> 52nd APS/DFD meeting,
> New Orleans, Louisiana
> Nov 21-23, 1999

Session A A. Turbulent Boundary Layers I (AA.06)

New Values for Logarithmic Layer Parameters Revealed by Two Experiments in High Reynolds Number Boundary Layers.

Jens M. Österlund and Arne V. Johansson Department of Mechanics Royal Institute of Technology (KTH)

10044 Stockholm
Hassan M. Nagib
Illinois Institute of Technology
Chicago, IL 60616, USA

Background

- Alternative Theories for Turbulent BL:
- log- or power-law overlap regions
- Re dependence of the overlap region
- Measurements in the MTL and NDF wind tunnels at KTH and IIT
- Large span in Re
- Independent measurements of the skin-friction

Classical Theory of Boundary Layers

Inner scaling

$$
\begin{equation*}
\frac{\bar{U}}{u_{\tau}}=f\left(\frac{y u_{\tau}}{\nu}\right) \tag{1}
\end{equation*}
$$

Outer scaling

$$
\begin{equation*}
\frac{U_{\infty}-\bar{U}}{u_{\tau}}=F\left(\frac{y}{\delta}\right) \tag{2}
\end{equation*}
$$

High Re \Rightarrow Overlap region: $\nu / u_{\tau} \ll y \ll \delta$ Matching \Rightarrow

$$
\begin{gather*}
\frac{\bar{U}}{u_{\tau}}=\frac{1}{\kappa} \ln \left(\frac{y u_{\tau}}{\nu}\right)+B \tag{3}\\
\frac{U_{\infty}-\bar{U}}{u_{\tau}}=-\frac{1}{\kappa} \ln \left(\frac{y}{\delta}\right)+B_{1} \tag{4}
\end{gather*}
$$

Logarithmic skin friction law

$$
\begin{equation*}
\frac{U_{\infty}}{u_{\tau}}=\frac{1}{\kappa} \ln \left(\frac{\delta u_{\tau}}{\nu}\right)+B+B_{1} \tag{5}
\end{equation*}
$$

Skin friction coefficient

$$
\begin{equation*}
c_{f}=2\left[\frac{1}{\kappa} \ln \left(R e_{\theta}\right)+C\right]^{-2} \tag{6}
\end{equation*}
$$

Mean Velocity Inner Scaling

Mean Velocity Outer Scaling

Diagnostic function Ξ Inner Scaling

$$
\begin{gather*}
y^{+} \\
\Xi=\left(y^{+} \frac{d \bar{U}^{+}}{d y^{+}}\right)^{-1} \tag{7}
\end{gather*}
$$

$2500<R e_{\theta}<27000$.
Errorbars show a 95% confidence interval.
The horizontal line corresponds to $\kappa=0.38$

Diagnostic function Ξ Outer Scaling

$2500<R e_{\theta}<27000$.
Errorbars show a 95% confidence interval.
The horizontal line corresponds to $\kappa=0.38$

Mean Velocity Inner Scaling

Diagnostic function Γ Inner Scaling

$$
\begin{equation*}
\Gamma=\frac{y^{+}}{\bar{U}^{+}} \frac{d \bar{U}^{+}}{d y^{+}} \tag{8}
\end{equation*}
$$

$2500<R e_{\theta}<27000$.
Errorbars show a 95% confidence interval.

Concluding Remarks

- Experimental evidence in favor of the log-law
- New values for the "constants":
$\kappa=0.38$
$B=4.1$
$B_{1}=3.6 \quad\left(\delta=\delta_{95}\right)$
- The overlap region: $200<y^{+}<0.15 \delta^{+}$
- No overlap for: $R e_{\theta}<6000$

To appear in Phys. of Fluids Jan. 2000

See also:
Jens M. Österlund

Experimental studies of zero pressure-gradient turbulent boundary
layer flow

December 1999

Royal Institute of Technology (KTH)
Stockholm, Sweden

