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1 Introduction

The flow in a laminar boundary layer is governed by a single length scale and
full similarity solutions to the boundary layer equations can be obtained. The
case of the turbulent boundary layer flow is quite the opposite with a large span
in both velocity and length scales. One can identify two layers with different
dynamics, the inner layer where the dynamics are strongly influenced by viscous
stresses and an outer layer mainly governed by inertial forces. The velocity and
the length scales for the inner layer can be defined from the shear stress at the
wall, u2

τ = τw/ρ and �∗ = ν/uτ , and for the outer layer as the freestream velocity
U∞ and the thickness of the boundary layer δ. At high Reynolds numbers the
ratio of the two lengthscales is large and we have two distinct layers. These meet
in an overlap region where the dynamics is essentially independent of lengthscale
(an inertial sublayer behavior). Full similarity solutions can be sought for the
inner and outer layers independently. The inner layer was treated by Prandtl [6]
obtaining solutions of the form

U
+
= f(y+), (1)

where U
+
= U/uτ and y+ = yuτ/ν . The scaling in the inner layer has since then

been verified in numerous experiments. For the outer layer several competing
hypotheses for the form exist. The classical form is given by

U

U∞
= 1+

uτ

U∞
F (η), (2)

where η = y/δ, see e.g. Österlund [4], ch. 2. For the most recent alternative
theories the readers are referred to the works of George [2] and Barenblatt [1]
and Zagarola [7].
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Millikan [3] obtained the classical logarithmic scaling in the overlap region,
by matching the inner and outer layer descriptions Eq. 1 and Eq. 2, here given
in inner scaling

U
+
=

1
κ
lny+ +B. (3)

George [2] and Barenblatt [1] use a different approach and arrive at a Reynolds
number dependent power-law description of the overlap region although with
some differences between the two.

We will here try to identify purely from experimental data, which of the
hypothesis that gives the “best” description.

2 Selection criteria

We will test the following hypotheses: a) Re independent log-law, b) Re depen-
dent log-law, c) Re independent power-law and d) Re independent power-law.
There are many aspects one could look at in the different approches but the
key point of interest must be whether we can identify any significant regions
with log- or power-law functional behaviour, Reynolds number dependent or
not. This can be done in many ways and the first idea that may spring to mind
might be to make lin-log and log-log diagrams of the mean velocity. It turns out
to be a rather insensitive test (see Österlund et. al [5]). Instead we proceed to
look at a normalized gradient of the mean velocity. We define

Ξ =

(
y+ dU

+

dy+

)−1

, (4)

that will be constant in a region governed by a log-law, and

Γ =
y+

U
+

dU
+

dy+
(5)

that will be constant in a region governed by a power-law.
To be able to identify any Reynolds number dependence we will look at Eq. 4

and Eq. 5 evaluated for individual measurements of the mean velocity at different
Reynolds numbers. One should keep in mind that the scatter necessarily will be
quite large when taking the derivative of measurement data.

3 Results

The measurements were carried out at the MTL wind-tunnel at the department
of mechanics at KTH and are described in Österlund [4]. The data base for
the mean velocity consists of 70 mean velocity profiles taken in the Reynolds
number range 2500 < Reθ < 27300. The data are available on the internet at:
http://www.mech.kth.se/˜jens/zpg/.
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Here we will show a subset of the data to make the figures more readable.
In figure 1 the gradient of the mean velocity is normalized according to 4 to
identify regions with log-law behavior. Above y+ ≈ 200 the ensamble of curves
flattens out around the constant value 0.38 (performing the same evaluation
instead in outer scaling one finds the the outer limit of the overlap at η ≈ 0.15),
see Österlund et. al [5].

In figure 2 profiles of the mean velocity gradient normalized to identify regions
governed by a power-law, are shown. From comparisons of figures 1 and 2 one
can conclude that mean velocity profiles closely adhere to a log-law with von
Kármán’s constant κ = 0.38. One can also conclude that no significant region
with power-law behaviour exists since the function Γ decreases with increasing
y+ in figure 2, for all Reynolds numbers.
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Figure 1: The gradient of the mean ve-
locity normilized to reveal a log-law be-
haviour. η < 0.15. Reθ: ∗: 9600,
◦: 14200, +:20560, �:26600, ×:27300.
Dashed line: log-law, κ = 0.38.
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Figure 2: The gradient of the mean ve-
locity normilized to reveal a power-law
behaviour. η < 0.15. Reθ: ∗: 9600,
◦: 14200, +:20560, �:26600, ×:27300.
Dashed line: log-law, κ = 0.38 and
B = 4.1.

4 Conclusions

• The mean velocity profiles are best described by the log-law in the region
200 < y+ < 0.15δ+. Hence, a universal overlap region can only be expected
to be found for Reθ larger than about 6000.

• No significant Reynolds number effects were found for sufficiently high
Reynolds numbers, yielding the constants κ = 0.38 and B = 4.1 of the
log-law, Eq. 3.
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