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Chapter 1

Motion in Accelerated Reference
Frames

Until now we have studied motion in inertial reference frames. We have done this because
such frames allows one to identify physical causes (forces) that produce the accelerations.
These forces have identifiable sources such as a large mass producing gravity, matter
producing contact forces, or charged particles producing electromagnetic fields. In many
situations it may still be advantageous to use a non-inertial reference frame, i.e. one that
is accelerated. If one knows how it accelerates one can find mathematically ‘fictitious’
forces that must be added to the real (physical) forces in order for the equation of motion
in the accelerated frame to give correct results. The purpose of these fictitious forces is
simply to give the particle the acceleration that it would have relative to the accelerated
frame even if no real forces acted on it.

1.1 Kinematics in an Accelerated Reference Frame

The problem of describing the motion of a particle in an accelerated frame of reference
is one of kinematics. Consider the position vector of a particle P in a coordinate system,
with origin at O, fixed in an inertial reference frame O. This position vector can be
written in one of the following forms:

r = OP = x ex + y ey + z ez. (1.1)

We now introduce an accelerating reference frame A and a coordinates system fixed in
this frame. We denote the origin of this coordinate system A. The position vector of the
particle P is then

rA = AP = xA eA
x + yA eA

y + zA eA
z . (1.2)

Here the basis vectors eA
x , e

A
y , e

A
z represent directions fixed in the moving system A. We

will be interested in how the kinematic quantities position, velocity, and acceleration in
the moving system A relate to the corresponding quantities in the fixed system O. For
the position vector we have OP = OA+AP so, if we put OA = R, we get

r = R+ rA, (1.3)

see figure 1.1. We now wish to take time derivatives of this relation in order to find
relations between velocities and accelerations. It is then important to keep in mind that
the motion and thus the time dependence of the vectors will depend on from which
reference frame the measurements are made.
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Figure 1.1: This figure illustrates the relation between the position vector, r, of a particle at P
with respect to a fixed system O and the position vector, rA, of the same particle with respect
to another, moving system A. This relation is also described by equation 1.3.

1.1.1 The Time Derivative of a Vector in a Rotating Reference Frame

In the fixed O-system, the point O and the basis vectors ex, ey, ez, are at rest and time
independent whereas the vectors r and R depend on time in way which depends on how
the points P and A, respectively, move relative to the fixed frame. Also the basis vectors,
eA
x , e

A
y , e

A
z , fixed in the A-system, will move and thus be time dependent if the moving

frame rotates relative to the fixed frame. The time derivatives of the moving basis vectors
are then given by

ėA
λ =

deA
λ

dt
= ω × eA

λ λ = x, y, z, (1.4)

where ω is the angular velocity vector of the moving frame as measured in the fixed
frame1. In this formula d

dt , or the over-dot, stands for a time derivative as measured from
the fixed O-system. Time derivatives that refer to a time dependence observed from
the A-system will be denoted by

Ad
dt , or by a small circle instead of the dot. Using this

notation we have
◦
e

A

λ =
AdeA

λ

dt
= 0 λ = x, y, z, (1.5)

since these vectors are constant (fixed) in the A-system.
Consider an arbitrary vector

b = bx ex + by ey + bz ez = bAx e
A
x + bAy e

A
y + bAz e

A
z . (1.6)

What is the relationship between the time derivative of this vector as observed in the
fixed system, ḃ, and the derivative as measured in the moving system,

◦
b ? In order to

1This result is derived in other chapters of this course.
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find this relation one must note that the components of the vector are given by the scalar
products

bλ(t) = b · eλ, bAλ (t) = b · eA
λ , λ = x, y, z, (1.7)

and thus are well defined real (scalar) functions of the time. For the time dependence
of the components there is thus no need to distinguish between the two reference frames
and we can use the overdot (or d

dt) to denote time derivative. The time derivative of the
vector b as measured in the fixed system is then

ḃ = ḃx ex + ḃy ey + ḃz ez (1.8)

and the corresponding quantity as measured in the A-system is

◦
b= ḃAx e

A
x + ḃAy e

A
y + ḃAz e

A
z . (1.9)

If we instead take the time derivative of the vector in the fixed system but use the
expansion in the moving basis we get (using equation 1.4)

ḃ = d
dt

(
bAx e

A
x + bAy e

A
y + bAz e

A
z

)
=

=
(
ḃAx e

A
x + ḃAy e

A
y + ḃAz e

A
z

)
+

(
bAx ė

A
x + bAy ė

A
y + bAz ė

A
z

)
= (1.10)

=
◦
b +ω ×

(
bAx e

A
x + bAy e

A
y + bAz e

A
z

)
.

We thus have the important relation

ḃ =
◦
b +ω × b (1.11)

connecting the time derivatives in the two systems.

1.1.2 Velocity in an Accelerated Reference Frame

Let us now go back to equation 1.3 and use it to find the relation between the velocity
relative to the two systems O and A. Differentiation with respect to time in the fixed
O-system gives (using equation 1.11)

ṙ = Ṙ+ ṙA = Ṙ +
◦
r
A
+ω × rA. (1.12)

The velocity relative to the moving A-system is by definition

vA ≡
Ad

dt
rA =

◦
r
A

(1.13)

so we get that the relation
v = Ṙ+ ω × rA + vA (1.14)

between the two velocities.
This relation between the velocities is very important for understanding the relation-

ship between the motions, as seen from the two reference frames, so we will pause to an-
alyze it. If there is no relative rotation, so that ω = 0, then we simply get v = Ṙ+ vA.
This tells us that the velocity, of the particle P, in the fixed O-system is simply the
(translational) velocity Ṙ, of the A-system relative to the O-system, plus the velocity vA

relative to the A system. This is the law of addition of velocities which holds in classical
mechanics2

2It does not hold when the speeds are comparable to that of light.
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Figure 1.2: The moving A-system is assumed to rotate with angular velocity ω = ω ez, i.e.
around the positive Z-axis (perpendicular to the plane of the figure). The velocity of a point
fixed in the A-system is then VA(rA) = ω × rA. If the particle P moves along the positive
X-axis in the fixed system (velocity v) its velocity in the moving system will be given by vA as
shown in the figure.

Assume that the particle P is at rest in the moving frame A. This is the case, for
example, if the moving frame is attached to a rigid body and P is one of the particles of
this body. In this case vA = 0 so that

v = Ṙ+ ω × rA ≡ VA(rA) (1.15)

is the ‘system point velocity’, i.e. the velocity of a point fixed in the A-system with
position vector rA. Using this notation we can write the result of equation 1.14 on the
form

v = VA(rA) + vA. (1.16)

We again have a law of addition of velocities: the velocity of P in the O-system is the
vector sum of the velocity VA of the fixed point of the A-system that coincides with P
and the velocity vA of P relative to the A-system. This is illustrated for a special case
in figure 1.2 discussed in the example below.

Example 1.1 A particle P moves along the positive X-axis with velocity ṙ = v = ẋ(t) ex in a
fixed coordinate system O. Introduce a rotating coordinate system A with the same (fixed) origin
as the O-system and with Z-axis coinciding with that of the fixed system. Let its angular velocity
vector be ω = ω ez relative to the fixed system. Calculate the velocity vA of P relative to the
moving system.
Solution: Since the fixed and moving system have the same fixed origin R = Ṙ = 0, O = A,
and r = rA, see figure 1.2. The ‘system point velocity’ is then

VA(rA) =ω × rA =ω × r = (1.17)
= ω ez × x(t) ex = ω x(t) ey. (1.18)

Equation 1.16 then gives
vA = v −VA = ẋ(t) ex − x(t)ω ey. (1.19)

This result is illustrated in figure 1.2. ✷

1.1.3 Coriolis’ Theorem

We now proceed to find the relation between the accelerations a and aA relative to the
fixed O-system and the moving A-system respectively. We start by taking the time
derivative, in the O-system, of equation 1.14. This gives

a = v̇ = R̈+ ω̇ × rA +ω × ṙA + v̇A. (1.20)
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We now use equation 1.11 to replace the O-system time derivatives of rA and vA by
expressions with time derivatives that refer to the A-system. This gives us

a = R̈+ ω̇ × rA +ω ×
(

◦
r
A
+ω × rA

)
+

(
◦
v

A
+ω × vA

)
. (1.21)

Since
◦
r
A
= vA and

◦
v

A
= aA we can write this

a = R̈ + ω̇ × rA + ω ×
(
ω × rA

)
+ 2ω × vA + aA. (1.22)

This result, which sometimes is referred to as Coriolis’ theorem, is the basis for the study
of motion in accelerated reference frames.

Let us analyze it. What is the ‘system point’ (or ‘transport’) acceleration, i.e. the
acceleration of a point fixed in the A-system? In order to find it, all we have to do is put
vA = aA = 0 in the formula above. One finds

a = R̈+ ω̇ × rA +ω ×
(
ω × rA

)
≡ AA(rA). (1.23)

Using this notation we can write the relation between the accelerations as follows:

a = AA(rA) + 2ω × vA + aA. (1.24)

Evidently the addition law that we found for velocities (1.16) does not hold for accel-
erations. The acceleration in the fixed system is the vector sum of the ‘system point’
acceleration and the acceleration relative to the A-system plus an extra term 2ω × vA,
the Coriolis acceleration.

Example 1.2 A particle P moves along the positive X-axis with position vector given by
r = x(t) ex in a fixed coordinate system O. Introduce a rotating coordinate system A with
the same (fixed) origin as the O-system and with Z-axis coinciding with the that of the fixed
system. Let its angular velocity vector be ω = ω(t) ez relative to the fixed system. Calculate
the acceleration aA of P relative to the moving system. Use the result for vA derived in example
1.1.
Solution: Since the fixed and moving system have the same origin r = rA, see figure 1.2. In
example 1.1 we found that vA = ẋ ex − xω ey. Using this the various terms of equation 1.22
become

R̈ = 0, (1.25)
ω̇ × rA = ω̇ ez × x ex = x ω̇ ey, (1.26)

ω × (ω × rA) = ω ez × (ω ez × x ex) = −xω2ex, (1.27)
2ω × vA = 2ω ez × (ẋ ex − xω ey) = 2xω2ex + 2 ẋ ω ey. (1.28)

The acceleration in the fixed system is a = ẍ ex. Use of this and the above results in equation
1.22 gives, when all are added up,

aA = (ẍ− xω2)ex − (2ẋ ω + x ω̇)ey (1.29)

for the acceleration relative to the rotating system A. ✷

1.2 Fictitious Forces

When an accelerated reference frame is used Newton’s second law, ma = F, must be
modified. If we insert the expression for a in terms of aA, equation 1.22, into ma = F
we find that an equation in the form

maA = F+ Ffict (1.30)
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is valid, in the A-system, provided that a fictitious force

Ffict ≡ −m
[
R̈ + ω̇ × rA + ω ×

(
ω × rA

)
+ 2ω × vA

]
(1.31)

is added to the physical force. This fictitious force is, of course, only mass times ac-
celeration moved to the other side of the equation. Note that the fictitious forces, like
gravitational forces, thus are proportional to mass so that the motion of particles due to
these forces is independent of their mass m. This is natural (for fictitious forces) since
the observed motion is really due to a motion of the observer’s reference frame. That
gravity also behaves in this way is an important empirical fact, called the ‘principle of
equivalence’, and one of the foundations of the relativistic theory of gravity.

Most applications of the theory of ‘relative’ motion that we have developed here deal
either with purely translational acceleration of the A-system (ω = 0), in which case the
fictitious force is simply

Ffict = −mR̈, (1.32)

or with purely rotational acceleration. In the purely rotational case (R̈ = 0) there are
three different contributions to the fictitious force

the ‘transverse’ force: Ftv = −m ω̇ × rA, (1.33)

the centrifugal force: Fcf = −mω ×
(
ω × rA

)
, (1.34)

the Coriolis force: Fcor = −m 2ω × vA. (1.35)

Note that the transverse and centrifugal forces are force fields that depend on the position,
rA, of the particle while the Coriolis force depends on velocity. We now first discuss the
translational case in more detail.

1.2.1 Motion in a Translationally Accelerated Frame

A translationally accelerated reference frame is usually a frame defined by a moving
vehicle of some kind, such as an accelerating car or elevator. Motion in such a frame can
be investigated in the same way as motion in an inertial frame provided only that the
fictitious force 1.32 is added to the real forces. The acceleration R̈ is the acceleration of
the vehicle relative to an inertial frame. This fictitious force is independent of position
(and velocity). If the acceleration R̈ is also time independent, i.e. if R̈=A =const., then
the fictitious force provides a constant (homogeneous) force field just like the field of
gravity near the surface of the earth. A very efficient way of understanding this situation
is to view the fictitious force as providing an extra gravity. If the acceleration due to
gravity is g in the inertial frame, then the accelerated frame can be considered as having
an ‘effective’ acceleration due to gravity geff given by

geff ≡ g −A. (1.36)

This is illustrated in figure 1.3.
The force field mgeff will clearly be a conservative force field so that it may be

practical to use conservation of energy in the accelerated system. The potential energy
of a particle of mass m and position vector r (we will not use the superscript A on
quantities referring to the A-system unless we wish to compare them with those of an
inertial system) is given by

Φ(r) = −mgeff · r. (1.37)

The force is then obtained as F = −∇Φ = mgeff .

Example 1.3 A box stands on a horizontal floor in the back of a van. The coefficient of static
friction between box and floor is µ and the coefficient of sliding friction is f (< µ).
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Figure 1.3: Inside a vehicle that accelerates to the right, with constant acceleration A = R̈, one
will experience an effective gravity geff = g −A as indicated in this figure. A weight that hangs
from the ceiling in a string will tend backwards to make the string parallel to the new effective
plumb-line. In a similar way a balloon tied to the floor will tend forwards since the direction of
the buoyancy force on the balloon must be opposite to that of geff .

a) What maximum acceleration A can the van have if the box is to remain at rest?
b) Assume that the van breaks with an acceleration of a magnitude that just exceeds A so that
the box slides forward. Find the speed of the box when it hits the wall of the drivers cabin
assuming that the initial distance to this wall is d.
Solution: a) In the accelerated reference frame of the van the box will remain at rest if the
friction force can balance the fictitious force. The friction force is given by Fµ = µN = µmg so
we get

µmg = mA. (1.38)

The maximum allowed acceleration is thus A = µg.
b) Once the box starts to move it is acted on by the fictitious force and the sliding friction

force. The force of sliding friction has magnitude Ff = fmg and is directed opposite to the
velocity of the box. The fictitious force has magnitude Ffict = mA = mµg and is parallel to the
velocity of the box. The change in kinetic energy of the box is thus

T2 − T1 =
1
2
m(v2 − 02) =

∫ d

0

(mµg −mfg) dx = mg(µ− f)d. (1.39)

The speed attained by the box is thus found to be

v =
√
2g(µ− f)d (1.40)

(relative to the moving system of the van). It is seen to be greater the larger the difference
between static and sliding friction is. ✷

1.2.2 The Rotational Fictitious Forces

In the majority of applications one can assume that a rotating reference frame rotates
with an angular velocity of fixed direction. We will then mostly use the convention that
this direction coincides with the Z-axis (of both the fixed and the moving system) so
that

ω(t) = ω(t) ez. (1.41)

In order to understand the three rotational fictitious forces, 1.33-1.35, better we now
calculate them explicitly for this case.

For the first two forces the simplest expressions are obtained if cylindrical coordinates,

rA = r = ρ eρ + z ez, (1.42)
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are used (in the moving A-system). The ‘transverse’ force becomes

Ftv = −m ω̇ × r = −mω̇ρ eϕ. (1.43)

It is thus non-zero only if ω̇ 	= 0. The centrifugal force is found to be given by

Fcf = −mω × (ω × r) = mω2ρ eρ. (1.44)

It always points radially outward from the rotation axis. For the Coriolis force we return
to Cartesian coordinates and put v = ẋ ex+ ẏ ey+ ż ez. This force, which vanishes if the
particle is at rest (in the moving system), is then

Fcor = −m 2ω × v = 2mω(ẏ ex − ẋ ey). (1.45)

All these forces are seen to be in the plane perpendicular to the fixed rotation axis.

Example 1.4 A free particle (unaffected by any physical forces) is observed from a reference
frame that rotates with a constant angular velocity ω = ω ez with respect to an inertial frame
(ω =const.). Find the equation of motion for the particle in the rotating frame and solve it.
Solution: The equation of motion is ma = F+Ffict and in this case F = 0 while the fictitious
forces that contribute are the centrifugal and and the Coriolis force, so we get

ma = −mω × (ω × r)−m 2ω × v. (1.46)

If we insert ω = ω ez, r = x ex + y ey + z ez, and v = ẋ ex + ẏ ey + ż ez in this equation some
calculation gives a vector equation with the following components:

mẍ = mω2x+ 2mωẏ, (1.47)
mÿ = mω2y − 2mωẋ, (1.48)
mz̈ = 0. (1.49)

The z-equation is easily solved and gives the general solution z(t) = z(0) + ż(0)t. The two first
equations are coupled. One way of solving them is to introduce the complex quantity

ζ(t) ≡ x(t) + iy(t). (1.50)

Then the x-equation plus i (=
√
−1) times the y-equation gives

ζ̈ + 2iωζ̇ − ω2ζ = 0. (1.51)

The ‘ansatz’ exp(λt) then gives the characteristic equation

λ2 + 2iωλ− ω2 = (λ+ iω)2 = 0. (1.52)

Thus λ = −iω is a double root. The ‘ansatz’ exp(λt) therefore gives only one linearly independent
solution in this case. The new ‘ansatz’ t expλt, inserted into the differential equation gives a
characteristic equation of the form

(λ+ iω)2t+ (λ+ iω) = 0. (1.53)

so this ‘ansatz’ gives a new independent solution for the same value λ = −iω. The general solution
is thus

ζ(t) = A exp(−iωt) +Bt exp(−iωt). (1.54)

Here A and B are complex constants that can be determined in terms of the initial conditions.
One obtains

ζ(0) ≡ x(0) + iy(0) = A (1.55)
ζ̇(0) ≡ ẋ(0) + iẏ(0) = −iωA+B (1.56)

so that the solution is A = x(0) + iy(0) and B = [ẋ(0) − ωy(0)] + i[ẏ(0) + ωx(0)]. The explicit
solutions for x(t) and y(t) can then be found by separating the real and imaginary parts in ζ(t).
One gets

x(t) = [x(0) + t(ẋ(0)− ωy(0))] cosωt+ [y(0) + t(ẏ(0) + ωx(0))] sinωt (1.57)
y(t) = [y(0) + t(ẏ(0) + ωx(0))] cosωt− [x(0) + t(ẋ(0)− ωy(0))] sinωt (1.58)
z(t) = z(0) + ż(0)t. (1.59)
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The general shape of this trajectory is that of a spiral. Note that the initial conditions refer to the
rotating system. If the particle is at rest in the fixed system its initial conditions in the moving
system might be

x(0) = R, ẋ(0) = 0, (1.60)
y(0) = 0, ẏ(0) = −Rω, (1.61)
z(0) = 0, ż(0) = 0. (1.62)

When these initial conditions are inserted in the general solution above the result for the x-y-
motion is seen to be motion in a circle with radius R and angular velocity −ω. The minus sign
here is due to the fact that if a fixed particle is viewed from a frame rotating with ω ez it will
seem to rotate in the opposite direction. ✷

The above example shows that the simple linear motion of a free particle becomes
quite complicated when viewed from a rotating system. Under such circumstances the
use of a non-inertial (accelerated) frame is, of course, pointless. There are, needless to
say, also many situations in which the use of this theory of motion relative to a moving
frame either is necessary or, at least, advantageous. If, for example, the motion in the
moving system is known one can use this theory to calculate the forces. This is indicated
in the following example.

Example 1.5 A small box stands on a rotating horizontal rough plane. The box stands at
a distance R from the rotation axis which is vertical. The angular velocity ω is constant. The
coefficient of friction between the box and the plane is µ. How large may R be if the box is to
remain at rest?
Solution: In the rotating system this is a statics problem. The box will remain at rest if the
total force, including fictitious forces, on it is zero. In this case the only forces acting in the
horizontal plane are friction and the centrifugal force. We get

0 = Ff + Fcf (1.63)

so use of equation 1.34 with ρ = R gives

Ff = mRω2. (1.64)

The friction force Ff must fulfill
Ff < µN = µmg (1.65)

so one obtains
mRω2 < µmg. (1.66)

which gives the answer R < µg/ω2. ✷

1.2.3 Work and Rotational Fictitious Forces

When the angular velocity vector of the rotating system is constant, so that ω = ω ez
with ω =const., the only fictitous forces are the Coriolis and the centrifugal forces. The
work done by the Coriolis force is always zero since the displacement of the particle
dr = v dt is always perpendicular to the fictitious force Fcor = 2mv ×ω so that dW =
Fcor · dr = 0. The centrifugal force, on the other hand, does work, but is conservative as
we’ll now see.

The work of the centrifugal force for a particle that moves from ra to rb is

Wab =
∫ b

a
Fcf · dr =

∫ b

a
mω2ρ eρ · dr. (1.67)

If we now express the displacement in terms of cylindrical coordinates,

dr = d(ρ eρ + z ez) = dρ eρ + ρ deρ + dz ez, (1.68)
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Figure 1.4: This figure shows the situation in example 1.6. To the left the rotating circular wire
is shown. On the right the same wire is viewed from a rotating reference frame in which it is at
rest, but in which fictitious forces act.

and use the fact that both deρ =
deρ
dt dt, being the small change in a unit vector, as well

as ez are perpendicular to eρ we find

Wab =
∫ b

a
mω2ρ eρ · (dρ eρ + ρ deρ + dz ez) = mω2

∫ ρb

ρa
ρ dρ. (1.69)

The work of the centrifugal force thus only depends on (the ρ-values of) the end-points
of the particle trajectory and this force is thus a conservative (fictitious) force. The
potential energy of a particle in this force field is given by

Φcf(ρ) = −
∫ ρ

0
Fcf · dr = −1

2
mω2ρ2, (1.70)

where the lower integration limit is conventionally set to zero since this gives the simplest
expression. The solution of many a problem involving the centrifugal force is facilitated
by the use of this formula.

Example 1.6 A stiff smooth wire in the shape of a circle of radius R is mounted on a fixed
vertical axis in the plane of the circle through its mid-point. It rotates around this axis with
constant angular velocity ω, see figure 1.4. A small pearl of mass m can slide along the wire with
negligible friction. Find the equilibrium positions of the pearl on the circle as function of ω.
Solution: Consider the situation in a reference frame that rotates so that the circular wire is
at rest while there are fictitious forces acting on the pearl. The forces acting are then the normal
force from the wire, gravity, the Coriolis force, and the centrifugal force. The normal and the
Coriolis forces do no work so only the conservative forces, gravity and centrifugal force do work
on the pearl. The pearl will be in an equilibrium position on the circle if the potential energy of
the forces acting on it has a minimum. We introduce the angle ϑ between the radius to the pearl
and the vertical axis as the relevant coordinate, see figure 1.4. The potential energy of gravity is
then

Φgrav(ϑ) = mgR cosϑ. (1.71)

The distance between the pearl and the rotation axis is ρ = R sinϑ so the potential energy of the
centrifugal force is, according to equation 1.70,

Φcf(ϑ) = −1
2
mω2(R sinϑ)2. (1.72)
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Figure 1.5: This figure shows how the local acceleration due to ‘gravity’ g is the result of
gravitation and centrifugal force. The magnitude of the centrifugal force is Fcf = mR cosλω2

where the angle λ is the so called ‘geocentric’ latitude.

The total potential energy of the forces acting on the pearl is thus

Φ(ϑ) = mR(g cosϑ− 1
2
ω2R sin2 ϑ). (1.73)

Equilibrium requires that

dΦ(ϑ)
dϑ

= −mR sinϑ(g + ω2R cosϑ) = 0 (1.74)

The solutions to this equation are given by the solutions of

sinϑ = 0, (1.75)

which are ϑ = 0, π, and the solution of

cosϑ = − g

ω2R
, (1.76)

which exists only when ω2R ≥ g, in which case it is ϑ = arccos
(
− g

ω2R

)
. It is left as an exercise

to the reader to study the stability properties of these equilibrium positions. ✷

1.3 Motion Relative to the Rotating earth

Until now we have treated problems concerning motion on our planet as if it defined an
inertial frame. Usually this gives useful results but when higher accuracy is needed one
must take into account the fact that our planet rotates. The angular velocity of this
rotation is

ω =
360◦

23 h 56m 4 s
=

2π rad
86164 s

= 7.292 · 10−5 rad
s

, (1.77)

so it can be regarded as small for most purposes. Note that the rotational period of
the earth is not 24 hours but four minutes less. 24 hours is the period of rotation with
respect to the direction defined by the Sun but the Sun is not in a fixed direction since
the earth goes around it once a year. The direction of the earth’s angular velocity vector
is from the centre to the north pole (see figure 1.5).
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1.3.1 The Effect of the Centrifugal Force

When we study motion near the surface of the earth and consider the earth as fixed, we
must thus take into account not only the force of gravity, contact forces etc. but also the
fictitious forces due to the rotation. These are the centrifugal force and the Coriolis force.
The centrifugal force will usually not require any special treatment; its effect is already
included in, what we call the acceleration due to gravity, g. The local magnitude, g, and
direction (the plumb-line), −ez, of g (= −g ez) will be determined by both gravity and
the centrifugal force. Because of this g would not be constant in magnitude and would
not be directed towards the centre even if the earth was a perfect sphere, see figure
1.5. This effect is fairly small, for the earth, since the maximum value of the centrifugal
acceleration, which is attained at the equator, λ = 0, is

Rω2 = (6.4 · 106 m) · (7.3 · 10−5 1
s
)2 = 3.4 · 10−2m

s2
. (1.78)

This should be compared with g = 9.8m/s2. The effect of the centrifugal force is thus
roughly three orders of magnitude smaller than that of gravity. In figure 1.5 the size of
the effect of the rotation is exaggerated for clarity.

In figure 1.5 the flattening effect of the rotation on the shape of the earth has been
neglected. This flattening is such that the direction of g is everywhere perpendicular to
the surface of the earth. It is difficult to calculate this flattening analytically since the
formula for the gravitational field from a non-spherical body is quite complicated. In spite
of this already Newton found a decent value for this flattening by means of hydrostatics
and some simplifying assumptions.

1.3.2 The Effects of the Coriolis Force

Once it is understood that the effect of the centrifugal force is included in the local
acceleration due to gravity, g, there remains to study the effects of the Coriolis force. If
we assume that mg and the Coriolis force, −2mω × v, are the only forces on a particle
of mass m its equation of motion can be written

v̇ = 2v ×ω + g. (1.79)

When ω = 0 we know that the solution of this equation is

v0(t) = v(0) + gt. (1.80)

Since ω is small it is reasonable to assume that the correct solution is close to v0. We
thus make the ‘ansatz’ that v is v0 plus a small correction δv,

v(t) = v0(t) + δv(t). (1.81)

When we insert this into equation 1.79 we find that δv obeys δv̇ = 2v0 ×ω + 2δv×ω.
The assumption that δv is small means that the last term here is the product of two
small terms, so we assume that we may neglect it. The equation for δv is then, using
equation 1.80 for v0,

δv̇ = [2v(0)×ω] + (2g ×ω)t. (1.82)

We now integrate this with respect to time, assuming that δv(0) = 0, to get

δv(t) = [2v(0)×ω]t+ (g ×ω)t2. (1.83)

Combining this with formula 1.80 gives the solution

v(t) = v(0) + gt+ [2v(0)×ω]t+ (g ×ω)t2 (1.84)
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Figure 1.6: This figure shows the angular velocity vector ω of the planet earth. It also defines
the latitude, the angle λ, of a location on the northern hemisphere and the basis vectors ex and
ez of the local coordinate system used in example 1.7. The angular velocity vector is given by
ω = ω(cosλ ex + sinλ ez) in terms of this basis. The formula is also valid on the southern
hemisphere if the angle λ is taken to be negative there.

to our original problem, equation 1.79. A second integration with respect to time gives
us the trajectory of the particle

r(t) = r(0) + v(0) t+
1
2
gt2 + [v(0)×ω]t2 +

1
3
(g ×ω)t3. (1.85)

The first three terms represent the well known parabolic trajectory of the constant grav-
itational field. The two last terms are corrections due to the Coriolis force. This solution
is, of course, only valid for times t small enough so that the correction terms remain
small.

Example 1.7 A particle is dropped from a vertical tower of height h at latitude λ. Calculate
its deflection from the vertical path. Neglect air resistance.
Solution: We use the coordinate system indicated in figure 1.6 with ex to the north, ey to the
west, and ez vertical so that

r(0) = h ez, (1.86)
v(0) = 0, (1.87)

g = −g ez, (1.88)
ω = ω(cosλ ex + sinλ ez). (1.89)

When these expressions are inserted into equation 1.85 some calculation gives

r(t) = (h− 1
2
gt2) ez − (

1
3
gω cosλ t3) ey. (1.90)

The particle hits the ground at the time t = T which is the root of the equation z(t) = h− 1
2gt

2 = 0,
i.e. when t =

√
2h/g. The y-coordinate at this time gives the sideways deflection of the particle

which thus is

y(T ) = −(1
3
gω cosλT 3) = −2

3
h

√
2h
g

ω cosλ. (1.91)

The minus sign here means that the deflection is to the east. For a tower of h = 10m at the
equator (λ = 0) this gives roughly a 1mm deflection. ✷
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In contrast to the above example, where the effect of the Coriolis force is quite small,
there are many large scale phenomena on the earth for which the Coriolis force is respon-
sible. These are, in particular, the circulation of the atmosphere and the oceans. For
example, the counterclockwise whirling of cyclones on the northern hemisphere (clock-
wise on the southern hemisphere) comes about when the Coriolis force deflects the air
rushing in to fill a low-pressure region perpendicular to the velocity.

1.3.3 Foucault’s Pendulum

Consider a simple pendulum suspended at the north pole. If such a pendulum is released
from rest, with its string making an angle with the vertical, it will swing back and forth
in a ‘fixed’ plane. Fixed relative to what one may ask? Is it fixed with respect to the
earth or to the universe as a whole (the fixed stars)? If one can minimize the effect of
air resistance the pendulum will swing for a long time and, at the north pole, one would
observe how the plane of the pendulum would rotate and complete one full circuit in one
sideral day (23 h 56 m 4 s). The plane is thus fixed with respect to the fixed stars and not
the earth. This behavior of Foucault’s pendulum is historically important, as the most
direct and conclusive evidence that the earth rotates.

When such a pendulum is not at the north pole one must calculate the angular
velocity of rotation of the plane by taking the Coriolis force into account in the equations
of motion. Let the bob of the pendulum have mass m, and denote the force of the string
by S. The equation of motion for the pendulum is

mr̈ = S+mg − 2mω × ṙ. (1.92)

We choose a coordinate system with the origin at the point of suspension and the direction
of the axes as in figure 1.6 (see example 1.7). We then have r = x ex + y ey + z ez and
|r| =

√
x2 + y2 + z2 = ", where " is the length of the string so that

S = −Sr/|r| = −S
(x ex + y ey + z ez)√

x2 + y2 + z2
= −S

"
(x ex + y ey −

√
"2 − x2 − y2 ez). (1.93)

The Coriolis force is

−2mω × ṙ = −2mω(cosλ ex + sinλ ez)× (ẋ ex + ẏ ey + ż ez) = (1.94)
= −2mω[cosλ (ẏ ez − ż ey) + sinλ (ẋ ey − ẏ ex)]. (1.95)

When this is inserted into equation 1.92 one obtains a vector equation with the following
components:

mẍ = −S

"
x+ 2mω sinλ ẏ (1.96)

mÿ = −S

"
y − 2mω sinλ ẋ+ 2mω cosλ ż (1.97)

mz̈ =
S

"

√
"2 − x2 − y2 −mg − 2mω cosλ ẏ (1.98)

So far no approximations have been made. In order to solve this system we now assume
that the string is long and the amplitude of the oscillations small. We thus assume that
x, y, ẋ, and ẏ are small so that products of these terms can be neglected. Since

ż = − d

dt

√
"2 − x2 − y2 =

xẋ+ yẏ√
"2 − x2 − y2

(1.99)

we can thus neglect ż and also z̈. The third (z) equation then gives S = mg+2mω cosλ ẏ
for the tension in the string. When this is inserted in the x- and y-equations the term

14



proportional to ẏ becomes multiplied with x and with y respectively, and so can be
neglected. This gives us the approximate equations

ẍ = −g

"
x+ 2ω sinλ ẏ, (1.100)

ÿ = −g

"
y − 2ω sinλ ẋ. (1.101)

These coupled equations can be solved with the complex technique illustrated in example
1.4 above. First introduce the complex function

ζ(t) ≡ x(t) + iy(t). (1.102)

The two equations are then equivalent to the single equation

ζ̈ + 2iω sinλ ζ̇ + ω2
0ζ = 0, (1.103)

where we have put

ω0 ≡
√

g

"
(1.104)

for the angular frequency of the (simple) pendulum.
Note that we have not made any special assumptions about the initial conditions.

Because of this the motion will not be confined to a plane even in the absence of a
Coriolis force (ω = 0). The problem is then that of the ‘spherical pendulum’ and the
general (small amplitude) solution trajectory turns out to be an ellipse. The simple
pendulum problem is obtained as a special case when the minor axis of the ellipse goes
to zero.

In order to solve equation 1.103 we, as usual, make the ‘ansatz’ A exp νt and get the
characteristic equation

ν2 + 2iω sinλ ν + ω2
0 = 0 (1.105)

with the roots
ν± = −i

(
ω sinλ±

√
ω2

0 + ω2 sin2 λ

)
. (1.106)

If we introduce the quantity

ω1 ≡ ω0

√
1 +

(
ω

ω0
sinλ

)2

, (1.107)

which normally will be quite close to ω0 since the frequency of the pendulum (ω0) is
much larger than the frequency of the earth’s rotation (ω), we can write the two roots in
the form

ν± = ±iω1 − iω sinλ. (1.108)

The general solution of equation 1.103 is thus

ζ(t) = exp(−iω sinλ t)[A exp(iω1t) +B exp(−iω1t)] (1.109)

where A and B are complex constants that must be determined in terms of the initial
conditions. When ω = 0 this solution corresponds to an ellipse in the xy-plane which is
traversed with angular velocity ω1 ≈ ω0. When the Coriolis force is taken into account
the ellipse will rotate (that is, its major axis will rotate) with angular velocity −ω sinλ
(see figure 1.7). At the north pole this gives the angular velocity −ω as it should.

One should note that the terms that we have neglected, when we ‘linearized’ the
spherical pendulum, also cause precession (slow rotation) of the ellipse. In general this
precession will be greater than that caused by the Coriolis force but fortunately it is
proportional to the (conserved) angular momentum, Lz = m(xẏ − yẋ), of the bob with
respect to the Z-axis. It is thus zero when the initial conditions give plane motion; the
rotation of the plane of the ‘simple’ pendulum is thus, really, due only to the Coriolis
force, i.e. the rotation of the earth.
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Figure 1.7: This figure shows the trajectory of the bob of Foucault’s pendulum on the northern
hemisphere. The initial conditions determine the shape of the ellipse as well as the direction
in which it is traversed. The Coriolis force makes the ellipse rotate in the direction of the
curved arrow, with angular velocity of magnitude |ω sinλ|, when the pendulum is on the northern
hemisphere. On the southern hemisphere it rotates in the opposite direction.

1.4 Problems

Problem 1.1 The reference frame A rotates relative to a fixed frame with an angular
velocity vector ω which is given by

ω = ωA
x e

A
x + ωA

y e
A
y + ωA

z e
A
z =

ω0√
2
[sin(ω0t) eA

x + cos(ω0t) eA
y + eA

z ]

when it is expanded in a basis fixed in the moving frame A. Find the first and second
time derivatives, ω̇ and ω̈ respectively, of this vector relative to the fixed system but
expanded in the moving frame basis vectors (eA

x , e
A
y , e

A
z ).

Problem 1.2 The acceleration a of a particle relative to a fixed frame has the compo-
nents (2, 3, 1)m/s2 in some basis. This particle is observed from an accelerated reference
frame A, with angular velocity components 1

4(3, 2, 1)s
−1 and angular acceleration compo-

nents 2(1, 2, 3)s−2 (relative to the fixed frame). Relative to a coordinate system fixed in
this moving frame the position vector, rA, of the particle has components −2(1, 2, 3)m.
The velocity vector, vA, in this frame, has the components (1, 2, 3)m/s, and the accel-
eration, aA, components are (3, 1, 2)m/s2. All components are given with respect to the
same basis. Find the acceleration of the origin A of the moving frame.

Problem 1.3 A railway tank car rolls straight down an incline that makes an angle α
with the horizontal, see figure 1.8. What angle β does the surface of the liquid inside
make with the horizontal? Neglect air resistance, friction, the moments of inertia of the
wheels, and initial wave motion.

Problem 1.4 A train of mass m travels along a straight track on horizontal ground.
The latitiude of the track is λ and it goes from south-west to north-east, see figure 1.9.
The speed of the train is v and it moves towards north-east. Calculate the total side-ways
force on the rails from the train and indicate on which rail the force mainly acts.

Problem 1.5 A car starts to accelerate with the door on the right hand side wide open.
The angle between the door and the direction of acceleration is 90◦. This is also the
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Figure 1.8: The figure on the left refers to problem 1.3. The railway tank car rolls down an
incline of angle α. What angle β does the surface of the liquid inside make with the horizontal?

Figure 1.9: The figure on the right refers to problem 1.4. The velocity v, to the north-east, of
the train at latitude λ is indicated.

angle that the door must rotate in order to close, see figure 1.10. The door can rotate,
with negligible friction, around a vertical axis. The horizontal distance from the axis to
the centre of mass of the door is d and the radius of gyration of the door with respect
to its axis is dg. If the door is to lock properly when it closes it must have a minimum
angular velocity ω. What is the minimum (constant) acceleration that the car must have
in order for the dooor to lock when it closes?

Problem 1.6 A motor cycle has a foot brake that acts on the back wheel, and a hand
brake that acts on the front wheel. The coefficient of friction between ground and wheels
is f . Investigate the maximum allowed braking acceleration, if no skidding is to take
place, when
a) there is optimal braking on both wheels,
b) only the front wheel brakes,
c) only the back wheel brakes.
The horizontal distance between the center of the front wheel and the center of mass is a,
that between the center of mass and the back wheel b, and the vertical distance between
the ground and the center of mass is h, see figure 1.11.
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Figure 1.10: The figure on the left refers to problem 1.5. When the car starts to accelerate the
angle between the door and the direction of acceleration is 90◦. This is also the angle that the
door must rotate in order to close.

Figure 1.11: The figure on the right refers to problem 1.6. G is the centre of mass of the motor
cycle (with driver).

1.5 Hints and Answers

Answer 1.1 Use formula 1.11. One finds

ω̇ =
◦
ω +ω ×ω =

◦
ω

and thus that

ω̇ =
◦
ω =

ω2
0√
2
[cos(ω0t) eA

x − sin(ω0t) eA
y ].

For the second time derivative we get

ω̈ =
◦

(ω̇) +ω × ω̇ =
◦◦
ω +ω×

◦
ω .

Calculations then give

ω̈ = −ω3
0

2
[(
√
2− 1) sin(ω0t) eA

x + (
√
2− 1) cos(ω0t) eA

y + eA
z ]

for the second time derivative of the angular velocity vector.

Answer 1.2 Note that the answer is given by the vector R̈ of formula 1.22. Elementary
calculations give the components

(−1, 5,−7)m/s2

for this vector.

Answer 1.3 First find the effective accelaration of gravity geff in the car. It turns out
to be perpendicular to the incline. The liquid surface will be perpendicular to geff and
it will thus make an angle α with the horizontal. The answer is thus that β = α.

Answer 1.4 The sideways force is given by the Coriolis force. Introduce a suitable local
coordinate system and express ω and v, the velocity of the train, in this system. Then
calculate the Coriolis force.

With ez vertical and ex pointing to the north we have that the angular velocity vector,
at the position of the train, is

ω = ω(cosλ ex + sinλ ez).
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The velocity, v, of the train, is then

v =
v√
2
(ex − ey).

The Coriolis force is thus

Fcor = −2mω
v√
2
(cosλ ex + sinλ ez)× (ex − ey) =

=
√
2mωv[− sinλ(ex + ey) + cosλ ez].

The horizontal component of this force, which acts on the rails, is −
√
2mωv sinλ(ex+ey).

This is seen to be perpendicular to the velocity of the train and therefore to the direction
of the rails. For a person looking in the direction of the trains velocity it is directed
to the right. The right hand rail must compensate this force with a suitable horizontal
normal force.

Answer 1.5 Use the accelerated reference frame of the car. The fictitious forces on the
door correspond to a system of parallel forces of the same type as gravity. They thus
have a resultant acting at the centre of mass. Consequently the door can be treated as
a physical pendulum and conservation of energy can be used to find its final angular
velocity. In this way one finds that

a =
d2
gω

2

2d

is the smallest acceleration that will lock the door.

Answer 1.6 In the accelerated frame of the motor cycle the relevant forces are the
normal forces, N1, N2, from the ground on the wheels, the friction forces Fi (i = 1, 2)
from the ground on the wheel(s) that are braked, and the resultant of the fictitious
(translational) forces acting forwards at the centre of mass. In the accelerated frame the
problem is one of statics. One finds the answers:
a) Fi = fNi, i = 1, 2, gives maximum retardation

ẍ = fg.

b) F2 = 0 and F1 = fN1 gives maximum retardation

ẍ =
fg

a+ b− fh
.

b) F1 = 0 and F2 = fN2 gives maximum retardation

ẍ =
fg

a+ b+ fh
.

For typical values of the parameters the last case will be the worst case.
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