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ABSTRACT

We study the behaviour of an axisymmetric vertical turbulent jet in an un-

confined stratified environment by means of well-resolved large eddy simu-

lations. The stratification is two uniform layers separated by a thermocline.

We consider two cases: when the thermocline thickness is small and of the

order of the jet diameter at the thermocline entrance. The Froude number of

the jet at the thermocline varies from 0.6 to 1.9 corresponding to the class

of weak fountains. We quantify mean jet penetration, stratified turbulent en-

trainment, jet oscillations and the generation of internal waves. The mean jet

penetration is predicted well by a simple model based on the conservation of

the source energy in the thermocline. The entrainment coefficient for the thin

thermocline is consistent with the theoretical model for a two-layer stratifi-

cation with a sharp interface, while for the thick thermocline entrainment is

larger at low Froude numbers. We report the presence of a secondary horizon-

tal flow in the upper part of the thick thermocline, resulting in the entrainment

of fluid from the thermocline rather than from the upper stratification layer.

The spectra of the jet oscillations in the thermocline display two peaks, at

the same frequencies for both stratifications at fixed Froude number. For the

thick thermocline, internal waves are generated only at the lower frequency,

since the higher peak exceeds the maximal buoyancy frequency. For the thin

thermocline, conversely, the spectra of the internal waves show the two peaks

at low Froude numbers, whereas only one peak at the lower frequency is ob-

served at higher Froude numbers.
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1. Introduction36

This study focuses on the dynamics of an axisymmetric vertical turbulent jet in a stratified fluid.37

Vertical turbulent jets may serve as models of numerous flows both in nature and industry (see38

e.g. Turner (1973); List (1982); Hunt (1994)) including effluents from submerged wastewater39

outfall systems in the ocean (e.g. Jirka and Lee (1994)), convective cloud flows in the atmosphere,40

pollutant discharge from industrial chimneys, subglacial discharge from glaciers (e.g. Straneo and41

Cenedese (2015)). The stratification considered is two layers of homogeneous fluids of different42

temperature separated by a relatively thin layer with a temperature jump - a thermocline. This43

configuration is a typical model of the upper thermocline layer in lakes, the pycnocline in the44

ocean, as well as thermal inversions in the atmosphere, when the sharp gradient of the scalar45

prevails significantly over the scalar change in the layers.46

The dynamics of vertical jets is governed mainly by their volume, momentum and buoyancy47

fluxes, where the buoyancy of a jet is defined by the density difference between the jet and the48

surrounding medium, normalized by gravity. If the flow density is less than the density of the49

surrounding medium then the jet is positively buoyant, if heavier the jet is negatively buoyant,50

while it is neutrally buoyant if the densities are equal. In general, all the examples of turbulent jets51

in nature and industry mentioned above result from mixed sources of buoyancy and momentum (as52

a rule they are positively buoyant). However, jets effectively entrain the surrounding fluid, hence,53

when the source is located far enough from the pycnocline, the density of the flow at the pycnocline54

entrance is almost equal to the density of the lower layer of stratification. The dynamics of such a55

flow in the pycnocline can therefore be modelled employing a neutrally buoyant turbulent jet with56

positive vertical momentum in the lower stratification layer. In other words, an initially buoyant jet57

in the pycnocline can be modelled employing a neutrally buoyant jet provided they have the same58
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velocity and radius at the entrance of the pycnocline. The turbulent jet considered here results59

from a momentum source of the same fluid as in the lower layer of stratification. When entering60

the thermocline, it becomes a negatively buoyant jet, i.e. a fountain.61

Stationary regimes of turbulent fountains have been extensively investigated in both homoge-62

neous and linearly stratified media (Turner 1966; List 1982; Bloomfield and Kerr 1998, 2000;63

Kaye and Hunt 2006; Burridge and Hunt 2012, 2013) revealing the dependency of the mean pen-64

etration height and of the entrainment coefficient on the different parameters of the problem. The65

behaviour of an axisymmetric miscible Boussinesq fountain in a homogeneous fluid is defined by66

the Reynolds number Re =U0R0/ν (U0 the inflow velocity, R0 the nozzle radius, ν the fluid kine-67

matic viscosity), and the Froude number Fr =U0/
√

g′R0 (with g′ = g∆ρ/ρ0 the reduced gravity,68

∆ρ is the density difference between source and ambient fluid). The Reynolds number determines69

whether the fountain is laminar or turbulent while the Froude number characterizes the ratio be-70

tween momentum flux M0, buoyancy flux F0 and volume flux Q0 of the fountain. Indeed, it can be71

rewritten, following Kaye and Hunt (2006), as Fr ∼M5/4
0 /Q0F1/2

0 . The Froude number can also72

be interpreted as the ratio between two length scales: l ∼ M3/4
0 /F1/2

0 , known as the momentum73

jet length (Turner 1966), and R0 ∼ Q0/M1/2
0 corresponding to the initial radius of the jet. Using74

theoretical considerations and experimental validations, Kaye and Hunt (2006) classified foun-75

tains according to their Froude number as: very weak (Fr . 1), weak (1 . Fr . 3) and forced76

(Fr & 3). Later Burridge and Hunt (2012, 2013) extended the classification using more experi-77

mental data, further dividing ”weak fountains” into weak and intermediate, with a change from78

weak to intermediate fountains at Fr ≈ 1.7. The behaviour of forced fountains in a homogeneous79

fluid is governed by the momentum and buoyancy fluxes and the mean penetration height, here80

denoted hz, is therefore proportional to the momentum jet length hz/R0 ∼ Fr (Turner 1966). For81

weak fountains, instead, all three fluxes are important and dimensional analysis gives a penetration82
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hz/R0 ∼ Fr2 (Kaye and Hunt 2006; Burridge and Hunt 2012). Finally, very weak fountains are83

hydraulically controlled and estimates at large Reynolds numbers give hz/R0 ∼ Fr2/3 (Kaye and84

Hunt 2006; Burridge and Hunt 2012).85

In a linear stratification dimensional considerations yield a penetration height hz/R0 ∼ Fr1/2 for86

forced fountains with zero initial buoyancy flux (McDougall 1981; Bloomfield and Kerr 1998). In87

general, however, the rise height of a fountain in a stratified fluid depends on the density profile and88

requires more complicated numerical models based on the conservation laws for the momentum,89

volume and buoyancy fluxes of the jet (Morton et al. 1956; Bloomfield and Kerr 2000).90

Instabilities are observed for fountains in a homogeneous fluid, and this oscillatory motion has91

become the object of research only recently (Friedman 2006; Friedman et al. 2007; Williamson92

et al. 2008; Burridge and Hunt 2013). The dynamics of a fountain in a homogeneous fluid is,93

analogously to the mean penetration height, fully controlled by the Froude and Reynolds num-94

bers. It has been demonstrated experimentally that weak fountains can undergo oscillations with95

amplitudes comparable to their heights and well-defined frequencies. The oscillatory dynamics of96

fountains in stratified fluids is however mostly unexplored. Interestingly, the only experimental97

investigation in a linear stratification has shown no direct connection between the frequency of the98

fountain oscillations and the frequency of internal waves (Ansong and Sutherland 2010).99

A behavior similar to the oscillatory dynamics of weak fountains has been revealed in100

pycnocline-like stratified fluids while modelling submerged wastewater outfall systems in the101

ocean (Troitskaya et al. 2008). Turbulent buoyant plumes discharged horizontally into oceanic102

salt water gain vertical momentum due to their positive buoyancy while they propagate in the103

lower layer of stratification. At the same time they are mixing intensively with the surrounding104

fluid owing to the turbulent entrainment. At the entrance to the pycnocline, these jets have density105

close to the density of the lower layer of stratification and a non-zero vertical momentum thus106
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forming fountains. These fountains are capable to generate internal waves in a pycnocline through107

their oscillations. This effect has been demonstrated experimentally, by means of laboratory scale108

modeling of wastewater outfall systems, and later numerically (Druzhinin and Troitskaya 2012,109

2013) both for laminar and turbulent fountains/jets in two-layer stratified fluid with a thin pyc-110

nocline (i.e. in the presence of a rather sharp density jump compared to the jet diameter at the111

pycnocline entrance).112

As mentioned earlier, fountains in a linear stratified fluid do not show pronounced oscillations,113

while fountains in a two-layers fluid are characterized by strong oscillations. Thus, in addition to114

the Reynolds and Froude number, with all these parameters taken in the vicinity of the pycnocline,115

the ratio of the pycnocline thickness to the jet diameter, is expected to play an important role.116

Therefore, the aim of this paper is to understand the influence of the ratio ”pycnocline thickness/jet117

diameter” on the dynamics of a turbulent fountain and on the generation of internal waves, using118

data from well-resolved Large Eddy Simulation (LES). Since the pycnocline is subject to seasonal119

variability (Kamenkovich and Monin 1978; Knauss 2005; Stewart 2008) this ratio is expected to120

change throughout the year, making this a relevant question in oceanography.121

Previous numerical investigations (Druzhinin and Troitskaya 2012, 2013) investigated a similar122

configuration but focused on a thin pycnocline in comparison to the jet diameter at the pycnocline123

entrance. However, field measurements and results of modelling employing nonhydrostatic gen-124

eral circulation model reveal that they are mostly of the same size (Sciascia et al. 2013; Troitskaya125

et al. 2008). In this paper we compare jet dynamics in two different stratifications: one with a126

thin thermocline, analogous to Druzhinin and Troitskaya (2013), and the other with a thermocline127

thickness close to the jet diameter at the thermocline entrance. The latter case, for the thermocline128

Froude numbers 0.87-1.16, reproduces the conditions of laboratory experiments investigating the129

generation of internal waves by a turbulent jet (Ezhova et al. 2012). Note, that the parameters of the130
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jet at the entrance to the thermocline in the experiments matched the parameters of the laboratory131

scale modelling of the real wastewater outfall system in winter conditions (Troitskaya et al. 2008).132

In summer, convection in the upper layer is weak, governed mainly by the surface wave breaking133

and mixing due to the wind, and together with the increased temperature difference between up-134

per and lower layers, this results in the sharpening of the pycnocline and its moving closer to the135

surface. As a result, for the same source location, the radius of the jet at the pycnocline entrance136

increases and the vertical velocity decreases; some qualitative conclusions about the jet dynamics137

in these conditions can therefore be drawn from the present results for the thin thermocline and138

low Froude numbers.139

The jet dynamics in the thermocline is relevant for turbulent mixing of the jet with the surround-140

ing media. This important question has been before investigated for a jet in two-layers stratification141

with a density interface experimentally (Cotel et al. 1997; Lin and Linden 2005) and theoretically142

(Shrinivas and Hunt 2014, 2015). In this study we investigate the mean flows in the thermocline143

and compare the entrainment flux of the jet in stratifications characterized by a finite thickness of144

the thermocline with the results of the theoretical model by Shrinivas and Hunt (2014).145

The paper is organized as follows. Section 2 contains the relevant equations and a brief descrip-146

tion of the LES model. The test case of a turbulent jet in a homogeneous medium is described and147

the setup of the simulations for a stratified case discussed. Section 3 is devoted to the results of the148

simulations: in the first part we investigate the penetration height and turbulent entrainment of the149

jet in a stratified medium and discuss the dynamics of the jet in the thermocline. The generation150

of the internal waves is presented in the second part. Our conclusions are given in Section 4.151
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2. Governing equations and numerical method152

We consider a jet in an unconfined fluid with a stable thermal stratification. The dynamics of153

a jet in a stratified fluid is governed by the Navier-Stokes equations for an incompressible fluid154

with the Boussinesq approximation to model the buoyancy effects and a transport equation for the155

temperature field. To carry out a parameter study like that presented here, we resort to LES to156

reduce the computational costs. In a LES, the large turbulent eddies are fully resolved whereas the157

effect of the smallest scales, those not resolved on the computational mesh, is modelled. A filter158

is applied to derive an equation for the resolved scales that reads in dimensionless form and in a159

Cartesian coordinate system160

∂ui

∂ t
+u j

∂ui

∂x j
=− ∂ p

∂xi
+

1
Re

∂ 2ui

∂x2
j
+

1
Fr2 (T −T ′s )δiz−

1
Re

∂τi j

∂x j
, (1)

∂T
∂ t

+u j
∂T
∂x j

=
1

RePr
∂ 2T
∂x2

j
− 1

Re
∂Θ j

∂x j
(2)

∂ui

∂xi
= 0. (3)

The equations are made dimensionless with the initial jet diameter D0, the jet maximal inflow161

velocity U0, and the temperature difference between the stratification layers ∆T . We define the162

profile of stratification as T ′s = (Ts−T0)/∆T , where Ts is the undisturbed temperature profile and163

T0 is the temperature of the lower layer of stratification. The hydrostatic pressure component asso-164

ciated with T ′s is subtracted from the full pressure to get p in our system. We define the Reynolds165

number Re =
U0D0

ν
, the Froude number Fr =

U0√
g′D0

, with g′ =
g∆ρ

ρ0
≈ gaT ∆T the reduced grav-166

ity (here aT is the thermal expansion coefficient), the Prandtl number Pr =
ν

κ
where ν is the fluid167

kinematic viscosity and κ the thermal conductivity. τi j and Θ j are the fluxes representing the168

subgrid Reynolds stresses and turbulent heat transport.169
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To model the subgrid-scale stresses we employ the dynamic Smagorinsky model (Smagorinsky170

1963; Germano et al. 1991) which has been successfully used in the simulations of buoyant flows171

by several authors, e.g. Pham et al. (2006, 2007). The subgrid-scale stresses are expressed as172

τi j =−2νtSi j, Si j =
1
2
(

∂ui

∂x j
+

∂u j

∂xi
), (4)

Θ j =−
νt

Prt

∂T
∂x j

. (5)

In the spirit of the Prandtl mixing length model, the subgrid-scale viscosity is given by the formula173

νt = (Cs∆)
2|Si j|, (6)

where ∆=(∆x∆y∆z)1/3 and Cs is the Smagorinsky coefficient, related to the dynamic Smagorinsky174

constant by Cs =
√

Cd . The idea underlying the dynamic Smagorinsky model is that the small175

eddies of the large structures that are still resolved in the computations are statistically analogous176

to the subgrid-scale eddies. Thus an additional filter, the test filter, is used to separate the resolved177

turbulent spectrum and calculate dynamically the Smagorinsky constant Cd (for more detail see178

Germano et al. (1991)).179

In our simulations, the jet is generated by a round source of diameter D0 with an initial vertical180

velocity profile181

Ui =−0.5tanh
r−0.4
0.05

+0.5, (7)

where r =
√

x2 + y2, with x and y the horizontal directions, see Fig. 1. The stratification of the182

ambient fluid is of a thermocline-type with a temperature jump at the vertical position z = zp. The183

stratification profile is given by184

T ′s =
1
2
(1+ tanh(γ(z− zp))) (8)

where γ = D0/H and H is the half-thickness of the thermocline. The temperature of the fluid at185

the inflow is equal to the temperature of the lower stratification layer.186
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a. Numerical method187

The numerical simulations presented here are performed with the parallel flow solver Nek5000188

(Fischer et al. 2008). The dynamic Smagorinsky model is built-in inside this code. Nek5000 is a189

spectral element code with exponential accuracy within the spectral elements. On each element190

the flow variables are represented as a superposition of Lagrange polynomials based on Gauss-191

Lobatto-Legendre quadrature points (GLL points). In the present calculations the spatial dis-192

cretization is made with polynomials of order 7, which means that each element contains 8×8×8193

grid points or GLL points. Time discretization involves an operator-splitting method using back-194

ward differentiation of order 2 for the implicitly treated viscous terms and 2nd order extrapolation195

for the explicitly treated convective terms (BDF2/EXT2). For stabilization, the highest 2 modes of196

each element are slightly dampened (5%). The test filter required for the calculations in the frame-197

work of the dynamic Smagorinsky model affects the 3 highest polynomial modes with a cut-off of198

0.05, 0.5 and 0.95 (Ohlsson et al. 2010).199

Among the advantages of the spectral element method is the flexibility to construct spatially200

inhomogeneous meshes. For the particular problem at hand, one needs to resolve the small scales201

at the jet inflow to accurately reproduce the region of high kinetic energy production and the small202

scales in the region where the jet impinges on the pycnocline, producing high shears. At the same203

time, internal gravity waves are characterized by long wavelengths, large-scale motions, so that a204

lower resolution is enough at larger distances from the jet axis.205

b. Validation for the turbulent jet in a non-stratified fluid206

To validate the current implementation and be sure to have a fully developed turbulent jet at207

the thermocline entrance, we perform LES of a turbulent jet in a homogeneous fluid and compare208
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the main flow statistics with the data available in literature, both from experiments and Direct209

Numerical Simulations (DNS).210

The governing equations for a turbulent jet in a homogeneous fluid reduce, after the LES-211

filtering, to212

∂ui

∂ t
+u j

∂ui

∂x j
=− ∂ p

∂xi
+

1
Re

∂ 2ui

∂x2
j
− 1

Re
∂τi j

∂x j
, (9)

∂ui

∂xi
= 0. (10)

The jet is generated at the bottom boundary of the computational domain and has a round shape213

of diameter D0 with the initial velocity profile given in eq. (7). To trigger transition to turbulence,214

we add to this laminar profile a set of 10 sinusoidal disturbances with frequencies f distributed215

evenly in the range [0.05:5], wavelengths in x,y directions changing from 4 minimal distances216

between GLL points (∆x = ∆y = 0.03) to 20 these distances and random phases. The amplitude217

of the disturbances is about 15% of the base flow velocity at the inflow. The simulations are218

performed for Reynolds number Re = 15000.219

We solve the governing equations on a rectangular domain of dimensions 40×40 along the hor-220

izontal x and y-axes, and 42 in the vertical direction (Fig. 1). We impose a traction free boundary221

condition (open boundaries) at the lateral boundaries and the convective boundary condition by222

Orlansky (1976)223

∂ui

∂ t
+ czi

∂ui

∂ z
= 0 (11)

at the top of the domain. Here czi are the components of the phase velocity that are calculated224

dynamically for each velocity component at the z-level adjacent to the upper boundary and filtered225

over the xy-plane by a running average. Negative values of czi are set to 0.226
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The mesh used is constructed following the guidelines in Picano and Hanjalic (2012): in the227

region closest to the jet inflow, x,y ∈ [−1.5,1.5], z ∈ [0,12], a better resolution is achieved with228

uniform spectral elements of size ∆x = ∆y = 0.5 and ∆z = 0.6 (each element containing 8× 8×229

8 GLL points). From the boundaries of this inner region, we stretch the grid by a factor 1.17230

along the horizontal axes and 1.06 along the z-axis. The total number of elements used in these231

validation runs is 30×30×30 corresponding to ≈ 9 million grid points. The timestep chosen for232

the calculation is 0.01, which amounts to keeping the CFL number below 0.25-0.3.233

The values of Cd in the model are averaged over the vertical direction in a conical region con-234

taining the jet, resulting in a value of the Smagorinsky coefficient Cs in the range between 0 and235

0.2, in agreement, for example, with the values obtained in the simulations of buoyant plumes by236

Pham et al. (2007). The calculations of the statistics start approximately 100 time units after the237

jet has reached the upper boundary and extend over a time interval of over 500 dimensionless time238

units corresponding to ≈ 30 eddy turnover times if the characteristic velocity and the jet diameter239

are taken at z = 18.240

Fig. 2a displays the inverse centerline mean velocity Uc versus the vertical coordinate z to show241

that the velocity follows the 1/z dependence that can be derived from the momentum integral for242

a submerged turbulent jet. The asymptotic behavior starts from z ≈ 12. The linear fit yields a243

slope of 0.22, corresponding to 0.165 if recalculated for the initial top-hat velocity profile with the244

same momentum and volume fluxes. This is in good agreement with the widely assumed values245

of 0.16-0.17 (see, for instance, Pope (2000)).246

Fig. 2b displays the average z-velocity profile in the far-field of the jet in self-similar coordinates247

(ξ ∼ r/(z− z0), U/Uc), where z0 denotes the location of the jet virtual origin and Uc corresponds248

to the maximum velocity at each z-level. In practice, we first compute the profiles at each z in self-249

similar variables and then average over the different profiles in the range z ∈ [14,35], following250
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Picano and Hanjalic (2012) among others. In the figure, we include for comparison the data from 2251

sets of DNS for the round and annular jets (Picano and Hanjalic 2012; Picano and Casciola 2007)252

and 2 laboratory experiments (Panchapakesan and Lumley 1993; Hussein et al. 1994) to confirm253

the accuracy of the results.254

Figs. 2c and d report the turbulent stresses < u′2z > /U2
c and < u′2r > /U2

c in the far-field of the255

turbulent jet together with the data from the experiments and DNS mentioned above. To obtain256

< u
′2
r > in the rectangular geometry, we measure the profiles of < u

′2
x > along the x-axis and of257

< u
′2
y > along the y-axis and then average over the positive and negative x and y directions. We258

scale the profiles using the self-similar coordinates and average among the different z locations as259

described before. It can be seen in the figure that the agreement between the different set of data260

is good. Given these data, we consider a developed turbulent jet from z=14 and therefore set, in261

the calculations in a stratified medium, the thermocline lower boundary at z = 20.262

c. Configuration of the jet in a stratified fluid263

Using the governing equations for a flow in a stratified medium in (1)-(3), we perform 2 series264

of simulations with the stratification profile in eq. (8). The first set assumes γ = 2 and zp = 20.5265

which corresponds to a relatively thin thermocline since the jet diameter at the entrance to the266

thermocline, is approximately 4-5, as shown by the simulation of a turbulent jet in homogeneous267

medium presented in the previous section. Indeed, for γ = 2 the thermocline is 4-5 times thinner268

than the diameter of the jet. The second set of simulations assumes γ = 0.5 and zp = 22, which we269

will denote as the thick thermocline; in this case, the thermocline thickness is approximately the270

same as the jet diameter at the thermocline entrance. In both series we perform calculations for 5271

different Froude numbers (Fr = 7,10,13,16,22).272
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A better definitions of the Froude number and γ may consider values at the entrance to the273

thermocline which is defined from the simulations at approximately z = 18 (as it will be seen from274

what follows), corresponding to Frt = 0.6,0.86,1.11,1.37,1.89 (here Frt = ut/
√

g′Rt where ut275

and Rt are the mean jet velocity and radius as defined by Shrinivas and Hunt (2014)). We define276

the ratio of the jet radius at the thermocline to the thermocline thickness, γt = Rt/H. For the thick277

thermocline γt = 1, while for the thin thermocline γt = 4.278

The choice of Frt ∼ 1 is justified by the observations by Burridge and Hunt (2013) of the sudden279

jump in the amplitude and frequency of the fountain top oscillations in a homogeneous fluid.280

Note however that the Reynolds number in the experiments of Burridge and Hunt (2013), Re ≈281

1000− 3500, is significantly lower than in our simulations. The experimental investigation of282

turbulent jets in a stratified fluid by Ezhova et al. (2012) corresponds to Frt ∼ 1 and Re∼ 10000.283

Given that the diameter of the jet in the experiments was comparable to the thermocline width, we284

in fact reproduce these experimental conditions in the setup with the thick thermocline.285

The coefficient of the dynamic Smagorinsky model, Cd , is averaged over the vertical direction286

from z = 0 to the maximum fountain penetration point for r < 5 and from z = 17 to the upper287

boundary of the thermocline for r > 5, resulting in the same range of the Smagorinsky coefficient288

0 < Cs =
√

Cd < 0.2 as for the test case with a jet in homogeneous fluid (sec. b). We use open289

boundary conditions on all the boundaries except the inflow where we impose the velocity profile290

of eq. (7). On the lateral boundary, we also use a sponge layer to damp the vertical velocity291

component and the temperature fluctuations. The length of the sponge layer is 5 in the simulations292

with the thin thermocline and 7 in the simulations with the thick thermocline.293

The mesh used for the stratified case has the same stretching as in the test case of a jet in294

homogeneous fluid in the x and y directions, though in a wider domain to be able to capture the295

internal waves propagating in the thermocline. However, we refine the mesh and increase the296
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vertical resolution at the thermocline and in the upper layer of the stratification approximately297

up to the penetration height of the fountain to maintain a well-resolved LES. The parameters298

pertaining to all simulations are summarized in Table 1, where we also report the case used for the299

validation with increased resolution discussed in the Appendix (denoted as ’test’). The resulting300

flow is displayed in Fig. 4 for the thick thermocline at Fr = 22.301

Validation of our LES model (Fr = 13, thick thermocline) against the data on weak fountains in302

a homogeneous fluid by Lin and Armfield (2000) and experiments on turbulent jets in a stratified303

fluid by Ezhova and Troitskaya (2012) is shown in Fig. 3. Fig. 3a shows the decay of the axial304

vertical velocity of the jet in the thermocline versus that of the weak fountain in a homogeneous305

fluid (Lin and Armfield 2000). Fig. 3b shows several LES profiles of the vertical velocity in306

the thermocline and compares them to the experimental data by Ezhova and Troitskaya (2012).307

We do not include DNS data for the fountains in this figure since Lin and Armfield (2000) used308

an initial parabolic vertical velocity and the vertical velocity profiles tend to keep the parabolic309

form in weak fountains; as shown in the figure, the experimental and LES profiles are closer to310

Gaussian. Thus, the LES model presented here captures the properties of the mean velocity fields311

of the weak fountains.312

For each simulation we gather statistics (the mean values and the rms of the fluctuations of313

all quantities) and save time histories to analyse the jet oscillations and the main features of the314

internal waves at specific locations in the flow. We collect statistics approximately 100 time units315

after the perturbations at the thermocline have reached the lateral boundary of the computational316

domain. This time changes from approximately 900 time units for the thin thermocline and small317

Froude number to about 2100 time units for the thick pycnocline and large Froude number. The318

duration of the sampling changes from 1200 time units to 4100 time units, with intervals 0.25 time319

units for the time histories. To investigate the dynamics of the fountain at the thermocline and320
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the internal waves we examine the oscillations of the isotherm T = 0.5. The jet oscillations are321

characterized by the isotherms at the center of the jet and at 4 points at distance r = 1.5 from the322

jet axis, while internal waves are studied by the isotherms corresponding to 2 sets of points located323

further away, at r = 20 and 25.324

3. Results325

We shall first examine the statistics of the flow, and, in the following section, consider the inter-326

nal waves generated by the interaction between the jet and the thermocline.327

a. Jet impingement and entrainement328

Fig. 5 shows cross-sections of the absolute value of the mean velocity from our simulations. The329

first observation is that the higher the Froude number, the higher the jets penetrate into the ther-330

mocline and eventually into the upper layer of stratification. For the lowest Fr and the strongest331

stratification (thin thermocline), the mean flow is reminiscent of a jet impinging on a wall. In the332

other cases, the flow has a more complicated structure and a counterflow appears in the thermo-333

cline and upper stratification layer to form a fountain. This counterflow is more evident when334

increasing the Froude number and decreasing the thickness of the thermocline. The higher the jet335

penetrates, the higher the counterflow velocity is and the deeper the annular flow surrounding the336

jet propagates into the lower layer. Mixing, in turn, makes the fluid in the counterflow lighter than337

the lower layer of stratification, so that it bounces back to the thermocline where it finally spreads338

at the level of neutral buoyancy. This structure is characteristic of a two-layer stratification (Cotel339

et al. 1997; Ansong et al. 2005) as compared to fountains in homogeneous and linearly strati-340

fied media, where the counterflow simply protrudes to the bed or to the level of neutral buoyancy341

(Bloomfield and Kerr 1998).342
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To quantify the jet penetration into the thermocline, we report the mean axial jet velocity for all343

the stratified cases and for the turbulent jet in homogeneous medium in Fig. 6a. The evolution in344

the stratified media follows that in a homogeneous medium to z≈ 18, before the typical behavior345

of a fountain is observed.346

Fig. 6b reports the penetration heights from the LES defined as the location where the jet velocity347

falls below 1% of the initial velocity.348

The Froude numbers calculated at the thermocline entrance are characteristic of weak fountains349

and the rising height can be estimated from the conservation of energy (Kaye and Hunt 2006), so350

that the source kinetic energy of the flow is converted into potential energy. This implies:351

U2
m

2
∼
∫ h∗z

0
gaT (Ts−T0)dz∗, (12)

where Um is the centreline jet velocity at the level where the fountain is formed (we take z∗= 18D),352

h∗z the penetration height. Normalizing eq. (12) with D0, U0 and ∆T we finally obtain353

(λum)
2 Fr2

2
=
∫ hz

0
T ′s dz, (13)

where um = 0.22 at z = 18 and λ is a constant of order one which we find from the best fit of354

the LES data. Fig. 6b displays the theoretical dependence of the penetration height obtained355

by integrating eq. (13) with λ = 0.8. The comparison with the LES results indicates that the356

penetration height is well predicted at low Froude numbers but overestimated at the largest Fr. To357

explain this, we recall that the rising height of weak fountains in a homogeneous fluid scales as358

Fr2 whereas that of forced fountains (where the turbulent entrainment is taken into account) scales359

with Fr. The largest Froude numbers investigated here correspond to the transition between the360

weak and forced regime, and therefore eq. (12) appropriate for the weak regime overestimates the361

penetration height at these Froude numbers.362
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Note that the theory based on the conservation equations by Morton et al. (1956) is not expected363

to be valid for weak fountains near the thermocline because the basic assumptions of the model364

about self-similarity and constant turbulent entrainment do not hold. Our calculations show that365

this model significantly underestimates the penetration heights from the LES.366

The dashed lines in Fig. 5 indicate the boundaries of the thermocline (they correspond to 10%367

and 90% of the temperature jump) obtained from the average temperature field. It can be seen368

that for the thin thermocline and small Froude number (Fig.4a) the temperature jump is deformed369

as an entire structure reminiscent of a thick membrane, with variations of the height of the upper370

and lower boundaries only in the region of the jet impingement: a strong stratification dampens371

turbulence and inhibits mixing. For the higher Froude numbers (Fig. 5b-c) the thin thermocline372

is significantly deformed, revealing a toroidal well-mixed region adjacent to the jet. The size and373

depth of this well-mixed region grow with the Froude number.374

Two observations can be made here. Firstly, this behaviour is consistent with the experimental375

observations for a turbulent jet impinging on a stratified interface (see, for instance, Shy (1995);376

Cotel et al. (1997)) where the formation of a large toroidal vortex was observed immediately after377

the jet impingement and related to the generation of baroclinic vorticity which tends to push back378

the interface to the unperturbed state. Secondly, which might be more relevant to our system, we379

report that the turbulent regime of weak fountains (1 . Frt . 1.9), forming at the thermocline, is380

characterized by vertical oscillations of the jet. Here, the fluid falls down quasi periodically from381

the top (Troitskaya et al. 2008; Burridge and Hunt 2012; Druzhinin and Troitskaya 2013); these382

oscillations are not necessarily axisymmetric, although their average is. The fluid falling from the383

top forms the vortical structures adjacent to the jet at the lower boundary of the thermocline. These384

structures, together with the small-size eddies on the jet shear layers crossing the thermocline, are385

responsible for the turbulent mixing.These large structures and the small eddies on the shear layer386
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are illustrated by the instantaneous fields of temperature and vertical velocity shown in Fig. 7 for387

both stratifications and Fr = 7 and 22 (i.e. Frt=0.6 and 1.9).388

The effect of the fountain oscillatory dynamics on the generation of internal waves in the ther-389

mocline will be discussed in the next section.390

To substantiate these observations we study the change of the level of neutral buoyancy with391

increasing Froude number, i.e the level where the jet spreads horizontally forming a gravity cur-392

rent. This is illustrated by the mean horizontal velocity profiles at the distance r = 20 from the393

jet center (Fig. 8a). The vertical coordinate in this picture is η = γ(z− zp), so that the origin is394

moved to the thermocline center and η =±1 correspond to the thermocline boundaries. Note that395

the width of the horizontal flow is determined by the radius of the jet at the thermocline entrance396

which is the same for the two values of thermocline thickness used. In other words, the different397

width of the flows in Fig. 8a reflects the different ratio between the thermocline width and the398

radius of the impinging jet. For small Froude numbers, the level of neutral buoyancy is below the399

lower thermocline boundary while it is moving higher up into the thermocline for larger Froude400

numbers, indicating a better mixing with the fluid in the thermocline and from the upper layer of401

stratification.402

To quantify mixing, we calculate the mean temperature of the horizontal flow through the cylin-403

drical surface of radius r = 20 surrounding the jet; this distance is chosen so that the control404

volume is far enough from the mixing region adjacent to the jet (see Fig. 5, 15 < z < 25). Using405

the mean volume and mass fluxes of the gravity current, we obtain the following expression for406

the averaged temperature of the gravity current407

Tgr =

∫
TUhordz∫
Uhordz

(14)
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where we perform the integration over the region characterized only by positive values of Uhor,408

i.e. we consider the flow propagating outwards from the jet (detrainment) and do not account409

for entrainment. The values obtained are displayed in Fig. 8b to demonstrate that the average410

temperature of the horizontal flow increases with the Froude number, again indicating a better411

mixing with the fluid in the thermocline and the upper layer of stratification.412

To study the mixing at the thin and thick thermoclines we introduce the entrainment flux Ei =413

Qe/Qin, similarly to the definition used for investigations of turbulent entrainment by jets and414

plumes in two-layer (sharp interface) stratified fluid (Shy 1995; Cotel et al. 1997; Shrinivas and415

Hunt 2014, 2015). When the jet penetrates into the upper layer of stratification, it forms a dome-416

like structure which entrains the ambient fluid. Thus Qe in the definition above is the volume417

flux of the fluid entrained by the jet top and Qin is the volume flux of the fluid in the jet at the418

interface between the two layers of stratification. This dome-like structure is reported in Fig. 9,419

where we show the mean horizontal velocity where the jets interact with the thermocline for both420

stratifications under consideration. Since we have a smooth change of temperature between the421

two layers, the ’dome’ over which the fluxes are computed is depicted by the black lines in Fig.422

9: we consider a closed surface consisting of a circular cylinder cut on the lower side along the423

surface of the fountain. As the total volume flux is equal to 0, we can estimate the flux through the424

dome perimeter Qe as the sum of the fluxes through the cylinder top and side Qcyl:425

Qcyl = 2πR
∫ z2

z1

uside dz+2π

∫ R

0
utopr dr, (15)

where uside, utop are the velocities normal to the side and top surfaces of the cylinder respectively,426

z1,z2 are the vertical coordinates corresponding to the bottom and top of the cylinder, R is the427

radius of the base of the cylinder.428
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We define the inflow volume flux Qin as the volume flux of the jet at the level z = 18 where it is429

the same for all the cases considered here (see Fig. 6a)430

Qin = 2π

∫
∞

0
uinr dr (16)

with uin the vertical velocity. The entrainment flux can finally be written as431

Ei =
R
∫ z2

z1
uside dz+

∫ R
0 utopr dr∫

∞

0 uinr dr
. (17)

The dependence of the entrainment flux on the Froude number at the thermocline entrance is432

displayed in Fig. 8c where the dashed curve indicates the theoretical entrainment flux for a jet433

in an unconfined medium in the limit of small Froude numbers (Frt < 1.4) and a sharp interface,434

Ei = 0.24Fr2
t , together with the approximation of the theoretical curve for larger Froude numbers,435

both taken from Shrinivas and Hunt (2014). This power law is obtained from an energy balance:436

a fraction of the kinetic energy supplied by the jet at the interface per time unit is expended into437

work (per time unit) against the gravity force to entrain fluid from the upper stratification over a438

distance of the order of the jet scale at the thermocline entrance, yielding Qe/Qi ∼ u2
t /Rt∆g∼ Fr2

t439

(here ut and Rt are the mean jet velocity and radius taken at the level of the density interface). The440

value of the constant A = 0.24 is obtained theoretically by Shrinivas and Hunt (2014).441

Our data follow the quadratic law obtained in Shrinivas and Hunt (2014) for the thin thermocline,442

however, the entrainment rate is slightly higher. Owing to the smoother temperature change in the443

thermocline, the turbulent transfer is expected to be more active in this case than for the sharp444

interface.445

At small Froude numbers, the fountain in the thick thermocline entrains more fluid although446

the average temperature of the horizontal gravity current is lower. This is due to the fact that447

the jet does not penetrate through the thermocline up to the warm upper layer. At the same time448

the stratification is weaker which results in a larger surface of the dome and more efficient tur-449
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bulent transfer. At higher Froude numbers, when the jet penetrates through the thermocline, the450

entrainment fluxes are rather close for the two cases, but the average temperatures for the thick451

thermocline are lower.452

We explain this difference by the presence of a horizontal flow towards the jet in the upper part453

of the thick thermocline. In fact, we recall that entrainment velocities (denoted as secondary flows454

Shrinivas and Hunt (2015)) play an important role in the process of confined entrainment at small455

Froude numbers. As shown in Fig. 9a, the flow above the dome in the thin thermocline looks456

similar to the model of a thin ”vortex sheet” on the dome perimeter for unconfined entrainment457

in a two-layer stratification (Shrinivas and Hunt 2014). Interestingly, a horizontal secondary flow458

appears in the thick thermocline. Fig. 9b shows a two-layer horizontal flow in the thermocline.459

In this case, stratification inhibits vertical turbulent transfer and the jet entrains the fluid from the460

upper thermocline forming a well-pronounced horizontal secondary flow over the initial gravity461

current. Even for the largest penetration heights of the jet investigated here, the structure of the462

horizontal flow essentially does not change and the jet entrains fluid mostly from the thermocline,463

not from the upper stratification layer as in the case of the thin thermocline.464

Finally, note that the thick thermocline conditions correspond to the experimental setup used465

in Troitskaya et al. (2008) and Bondur et al. (2010) to investigate turbulent jets and plumes in466

thermocline-like stratified tank. The horizontal velocity profiles measured in the experiments at a467

distance 24Rt from the jet center display a back-flow from 6 to 15% of the maximal velocity of the468

gravity current in the upper thermocline. Our simulations give a magnitude of 15-20%, at a closer469

distance of 10Rt .470
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b. Generation of internal waves471

In all the simulations, as in the experiments of Troitskaya et al. (2008) and Ezhova et al. (2012)472

we observe oscillations of the jet top at the thermocline, which results in the generation of internal473

waves. An example of the instantaneous temperature field at the center of the thermocline and the474

corresponding isotherms at the distance r = 20 from the jet center is shown in Fig. 10 for the case475

of the thin thermocline, Fr = 10, 22 (Frt = 0.86, 1.9). The top figure, pertaining the lower Froude476

number, displays rather regular waves emanating from the jet and almost sinusoidal isotherms.477

The plots for the larger Froude number show a more chaotic behaviour, the isotherms displaying478

signs of wave breaking in the thermocline.479

The analysis of the dynamics of the jet in the thermocline and of the internal waves is based on480

the power spectra of the temperature oscillations. We consider the isotherm at the center of the481

undisturbed thermocline, T = 0.5, and investigate its displacement at several points close to the482

jet center and far from it. The spectra of the jet oscillations, z− zp with zp the average height of483

the thermocline T = 0.5, are obtained by averaging data from 5 locations: one in the center of the484

jet and 4 from the points on the circle of radius 1.5 (see Sec. 2c). The spectra of internal waves,485

instead, are obtained by averaging spectra from 8 locations at distance r = 20 from the jet center.486

The spectra for Fr=13, thin and thick thermoclines are shown in Fig. 11b, c as an example. It can487

be seen that the jet generates internal waves with pronounced spectral peaks.488

We first note that all the spectra of the jet oscillations in both stratifications have two peaks.489

This is consistent with the observation of fountains in a homogeneous fluid where 2 peaks have490

been reported for all cases by Burridge and Hunt (2013). Moreover, for fixed Fr, the spectra of491

the jet oscillations have peaks at similar frequencies in different stratifications, an shown in Fig.492

11a. Thus, the frequencies of the oscillations do not depend on the thermocline thickness for the493
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parameters chosen in the simulations. Note, however, that one expects differences in frequencies494

when the jet does not penetrate through the thermocline since its effective Froude number is de-495

fined by the temperature difference between the lower stratification layer and the level to which496

jet penetrates, rather than by the difference between upper and lower stratification. In our case this497

difference is probably too small to be detected. Simulations at even lower Fr may possibly reveal498

this effect.499

The frequencies of the spectral peaks for jet oscillations and internal waves are summarized in500

Table 2 and displayed in Fig. 12. Since the peaks in the spectra are rather wide we used the501

following expression to define the main frequencies in the spectra:502

f̂ =

∫ fmax
fmin

f S ( f ) d f∫
S ( f ) d f

, (18)

where fmin and fmax denote the range of frequencies corresponding to each spectral peak. The503

figure shows a decrease in the frequency of the oscillations with the Froude number in agreement504

with the fountains in a homogeneous medium (Burridge and Hunt 2013).505

For the 3 smallest Froude numbers, the spectra of jet oscillations have a pronounced large peak506

and a second small peak at approximately double the frequency. For the 2 highest Froude numbers507

investigated, the peaks have approximately equal magnitude. The spectra of internal waves are dif-508

ferent at lower Froude numbers, with two peaks in the thin thermocline, and one peak in the thick509

thermocline, primarily due to the difference in the maximal buoyancy frequencies as explained510

below.511

Indeed, the thickness of the two thermoclines considered in this paper corresponds to a factor512

2 difference in the maximal buoyancy frequency. The dimensionless buoyancy frequency, N2 =513

gaT
dTs

dz
, can be re-written in our case as514

N2 =
0.5γ

Fr2
1

cosh2(γ(z− zp))
. (19)
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Thus, Nmax = 1/Fr and Nmax = 0.5/Fr for γ = 2 and γ = 0.5, respectively. The spectra of jet oscil-515

lations and internal waves for the same Fr = 13 and different stratifications are shown in Fig.11b,516

c. The spectra of jet oscillations have two distinct peaks, the higher one possibly corresponding to517

the harmonics of the lower. The thin thermocline has a larger maximal buoyancy frequency which518

allows propagation of waves of both frequencies (first and second peak) while only the lowest fre-519

quency perturbation can generate internal waves at the thick thermocline. Fig.12b clearly indicates520

the frequency cutoff due to the smaller maximal buoyancy frequency, since the second frequency521

in the spectra of the jet oscillations is always higher than the maximum buoyancy frequency for522

the thick thermocline.523

For the 2 higher Froude numbers the spectra of internal waves have one pronounced peak close524

to the lower peak of the jet oscillations, which is surprising in case of the thin thermocline where525

one expects propagating waves at both frequencies. The simulations for these cases, when the jet526

penetrates far enough through the thermocline, show that fluid falling from the jet top loses axial527

symmetry, in contrast to the cases at smaller Froude numbers, and the jet undergoes ’tilting’ from528

one side to the other. This may explain why internal waves propagate only at the low frequency.529

Moreover, the fluid falling from the fountain goes deep to the lower layer of stratification and then530

bounces back creating additional disturbances in the thermocline which might result in a frequency531

shift. This is more relevant for the thin thermocline where we see a more pronounced shift of the532

frequency of the internal waves from the lower peak in the spectra of the jet oscillations (Fig. 12a).533

In case of the thin thermocline, the frequency of the higher peak in the spectra of the internal534

waves decreases from 0.5Nmax to 0.3Nmax. For the thick thermocline the peak in the spectrum535

of the internal waves corresponds to the lower peak in the jet oscillations spectrum and is close536

to 0.7Nmax for all the simulations. The latter is consistent with the results of the experiment by537

Ezhova et al. (2012) where the oscillations of a turbulent jet in a stratified fluid and the corre-538
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sponding internal waves have been investigated. As mentioned before, the jet diameter at the ther-539

mocline entrance was of order of the thermocline thickness in these experiments corresponding540

to our simulations with the thick thermocline, Frt ∼ 1. In the experiments, the jet oscillations are541

characterized by pronounced peaks close to 0.7Nmax and at the frequency close to the maximum542

buoyancy frequency. Internal waves have been revealed at the frequencies 0.7Nmax in agreement543

with our simulations.544

The root mean square σ of the isotherms both for jet oscillations and internal waves, i.e. close545

and far from the jet axis, is obtained from the power spectra, S ( f ),546

σ = (
∫

S ( f ) d f )1/2, (20)

and used to characterize the amplitudes of the oscillations. The amplitudes of the jet oscillations547

and internal waves are displayed in Fig.13a versus the Froude number for both stratifications.548

Interestingly, the amplitudes of the jet oscillations and of the internal waves are close to each other549

in both cases, although the work against gravity force to obtain the same amplitude is larger in550

the thin thermocline as the density gradient is higher. This suggests that the waves are transmitted551

more effectively in the case of the thin thermocline, probably due to the fact that for the thick552

thermocline the wave frequency is close to the maximal buoyancy frequency.553

The amplitude of the jet oscillations follows the stationary solution to the Landau equation554

dσ

dt
= σ(µ(Frt−Frt0)−βσ

2) (21)

describing the soft excitation of self-sustained oscillations (µ and β are free parameters here) with555

Frt0 = 0.4, µ/β = 0.42 based on the best fit of the experimental data. This is consistent with556

the experimental and numerical results obtained for a jet interacting with a pycnocline (Troitskaya557

et al. 2008; Druzhinin and Troitskaya 2013). The investigation of the stability of the experi-558

mentally measured velocity profiles of the fountain in the pycnocline by Troitskaya et al. (2008);559
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Ezhova and Troitskaya (2012) reveals a finite region of absolute instability along the jet, thus ful-560

filling a necessary condition for self-sustained oscillations of the flow. It has been demonstrated561

that the frequency of self-sustained oscillations is in agreement with the results of the linear sta-562

bility analysis of the flow in the thermocline. The present simulations for the thick thermocline563

follow the experimental setup of Ezhova and Troitskaya (2012) and the LES results are consistent564

with the experiment. Hence, we can conclude that the generation of internal waves results from565

the self-sustained excitation of the jet oscillations in the thermocline.566

We investigate the vertical structure of the internal waves and quantify their energetics. The567

energy flux of the internal waves in the presence of an inhomogeneous horizontal flow, as we568

have in this case because of the horizontal gravity flow, is calculated following Kamenkovich and569

Monin (1978). The equations of motion linearised around a horizontal mean flow in cylindrical570

coordinates are:571

Du′r
Dt

+u′z
dUhor

dz
+

1
ρ0

∂ p′

∂ r
= 0, (22)

Du′
φ

Dt
+

1
ρ0

1
r

∂ p′

∂φ
= 0, (23)

Du′z
Dt

+g
ρ ′

ρ0
+

1
ρ0

∂ p′

∂ z
= 0, (24)

g
D(ρ ′/ρ0)

Dt
−N2(z)u′z = 0, (25)

∇ ·~u′ = 0, (26)

where D/Dt =
∂

∂ t
+Uhor

∂

∂ r
.572

The equation for energy conservation can be obtained by multiplying Eq. (22) with u′r, Eq. (23)573

by u′
φ

, Eq. (24) by u′z and summing. From Eq. (25), taking into account that u′z =
Dξ

Dt
, we find574

that gρ ′ = ρ0N2(z)ξ (where ξ is the vertical displacement of a fluid particle).575
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Finally, the equation of the wave energy conservation reads:576

∂E
∂ t

+∇~F =−I, (27)

where the wave energy E, the energy flux ~F and the production/dissipation term I are577

E =
1
2

ρ0(~u′
2
+N2ξ 2), (28)

~F = ~UhorE +~u′p′, (29)

I = ρ0u′ru
′
z
dUhor

dz
. (30)

The term I describes the interaction of the mean flow with the wave. From equation (27) it578

follows that the integral wave energy flux is not conserved due to this term. In the present config-579

uration, waves can grow or decay in space where
∂E
∂ t

is zero at statistically steady state.580

The surface-integrated value of the wave energy flux at the distance r from the jet axis is nor-581

malized with the energy flux of the jet at the thermocline entrance,582

F
Fjet

=

R
∫ z2

z1

(
1
2

(
~u′

2
+N2ξ 2

)
Uhor +

p′u′r
ρ0

)
dz

1
2
∫

∞

0 Ut
3rdr

. (31)

We measure the profiles of the energy flux at 4 radial points and averaged them to get the final583

profile. The inflow energy flux is taken at the level z = 18. The profiles
F

Fjet
pertaining the thick584

and thin thermocline at the distances r = 20 and r = 25 are shown in Fig. 14. It can be seen585

that the energy does not only decay with the distance from the jet centre, but the profiles are also586

deformed, especially in the areas affected by the shear due to the horizontal flow, presumably due587

to the enhanced decay resulting from the interaction with the mean flow.588

The surface-integrated wave energy flux normalized with the jet energy flux is displayed in Fig.589

15 versus the Froude number. The difference between the values at r = 20 and r = 25 illustrates590

the difference in the decay of the energy of the internal waves due to the interaction with the591
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mean flow. Note that the wave energy flux is around 4-5% of the energy of the jet for the thin592

thermocline, and is almost half for the thick thermocline. This can be partly explained by the593

fact that the counterflow in the upper thermocline transfers energy in the opposite direction, i.e.594

towards the jet. The whole flux, however, is always positive. Note also the jump in the energy flux595

for the largest Froude number when the horizontal flow occupies more space in the thermocline596

preventing the transfer of energy towards the jet.597

We finally comment on the difference in the velocities of wave propagation. As explained above,598

transients in the simulations are very different when changing the thickness of the thermocline, and599

the difference in the domain size (40 from the jet center to the lateral boundary along the axes for600

the thin thermocline, and 47 for the thick thermocline) is too small to explain this. The fact that601

the internal waves are significantly slower in the thick thermocline can be related to the dispersion602

properties of the internal waves. The dispersion relation for the waves Ψ ∼ ψ(z)e−iωt+ikr in a603

stratified medium is obtained from the solution of the eigenvalues of the Taylor-Goldstein equation604

d2ψ

dz2 +(
N2

(Uhor− c)2 −
(Uhor)

′′
zz

Uhor− c
− k2)ψ = 0, ψ(Hd) = ψ(Hu) = 0, (32)

where ψ is a stream function, N the buoyancy frequency, Uhor the mean horizontal velocity which605

depends on the vertical coordinate z, c = ω/k the wave phase velocity (ω is the wave frequency, k606

is the wave number), and z = Hu,Hd denote the locations of the upper and lower boundaries (eq.607

(32) is made non-dimensional with U0 and D0). This eigenvalue problem is solved numerically for608

the stratification profiles and the horizontal velocities extracted from the simulations.609

The group velocity, cg = dω/dk, of the first (fundamental) mode of the internal waves is dis-610

played in Fig.13b for the Froude numbers Fr = 0 (no flow) and Fr = 13 (with horizontal flow)611

and both stratifications. Similar conclusions apply to higher modes. Note the significant change612

in the group velocities in the presence of the horizontal flow due to the jet intrusion at the level of613
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neutral buoyancy. In particular, we find waves with frequencies higher than the maximal buoyancy614

frequency that propagate with group velocities approaching the maximal velocity of the horizontal615

gravity flow. The largest fluctuations associated to these modes are localized in the flow as com-616

pared to the lower frequency modes localized in the thermocline. For the internal waves at Fr = 13617

(see the frequencies in Table 2) we estimate the group velocities of the fundamental modes to be618

cgr = 0.04 for the thick thermocline and cgr = 0.08 for the thin thermocline, which explains the619

difference in time needed to reach a statistically steady state, td,thin = 1000 and td,thick = 1800.620

4. Conclusion621

We have presented the results of numerical simulations of a turbulent jet interacting with a ther-622

mocline in an unconfined stratified medium. Two stratifications have been modelled: a thin and623

a thick thermocline, with thickness smaller and of the order of the jet diameter at the thermocline624

entrance. The simulations have been performed for 5 Froude numbers in each stratification, rang-625

ing between 0.6 and 1.9, values typical of engineering and geophysical flows, such as submerged626

buoyant jets from wastewater outfalls.627

We show that the jet mean penetration height can be well predicted from the conservation of the628

source energy of a turbulent jet in a thermocline (Kaye and Hunt 2006), valid for weak fountains.629

The entrainment flux in the thin thermocline, related to the turbulent mixing of the jet with the630

surrounding medium, is consistent with the theoretical model developed for the case of a jet im-631

pinging at a sharp interface. At small Froude numbers, the entrainment is more effective in the632

thick thermocline, but already at Frt ≈ 1 the fluxes become equal for both stratifications. There is633

an important difference, however, in the average secondary flows for the two stratifications. For634

the thin thermocline the entrainment velocity is approximately the same around the ’dome’ formed635

by the jet penetrating through the thermocline. The entrainment in the thick thermocline, instead,636
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is mostly from the sides of the ’dome’ due to a pronounced horizontal flow in the upper thermo-637

cline, with only a small part of fluid coming from the upper stratification layer. This difference is638

observed over the whole range of Froude numbers investigated here, even in the case when the jet639

penetrates through the thick thermocline.640

The fountain formed by the jet penetrating into the thermocline oscillates generating internal641

waves. The amplitudes of the jet oscillations grow with the Froude number as Fr1/2
t corresponding642

to the regime of soft self-excitation of the flow. We find two peaks in all the spectra: for the smaller643

Froude numbers (up to Frt ≈ 1) the peak at the higher frequency is rather weak as compared to the644

second one, while at the larger Froude numbers they are comparable. The frequencies of the jet645

oscillations at fixed Frt are basically the same for both stratifications. These oscillations generate646

internal waves. The frequencies of the internal waves depend also on the dispersion properties of647

the stratified medium and oscillations at frequency exceeding maximal buoyancy frequency are648

not found in the spectra of internal waves. Therefore, at the lower Froude numbers both peaks are649

present in the spectra of internal waves in case of the thin thermocline while only one peak in the650

thick thermocline.651

At the higher Froude numbers there is one pronounced peak in the spectra of internal waves652

corresponding approximately to the lower peak in the spectra of jet oscillations. This is consistent653

with the results of the laboratory experiments of Troitskaya et al. (2008) and Ezhova et al. (2012),654

corresponding to our simulations with the thick thermocline at Frt ≈ 1.655

The energy flux of internal waves at the thermocline entrance is estimated to be around 4-5%656

of the jet energy for the thin thermocline at the distance r = 20 from the jet center, and almost657

half for the thick thermocline, except for the largest Froude number, Frt = 1.89, when the fluxes658

are equal. The energy profiles and estimates of the energy flux at the distance r = 25 show that659

internal waves are significantly influenced by the horizontal gravity flow.660

31



We finally make some remarks regarding a possible application of the present numerical results661

to the wastewater outfall system. As in the scale laboratory modelling of the real system (Troit-662

skaya et al. 2008), we have observed the jet oscillations resulting in the generation of internal663

waves at a frequency close to 0.7Nmax for the thick thermocline cases. These waves can be rather664

strong with an average amplitude up to 20% of the thermocline thickness (40% peak-to-peak) at665

the distance of 5 thermocline thicknesses from the source. The seasonal change of the pycnocline,666

as we briefly discussed in the Introduction, is characterized primarily by its sharpening and its tran-667

sition closer to the surface. Therefore, at the entrance to the thermocline, the diameter of the jet668

increases and the vertical velocity decreases, i.e. increasing γt and decreasing the Froude number669

at the thermocline entrance. Hence we expect that in summer, due to the lower Frt and amplitude,670

the internal waves, albeit closer to the free surface, generate less mixing and the entrainment at671

the top of the jet be less effective than in winter. The waste water effluent will be located closer672

to the free surface and its dilution will be reduced in summer, presenting a larger threat than in673

winter when a more effective entrainment and larger amplitude internal waves will contribute to674

the dilution of the effluent trapped further away from the free surface. Better dilution is expected675

either due to the possible wave breaking or due to the effect of enhancement of turbulence in the676

field of a non-breaking internal wave (Matusov et al. (1989), Druzhinin and Ostrovsky (2015)).677

This study focuses on turbulent jets generated from a momentum source of fluid of the same678

density as the surrounding ambient fluid. The investigation of the applicability of the results679

discussed in this paper to a turbulent plume with a finite buoyancy flux is underway. However,680

if the results presented hold for a plume with a finite buoyancy flux, we expect that the different681

stratification observed in summer and winter in tidewater glaciers in Greenland (Straneo et al.682

2011) will influence dramatically the formation and propagation of internal waves in this setting.683

In particular, in winter, the interface between the top and bottom layers in some of Greenland’s684
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fjords is sharp and thinner than in summer (Straneo et al. 2011) and the buoyant plumes forming at685

the glacier face due to submarine melting are weaker due to a low (or absent) subglacial discharge.686

Hence, we expect the lower Frt and thinner interface observed in winter to generate low amplitude687

internal waves with two spectral peaks and the entrainment at the top of the plume to be less688

effective than in summer when the Froude number is larger. Additionally in summer, given the689

larger Frt and thicker interface, the buoyant plumes interacting with the interface are expected to690

generate large amplitude internal waves which can possibly break and contribute to the dilution of691

the meltwater plume intruding horizontally at the interface.692
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APPENDIX700

Convergency test and additional validations701

We investigate the sensitivity of the simulations to the size of spectral elements. For this aim702

we perform an additional simulation for Fr = 13, thin pycnocline, with an increased resolution.703

We left the size of the well-resolved initial region at the inflow (4× 4× 10 spectral elements)704

unaffected in order to keep the same velocity perturbations and obtain the turbulent jet with the705

same characteristics. However, we reduce stretching factor to have 2 times smaller elements at706
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|x| = |y| = 10 and reduced the stretching factor along z-axis to have twice more elements in the707

thermocline. The meshes for both cases are shown in Fig. A1a,b displaying as an example the708

instantaneous temperature fields for both simulations.709

Fig. A1d,e shows the average velocity fields together with the thermocline boundaries for both710

cases indicating good correspondence. The jet centerline velocity as the function of the vertical711

coordinate illustrating mean jet penetration is shown in Fig. A1c. The entrainment flux for the test712

case is Ei,test = 0.36 as compared to the regular grid with Ei = 0.37. Thus we may conclude that713

the simulations converge and the calculations are resolved enough to get reliable results.714

One can investigate the influence of reflections from the boundaries comparing the internal715

waves measured at the distances r = 20 and r = 25. We expect to get the weaker signal at r = 25716

and delay with respect to r = 20.717

The examples of the isotherms for the largest Froude numbers, as the most critical case for718

reflections, are shown in Fig. A2 for both stratifications. Fig. A2 displays also the averaged719

spectra of internal waves measured at r = 20 and r = 25 (averaging performed over 8 realizations720

as explained in Sec. 2 b). It can be seen that the signals at r = 25 follow the signals at r = 20. The721

average spectra of the isotherms are similar but the peak for r = 25 is lower thus confirming the722

absence of reflections from the boundaries at r = 20 where we measure internal waves.723
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TABLE 1. Parameters of the simulations of a jet impinging on a thin or thick thermocline. The nominal

Froude number is Fr = U0/
√

g′D0, while the thermocline Froude number Frt = ut/
√

g′Rt uses the jet mean

radius and velocity at z = 18 (for comparison with Shrinivas and Hunt (2014, 2015)), γ = D0/H indicates the

inverse thickness of the thermocline.

834

835

836

837

Fr, Frt γ = D/H Domain Size N. Spectral Elements N. of Grid Points

7 (0.60) 2 80×80×31 38×38×36 26 615 808

10 (0.86) 2 80×80×31 38×38×36 26 615 808

13 (1.11) 2 80×80×32 38×38×38 28 094 464

test 13 (1.37) 2 80×80×32 48×48×45 53 084 160

16 (1.37) 2 80×80×33 38×38×42 31 051 776

22 (1.89) 2 95×95×37 40×40×52 42 598 400

7 (0.60) 0.5 95×95×32.5 40×40×33 27 033 600

10 (0.86) 0.5 95×95×33.5 40×40×35 28 672 000

13 (1.11) 0.5 95×95×34.5 40×40×36 29 491 200

16 (1.37) 0.5 95×95×35.5 40×40×37 30 310 400

22 (1.89) 0.5 95×95×40.5 40×40×45 36 364 000
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TABLE 2. Frequencies of jet oscillations and internal waves in the thin and thick thermoclines.

Fr(Frt) f̂1 jet thin f̂2 jet thin f̂1 jet thick f̂2 jet thick f̂1IW thin f̂2IW thin f̂1IW thick

7 (0.60) 0.0096 0.0179 0.0098 0.0177 0.0100 0.0173 0.0083

10 (0.86) 0.0072 0.0146 0.0068 0.0152 0.0078 0.0135 0.0063

13 (1.11) 0.0038 0.0082 0.0042 0.0084 0.0040 0.0073 0.0045

16 (1.37) 0.0024 0.0055 0.0026 0.0054 0.0037 - 0.0030

22 (1.89) 0.0017 0.0048 0.0021 0.0048 0.0023 - 0.0025
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FIG. 2. (a) Inverse mean centerline velocity as a function of the distance from the nozzle (black dots - LES

data, gray - theory). (b) The far-field z-velocity profile, (c) turbulent stresses < u
′2
z > /U2

c and (d) < u
′2
r > /U2

c .

The data for comparison are available from the following papers: ’DNS round’ - Picano and Casciola (2007),

’DNS annular’ - Picano and Hanjalic (2012), ’exp Re=11 000’ - Panchapakesan and Lumley (1993), ’exp Re=95

000’ - Hussein et al. (1994).
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FIG. 3. Comparison of present LES data with direct numerical simulations (DNS) and experiments. (a)

Mean axial vertical velocity versus z against the DNS data for weak fountains by Lin and Armfield (2000). (b)

Mean vertical velocity profiles in the cross-sections along the jet axis in the thermocline (curves) against the

experimental data on turbulent jets in a stratified fluid by Ezhova and Troitskaya (2012) (symbols).
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FIG. 4. Illustration of the jet in a stratified fluid by surfaces of constant vertical velocity and temperature for

the thick thermocline, Fr = 22 (Frt = 1.89). Waves are visualized by surfaces of constant temperature T = 0.03

and T = 0.97.
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(a) (b) (c)

(d) (e) (f)

FIG. 5. Magnitude of the mean flow velocity for Fr=7 (Frt = 0.6) (a,d), 13 (1.11) (b,e), 22 (1.89) (c,f) (upper

panel - thin thermocline, lower panel - thick thermocline). Dashed curves correspond to the contour lines of

temperature T = 0.1 and T = 0.9.
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FIG. 6. (a) Mean centerline velocities for the jet in a homogeneous fluid and for all the simulations in the

stratified media indicating mean jet penetration. (b) Theoretical prediction of the mean penetration height versus

the Froude number: γ = 2 (solid), γ = 0.5 (dashed). Symbols � and � denote the mean heights obtained in the

simulations for γ = 2 and γ = 0.5 respectively.
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FIG. 7. The instantaneous temperature (left) and vertical velocity (right) fields in the thermocline for both

stratifications.
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FIG. 8. (a) Velocity profiles of the gravity currents propagating at the level of neutral buoyancy at a distance

r = 20 from the jet axis (gray curves - thin thermocline, black curves - thick thermocline). (b) Average temper-

ature of the gravity current as a function of the thermocline Froude number. (c) Entrainment flux obtained from

(17) as a function of the thermocline Froude number.
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(a) (b)

FIG. 9. Mean horizontal velocity fields in the jet impinging on the thermocline for Fr = 16 (Frt = 1.37): (a)

- thin thermocline, (b) - thick thermocline.
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FIG. 10. Instantaneous temperature field in the horizontal plane at the center of the thermocline and time

history of the isotherms at distance r = 20 from the jet center. The data in the upper panel pertain the simulation

of the thin thermocline with Fr = 10 (Frt = 0.86) (isotherms corresponding to temperatures from T = 0.4 to

T = 0.7) and at the lower panel - the simulation with the Fr = 22 (Frt = 1.89) (isotherms from T = 0.3 to

T = 0.7).
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(a) (b)

FIG. 13. (a) The amplitudes of the jet oscillations and the internal waves as function of the thermocline

Froude number. Solid line represents the stationary solution of Landau equation. (b) The group velocity of the

first mode of internal waves as a function of frequency.
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FIG. 14. Vertical profiles of the energy flux of internal waves: upper panel - thin thermocline, lower panel -

thick thermocline. Left: r = 20, right: r = 25.
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thermocline. The values at the largest Froude number for the distance r = 20 coincide.
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Fig. A1. The mesh and instantaneous temperature fields for Fr = 13(Frt = 1.11), thin thermocline, in (a)

the regular simulations and (b) in the validation case. (c) Average centerline velocities for the test case and in

regular simulations. Average velocity magnitude: (d) in the regular simulations and (e) in the test case. Dashed

curves denote the contour lines of average temperature T = 0.1 and T = 0.9.
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thermocline (upper panel) and the thick thermocline (lower panel).
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