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We perform numerical box simulations of strongly stratified turbulence. The equa-
tions solved are the Boussinesq equations with constant Brunt–Väisälä frequency
and forcing either in rotational or divergent modes, or, with another terminology,
in vortical or wave modes. In both cases, we observe a forward energy cascade
and inertial-range scaling of the horizontal kinetic and potential energy spectra.
With forcing in rotational modes, there is approximate equipartition of kinetic
energy between rotational and divergent modes in the inertial range. With forcing
in divergent modes the results are sensitive to the vertical forcing wavenumber
kf

v . If kf
v is sufficiently large the dynamics is very similar to the dynamics of the

simulations which are forced in rotational modes, with approximate equipartition
of kinetic energy in rotational and divergent modes in the inertial range. Frequency
spectra of rotational, divergent and potential energy are calculated for individual
Fourier modes. Waves are present at low horizontal wavenumbers corresponding to
the largest scales in the boxes. In the inertial range, the frequency spectra exhibit
no distinctive peaks in the internal wave frequency. In modes for which the vertical
wavenumber is considerably larger than the horizontal wavenumber, the frequency
spectra of rotational and divergent modes fall on top of each other. The simulation
results indicate that the dynamics of rotational and divergent modes develop on the
same time scale in stratified turbulence. We discuss the relevance of our results to
atmospheric and oceanic dynamics. In particular, we review a number of observational
reports indicating that stratified turbulence may be a prevalent dynamic process in
the ocean at horizontal scales of the order of 10 or 100 m up to several kilometres.

1. Introduction
There has been significant progress during recent years in the understanding of

strongly stratified flows. A relatively simple, yet important, idea in the conceptual
development is to introduce two different Froude numbers (Billant & Chomaz 2001) to
characterize different flows, the vertical and the horizontal Froude numbers, defined as

Fv =
u

Nlv
, Fh =

u

Nlh
, (1.1)

where N is the Brunt–Väisälä frequency, u is a characteristic velocity and lv and lh
are the characteristic vertical and horizontal length scales, respectively. Traditionally,
strength of stratification has been measured by the inverse of the vertical Froude
number and much of the theoretical framework for strongly stratified flows has
been developed for the limit Fv → 0. A central part of this framework is the
vortical–wave decomposition (see Riley & Lelong 2000 for a review). Kinematically,
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this decomposition is based on a Helmholtz decomposition of the horizontal velocity
field into a rotational and a non-rotational part. The vertical velocity is added to the
non-rotational part. Thus, we can write (Lelong & Riley 1991)

u = ez × ∇hΨ + {∇hΦ + wez}, (1.2)

where Ψ is a stream function, Φ a velocity potential, ez the vertical unit vector
and w the vertical velocity component. The first term is horizontally non-divergent
and carries all the vertical vorticity while the second, bracketed, term is vertically
irrotational and carries all the horizontal divergence of the field. Therefore, we may
call them the rotational and the divergent parts of the field, remembering that in doing
so we are referring only to the horizontal direction. Dynamically, the vortical–wave
decomposition is based on the assumption that there is a decoupling between the rota-
tional and the divergent parts of the field in the limit of strong stratification, or more
specifically in the limit Fv → 0. This assumption can be justified by the introduction
of two time scales (Lelong & Riley 1991): a slow advective time scale of the vortical
dynamics and a fast time scale of the wave dynamics. These can be estimated as

Tslow ∼ lh

u
, Tfast ∼

√
l2v + l2h
Nlv

∼ lh

Nlv
, (1.3)

where the estimate of the fast time scale is based on the dispersion relation for the
internal gravity wave frequency and the assumption that lh � lv , typically. The ratio
between the time scales can thus be estimated as

Tfast

Tslow

∼ u

Nlv
= Fv. (1.4)

Introducing Fv as a small parameter and using the method of multiple time scales, it
can be demonstrated that the dynamic equations for the rotational and the divergent
parts of the velocity field decouple to lowest order. The equation for the divergent
part is just the linear internal wave equation and the equation for the rotational
part of the field is the equation for the vertical vorticity, either in its linear form
(Lelong & Riley 1991) or its nonlinear form (Riley & Lelong 2000). In the next-order
equations in the expansion, there are terms describing the interactions between the
two fields. In the limit Fv → 0, the dynamics can thus be decomposed into waves
and vortices which are weakly interacting. A substantial amount of work has been
done to describe the different types of interactions among waves and vortices (see
Godeferd & Cambon 1994; Bartello 1995 and references therein).

In recent work, the focus has shifted from the limit Fv → 0 to the limit
{Fh → 0, Fv ∼ 1}. Billant & Chomaz (2001) carried out a similarity analysis of the
inviscid Boussinesq equations, in which they introduced the ratio α = lv/ lh as a
free parameter whose asymptotic behaviour in the limit of strong stratification was
determined from the analysis. They reduced the Boussinesq equations to a set of
nonlinear equations which lose their explicit dependence on Fh as Fh → 0, provided
that α ∼ Fh. The last condition is equivalent to Fv ∼ 1 as Fh → 0. They argued that
many flows in nature will obey this type of scaling by adjusting their vertical length
scale so that lv ∼ u/N as Fh → 0. For a given velocity scale the vertical length
scale will thus decrease as the strength of stratification is increased and the limit
Fv → 0 will never be reached, no matter how strong the stratification becomes. Riley
& deBruynKops (2003) carried out direct numerical simulations of decaying stratified
flows initialized with perturbed Taylor–Green vortices. They observed a rapid initial
decrease of the vertical length scale consistent with the prediction of Billant &
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Chomaz (2001). Waite & Bartello (2004) verified the prediction lv ∼ u/N in numerical
simulations of stratified turbulence forced in rotational modes with no vertical
variation. Lindborg (2006) carried out a set of box simulations of stratified turbulence
forced in rotational modes using successively thinner boxes and increased vertical
resolution as Fh was decreased. The agreement with the Billant & Chomaz prediction
was excellent. Moreover, it was demonstrated that there is a forward cascade of kinetic
and potential energy in the limit of strong stratification, with horizontal kinetic and
potential energy spectra of similar form to that in three-dimensional turbulence, that is

EK (kh) = C1ε
2/3
K k

−5/3
h , (1.5)

EP (kh) = C2

εP

ε
1/3
K

k
−5/3
h , (1.6)

where εK and εP are the mean dissipation rates of kinetic and potential energy
respectively and C1 and C2 are two constants corresponding to the Kolmogorov
and Oboukhov–Corrsin constants of three-dimensional turbulence. Here, kh, is the
magnitude of the one-dimensional wavenumber, i.e. if the spectrum is measured in
the x-direction, then kh = |kx |. Somewhat surprisingly, the two constants were found
to take the same value, C1 = C2 = 0.51. Lindborg (2006) suggested that this type of
stratified turbulence, found in the limit {Fh → 0, Fv ∼ 1} and exhibiting inertial-range

dynamics in the horizontal, can be the dynamic origin of the k
−5/3
h -range found in the

mesoscale atmospheric energy spectra (Nastrom, Gage & Jasperson 1984). It was also
demonstrated (Lindborg 2005) that the forward energy cascade of stratified turbulence
can be observed in the presence of system rotation, provided that it is not too strong.
In these simulations, hyperviscosity was used in order to reach the asymptotic state of
inertial-range dynamics. Using Navier–Stokes viscosity in their direct numerical sim-
ulations Riley & deBruynKops (2003) observed a dynamics exhibiting inertial-range
behaviour, with horizontal kinetic energy spectra in approximate accordance with
(1.5). It was later confirmed (Jim Riley, private communication) that their potential
energy spectra were also in approximate agreement with (1.6). Recently, Brethouwer
et al. (2007) carried out a set of direct numerical simulations with Navier–Stokes
viscosity and forcing in large-scale rotational modes. These simulations confirmed the
Billant & Chomaz scaling analysis and also showed inertial-range dynamics.

The aforementioned simulations were either initialized (Riley & deBruynKops
2003) or forced (Waite & Bartello 2004; Lindborg 2005, 2006; Brethouwer et al.
2007) only in rotational modes. Interpreting these results in the light of the vortical–
wave decomposition it would be tempting to conclude that the scaling lv ∼ u/N and
the forward energy cascade dynamics are properties of the vortical part of the field,
but probably not of the wave part. However, this is questionable. The dynamic basis
of the vortical–wave decomposition is the assumption of two fields which are only
weakly interacting because they develop on two separate time scales whose ratio is
of the order of Fv � 1, in accordance with (1.4). If Fv ∼ 1 this basis is lost and there
is no reason to believe that rotational and divergent modes should be dynamically
decoupled, as also pointed out by Billant & Chomaz (2001). On the contrary, we
can expect that the nonlinear interactions between rotational and divergent modes
are so strong that a decomposition of the field would show no qualitative differences
between the two types of modes when inertial-range quantities are considered. It can
also be expected that it is not of crucial importance whether the forcing is applied in
rotational or divergent modes, as long as it does not generate large-scale dynamics
violating the condition Fv ∼ 1. If a traditional type of phenomenology is applicable
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to the inertial-range dynamics of stratified turbulence, these dynamics should not be
strongly influenced by the forcing, but rather possess some degree of universality. In
this paper, we will investigate this numerically.

2. Simulations
We perform box simulations of the Boussinesq equations in a non-rotating frame

of reference:

∂u
∂t

+ (u · ∇)u = −∇p + Nezφ + Du + f , (2.1)

∂φ

∂t
+ (u · ∇)φ = −Nw + Dφ, (2.2)

∇ · u = 0. (2.3)

Here, u is the velocity field, Du and Dφ are diffusion terms, p is the pressure,
f is forcing, ez is the vertical unit vector, N is the Brunt–Väisälä frequency,
φ = gT ′/(NTo), where T ′ and To are the fluctuating and equilibrium potential
temperatures, respectively, g is the acceleration due to gravity and w = ez · u is
the vertical velocity component.

The simulations are performed in a similar way to Lindborg (2006) but with a
different code. The diffusion terms are set as

Du =

(
−νh�

4
h − νv

∂8

∂z8

)
u, Dφ =

(
−κh�

4
h − κv

∂8

∂z8

)
φ, (2.4)

where �h is the horizontal Laplace operator, νh and κh are horizontal diffusion
coefficients and νv and κv are vertical diffusion coefficients. The use of high-order
hyperdiffusion with different diffusion coefficients in the vertical and horizontal
directions limits the influence of viscosity to the very highest wavenumbers and
allows us to use higher resolution in the vertical than in the horizontal direction.
In all simulations the degree of stratification is strong, with Fh � 1, and in all
simulations we use highly elongated boxes, since the ratio between the vertical and
the horizontal length scales of the flows is much smaller than unity. One of the
most important parameters is the vertical grid spacing �z. Brethouwer et al. (2007)
showed that a necessary condition for the appearance of stratified turbulence which
is not strongly affected by viscous effects at vertical scale lv = u/N is that lO/η > 1,
where lO = ε1/2/N3/2 is the Ozmidov length scale and η is the Kolmogorov scale.
This condition was derived from stratified turbulence theory and was also confirmed
numerically. Since the Kolmogorov scale is to be resolved in a DNS, it is required
that �z < lO in a DNS of stratified turbulence. With hyperviscosity of the type which
we employ in this study, Brethouwer et al. (2007, Appendix A) showed that it is
sufficient that the vertical viscous length scale is of the order of the Ozmidov length
scale or even somewhat larger for the appearance of stratified turbulence which is not
strongly affected by viscous effects at vertical scale lv = u/N . In accordance with this
analysis we choose �z ≈ 7lO . We apply this resolution criterion in all simulations.

A pseudospectral code with periodic boundary conditions in all three directions is
employed. The time integration of the nonlinear terms is carried out using a fourth-
order Runge–Kutta scheme and the viscous terms are exactly integrated. Aliasing
errors are avoided by a combination of phase shifting and truncation, according to
the method described by Canuto et al. (1988). The horizontal sides of the box are set
so that Lx = Ly = 2π and in each simulation we apply forcing either in rotational or
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divergent modes. We call the simulations with forcing in rotational modes ‘r-runs’ and
the simulations with forcing in divergent modes ‘d-runs’. The forcing injects energy
into the system at a rate P = 1. In r-runs the forcing scheme is the same as used
by Brethouwer et al. (2007). Forcing is applied exclusively in modes for which kv =0
with initial fields having a random seed energy in modes for which kv �= 0. This
procedure will lead to a spontaneous formation of layers whose thickness scales as
lv ∼ u/N . The forcing has a two-dimensional spectrum with a sharp peak at kf

ρ = 3,

where kρ =
√

k2
x + k2

y is the two-dimensional horizontal wavenumber. Non-rotational

modes for which kv = 0 belong to a special case which is not of much interest in this
study. The horizontal velocity and the horizontal divergence of horizontal velocity are
zero in these modes. Forcing in these modes leads to the generation of linear internal
waves with frequency N and all kinetic energy in the vertical velocity component.
Energy will spread very slowly from these waves to other regions in Fourier space.

When forcing is applied in divergent modes we therefore choose to force in modes
for which kv �= 0. This makes a crucial difference between r-runs and d-runs. In r-runs
the vertical length scale which develops in the flow will adjust so that Fv ∼ 1. In d-runs,
on the other hand, a vertical length scale lv = 2π/kf

v is imposed on the flow and if it
is much larger than u/N we can no longer expect that the flow will reach a state for
which Fv ∼ 1. Therefore we will choose kf

v 	 kf
ρ , because our aim is to investigate the

dynamics in the limit {Fh → 0, Fv ∼ 1}. Thus, the d-runs are not designed to investigate
whether a state for which {Fh → 0, Fv ∼ 1} spontaneously develops from a completely
different state, but rather to investigate whether forcing in divergent modes for which
kf

v 	 kf
ρ will give the same type of dynamics as with forcing in rotational modes. The

internal gravity wave fields in the atmosphere and the oceans are dominated by waves
with much larger horizontal than vertical wavelengths (see e.g. Dewan 1997 and refer-
ences therein for atmospheric data and e.g. Garret & Munk 1975 for oceanic data). In
a rudimentary way, the choice kf

v 	 kf
ρ therefore mimics a state which is not too far

from what we can expect to see in nature. It should also be noted that the fixed value
of kf

v with kf
v 	 kf

ρ does not mean that Fv is prescribed during the whole simulation. It
only means that we choose an initial value of Fv which is not too far from unity. In this
respect there is an important difference between the simulations presented in this paper
and those carried out by Waite & Bartello (2006), who studied stratified turbulence
forced in wave modes for which kf

v = kf
ρ . In d-runs we vary the vertical forcing

wavenumber kf
v from run to run, while we always force in the horizontal wavenumber

band kρ ∈ [1 5], where we define the typical horizontal forcing wavenumber as kf
ρ = 3.

In the Appendix we give a complete description of the forcing scheme.
The simulations are listed in table 1. We divide them into six sets called A, B, C, D,

E and F. In each of these sets one r-run (for example Ar) and one or several d-runs
(for example Ad1, Ad2, Ad3 and Ad4) are carried out. The end state from the r-run
is used as the initial state for each of the d-runs. The only parameter which is varied
between the d-runs in each set is the vertical forcing wavenumber kf

v . In the set of
A-runs one additional run, Arex, is carried out with forcing in rotational modes. In
this run we have extended the height of the box by a factor of eight compared to the
Ar-run, leaving all other parameters unchanged. Run Aex will be discussed in § 3.1.

3. Results
The r-runs show very similar dynamics to the simulations by Lindborg (2006). A

stationary state is reached quite fast, in which the energy injected at large horizontal
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Run Fh Fv Ri k′
v

LxP (kf
v )3

N 3

EP

EK

εP

εK

Lx

Lz

Nx × Nz

�z

lO
νh = κh νv = κv

Ar 4.3 × 10−2 1.2 0.09 0.32 16 256 × 64 7.1 1.5 × 10−13 6.0 × 10−18

Arex 5.4 × 10−2 1.3 0.14 0.34 2 256 × 512 7.2 1.5 × 10−13 6.0 × 10−18

Ad1 9.2 × 10−2 0.5 1.0 1 0.03 0.17 0.47 16 256 × 64 7.8 1.5 × 10−13 6.0 × 10−18

Ad2 7.0 × 10−2 1.1 1.2 3 0.69 0.14 0.51 16 256 × 64 7.7 1.5 × 10−13 6.0 × 10−18

Ad3 3.6 × 10−2 0.9 1.8 5 3.2 0.42 0.59 16 256 × 64 6.8 1.5 × 10−13 6.0 × 10−18

Ad4 1.9 × 10−2 0.9 1.7 9 18.8 0.26 0.25 16 256 × 64 6.8 1.5 × 10−13 6.0 × 10−18

Br 6.5 × 10−2 2.1 0.15 0.45 10 384 × 48 7.4 8.0 × 10−15 1.5 × 10−15

Bd1 1.9 × 10−1 0.6 0.9 1 0.03 0.11 0.46 10 384 × 48 8.8 8.0 × 10−15 1.5 × 10−15

Bd2 9.0 × 10−2 0.9 1.3 3 0.79 0.13 0.50 10 384 × 48 7.5 8.0 × 10−15 1.5 × 10−15

Bd3 4.6 × 10−2 0.8 2.5 5 3.6 0.47 0.59 10 384 × 48 7.7 8.0 × 10−15 1.5 × 10−15

Cr 1.6 × 10−2 0.9 0.13 0.35 40 384 × 96 7.1 8.0 × 10−15 3.7 × 10−22

Cd1 3.1 × 10−2 0.4 1.2 1 0.03 0.32 0.52 40 384 × 96 7.9 8.0 × 10−15 3.7 × 10−22

Cd2 2.7 × 10−2 1.1 1.0 3 0.79 0.16 0.46 40 384 × 96 7.5 8.0 × 10−15 3.7 × 10−22

Cd3 1.7 × 10−2 1.1 1.2 5 3.6 0.27 0.49 40 384 × 96 7.4 8.0 × 10−15 3.7 × 10−22

Cd4 9.5 × 10−3 1.0 1.0 8 14.9 0.29 0.42 40 384 × 96 7.3 8.0 × 10−15 3.7 × 10−22

Dr 3.6 × 10−3 0.7 0.09 0.32 256 1024 × 128 7.1 7.2 × 10−18 6.5 × 10−29

Dd1 4.4 × 10−3 0.4 1.3 1 0.11 0.62 0.51 256 1024 × 128 8.2 7.2 × 10−18 6.5 × 10−29

Dd2 3.2 × 10−3 1.1 0.8 3 2.9 0.44 0.42 256 1024 × 128 7.4 7.2 × 10−18 6.5 × 10−29

Dd3 2.8 × 10−3 1.0 0.8 4 6.8 0.41 0.39 256 1024 × 128 7.1 7.2 × 10−18 6.5 × 10−29

Er 1.8 × 10−2 1.3 0.15 0.46 32 1024 × 128 5.3 7.2 × 10−18 2.5 × 10−22

Ed 1.4 × 10−2 0.7 1.3 5 3.2 0.53 0.53 32 1024 × 128 5.4 7.2 × 10−18 2.5 × 10−22

Fr 1.2 × 10−2 0.8 0.11 0.34 196 512 × 32 6.7 7.8 × 10−16 7.0 × 10−24

Fd 1.2 × 10−2 0.8 0.9 1 1.4 0.32 0.45 196 512 × 32 6.9 7.8 × 10−16 7.0 × 10−24

Table 1. Overview of the numerical and physical parameters used in the simulations. Ri is the
Richardson number defined by (4.1), k′

v is the normalized forced vertical wavenumber defined
by (3.2), EP /EK is the mean ratio of potential to kinetic energy, Lx/Lz is the ratio of the
horizontal to vertical domain size, and Nx and Nz are the number of modes in the horizontal
respectively vertical direction.

scales cascades to the very smallest scales where it is dissipated, leading to a balance
between power input and mean dissipation. There is a spontaneous formation of layers
whose thickness scales as lv ∼ u/N , in accordance to the Billant & Chomaz (2001)
analysis. This is reflected in figure 1(a), showing a horizontal velocity component
in a vertical plane from run Cr. Since the forcing has no vertical variation the
layered structure in this particular figure is the result of the inherent dynamics of the
Boussinesq equations.

The one-dimensional normalized and compensated horizontal spectra of kinetic
and potential energy from some of the r-runs are plotted in figure 2. All the spectra
show a rather clean inertial range in accordance with (1.5) and (1.6). However, the
spectra from the simulations with strongest stratification and most grid points exhibit
bottlenecks, a phenomenon which was not generally observed in the simulations by
Lindborg (2006). The bottleneck is the ‘bump’ seen between the k

−5/3
h -range and

the dissipation range where the spectrum falls off exponentially. Such a bottleneck
is also found in the kinetic energy spectrum of isotropic Navier–Stokes turbulence
(see e.g. Kaneda et al. 2003). It has been demonstrated (Lamorgese, Caughey &
Pope 2005) that the bottleneck is magnified when hyperviscosity is used instead of
Navier–Stokes viscosity and with higher-order hyperviscosity the bottleneck tends to
be larger. In the case of a narrow inertial range the slope of the energy spectrum and
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(a)

(b)

(c)

(d)

(e)

Figure 1. Snapshots of the horizontal velocity in a vertical plane. (a) run Cr, (b) Cd1, (c)
Cd2, (d) Cd3, (e) Cd4. The vertical dimension is stretched by a factor of five.
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Figure 2. The compensated horizontal one-dimensional kinetic energy spectra EK (kh)k
5/3
h /ε

2/3
K

(thick lines) and potential energy spectra EP (kh)k
5/3
h ε

1/3
K /εP (thin lines). ——–, Ar; − − −,

Br; · · · · ·, Cr; −·−·−, Dr. Straight line: C1 = C2 = 0.47.

the Kolmogorov constant will be slightly different between simulations with different
orders of hyperviscosity. In our case, there may be several different parameters apart
from the hyperviscosity determining the size of the bottleneck, such as the ratio
between the vertical and horizontal resolution scale and the degree of stratification.
In this study, we will not investigate this phenomenon further. As long as we use
hyperviscosity we have to disregard the bottleneck as an anomalous result. The
constants C1 and C2 are generally found to take approximately the same value in
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Figure 3. The compensated horizontal two-dimensional spectra, extracted from run Cr, of

the kinetic energy EK (kh)k
5/3
h /ε

2/3
K ——–, rotational energy ER(kh)k

5/3
h /ε

2/3
K − − −, divergent

energy ED(kh)k
5/3
h /ε

2/3
K −·−·− and potential energy EP (kh)k

5/3
h ε

1/3
K /εP · · · · ·. Straight line:

C1 = C2 = 0.66.

each simulation, so that the normalized potential and kinetic energy spectra fall
on top of each other. However, the value is generally a little lower than the value
0.51 calculated by Lindborg (2006). In figure 2 we have drawn the straight line
C1 = C2 = 0.47 for comparison.

In order to decompose the kinetic energy spectrum into rotational and divergent
parts, it is appropriate to consider the two-dimensional spectrum instead of the one-
dimensional spectrum. If the one-dimensional spectrum displays a k

−5/3
h -range the

same is true for the two-dimensional spectrum and the relation between the two
constants is (see Lindborg 1999)†

C ′ =
22/3π

(
1
3

)
33/2

(


(
2
3

))2
C ≈ 1.40C, (3.1)

where C ′ and C are the constants of the two-dimensional and one-dimensional
spectra, respectively. The two-dimensional normalized and compensated kinetic and
potential energy spectra from run Cr and run Dr are plotted in figures 3 and 4
respectively, where we also have decomposed the energy spectrum into the spectra
of rotational and divergent modes. In these figures, we have also drawn the straight
line C ′

1 = C ′
2 = 0.66 which is the value corresponding to C1 =C2 = 0.47. In the inertial

range, the normalized kinetic and potential energy spectra fall on top of each other
in each case. It should be noted, however, that this does not mean that there is
equipartition between kinetic and potential energy in the inertial range. On the other
hand, it means that the ratio, EP (kρ)/EK (kρ), between the potential and kinetic energy
spectra is equal to the ratio εP /εK , which is in the range [0.3 0.5] for the r-runs (see
table 1). The rotational part of the kinetic energy spectrum shows a clear peak at the

† When we prepared this manuscript we discovered that there is a misprint in Lindborg (1999).
The middle term in equation (50), relating the structure function Kolmogorov constant to the
one-dimensional Kolmogorov constant, should be divided by 2π. This equation together with
equation (52) in Lindborg (1999) give the relation (3.1).
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Figure 4. The compensated horizontal two-dimensional spectra, extracted from run Dr.
Lines as in figure 3.

forcing wavenumber, reflecting the fact that energy is injected into rotational modes
at this wavenumber. In the inertial range, the rotational and divergent parts of the
kinetic energy spectra are almost equal in magnitude. This is a general observation
for all r-runs. Since the energy is injected exclusively into rotational modes there
must be a substantial energy transfer from rotational to divergent modes at scales
comparable to the injection scale and in the inertial range the dynamics has reached
an equilibrium with approximate equipartition of kinetic energy between rotational
and divergent modes. This clearly indicates that the two types of modes are not
dynamically decoupled from each other. A more reasonable interpretation is that
there is a single type of dynamics giving rise to the two spectra.

We now turn to the d-runs. It was found that the evolution of these runs was very
sensitive to variations of the vertical forcing wavenumber kf

v . The time evolution of
kinetic and potential energy is plotted in figure 5 for the Ad-runs and the Cd-runs.
In figure 5 and the figures thereafter, the time is normalized by P −1/3l

2/3
h , where P

is the power input by the forcing and lh = 2π/kf
ρ . The curves from the two sets of

runs are very similar and the simulations from the other sets also showed very similar
curves. To simplify the presentation we introduce the normalized vertical forcing
wavenumber

k′
v = kf

v

Lz

Lx

. (3.2)

When forcing is applied at the smallest non-zero vertical wavenumber in the box,
k′

v = 1, there is a substantial initial growth of both kinetic and potential energy. The
energy curves also oscillate with a rather well-defined frequency. In all d-runs with
forcing at k′

v = 1 these oscillations were present, suggesting that internal gravity waves
of a particular frequency were excited. Indeed, a Fourier analysis of the time series
showed a very sharp peak at a particular frequency for each of these runs. Assuming
that the vertical wavelength of the excited wave corresponds to the vertical forcing
wavenumber one can determine the corresponding horizontal wavenumber by using
the dispersion relation for internal gravity waves. In all these cases we determine the
horizontal wavenumber of the internal wave as kρ ≈ 1.1. In other words, waves are
excited at the smallest non-zero horizontal wavenumbers in the box. None of the
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Figure 5. The time evolution of (a) the kinetic energy EK/(PLh)
2/3 and (b) potential energy

EP /(PLh)
2/3. ——–, Ad1; − − −, Ad2; · · · · ·, Ad3; −· ·−· ·−, Ad4. The time evolution of

(c) the kinetic energy EK/(PLh)
2/3 and (d) potential energy EP /(PLh)

2/3. ——–, Cd1; − − −,
Cd2; · · · · ·, Cd3; −· ·−· ·−, Cd4.
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Figure 6. The time evolution of the sum of the kinetic and potential energy dissipation
(εK + εP )/P . ——–, Cd1; − − −, Cd3.

runs with forcing at k′
v = 1 reach a stationary state in which dissipation is equal to

energy injection. In figure 6(a), we see the time evolution of total dissipation from
run Cd1, with k′

v = 1. The dissipation is calculated as in Lindborg (2006). Typically,
the dissipation is a little less than unity. Moreover, there are rather large intermittent
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Figure 7. The time evolution of the kinetic energy in the shear mode normalized with the
total kinetic energy. ——–, Cd1; − − −, Cd2; · · · · ·, Cd3; −· ·−· ·−, Cd4.

bursts of high-amplitude dissipation, possibly a result of localized wave breaking
events. This curve can be compared with the dissipation curve of run Cd3, with
k′

v = 5, also shown in figure 6. In this run, a statistically stationary state is reached
quite fast, in which dissipation fluctuates around unity, which means that there is a
balance between power input and dissipation. It was also found that the evolution
of kinetic energy in modes for which kρ = 0, so-called ‘shear modes’, is strongly
dependent on the vertical forcing wavenumber. In runs with small k′

v we generally see
an increase of energy, while in runs with large k′

v we see a decrease of energy in shear
modes. This is illustrated in figure 7 where we have plotted the time evolution of
kinetic energy in the shear modes from the Cd-runs. It has been observed in several
recent numerical studies (Smith & Waleffe 2002; Laval, McWilliams & Dubrulle 2003;
Waite & Bartello 2004, 2006) that a substantial amount of energy often accumulates
in the shear modes and in many cases this accumulation continues through the whole
simulation, so that a stationary state is not reached. Our results show that this growth
increases significantly with decreasing vertical forcing wavenumber, which suggests
that the growth of energy in shear modes is a characteristic feature of the regime
Fv → 0, but not of the regime {Fh → 0, Fv ∼ 1}.

In table 1, Fh is listed for all runs and Fv is listed for all d-runs. The Froude
numbers are calculated as Fv = ukf

v /N and Fh = ukf
ρ /N , where u =

√
EK and EK is

the mean kinetic energy. The value of u was obtained from the end state of each run.
As we can see, Fh � 1 in all runs. For the d-runs with forcing at k′

v =1, Fv is generally
smaller than unity, while in the other d-runs we generally have Fv ≈ 1.0, with some
variations. This is illustrated in figure 8, where we have plotted the time evolution of
Fv for the Cd-runs. This time evolution of Fv suggests that the flow adjusts to a state
where Fv ∼ 1.

Similar layered structures to those we saw in the r-runs also develop in the d-runs.
However, the thickness of the layers is determined by the vertical forcing wavenumber,
rather than the inherent dynamics of the Boussinesq equations. This is clear from
figure 1. As already pointed out, figure 1(a) shows a horizontal velocity component
in a vertical plane from run Cr. Figure 1(b–e) shows corresponding plots from runs
Cd1–Cd4, which are forced in successively larger vertical wavenumbers. The thickness



94 E. Lindborg and G. Brethouwer

10 20 30 40
t

0

0.5

1.0

1.5

2.0

Fv

Figure 8. Time evolution of Fv for C-runs. Symbols are the same as in figure 7.

of the layers which can be observed in each plot corresponds to the vertical forcing
wavenumber in each run. Comparing the four plots from the d-runs with the plot
from the r-run, we see that the d-run that is most similar to the r-run is Cd3 with
forcing at k′

v = 5. The results from this run were in all respects very similar to the
results from the r-run. The same type of observation can also be made for the other
sets of runs. By adjusting the vertical forcing wavenumber so that it corresponds to
the ‘natural’ vertical length scale which we observe in the r-run we can produce the
same type of dynamics in a d-run as in the r-run.

In figure 9 we see the compensated and normalized two-dimensional horizontal
kinetic and potential energy spectra from runs Cd1–Cd4. The kinetic energy spectra
are also divided into the spectra of rotational and divergent modes. At low
wavenumbers the divergence spectra are larger in magnitude than the rotational
spectra because forcing is applied in divergent modes. In all cases, the spectra show
a k−5/3

ρ -dependence and in all runs, except run Cd4 with forcing in k′
v = 8, the

normalized kinetic and potential energy spectra fall on top of each other. Run Cd4
is unusual in that the vertical forcing wavenumber is fairly large, producing layered
structures with a thickness (see figure 1e) which is smaller than the ‘natural’ layer
thickness of the layers in run Cr (see figure 1a). In run Cd1 with forcing in k′

v = 1 the
divergent mode spectrum is larger in magnitude than the rotational mode spectrum,
while in runs Cd2 and Cd3 kinetic energy is approximately equipartitioned between
divergent and rotational modes in the inertial range. This is similar to what we
obtained in the r-runs. However, the magnitude of the normalized spectra decreases
with increased vertical forcing wavenumber kv , which means that the constants C ′

1

and C ′
2 are different for each run. It should be noted, however, that the runs Cd1

and Cd2 have not reached a stationary state when we stop them. So the fact that
the normalized spectra from these are larger in magnitude than the spectra from
the r-run may be a result of the lack of stationarity. In run Cd3, where the vertical
forcing wavenumber matches the ‘natural’ layer thickness observed in the Cr-run, the
two-dimensional horizontal spectra are very similar to the spectra from the Cr-run,
with approximately the same magnitude in the inertial range. The same type of
observation can be made for the other sets of simulations. In figure 10, we see the
compensated and normalized two-dimensional horizontal spectra from runs Dd1 and
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Figure 9. The compensated horizontal two-dimensional spectra, extracted from (a) run Cd1,
(b) Cd2, (c) Cd3 and (d) Cd4. Lines as in figure 3.
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Figure 10. The compensated horizontal two-dimensional spectra, extracted from (a) run
Dd1 and (b) Dd3. Lines as in figure 3.

Dd3. The spectra from both runs show a k−5/3
ρ -dependence. However, the spectra

from run Dd1, with forcing applied in k′
v = 1, is larger in magnitude and there is

more energy in divergent modes than in rotational modes in the k−5/3
ρ -range. Like

run Cd1, Dd1 does not reach a stationary state and Fv is considerably smaller than
in the runs with larger vertical forcing wavenumber k′

v . The spectra from run Dd3
with k′

f = 4, on the other hand, are very similar to the spectra from run Dr. The
compensated kinetic and potential energy spectra fall on top of each other. There is
equipartition of kinetic energy between divergent and rotational modes in the inertial
range, and we find that C ′

1 ≈ C ′
2 ≈ 0.66, just as in run Dr.
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3.1. Frequency spectra from individual Fourier modes

The most straightforward way to detect internal gravity waves is to calculate frequency
spectra of divergent and potential energy from individual Fourier modes. If waves
are present such spectra should show distinctive peaks at the internal wave frequency

ωiw =
Nkρ√
k2

ρ + k2
z

=
Nα√
1 + α2

, (3.3)

where α = kρ/kz. Waves can be expected to be more prevalent in modes where the
aspect ratio, α, is of the order of unity or larger than in modes with a very low aspect
ratio. Our simulations are deliberately designed so that the aspect ratio for most
modes is quite small, since the height of our boxes generally is much smaller than the
width. To investigate the presence of waves in a continuous range of aspect ratios
we have performed a simulation using the same parameters as in the Ar-run, except
that we have extended the vertical side of the box by a factor of eight. We call this
run Arex. This simulation also serves as a check that the dynamics is not significantly
changed with a thicker box. We found that the horizontal spectra from run Arex were
almost indistinguishable from the spectra from run Ar, indicating that the dynamics in
these two runs were very similar. We have calculated frequency spectra of rotational,
divergent and potential energy from a large number of individual Fourier modes
for run Arex, varying kρ and α. In order to obtain good statistics we have averaged
the spectra over shells: kρ ∈ [n − 1/4, n + 1/4], for different integer values of n. In
general, we find that waves are more accentuated in modes with low values of kρ ,
corresponding to large horizontal scales in the box, and in modes where the aspect
ratio is not too small. In high-wavenumber modes with low aspect ratio there are
no waves present at all. To illustrate that the wave–vortical decomposition is valid
for low-wavenumber modes, we plot the spectra from the mode kρ = 1, α = 1/4 in
figure 11(a). As we can see, the divergent and potential energy spectra both have
a clear peak at the internal wave frequency and there is also equipartition between
divergent and potential energy near the peak, which should be the case for internal
gravity waves. The rotational energy spectrum, on the other hand, does not show any
peak at the internal wave frequency. Most of the rotational energy is contained in
frequencies which are much smaller than ωiw . In figure 11(b) we see the frequency
spectra of divergent energy for kρ = 1 and different α. The peak at the internal wave
frequency is visible for all α, even for such a low value as α = 1/20. However, the peak
becomes broader with decreasing α. We can compare this figure with figure 11(c),
where we have plotted the divergence frequency spectra for kρ =20 and different
α. For α = 1 there is indeed a peak at ωiw , but it is quite broad. For α =2/5, the
peak has already shifted towards higher frequencies and broadened so much that
it is questionable if there are any internal waves in this mode. For α =1/5, there
is no sign of any peak. In figure 11(d) we have plotted the rotational frequency
spectrum together with the divergence frequency spectrum for this mode. As can be
seen, these two spectra fall on top of each other and most of the energy is contained
in frequencies which are a little larger than ωiw . Our interpretation of the frequency
spectra which we have calculated from a large number of individual modes, of which
we have presented a selection, is that waves become less and less prevalent as the
cascade goes downscale. In the inertial range, there are only weak signs of waves and
in the most dynamically important low-aspect-ratio modes there are no waves at all.
In these modes, frequency spectra of rotational and divergent modes fall on top of
each other.
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Figure 11. Frequency energy spectra from run Arex. (a) kρ = 1, α = 1/4; ——–, divergent;
− − −, buoyant; · · · · ·, rotational mode; (b) kρ = 1, divergent modes; ——–, α = ∞; − − −, α =
1/4; · · · · ·, α = 1/10; −·−·−, α = 1/20; (c) kρ = 20, divergent modes; ——–, α = 1; − − −,
α = 2/5; · · · · ·, α = 1/5; −·−·−, α = 2/15; (d) kρ = 20, α =1/5; ——–, divergent; − − −,
rotational mode.

4. Comparison with observational data
Many observational studies (e.g. Vinnichenko 1970; Nastrom et al. 1984; Cho,

Newell & Barrick 1999; Lindborg 1999) show kinetic and potential mesoscale energy
spectra of the form k−5/3 in the upper troposphere and lower stratosphere. Recent
numerical simulations (Koshyk & Hamilton 2001; Skamarock 2004; Kitamura &
Matsuda 2006; Takahashi, Hamilton & Ohfuchi 2006) have been able to reproduce
such mesoscale energy spectra. Koshyk & Hamilton (2001) argued on the basis of
their simulation results that the mesoscale motions are undergoing a forward energy
cascade and Cho & Lindborg (2001) drew the same conclusion on the basis of
structure function measurements from aircraft data. Lindborg (2006) suggested that
stratified turbulence with an associated forward energy cascade may be the dynamic
origin of the observed spectra. Koshyk & Hamilton (2001) found that kinetic energy
was approximately equipartitioned between rotational and divergent modes in their
simulated mesoscale spectra. Lindborg (2007) analysed structure functions calculated
from aircraft data in the upper troposphere and lower stratosphere (Lindborg 1999)
and showed that the energy content in rotational and divergent modes are of the
same order of magnitude in the mesoscale range. The present simulation results are
consistent with these observations and thus give additional support to the stratified
turbulence interpretation of the mesoscale energy spectra of the upper troposphere
and lower stratosphere.

In this study, we have found that the forward energy cascade of stratified turbulence
may not only be produced by forcing in rotational modes but also by forcing in
divergent modes, provided that the forcing does not excite motions which violate
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the condition Fv ≈ 1. This result suggests that this type of turbulence may also be
frequently prevalent in the ocean where excitation of internal gravity waves by wind
surface forcing and bottom drag are supposed to be dynamically very important. It
may also be the case that a substantial fraction of the energy which is injected by wind
and tidal forcing into large-scale quasi-geostrophic rotational modes is transferred to
smaller scales, as suggested by the very nice observational study of Scott & Wang
(2005). Regardless of the nature of the forcing we can expect to see the formation
of a downscale cascade of stratified turbulence with an inertial range starting at
some horizontal wavenumber. This wavenumber may be different from case to case,
depending on the nature of the forcing. However, a characteristic feature of stratified
turbulence is that the advection term including the vertical velocity is of leading order
in the dynamic equation and this cannot be the case in the quasi-geostrophic limit.
Therefore, a lower limit of the smallest horizontal wavenumber of the forward energy
cascade is set by the Rossby deformation radius.

Oceanic wavenumber spectra corresponding to spatial scales between ten and a
couple of hundred metres in the vertical and between a couple of hundred metres and
ten kilometres or more in the horizontal are generally interpreted as spectra of linear
or weakly nonlinear internal gravity waves (Garret & Munk 1972, 1975, 1979). The
average Richardson number in what is supposed to be the internal wave field is often
of the order of unity (Munk 1981). The average Richardson number is here defined as

Ri =
N2〈

∂u

∂z

∂u

∂z

〉 , (4.1)

where 〈. . .〉 is a space–time-scale average over all motions in the wavenumber band
of interest. The typical vertical Froude number corresponding to a certain vertical
wavenumber band can be estimated in terms of the average Richardson number as

Fv ∼ Ri−1/2. (4.2)

As we can see in table 1, we found Ri ≈ 1 in our simulations. The inverse of the
average Richardson number corresponding to a certain wavenumber band can be
calculated by integration of the vertical shear spectrum. In figure 12, we have plotted
the normalized shear spectra from four of our runs together with data points from
Gargett et al. (1981), from different measurements in the interior of the ocean. In these
studies the Ozmidov wavenumber, kb = 1/lO , was measured to about 1 c.p.m. (cycles
per metre). The observational shear spectra thus correspond to vertical scales between
1 and 100 m and our simulated shear spectra would correspond to vertical scales from
about 10 to 100 m. In the figure, we have also plotted a line corresponding to a non-
normalized spectrum of the form cN2k−1

v , with c = 0.75. It is interesting to note that
the observational spectra also give a Richardson number of the order of unity when
they are integrated, either over the wavenumber band [0.01 0.1] c.p.m. (corresponding
to wavelengths between 10 and 100 m) or over the wavenumber band [0.1 1] c.p.m.
(corresponding to wavelengths between 1 and 10 m). We can thus make the estimate
Fv ∼ Ri−1/2 ≈ 1 in both these wavenumber bands. This leads us to the suggestion that
stratified turbulence of the type we have seen in this study can make an important con-
tribution to oceanic dynamics at vertical scales up to at least 100 m. This would imply
that the horizontal kinetic and potential energy wavenumber spectra sometimes should
be of the form (1.5) and (1.6) in a wavenumber range corresponding to much larger
horizontal wavelengths, presumably from about 10 or 100 m up to about 10 km. To
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Figure 12. Vertical wavenumber spectra of vertical shear measured in the ocean (symbols;
reproduced from Gargett et al. 1981) and extracted from the simulations (lines). ——–, run
Dr; − − −, run Dd2; −·−·−, run Cr; · · · · ·, run Cd3. The spectra are normalized by (εN )1/2

and the wavenumber is normalized by lO . The straight line represents the k−1
v slope.

investigate if this is consistent with observations we have searched the literature for re-
ported measurements of oceanic horizontal energy spectra. We have found no reports
which are inconsistent with the stratified turbulence interpretation and we have found
several reports which are fully consistent. Here, we will briefly review some of these.

Most measured horizontal spectra from the ocean are temperature spectra or
potential energy spectra derived from temperature spectra, using the assumption
that vertical displacements of fluid particles are isothermal. Most measurements were
made in the 1960s and the 1970s. In figure 13 we have reproduced the horizontal
potential energy spectra constructed by Dugan, Morris & Okawa (1986) from
different measurements at different locations in the oceans, most of which having
been reported elsewhere in the literature. For comparison we have also inserted a
straight line representing a curve of the form k

−5/3
h . The line captures the general

trend of the spectra quite well; in particular, in the middle range of wavenumbers
corresponding to wavelengths between 100 m and 10 km or more, the measured
spectra are consistent with a power law of the form in equation (1.6). Fitting the
spectrum to the form (1.6) in this range and assuming that εP ∼ εK we can make the
estimate ε = εK + εP ≈ 10−9 m2 s−3, which is consistent with typical values of the mean
dissipation rate below the mixed layer in the ocean (see e.g. Gregg & Sanford 1988).
The data points represented by dots in the middle range of wavenumbers are from
measurements by Katz (1973). Katz divides his measured spectra into two regions. In
the lower-wavenumber region, for wavenumbers between 0.01 and 1.0 c.p.km (cycles
per km), he finds that the spectra have power-law form k−n with n between 1.20 and
1.79, with a mean value of 1.54. Given the experimental accuracy, this is compatible
with n= 5/3. For larger wavenumbers he finds that the spectra have a power-law
form with n= 2.3. Katz compares his results with the k−2

h model spectrum of Garret
& Munk (1972) and concludes that his spectra are consistently more shallow than
this for wavenumbers smaller than 1 c.p.km. He also points out that some previous
measurements have given similar results.

Voorhis & Perkins (1966) measured temperature wavenumber spectra and structure
functions in the near-surface thermocline in a region 200 km northwest of Bermuda.
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Figure 13. Horizontal wavenumber spectra of available potential energy in the ocean,
collected from different observations. Reproduced from Dugan et al. (1986). We have inserted

a straight line representing a k
−5/3
h -curve.

A thermistor mounted on a cable was towed at mean depth of 99 m around a
star-shaped pattern, so that spectra could be measured along tracks with different
orientation. Garret & Munk (1972) reference their measurements as giving support
for their suggestion that the spectrum should fall off as k−2

h . Voorhis & Perkins’ own
interpretation, however, is that they have measured a k−5/3-spectrum. Moreover, they
also report measurements of the horizontal temperature structure function, and these
give even stronger support for the k

−5/3
h -interpretation. If the temperature spectrum

falls off as k−5/3 in a certain wavenumber range, then the horizontal temperature
structure function should grow as ρ2/3 in the corresponding range of separations ρ

(Monin & Yaglom 1975). The horizontal temperature structure function, 〈δT δT 〉, is
the mean of the square of the difference, δT , between the temperatures at two points
at the same depth whose relative horizontal separation distance is ρ. If the potential
energy spectrum has the form (1.6), and if we make the common assumption that
particle displacements are approximately isothermal, then the temperature structure
function should have the form

〈δT δT 〉 =
T 2

z

N2
C ′′

2 εP ε
−1/3
K ρ2/3, (4.3)

where Tz is the vertical mean temperature gradient and (see Monin & Yaglom 1975)

C ′′
2 =

4π

Γ
(

5
3

) √
3
C2 ≈ 8.0 C2. (4.4)

In figure 14 we have reproduced the temperature structure function given by Voorhis &
Perkins. As can be seen, the data points follow the curve ρ2/3 very closely in a range of
separations between 100 m to 10 km. This is perhaps the strongest piece of evidence
that there may be a stratified turbulence cascade range in the ocean. Voorhis &
Perkins give the value Tz = 0.02 Km−1 for the mean vertical temperature gradient.
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Figure 14. Horizontal temperature structure function reproduced from
Voorhis & Perkins (1966).

From their figure 1, we can estimate the value of the buoyancy frequency to be
N = 0.02 s−1. Assuming that εP =0.4εK and C2 = 0.5, using (4.3) and (4.4) and the
values from figure 14, we obtain the estimate ε ≈ 3×10−7 m2 s−3. This is indeed higher
than what is normally measured in the thermocline. The measurements are made in
a rather active region in the upper summer thermocline, however, and therefore the
estimated value of ε is not unreasonably high.

Similar results, however with somewhat more spread, have been reported by Black &
Gluckman (1965), who measured temperature structure functions in the range of
separation between 100 m and 20 km at different depths in the northern Atlantic.
They found that the measured structure functions could be fitted to power laws ρn,
with n varying between 1/2 and 4/5 and most values usually being close to 2/3.
Williams (1968) measured temperature structure functions at depths 30 m, 60 m and
90 m in the open ocean. At 30 m and 60 m he found structure functions exhibiting
two power-law ranges: ρ1.1 at separations below a couple of hundred metres and ρ2/3

from a couple of hundred metres up to 10 km. At the depth 90 m he only found the
ρ1.1-range. Williams points out that his results are consistent with the measurements
by Lafond & Lafond (1967), who measured the thermal structure of the upper 240 m
in the Pacific ocean using large arrays of thermistors mounted on chains which
were towed behind a ship. Lafond & Lafond plot two average displacement spectra,
one in the shallow isotherm 13◦ C in the main thermocline, and one in the deep
thermocline 12◦ C. Each spectrum is averaged from twenty five data sets. They are
given as frequency spectra calculated from the time series of temperature recorded
on a moving ship. Given the speed of the ship the frequency range can be translated
to a wavenumber range of a couple of hundred metres up to about 10 km. Both the
spectra are consistent with a k−5/3-dependence, as is also pointed out by Lafond &
Lafond and indicated in their figure.
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Very few recent measurements of horizontal wavenumber spectra in the ocean are
reported in the literature, especially in the wavenumber range which is of particular
interest for us in this study. Solievev, Lukas & Hacker (2000) report measurements
of kinetic and potential energy spectra in the depth range from 20 to 250 m in the
western equatorial Pacific. The measurements have a great advantage over previous
measurements in that both velocity and density fluctuations have been measured, so
the spectra are really the spectra of kinetic and potential energy. The wavenumber
range is rather narrow, however, and furthermore it is just at the larger limit of the
range which is of particular interest for us. The smallest wavelength is just below
10 km and the largest is just below 100 km. Solievev et al. interpret their spectra
in the framework of the Garret & Munk internal wave model. However, the slope
of the spectra is very close to 5/3 and they can equally well be interpreted as the
spectra of stratified turbulence. Hollbrook & Fer (2005) have recently calculated
potential energy spectra from seismographic data records of the interior density
field from the ocean. They plot two spectra: the first is calculated from data taken
quite near the coast. This spectrum exhibits a very nice k−5/3-range at wavelengths
from about 100 m to several kilometres. The authors interpret this spectrum as one
of classical Kolmogorov turbulence, but we find that stratified turbulence is a more
reasonable explanation. The other spectrum is taken quite far away from the coast and
the authors interpret it as a gravity wave spectrum. However, it is rather similar to the
near-coast spectrum, having a slope which is very close to −5/3. It may be the case
that stratified turbulence was an important dynamic agent also in this case. However,
we cannot exclude the gravity wave explanation.

To measure the distribution of energy between rotational and divergent modes in
the ocean is, of course, very difficult. Despite all the difficulties such a measurement
was performed by Müller, Lien & Williams (1988). In the IWEX-experiment (Internal
Wave Experiment, see Briscoe 1975) measurement probes were mounted on the edges
of a large tetrahedron which was submerged in the ocean. With such a configuration
velocity measurements can be conducted simultaneously at three different points
at the same depth. At each depth the three points can be regarded as lying on a
circle with diameter d . With the base of the tetrahedron facing the bottom of the
ocean d will increase with increasing depth. Using the Gauss and Stokes integral
theorems the area-averaged vertical vorticity, ω, and horizontal divergence, ξ = ∇h · u,
can be estimated from the three simultaneous velocity measurements. Müller et al.
measured the frequency spectra of the area-averaged vorticity and divergence and
also calculated the variance of these quantities at different depths corresponding
to different values of the diameter d . Clearly, there can be no contribution to this
variance from scales which are considerably smaller than the diameter of the circle.
It is therefore reasonable to interpret the diameter-dependent variance as a kind
of filtered variance where the contribution from scales which are smaller than d is
filtered out. If Ψ (kρ) = k2

ρE
R(kρ) and Φ(kρ) = k2

ρE
D(kρ) are the wavenumber spectra

of vertical vorticity and horizontal divergence we would thus have

〈ωω〉(d) ∼
∫ kd

0

Ψ (kρ) dkρ, 〈ξξ〉(d) ∼
∫ kd

0

Φ(kρ) dkρ, (4.5)

where 〈ωω〉 and 〈ξξ〉 are the measured variances and kd ∼ 2π/d .† In figure 15 we have

† Arne Johansson (private communication) suggested that from Nyquist’s theorem it may be
argued that we instead should have kd ∼ π/d . But this is of minor importance for the comparison
we make in this study.
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Figure 15. 〈ωω〉 (black symbols, data; solid line connects the data points) and 〈ξξ〉 (open
symbols, data; dashed line connects the data points) vs. the dimater d . Data from Müller
et al. (1988).

plotted 〈ωω〉 and 〈ξξ〉, using the values measured by Müller et al. Both curves fall off
approximately as d−5/3. If all measurements had been taken at the same depth this
would correspond to energy spectra falling off as ER ∼ ED ∼ k−4/3

ρ , which is also the
spectral dependence inferred by Müller et al. (1988) under the assumption of vertical
homogeneity. However, this assumption is questionable and there is therefore a large
uncertainty attached to the estimated spectral dependence. What is more interesting
is that the two curves in figure 15 are so close to each other. Especially in the range
of diameters from 50 m up to 2 km they are very close to each other, indicating that
kinetic energy is approximately equipartitioned between rotational and divergent
modes at these scales. This is consistent with a stratified turbulence interpretation.

5. Summary and conclusions
We have performed a number of box simulations of strongly stratified turbulence

forced in either rotational modes (r-runs) or divergent modes (d-runs). The r-runs
confirmed the results already presented by Lindborg (2006). However, the parameters
we chose for these runs are not exactly the same as used by Lindborg (2006) and we
have not used exactly the same type of forcing scheme. We also used a completely
different code. Moreover, we have generally used a larger number of resolution points
in the vertical than was used by Lindborg (2006). In the r-runs the dynamics is
dominated by spontaneous layer formation at vertical scale lv ∼ u/N and a forward
energy cascade in the horizontal, controlled by strong nonlinear interactions. A
decomposition of the horizontal kinetic energy spectrum shows that kinetic energy is
approximately equipartitioned between rotational and divergent modes in the inertial
range, although the forcing is applied exclusively in rotational modes. This suggests
that there are strong nonlinear interactions between the two types of modes and
that their dynamics develop on a single time scale. Frequency energy spectra from
individual Fourier modes with horizontal wavenumber in the inertial range show few
signs of internal gravity waves and in relatively low-aspect-ratio modes there were no
such signs whatsoever. Rotational and divergence energy spectra fall on top of each
other in these modes. For aspect ratios of the order of unity waves are becoming less
and less prevalent for increasing kρ , that is as the cascade is going downscale. In the
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asymptotic limit of a very broad inertial range we expect to see no wave dynamics at
all in stratified turbulence.

The d-runs results were quite similar to the r-runs. However, an important difference
is that the vertical length scale is imposed by the vertical forcing wavenumber, k′

v , in
the d-runs. In the runs with k′

v = 1, internal gravity waves dominated the dynamics in
the largest possible wavelengths in the box and there was a constant increase of energy
throughout the simulations. Moreover, there was a substantial growth of energy in
shear modes (kρ = 0) in these runs. Shear modes represent all horizontal structures
that do not fit into the box. A growth of energy in shear modes can therefore be
interpreted as a tendency of the flow to form layers with a larger horizontal extent
than the box. An interesting question is whether these layers would grow indefinitely
or grow to a finite width if the same simulation were repeated with a much wider
box. On this matter, we can, of course, only speculate, but we find it very likely that
the layers would grow to a finite width. In stratified turbulence, the horizontal length
scale can be estimated using the classical Taylor (1935) relation

lh ∼ u3

ε
. (5.1)

In order to reach a statistically stationary state with 〈ε〉 =P , the horizontal side of
the box would thus need to be larger than u3/P . Assuming also that the flow must
satisfy the relation Fv ≈ 1, we obtain the condition

LxP
(
kf

v

)3

N3
� 1 (5.2)

for the flow to reach a stationary state. In table 1, we have listed the non-dimensional
number on the left-hand side of (5.2) for all d-runs. This condition is seen to
differentiate the d-runs that do reach a stationary state from those that do not.
The condition (5.2) only contains parameters which are determined from the start
of a simulation. We suggest that it can be used in future simulations of stratified
turbulence with forcing in vertical wavenumbers, to determine whether a simulation
can be expected to reach a stationary state or not. For example, in order to reach a
stationary state in a simulation with the same values of N , P and kf

v as in run Cd1,
the condition (5.2) suggests that we would have to make the box wider by a factor of
thirty. Apart from a much wider box, we would also need a much longer simulation
period in order to reach a stationary state.

A comparison with observational data indicates that stratified turbulence may
be prevalent not only at atmospheric mesoscales but also in the ocean at vertical
and horizontal scales which are traditionally thought to be dominated by internal
gravity waves. Observations from the ocean show that three characteristic features
of stratified turbulence are often found in this range of scales. First, the Richardson
number calculated from oceanic shear spectra in the range of vertical wavenumbers
up to 100 m is often of the order of unity, which is consistent with Fv ∼ 1. Second,
horizontal potential energy spectra in the wavenumber range from 10 or 100 m up
to several kilometres often show an approximate k−5/3-dependence and temperature
structure functions have been found to show a corresponding ρ2/3-dependence. Third,
rotational and divergent modes have been observed to contain approximately the same
amount of energy in this range of scales, which is consistent with a stratified turbulence
interpretation. We do not claim that these three similarities constitute a full proof that
the dynamics of the ocean at these scales is dominated by stratified turbulence rather
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than internal waves. However, the similarities are sufficiently interesting to motivate
further observational studies.

As for the question raised in the introduction on whether stratified turbulence is
a universal phenomenon whose dynamics is independent of the forcing mechanism,
our results may be interpreted in two ways. On the one hand, the evolution of the
d-runs showed a very large sensitivity to the vertical forcing wavenumber, and the
magnitude of the horizontal energy spectra varied quite substantially between runs
with different k′

v . In the runs with k′
v = 1, the divergent mode spectra were also larger

in magnitude than the rotational mode spectra in the inertial range, contrary to
what was found in the other runs. These results indicate that stratified turbulence
can be sensitive to the forcing mechanism. On the other hand, all horizontal spectra
showed approximate k−5/3

ρ -dependence and the spectra from the d-runs that reached a
stationary state were very similar to the spectra from the r-runs with an approximate
equipartition of kinetic energy between rotational and divergent modes. These results
indicate that stratified turbulence may indeed be a universal phenomenon. As long
as the large-scale motions excited by the forcing satisfy Fv ≈ 1, the inertial-range
dynamics seems to be relatively independent of the type of forcing. Further studies
are necessary to give a more complete answer to the question of universality.

We thank Jim Riley for many fruitful discussions about stratified turbulence.
Financial support from the Swedish Research Council is gratefully acknowledged.

Appendix. Random forcing with constant energy injection rate in rotational or
divergent modes

The flow is driven by a random volume force f , implemented in Fourier space. The
force is divergence free (in three dimensions) and applied either in rotational modes
(r-runs) or horizontally divergent modes (d-runs). This is accomplished by using the
Craya–Herring frame with the two principal unit vectors

e1(k) =
k × ez

|k × ez|
, (A 1)

e2(k) =
k × (k × ez)

|k × (k × ez)|
, (A 2)

where k is the wave vector and ez is the unit vector in the vertical direction. It can be
shown that e1 and e2 determine the principal directions in Fourier space of rotational

and divergent modes respectively. The Fourier-transformed force, f̂ , will therefore
project onto e1 in r-runs and onto e2 in d-runs.

We require that the force injects energy into the system at a rate, P , which should
be controllable and constant in time. The energy injection rate can be written as
(Alvelius 1999)

P =
1

2

∑
f̂ · f̂

�
�t +

1

2

∑
(û · f̂

�
+ f̂ · û�), (A 3)

where �t is the time step, � denotes the complex conjugate, û is the Fourier-
transformed velocity and the summations are taken over all wave vectors. If the
force is random and uncorrelated with the velocity field, the second sum should be
small, and ideally equal to zero in the case when forcing is applied in infinitely many
modes. However, there is a problem here. Practically, forcing is, of course, applied in
a finite number of modes. If the first sum is to make a finite contribution in the limit
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�t → 0, the magnitude of the force has to scale as | f̂ | ∼ (�t)−1/2. Each term in the
second sum will therefore scale as (�t)−1/2 and there is a risk that this sum will make
a dominant contribution to the energy injection rate, even though the separate terms
tend to cancel each other. The energy injection rate will then fluctuate substantially
which can also lead to numerical problems. To avoid this, we design the forcing in
such a way that the second sum in (A 3) is exactly equal to zero at each time step.
The method is similar to the method developed by Alvelius (1999). However, whereas
Alvelius required that each term in the second sum of (A 3) should be equal to zero,
we require that they should cancel each other in pairs. The reason why we have to
introduce this modification is that it is impossible to implement a two-dimensional
random force in rotational modes using exactly the same method as Alvelius.

We let k1 and k2 be two wave vectors satisfying k1ρ
= k2ρ

and k1z
= k2z

. We also let
the projections of k1 and k2 onto the horizontal plane be orthogonal. For r-runs we
write the force in these two modes as

f̂ (k1) =
√

S(kρ, kz) exp(−iθ) cos φe1(k1), (A 4)

f̂ (k2) =
√

S(kρ, kz) exp(−i(θ + ψ)) sin φe1(k2), (A 5)

where φ and ψ are random angles, θ is an angle which will be determined from the
condition that the second sum in (A 3) should be equal to zero and S is the amplitude,
which we choose as

S(kρ, kz) = A
exp

(
−

(
kρ − kf

ρ

)2)
δ
(
|kz| − kf

v

)
2πkρ

. (A 6)

Here, A is a normalization constant which is determined so that the injection rate
becomes exactly equal to P , kf

ρ is the horizontal forcing wavenumber and kf
v is the

vertical forcing wavenumber. For d-runs we write the forcing in the corresponding
way, with e1 replaced by e2. In all runs we choose kf

ρ =3. In r-runs we only force
in modes for which 0 <kρ � 3 and in d-runs we only force in modes for which
0 <kρ � 5. In r-runs we set kf

v = 0 and in d-runs kf
v is varied. The condition that the

second sum in (A 3) should be equal to zero is satisfied by requiring that

Re[û(k1) · f̂
�
(k1) + û(k2) · f̂

�
(k2] = 0. (A 7)

This condition gives an equation for the angle θ ,

tan θ =
Re[ξ1] + Re[ξ2] cos ψ + Im[ξ2] sinψ

−Im[ξ1] + Re[ξ2] sin ψ − Im[ξ2] cosψ
(A 8)

where

ξ1 = û(k1) · e1(k1) cosφ, ξ2 = û(k2) · e1(k2) sinφ (A 9)

for r-runs. For d-runs we obtain the corresponding expressions where e1 is replaced
by e2.
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