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The explicit algebraic subgrid-scale (SGS) stress model (EASM) of Marstorp et al.
[“Explicit algebraic subgrid stress models with application to rotating channel flow,”
J. Fluid Mech. 639, 403–432 (2009)] and explicit algebraic SGS scalar flux model
(EASFM) of Rasam et al. [“An explicit algebraic model for the subgrid-scale passive
scalar flux,” J. Fluid Mech. 721, 541–577 (2013)] are extended with stochastic terms
based on the Langevin equation formalism for the subgrid-scales by Marstorp et al.
[“A stochastic subgrid model with application to turbulent flow and scalar mixing,”
Phys. Fluids 19, 035107 (2007)]. The EASM and EASFM are nonlinear mixed and
tensor eddy-diffusivity models, which improve large eddy simulation (LES) predic-
tions of the mean flow, Reynolds stresses, and scalar fluxes of wall-bounded flows
compared to isotropic eddy-viscosity and eddy-diffusivity SGS models, especially at
coarse resolutions. The purpose of the stochastic extension of the explicit algebraic
SGS models is to further improve the characteristics of the kinetic energy and scalar
variance SGS dissipation, which are key quantities that govern the small-scale mixing
and dispersion dynamics. LES of turbulent channel flow with passive scalar transport
shows that the stochastic terms enhance SGS dissipation statistics such as length
scale, variance, and probability density functions and introduce a significant amount
of backscatter of energy from the subgrid to the resolved scales without causing nu-
merical stability problems. The improvements in the SGS dissipation predictions in
turn enhances the predicted resolved statistics such as the mean scalar, scalar fluxes,
Reynolds stresses, and correlation lengths. Moreover, the nonalignment between the
SGS stress and resolved strain-rate tensors predicted by the EASM with stochastic
extension is in much closer agreement with direct numerical simulation data. C© 2014
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4879436]

I. INTRODUCTION

Marstorp et al.1 presented the explicit algebraic subgrid-scale (SGS) model (EASM) for the
SGS stresses in large eddy simulation (LES). Performance of the EASM, a nonlinear mixed model,
has been demonstrated for the case of turbulent channel flow at various Reynolds numbers and
grid resolutions, channel flow with system rotation in different directions and channel flow with
periodic constrictions.1–4 These studies illustrate the importance of the nonlinear SGS stress term
in the EASM and showed that the assumption of an isotropic linear relationship between the SGS
stress and resolved strain-rate tensor, as in the eddy-viscosity models, is not valid in wall-bounded
turbulent flows where the SGS anisotropy is appreciable. The complementary explicit algebraic SGS
scalar flux model (EASFM) proposed in Rasam, Brethouwer, and Johansson3 is a nonlinear tensor
eddy-diffusivity model which does not assume alignment between the SGS scalar flux and resolved
scalar gradient vectors and provides a better physical representation of the SGS fluxes than the
conventional eddy diffusivity model. It uses the SGS stress tensor in its formulation, consistent with
the physics of the SGS scalar flux,5 and naturally takes into account the effects of system rotation. It
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has been successfully applied to LES of channel flow with passive scalar transport with and without
system rotation,3 where it has been shown that the proper tensor eddy-diffusivity formulation of the
EASFM improves LES predictions. Since the quality of scalar predictions is closely related to the
velocity predictions,3, 6 it is natural to use the EASFM in combination with the EASM. The EASM
and EASFM not only improve the predictions of the individual SGS stresses and scalar fluxes over
the isotropic eddy-viscosity and eddy-diffusivity models, but also improve the characteristics of the
SGS dissipation of energy2, 3 at a wide range of resolutions, as demonstrated by a SGS activity
parameter analysis.7

Most SGS models are based on an equilibrium assumption between SGS production and dissipa-
tion and are often dissipative and deterministic functions of resolved quantities. By contrast, a priori
studies of the energy transfer between the resolved and unresolved scales have revealed a strong
intermittent nature8 and a considerable amount of incoherent noise in the SGS.9 In fact, filtered direct
numerical simulation (DNS) data of channel flow shows that the forward- and backward-transfer of
energy between the resolved and unresolved scales are almost equal in magnitude and both are much
larger than the mean SGS dissipation.10 The bidirectional nature of the energy transfer between the
resolved and unresolved scales has also been found using the spectral closure theories such as the
eddy-damped quasi-normal Markovian (EDQNM).11

In Leonard’s decomposition of the SGS stresses,12 the forward-scatter is caused by the inter-
action of the resolved velocities in the Leonard stresses which is often modeled using the eddy-
viscosity concept. The backscatter is due to the interaction of unresolved and resolved velocities in
the cross-stresses. Although the backscatter of energy is of physical importance to the dynamics of
the wall-bounded flows,10, 11, 13–16 there are only a few SGS models that can successfully account
for that in LES. Simple Smagorinsky17 and eddy-diffusivity type models with a constant coefficient
do not predict the backscatter of energy since the SGS stresses and scalar fluxes are fully aligned
with the strain-rate tensor and scalar-gradient vector, respectively. The dynamic procedure proposed
by Germano et al.18 for the Smagorinsky and eddy-diffusivity models19 can predict backscatter
of energy through a negative eddy viscosity and eddy diffusivity, but this causes numerical insta-
bilities for realistic amounts of backscatter. Mixed models, which are based on a combination of
the scale similarity model20 and an eddy-viscosity or eddy-diffusivity model,21–24 can in principle
model backscatter of energy and a more intermittent SGS dissipation since the SGS stresses and
scalar fluxes are less correlated with the strain-rate tensor and resolved scalar gradient, respectively.
However, the amount of backscatter has to be controlled to prevent numerical instability.25 The
nonlinear SGS stress model by Kosovic26 and the dynamic nonlinear SGS stress model by Wang and
Bergstrom27 can account for backscatter of energy caused by the non-alignment of the SGS stress
and the resolved strain-rate tensors. The amount of backscatter in the Wang and Bergstrom27 model
in the case of turbulent channel flow can be up to 20% of the forward scatter. There have been a
number of recent studies on the physical and scale space distribution of energy using the generalized
balance equation of the second-order structure function for turbulent channel flow28, 29 showing that
the backscatter of energy is related to the cyclic self-sustaining mechanisms of wall-turbulence. In
this view, backscatter of energy is considered as a crucial element and should be accounted for by
the SGS models.

One way to properly introduce randomness to the SGS stresses and scalar fluxes and get
backscatter of energy is by implementing a stochastic process in the SGS model. Early LES models
with stochastic extensions based on EDQNM were mostly suitable for simulations of homogeneous
turbulence and not easily extendable to more complex flows.30, 31 Simpler stochastic models suitable
for LES of wall-bounded flows have been proposed by, e.g., Leith,32 Mason and Thompson,33

Schumann.34 Leith32 used spatially and temporally uncorrelated random SGS stresses obtained from
the rotation of a stochastic vector potential, with a variance estimated from dimensional reasoning,
to include random SGS stresses in a Smagorinsky model. The stochastic process reproduced the
k4 slope of the backscatter spectrum in isotropic homogeneous turbulence.35 It was found that
the backscatter in LES of a two-dimensional shear mixing layer with this stochastic model was
able to excite growth of resolved turbulent energy. The same approach was used by Mason and
Thompson33 to simulate boundary layer flows. The amount of backscatter was based on EDQNM
predictions for an infinite inertial sub-range. Their model could remedy the over-prediction of the
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mean velocity gradients by the Smagorinsky model close to the surface and gave more small-scale
turbulence in accordance with experimental observations and a more correct shape of the probability
density function (PDF) of energy transfer outside the viscous sublayer in channel flow.36 Langevin
stochastic differential equations (LSDE)37 were used by Schumann34 to construct isotropic random
SGS stresses and scalar fluxes to extend Smagorinsky and eddy diffusivity models. The stochastic
model was found essential for a proper prediction of the power law of the energy decay in isotropic
turbulence. Carati, Ghosal, and Moin38 extended a dynamic localization model with a stochastic
term and observed improvements in the energy spectra in decaying turbulence. Wei et al.39 used
LSDE in LES of passive scalar dispersion with a hybrid Eulerian–Lagrangian method and found
improvements in the two-time correlation as well as scalar dispersion. In Marstorp, Brethouwer,
and Johansson,40 LSDE was used to extend the Smagorinsky model. The model gave the proper k4

scaling of the backscatter spectrum, enabled control of the length- and time scales of the SGS energy
transfer, and improved the shape of the enstrophy spectrum at the smallest resolved scales and their
time scales in isotropic turbulence. In LES of channel flow, this stochastic extension of the constant
coefficient Smagorinsky model improved the variance and length scale of the dissipation as well as
the mean streamwise velocity and Reynolds stresses. Zamansky, Vinkovic, and Gorokhovski41 used
a stochastic formulation in the form of a SGS acceleration appearing directly in the Navier–Stokes
equations. The magnitude and orientation of the SGS acceleration were based on two separate
stochastic processes. Turbulent channel flow simulations with this model in combination with
the Smagorinsky model showed improvements in the spatial two-point correlations of velocity
at moderate Reynolds numbers and resolutions, over the Smagorinsky model. Recently, Adams42

extended the approximate deconvolution model using an Eulerian transformation of the generalized
Langevin model and showed improvements in the dissipation rate evolution for the case of a Taylor–
Green vortex.

The aforementioned studies made clear that the inclusion of a stochastic term in SGS models
can give meaningful improvements of both resolved and SGS statistics in various flow cases. In a
similar way in this study, we aim to further improve the EASM and EASFM by stochastic extensions
of the SGS stresses and scalar fluxes using the approach proposed by Marstorp, Brethouwer, and
Johansson.40 It will be shown through LES of channel flow at Reτ = 590 with passive scalar
transport that this stochastic extension improves LES predictions of the resolved velocity and scalar
statistics. Stochastic extension of the SGS scalar fluxes in the EASFM improves the SGS dissipation
of the scalar variance which plays a central role in the prediction of the small-scale mixing in LES
of reactive flows.43–45 Another area where the small-scale dynamics is important and the current
stochastic modeling could enhance LES predictions is particle transport and multiphase flows where
the importance of the small-scale dynamics has been pointed out in several papers.46, 47 Stochastic
forcing has been proposed to enhance modeling of the SGS velocity for particle dispersion (e.g.,
pollutant dispersion) in turbulent flows48, 49 and stochastic modeling can also play a role in improving
the SGS forcing on the particles. Finally, the current stochastic extension may act as a stochastic
forcing to address the interface problem in hybrid LES–Reynolds averaged Navier–Stokes (RANS)
simulations where a quick development of the small-scale turbulence from the RANS to the LES
zone is essential.50

II. GOVERNING EQUATIONS OF LES

The governing equations for LES including a passive scalar, using the summation convention,
read

∂ ũi

∂t
+ ũ j

∂ ũi

∂x j
= − 1

ρ

∂ p̃

∂xi
+ ν

∂2ũi

∂x2
j

− ∂τi j

∂x j
,

∂ ũi

∂xi
= 0, (1)

∂θ̃

∂t
+ ũ j

∂θ̃

∂x j
= ν

Pr

∂2θ̃

∂x2
i

− ∂qi

∂xi
, (2)

where .̃ denotes a grid-filtered quantity, ũi , θ̃ , and p̃ are the filtered velocity, passive scalar, and
pressure, respectively, and Pr is the Prandtl number. The SGS stress tensor and scalar flux vector
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are τi j = ũi u j − ũi ũ j and qi = ũiθ − ũi θ̃ , respectively, which have to be modeled to close the
equations.

The effects of the SGS stresses and scalar fluxes on the resolved scales are best illustrated by
the equations of the resolved kinetic energy K = ũi ũi/251 and scalar intensity Kθ = θ̃ θ̃/26

∂K

∂t
+ ∂

∂x j
(̃u j K )︸ ︷︷ ︸

advection

= − ν
∂ ũi

∂x j

∂ ũi

∂x j︸ ︷︷ ︸
viscous

dissipation

− ∂

∂xi

(
ũi p̃ + ν

∂K

∂xi
− ũiτi j

)
︸ ︷︷ ︸

diffusion

− (−τi j S̃i j )︸ ︷︷ ︸
SGS

dissipation

, (3)

∂Kθ

∂t
+ ∂

∂x j
(̃u j Kθ )︸ ︷︷ ︸

advection

= − ν

Pr

∂θ̃

∂x j

∂θ̃

∂x j︸ ︷︷ ︸
molecular
dissipation

− ν

Pr

∂2 Kθ

∂x j∂x j
− ∂

∂x j
(θ̃q j )︸ ︷︷ ︸

diffusion

− (−q j
∂θ̃

∂x j
)︸ ︷︷ ︸

SGS
dissipation

. (4)

The advection, viscous, and molecular dissipation and diffusion terms are denoted in the equations.
The last terms on the right-hand sides represent the transfer of kinetic energy and scalar intensity
from the resolved scales to SGS. The diffusion terms transfer energy in space but do not dissipate
energy in a volume-averaged sense. The mean SGS dissipation terms are negative sink terms and
dissipate energy. They also act as source terms in the corresponding equations of the SGS kinetic
energy and scalar intensity. The instantaneous SGS dissipation can attain both positive and negative
values meaning a transfer of energy to or from the subgrid-scales.

III. EXPLICIT ALGEBRAIC SGS STRESS MODEL

The EASM1 is derived from the modeled transport equations of the SGS stress anisotropy and
is inspired by the explicit algebraic model for the RANS equations.52 The model is given by

τi j = 2

3
K SGSδi j + β1 K SGS S̃∗

i j + β4 K SGS(S̃∗
ik	̃

∗
k j − 	̃∗

ik S̃∗
k j ) , (5)

where δij is the Kronecker delta, β1 and β4 are model coefficients, K SGS = τkk/2 is the SGS kinetic
energy and the normalized resolved strain- and rotation-rate tensors are defined as

S̃∗
i j = τ ∗

2

(
∂ ũi

∂x j
+ ∂ ũ j

∂xi

)
, 	̃∗

i j = τ ∗

2

(
∂ ũi

∂x j
− ∂ ũ j

∂xi

)
, (6)

where τ ∗ = K SGS/ε (ε is the viscous dissipation of K SGS) is the modeled time scale of the SGS
motions.

The first term on the right-hand side of Eq. (5) is the isotropic part, the second term is an
eddy-viscosity part, and the third term is a nonlinear tensor that models the anisotropy of the SGS
stresses. Therefore, the EASM is a nonlinear mixed model. Since it ignores the quadratic terms of
the resolved strain-rate tensor, which are responsible for the backscatter of energy,26 it does not
provide for backscatter. However, it has the nonlinear term including the products of the resolved
strain- and rotation-rate tensors, which is responsible for the non-alignment of the SGS stress and
resolved strain-rate tensors.53

The EASM employed here uses dynamic determination of K SGS as54

K SGS = c �2|S̃i j |2 , (7)

where c is dynamically determined using the Germano identity with averaging in the homogeneous
directions

c = 1

2

̂̃ukũk − ̂̃uk̂̃uk

�̂2 |̂S̃i j |2 − ̂�2|S̃i j |2
. (8)

Here, � = 3
√

�x�y�z is the grid filter size and .̂ denotes test filtering with �̂ = 2 �. In this study,
filtering is carried out using a sharp spectral filter in the homogeneous directions. The β1 and β4
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coefficients in the EASM determine the relative contribution of the eddy-viscosity and the nonlinear
terms, see Eq. (5), and are given by

β4 = −6

5

[
(9c1/4)2 + |	̃∗

i j |2
]−1

, β1 = 9

4
c1β4, (9)

where |	̃∗
i j | =

√
2	̃∗

i j 	̃
∗
i j is the norm of the normalized resolved rotation-rate tensor.

A. Choice of the model parameters

In the derivation of the EASM, the Rotta’s return to isotropy model is used for modeling the
slow term of the model for the pressure strain-rate tensor55 and the model parameter c1 in Eq. (9)
is the Rotta coefficient. This coefficient is adapted to wall-bounded flows according to Ref. 56 (in
RANS) and is determined from the dynamic coefficient c (in LES) as

c1 = c′
1

√
c′

3

cα

(2Cs)2.5
, c′

1 = 2.13, c′
3 = 1.2, Cs = 0.1, α = 1.1. (10)

This means that β1 and β4 are influenced by the return to isotropy coefficient c1. The factor 6/5 in
Eq. (9) is due to the linear term in the model for the rapid part of the pressure strain-rate tensor.
In Marstorp et al.1 a factor 33/20 is used instead of 6/5 which makes the model slightly more
dissipative, but the current choice allows for a less dissipative scheme, found to be more suitable for
this stochastic extension, and is the same as the corresponding value in the explicit algebraic RANS
model. Hence, the stochastic extension allows us to go back to the original RANS value which is
found from the rapid distortion theory. The value of α in Eq. (10) is also lower than 1.25 proposed
in the original model.1 This change does not affect the velocity predictions but the original value
was found to cause a discontinuity in the near-wall prediction of the wall-normal SGS scalar flux
in the EASFM and therefore was lowered to alleviate the problem. This value for α has been used
with the EASFM and EASM in Rasam, Brethouwer, and Johansson3 for LES of channel flow with
and without system rotation with scalar transport at different resolutions and Prandtl numbers. The
SGS time scale, τ*, is modeled by

τ ∗ = c′
3

1.5C1.5
k

√
c

2Cs
|S̃i j |−1. (11)

Due to the change in the coefficient from 33/20 to 6/5 in Eq. (9) we use different values for c′
1 and c′

3
in Eq. (10).57 The coefficient Ck = 1.5 is the Kolmogorov constant, see Marstorp et al.1 for details.

The EASM and EASFM have been successfully applied for LES of different flows. The good
performance of these models for LESs of channel flow with and without system rotation at different
Reynolds numbers and resolutions shows a good degree of universality of the model coefficients.1–3

The EASM has also been used for LES of channel flow with streamwise periodic hill-shaped
constrictions at different resolutions using a second-order finite volume Navier–Stokes solver,4

where good LES predictions have been obtained. The changes in the model coefficients proposed
in this study for the EASM improve the model performance with the stochastic extension and are
within the range that are found from a priori evaluations in Marstorp et al.1 In this study, the grid
filter is a spectral cutoff due to the spectral discretization. The good performance of the EASM for
different discretization schemes with spectral and box filters have been verified in Rasam4 showing
the independence of the model coefficients on the type of the grid filter.

IV. EXPLICIT ALGEBRAIC SGS SCALAR FLUX MODEL

The EASFM3 is a nonlinear mixed tensor eddy diffusivity model based on the explicit algebraic
scalar flux model for the RANS equations.58 It is expressed as

qi = −(1 − c4θ )τ ∗ A−1
i j τ jk

∂θ̃

∂xk
, (12)
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where the time scale, τ*, is the SGS time scale computed from Eq. (11). The matrix Aij is a linear
function of the normalized strain- and rotation rate tensors Ai j = c1θ δi j + cs S̃∗

i j + c		̃∗
i j and its

inverse is found from the Cayley–Hamilton theorem

A−1 = (c2
1θ − 1

2 Q1)I − c1θ (cSS̃∗ + c		̃∗) + (cSS̃∗ + c		̃∗)2

c1θ (c2
1θ − 1

2 Q1) + 1
2 Q2

, (13)

where boldface notation indicates tensors, I is the identity matrix, cs = 0.2 and c	 = 0.5 are model
constants. Q1 and Q2 are functions of the invariants of the normalized strain- and rotation-rate tensors

Q1 = c2
s tr (̃S∗2) + c2

	tr (	̃∗2), Q2 = 2

3
c3

s tr (̃S∗3) + 2csc2
	tr (̃S∗	̃∗2). (14)

The model coefficient c1θ is given as

c1θ = c′
1θ

(
Pr |̃S∗

ij|
)0.7 K SGS

0.1�|S̃i j |
, c′

1θ = 0.2, (15)

and its lower limit is set to 0.5. In order to take into account the filter size dependence and improve
c1θ predictions at test-filter level, a correction to c′

1θ in the form

c′
1θ (2�) = 10−x c′

1θ (�), x = 0.1
(
Re0.7

2� − Re0.7
�

) − 0.3, Ren� = (n�)2|S̃i j |/ν, (16)

is applied where Ren� is the mesh Reynolds number. Similar to the c1 coefficient in the EASM, the
c1θ coefficient is due to the modeling of the slow part of the pressure-scalar gradient vector in the
transport equation for the SGS scalar fluxes and is based on the Rotta’s return to isotropy concept
adapted to LES. The model coefficient c4θ is computed dynamically using the Germano identity for
the SGS scalar flux.3 In the computations, 1 − c4θ is limited to positive values for stability of the
simulations, implying that backscatter is prohibited. No spatial averaging is necessary to smooth out
the dynamic coefficient.

V. LANGEVIN STOCHASTIC DIFFERENTIAL EQUATION

The stochastic extension of the Smagorinsky and eddy diffusivity models proposed by Marstorp,
Brethouwer, and Johansson40 uses the solution to the LSDE37 to introduce stochastic fluctuations to
the instantaneous SGS stresses and scalar fluxes. The LSDE of the stochastic process X (x, t) reads

dX (x, t) = −aX (x, t)dt + b
√

2a dW (x, t), (17)

where a and b are constants. The first term on the right-hand side is a drift term and the second term
is a random number with W (x, t) as the Wiener process which generates spatially and temporally
uncorrelated random numbers with zero mean and unit variance. The solution to (17) is a stationary
process with zero mean and b2 variance.4 The relaxation time-scale of the process, τX , is inversely
proportional to a, i.e., τX = 1/a. A more familiar form of the stochastic process can be obtained
by discretizing Eq. (17)

X (x, t + �t) = (1 − �t

τX
)X (x, t) + b

√
2

�t

τX
dW (x, t), (18)

where �t is the time step of the simulations. Similar to Heinz59 we model τX, using dimensional
analysis, as

τX = CX
�√
K SGS

, (19)

where CX = 0.05 is a model constant obtained from a posteriori analysis of LES in channel flows.
If model (7) is used for K SGS, τX is found as

τX = CX√
c|S̃i j |

, (20)

where c is the dynamic coefficient, see Eq. (7).
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VI. STOCHASTIC EXPLICIT ALGEBRAIC MODELS

Following Marstorp, Brethouwer, and Johansson,40 we extend the eddy-viscosity part of the
EASM with a stochastic process X1 as

τi j = 2

3
K SGSδi j + (1 + X1(x, t)) β1 K SGS S̃∗

i j + β4 K SGS(S̃∗
ik	̃

∗
k j − 	̃∗

ik S̃∗
k j ). (21)

The second term on the right-hand side contributes to the SGS dissipation but the first and last terms
do not. The last term influences the geometrical relation between the strain-rate and SGS stress
tensors. In essence, including a stochastic process gives rise to backscatter of energy by allowing
negative values for the eddy viscosity.

Similar to the EASM, a stochastic extension of the EASFM is obtained as

qi = −(1 − c4θ )τ ∗ A−1
i j τ jk

∂θ̃

∂xk
(1 + X2(x, t)) . (22)

The stochastic processes X1 and X2 are governed by the LSDE in Eq. (18) with the time scales
τX 1 according to Eq. (20) and τX 2 = Pr τX 1 following the relation60 τθ = Pr τ ∗, where τ θ and
τ* are the time scales of the SGS scalar and velocity fields, respectively. Variances of X1 and
X2 are determined by b1 and b2. The values b1 = 1.4 and b2 = 1.2 are chosen such that a good
agreement for the variance of the SGS dissipation between the DNS and LES is obtained. Slight
changes in the b1 and b2 coefficients do not significantly change the LES predictions. However, a
significant increase in these coefficients leads to larger amounts of backscatter of energy which leads
to numerical instabilities.

VII. SIMULATIONS

To test the stochastic explicit algebraic models, LESs of channel flow are carried out using a
pseudo-spectral Navier–Stokes solver with Fourier representation in wall-parallel directions (x and
z) and Chebyshev representation in the wall-normal direction (y), using the Chebyshev–tau method.
Aliasing errors are removed using the 3/2-rule.61 The time integration is carried out with a four-step
third-order Runge–Kutta scheme for the nonlinear terms and a second-order Crank–Nicolson scheme
for the linear terms.62 A passive scalar field (temperature) is included in the simulations. The walls
are kept at constant and uniform but different temperatures and a no-slip condition is applied for the
velocity at the walls.

LESs are carried out using a constant mass flux constraint with a bulk Reynolds number Reb

= ubh/ν = 10 935. Specifications of the simulations are given in Table I. Results are compared to
the DNS at3 Reτ = uτ h/ν = 590, which is essentially the same as the DNS of Moser, Kim, and
Mansour,63 and also includes a scalar (temperature) with Pr = 0.71. The LES domain size (Lx =
2πh, Lz = πh, h is the channel half-width) and bulk Reynolds number are the same as those of the
reference DNS. In order to compare LES and DNS results of the SGS quantities, DNS velocity and

TABLE I. Summary of numerical simulations. �+
x , �+

z , and �+
y are streamwise, spanwise, and wall-normal resolutions in

wall-units in physical space, respectively. A stochastic (S) or non-stochastic (N) SGS stress model is indicated by the first
letter of the case name (S or N) and the corresponding stochastic (S) or non-stochastic (N) SGS scalar flux model is indicated
by the second letter of the case name (S or N). The stochastic extensions of the EASM and EASFM are denoted by SEASM
and SEASFM.

�+
y Nusselt Subgrid-scale model

Case b1 b2 Reτ �+
x �+

z min ∼ max number Stress Scalar flux

N–N 0 0 592 58.1 29.0 0.71–28.9 8.53 EASM EASFM
S–N 1.4 0 589 57.8 28.8 0.70–28.7 8.69 SEASM EASFM
S–S 1.4 1.2 589 57.8 28.8 0.70–28.7 8.70 SEASM SEASFM
DNS . . . . . . 587 9.6 4.8 0.04–7.2 8.76 . . . . . .

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.237.233.116 On: Thu, 29 May 2014 13:11:02



055113-8 Rasam, Brethouwer, and Johansson Phys. Fluids 26, 055113 (2014)

scalar fields are filtered to the LES resolution using a sharp cut-off filter in Fourier space in the
homogeneous directions.

VIII. EFFECTS OF THE STOCHASTIC EXTENSION ON LES OF CHANNEL FLOW

In this section, we first investigate the effects of stochastic extension on the resolved statistics
of the velocity and scalar and then demonstrate the effects on the modeled SGS dissipation statistics
and the relative alignment of the SGS stresses and resolved strain-rate tensors. We analyze three
LES cases. Case N–N uses non-stochastic (N) SGS models for SGS stresses and scalar fluxes, case
S–N uses a stochastic (S) SGS stress model and a non-stochastic (N) SGS scalar flux model, and
case S–S uses stochastic (S) models for both SGS stresses and scalar fluxes. Cases S–N and S–S are
hence equivalent for the velocity statistics.

A. Mean velocity and Reynolds stresses

The mean streamwise velocity profiles for cases N–N and S–N are shown in Figures 1(a) and
1(b). The LES results both agree well with the DNS data but closer observation shows that case
S–N is more accurate than case N–N, especially in the logarithmic layer (50 < y+ < 200, see
Figure 1(b)) where the stochastic extension produces a better equilibrium between the production
and dissipation of kinetic energy. Inclusion of the stochastic term also slightly affects the wall shear
due to the generation of more small-scale turbulence in the buffer layer, see the Reτ predictions in
Table I which are very close to the DNS value.

The Reynolds stresses (i.e., sum of the resolved and SGS stresses) predicted by case N–N
and S–N are both in good agreement with the DNS as well and the impact of the stochastic term
on the Reynolds stresses is small, see Figures 1(c) and 1(d). However, a shift in the peak of the
streamwise Reynolds stress R+

uu toward the wall and a reduction of R+
uu in the buffer layer is observed

indicating a reduction in the length scale of the near-wall structures due to the stochastic extension,
see Figure 1(d). The location and magnitude of the peak of R+

uu matches the DNS data well in case
S–N with the stochastic extension. A small improvement in the peak value of the spanwise and
wall-normal components in the buffer layer and a small over-prediction of the spanwise component
of the Reynolds stresses in the outer layer can also be observed while the shear stress remains almost
the same. These findings show that although predictions of case N–N are close to the DNS data, the
stochastic modeling in case S–N is able to further improve the Reynolds stresses and mean velocity
profiles.
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FIG. 1. Mean velocity profiles (a) and the closeup of its logarithmic region (b); resolved plus modeled streamwise (R+
uu ),

spanwise (R+
ww), wall-normal (R+

vv), and shear (R+
uv) Reynolds stresses in wall units (c) and the closeup of its near-wall

region (d); Arrows point to the location of the maximum of R+
uu . : DNS, . : case S–N, and : Case

N–N.
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B. Mean and root-mean-square (RMS) of scalar and scalar fluxes

Performance of the SGS scalar flux model depends on the SGS stress model,3, 6 since the scalar
field depends on the predicted velocity field. This is also true for the EASFM which directly includes
the SGS stresses in its formulation, see Eq. (12). Therefore, we expect that the improvements in
the velocity predictions in case S–N influence LES predictions even when no stochastic term is
implemented in the SGS scalar flux model. The mean scalar profiles from cases N–N, S–N, and S–S
are shown in Figures 2(a) and 2(b). Predictions of case S–N indeed show an appreciable improvement
in the mean scalar profile, especially in the logarithmic layer, and practically coincide with the DNS
data, see Figure 2(b).

Turbulent Prandtl number defined as

Prt =
〈
u′v′〉 /(∂〈u〉/∂y)

〈v′θ ′〉 /(∂〈θ〉/∂y)
(23)

is the ratio of the apparent diffusivity of momentum to that of heat.64 Close observation of the
mean scalar profiles shows that they are shallower in the buffer layer and the beginning of the
logarithmic layer in case S–N and S–S than in case N–N, implying a higher molecular dissi-
pation, a decrease in the turbulent Prandtl number and therefore an increase in the diffusivity
of the scalar, which could also be observed in case of the SGS Prandtl number, as noted by
Schumann.34 One can also observe an important improvement in the Nusselt number predictions, see
Table I, due to a higher heat transfer. The stochastic extension of the SGS stress model promotes
finer turbulent structures in the buffer layer, as will be shown later, which apparently enhances
mixing near the wall. Predictions of case S–S do not show further improvements in the mean scalar
profile compared to case S–N as was also observed by Mason and Thompson.33 However, the S–N
predictions practically coincide with the DNS data so there is no room for further improvements to
be expected in case S–S.

Predictions of the resolved RMS of the scalar fluctuations, θ+
rms , show improvements in the

magnitude of the near-wall peak in case S–N compared to case N–N. Case N–N over-predicts the
near-wall peak whereas the S–N prediction of the near-wall peak matches the filtered DNS data well,
see Figures 2(c) and 2(d). The near-wall peak of θ+

rms corresponds to the peak in the scalar intensity
production and is affected by the SGS dissipation. Therefore, the better prediction of the peak value
in case S–N is likely caused by the influence of the stochastic extension on the SGS dissipation
dynamics.

Predictions of scalar fluxes 〈v′θ ′〉 and 〈v′θ ′〉 are shown in Figures 3(a)–3(d). Case S-N shows a
better prediction of the peak value of 〈v′θ ′〉 than case N–N, see Figures 3(a) and 3(b). Improvements
in the near-wall prediction of 〈v′θ ′〉 in case S–N compared to case N–N are observed and the results
practically coincide with the DNS data. Inclusion of a stochastic term in the SGS scalar flux model
does not lead to further improvements in the 〈v′θ ′〉 and 〈v′θ ′〉 predictions.
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C. Two-point correlations of the velocity and the integral length scales

We analyze the length scales in the streamwise direction via two-point correlations of the
velocity fluctuations defined as

Bx
ui ui

(y, r ) =
〈̃
u′

i (x, y, z)̃u′
i (x + r, y, z)

〉〈̃
u′2

i (x, y, z)
〉 , i = 1, 2, 3, (no summation over i), (24)

where r is the separation distance and ũ′
i are the resolved velocity fluctuations. The two-point

correlation for the scalar fluctuations is computed in the same way. The corresponding integral
length-scales are

Lx [̃ui ] =
∫ 1

2 Lx

0

〈̃
u′

i (x, y, z)̃u′
i (x + r, y, z)

〉〈̃
u′

i (x, y, z)2
〉 dx . (25)

Here, 〈.〉 denotes averaging both in time and in the spanwise direction. The streamwise two-point
correlations of the velocity components and scalar fluctuations using Eq. (24) are presented in
Figures 4(a)–4(d) at a near-wall location, y+ ≈ 5 together with the DNS data. The plots are
accompanied by the corresponding integral length scale plots using Eq. (25) to show the variation
across the channel. The velocity correlations in case S–N show appreciable improvements compared
to case N–N near the wall, with the largest improvement observed for the streamwise velocity.
However, the integral length-scale plot also shows that case S–N predicts a shorter correlation length
than case N–N and the DNS for y+ > 80, see Figure 4(a). Close observation reveals that the DNS
and case N–N predictions of Bx

uu do not go to zero in the logarithmic layer due to the insufficient
length of the box, while in case S–N it does. This shows that the stochastic part effectively reduces
the size of the eddies in the streamwise direction. We also observe that Bx

vv at y+ ≈ 5 and Lx [̃v] in
case S–N agree better with DNS than the results of case N–N, see Figure 4(c). For Bx

ww, cases S–N
and N–N have similar predictions as the DNS results and the predicted length scales are nearly the
same in the two cases across the channel.

Contrary to the velocity correlations, only marginal improvements are observed for the scalar
correlations Bx

θθ . This could mean that the time scale of the stochastic events is not long enough
to influence the relevant large scales and further affect the correlation lengths for the scalar. How-
ever, the relative error in the scalar predictions are close to that of the velocity in case S–N, see
Figures 4(a) and 4(b).

The LES predictions of spanwise two-point velocity correlations depend on how well the near-
wall turbulent structures are resolved close to the wall.65 A good representation of those correlations
can be achieved by resolving these structures with fine spanwise resolution and one should expect
deviations at coarse resolutions,2, 66 see Sec. VIII D. The near-wall turbulent structures are indeed
too large compared to the DNS, but all the statistics are reasonably predicted implying that the near-
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(a) (b)

(c) (d)

FIG. 4. Streamwise two-point correlation functions of the scalar (b) and the streamwise (a), wall-normal (c) and spanwise
(d) velocities plotted at a wall distance of y+ ≈ 5.0. The corresponding length scales computed from the two-point correlation
functions at all wall distances accompany each plot. : DNS, . : case S–N, : case N–N, and +

: case S–S.

wall cycle is correctly represented. The stochastic formulation has a small effect on the spanwise
correlations, results are not shown for brevity but similar results are reported in Rasam et al.2 for the
EASM predictions at a higher Reynolds number, where LES predictions show wider streak spacings
in the spanwise direction compared to the DNS data.

D. Premultiplied spanwise spectra of the streamwise velocity

More extensive information on the effect of the stochastic term on the turbulent structures can
be deduced from one-dimensional premultiplied spectra of the streamwise velocity in the spanwise
direction, see Figures 5(a)–5(d). The DNS spectrum (not presented) has a peak in the buffer layer at
y+ ≈ 15 and length scale λ+

z ≈ 120, marked by the crosses in Figures 5(a) and 5(b), corresponding
to the spacing of near-wall streaks.67 Cases N–N and S–N predict the wall-distance of the near-wall
peak quite accurate but they over-predict its length scale λ+

z , which indicates that the LES predicts
much wider streaks, see Figures 5(a) and 5(b). However, the spanwise resolution in the LES is quite
coarse and this puts a lower limit on the streak spacing even when a stochastic term is used.

The spectra also have a peak in the outer layer at y/h ≈ 0.35 corresponding to the large-scale
structures which have a characteristic size of O(h), see Figures 5(c) and 5(d). The corresponding
peak in the DNS spectrum is marked by the crosses in Figures 5(c) and 5(d). The location of this
peak is reasonably well predicted in cases S–N and N–N. However, the length-scale of this peak in
case S–N is in better agreement with the DNS data. This shows that the stochastic term not only
affects the small scales but also the largest turbulent scales, possibly as a result of the backscatter
of energy induced by the stochastic model, see Sec. VIII E. A further study on the premultiplied
spectra for the EASM can be found in Rasam et al.2 at a higher Reynolds number.
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E. Mean and RMS of SGS dissipation and forward and backscatter of energy

One of the goals of the stochastic extension of the SGS models is to improve the SGS dissipation.
We define the SGS dissipation for the kinetic energy as in (3) and for the scalar variance as in (4).
For the SEASM and SEASFM, these become

� = β1

2τ ∗ K SGS|S̃∗
i j |2 (1 + X ) , χ = −(1 − c4θ )A−1

i j τ jk
∂θ̃

∂xk

∂θ̃

∂xi
(1 + X ), (26)

where it can be seen that the stochastic process directly induces variations in the SGS dissipation.
Energy transfer by the SGS dissipation can be further split into

� = �+ + �− and χ = χ+ + χ−, (27)

where �+ and χ+ are the forward scatter and �− and χ− are the backscatter of kinetic en-
ergy and scalar variance, respectively. Statistics of the SGS dissipation for all cases are shown in
Figures 6(a)–6(d). It is interesting to observe that the statistics of the SGS dissipation of the scalar
variance differ from those of the kinetic energy. While the mean and RMS of the SGS dissipa-
tion approach zero at the center of the channel for the kinetic energy, those of the scalar variance
stay finite. This is due to the fact that the production of the turbulent kinetic energy is zero in
the middle of the channel, but the production of the scalar variance is not. Cases N–N and S–N
both predict a correct forward scatter 〈�+〉, see Figure 6(a), but the S–N prediction of the loca-
tion of the peak is more accurate. Their prediction of the mean SGS dissipation, 〈�〉, is higher
than the corresponding DNS value. The stochastic extension induces backscatter of energy and
reduces the peak of 〈�〉 by 15%, see Figure 6(c). Despite this over-prediction of 〈�〉, the cases
predict the mean velocity and Reynolds stresses in good agreement with the DNS as shown in
Figures 1(a)–1(d).

Cases N–N and S–N under-predict 〈χ+〉, while case S–S improves its predictions, especially
its peak value, see Figure 6(a). Cases S–N and S–S slightly improve the magnitude and location of
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FIG. 6. (a) Forward scatter, (b) backscatter, and (c) total SGS dissipation and (d) root-mean-square (RMS) of the total SGS
dissipation in wall units. : DNS data, . : case S–N, : case N–N, and + : case S–S. Note that the left
half of each figure shows the statistics of the SGS dissipation of kinetic energy and the right half of each figure shows the
corresponding statistics of the SGS dissipation of the scalar variance.

the peak of 〈χ〉 in comparison with case N–N. Case S–S provides a backscatter whose peak value
is up to 40% of that of the DNS, while case N–N does not give any backscatter, see Figure 6(b). It
is interesting to note that case S–N gives rise to backscatter in the scalar predictions, but its value is
small (around 10% in the peak value) compared to the actual value computed from the filtered DNS
data.

Subgrid-scale stresses predicted by scale similarity models are known to have high correlations
with the real SGS stresses and give backscatter of energy. We have tried a mixed scale similarity
model,24 where the scale similarity model is combined with a dynamic eddy viscosity model. This
model was tested for the channel flow simulations presented in this paper and it was found that the
backscatter of the kinetic energy provided by the stochastic EASM is comparable to the prediction
of this mixed scale similarity model. However, comparable predictions of other resolved statistics
with the EASM and DNS data were not given by this model. Hence, these results are not presented
here.

The introduction of stochastic terms lead to a more intermittent SGS dissipation and higher
RMS values and indeed there are considerable improvements in the RMS of the SGS dissipation for
both � and χ using stochastic extensions, showing a very good agreement with the DNS data, see
Figure 6(d).

F. Length-scale of the SGS dissipation

Another improvement that was achieved by the stochastic extension of the explicit algebraic
SGS models is the length-scale of the SGS dissipation, Lx [�] and Lx [χ ]. It is a measure of
intermittency and is computed from the spatial two-point correlation of its fluctuating part.40 For �,
it is expressed as

Lx [�] =
∫ 1

2 Lx

0

〈
�′(x, y, z)�′(x + r, y, z)

〉〈
�′2(x, y, z)

〉 dx,
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(a) (b)

FIG. 7. Length scale of the SGS kinetic energy (a) and scalar variance dissipation (b) normalized with the grid-sale

� = 3
√

�x
〈
�y

〉
�z . : DNS, . : case S–N, : case N–N, and + : case S–S.

where �′ is the fluctuating part of � and 〈.〉 denotes both time and spatial averaging in the spanwise
direction. A similar expression can be written for χ . The SGS dissipation length scales computed
from Eq. (28) are shown in Figures 7(a) and 7(b), where they have been normalized by the grid-filter

scale � = 3

√
�x

〈
�y

〉
�z . Here, 〈�y〉 denotes the mean grid spacing in the wall-normal direction.

The SGS dissipation length-scale computed from the filtered DNS data is slightly smaller than �,
see also Marstorp, Brethouwer, and Johansson,40 which signifies the presence of a large amount of
spatially uncorrelated variations in the SGS dissipation. Predictions in case N–N are almost four
times larger than � in most of the channel and even larger close to the wall. In case S–N, the
predicted length scale is about two times � in the core of the channel, in better agreement with the
DNS, and close to the DNS data near the wall, see Figure 7(a). The coarse resolution presumably
puts a lower limit on this length scale.

Predictions of Lx [χ ] in case N–N are closer to the DNS data than Lx [�], see Figure 7(b).
This is due to the direct influence of the dynamic procedure in the computations of the EASFM,
which introduces more variations in the SGS fluxes and therefore the SGS dissipation. One can
also see from Figure 6(d) that the peak value of χ+

RMS predicted by case N–N is 56% of that
of the DNS, while the corresponding value for �+

RMS in case N–N is 43%. The stochastic term
does not reduce Lx [χ ] in the core of the channel, but improves it close to the wall. In case S–S,
the length-scale in the whole channel is in better agreement with the DNS and matches the DNS
data close to the wall. Its predictions are about two times �. These results show that the length-
scales are reduced and the SGS dissipation becomes more intermittent by introducing stochastic
models.

G. Anisotropy of the SGS dissipation

An important property of the SGS dissipation tensor is its anisotropy defined as68

I22 =
〈(

τ22 S̃22
)2

〉
〈(

τ11 S̃11
)2

〉 . (28)

In Marstorp et al.,1 it was shown that the EASM improves the anisotropy of the SGS dissipation
over the dynamic Smagorinsky model. Here, we find that case S–N predicts a larger SGS dissipation
anisotropy I22 in the core of the channel, closer to the filtered DNS data than case N–N, see
Figure 8.

H. Probability density functions of the SGS dissipation

Further statistical information on the influence of the stochastic extension on the SGS dissipation
can be obtained by analyzing its PDF, see Figures 9(a)–9(f). PDFs are plotted at different locations
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FIG. 9. Probability density functions (PDFs) of subgrid-scale dissipation at (a) and (d) y+ ≈ 15, (b) and (e) y+ ≈ 50, and
(c) and (f) y+ ≈ 100; : DNS, . : case S–N, : case N-N, and + : case S–S. Plots are scaled to
unit area. (a)–(c) are for the kinetic energy dissipation and (d)–(f) are for the scalar intensity dissipation.

from the wall and are scaled to unit area. The distances are chosen at y+ ≈ 15, close to the location
of the peak of the SGS dissipation, y+ ≈ 50 located close to the beginning of the logarithmic region,
and at y+ ≈ 100, in the middle of the logarithmic region. In general, the PDF of the filtered DNS data
is slightly skewed toward positive values but the negative tail is more prominent than the positive one
ensuring a negative mean dissipation, i.e., a mean energy transfer from the resolved to the subgrid-
scales. At all wall distances case S–N clearly predicts more accurate forward energy transfer than
case N–N for � and it also provides for a reasonable backscatter. Especially at y+ ≈ 15 near the
peak of the SGS dissipation the improvements are appreciable. The highly intermittent behavior
of � in the turbulent channel flow where the amount of back- and forward scatter are of similar
magnitude, makes it difficult for any SGS model to give satisfactory predictions. Nevertheless, the
improvements obtained in case S–N are significant.

The same trend is observed in case S–S compared to case N–N concerning the scalar variance
energy transfer, see Figures 9(d)–9(f). It is observed that in case S–N some backscatter of energy
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FIG. 10. Mean angle between the eigenvectors of S̃i j and −τ ij, corresponding to the largest eigenvalues. : filtered
DNS, : case N–N, and . : case S–N.

due to the randomness in the SGS stresses is predicted but it is small. In case S–S, there are more
backscatter events than in case S–N.

I. Tensorial alignment of the SGS stress tensor

The tensorial alignment between the SGS stress and strain-rate tensors in a priori studies
of DNS data as well as SGS model predictions have been examined by Marstorp et al.,1 Wang
and Bergstrom,27 Horiuti,53 Borue and Orszag,69 Tao, Katz, and Meneveau.70, 71 We follow the
approach by Wang and Bergstrom27 and Marstorp et al.1 and calculate the averaged angles �

∈ [0◦, 90◦] between the eigenvectors corresponding to the most negative eigenvalues of −τ ij

and S̃i j . The filtered DNS data show a mean angle of around 80◦ in a large part of the chan-
nel. Eddy-viscosity SGS stress models predict � = 0◦ since they have an isotropic formulation.
The EASM is an anisotropic SGS stress model, so that τ ij is not aligned with S̃i j . In fact, a
mean angle of almost 40◦ is predicted in case N–N, see Figure 10, which is a large improve-
ment compared to the dynamic Smagorinsky model. In case S–N, the relative alignment of the
predicted SGS stresses and the resolved strain-rate tensor is further reduced from 40◦ to 60◦, see
Figure 10.

IX. MODEL PERFORMANCE AT OTHER RESOLUTIONS

We have assessed the performance of the stochastic explicit algebraic models at resolutions
other than the one presented earlier for LES of channel flow at Reτ = 590. In this section, the
prediction of the mean velocity, streamwise Reynolds stress, mean and RMS of temperature as well
as the PDFs of the SGS dissipation at y+ ≈ 15 are discussed for a coarser and a finer resolution,
see Table II. For brevity, results for the combination of the EASFM and SEASM are not presented
and only results of the SEASFM with the SEASM are presented. The results have been found to be
insensitive to the resolution.

TABLE II. Summary of numerical simulations. See Table I for more information.

�+
y Nusselt Subgrid-scale model

Case b1 b2 Reτ �+
x �+

z min ∼ max number Stress Scalar flux

N–1 0 0 586 38.0 19.0 0.31–19.2 8.63 EASM EASFM
N–2 0 0 593 77.6 38.8 0.71–29.0 8.66 EASM EASFM
S–1 1.4 1.2 587 38.5 19.3 0.31–19.2 8.81 SEASM SEASFM
S–2 1.4 1.2 581 76.0 38.0 0.72–29.0 8.77 SEASM SEASFM
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The mean velocity profiles are shown in Figures 11(a) and 11(b). The N–1 and N–2 predictions
are in excellent agreement with the DNS data and the improvements due to the stochastic extension
in cases S–1 and S–2 are marginal. The streamwise Reynolds stress predictions show the same
improvements as was observed earlier in case S–S. The predictions converge to the DNS with
increasing resolution.

The temperature predictions are shown in Figures 12(a) and 12(b). There is an appreciable
improvement in the mean temperature profiles in the logarithmic region in case S–2 compared
to case N–2, while the differences are less between cases N–1 and S–1. The RMS profiles of
the temperature show improvements in the peak values in case S–2 compared to case N–2, see
Figure 12(c), but at the fine resolution model predictions are similar.

The PDFs of the SGS dissipation are shown in Figures 13(a)–13(d) for y+ ≈ 15, in the buffer
layer. With the stochastic extension, the PDFs of the SGS dissipation for the kinetic energy � are
in much better agreement with the DNS data for the forward scatter events, i.e., positive tails of the
PDFs. The stochastic extension also gives an appreciable energy backscatter in cases S–1 and S–2,
see Figures 13(a) and 13(b). These observations hold for both resolutions. The stochastic extension
also introduces a fare amount of backscatter of scalar energy at both resolutions as shown by the
PDFs of the SGS dissipation of scalar intensity χ . It improves the forward scatter of scalar energy
at the fine resolution but not at the coarse resolution, see Figures 13(c) and 13(d). All in all, these
results confirm the conclusions that the anisotropy-resolving character of these SGS models give a
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high degree of insensitivity to grid resolution, and that the stochastic extensions give some significant
improvements.

X. CONCLUSIONS

LES of turbulent channel flow including a passive scalar at Reτ = 590 was carried out to
investigate the stochastic extensions of the explicit algebraic SGS stress and scalar flux models.1, 3

This study shows that, although the resolved quantities are well predicted by the non-stochastic
models, inclusion of the stochastic process further improves the velocity related statistics, such as
the mean velocity and Reynolds stresses. These improvements also lead to better predictions of the
passive scalar statistics, such as the mean and fluxes of the scalar. The predicted streamwise two-point
correlations of velocity as well as the corresponding integral length scales are in closer agreement
with the DNS data with the stochastic extension. The models with the stochastic extensions also
provide for a reasonable amount of backscatter of turbulent kinetic energy and scalar variance
and a larger intermittency of the SGS dissipation, in better agreement with DNS data. Finally, the
stochastic extension of the SGS models improved the geometrical representation of the SGS stress
tensor by reducing its alignment with the resolved strain-rate tensor. Application of the stochastic
explicit algebraic models at different resolutions showed that the improvements observed in this
study persist at a relatively wide range of resolutions.

The better representation of the SGS quantities achieved by the stochastic extensions is essential
for a number of applications where small-scale processes play a crucial role in LES. A few examples
are LES of turbulent combustion where the SGS dissipation plays an important role in the prediction
of the small-scale mixing, LES of sprays, advection of particles in turbulent flows, and other
interesting multiphase applications where the SGS forces due to the SGS stresses are important in
the dynamics of the particles or the droplets. The stochastic extension of the explicit algebraic SGS
models presented here could contribute to a better prediction of the SGS mixing or forces in these
cases. This can be a subject for further investigations. A further application of the current stochastic
extension is in hybrid LES–RANS simulations where generation of the small-scale turbulence at the
LES–RANS interface is essential.
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