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Disputationsakten:

1. Presentation av respondenten (ca 40 min).

2. Opponenten diskuterar och ställer fr̊agor p̊a avhandlingen.

3. Betygsnämnden ställer fr̊agor.

4. Öppet för allmänheten att ställa fr̊agor.

The procedure continues as follows:

1. The grading committee will deliberate behind locked doors and make a decision.

2. The decision will be announced by the committee at Mechanics department,
Osquars Backe 18, 6th floor.

3. Lunch will be served for all the involved people, including registered participating audience.
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1. The grading committee will deliberate behind locked doors and make a decision.

2. The decision will be announced by the committee at Mechanics department,
Osquars Backe 18, 6th floor.

3. Lunch will be served for all the involved people, including registered participating audience.
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Routes to turbulence
Morkovin et al. (1994)
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Figure 1 The paths from receptivity to transition.

emphasis is now placed on the understanding of the source of initial disturbances
than on the details of the later stages of transition.

1.1. Boundary-Layer Transition

The process of transition for boundary layers in external flows can be qualita-
tively described using Figure 1 and the following (albeit, oversimplified) scenario
based on one of the different “roadmaps” to turbulence developed over the years
(Morkovin et al. 1994).
Disturbances in the freestream, such as sound or vorticity, enter the boundary

layer as steady and/or unsteady fluctuations of the basic state. This part of the
process is called receptivity (Morkovin 1969), and it establishes the initial condi-
tions of disturbance amplitude, frequency, and phase for the breakdown of laminar
flow. In Figure 1, the initial amplitude increases schematically from left to right.
Initially these disturbances may be too small to measure, and they are observed
only after the onset of an instability. A number of different instabilities can occur
independently or together and the appearance of any particular type of instabil-
ity depends on Reynolds number, wall curvature, sweep, roughness, and initial
conditions. If Figure 1 is entered with weak disturbances and path A is followed,
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Routes to turbulence
Skin-friction fluctuations (grey-scale) and turbulent structures (green isosurfaces: λ2-criterion)
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Routes to turbulence
Skin-friction fluctuations (grey-scale) and turbulent structures (green isosurfaces: λ2-criterion)

Pseudo-spectral DNS/LES code (SIMSON) Chevalier et al. (2007)
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The control strategy
Attenuation of Tollmien-Schlichting (TS) instabilities
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The reactive control problem

typically very high dimensional, sometimes exceeding the
capacity of computer memory. For example, a high Reynolds
number three-dimensional unsteady flow will exhibit important
spatial structures that span many orders of magnitude in scale.
The Reynolds number can be estimated from the ratio between
the largest-scale structures to the smallest structures in the flow.
Thus, for a generic geometry, the state dimension will scale with
Re9=4, along with the memory cost [77–79]. The computational
cost will scale with Re3 because of the addition of multiple tempo-
ral scales, which generally scale with Re3=4. For a channel flow,
the scaling may even be worse with Reynolds number, as Re3 in
space and Re4 in space and time [80,81]. If a spatial discretization
is required with 1000 elements in each direction; then, a three-
dimensional simulation will contain 109 states for every flow vari-
able (velocity, pressure, etc.).

The highest-order fully resolved simulation to date is a wall-
bounded turbulent channel flow with Res¼ 5200 (Reynolds num-
ber based on the friction velocity), containing 2.4" 1011 states
[81]. This simulation is about 3.5 times larger than the previous
record holder [82], and it uses slightly over 3/4 of a million pro-
cessors in parallel. Even with Moore’s law, it will take nearly 40
yr for this type of computation to become a lightweight “laptop”
computation [83] and decades longer before being useful for

in-time control, since the parallel code takes 7 real seconds per
simulated time-step, as benchmarked in Ref. [81]. However, im-
pressive and useful for design and optimization, it is unclear that
this level of resolution is even necessary for many control
applications.

3.2.2 Modal Representation (Gray-Box). Instead of resolving
every detail of the flow field at all scales, it is often possible to
represent most of the relevant flow features in terms of a much
lower dimensional state. This state represents the amplitudes of
modes, or coherent structures that are likely to be found in the
flow of interest. Galerkin models based on modal expansions con-
stitute one class of gray-box models, which resolve the coherent
structures of the white-box models while accounting for small-
scale fluctuations with subscale closures.

The POD is one of the earliest and most successful modal rep-
resentations used in fluids [84,85], resulting in dominant spatially
coherent structures. POD benefits from a physical interpretation
where modes are ordered hierarchically in terms of the energy
content that they capture in the flow. There are numerous methods
to compute POD, and the snapshot POD [86] is efficient when a
limited number of well-resolved full-state measurements are
available from simulations or experiments. Snapshot POD is

Fig. 5 Schematic illustrating popular choices at the various levels of kinematic and dynamic
descriptions of the turbulent system P and choices for designing the controller K.

Applied Mechanics Reviews SEPTEMBER 2015, Vol. 67 / 050801-7
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Thus, for a generic geometry, the state dimension will scale with
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cost will scale with Re3 because of the addition of multiple tempo-
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[81]. This simulation is about 3.5 times larger than the previous
record holder [82], and it uses slightly over 3/4 of a million pro-
cessors in parallel. Even with Moore’s law, it will take nearly 40
yr for this type of computation to become a lightweight “laptop”
computation [83] and decades longer before being useful for

in-time control, since the parallel code takes 7 real seconds per
simulated time-step, as benchmarked in Ref. [81]. However, im-
pressive and useful for design and optimization, it is unclear that
this level of resolution is even necessary for many control
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every detail of the flow field at all scales, it is often possible to
represent most of the relevant flow features in terms of a much
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stitute one class of gray-box models, which resolve the coherent
structures of the white-box models while accounting for small-
scale fluctuations with subscale closures.
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Linear state-space model
2D linear perturbation of a 2D boundary-layer flow over a flat plate

X

Y

Ω

Linearised Navier-Stokes (LNS) eq.s around the baseflow U(x):

∂ u

∂ t
= − (U · ∇) u− (u · ∇) U−∇p +

1

Re
∇2u

+ bd (x) d(t) + bu(x) u(t)

0 = ∇ · u

y(t) =

∫
O

mega

z(t) =

∫
O

mega
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Linear state-space model
2D linear perturbation of a 2D boundary-layer flow over a flat plate

zuyd

X

Y

Ω

Linearised Navier-Stokes (LNS) eq.s around the baseflow U(x):

q̇(t) = A q(t) + Bd d(t) + Bu u(t)
∂

Re

y(t) = Cy q(t)

∫
O

mega

z(t) = Cz q(t)

∫
O

mega

∇ · u

where u(x, t) ≈ T(x) q(t).
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Linear Quadratic Gaussian (LQG) regulator

zuyd

q̇(t) = A q(t) + Bd d(t) + Bu u(t)

y(t) = Cy q(t)

z(t) = Cz q(t)

Observer: Kalman filter

min

[
lim

T→∞

1

T

∫ T

0

‖q(t)− q̂(t)‖2
2 dt

]
Under a stochastic forcing d(t) and n(t),

L = −YCH
y R−1

n ,

where Y is solution to the Riccati eq.:

AY + YAH − Y Cy
H R−1

n Cy Y + Bd Rd Bd
H = 0

Controller: LQR

min

[∫ ∞
0

(
wz z2(t) + wu u2(t)

)
dt

]
The control gain matrix is obtained as

K = −w−1
u BuX,

where X is solution to the Riccati eq.:

AH X + XA− X Bu w−1
u Bu

H X + Cz
H wz Cz = 0.
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Input/Output (I/O) representation

zuyd

Forced response z(t) by u(t) with q0 = 0

z(t) = Cz eAt q0 +

∫ t

0
Cz eAτBu u(t − τ)dτ

Nzu∑
j=0

Nyu∑
j=0

The 2× 2 impulse responses represent the complete I/O properties of the plant.
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Input/Output (I/O) representation

zuyd

Forced response y(n) and z(n) by d(n) and u(n) with q0 = 0

y(n) '
Nyd∑
j=0

Pyd (i) d(n − i)

Nyu∑
j=0

z(n) '
Nzd∑
j=0

Pzd (i) d(n − i) +

Nzu∑
j=0

Pzu(i) u(n − i)

Nzu∑
j=0

Finite Impulse Response (FIR) filter

The 2× 2 impulse responses represent the complete I/O properties of the plant.
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Filtered-X Least-Mean-Square (fxLMS) algorithm

uyd z

u(n) =
∑

i K(i) y(n − i)

Minimise the cost function
min
K(i)

[
z2(n)

]
via a steepest-descent algorithm

K(i |n + 1) = K(i |n)− µλ(i |n).

with λ(i |n) = ∂ z2

∂K(i)
= 2 z(n)

∑
j Pzu(j) y(n − j) = 2 z(n) f (n − i).
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Model-based vs. Adaptive control
Paper 1, Paper 2

d y u z

LQG

flow

˙̂q(t) = (A + LCy + BuK) q̂(t)− Ly(t)

u(t) = Kq̂(t)

I Based on a full model of the flow.

I Designed a-priori ⇒ static.

I Optimal performances.

I Model reduction usually needed.

d y u z

FXLMS

flow

u(n) =
∑

i

K(i |n) y(n − i)

I Only u → z needed.

I On-line minimisation ⇒ adaptive.

I Reliable y -measurement.

I Measurable cost function.
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Performance

and limitations

Control of 2D linear perturbation in a 2D boundary-layer flow over a flat plate (Paper 2)

±5% free-stream speed variations with respect to U∞
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Experimental setup
Open wind-tunnel @ TU Darmstadt (Paper 2)

Disturbances: 15 independent loudspeakers producing 2D disturbances

Sensors: 2 surface hot-wires ⇒ skin friction measurements

Actuator: 1 dielectric-barrier-discharge (DBD) plasma actuator L = 230 mm

2 rows of 30 microphones each monitor the bi-dimensionality of the disturbances.
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2 rows of 30 microphones each monitor the bi-dimensionality of the disturbances.
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Plasma actuator

I 2 copper electrodes separated by a dielectric material (Kapton tape)

I Plasma arch between the two electrodes

⇒ force on the flow

flow

V

I Driven by the compensator via u(t)→ V (t)

I Force in one direction only: offset + control signal
Small offset: wave-cancellation (Paper 2, Paper 3)

Large offset: wave-cancellation + BL stabilisation
(Kurz et al., 2013)
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Experimental performance
Performance indicator: Z =

σz,ctr
σz,unc

(Paper 2)
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LQG
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LQG: high dependency on the speed-shift

fxLMS: able to adapt to the modified condition
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Delayed-x LMS (dxLMS) algorithm
(Simon et al., 2015, Paper 3)

uy z

u(n) =
∑

i K(i |n) y(n − i)

secondary path
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Time-delay identification
Via signal correlation (Paper 3)

cg ≈
Xy − Xp

τpy
I

τuz =
Xz − Xu

cg

=
Xz − Xu

Xy − Xp
τpy

cg
X

Y

y u z
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Performace by dxLMS
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In-flight experiments
Motor-glider Grob G109 @ TU Darmstadt (Paper 3)
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In-flight experiments
Motor-glider Grob G109 @ TU Darmstadt (Paper 3)
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Outline

Control of boundary-layer instabilities
A linear model of the flow
Control algorithms
A self-tuning compensator

Transition delay
A 3D compensator
Performance and limitations
Energy budget

Conclusions and Outlook
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From 2D to 3D disturbances

flow (plant)

compensator

zuy
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From 2D to 3D disturbances

error sensors (z)

actuators (u)

reference sensors (y)

U
∞

U
∞

compensator
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A 3D compensator
Multi-Input Multi-Output (MIMO) (Fabbiane et al., 2015, Paper 5)

ul (n) =

∑
m

∑
i

Klm(i) ym

+l

(n − i)

∀l

u l

ym

K lm
flow

X

Z

Spanwise homogeneous compensator.
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MIMO fxLMS algorithm
(Fabbiane et al., 2015, Paper 5)

d zuy

compensator

Minimise a measurable cost function

min
Km

(∑
l

z2
l (n)

)

via a steepest-descent algorithm:

Km(i |n + 1) = Km(i |n)− µλm(i |n)

where λm(i |n) = ∂
∂Km(i)

(∑
l z2

l (n)
)

= 2
∑

l zl (n)
∑

r

∑
j Pzu,r (j) yr+m+l (n − j − i).
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Transition delay
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The non-linear challenge
Wall shear-stress spectra at X = 500
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The non-linear challenge
Compensator performance
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Energy budget
Saved power (Ps = U∞ ∆D)

vs. control power (Pc , Kriegseis et al., 2011, 2013)
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Energy budget
Saved power (Ps = U∞ ∆D) vs. control power (Pc , Kriegseis et al., 2011, 2013)

0.0

1.0

2.0

3.0

A
(4

00
) 

[%
] DNS

linear

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

A(100) [%]

10 -1

10 0

10 1

10 2

10 3

P
ow

er saved power
plasma actuator
ideal actuator

N. Fabbiane: Transition delay in boundary-layer flows via reactive control – 26 of 30



Energy budget
Saved power (Ps = U∞ ∆D) vs. control power (Pc , Kriegseis et al., 2011, 2013)

0.0

1.0

2.0

3.0

A
(4

00
) 

[%
] DNS

linear

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

A(100) [%]

10 -3

10 -2

10 -1

10 0

10 1

10 2

10 3

P
ow

er
 g

ai
n:

 P
s
 / 

P
c

plasma actuator
ideal actuator

N. Fabbiane: Transition delay in boundary-layer flows via reactive control – 26 of 30



Energy budget
Saved power (Ps = U∞ ∆D) vs. control power (Pc , Kriegseis et al., 2011, 2013)

0.0

1.0

2.0

3.0
A

(4
00

) 
[%

] DNS
linear

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

A(100) [%]

10 -3

10 -2

10 -1

10 0

10 1

10 2

10 3

P
ow

er
 g

ai
n:

 P
s
 / 

P
c

plasma actuator
ideal actuator

N. Fabbiane: Transition delay in boundary-layer flows via reactive control – 26 of 30



Outline

Control of boundary-layer instabilities
A linear model of the flow
Control algorithms
A self-tuning compensator

Transition delay
A 3D compensator
Performance and limitations
Energy budget

Conclusions and Outlook
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Conclusions

I Model-based control may present robustness issues:
I robustness can be recovered via adaptive algorithms.

I Transition is effectively and efficiently delayed.

I In-flight experiments by using plasma actuators.
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Outlook

Disturbance: control of different disturbances than TS waves.

Actuator: improve energy efficiency.

Algorithm: overcome the limitation given by non-linearities.
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Public defense:

1. Presentation by the respondent (ca 40 min).

2. The opponent discusses the thesis with the respondent.

3. The members of the grading committee discuss the thesis with the respondent.

4. The audience is allowed and invited to ask questions.

The procedure continues as follows:

1. The grading committee will deliberate behind locked doors and make a decision.

2. The decision will be announced by the committee at Mechanics department,
Osquars Backe 18, 6th floor.

3. Lunch will be served for all the involved people, including registered participating audience.
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Noise-amplifier vs. oscillator

Boundary layer (amplifier) Cylinder wake (oscillator)
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Plant response
Noise response by the disturbance d

pldt
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In this work, Eigensystem realisation algorithm (ERA) is used (Juang and Pappa, 1985).

I Equivalent to a Galerkin projection over BPOD modes (Ma et al., 2011).
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Stability limit for fxLMS algorithm
Snyder and Hansen (1994)

uy z

u(n) =
∑

i K(i |n) y(n − i)
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Time-delay identification
Via signal correlation (Simon et al., 2015, Paper 3)

cg
X

Y

y u z

N. Fabbiane: Transition delay in boundary-layer flows via reactive control – 30 of 30



Time-delay identification
Via signal correlation (Simon et al., 2015, Paper 3)

y

cg

p

X

Y

u z

N. Fabbiane: Transition delay in boundary-layer flows via reactive control – 30 of 30



Time-delay identification
Via signal correlation (Simon et al., 2015, Paper 3)

y

cg

p

X

Y

u z

0 200 400 600
=

-1

0

1

R
py

(=
)/

R
yy

(0
)

N. Fabbiane: Transition delay in boundary-layer flows via reactive control – 30 of 30



Time-delay identification
Via signal correlation (Simon et al., 2015, Paper 3)

y

cg

p

X

Y

u z

0 200 400 600
=

-1

0

1

R
py

(=
)/

R
yy

(0
)

N. Fabbiane: Transition delay in boundary-layer flows via reactive control – 30 of 30



Time-delay identification
Via signal correlation (Simon et al., 2015, Paper 3)

y

cg

p

X

Y

u z

0 200 400 600
=

-1

0

1

R
py

(=
)/

R
yy

(0
)

N. Fabbiane: Transition delay in boundary-layer flows via reactive control – 30 of 30



Time-delay identification
Via signal correlation (Simon et al., 2015, Paper 3)
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