudes.
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