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A mechanistic view of the Kelvin-Helmholtz instability

These two exercises aim at providing the student with a basic understanding of the physics
of the Kelvin-Helmholtz instability. This instability, initially studied theoretically by Helmholtz
(1868) and Lord Kelvin (1871), has proven to be a generic instability in a wide variety of shear
flows at large Reynolds numbers. Based on physical arguments, two relatively simple explanations
can be given to explain this basic instability mechanism. The following explanation, based on the
vortex sheet modelisation of the problem (see exercise 1), is taken from Charru, Hydrodynamic
Instabilities, Cambridge University Press.

The Kelvin-Helmholtz instability mechanism can be explained as a sort of “Ber-
noulli effect”. Let us consider the flow in a reference frame moving at the average
speed (figure 1) [...] and the speed of the perturbations vanishes at infinity. Above a
perturbation η > 0 of the shear layer, the fluid is accelerated owing to the fact that
the cross-sectional area perpendicular to the flow is decreased. This perturbation plays
a role to a depth of order k−1, the only length scale in the problem, on either side
of the interface. The order of magnitude of the velocity perturbation is therefore such
that η∆U ' u/k owing to the incompressibility of the fluid. This velocity excess above
a crest leads to a pressure decrease of order p ' −ρ∆Uu according to the linearized
Bernoulli theorem, so that the pressure difference accross the interface amplifies the
perturbation.

Another explanation has been given by Batchelor (1967) based on vorticity considerations. Though
it will not be reported here for the sake of conciseness, students are strongly encourage to careful
read it in Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press 1967.

Figure 1 – Mechanistic representation of the Kelvin-Helmholtz observed in a reference frame mo-
ving at the average speed of the two streams. Adapated from Charru, Hydrodynamic Instabilities,
Cambridge University Press.
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Exercise 1 : Linear instability of a vortex sheet

The aim of this exercise is to give you some insights into the physics of the Kelvin-Helmholtz
instability. This instability can usually be observed along the shear layer created by two joining
streams of fluids. In the rest of this exercise, we furthermore assume that the two streams have
the same constant density ρ. As a first approximation, ignoring the viscous effects compared
to the intertial ones (i.e. Re → ∞), the equations governing the dynamics of the flow are the
incompressible Euler equations given by

∇ ·U = 0

∂tU = −(U · ∇)U−∇P (1)

The Euler equations admit solutions of the form Ub(x, t) = (Ub(y), 0, 0)T and Pb(x, t) = Pb, with
Ub(y) being possibly a discontinuous function of y. Such solutions correspond to uni-directional
flows being stationary and homogeneous both in the streamwise direction x and in the span-
wise one z. Given such a base flow, the linearized Euler equations governing the dynamics of
infinistesimally small perturbations (u, p)T evolving onto (Ub, Pb)

T read

(∂t + Ub∂x)u+ U ′bv = −∂xp
(∂t + Ub∂x)v = −∂yp
(∂t + Ub∂x)w = −∂zp
∂xu+ ∂yv + ∂zw = 0

(2)

Since the aim of this exercise is to determine the instability condition for which the base flow Ub

is linearly unstable, only two-dimensional perturbations given by u = (u, v, 0)T can be considered
thanks to the Squire theorem. Introducing the stream function ψ given by

u = ∂yψ and v = −∂xψ (3)

and eliminating the pressure by cross-differentiation of the Euler euations, one obtains

(∂t + Ub∂x)∇2ψ − U ′′b ∂xψ = 0 (4)

This equation is autonomous in time and in the streamwise direction x. As a consequence, its
solutions can be sought in the form of normal modes

ψ(x, y, t) =
1

2

(
ψ̂(y) exp [i(kx− ωt)] + c.c

)
= <

(
ψ̂(y) exp [ik(x− ct)]

)
=
∣∣∣ψ̂(y)

∣∣∣ cos [k(x− crt)] ekcit

(5)

where c.c stands for complex conjugate, k is the streamwise wavenumber of the perturbation
and ω = k(cr + ici) its complex circular frequency. Introducing this normal mode ansatz into
equation (4) yields to the Rayleigh equation(

Ub −
ω

k

)(
∂2y ψ̂ − k2ψ̂

)
− U ′′b ψ̂ = 0 (6)



associated to vanishing boundary conditions, i.e. ψ̂(y → ±∞) = 0.

As a first step toward our understanding of the Kelvin-Helmholtz instability, the velocity
profile induced by a mixing layer will be approximated using a relatively crude model : the vortex
sheet. The corresponding velocity profile is given by

U(y) =

{
U1 for y < 0

U2 for y > 0
(7)

Such a discontinuous velocity profile is depicted on figure 1.

Question 1 :

From the expression given for the vortex sheet velocity profile, one can easily see that U ′′b = 0.
The Rayleigh equation (6) thus simplifies to

(Ub − c)
(
∂2y ψ̂ − k2ψ̂

)
= 0 (8)

In the rest of this exercise, we will assume that (Ub − c) 6= 0. Such assumption leads us to neglect
the problem of critical layers which is beyond the scope of the present course. Equation (8) finally
reduces to the simple second order differential equation

∂2y ψ̂ − k2ψ̂ = 0 (9)

The reduced discriminant of such an equation is : r2 − k2r = 0. Consequently, it appears
obvious that equation (9) has solutions of the form

ψ̂j = Aje
−ky +Bje

ky (10)

Question 2 :

We consider streamwise wavenumbers k such that k ∈ R+. It is easy to show that if y tends
to −∞ (respectively +∞), then the general solution (10) diverges. The only possiblity to fulfill
the vanishing boundary conditions is to impose A1 = 0 (respectively B2 = 0). We are then left
with

ψ̂1 = B1e
ky

ψ̂2 = A2e
−ky (11)

Question 3 :

The two jump conditions are to be applied at the interface located at y0 = 0. They express the
continuity of the normal velocity to the interface and the normal force balance. For a complete
derivation of these jump conditions, please look at F. Charru, Hydrodynamic Instabilities, page
115. These two jump conditions give

A2

U2 − c
− B1

U1 − c
= 0

− k(U2 − c)A2 − (+k)(U1 − c)B1 = 0

(12)



After some simple manipulations, this linear system can be rewritten in an equivalent matrix
form [

(U1 − c) −(U2 − c)
(U2 − c) (U1 − c)

] [
A2

B2

]
= 0 (13)

Question 4 :

The linear system (13) has a non-trivial solution provided that

det

([
(U1 − c) −(U2 − c)
(U2 − c) (U1 − c)

])
= 0 (14)

After some manipulations, this condition can be re-written as a second degree polynomial equation

c2 − (U1 + U2)c+
U2
1 + U2

2

2
= 0 (15)

Introducing the following notations

∆U = U1 − U2 and Ū =
U1 + U2

2

where ∆U characterizes the shear applied at the interface and Ū is the mean velocity, it is easy
to show that equation (15) admits the following complex conjugate solutions

c± =
ω

k
= Ū ± i∆U

2
(16)

Regarding the temporal stability of the vortex sheet model toward perturbations having real
wavenumbers, the speed cr and temporal growth rate ωi = ±kci of these two modes are given by

cr = Ū and ωi = ±k∆U

2

Question 5 :

From the expressions derived in question 4, it is clear that the two instability waves have the
same speed (they are not dispersive). Moreover, the temporal growth rate ωi linearly depends on
∆U indicating that, provided ∆U 6= 0, the vortex sheet model is linearly unstable for all wave-
number no matter how small the velocity difference between the two streams. It has to be noted
also that, for a given vortex sheet profile (fixed ∆U), the temporal growth rate increases linearly
with the streamwise wavenumber of the perturbation, as depicted on figure 3. This behaviour
leads to an unphysical conclusion that the growth rate of the unstable perturbation is unbounded
at large wavenumbers (small wavelengths) as a consequence of all the effects of viscous diffusion
being neglected in the present model.



Figure 2 – Example of a piecewise linear mixing layer profile.

Exercise 2 : The piecewise-linear mixing layer profile

In order to overcome the limitations of the vortex sheet model, one has to include a length scale
in the problem. Owing to diffusion by viscosity, a velocity discontinuity cannot be maintained and
a more realistic model of base flow has to include a shear layer connecting the two uniform streams
in a continuous manner. In the rest of this exercise, we will consider the following piecewise linear
profile

U(y) =


U1 for y > δω/2

Ū +
∆U

δω
y for |y| ≤ δω/2

U2 for y < −δω/2

(17)

Such a velocity profile is depicted on figure 2. This simple model has been solved analytically by
Lord Rayleigh in 1880.

Question 1 :

It has to be noted that, by using the piecewise linear velocity profile (17), we assume that the
base flow does not evolve neither in time nor in the streamwise direction x. In reality however,
due to viscous diffusion, the vorticity thickness of the shear layer will increase as time passes. We
can thus define a characteristic viscous time-scale given by

τδ =
δ2ω
ν

(18)

Moreover, we have seen in the previous exercise that the Kelvin-Helmholtz instability is a shear-
driven instability. As a consquence, one can define a characteristic time-scale for the instability
as

τKH =
δω

∆U
(19)

As a consequence, provided τKH << τω, the instability evolves on a time-scale much smaller than
the diffusive time-scale of the shear layer. As a first approximation, it can be assumed that the
instability sees the local vorticity thickness as being constant over time. We will moreover assume
that the growth of this vorticity thickness in the streamwise direction is slow such that we can
use the parallel flow assumption.



Thanks to all these different approximations, the governing equations for the perturbation
are given by the linearized Euler equations. Moreover, thanks to the Squire theorem, only two-
dimensional perturbations need to be considered when looking for the linear instability condition
of the flow. As a consequence, the linear stability analysis of the piecewise-linear velocity pro-
file (17) can be investigated using the two-dimensional Rayleigh equation.

Question 2 :

As for the previous exercise, it is easy to show that, given the boundary conditions, the
Rayleigh equation has solutions of the form

ψ̂1 = A1e
−ky

ψ̂δ = Aδe
−ky +Bδe

ky

ψ̂2 = B2e
ky

(20)

Question 3 :

Expliciting the first jump condition (continuity of velocity) at y0 = δω/2 and y0 = −δω/2
gives {

A1 = Aδ +Bδe
kδω

B2 = Aδe
kδω +Bδ

(21)

Using these relations when expliciting the second jump condition (balance of normal forces) gives
the following linear system

∆U

δω
e−kδω/2Aδ +

(
∆U

δω
− 2k(U1 − c)

)
ekδω/2Bδ = 0(

−2k(U2 − c)−
∆U

δω

)
ekδω/2Aδ −

∆U

δω
e−kδω/2Bδ = 0

(22)

Finally, this system of linear equations can be re-written in an equivalent matrix form as follows −∆U

δω
e−kδω/2

(
2k(U1 − c)−

∆U

δω

)
ekδω/2(

2k(U2 − c)−
∆U

δω

)
ekδω/2

∆U

δω
e−kδω/2

[AδBδ
]

= 0 (23)

Question 4 :

The linear system (23) has non-trivial solutions if its determinant is null, that is

∆U2

δ2ω
e−kδω +

(
2k(U1 − c)−

∆U

δω

)(
2k(U2 − c) +

∆U

δω

)
ekδω = 0 (24)

After some manipulations, this equation finally reads

∆U2
(

e−2kδω − (kδω − 1)2
)

+ 4(kδω)2(Ū − c)2 = 0 (25)

Figure 3 depicts the evolution of the speed cr and of the temporal growth rate kci of the pertur-
bation with respect to its streamwise wavenumber. For (kδω−1)2 > e−2kδω (i.e. kδω > kcδω where
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Figure 3 – (a) Speed and (b) temporal growth rate of the stable and unstable modes of the
broken-line mixing layer velocity profile. The red line on (b) depicts the dispersion relation of the
vortex sheet studied in exercise 1.

kc is a cut-off wavelength), the dispersion relation has two real roots c± and the perturbation
is neither exponentially growing nor decaying, it is neutral. On the other hand, for kδω < kcδω,
the dispersion relation has two complex conjugate roots : one of the eigenmode is therefore ex-
ponentially growing while the other decays. As a consequence, the broken-line velocity profile
considered is linearly unstable. It has to be noted finally that for kδω << 1, i.e. perturbations
of wavelength much larger than the vorticity thickness, we recover the trend given by the vortex
sheet modelisation as could have been expected.


