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The possibility of a power-law scaling in the overlapping The following comments address each of the above four
part of the inner and outer regions of wall-bounded turbulenstatements in the same order they are listed above.
flows was first considered by Millikdrand later analyzed by Power- or log-law behaviorin Fig. 1 of Ref. 6, the
Georgeet al,? George and Castilidand Barenblatt and co- authors show some selected mean velocity profiles from the
workers (Refs. 4—8. However, there are some differences data-base of &terlund* in a log—log plot. Barenblatt al®
between the different approaches taken in these studies anggke the statement: “All 70 runs corresponding to different
this type of power-law should not be confused with theRe, yield the same pattern: In the intermediate region be-
power-law used to represent the profile of the entire walliween the viscous sublayer and free stream the average ve-
bounded layer in engineering approximations. In Refs. 4—%ocity distribution consists of two straight lines.” As was
pipe flow was considered. In recent wirkthe authors have demonstrated by Serlundet al,** the Reynolds number is
extended their approach to zero-pressure gradient turbulef@0 low in the top diagram of Fig. 1 of Ref. 6 and no uni-
boundary layers. Using results from measurements made ofgrsal overlap region exists. Therefore it will be excluded
the test-section floor of the NDF facility at IIT by Hitds, from the following discussion. Also, in the diagrams of Fig.
they claim good agreemefhRecent analysis of their results 1 of Ref. 6 two straight lines are shown representing two
by Ron Pantoriprivate communication reveals inconsisten- different power-law relations. The one adjacent to the free
cies in the length scale extracted from the two relations destreaniRef. 6 Eq.(2)] lies in the outer or wake region. Since
fining their power law that are of the order of 250%-30%. Our papet’ is about the overlap region and not about the

In the recent manuscript by Barenblat al.® the au- wake part, this outer power law is also excluded from the
thors use the data obtained from measurements in a zefgllowing discussion. However, it is important to note that
pressure-gradient turbulent boundary layer Byteﬂundo properly scaled the wake part sh_ows no significant Reynolds
and made available on the interd&fThe authors claim that humber gepende?é:e, see e.g. Fig. 3.4 on p. 15 and Fig. 9 on
the conclusions obtained bys@rlundet al’? are incorrect ~ P- 49 in Gsterlund. .
and that “Properly processed these data lead to the opposite Nstéad we proceed to look at the main argument for the

conclusion.” The authors key arguments in the manustriptPOWer-law[Ref. 6, Eq.(1)], the inner straight (ISine of the
are: middle and low parts of Fig. 1 in Barenblat al.” The au-

thors claim that the measured profiles lie, within the experi-
(1) Plots of the mean velocity profiles in log—log scaling mental accuracy, along the straight lines and, thereby, imply-
show a straight line in the overlap region, and therebying the existence of a power law. From this figure one may
imply that a power-law is more appropriate than the log-get this impression, but a closer scrutiny and comparison
law in representing the dat&:'? . with the log-law profile, yields that the log-law actually
(2) The low value ofx=0.38 found by Gterlundetal™®  gives a better description than the power-law. One should
compared to the “standard” values is by itself an indi- make both a log—log and a lin—log plot and compare the two.
cation that a universal log-law does not exist. A power-law would give a straight line in the former
(3) The existence of the Reynolds number dependent powewhereas a straight line in a lin-log plot corresponds to a
law is proven by plotting a “universal” form of the log-law.
measured velocity profiles in the overlap region. The same data used in Fig. 1 of Barenbketal® are
(4) The behavior of the functioh as presented in€erlund  replotted here in Fig. 1 on a log—log graph and in Fig. 2
et al!?is a result of incorrect processing of the data. using lin-log scaling with compatible ranges of axes. The
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authors of Ref. 6 make a remark about this and seem to
misinterpret the importance of the inner limit of the overlap
regionM; . B

Figure 5 of Giterlundet al!? leads to several important
conclusions. First, by using the traditional limits we get a
Reynolds number dependencexoés a result of using a part
of the mean velocity profile that is outside the overlap re-
gion. Second, by increasing the inner limit of the outer layer
to 200 the Reynolds number dependence disappears. Again,
recall that the limits were found independently, from Figs. 2
and 3 of(Ref. 12. Third, evaluating« using the low range of
Re, around 5000-7000a region where many previous ex-
periments were performg¢eve obtain a value ok near 0.41.
This explains the difference between the newly determined
value of k and the value found in previous experiments. The

FIG. 1. Mean velocity distribution for Re={14207,2661Rin log—log scal- large scatter in the low Reange using the new inner limit is

ing. The dashed straight lines are intended to reveal the curvature of theXPected, since fitting the log-law to a much smaller range of
profiles. data introduces large uncertainties. With increasing Reynolds
. . . . number the scatter decreagsslid symbol$ as a result of

data in the lin-log plot show a good agreement with a stra|gh{he growing overlap range. Also, one can conclude that no

line, Wher_eas the d_ata n the IO%_IOQ plot display a Sllghtuniversal overlap region exists for Re6000 (and no fitting
curvature in the region O.f mt_eregt, larger thfan about 100. is possible. In conclusion Fig. 5 strongly supports the con-
Therefore, careful examination and comparison between th usions of Figs. 2 and 3 of the same artitlalso shown in

two p?sst'hb"tmtis f:)r th? OV?”‘;? veloclety (;llstnbunon gctt#at”i'hthe same Fig. 5 are the results from measurements made on a
reveals that the log—law 1s the preterable one and that ey i, qyical body in the NDF facility at IIT by Hites(shown

mall.'g alltrgurt’r;entc;n the m.a\nuscr.ltpt by Barenb:a:_al. 'Sf r:jott as squares These carefully documented results also lead to
valid. 1L 1S based on an insensitive representation ol data Ofq jyentical conclusions as drawn from the KTH data.

log—log plots. In fact the subtle differences in the mean ve- The “universal” form of the (power) scaling law

locity distributions and their comparison with the various Barenblattet al® check the applicability of their Reynolds

relations is more clearly revealed with the aid of the more_ | ., o dependent power-law by rewriting it into what they

sensitive comparison based on a normalized slope of thgall a “universal” form

mean profile, as will be discussed later. '
The value ofx. In our recent work® we systematically

derive inner and outer limits for the overlap region with the 1 |

aid of figures such as 2 and(8f Ref. 12. In particular we T n

arrive atM; =200 as the inner limit of the overlap region and

Mo=0.15 as its outer limitcompared to the "traditional Then, they claim that when plotted in this universal form, the

limits of M;=50 andMy=0.15). Subsequently in Fig. 5 of . . : L
the same article, the von Karman constant is evaluated bdata support their power-law by their collapse with sufficient

o~ C . churacy onto the bisector of the figure. They attribute the
fitting a log-law to the data in this carefully established OVer- e rences found to higher order terms or to the form of the

lap region, that is assumed to be governed by a log-law. Thgkin friction law used by u&? In fact, the discrepancies are
completely explained by assuming that the mean velocity
profile is actually a log-law, and inserting that into the uni-
versal form obtained by them and tabulated in Barenblatt
et al® In this procedure, the log-law will be Reynolds num-
ber dependent in this “universal” form and is shown here in
Fig. 3 for two values of Rg={14207,2661P together with
the measurements in the same, Renge.

It is abundantly clear from the figure that the experimen-
tal data lie within the area bound by the log-laws correspond-
ing to the maximum and minimum Reynolds number values
of the data and that the log-law is definitely a better repre-
sentation of the data. Again, it is demonstrated here how
insensitive log-log plots are since the power- and log-laws
are very close together in this figure. Instead, as we stated
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FIG. 2. Mean velocity distribution for Re={14207,2661Rin lin—log scal- TheI'-function Osterlundet al”* demonstrated that the

ing. Dashed—dotted straight line is the log-law usitg0.38 andB=4.1. diagnostic function for a log law,
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FIG. 3. Power scaling law in “universal form.'O, Measurement 15000
<Re,<27300, and 108y*<0.25". Dashed line, Reynolds number depen-
dent power-lawEq. (1)]. Solid lines, Log-law for Rg={14207,2661R2

FIG. 5. Diagnostic function for power scaling laws for individual profiles in
the range 25008 Re;<27300, andy/ 5§<0.15. Dashed line corresponds to
the log law using«=0.38 andB=4.1.
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::(y ) sult in a decreasinfj-function. However, this is actually not
dy” the reason for the decreasing found in figure 6 of

is very close to a constant equal to 0.38 in the region 206°Sterlunt al'? One indication is given by the error-bars

<y*<0.155", see e.g., Figs. 2 and 3 in Ref. 12. They alsoWhich would ha_ve been larger in the_ low end. However,

showed that the diagnostic function for a power-law, the best check is to look at the individualcurves for sepa-
rate Reynolds numbers.

y* du™ In Fig. 4, measurements of individual boundary layer
=— (3)  profiles in the range 13080Re,<15000 are represented,
+ dy*
U y while in Fig. 5 the measurements in the range 250B8@,

is decreasing in the overlap region and that a power-law~27 300 are shown. These ranges of, Rere selected to be
therefore is a less accurate than a log-law in describing theompatible with the two cases used in the middle and bottom
mean velocity in the overlap region. parts of Fig. 1 of Barenblat al® From Figs. 4 and 5 here

In the recent work of Barenblatt a|_6 they argue that ©One can eaSin conclude that the individdiaturves dlsplay
incorrect processing of the data is the cause for the decreafie same behavior without any significant dependence on the
ing behavior ofl” in Ref. 12. The functiod” as presented in Reynolds number. Figures 4 and 5 also demonstrate that the
Osterlundet al'? was averaged over the whole ensemble of2veraged curve in Ref. 12 accurately describes the ensemble
measurements, while removing the outer-flow parts wher®f measurements and that the individual profiles closely con-
y/5>0.15. If the data would adhere to the Reynolds numbeform to the log-law found in Ref. 12, and shown here by the
dependent power-|aw proposed in Ref. 6 an ensemble aveg.aShEd line. Therefore, we conclude again that the diagnostic

aging over profiles of different Reynolds numbers would re-function I' decreases with increasing wall distance and
that the functional behavior is different from that of a power

law. Although the authors of Ref. 6 make a strong point
about this issue, one can clearly conclude from the above
results that their statement is erroneous.
‘ v : _ : : _ : . Conclusions The main arguments put forward in the
015 U RRPER - oo work of Barenblatet al.° regarding a power-law behavior in
N3 : 1 ' : : the overlap region of turbulent boundary layers, have been
systematically analyzed. An objective scrutiny of the data
clearly demonstrates that, for sufficiently high Reynolds
numbers, the mean velocity distribution in the overlap region
of turbulent boundary layers is very accurately described by
the Reynolds number independent log;l@iven here in in-
ner scaling,
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FIG. 4. Diagnostic function for power scaling laws for individual profiles in wherex=0.38 andB=4.1. The Reynolds number dependent

6 .
the range 13008 Re,<15000, andy/5<0.15. Dashed line corresponds to p_ower'laW proposed by Baren_blait al” yields a substan-
the log law using«=0.38 andB=4.1. tially less accurate representation of the data.
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