

Disputation inom Teknisk mekanik

Lärosäte: Kungliga Tekniska Högskolan, Inst. Mekanik

Titel: Transition delay in boundary-layer flows via reactive control

Respondent: Nicolò Fabbiane

- Huvudhandledare: Prof. Dan S. Henningson, KTH Mekanik
- Biträdande handledare: Dr. Shervin Bagheri, KTH Mekanik
- Finansiär: VR 2012-4246

Opponent: Dr. Denis Sipp, ONERA DAFE, Frankrike

Betygsnämnden: Dr. Ati Sharma, University of Southampton, Storbritannien Dr. Taraneh Sayadi, RWTH Aachen, Tyskland Prof. Håkan Hjalmarsson, KTH Reglerteknik

Ordförande: Dr. Ardeshir Hanifi, FOI/KTH Mekanik

Disputationsakten:

- 1. Presentation av respondenten (ca 40 min).
- 2. Opponenten diskuterar och ställer frågor på avhandlingen.
- 3. Betygsnämnden ställer frågor.
- 4. Öppet för allmänheten att ställa frågor.

Public defense:

- 1. Presentation by the respondent (ca 40 min).
- 2. The opponent discusses the thesis with the respondent.
- 3. The members of the grading committee discuss the thesis with the respondent.
- 4. The audience is allowed and invited to ask questions.

Public defense:

- 1. Presentation by the respondent (ca 40 min).
- 2. The opponent discusses the thesis with the respondent.
- 3. The members of the grading committee discuss the thesis with the respondent.
- 4. The audience is allowed and invited to ask questions.

The procedure continues as follows:

- 1. The grading committee will deliberate behind locked doors and make a decision.
- 2. The decision will be announced by the committee at Mechanics department, Osquars Backe 18, 6th floor.
- 3. Lunch will be served for all the involved people, including registered participating audience.

Transition delay in boundary-layer flows via reactive control

Nicolò Fabbiane

Linné FLOW Centre, KTH Mechanics, Stockholm

Morkovin et al. (1994)

Morkovin et al. (1994)

Skin-friction fluctuations (grey-scale) and turbulent structures (green isosurfaces: λ_2 -criterion)

Skin-friction fluctuations (grey-scale) and turbulent structures (green isosurfaces: $\lambda_2\text{-criterion})$

Pseudo-spectral DNS/LES code (SIMSON)

Chevalier et al. (2007)

Brunton and Noack (2015)

Bewley and Liu (1998)

Bewley and Liu (1998)

Sturzebecher and Nitsche (2003)

Flow

N. Fabbiane: Transition delay in boundary-layer flows via reactive control - 4 of 30

FLOW 1

Flow

FLOW

FLOW

N. Fabbiane: Transition delay in boundary-layer flows via reactive control - 4 of 30

Kotsonis et al. (2015)

FLOW

N. Fabbiane: Transition delay in boundary-layer flows via reactive control - 4 of 30

Feedback

en-loop based control Vonlinear control

 \mathbf{K}

Controller

optimal control Model predictive control

and .

control

ontrol

control

control

Kurz et al. (2013)

Juillet et al. (2014)

Kotsonis et al. (2015)

Feedback Ь s \mathbf{K} Bewley and Liu (1998) Internal state and Controller propagator Control design, b = K(s)Kinematics, a Dynamics, f Navier-Stokes White box u(x, t)equation del Sturzebecher and Nitsche (2003) Discretization inear state-space Parameter identification Galerkin projection optimal control Stability modes POD Gray box Li and Gaster (2006) BPOD control DMD Model predictive en-loop based control Jonlinear control and H Aa + BbBarbagallo et al. (2009) Ca + Db. Bagheri et al. (2009) Black box ometric ontrol (b,s)Volterra serie Sharma et al. (2011) SVM Semeraro et al. (2013) Machine-learning control Model free Kurz et al. (2013) Extremum-Input-Juillet et al. (2014) seeking contro Output Opposition Data Kotsonis et al. (2015) control Brunton and Noack (2015)

Kotsonis et al. (2015)

Outline

Control of boundary-layer instabilities

A linear model of the flow Control algorithms A self-tuning compensator

Transition delay

A 3D compensator Performance and limitations Energy budget

Conclusions and Outlook

Outline

Control of boundary-layer instabilities

A linear model of the flow Control algorithms A self-tuning compensator

Transition delay

A 3D compensator Performance and limitations Energy budget

Conclusions and Outlook

Plant response

Impulse response by the disturbance \boldsymbol{d}

Plant response

Impulse response by the disturbance \boldsymbol{d}

Impulse response by the disturbance \boldsymbol{d}

Impulse response by the disturbance \boldsymbol{d}

Impulse response by the disturbance \boldsymbol{d}

2D linear perturbation of a 2D boundary-layer flow over a flat plate

Linearised Navier-Stokes (LNS) eq.s around the baseflow U(x):

$$\frac{\partial \mathbf{u}}{\partial t} = -(\mathbf{U} \cdot \nabla) \mathbf{u} - (\mathbf{u} \cdot \nabla) \mathbf{U} - \nabla p + \frac{1}{Re} \nabla^2 \mathbf{u}$$
$$\mathbf{0} = \nabla \cdot \mathbf{u}$$

2D linear perturbation of a 2D boundary-layer flow over a flat plate

Linearised Navier-Stokes (LNS) eq.s around the baseflow U(x):

$$\frac{\partial \mathbf{u}}{\partial t} = -(\mathbf{U} \cdot \nabla) \mathbf{u} - (\mathbf{u} \cdot \nabla) \mathbf{U} - \nabla \rho + \frac{1}{Re} \nabla^2 \mathbf{u} + \mathbf{b}_d(\mathbf{x}) d(t) + \mathbf{b}_u(\mathbf{x}) u(t)$$
$$\mathbf{0} = \nabla \cdot \mathbf{u}$$

2D linear perturbation of a 2D boundary-layer flow over a flat plate

Linearised Navier-Stokes (LNS) eq.s around the baseflow U(x):

$$\begin{aligned} \frac{\partial \mathbf{u}}{\partial t} &= -\left(\mathbf{U}\cdot\nabla\right)\mathbf{u} - \left(\mathbf{u}\cdot\nabla\right)\mathbf{U} - \nabla\rho + \frac{1}{Re}\nabla^{2}\mathbf{u} + \mathbf{b}_{d}(\mathbf{x}) d(t) + \mathbf{b}_{u}(\mathbf{x}) u(t) \\ \mathbf{0} &= \nabla\cdot\mathbf{u} \end{aligned}$$
$$y(t) &= \int_{\Omega} \mathbf{c}_{y}(\mathbf{x})\cdot\mathbf{u}(\mathbf{x},t) d\Omega \end{aligned}$$
$$z(t) &= \int_{\Omega} \mathbf{c}_{z}(\mathbf{x})\cdot\mathbf{u}(\mathbf{x},t) d\Omega \end{aligned}$$

2D linear perturbation of a 2D boundary-layer flow over a flat plate

Linearised Navier-Stokes (LNS) eq.s around the baseflow U(x):

$$\dot{\mathbf{q}}(t) = \mathbf{A} \ \mathbf{q}(t) + \mathbf{B}_d \ d(t) + \mathbf{B}_u \ u(t)$$
$$y(t) = \mathbf{C}_y \ \mathbf{q}(t)$$
$$z(t) = \mathbf{C}_z \ \mathbf{q}(t)$$

where $\mathbf{u}(\mathbf{x}, t) \approx \mathbf{T}(\mathbf{x}) \mathbf{q}(t)$.

FLOW

Linear Quadratic Gaussian (LQG) regulator $\dot{q}(t) = A q(t) + B_d d(t) + B_u u(t)$ $y(t) = C_y q(t)$ $z(t) = C_z q(t)$

d

Linear Quadratic Gaussian (LQG) regulator $\dot{q}(t) = A q(t) + B_d d(t) + B_u u(t)$ $y(t) = C_y q(t)$ $z(t) = C_z q(t)$ d y $\dot{q}(t) = (A + LC_y) \hat{q}(t) - Ly(t)$

Observer: Kalman filter

$$\min\left[\lim_{ au
ightarrow\infty}rac{1}{ au}\int_{0}^{ au}\|\mathbf{q}(t)-\hat{\mathbf{q}}(t)\|_{2}^{2} \,\,dt
ight]$$

Under a stochastic forcing d(t) and n(t),

$$\mathbf{L} = -\mathbf{Y}\mathbf{C}_{y}^{H}R_{n}^{-1},$$

where \mathbf{Y} is solution to the Riccati eq.:

$$\mathbf{AY} + \mathbf{YA}^{H} - \mathbf{Y} \mathbf{C}_{y}^{H} R_{n}^{-1} \mathbf{C}_{y} \mathbf{Y} + \mathbf{B}_{d} R_{d} \mathbf{B}_{d}^{H} = \mathbf{0}$$

Linear Quadratic Gaussian (LQG) regulator $\dot{q}(t) = A q(t) + B_d d(t) + B_u u(t)$ $y(t) = C_y q(t)$ $z(t) = C_z q(t)$

Controller: LQR

$$\min\left[\int_0^\infty \left(w_z z^2(t) + w_u u^2(t)\right) dt\right]$$

The control gain matrix is obtained as

$$\mathbf{K}=-w_{u}^{-1}\mathbf{B}_{u}\mathbf{X},$$

where \boldsymbol{X} is solution to the Riccati eq.:

$$\mathbf{A}^{H}\mathbf{X} + \mathbf{X}\mathbf{A} - \mathbf{X}\mathbf{B}_{u} \ w_{u}^{-1}\mathbf{B}_{u}^{H}\mathbf{X} + \mathbf{C}_{z}^{H}w_{z}\mathbf{C}_{z} = \mathbf{0}$$

Linear Quadratic Gaussian (LQG) regulator $\dot{q}(t) = A q(t) + B_d d(t) + B_u u(t)$ $y(t) = C_y q(t)$ $z(t) = C_z q(t)$ $\dot{q}(t) = (A + LC_y) \hat{q}(t) - Ly(t) + B_u u(t)$ $u(t) = K\hat{q}(t)$

Observer: Kalman filter

$$\min\left[\lim_{ au
ightarrow\infty}rac{1}{ au}\int_{0}^{ au}\|\mathbf{q}(t)-\hat{\mathbf{q}}(t)\|_{2}^{2} \,\,dt
ight]$$

Under a stochastic forcing d(t) and n(t),

$$\mathbf{L} = -\mathbf{Y}\mathbf{C}_{y}^{H}R_{n}^{-1},$$

where Y is solution to the Riccati eq.:

$$\mathbf{AY} + \mathbf{YA}^{H} - \mathbf{Y} \mathbf{C}_{y}^{H} R_{n}^{-1} \mathbf{C}_{y} \mathbf{Y} + \mathbf{B}_{d} R_{d} \mathbf{B}_{d}^{H} = \mathbf{0}$$

Controller: LQR

$$\min\left[\int_0^\infty \left(w_z z^2(t) + w_u u^2(t)\right) dt\right]$$

The control gain matrix is obtained as

$$\mathbf{K} = -\mathbf{w}_u^{-1}\mathbf{B}_u\mathbf{X},$$

where \boldsymbol{X} is solution to the Riccati eq.:

$$\mathbf{A}^{H}\mathbf{X} + \mathbf{X}\mathbf{A} - \mathbf{X}\mathbf{B}_{u} w_{u}^{-1}\mathbf{B}_{u}^{H}\mathbf{X} + \mathbf{C}_{z}^{H}w_{z}\mathbf{C}_{z} = \mathbf{0}.$$

Forced response z(t) by u(t) with $\mathbf{q}_0 = \mathbf{0}$

$$z(t) = \mathbf{C}_z e^{\mathbf{A}t} \, \mathbf{q}_0 + \int_0^t \mathbf{C}_z e^{\mathbf{A}\tau} \mathbf{B}_u \, u(t-\tau) d\tau$$

Forced response z(t) by u(t) with $\mathbf{q}_0 = \mathbf{0}$

$$z(t) = \int_0^t \mathbf{C}_z e^{\mathbf{A}\tau} \mathbf{B}_u \, u(t-\tau) d\tau$$

The 2×2 impulse responses represent the complete I/O properties of the plant.

Forced response y(t) and z(t) by d(t) and u(t) with $\mathbf{q}_0 = \mathbf{0}$

$$y(t) = \int_0^t P_{yd}(\tau) d(t-\tau) d\tau + \int_0^t P_{yu}(\tau) u(t-\tau) d\tau$$
$$z(t) = \int_0^t P_{zd}(\tau) d(t-\tau) d\tau + \int_0^t P_{zu}(\tau) u(t-\tau) d\tau$$

The 2×2 impulse responses represent the complete I/O properties of the plant.

Forced response y(t) and z(t) by d(t) and u(t) with $\mathbf{q}_0 = \mathbf{0}$

The 2 \times 2 impulse responses represent the complete I/O properties of the plant.

Forced response y(t) and z(t) by d(t) and u(t) with $\mathbf{q}_0 = \mathbf{0}$

$$y(t) \simeq \int_0^{T_{yd}} P_{yd}(\tau) d(t-\tau) d\tau$$
$$z(t) \simeq \int_0^{T_{zd}} P_{zd}(\tau) d(t-\tau) d\tau + \int_0^{T_{zu}} P_{zu}(\tau) u(t-\tau) d\tau$$

The 2×2 impulse responses represent the complete I/O properties of the plant.

Forced response y(n) and z(n) by d(n) and u(n) with $\mathbf{q}_0 = \mathbf{0}$

$$y(n) \simeq \sum_{j=0}^{N_{yd}} P_{yd}(i) d(n-i)$$
$$z(n) \simeq \sum_{j=0}^{N_{zd}} P_{zd}(i) d(n-i) + \sum_{j=0}^{N_{zu}} P_{zu}(i) u(n-i)$$

Finite Impulse Response (FIR) filter

Filtered-X Least-Mean-Square (fxLMS) algorithm

Filtered-X Least-Mean-Square (fxLMS) algorithm

Minimise the cost function

$$\min_{K(i)} \left[z^2(n) \right]$$

via a steepest-descent algorithm

$$K(i|n+1) = K(i|n) - \mu \lambda(i|n).$$

with
$$\lambda(i|n) = \frac{\partial z^2}{\partial K(i)} = 2 z(n) \sum_j P_{zu}(j) y(n-j) = 2 z(n) f(n-i).$$

Filtered-X Least-Mean-Square (fxLMS) algorithm

Minimise the cost function

$$\min_{K(i)} \left[z^2(n) \right]$$

via a steepest-descent algorithm

$$K(i|n+1) = K(i|n) - \mu \lambda(i|n).$$

with
$$\lambda(i|n) = \frac{\partial z^2}{\partial K(i)} = 2 z(n) \sum_j P_{zu}(j) y(n-j) = 2 z(n) f(n-i).$$

Model-based vs. Adaptive control

$$\dot{\hat{\mathbf{q}}}(t) = (\mathbf{A} + \mathbf{L}\mathbf{C}_y + \mathbf{B}_u\mathbf{K})\,\hat{\mathbf{q}}(t) - \mathbf{L}y(t)$$
$$u(t) = \mathbf{K}\hat{\mathbf{q}}(t)$$

- Based on a full model of the flow.
- Designed a-priori \Rightarrow static.
- Optimal performances.
- Model reduction usually needed.

$$u(n) = \sum_{i} K(i|n) y(n-i)$$

- Only $u \to z$ needed.
- On-line minimisation \Rightarrow adaptive.
- Reliable y-measurement.
- Measurable cost function.

Performance

Control of 2D linear perturbation in a 2D boundary-layer flow over a flat plate (Paper 2)

Control of 2D linear perturbation in a 2D boundary-layer flow over a flat plate (Paper 2)

 $\pm 5\%$ free-stream speed variations with respect to U_∞

Control of 2D linear perturbation in a 2D boundary-layer flow over a flat plate (Paper 2)

Control of 2D linear perturbation in a 2D boundary-layer flow over a flat plate (Paper 2)

Control of 2D linear perturbation in a 2D boundary-layer flow over a flat plate (Paper 2)

 $\pm 5\%$ free-stream speed variations with respect to U_∞

Experimental setup

Open wind-tunnel @ TU Darmstadt (Paper 2)

Disturbances: 15 independent loudspeakers producing 2D disturbances Sensors: 2 surface hot-wires \Rightarrow skin friction measurements Actuator: 1 dielectric-barrier-discharge (DBD) plasma actuator L = 230 mm

2 rows of 30 microphones each monitor the bi-dimensionality of the disturbances.

Experimental setup

Open wind-tunnel @ TU Darmstadt (Paper 2)

Disturbances: 15 independent loudspeakers producing 2D disturbances Sensors: 2 surface hot-wires \Rightarrow skin friction measurements Actuator: 1 dielectric-barrier-discharge (DBD) plasma actuator L = 230 mm

2 rows of 30 microphones each monitor the bi-dimensionality of the disturbances.

Plasma actuator

- 2 copper electrodes separated by a dielectric material (Kapton tape)
- Plasma arch between the two electrodes

Plasma actuator

- 2 copper electrodes separated by a dielectric material (Kapton tape)
- Plasma arch between the two electrodes \Rightarrow force on the flow

Plasma actuator

- 2 copper electrodes separated by a dielectric material (Kapton tape)
- \blacktriangleright Plasma arch between the two electrodes \Rightarrow force on the flow

• Driven by the compensator via $u(t) \rightarrow V(t)$

Plasma actuator

- 2 copper electrodes separated by a dielectric material (Kapton tape)
- \blacktriangleright Plasma arch between the two electrodes \Rightarrow force on the flow

• Driven by the compensator via u(t) o V(t)

Force in one direction only

Plasma actuator

- 2 copper electrodes separated by a dielectric material (Kapton tape)
- Plasma arch between the two electrodes \Rightarrow force on the flow

• Driven by the compensator via u(t) o V(t)

▶ Force in one direction only: offset + control signal

Plasma actuator

- 2 copper electrodes separated by a dielectric material (Kapton tape)
- Plasma arch between the two electrodes \Rightarrow force on the flow

• Driven by the compensator via u(t) o V(t)

 Force in one direction only: offset + control signal Small offset: wave-cancellation (Paper 2, Paper 3)
Large offset: wave-cancellation + BL stabilisation (Kurz et al., 2013)

Experimental performance

Performance indicator: $Z = \frac{\sigma_{Z,ctr}}{\sigma_{Z,unc}}$ (Paper 2)

LQG: high dependency on the speed-shift fxLMS: able to adapt to the modified condition

Delayed-x LMS (dxLMS) algorithm

(Simon et al., 2015, Paper 3)

Delayed-x LMS (dxLMS) algorithm

(Simon et al., 2015, Paper 3)

$$\tau_{uz} = \frac{X_z - X_u}{c_g}$$

Performace by dxLMS

Performace by dxLMS

Outline

Control of boundary-layer instabilities

A linear model of the flow Control algorithms A self-tuning compensator

Transition delay

A 3D compensator Performance and limitations Energy budget

Conclusions and Outlook

From 2D to 3D disturbances

From 2D to 3D disturbances

Multi-Input Multi-Output (MIMO) (Fabbiane et al., 2015, Paper 5)

$$u_l(n) = \sum_i K_{lm}(i) y_m \quad (n-i)$$

Multi-Input Multi-Output (MIMO) (Fabbiane et al., 2015, Paper 5)

$$u_l(n) = \sum_m \sum_i K_{lm}(i) y_m \quad (n-i)$$

Multi-Input Multi-Output (MIMO) (Fabbiane et al., 2015, Paper 5)

$$u_{l}(n) = \sum_{m} \sum_{i} K_{lm}(i) y_{m} (n-i) \quad \forall l$$

Multi-Input Multi-Output (MIMO) (Fabbiane et al., 2015, Paper 5)

$$u_{l}(n) = \sum_{m} \sum_{i} K_{m}(i) y_{m+l}(n-i) \quad \forall l$$

Spanwise homogeneous compensator.

FLOW

MIMO fxLMS algorithm

(Fabbiane et al., 2015, Paper 5)

Minimise a measurable cost function

$$\min_{K_m}\left(\sum_{l}z_l^2(n)\right)$$

via a steepest-descent algorithm:

 $K_m(i|n+1) = K_m(i|n) - \mu \lambda_m(i|n)$

where $\lambda_m(i|n) = \frac{\partial}{\partial K_m(i)} \left(\sum_l z_l^2(n) \right) = 2 \sum_l z_l(n) \sum_r \sum_j P_{zu,r}(j) y_{r+m+l}(n-j-i).$

$$A^{2}(X) = \max_{Y} \left\langle \left(\frac{u'}{U} \right)^{2} \right\rangle_{Z,t} @ X = 100$$

$$A^{2}(X) = \max_{Y} \left\langle \left(\frac{u'}{U} \right)^{2} \right\rangle_{Z,t} @ X = 100$$

$$A^{2}(X) = \max_{Y} \left\langle \left(\frac{u'}{U} \right)^{2} \right\rangle_{Z,t} @ X = 100$$

$$A^{2}(X) = \max_{Y} \left\langle \left(\frac{u'}{U} \right)^{2} \right\rangle_{Z,t} @ X = 100$$

$$A^{2}(X) = \max_{Y} \left\langle \left(\frac{u'}{U} \right)^{2} \right\rangle_{Z,t} @ X = 100$$

$$A^{2}(X) = \max_{Y} \left\langle \left(\frac{u'}{U} \right)^{2} \right\rangle_{Z,t} @ X = 100$$

$$A^{2}(X) = \max_{Y} \left\langle \left(\frac{u'}{U} \right)^{2} \right\rangle_{Z,t} @ X = 100$$

$$A^{2}(X) = \max_{Y} \left\langle \left(\frac{u'}{U} \right)^{2} \right\rangle_{Z,t} @ X = 100$$

$$A^{2}(X) = \max_{Y} \left\langle \left(\frac{u'}{U} \right)^{2} \right\rangle_{Z,t} @ X = 100$$

Wall shear-stress spectra at X = 500

FLOW

The non-linear challenge

Wall shear-stress spectra at X = 500

Linear: A(400) = 0.19%

Wall shear-stress spectra at X = 500

N. Fabbiane: Transition delay in boundary-layer flows via reactive control – 24 of 30

0.05

FLOW

0

0

0.005

The non-linear challenge

Wall shear-stress spectra at X = 500

1e-08

0.02

0.025

0.05

0

0

0.005

 $\omega/2\pi$

0.01

0.015

 $\omega/2\pi$ Non-linear: A(400) = 1.33%

0.01

0.015

1e-08

1e-09

0.02

0.025

0.025

FLOW

The non-linear challenge

Wall shear-stress spectra at X = 500

Linear: A(400) = 0.19%

Transitional: A(400) = 2.97%

FLOW

The non-linear challenge

0.10

0.00

0.05

0.15

0.20

0.25

A(100) [%]

0.30

0.35

Compensator performance

0.45

0.50

0.40

Saved power ($P_s = U_{\infty} \Delta D$)

Drag reduction:
$$\frac{\Delta D}{L_Z} = \int_0^{L_X} \langle \tau_{w,0} - \tau_{w,c} \rangle_{Z,t} dX$$

Saved power ($P_s = U_{\infty} \Delta D$)

Drag reduction:
$$\frac{\Delta D}{L_Z} = \int_0^{L_X} \langle \tau_{w,0} - \tau_{w,c} \rangle_{Z,t} dX$$

Saved power ($P_s = U_{\infty} \Delta D$)

Saved power ($P_s = U_\infty \Delta D$) vs. control power (P_c , Kriegseis et al., 2011, 2013)

Saved power ($P_s = U_{\infty} \Delta D$) vs. control power (P_c , Kriegseis et al., 2011, 2013)

Saved power ($P_s = U_{\infty} \Delta D$) vs. control power (P_c , Kriegseis et al., 2011, 2013)

Outline

Control of boundary-layer instabilities

A linear model of the flow Control algorithms A self-tuning compensator

Transition delay

A 3D compensator Performance and limitations Energy budget

Conclusions and Outlook

Conclusions

- Model-based control may present robustness issues:
 - robustness can be recovered via adaptive algorithms.

Conclusions

- Model-based control may present robustness issues:
 - robustness can be recovered via adaptive algorithms.

• Transition is effectively and efficiently delayed.

Conclusions

- Model-based control may present robustness issues:
 - robustness can be recovered via adaptive algorithms.

In-flight experiments by using plasma actuators.

Disturbance: control of different disturbances than TS waves.

Disturbance: control of different disturbances than TS waves.

Actuator: improve energy efficiency.

Disturbance: control of different disturbances than TS waves.

Actuator: improve energy efficiency.

A

Power gain

Disturbance: control of different disturbances than TS waves.

Actuator: improve energy efficiency.

Machine learning?

A

m

Power gain

PhD defense

Stockholm – June 13th, 2016

Respondent Nicolò Fabbiane

Opponent

Dr. Denis Sipp, ONERA DAFE, France

Committee

Dr. Ati Sharma, Univ. of Southampton, UK Dr. Taraneh Sayadi, RWTH Aachen, Germany Prof. Håkan Hjalmarsson, KTH Aut. Control

Chairman

Dr. Ardeshir Hanifi, FOI/KTH Mechanics

Main advisor

Prof. Dan S. Henningson, KTH Mechanics

Co-advisor Dr. Shervin Bagheri, KTH Mechanics

Public defense:

- 1. Presentation by the respondent (ca 40 min).
- 2. The opponent discusses the thesis with the respondent.
- 3. The members of the grading committee discuss the thesis with the respondent.
- 4. The audience is allowed and invited to ask questions.

Public defense:

- 1. Presentation by the respondent (ca 40 min).
- 2. The opponent discusses the thesis with the respondent.
- 3. The members of the grading committee discuss the thesis with the respondent.
- 4. The audience is allowed and invited to ask questions.

The procedure continues as follows:

- 1. The grading committee will deliberate behind locked doors and make a decision.
- 2. The decision will be announced by the committee at Mechanics department, Osquars Backe 18, 6th floor.
- 3. Lunch will be served for all the involved people, including registered participating audience.

References

- Bagheri, S., Brandt, L., and Henningson, D. S. (2009). Input-output analysis, model reduction and control of the flat-plate boundary layer. J. Fluid Mech., 620(1):263–298.
- Barbagallo, A., Sipp, D., and Schmid, P. J. (2009). Closed-loop control of an open cavity flow using reduced order models. J. Fluid Mech., 641:1-50.
- Bewley, T. R. and Liu, S. (1998). Optimal and Robust Control and Estimation of Linear Paths to Transition. J. Fluid Mech., 365:305-349.
- Brunton, S. L. and Noack, B. R. (2015). Closed-loop turbulence control: Progress and challenges. Applied Mechanics Reviews, 67(5):AMR-14-1091.
- Chevalier, M., Schlatter, P., Lundbladh, A., and Henningson, D. S. (2007). A pseudo-spectral solver for incompressible boundary layer flows. Technical Report TRITA-MEK 2007:07, KTH Mechanics, Stockholm, Sweden.
- Fabbiane, N., Bagheri, S., and Henningson, D. S. (2015). Adaptive control of finite-amplitude 3D disturbances in 2D boundary-layer flows. In Proceedings of TSFP-9, Melbourne.
- Juang, J.-N. and Pappa, R. S. (1985). An eigensystem realization algorithm for modal parameter identification and model reduction. J. Guid., Con. Dyn., 8(5):620-627.
- Juillet, F., McKeon, B. J., and Schmid, P. J. (2014). Experimental Control of Natural Perturbations in Channel Flow. J. Fluid Mech., 752:296-309.
- Kotsonis, M., Shukla, R. K., and Pröbsting, S. (2015). Control of Natural Tollmien-Schlichting Waves using Dielectric Barrier Discharge Plasma Actuators. Intl J. of Flow Control, 7(1-2):37–54.
- Kriegseis, J., Möller, B., Grundmann, S., and Tropea, C. (2011). Capacitance and power consumption quantification of dielectric barrier discharge (DBD) plasma actuators. Journal of Electrostatics, 69(4):302–312.
- Kriegseis, J., Schwarz, C., Tropea, C., and Grundmann, S. (2013). Velocity-Information-Based Force-Term Estimation of Dielectric-Barrier Discharge Plasma Actuators. J. Phys. D, 46(5):055202.
- Kurz, A., Goldin, N., King, R., Tropea, C. D., and Grundmann, S. (2013). Hybrid Transition Control Approach for Plasma Actuators. Exp. Fluids, 54(11):1–4.
- Li, Y. and Gaster, M. (2006). Active Control of Boundary-Layer Instabilities. J. Fluid Mech., 550:185-205.
- Ma, Z., Ahuja, S., and Rowley, C. W. (2011). Reduced-order models for control of fluids using the eigensystem realization algorithm. Theoretical and Computational Fluid Dynamics, 25(1-4):233–247.
- Morkovin, M., Reshotko, E., and Herbert, T. (1994). Transition in open flow systems-a reassessment. Bull. Am. Phys. Soc, 39(9):1882.
- Semeraro, O., Bagheri, S., Brandt, L., and Henningson, D. S. (2013). Transition delay in a boundary layer flow using active control. J. Fluid Mech., 731(9):288-311.
- Sharma, A. S., Morrison, J. F., McKeon, B. J., Limebeer, D. J. N., Koberg, W. H., and Sherwin, S. J. (2011). Relaminarisation of $Re_{\tau} = 100$ channel flow with globally stabilising linear feedback control. *Physics of Fluids*, 23(12).
- Simon, B., Nemitz, T., Rohlfing, J., Fischer, F., Mayer, D., and Grundmann, S. (2015). Active flow control of laminar boundary layers for variable flow conditions. Intl J. Heat and Fluid Flow, 56:344–354.
- Snyder, S. D. and Hansen, C. H. (1994). The effect of transfer function estimation errors on the filtered-x LMS algorithm. IEEE Transactions on Signal Proceeding 42(4):950–953.

Noise-amplifier vs. oscillator

Boundary layer (amplifier)

Cylinder wake (oscillator)

Plant response

Noise response by the disturbance d

Plant response

Noise response by the disturbance \boldsymbol{d}

Plant response

Noise response by the disturbance \boldsymbol{d}

Model-reduction

Model-reduction

FLOW

Model-reduction

In this work, Eigensystem realisation algorithm (ERA) is used (Juang and Pappa, 1985).

▶ Equivalent to a Galerkin projection over BPOD modes (Ma et al., 2011).

$$c_g pprox rac{X_y - X_p}{ au_{py}}$$

$$c_g pprox rac{X_y - X_p}{ au_{py}}$$
 > $au_{uz} = rac{X_z - X_u}{c_g}$

$$c_g pprox rac{X_y - X_p}{ au_{py}}$$
 \blacktriangleright $au_{uz} = rac{X_z - X_u}{c_g} = rac{X_z - X_u}{X_y - X_p} au_{py}$

