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The possibility of a power-law scaling in the overlappin
part of the inner and outer regions of wall-bounded turbul
flows was first considered by Millikan1 and later analyzed by
Georgeet al.,2 George and Castilio,3 and Barenblatt and co
workers ~Refs. 4–8!. However, there are some differenc
between the different approaches taken in these studies
this type of power-law should not be confused with t
power-law used to represent the profile of the entire w
bounded layer in engineering approximations. In Refs. 4
pipe flow was considered. In recent work6–8 the authors have
extended their approach to zero-pressure gradient turbu
boundary layers. Using results from measurements mad
the test-section floor of the NDF facility at IIT by Hites9

they claim good agreement.7 Recent analysis of their result
by Ron Panton~private communication!, reveals inconsisten
cies in the length scale extracted from the two relations
fining their power law that are of the order of 25%–30%.

In the recent manuscript by Barenblattet al.,6 the au-
thors use the data obtained from measurements in a
pressure-gradient turbulent boundary layer by O¨ sterlund10

and made available on the internet.11 The authors claim tha
the conclusions obtained by O¨ sterlundet al.12 are incorrect
and that ‘‘Properly processed these data lead to the opp
conclusion.’’ The authors key arguments in the manuscr6

are:

~1! Plots of the mean velocity profiles in log–log scalin
show a straight line in the overlap region, and there
imply that a power-law is more appropriate than the lo
law in representing the data.10,12

~2! The low value ofk50.38 found by O¨ sterlundet al.12

compared to the ‘‘standard’’ values is by itself an ind
cation that a universal log-law does not exist.

~3! The existence of the Reynolds number dependent pow
law is proven by plotting a ‘‘universal’’ form of the
measured velocity profiles in the overlap region.

~4! The behavior of the functionG as presented in O¨ sterlund
et al.12 is a result of incorrect processing of the data.
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The following comments address each of the above f
statements in the same order they are listed above.

Power- or log-law behavior. In Fig. 1 of Ref. 6, the
authors show some selected mean velocity profiles from
data-base of O¨ sterlund11 in a log–log plot. Barenblattet al.6

make the statement: ‘‘All 70 runs corresponding to differe
Reu yield the same pattern: In the intermediate region
tween the viscous sublayer and free stream the average
locity distribution consists of two straight lines.’’ As wa
demonstrated by O¨ sterlundet al.,12 the Reynolds number is
too low in the top diagram of Fig. 1 of Ref. 6 and no un
versal overlap region exists. Therefore it will be exclud
from the following discussion. Also, in the diagrams of Fi
1 of Ref. 6 two straight lines are shown representing t
different power-law relations. The one adjacent to the f
stream@Ref. 6 Eq.~2!# lies in the outer or wake region. Sinc
our paper12 is about the overlap region and not about t
wake part, this outer power law is also excluded from t
following discussion. However, it is important to note th
properly scaled the wake part shows no significant Reyno
number dependence, see e.g. Fig. 3.4 on p. 15 and Fig.
p. 49 in Österlund.10

Instead we proceed to look at the main argument for
power-law @Ref. 6, Eq.~1!#, the inner straight line of the
middle and low parts of Fig. 1 in Barenblattet al.6 The au-
thors claim that the measured profiles lie, within the expe
mental accuracy, along the straight lines and, thereby, im
ing the existence of a power law. From this figure one m
get this impression, but a closer scrutiny and compari
with the log-law profile, yields that the log-law actuall
gives a better description than the power-law. One sho
make both a log–log and a lin–log plot and compare the tw
A power-law would give a straight line in the forme
whereas a straight line in a lin-log plot corresponds to
log-law.

The same data used in Fig. 1 of Barenblattet al.6 are
replotted here in Fig. 1 on a log–log graph and in Fig.
using lin-log scaling with compatible ranges of axes. T
0 © 2000 American Institute of Physics
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data in the lin-log plot show a good agreement with a strai
line, whereas the data in the log–log plot display a slig
curvature in the region of interest,y1 larger than about 100
Therefore, careful examination and comparison between
two possibilities for the overlap velocity distribution actual
reveals that the log–law is the preferable one and that
main argument in the manuscript by Barenblattet al.6 is not
valid. It is based on an insensitive representation of data
log–log plots. In fact the subtle differences in the mean
locity distributions and their comparison with the vario
relations is more clearly revealed with the aid of the mo
sensitive comparison based on a normalized slope of
mean profile, as will be discussed later.

The value ofk. In our recent work12 we systematically
derive inner and outer limits for the overlap region with t
aid of figures such as 2 and 3~of Ref. 12!. In particular we
arrive atMi5200 as the inner limit of the overlap region an
M050.15 as its outer limit~compared to the ‘‘traditional’’
limits of Mi550 andM050.15). Subsequently in Fig. 5 o
the same article, the von Karman constant is evaluated
fitting a log-law to the data in this carefully established ov
lap region, that is assumed to be governed by a log-law.

FIG. 1. Mean velocity distribution for Reu5$14207,26612% in log–log scal-
ing. The dashed straight lines are intended to reveal the curvature o
profiles.

FIG. 2. Mean velocity distribution for Reu5$14207,26612% in lin–log scal-
ing. Dashed–dotted straight line is the log-law usingk50.38 andB54.1.
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authors of Ref. 6 make a remark about this and seem
misinterpret the importance of the inner limit of the overl
regionMi .

Figure 5 of Österlundet al.12 leads to several importan
conclusions. First, by using the traditional limits we get
Reynolds number dependence ofk as a result of using a par
of the mean velocity profile that is outside the overlap
gion. Second, by increasing the inner limit of the outer lay
to 200 the Reynolds number dependence disappears. A
recall that the limits were found independently, from Figs
and 3 of~Ref. 12!. Third, evaluatingk using the low range of
Reu around 5000–7000~a region where many previous ex
periments were performed! we obtain a value ofk near 0.41.
This explains the difference between the newly determin
value ofk and the value found in previous experiments. T
large scatter in the low Reu range using the new inner limit is
expected, since fitting the log-law to a much smaller range
data introduces large uncertainties. With increasing Reyno
number the scatter decreases~solid symbols! as a result of
the growing overlap range. Also, one can conclude that
universal overlap region exists for Reu,6000~and no fitting
is possible!. In conclusion Fig. 5 strongly supports the co
clusions of Figs. 2 and 3 of the same article.12 Also shown in
the same Fig. 5 are the results from measurements made
cylindrical body in the NDF facility at IIT by Hites9 ~shown
as squares!. These carefully documented results also lead
the identical conclusions as drawn from the KTH data.

The ‘‘universal’’ form of the (power) scaling law.
Barenblattet al.6 check the applicability of their Reynold
number dependent power-law by rewriting it into what th
call a ‘‘universal’’ form,

C5
1

a
ln S 2aŪ1

)15a
D 5 ln y1. ~1!

Then, they claim that when plotted in this universal form, t
data support their power-law by their collapse with sufficie
accuracy onto the bisector of the figure. They attribute
differences found to higher order terms or to the form of t
skin friction law used by us.12 In fact, the discrepancies ar
completely explained by assuming that the mean velo
profile is actually a log-law, and inserting that into the un
versal form obtained by them and tabulated in Barenb
et al.8 In this procedure, the log-law will be Reynolds num
ber dependent in this ‘‘universal’’ form and is shown here
Fig. 3 for two values of Reu5$14207,26612% together with
the measurements in the same Reu range.

It is abundantly clear from the figure that the experime
tal data lie within the area bound by the log-laws correspo
ing to the maximum and minimum Reynolds number valu
of the data and that the log-law is definitely a better rep
sentation of the data. Again, it is demonstrated here h
insensitive log-log plots are since the power- and log-la
are very close together in this figure. Instead, as we sta
earlier, it is preferable to use the more sensitive normali
slopes.

TheG-function. Österlundet al.12 demonstrated that the
diagnostic function for a log law,

he



0
lso

la
th

e

o
e
be
v
re

t

s

er
,

tom

the
t the
mble
on-
he
stic

er
int
ove

e
n
een
ta

ds
ion
by

ntin
o

in
o

n-

2362 Phys. Fluids, Vol. 12, No. 9, September 2000 Österlund, Johansson, and Nagib
J5S y1
dŪ1

dy1 D 21

. ~2!

is very close to a constant equal to 0.38 in the region 2
,y1,0.15d1, see e.g., Figs. 2 and 3 in Ref. 12. They a
showed that the diagnostic function for a power-law,

G5
y1

Ū1

dŪ1

dy1
~3!

is decreasing in the overlap region and that a power-
therefore is a less accurate than a log-law in describing
mean velocity in the overlap region.

In the recent work of Barenblattet al.6 they argue that
incorrect processing of the data is the cause for the decr
ing behavior ofG in Ref. 12. The functionG as presented in
Österlundet al.12 was averaged over the whole ensemble
measurements, while removing the outer-flow parts wh
y/d.0.15. If the data would adhere to the Reynolds num
dependent power-law proposed in Ref. 6 an ensemble a
aging over profiles of different Reynolds numbers would

FIG. 4. Diagnostic function for power scaling laws for individual profiles
the range 13000,Reu,15000, andy/d,0.15. Dashed line corresponds t
the log law usingk50.38 andB54.1.

FIG. 3. Power scaling law in ‘‘universal form.’’s, Measurement 15000
,Reu,27300, and 100,y1,0.2d1. Dashed line, Reynolds number depe
dent power-law@Eq. ~1!#. Solid lines, Log-law for Reu5$14207,26612%.
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sult in a decreasingG-function. However, this is actually no
the reason for the decreasingG found in figure 6 of
Österlundet al.12 One indication is given by the error-bar
which would have been larger in the lowy1 end. However,
the best check is to look at the individualG curves for sepa-
rate Reynolds numbers.

In Fig. 4, measurements of individual boundary lay
profiles in the range 13 000,Reu,15 000 are represented
while in Fig. 5 the measurements in the range 25 000,Reu

,27 300 are shown. These ranges of Reu were selected to be
compatible with the two cases used in the middle and bot
parts of Fig. 1 of Barenblattet al.6 From Figs. 4 and 5 here
one can easily conclude that the individualG curves display
the same behavior without any significant dependence on
Reynolds number. Figures 4 and 5 also demonstrate tha
averaged curve in Ref. 12 accurately describes the ense
of measurements and that the individual profiles closely c
form to the log-law found in Ref. 12, and shown here by t
dashed line. Therefore, we conclude again that the diagno
function G decreases with increasing wall distancey1 and
that the functional behavior is different from that of a pow
law. Although the authors of Ref. 6 make a strong po
about this issue, one can clearly conclude from the ab
results that their statement is erroneous.

Conclusions. The main arguments put forward in th
work of Barenblattet al.,6 regarding a power-law behavior i
the overlap region of turbulent boundary layers, have b
systematically analyzed. An objective scrutiny of the da
clearly demonstrates that, for sufficiently high Reynol
numbers, the mean velocity distribution in the overlap reg
of turbulent boundary layers is very accurately described
the Reynolds number independent log-law, given here in in-
ner scaling,

Ū15
1

k
ln y11B, ~4!

wherek50.38 andB54.1. The Reynolds number depende
power-law proposed by Barenblattet al.6 yields a substan-
tially less accurate representation of the data.

FIG. 5. Diagnostic function for power scaling laws for individual profiles
the range 25000,Reu,27300, andy/d,0.15. Dashed line corresponds t
the log law usingk50.38 andB54.1.
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