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Outline

Statics; capillarity and wetting 
Dynamics; models describing dynamic wetting 
▪ Hydrodynamics (Tanner-Cox-Voinov law) 

▪ Molecular kinetics theory 

Dynamical wetting transitions; from slip to splash 
Phase field model developed to study wetting 
Simulations and experiments of short-time spontaneous capillary 
driven spreading 
▪ Physical mechanisms believed to govern dynamic wetting
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Contact line

Contact line is the point where an interface meets a solid substrate. 
!
!
!
!
!
!
!
Multi-scale problem, typical experimental drop size ~1mm, relevant 
length scale of the interface ~1nm 



Why study contact lines?
Still unresolved physical problem, with great challenges in both modeling and 
experiments 

Multiscale problem (inner/outer) (from molecular to millimetric) 
Singular problem (inner) (Divergence of viscous stress) 

Important in many industrial processes: Coating, microfluidic systems, sintering, 
lithography techniques ect. 



Why study contact lines?

Hydrophilic:  
Water flow bending and flow around the 
spout as the water velocity decreases.

Still unresolved physical problem, with great challenges in both modeling and 
experiments 

Multiscale problem (inner/outer) (from molecular to millimetric) 
Singular problem (inner) (Divergence of viscous stress) 

Important in many industrial processes: Coating, microfluidic systems, sintering, 
lithography techniques ect. 

Superhydrophobic spout:	


 Avoids this effect for any velocity.	



This is an inertial-capillary adhesion phenomenon, 
coupling inertial flows to a capillary adhesion 
mechanism. This phenomenon effectively bridges the 
gap between the small (surface) and large (flow) 
scales. 
!

Duez et al., 2010 Phys. Rev. Letters



Fundamental problems of wetting

Statics problems 
o Hydrodynamics: forces, velocity, stress and singular flow in the 

vicinity of the interface. 
o Thermodynamics: Gibbs free energy and equilibrium contact angle 
o Physicochemical interaction: surfactant and surface tension 
o Evaporation, electrowetting etc. 

Dynamic wetting 
o Dynamic wetting contact angle theories: dissipation energy  
o Microscopic model: molecular kinetic theory 
o Numerical model: free energy based
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Three different possible wetting states 
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Force balance yields Young’s law:
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creating new interface

dW = (�SG)� �SL)dx| {z }
contact line motion

� � cos ✓edx| {z }
creating new interface

Works done by moving a contact line
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Wetting contact angle, models

Young’s equation

Wenzel  
model

Cassie-Baxter  
model

The surface energy variation dW arising from 
an apparent displacement dx of the line

The Wenzel relation predicts that 
roughness enhances wettability

cos ✓⇤ = r cos ✓

r =
real surface area

apparent surface area
� 1

dW = r(�SG)� �SL)dx| {z }
contact line motion

� � cos ✓

⇤
dx| {z }

new interface



Young’s equation
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Wetting contact angle, models

Air pockets 

The surface energy variation dW arising from 
an apparent displacement dx of the line

cos ✓⇤ = �1 + �S + �S cos ✓e
For equilibrium (dE/dx = 0), 

dW = �S(�SL � �SG)dx+ (1� �S)�dx| {z }
contact line motion

+ � cos ✓

⇤
dx| {z }

new interface



Contact Angle Hysteresis

Dynamic contact angles can be measured at various rates of speed. At a 
low speed, it should be close or equal to a properly measured static contact 
angle. The difference between the advancing angle and the receding angle 
is called the hysteresis (H ): H=θa-θr. It arises from surface roughness; and/
or heterogeneity or chemical contaminations; or solutes.

Illustration of advancing and receding contact angles 



Pinning of a contact line on an edge

The Young condition stipulates that the liquid meets the solid with a 
contact angle θ. Hence the contact angle at the edge can take any value (if 
the horizontal direction is considered as the reference one) between θ and π 
− φ + θ, as illustrated by the colored region.
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!
✦Solution of Young-Laplace equation. 
!
!
!
!
✦Darcy’s law for porous media 

P
in

� P
out

= �
dA

dV

Darcy flux q ⌘ vn = �k

µ
rP



Summary about the equilibrium and  
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Dynamics of the contact line 
(Hoffman 1975)

F (✓D) = �SG � �SL � � cos ✓D

Pushing a liquid in a thin tube, 
observing the contact angle θD 

(Hoffmann exp.) 

Vertical extraction of a plate from a pool of 
liquid. 
• At low pull rates the triple line remains at 

a fixed height, that is, it moves with  
V = - Vp relative to the plate. 

• At higher pull rates, the triple line moves 
with a finite thickness. This is called 
forced wetting

F > 0 F < 0 



Dynamics of the triple line  
(Hoffman 1975, Ström et al. 1990)

Apparent dynamic contact angles of 
perfectly wetting fluids (silicone) 
measured in a glass capillary 
(Hoffman, 1975) and for a plunging 
plate of polystyrene (Ström et al., 
1990). Each symbol corresponds to a 
different fluid and/or substrate. 
One curve for different liquids, 
conditions. 
For small velocity, the solid line is:

✓a = const · Ca1/3
Adopted from Bonn et al. 2009, Rev. Mod. Phys.

Ca =
µU

�
Capillary number



Viscous dissipation

T Ṡ =

Z 1

0
dx

Z
x✓D

0
⌘

✓
dv

dz

◆2

dz

The energy dissipated by viscous flow  
(per unit length of the triple line in the y-direction)

h

z

x

Flow path of markers in the Dussan-Davis experiment (1974). It is similar to 
the motion of a caterpillar vehicle.

The dynamical properties of the contact line involves: 
• Local phenomena (molecular scale) 
• Longer range phenomena in the form of viscous flow



Deriving laws for dynamic wetting:  
Hydrodynamics

h

z
x

Z 1

0

dx

x

⇡
Z L

a

dx

x

= ln

✓
L

a

◆
⌘ l

▪ Assume a wedge with    <<1,               ,  
!
!
!
!

▪ Energy dissipated by viscous phenomena (becomes logarithmically 
divergent) 
!
!

▪ This implies that the total dissipation is not integrable at r = 0 nor at ∞, 
and one requires a cutoff at both small and large scales. Typically, these 
cutoffs appear at the molecular scale (a∼10−9 m) and at the scale of the 
capillary length L (∼10−3 m). 



Viscous dissipation in Hoffmann’s exp.

From: 
!
!
!
!
!
!
We have: 
!
!
!
+ When θD = θE, V=0

F (✓D) = �SG � �SL � � cos ✓D

T Ṡ = FV =
3⌘l

✓D
V 2

cos ✓ ⇡ 1� ✓2

2

V =

✓
�

⌘

◆
✓D
6l

(✓2D � ✓2E)

Ca = const · ✓3D



Tanner’s law (1979) – perfect wetting

General case:

F (✓D) = �SG � �SL � � cos ✓D
Total wetting case:

Finside = ��SL � � cos ✓D

F
precursor

= �
SL

+ �

˜F = � � � cos ✓D ⇠
=

�
✓2D
2

Predict the velocity through the dissipation equation (               ), with the new F:

V =
V ⇤

6l
✓3D

T Ṡ = FV

�SL�SL

�
✓D



Tanner’s law (1979) – perfect wetting

Due to the mass conservative, dΩ/dt = 0, and V=f(θD3)

Geometry: assuming the drop is sufficiently flat.

but, �h0(R) = tan(✓D) ⇡ ✓D

h(r) =
2⌦

⇡R2


1�

⇣ r

R

⌘2
�

h0(r) = � 4r⌦

⇡R4 ⌦ =
⇡

4
R3✓D

d✓D
dt

= �V ⇤

R
✓4D

Recast from the initial size of the droplet, L≈Ω1/3

d✓D
dt

= �V ⇤

L
✓13/3D

R /
✓

�t

µL

◆1/10

✓D ⇡
✓
µL

�t

◆3/10



Cox law (1986) 

Assuming the curvature of the outer region is small, and the bulk viscous 
friction is the main resistance force. 
Assuming the slippage of fluid occurs in the inner region.  
 
 
 
for a solid/liquid/gas system,  
g(θ) = θ3/9, thus  
 
 
 
L is the capillary length,  
and l is the slip length.  
 
(What happen if l ~ 0?)

g(✓d) = g(✓eq) + Ca ln

✓
L

l

◆

✓3d = ✓3eq + 9Ca ln

✓
L

l

◆



Summary

Statics problems 
o Hydrodynamics: forces, velocity, stress and singular flow in the 

vicinity of the interface. 
o Thermodynamics: Gibbs free energy and equilibrium contact angle 
o Physicochemical interaction: surfactant and surface tension 
o Evaporation, electrowetting etc. 

Dynamics wetting 
o Dynamics wetting contact angle theories: dissipation energy  
o Microscopic model: molecular kinetic theory 
o Numerical model: free energy based



Microscopic model: slip length

The motion of the first few molecular layers above a 
solid subtract can be described by the Navier slip 
boundary. 
!
!
!
(*) For gas, ls ~ the mean free path (Maxwell 1878) 
!
(*) For liquids,  
!
!
!
!
a is the molecular size, D is the self-diffusion 
coefficient, γ(1+cosθ) is the wettability factor 

z

u(z)

xls

uz=0 = ls
@u(z)

@z

ls ⇠
⌘DakBT

[�a2(1 + cos ✓e)]2
a

(Huang et al. 2008)



Microscopic model: Molecular Kinetic Theory

The key idea of this MKT is that a 
contact line moves by small jumps 
included by thermal fluctuations. 
The “jump” motion is characterised 
by a length scale ξ and by an energy 
barrier for the active process  
E* ~ γξ2(1+cosθe) (Blake 2006). 
Average moving velocity

lT =
p

kBT/�

U = 2k0⇠ exp

✓
� E⇤

kBT

◆
sinh

✓
�⇠2(cos ✓e � cos ✓)

2kBT

◆

where, k0 is the typical “jump” frequency, kB is Boltzmann constant,  
γξ(cosθe-cosθ) is the capillary force.

The current model does not represent any contact angle hysteresis.



Linearized Molecular Kinetic Theory

The original form 
!
!
!
!
Combining with the Eyring viscosity we have UMKT,  
 
 
 
 
Eν is the activation energy from  
liquid-liquid interactions, Eν ~ 2γξ2

U = 2k0⇠ exp

✓
� E⇤

kBT

◆
sinh

✓
�⇠2(cos ✓e � cos ✓)

2kBT

◆

�⇠2

kBT
= (⇠/lT )

2 = O(1)
sinh

✓
�⇠2(cos ✓e � cos ✓)

2kBT

◆
⇡ (cos ✓e � cos ✓)

UMKT =

�

⌫
exp

✓
E⌫ � E⇤

kBT

◆
(cos ✓e � cos ✓)

de Ruijter et al.,1999, Langmuir.



Microscopic model: surface heterogeneities

The heterogeneities can be modelled by considered the “jump” of the molecular 
as depinning events from the defects of the substrate. In this picture, the length 
scale ξ is now the correlation length of the disorder and E* the typical energy 
barrier between two pinned configurations of the contact line.  
 
 
 
 
 
 
where H is the contact hysteresis,  
H=1/2(cosθr-cosθa)

U ' 2k0⇠ exp

✓
�⇠2

l2T
H

◆
exp | cos ✓e � cos ✓|

E. Rolley, PRL 2007



Short summary for the  
dynamic wetting models
▪ Both hydrodynamic and molecular kinetic theory rely on primary input 

from the micro scale 
!

▪ Both theories have been shown to describe experimental data. 
!

▪ Experiments of short-time spontaneous spreading of drops are however 
difficult to describe with either theory. 
!

▪ Aim here to develop a modeling approach for dynamic wetting, going 
beyond function fitting.



Transition of fluid flow due to the 
wetting the capillary forces



Motivation

For many practical applications such as coating, it is important to 
understand the maximum speed at which a plate withdrawn or plunging 
into a liquid is covered exclusively by one phase.

Benkreira & Ikin 2010



Flow transition: slip to splash

The splash produced by a sphere impacting on water 
is caused by the contact line of the solid-air-water 
interface becoming unstable, so a sheet of water 
detaches from the solid. On the left, no instability 
occurs for a static contact angle of θeq=15o, while for 
θeq=100o a splash is produced. The entrainment of air occurs at 

much larger speeds than the 
dynamical wetting transition for 
receding contact lines.



The blue curve condenses the 
theoretical/experimental 
results of Duez et al: 
!
Hydrophilic (theta<90˚): 
Ca > 0.1 gives splash 
!
Hydrophobic (theta>90˚):  
Ca ~ (π−θ)3 
!
Splash above the curve,  
slip below. 

Ca and equilibrium contact angle determine 
the splash

34

Ca =
µU

� ⇡
�
✓



Ca vs. viscosity: A drop of ethanol & silicon 
impact a dry surface

Nagel Group, Chicago Univ.

• The critical speed decreases for more vicious liquids, suggesting that dissipation in the 
liquid is importance. (Benkreira & Ikin 2010, Blake & Ruschak 1979) 

• The dependence on ηl is much weaker than predicted (Cox 1/ηl); in between −1/2 and 
−1/3 rather than the expected −1. 

1atm



Ca vs. gas pressure: A drop of ethanol & silicon 
impact a dry surface

Nagel Group, Chicago Univ.
• The critical speed increases when the air pressure is reduced. Because such a pressure 

change does not affect the gas viscosity, this effect must result from inertia in the gas or 
from the increase of the mean free path.

1 atm

0.2 atm



Ca vs. gas pressure

• A pressure reduction does not affect the dynamical viscosity of a gas 
(Lemmon 2004), but it does increase the mean free path by a factor 
patm/p.  

• Under atmospheric conditions lmfp≈70 nm, the mean free path is pushed 
well into the micron range when pressure is reduced by a factor 100.  

• The mean free path then becomes comparable to the film thickness 
measured experimentally.  

• Since lmfp sets the scale for the slip length, we expect a substantial 
reduction of dissipation in the gas, and hence a larger entrainment 
velocity. Then increase of Ca.

(Marchand et al. 2012)



Cahn Hilliard equations  
Axisymmetry 
Adaptive FEM 
!
Computations done in a frame following the ball 
Ball speed assumed constant, prescribed 
!
Data typically for water/air, bead diameter 0.83 mm,  
speed U=6 m/s. Surface energies are varied. 
!
Most relevant nondimensional numbers: 

€ 

Ca =
µlU
γgl

,   Re =
ρlUd

µl
,   Bo =  (ρl − ρa )gd 2

γgl

Typical values for the simulations: 
Ca= 0.0785, Re = 5000, Bo=0.092

Simulations

38

Do-Quang and Amberg, 
Phys. Fluids (2009) 



Ball impacting a free water surface

Contact angle of ball is 60o Contact angle of ball is 150o

Falling speed U=5m/s (Do-Quang, Phys. Fluids (2009))



Symbols are our simulations 
Red: Air cavity still exists 
Black: No coherent air cavity 
!
Same Ca as in experiments 
Bo < 1 (Bo >1 in exps) 
Re~1000 (Re~10000 in exps)

40



θ=90˚ θ=150˚

Bouncing ball

41



Notice

Detailed simulations of a highly dynamic wetting 
situation. 
!

Agreement with experimental results; 
!

Agreement despite large differences in Bond and 
Reynolds numbers: suggests that the important 
factors here are dynamic wetting and inertia. 



Controlled drop emission by wetting properties

An instability induced by the competition between capillarity, 
viscous dissipation and wetting, which leads to the controlled 
generation of drops by appropriately tuning the wetting 
properties of the solid substrate.

(Ledesma-Aguilar, R. et al, Natural Materials 2011)

θe = 0◦,Ca = 0.41!
θe = 90◦,Ca = 0.25

θe = 0◦,Ca > Ca* = 0.52!
θe = 90◦,Ca > Ca* = 0.27



Controlled drop emission by wetting properties
NATUREMATERIALS DOI: 10.1038/NMAT2998
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Figure 3 | Critical capillary number, Ca⇤, as a function of the static contact
angle, ✓e, at different values of the length-scale-separation parameter, ✏.
Symbols correspond to lattice–Boltzmann simulations (squares and circles)
and experimental data of ref. 6 (triangles). Dashed lines correspond to the
theoretical prediction (see the text). For ✏ ' 1, Ca⇤ decreases monotonically
with increasing ✓e. However, for increasing length separation
(decreasing ✏), a plateau is observed for hydrophilic stripes, whereas a
strong decreasing tendency in Ca⇤ persists for hydrophobic stripes. The
effect of inertia, quantified by the Weber number, We = ⇢U2/h, is to lower
the threshold, as shown in the inset (see the text for explanation).

microscopic angle, ✓m. At distances closer to the solid substrate, the
energy dissipation rate is determined by the microscopic friction
caused by the motion of the contact line. We characterize this
friction by a force of magnitude Wm = �wm⌘LU , where wm is a
geometric constant of order unity19. Although the filament profile
is an outcome of the energy rate balance itself, the main difference
between hydrophilic and hydrophobic substrates is that for the
former a liquid wedge is formed, whereas for the latter a gas wedge
develops instead, as shown in Fig. 2b. This gas wedge, defined
by SG in the figure, contributes to the energy dissipation by an
amount

R
SG
FGU , with FG = �3⌘GU/H 2(r) being the viscous force

density arising from the gas of viscosity ⌘G. Adding all these
contributions, we can finally equate the total energy dissipation
to the input energy rate, Ṗ = �K̇ . This gives a relation between
the capillary number and the apparent contact angle, provided
that the microscopic angle is measured from simulations. From
this relation we extract the maximum capillary number, Ca⇤, as a
function of ✓e, and ✏.

The previous analysis shows how the dissipation on hydrophobic
substrates is controlled by the displaced gas, which has a viscosity
much smaller than that of the displacing liquid. As a result,
the critical apparent contact angle, which is close to 180�, is
essentially independent of ✓e. Therefore, the more hydrophobic
the substrate, the closer the static angle to the critical apparent
angle. This lowers the force necessary to destabilize the interface,
thus leading to a monotonic decrease of Ca⇤ with ✓e. In sharp
contrast, on hydrophilic substrates the dissipation generated by
the liquid wedge is strongly dependent on wetting. Since the
wedge becomes sharper the more hydrophilic the substrate is,
its dissipation increases accordingly, thus contributing to lower
the force needed to destabilize the film. The overall effect is that
Ca⇤ is less sensitive to ✓e on hydrophilic substrates, and as the
size of the wedge scales with ✏ the effect becomes much more
marked at large scale separations (✏ ⌧ 1), leading to a much clearer
plateau for Ca⇤. A comparison of our theoretical predictions with
numerical simulations and experiments is shown in Fig. 3. The
parameter wm is fixed to a single value, wm = 4.0, to compare with
numerical simulations, whereas it is fixed towm =4.7 to obtain good
agreement with the experimental data of ref. 6.
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Figure 4 |Dimensionless radius and period of the emitted drop.
a, Dimensionless drop size, R⇤/h, as a function of the static contact angle,
✓e, showing an increase in size with hydrophobicity independently of the
stripe width. For wide filaments the radius is extracted from the filament
central section. b, Dimensionless emission period, � ⌧/h⌘L, as a function of
the excess velocity, U/U⇤ � 1, for different static contact angles. The
emission period decreases as the net input flux from the film into the ridge,
proportional to U/U⇤ � 1, increases. Results correspond only to wide
filaments. For a fixed flux, ⌧ is larger for a more hydrophobic stripe. Solid
and dashed lines correspond to the theoretical prediction (see the text).

In agreement with our previous discussion, the size and
the period of the emitted drops, which are selected by Ca⇤,
can be controlled by choosing the stripe wetting properties.
Figure 4a shows simulation measurements of the drop radius, R⇤,
which increases with ✓e. This dependence becomes stronger on
superhydrophobic stripes, leading to drop radii that exceed the
filament thickness. We deduce the dependence of the drop size
on substrate wetting by estimating the critical radius, R⇤ =R(Ca⇤),
which is fixed by the force density balance between gravity, ⇢g , and
capillarity, �� /rRR, at the onset of drop detachment. The capillary
force density corresponds to the capillary pressure drop 1P ⇡
�� /R over the characteristic length, rR ⇡ ↵h, which scales with
the film thickness, h. The proportionality constant, ↵, is of order
unity and can be measured from simulations (see Supplementary
Information for details). For very large Ca the film thickness fixes a
lower bound for the drop size,R⇤ �h/2, and thereforewe obtain

R⇤ ' h

1
2

+ (a↵Ca⇤)�1
�

(1)

where we have used the filament propagation velocity, U ⇤, to
identify Ca⇤. Since Ca⇤ decreases on increasing ✓e, the radius

NATUREMATERIALS | VOL 10 | MAY 2011 | www.nature.com/naturematerials 369

© 2011 Macmillan Publishers Limited. All rights reserved

Critical capillary number, Ca* , as a function of the static contact angle, θe, at 
different values of the length-scale-separation parameter, ε=ξ/h. Ca*. 
Symbols correspond to simulations (squares and circles) and experimental 
data (triangles). Dashed lines correspond to the theoretical prediction as a 
result of the global energy balance per unit length of the contact line 
between the power generated by driving forces and the dissipation due to 
frictional forces. 

A complex fluids with 
small surface 

tension, such as 
colloid/polymer 

mixtures

Water

(Ledesma-Aguilar, R. et al, Natural Materials 2011)

θe = 0◦,Ca > Ca* = 0.52!
θe = 90◦,Ca > Ca* = 0.27



Spontaneous droplet spreading

Bird et al., PRL, 2008.

Courbin et al., PCM, 2009.

Bliznyuk et al., Langmuir, 2010.

t = 0ms 0.4 ms 0.8 ms 1.2 ms

θ=3o

θ=43o

Glycerol	
  droplet,	
  θ=53o



Time scale definition

If the capillary forces driving the flow are primarily hindered by viscosity 
!
!
!
!
If the capillary forces driving the flow are primarily hindered by inertia, 
based on density ρ and surface tension

t⇤ =
µR

�
[N.s/m2].[m]

[N/m]
= [s]

t⇤ =

s
⇢R3

�

[kg.m�3] · [m3]

[N/m]
=

[kg]

[kg.m.s�2/m]
= [s2]



Spreading radius of droplets
How the wetted radius r grows with 

time t once a drop contacts one of 
the four surfaces (symbol filling), 
three different viscosities (symbol 
colour) and 8 initial drop radius. 

Bird et al., PRL, 2008.

Rescaling the data with 
the viscous timescale.

Rescaling the data with 
the inertial timescale.



Depends on the equilibrium contact angles

r

R
= C

✓
t

⌧

◆↵

For small contact angle, α approaches 
1/2, a values observed for complete 
wetting and coalescence.



As the equilibrium contact angle, θeq increases, both the coefficient C 
and the exponent α decrease.
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R
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Questions about short-time spreading

▪ Can a spontaneous spreading process be solely described by hydrodynamic 
forces (e.g. inertia, surface tension, viscosity) ? 

!
▪ Can micro-scale phenomena at the contact line dictate macroscopic wetting 

behavior ? 
!

▪ Aim here is to develop a mathematical model that describes very dynamic 
wetting phenomena and probe the physics that govern such flow.



Rapid dynamic wetting, 
Experiments

Due to the presence of a narrow gap 
and optical limitations, the drop 
image merges with its own optical 
reflexion on the glass substrate.

Using high-speed imaging with synchronized bottom and side views gives access to 6 decades 
of time resolution. 

Eddi et al. 2013



Experiment results

While the data for different viscosities can be collapsed onto the form predicted for 
coalescence Fig. (a), τ = 4πηR/γ, the typical spreading velocity does not simply scale 
as ∼1/η. This can be seen from the prefactor a, which still displays a dependence on 
viscosity η, Fig. (b).



Governing equations

▪ Navier Stokes equations: 
!
!

!
!
!
▪ Cahn-Hilliard equation: 
!
!
!

▪ General wetting boundary condition:

A binary immiscible incompressible mixture

Density (ρ), viscosity (µ),	


mobility (M), gravity (g) 

Friction coeff. (    )

{

{

}

}



Assuming local equilibrium

Wetting boundary condition:

(Model has no adjustable parameters!)



Accounting for non-equilibrium

Wetting boundary condition:



Influence of µf on spreading rate

▪ Influence of the rate coefficient in the non-equilibrium boundary condition 
on spreading rate.
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Observation from simulations

Phase Field simulations (µf=0) follow hydrodynamic theory for viscously 
dominated wetting, results fairly independent of ε. 
!
For spontaneous spreading, a dissipative contribution needs to be included 
by having a non-zero µf. 
!
Can µf here represent a physically reasonable friction factor at the contact 
line?



‹#›

• Measuring the contact line friction parameter for the different 
liquids and solid surfaces

Contact line friction parameter
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‹#›

• Rate of change of kinetic energy (   ) : 
!
!

!
• Dissipation contributions; viscous dissipation (     ), diffusion 

(    ) and a contact line dissipation (      ).

Dissipation contributions
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‹#›

• De Gennes1 postulated that a dissipation would arise from 
the contact line region and would take the form; 
!

!
                           
!
!
• Form of the contact line dissipation from Phase Field theory

Contact line dissipation

60 1 P. de Gennes, Wetting: statics and dynamics, Rev. Mod. Phys., 1985.



Cahn-Hilliard contact  
line dissipation 
!
▪ Dissipation from Cahn-Hilliard model is given by: 

interface
z

r

}

Similar form for the contact line dissipation 	


as postulated by de Gennes!



‹#›

!
• Contact line friction dominates in dynamic wetting.

Dissipation in dynamic wetting

62

Water Glycerin82.5%

Spreading on a oxidized-Si wafer, θe=20°.



‹#›

• Contact line dissipation found to govern dissipation even for 
very viscous liquids. 
!

• Contact line dissipation also a larger contribution than the 
rate of change of kinetic energy for water. 
!

• µf measured for different viscosities and surface wettability. 
!

• Can the experiment give us further proof of the dominance 
of contact line friction in dynamic wetting?

Summary of findings about 
dissipation in wetting
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‹#›

• Dimensional spreading radius for different viscosities and 
droplet size on an oxidized Si-wafer.

Evolution of spreading radius
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‹#›

• Time-scale set by viscosity (t*=σ/Rµ) 
does not collapse the data!

Viscous scaling
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‹#›

• Time-scale set by inertia (t*=σ/R3ρ) does 
not collapse the data.

Inertial scaling
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‹#›

• Time-scale set by contact line friction (t*=σ/Rµf) parameter 
collapses the experimental data onto a single curve!

Contact line friction scaling
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‹#›

Collapse for contact line  
friction scaling

68

Dimensional Viscous

Contact line frictionInertia



‹#›

!
• Contact line dissipation is found to generate a significant 

contribution to the total dissipation in spontaneous spreading. 
!

• Quantitative measurement on the macro-scale of the contact line 
friction parameter       . 
!

•       is believed to parameterize, on the macroscale, the microscopic 
dissipative mechanisms at the contact line.

Conclusions
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