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Transition delay in boundary-layer flows
via reactive control

Nicolò Fabbiane

Linné FLOW Centre, KTH Mechanics, Royal Institute of Technology
SE-100 44 Stockholm, Sweden

Abstract
Transition delay in boundary-layer flows is achieved via reactive control of flow
instabilities, i.e. Tollmien-Schlichting (TS) waves. Adaptive and model-based
control techniques are investigated by means of direct numerical simulations
(DNS) and experiments. The action of actuators localised in the wall region is
prescribed based on localised measurement of the disturbance field; in particular,
plasma actuators and surface hot-wire sensors are considered.

Performances and limitations of this control approach are evaluated both
for two-dimensional (2D) and three-dimensional (3D) disturbance scenarios.
The focus is on the robustness properties of the investigated control techniques;
it is highlighted that static model-based control, such as the linear-quadratic-
Gaussian (LQG) regulator, is very sensitive to model-inaccuracies. The reason
for this behaviour is found in the feed-forward nature of the adopted sen-
sor/actuator scheme; hence, a second, downstream sensor is introduced and
actively used to recover robustness via an adaptive filtered-x least-mean-squares
(fxLMS) algorithm.

Furthermore, the model of the flow required by the control algorithm is
reduced to a time delay. This technique, called delayed-x least-mean-squares
(dxLMS) algorithm, allows taking a step towards a self-tuning controller; by
introducing a third sensor it is possible to compute on-line the suitable time-delay
model with no previous knowledge of the controlled system. This self-tuning
approach is successfully tested by in-flight experiments on a motor-glider.

Lastly, the transition delay capabilities of the investigated control con-
figuration are confirmed in a complex disturbance environment. The flow is
perturbed with random localised disturbances inside the boundary layer and
the laminar-to-turbulence transition is delayed via a multi-input-multi-output
(MIMO) version of the fxLMS algorithm. A positive theoretical net-energy-
saving is observed for disturbance amplitudes up to 2% of the free-stream
velocity at the actuation location, reaching values around 1000 times the input
power for the lower disturbance amplitudes that have been investigated.

Key words: flow control, drag reduction, net energy saving, adaptive control,
model-based control, optimal control, flat-plate boundary layer, laminar-to-
turbulent transition, plasma actuator, direct numerical simulation, in-flight
experiments.
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Fördröjning av laminärt-turbulent omslag
i gränsskiktströmning genom reaktiv kontroll

Nicolò Fabbiane

Linné FLOW Centre, KTH Mekanik, Kungliga Tekniska Högskolan
SE-100 44 Stockholm, Sverige

Sammanfattning
I den här avhandlingen har reglertekniska metoder tillämpats för att försena
omslaget fr̊an ett laminärt till ett turbulent gränsskikt genom att dämpa
tillväxten av sm̊a instabiliteter, s̊a kallade Tollmien-Schlichting v̊agor. Adaptiva
och modellbaserade metoder för reglering av strömning har undersökts med
hjälp av numeriska beräkningar av Navier-Stokes ekvationer, vindtunnelex-
periment och även genom direkt tillämpning p̊a flygplan. Plasmaaktuatorer
och varmtr̊adsgivare vidhäftade p̊a ytan av plattan eller vingen har använts i
experimenten och modellerats i beräkningarna.

Prestanda och begränsningar av den valda kontrollstrategin har utvärderats
för b̊ade tv̊adimensionella och tredimensionella gränsskiktsinstabiliteter. Fo-
kus har varit p̊a metodernas robusthet, där vi visar att statiska metoder
som linjär-kvadratiska regulatorer (LQG) är mycket känsliga för avvikelser
fr̊an den nominella modellen. Detta beror främst p̊a att regulatorer agerar i
förkompenseringsläge (“feed-foward”) p̊a grund av strömningens karaktär och
placeringen av givare och aktuatorer. För att minska känsligheten mot avvikelser
och därmed öka robustheten har en givare införts nedströms och en adaptiv
fxLMS algoritm (filtered-x least-mean-squares) har tillämpats.

Vidare har modelleringen av fxLMS-algoritmen förenklats genom att ersätta
överföringsfunktionen mellan aktuatorer och givare med en lämplig tidsfördröjning.
Denna metod som kallas för dxLMS (delayed-x least-mean-squares) kräver att
ytterligare en givare införs l̊angt uppströms för att kunna uppskatta hastig-
heten p̊a de propagerande instabilitetsv̊agorna. Denna teknik har tillämpats
framg̊angsrikt för reglering av gränsskiktet p̊a vingen av ett segelflygplan.

Slutligen har de reglertekniska metoderna testas för komplexa slumpmässiga
tredimensionella störningar som genererats uppströms lokalt i gränsskiktet. Vi
visar att en signifikant försening av laminärt-turbulentomslag äger rum med
hjälp av en fxLMS algoritm. En analys av energibudgeten visar att för ideala
aktuatorer och givare kan den sparade energi̊atg̊angen p̊a grund av minskad
väggfriktion vara upp till 1000 g̊anger större än den energi som använts för
reglering.

Nyckelord: strömningsstyrning, friktionsreduktion, netto energibesparing, ad-
aptiv styrning, modellbaserad styrning, optimal kontroll, gränsskikt öve en plan
platta, laminärt till turbulent omslag, plasma aktuator, DNS, flyg prov.
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Preface

This thesis deals with transition delay in boundary-layer flows by reactive-
control techniques. A brief introduction on the basic concepts and methods is
presented in the first part. The second part contains five articles. The papers
are adjusted to comply with the present thesis format for consistency, but their
contents have not been altered as compared with their original counterparts.

Paper 1. N. Fabbiane, O. Semeraro, S. Bagheri & D.S. Henningson,
2014. Adaptive and model-based control theory applied to convectively-unstable
flows. Appl. Mech. Rev. 66 (6), 060801.

Paper 2. N. Fabbiane, B. Simon, F. Fischer, S. Grundmann, S. Bagheri
& D.S. Henningson, 2015. On the role of adaptivity for robust laminar-flow
control. J. Fluid Mech. 767, R1.

Paper 3. B. Simon, N. Fabbiane, T. Nemitz, S. Bagheri, D.S. Henning-
son & S. Grundmann. In-flight active-wave-cancelation via delayed-x-LMS
control algorithm in a laminar boundary layer. Under review for publication in
Exp. Fluids.

Paper 4. R. Dadfar, N. Fabbiane, S. Bagheri & D.S. Henningson, 2014.
Centralised versus decentralised active control of boundary layer instabilities.
Flow Turb. Comb. 93 (4), 537–553.

Paper 5. N. Fabbiane, S. Bagheri & D.S. Henningson. Energy effi-
ciency and performance limitations of linear adaptive control for transition
delay. Submitted to J. Fluid Mech.

May 2016, Stockholm
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Part I

Overview and summary





Chapter 1

Introduction

One of the main goals pursued by fluid dynamics in the last century is the
reduction of aerodynamic drag. This became a pressing objective with the
advent of the aeroplane and air transportation: the need to fly faster, cheaper
and, in recent times, greener motivated – and still motivates – the research on
this topic for many years. The problem has been approached from very different
directions: from a better wing design to reduce the drag induced by the lift1, to
a better airfoil design to keep the boundary-layer laminar as long as possible.

When a body moves through a fluid, the relative velocity between body and
fluid is zero at the body surface, while far from the surface – in the free-stream
– the velocity is dictated by the body geometry and motion. The link between
these two regions is called boundary-layer. If the body moves with low speed
in still air, and its motion is regular, the boundary layer that is generated is
regular as well; this condition is called laminar flow. Since the equations that
govern the flow are non-linear and very sensitive to perturbations, the flow may
abruptly switch to a chaotic behaviour – the turbulent regime – even when
small disturbances occur. The turbulent regime of the boundary layer shows a
higher friction drag with respect to the laminar state, hence the effort to keep
the boundary-layer laminar as long as possible.

The present work moves in the reactive control framework: the laminar-
to-turbulence transition is prevented by removing those disturbances from the
flow that would eventually lead to transition. The disturbances are cancelled
by actuators that base their action on measurements of the disturbance in the
flow.

1.1. A route to turbulence

There are several paths that lead to the turbulent regime in boundary layer flows,
depending on the disturbance level in the free-stream (Saric et al. 2002). Weak
disturbances follow a path that can be initially described by linearised equation
of the flow, the Orr-Sommerfeld-Squire (OSS) equations. Linear flow instabilities
– Tollmien-Schlichting (TS) waves – are triggered by free-stream disturbances;
their initial growth, even if exponential, is weak. However, as the perturbation

1The lift is the component of the aerodynamic force perpendicular to the aeroplane velocity

that usually balances the weight of the aircraft.

1
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Figure 1.1: TS-wave driven transition. The skin-friction spectra are reported
for different streamwise locations; β and ω are the spanwise wave-number and
the temporal angular frequency, respectively. The flow is seeded close to the
wall at ReX ≈ 0.4× 106 with uniform random noise. Red and blue isosourfaces
indicate positive and negative values of u′ = ±4× 10−3 U , i.e. the streamwise
perturbation velocity with respect to the laminar solution.
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amplitude crosses a critical level, non-linear interactions arise. At this point, the
disturbances rapidly grow and transition to turbulence occurs (Kachanov 1994).
By increasing the disturbance amplitude, the linear asymptotic behaviour of the
perturbation is not able to describe the process any more and the short-time
behaviour becomes more and more important. In fact, when a perturbation
is introduced in the flow, it can experience a large transient growth, even if
the flow is stable, i.e. no linear instability occurs. This is possible because
OSS-modes are not mutually orthogonal and their combination may result in an
amplification of the disturbance (Henningson et al. 1993). For strong free-stream
disturbances the linear mechanism may be by-passed. In this case, the transition
to turbulence can not be predicted via the linear theory. Non-linear dynamics
theory has recently helped to have a better insight into the transition process in
the presence of large amplitude disturbances (Duguet et al. 2012); the transition
to turbulence appears to occur via specific structures that cluster in limited
regions of the phase space, called edge states. The recent work by Kreilos et al.
(2015) is an example of how transition can be predicted by dynamical-system
analysis applied to boundary layers.

This work focuses on the weak disturbance scenario, where the perturbation
can be initially described by the linearised Navier-Stokes (LNS) equations. A
canonical boundary layer case is investigated (Blasius 1908). Consider a uniform
and constant flow with velocity U that encounters a semi-infinite flat plate
aligned with the flow: since the free-stream flow is constant in time, a two-
dimensional (2D), steady, laminar boundary-layer develops starting from the tip
of the plate – the leading-edge – and extends all along the plate if the flow is not
perturbed. The flow is linearly stable up to ReX,c = UX/ν ≈ 91190, where X
is the streamwise distance from the leading-edge and ν is the kinematic viscosity
(Schmid & Henningson 2001); downstream of this position, unstable solutions
to the OS-equations always occur. This means that if the flow is perturbed at
ReX < ReX,c a small perturbation will decay while being convected and it will
be amplified by the flow only when it reaches the critical position ReX,c; only
then, the perturbation will start to grow exponentially and eventually evolve
into turbulence.

Figure 1.1 illustrates the transition scenario described in the previous
paragraph. The receptivity process of the free-stream disturbances is by-passed
and the flow is directly perturbed inside the boundary layer region. The
flow is seeded with uniform white-noise at ReX ≈ 400 000, see Figure 1.1a.
Immediately downstream this point (Figure 1.1b), most of the seeded spatial
and temporal frequencies decay and only few of them are amplified by the flow.
The latter are organised in a very specific part of the spectrum: close to the zero
spanwise wave-number and frequency f = ω/2π = 0.015U/δ∗s , where δ∗s is the
displacement thickness at the seeding point. The non-linear interaction between
wave-packets generates the the second peak close to the zero-frequency axis in
Figure 1.1c. Farther downstream these structures reach the same magnitude
as the TS-wave that generated them (Figure 1.1d). They are responsible for
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the streaky structures visible in the physical flow. These structures interact
with the TS-waves (Figure 1.1e), break down, and eventually lead to a fully
turbulent flow (Figure 1.1f).

1.2. The control problem

By preventing or obstructing the transition process described in the previous
section, transition-delay and, thus, drag-reduction can be achieved. TS-waves
are present in a limited frequency band in space and time, unlike the structures
that define the turbulent boundary-layer. It is hence more convenient to act on
TS-waves. This approach has two main advantages: (i) the temporal frequencies
that describe the perturbation behaviour are low and bounded and (ii) the energy
requirement to cancel the disturbance is low because of the small amplitude of
the perturbation. In view of a small power consumption to perform the control
action, a large benefit is achieved in terms of transition delay and consequent
drag reduction; in some sense, the non-linear breakdown to turbulence is used
to design a highly energy-efficient control scheme.

Wall-mounted sensors are used to detect the upcoming disturbances. Once
detected, the perturbation is cancelled via a localised forcing provided by an
actuator. The choice and position of these devices is the zeroth-step in the
control design process, as it determines how the control algorithm will interact
with the system and deeply influences the design of the control itself (Belson
et al. 2013). In this work, the reference sensor y – i.e. the sensor responsible
for detecting the disturbance – is positioned upstream of the actuator u that
performs the control action, Figure 1.2. The perturbation is introduced in the
flow by the disturbance source d. The interaction between the perturbation and
the wave generated by the actuator leads to an attenuation of the disturbance
amplitude, which is detected by the error sensor z.

The compensator is the core of the control action, as it is the system
responsible for computing the actuator forcing, based on the measurement
signals. It can be designed via very different strategies; a unique classification
is always limiting and for sure challenging. In this work, the classification is
approached according to Wiener (1961), recently reprised and extended by the
insightful review by Brunton & Noack (2015). Every control strategy is based
on a model of the system that it aims to control. The model can be given
a-priori based on the Navier-Stokes (NS) equations; this approach is classified as
white-box. In fluid-dynamics, this is usually coupled with optimal control theory
(Bewley & Liu 1998). The similarities with the canonical stability theory enabled
these techniques to rapidly spread in the numerical community (e.g. Barbagallo
et al. 2009; Bagheri & Henningson 2011; Sharma et al. 2011; Semeraro et al.
2013b). A different example of white-box control can be found in the numerical
and experimental work by Li & Gaster (2006), where opposition control is
performed based on LNS equations. White-box modelling compares with the
black-box approach, where the model is identified starting from experimental
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d zuy

flow (plant)

compensator

Figure 1.2: Control scheme. A 2D zero-pressure-gradient boundary layer flow
is considered. The disturbance source d generates the perturbation that is
attenuated downstream by the actuator u. The actuator action is based on on-
line measurements by the reference sensor y and, for adaptive-control strategies,
the error sensor z.

data. An example can be found in the work by Juillet et al. (2014), where model-
identification and optimal control are used to control natural perturbations in a
channel flow.

This classification holds also for the control technique. Most of the inves-
tigations along the black-box control approach are led by the experimental
community; adaptive control has been largely investigated via experiments
starting from Sturzebecher & Nitsche (2003) and later by many others (e.g.
Kurz et al. 2013; Kotsonis et al. 2015). Between the two extremes, several
intermediate grey-box approaches are possible, as discussed later in the outlook
section of the thesis (§4).

Thesis structure. This work focuses on the comparison between the white-box
and the black-box approaches. The two design philosophies are analysed and
compared; in particular, the model-based linear-quadratic-Gaussian (LQG) reg-
ulator (§2.2) and the adaptive filtered-x least-mean-squares (fxLMS) algorithm
(§2.3) are investigated.Their performance and limitations in attenuating 2D TS
wave-packets are investigated in §2.4; the robustness properties of the adaptive
approach are used to design a self-tuning compensator (§2.5), where no previous
knowledge of the flow is needed to perform the control action. Lastly, a 3D
disturbance and control scenario is introduced (§3.1) and the transition-delay
performance is investigated. An energy budget is performed: the energy saved
by the drag-reduction due to transition-delay is compared to the energy required
to perform the control action (§3.3).



Chapter 2

Control of boundary-layer instabilities

In this chapter model-based and adaptive control are presented and tested for
two-dimensional (2D) disturbances in a laminar zero-pressure-gradient boundary
layer flow. Performance and robustness of the two design approaches are
investigated. Moreover, a self-tuning compensator is introduced in the last
section of the current chapter.

The plant is the system that we aim to control. In this chapter, we focus
on a 2D zero-pressure-gradient boundary layer flow. In the first instance, 2D
disturbances are considered. This permits us to reduce the number of sensors
in the flow and to introduce the control techniques that are discussed in this
work in a simpler way. A three-dimensional (3D) disturbance scenario will be
discussed later in §3, where the transition-delay capabilities of the proposed
control set-up are discussed.

A model that describes the plant is needed. The incompressible Navier-
Stokes equations govern this type of flow:

∂u

∂t
+ (u · ∇) u = −∇p+

1

Re
∇2u + λu, (2.1)

∇ · u = 0, (2.2)

u(x, t)|∂Ω = ub(x), (2.3)

u(x, 0) = u0(x). (2.4)

Velocity and pressure at position x = (X,Y ) and time t are represented by
u(x, t) and p(x, t) respectively. The Reynolds number is defined as Re =
U∞δ

∗
0/ν, where U∞ is the free-stream velocity, ν the viscosity and δ∗0 the

displacement thickness in the beginning of the domain. On the boundaries ∂Ω
of the computational domain Ω (see Figure 2.1), the following conditions are
imposed (2.3): no-slip condition at the wall and asymptotic velocity in the upper
boundary. A fringe technique is used to simulate inflow and outflow condition
in the beginning and at the end of the domain (Nordström et al. 1999). The
flow is considered periodic along the streamwise direction and a volume forcing
λ(x)u(x, t) in the last part of the domain enforces periodicity (grey region in
Figure 2.1). More details can be found in Chevalier et al. (2007), where the
pseudo-spectral DNS code used in this work is described.

6
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Figure 2.1: Computational domain Ω. The gray area depicts the region of
the fringe forcing used to enforce the artificial periodicity in the streamwise
direction.

2.1. A linear model of the flow

As we are interested in the dynamics of small disturbances, the following
decomposition is introduced:

u(x, t) = U(x) + εu′(x, t), (2.5)

p(x, t) = P (x) + ε p′(x, t). (2.6)

where ε� 1, {U(x), P (x)} is the steady solution of the Navier-Stokes equations
and {u′(x), p′(x)} the perturbation. Applying this decomposition into (2.1–2.4)
and neglecting the terms of order ε2 and higher, the following set of linear
equation is obtained:

∂u′

∂t
= − (U · ∇) u′ − (u′ · ∇) U−∇p′ + 1

Re
∇2u′ + λu′ + f , (2.7)

0 = ∇ · u′, (2.8)

u′|∂Ω = 0, (2.9)

u′(0) = 0. (2.10)

The term f(x, t) is used to model the forcing on the flow; spatial and time
dependencies are decoupled as follows:

f(x, t) = bd(x) d(t) + bu(x)u(t). (2.11)

Sensors are placed in the flow in order to measure the perturbation field. The
measures y(t) and z(t) are defined by:

y(t) =

∫
Ω

cy(x) · u′(x, t) dΩ + n(t), (2.12)

z(t) =

∫
Ω

cz(x) · u′(x, t) dΩ, (2.13)

where the kernels cy(x) and cz(x) define the sensors.

In this study, a Fourier-Chebishev expansion over NX ×NY = 768× 101
terms is considered. The computational domain extends over 30δ∗0 in the
wall normal direction and 1000δ∗0 in the streamwise direction. The fringe
region occupies the last 200δ∗0 of the domain along the streamwise direction.
The displacement thickness based Reynolds number is set to Re = 1000 at
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the beginning of the domain and a time step ∆t = 0.4 is used for the time
integration. The disturbance sources are modelled as synthetic vortices (Bagheri
et al. 2009), while the actuators are modelled as plasma actuators according to
the experimental results by Kriegseis et al. (2013). The actuator is positioned at
Xu = 400. The sensors mimics surface hot-wires by measuring the fluctuation
in the shear stress given by the disturbance; the reference sensor y is placed at
Xy = 300 and the error sensor z at Xz = 500.

Via a Galerkin projection, it is possible to transform the partial differential
equation (PDE) (2.7) into an ordinary differential equation (ODE) in time
(Quarteroni 2009). The Linear Time-Invariant (LTI) system that results reads:

q̇(t) = A q(t) + Bd d(t) + Bu u(t), (2.14)

y(t) = Cy q(t) + n(t), (2.15)

z(t) = Cz q(t), (2.16)

where q ∈ CN×1 is the state vector, A ∈ CN×N is the linearised Navier-
Stokes operator and N = NXNY is the number of degrees of freedom. The
matrices Bd,Bu ∈ CN×1 allow the two inputs d(t) and u(t) to force the system.
The output matrices Cy,Cz ∈ C1×N filter the state q(t) in order to provide
the output signals y(t) and z(t). The stochastic signal n(t) represents the
measurement noise that affects the output and it is usually modelled by white-
noise.

Figure 2.2 reports the impulse responses for the flow case being described.
The left column depicts the response of the flow to an impulse of the disturbance
source: a wave packet is generated and travels downstream while growing
(Figure 2.2a). The friction trace of the wave-packet is recorded by the reference
sensor y (Figure 2.2c) and later by the error sensor z (Figure 2.2e).This behaviour
is typical of convectively unstable flows, also known as noise amplifiers. This
system is asymptotically stable from an input/output point of view but the
perturbation grows exponentially while travelling downstream.

The convective nature of the system also leads to an important consideration
about the control setup. Figure 2.2b reports the impulse response for the
control input u: the wave-packet travels downstream of the actuator without
being detected by the reference sensor (Figure 2.2d). Therefore, when the
reference sensor y is positioned upstream the actuator, the setup results in
a feed-forward control scheme, as in the current setup. Different relative
positions of the actuator have been investigated by Belson et al. (2013); the
feedback configuration – i.e. reference sensor downstream of the actuator –
shows better robustness but lower performance with respect to the current
feed-forward configuration. However, the feedback configuration requires the
reference sensor to be very close to the actuator. Since plasma actuators are
considered, this configuration is unrealistic, because of the eventual electrical
interference between the sensor and the actuator.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.2: The colored areas report the friction footprint of the wavepacket
generated by the disturbance source (a) and the plasma-actuator (b); red
indicates positive fluctuations, while blue negative. The black lines in (c-f)
report the impulse response from each input to each output for the considered
flow-case. The green dashed lines report the impulse response of the reduced
order model.

2.1.1. Finite Impulse Response (FIR) representation

Some control techniques relax the knowledge of the plant to its input/output
(I/O) relations only. The forced response of an LTI system to a generic input
signal u(t) can be written as:

z(t) = Cze
At q0 +

∫ t

0

Cze
AτBu u(t− τ) dτ. (2.17)

If the system is stable, for large enough t, the first term goes to zero and the
system response depends only on the forcing u(t):

z(t) =

∫ t

0

Cze
AtBu u(t− τ)dτ =

∫ t

0

Pzu(τ)u(t− τ) dτ (2.18)



10 2. Control of boundary-layer instabilities

where Pzu is the convolution kernel. The kernel is able to describe completely
the I/O relation between the input u(t) and the output z(t).

The time-discrete counterpart of (2.18) is of particular interest when it
comes to control techniques. The time-discrete output signal z(n) = z(n∆t)
is computed as a linear combination of the time-discrete history of the input
signal u(n) = u(n∆t):

z(n) =
n∑
j=0

Pzu(i)u(n− i). (2.19)

Since the system is stable, the convolution kernel goes to zero as the shifting
index i grows: this allows us to truncate the sum at an appropriate time Nzu∆t.
Hence, the signal z(n) can be obtained by the finite sum:

z(n) ≈
Nzu∑
j=0

Pzu(i)u(n− i). (2.20)

The expression (2.20) is called Finite Impulse Response (FIR) filter.

The I/O relation u → z can thus be described by a finite number of
coefficients Pzu(i). These coefficients can be computed starting from a linear
model of the flow, as the one provided by (2.14–2.16), or identified based on
experimental data by dedicated algorithms, e.g. least-mean-squares (LMS). For
more information, we refer to Paper 1.

2.1.2. Reduced Order Model (ROM)

Other control techniques require the direct knowledge of the system matrices
A, B and C. An example is the linear quadratic Gaussian (LQG) regulator
that will be introduced in §2.2.1: this control technique requires the solution
of a Riccati equation, whose computational cost is proportional to N3, where
N = NXNY is the number of degrees of freedom of the system describing the
plant (2.14). Due to the high computational cost, handling large systems may
lead to a very expensive design process and, eventually, to the impossibility
of computing the control gains. Hence, system-reduction techniques applied
to the Navier-Stokes linear operator are widely used to obtain smaller – and
more manageable – systems that can reproduce the I/O behaviour of the flow
(Rowley 2005; Kim & Bewley 2007; Bagheri et al. 2009c; Ilak et al. 2010). The
reduced order system reads:

q̇r(t) = Ar qr(t) + Br,d d(t) + Br,u u(t), (2.21)

y(t) = Cr,y qr(t) + n(t), (2.22)

z(t) = Cr,z qr(t), (2.23)

where Ar ∈ RNr×Nr is the ROM state matrix, qr(t) ∈ RNr×1 is the state vector,
Br,d,Br,u,C

T
r,y,C

T
r,z ∈ RNr×1 are the I/O matrices and Nr � N .

In this study, the Eigensystem Realization Algorithm (ERA) is used to
provide a reduced-order model (ROM) (Juang & Pappa 1985). This algorithm
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builds a realisation of an LTI system that mimics the I/O behaviour of the
original system starting from its impulse responses from each input to each
output, see Figure 2.2. This method is equivalent to a projection of the
full system {A,B,C} on the set of its Nr most energetic balanced proper-
orthogonal-decomposition (BPOD) modes (Moore 1981; Bagheri et al. 2009).
Note that also in this approach only the I/O behaviour of the system is known.
Since the transformation between the original system and the reduced order
one remains unknown, the original state q can not be reconstructed starting
from the reduced state qr. From a control point of view this is not necessary:
the control algorithm needs only a limited knowledge of the system and, in
particular, only a reliable model of the transfer functions between its inputs
and outputs.

The model-reduction procedure implies information loss, that eventually
leads to an error: this error can be estimated a priori and related to the size of
the ROM (Moore 1981). This estimation can be used to choose the ROM size in
order to bound the error by a given tolerance: for the current problem, the ROM
size Nr = 112 � N is chosen in order to limit the relative model-reduction
error below 10−7.

2.2. Model based control

The compensator is the system that interacts with the plant via its control
inputs and outputs in order to pilot it at the desired state. In this brief review,
we will focus on a linear compensator, i.e. a compensator that can be represented
by a linear dynamical system. If the system that describes the compensator is
time-invariant, the compensator is called static: the compensator is designed
a-priori, usually based on a model of the system, and then it is connected to
the plant. If the response of the compensator, instead, can be modified on-line,
the compensator is called adaptive.

This section investigates compensators that are based on a model of the
plant; the model can be either numerical (Bewley & Liu 1998; Bagheri &
Henningson 2011; Semeraro et al. 2013, e.g.) or experimentally identified
(Juillet et al. 2014) and it is used to compute the response of the actuator.
Typical examples are Model Predictive Control (MPC) and the linear Quadratic
Gaussian (LQG) regulator, discussed hereafter.

2.2.1. Linear Quadratic Gaussian (LQG) regulator

The LQG regulator design is based on a complete model of the plant, Figure 2.3.
It results in an LTI system that mimics the plant in order to compute the control
signal u(t), given the measurement signal y(t) as an input. The compensator
reads:

˙̂qr(t) = (Ar + LCr,y) q̂r(t) + Br,u u(t)− Ly(t), (2.24)

u(t) = K q̂r(t), (2.25)
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d y u z

LQG

flow

(a) Static

d y u z

fxLMS

flow

(b) Adaptive

Figure 2.3: Compensator schemes for static (LQG) and adaptive (fxLMS)
strategies. An adaptive scheme may also use the error signal z(t) to adapt to
the current flow conditions. The grey lines indicate the I/O relations required
to be modelled by each strategy.

where q̂r(t) ∈ RNr×1 is the compensator state vector. The subscript r refers
to the Reduced Order Model (ROM) of the flow discussed in §2.1.2. The
compensator is composed of two parts: the observer (2.24) and the controller
(2.25). The former filters the measurement signal y(t) by the estimation gain
matrix L ∈ RNr×1 and reconstructs an estimation q̂r(t) of the state of the
controlled system qr(t). The latter computes the control signal filtering the
estimated state q̂r(t) and the control-gain matrix K ∈ R1×Nr .

2.2.1.1. Observer: Kalman filter

The observer is designed to minimise the covariance of the difference between
the plant state qr and the estimated state q̂ when the system is excited by an
unknown white-noise signal d(t). To do this, the observer uses the measurement
y(t) affected by an error n(t), also modelled as white noise, and the control
signal u(t). The minimization procedure leads to:

L = −YCH
r,yR

−1
n , (2.26)

where Y ∈ RNr×Nr is the solution of the following Riccati equation:

ArY + YAH
r −Y CH

r,yR
−1
n Cr,y Y + Br,dRdB

H
r,d = 0. (2.27)

The parameters Rd and Rn are the expected variances of the disturbance signal
d(t) and measurement noise signal n(t).

2.2.1.2. Controller: Linear Quadratic Regulator (LQR)

LQR design relies on the knowledge of the state qr, or its estimation q̂r. The
procedure is based on the minimization of a quadratic cost-function N based
on the error-sensor measurements z(t) and on the control signal u(t):

N =

∫ ∞
0

z(t)wz z(t) + u(t)wu u(t) dt. (2.28)
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The ratio between the control-strength parameter wu and the performance
parameter wz allows the design of a controller capable of attenuating the
disturbances in the system, while limiting the control effort. The minimisation
procedure leads to the control law in (2.25) where the control-gain matrix is
defined as:

K = −w−1
u BH

r,u X. (2.29)

The matrix X ∈ RNr×Nr is the solution of the Riccati equation:

AH
r X + XAr −X Br,uw

−1
u BH

r,u X + CH
r,zwzCr,z = 0. (2.30)

Note that the controller design is completely independent of the observer design
and vice-versa. This is commonly known as the separation principle (Glad &
Ljung 2000).

2.3. Adaptive control

In an adaptive control method the compensator adjusts on-line its response in
order to optimise its performance: the compensator adjustment is achieved by
monitoring its performance and, based on that, the correction is computed. A
typical example of this kind of compensator is the filtered-x least-mean-squares
(fxLMS) algorithm, investigated by Sturzebecher & Nitsche (2003) and Kurz
et al. (2013) to attenuate 2D disturbances in a boundary-layer flow.

2.3.1. Filtered-x Least-Mean-Squares (fxLMS) algorithm

The fxLMS algorithm relies on a minimisation procedure that is performed
on-line. This allows the algorithm to use the actual measurements from the
flow, giving this method the adaptive features that characterise it.

The compensator is a linear system. As seen in §2.1.1 for the plant, a linear
system can be represented both in state-space form (like the LQG regulator in
the previous section) or by a Finite Impulse Response (FIR) filter. This control
technique uses the latter representation and the control signal is given by:

u(n) =

NK∑
i=1

K(i) y(n− i) (2.31)

where u(n) = u(n∆t) and y(n) = y(n∆t) are the time-discrete representations
of the time-continuous signals u(t) and y(t) and ∆t is the sampling time step.
The NK coefficients K(i) constitute the kernel of the filter and they are related
to the impulse response of the compensator. These coefficients are updated at
each time step in order to satisfy the minimisation problem,

min
K(i)

z2(n), (2.32)

via a steepest-descend algorithm. The resulting updating law is:

K(i|n+ 1) = K(i|n) + µ z(n)

Nzu∑
j=1

Pzu(j) y(n− i− j). (2.33)
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Figure 2.4: TS amplitude Ae(X). The lines report the performances of the two
compensators at design condition. The shaded regions indicate the performance
variation when the asymptotic velocity is changed in a ±5% range with respect
to the design condition.

Note that the knowledge of the plant is limited to the time-discrete kernel Pzu(i)
that describes the I/O relation u → z. This transfer function is commonly
called secondary path (Sturzebecher & Nitsche 2003).

2.4. Controlled system

When the disturbance source is fed with uniform white-noise, it creates a
train of wave packets that travels downstream while growing in amplitude. A
time-averaged measure of the disturbance amplitude Ae is defined:

A2
e(X) =

∫ LY

0

〈(
u′

U

)2
〉
t

dY, (2.34)

where LY is the wall-normal size of the computational box. The solid line in
Figure 2.4 reports this quantity for the uncontrolled case; the amplitude of the
perturbation grows exponentially throughout the domain and is increased by a
factor of 25 at the end of the domain.

An LQG regulator is designed; the relative weight wu/wz for the LQR
controller is set to 0.1, as the disturbance-noise ratio Rn/Rd for the Kalman
filter. The dashed line in Figure 2.4 shows the disturbance amplitude for the
LQG controlled case: the perturbation is attenuated downstream of the actuator
and continues to decay downstream of the error sensor. Hence, the disturbance
is attenuated by a factor of 35 with respect to the uncontrolled case in the end
of the domain.

The adaptive fxLMS algorithm is capable of comparable performances, as
shown by the dot-dashed line in Figure 2.4. The disturbance amplitude is
effectively reduced downstream of the actuator but not completely cancelled as
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Figure 2.5: Control kernels K(i). LQG and fxLMS solutions to the control
problem are reported for different free-stream conditions.

in the LQG case. The wave-packets, in fact, start growing again downstream of
the error sensor, resulting in a lower attenuation at the end of the domain.

The main strength of the adaptive algorithm is revealed when the external
conditions are changed with respect to the design point. The coloured areas in
Figure 2.4 indicate the performance variation if the free-stream velocity varies
between 0.95U and 1.05U , where U refers to the design condition. The LQG
regulator loses almost all its performance, while the fxLMS performance is only
marginally effected by the change in the free-stream condition. The adaptive
algorithm acts on the control law in order to adjust to the changed condition and
to compensate for the modified phase-shift and amplification of the perturbation.
This can also be seen in the control kernels reported in Figure 2.5: the peak
position and magnitude is modified for different flow condition to maintain the
compensator performance. Further details about LQG and fxLMS sensitivity
to changes in the free-stream condition can be found in Paper 1 and Paper 2.

2.4.1. Wind-tunnel experiments

Wind-tunnel experiments are conducted to investigate the robustness of model-
based and adaptive control (Paper 2). The control of a zero-pressure-gradient
boundary-layer over a flat-plate is investigated in the open-loop wind tunnel
at TU Darmstadt. In the current setup, two-dimensional TS wave-packets
are generated by 16 wall-mounted loudspeakers and a DBD plasma actuator
is used to perform the control action. The control-sensors are flush-mounted
surface hot-wires. Additionally, a boundary-layer hot-wire probe is mounted on
a traverse system to measure the perturbation amplitude at different streamwise
locations.

An LQG compensator is designed based on DNS simulations matching
the experimental set-up and the measured performance matches the simulated
behaviour of the control. Figure 2.6 reports the control performance for a 200 Hz
TS-wave, i.e. a non-dimensional frequency F = 2πν/U2 f ≈ 100 (Schmid &
Henningson 2001): the amplitude is attenuated downstream of the control
region as predicted by the DNS simulation; Figure 2.6b-c shows the streamwise
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Figure 2.6: TS-wave amplitude for a disturbance frequency f = 200 Hz. Lines
and circles depict simulated and experimental data, respectively. (a) shows
the integral TS-wave amplitude Ae as a function of the streamwise position,
rispectively. (b) and (c) show the TS-wave shape at reference and error sensor
location.

perturbation velocity as a function of the wall-normal position. The reported
values are normalised by the free-stream velocity U∞ = 12 m/s. The TS-wave is
attenuated along all the wall-normal direction, and not only in the wall-region.
This confirms the choice of the surface hot-wires sensors for estimating the
performance of the actuator; in fact, a reduction of the perturbation amplitude
in the wall region corresponds to an attenuation of the perturbation also farther
away from the wall.

When the free-stream condition is changed, the LQG compensator shows
in the experiments the same robustness issues that are highlighted by the
simulation: the control rapidly loses performance as the free-stream velocity
differs from the design-condition. The adaptive fxLMS algorithm is implemented
to improve the robustness of the control strategy, showing the same properties
observed in simulations.

2.5. A self-tuning compensator

In the previous section, it was shown how the fxLMS algorithm is able to
compensate model inaccuracies and provide an effective control action. This
property can be used for two different purposes: (i) enhancing the robustness
of the control strategy §2.4, (ii) simplifying the model of the flow. An example
of the latter is the delayed-x least-mean-squares (dxLMS) algorithm, where the
secondary path Pzu is approximated by a time delay.

This is possible because of the convective nature of the TS-wave instability.
The wave-packet, in fact, travels with a specific group speed cg (Schmid &
Henningson 2001). Therefore, a third sensor p is introduced upstream of the
reference sensor y at Xp = 250 (Figure 2.7a); this sensor is used to evaluate
the group speed at the beginning of the control region via the correlation Rpy
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Figure 2.7: dxLMS control algorithm. A third sensor p is introduced in order
to estimate the wave-packet group speed via the correlation Rpy. The grey line
indicates the I/O relation required to be modelled by the control strategy, i.e.
the secondary path Pzu.

between the two measurement signals:

Rpy(τ) =
1

T

∫ +T/2

−T/2
p(t− τ) y(t) dt, (2.35)

where T is the signal length. The maximum of the envelope of the correlation
identifies the time τ̄py that it takes for the wave-packet to travel from the sensor
p to the sensor y (Figure 2.7b). Hence, an approximation of the group-speed is
computed as:

c̄g =
Xy −Xp

τ̄py
. (2.36)

where Xy and Xp are the streamwise position of phase and reference sensors.
The time delay to be used in the secondary-path modelling is given by:

τ̄uz =
Xz −Xu

c̄g
=
Xz −Xu

Xy −Xp
τ̄py. (2.37)

This estimation of the time-delay is based on the reasonable assumption that
the group speed is constant throughout the control region (Paper 3; Li & Gaster
2006). The resulting time-delay model of the secondary path is reported in
Figure 2.8a; It can be seen that the identified time-delay predictably falls in
the middle of the trace of the wave-packet generated by the actuator.

Better insight into this approximation is given by the Bode diagram of the
real and modelled secondary path. The two secondary paths are very different
in magnitude (Figure 2.8b): the time-delay has a flat gain – i.e. amplifies each
frequency by the same factor – while the real secondary path amplifies only the
frequencies associated to an unstable TS-wave. The LMS algorithm, however,
is not sensitive to this type of inaccuracies.

The stability limitation of the LMS algorithm is given by phase-errors only;
this algorithm is, in fact, able to compensate a phase error up to ±π/2 with
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Figure 2.8: Secondary path. The solid black line in (a) depicts the real secondary
path of the plant, while the dotted green line shows the time-delay approximation
used by the dxLMS algorithm. Magnitude and argument of the real secondary
path and the delay model are reported in (b-c). The phase error is shown in (d)
for the time delay approximation with respect to the real secondary path. The
dashed lines indicate the stability limit for the LMS algorithm.

respect to the real secondary path of the system (Snyder & Hansen 1994). For
this reason, it is important that the phase is well approximated by the time-delay
model. Figure 2.8c shows that the time delay gives a good approximation of
the phase for all the frequencies that are amplified by the flow. This can be
better seen in Figure 2.8d where the phase error is reported; the error stays
inside the algorithm stability limits for all the amplified frequencies.

The performance given by the approximated secondary path is very close
to the one given by the full model (Figure 2.9). The two techniques converge to
almost the same kernel solution; the dxLMS with delay-identification has the
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(a)

(b)

Figure 2.9: dxLMS performance. The lines in (a) report the performances of
dxLMS approach compared to LQG and fxLMS. The control kernels that result
from the three different compensator-design approaches are shown in (b).

so-called self-tuning property, i.e. “under certain condition [...] the controller
converges eventually to the one that could be designed if the process model was
known a priori” (Åström et al. 1977). Further information about this approach
can be found in Paper 3.

2.5.1. In-flight experiments

A set-up similar to the one used in wind-tunnel experiments (§2.4.1) is used
for in-flight investigations in collaboration with TU Darmstadt. A motor-glider
Grub G109b is used for the experimental campaign; the right wing of the glider
is equipped with a natural laminar flow (NLF) airfoil wind glove, where the
experimental equipment is mounted. Sensors and actuators are installed on
a flush-mounted plexiglass plate on the pressure side of the wing. The flat
airfoil shape in this region creates an almost linear pressure gradient which is
adjustable between moderate positive and negative values, depending on the
angle of attack. The flight condition is monitored by an environmental data
acquisition set-up on the left wing; flight velocity, angle of attack and side-slip
angle are measured by a Prandtl tube and a wind vane mounted on a boom
protruding upstream into the flow. All the measurements are collected with
the engine turned off and the propeller feathered, i.e. when the aircraft is in
glider-mode.
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Figure 2.10: Control performance for fxLMS and dxLMS algorithm at an angle
of attack α = 3◦. The spectra show the signal reduction at position of the error
sensor z.

The self-tuning dxLMS compensator introduced in §2.5 is tested and com-
pared with the fxLMS algorithm. The two control approaches are equivalent, if
the phase error is inside the stability region for the LMS algorithm. Figure 2.10
shows the control performance as measured by the error sensor z: the two
compensators behave similarly and disturbance-attenuation is achieved in the
TS-region of the signal spectrum. The difference between the two graphs is
caused by the change in altitude during the different measurement runs; hence,
a direct comparison is not possible since the change in density and viscosity
slightly changes the flow condition and, therefore, the TS-wave amplification
and phase.



Chapter 3

Transition delay

In the previous chapter the assumption of a purely 2D flow has been made to
simplify the study. This permitted to easily highlight advantages and disadvan-
tages of the investigated control techniques. However, in real environments this
assumption is far from reasonable. For this reason, it is necessary to address
the control problem allowing a disturbance to develop in three dimensions.

The numerical and experimental work by Li & Gaster (2006) falls into this
framework: the control of 3D disturbances via opposition control by using a
linear model of the flow based on the Navier-Stokes equations. In the work by
Semeraro et al. (2013), a LQG regulator is designed to control a single 3D wave-
packet via localised sensors and actuators. All the sensors and actuators are
connected to each other by the compensator. This leads to a prohibitive increase
of the compensator complexity if a large spanwise portion of the flow is meant
to be controlled. In the recent work presented in Paper 4, the possibility to limit
the number of interconnections between sensors and actuators is investigated by
dividing them in equal sets along the spanwise direction, each commanded by
one compensator. This structure, called control units, is thus replicated along
the spanwise direction in order to fill the entire domain.

The study presented in this chapter is a further development of this idea
(Paper 5). However, the modularity of the control action is not based on an
a-priori division in control units but rather on considerations about the control
kernel. A distributed 3D disturbance field is generated using a spanwise row of
independent random forcings d (Figure 3.1), generating a complex, 3D, random
pattern of disturbances. The control action is performed by a row of equispaced
actuators forcing the flow in the proximity of the wall. Similar to the 2D case,
their action ul(t) is computed based on the measurements ym(t) by a row of
sensors upstream the actuators; for this set-up the number of sensors is equal to
the number of actuators and they are positioned aligned with the flow direction
(Figure 3.2).

This control approach is able to delay the laminar-to-turbulence transition
and, consequently, provide drag-reduction with respect to the uncontrolled case
(Paper 5). Moreover, the saved power due to drag reduction is compared to the
power that is needed to perform the control action (§3.3). In order to compute
the latter, ideal as well as real actuator models are considered.

21
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Figure 3.1: 3D control set-up. Random 3D disturbances are generated by a row
of localised independent forcings d. The measurements from the sensors y and
z are used to compute the actuation signal for the actuators u.

3.1. A 3D compensator

A linear control law is assumed:

ul(n) =
∑
m

∑
i

Kml(i) ym(n− i) ∀l, (3.1)

where Kml(i) ∈ RM×M is the convolution kernel of the compensator. As a
consequence, the number of transfer functions between the M sensors ym and
the M actuators ul is M2. This imposes a computational constraint when
M is large, which is the case when covering a large spanwise region with the
controller. However, since the flow is spanwise homogeneous, the same transfer
function Km from all the sensors ym+l to one arbitrary actuator ul is replicated
for each actuator um, as shown in Figure 3.2. This assumption reduces the
number of transfer functions to be designed from M2 to M . Hence, the Finite
Impulse Response (FIR) filter representation of the control law reads:

ul(n) =
∑
m

∑
i

Km(i) ym+l(n− i) ∀l (3.2)

where one kernel dimension is suppressed and, as a consequence, Km(i) ∈ RM×1.

3.1.1. Multi-input multi-output (MIMO) fxLMS

A multi-input multi-output (MIMO) version of the fxLMS algorithm intro-
duced in §2.3.1 is used to dynamically design the compensator. The algorithm
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Figure 3.2: Compensator structure. The action of each actuator ul is computed
by filtering the signals from all the sensor ym + l via a linear filter Km.

minimises the sum of the squared measurement signals zl(n):

min
Km

(∑
l

z2
l (n)

)
. (3.3)

The kernel is updated via a steepest descent algorithm at each time step:

Km(i|n+ 1) = Km(i|n)− µλm(i|n). (3.4)

where the descend direction λm(j|n) is given by:

λm(i|n) =
∂
(∑

l z
2
l (n)

)
∂Km(i)

= 2
∑
l

zl(n)
∂zl(n)

∂Km(i)
. (3.5)

The error sensor signal is given by the superposition of the contributions given
by the disturbance sources dl and the actuators ul:

zl(n) =
∑
r

∑
j

Pzd,r(j) dr+l(n− j) +
∑
r

∑
j

Pzu,r(j) ur+l(n− j) =

= [· · · ] +
∑
r

∑
j

Pzu,r(j)
∑
m

∑
i

Km(i) ym+r+l(n− j − i) =

= [· · · ] +
∑
m

∑
i

Km(i)
∑
r

∑
j

Pzu,r(j) yr+m+l(n− j − i) =

= [· · · ] +
∑
m

∑
i

Km(i) fm+l(n− i), (3.6)

where the same spanwise homogeneity assumption has been made for the plant
kernels Pzd,r(j) and Pzu,r(j) that represent the transfer functions dr → zl and
ur → zl respectively. Therefore, the descend direction is given by:

λm(i|n) = 2
∑
l

zl(n)
∂zl(n)

∂Km(i)
= 2

∑
l

zl(n)fm+l(n− i). (3.7)
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(a) uncontrolled

(b) fxLMS

Figure 3.3: Disturbance attenuation and transition delay. The shaded gray
area report the skin friction fluctuations τ ′w = τw − τw,lam with respect to the
laminar solution. The green surfaces indicate the λ2-criterion with a threshold
of −2 × 10−3. The disturbance sources are fed with white-noise signals that
range between ±2×10−3, resulting in a perturbation amplitude A(100) = 0.11%.
The fringe region is not shown.

This expression – except for the sum over the index l – is similar to the expression
of λ(i|n) in the 2D case in (2.33).

3.2. Performance and limitations

Non-linear simulations are performed in a 3D extension of the domain used in
the previous section. The domain extents are [0, 2000)× [0, 45]× [−125, 125) in
the streamwise, wall-normal and spanwise directions. The fringe forcing used to
enforce the streamwise periodicity takes place in the last 400 spatial units along
the streamwise direction (Chevalier et al. 2007). The flow is approximated by
1536× 384 Fourier modes along the streamwise and spanwise direction and by
151 Chebyshev polynomials in the wall-normal direction. The time step ∆t
is set to 0.4 as in the previous 2D study. Turbulence will appear in the end
of the domain. Since the focus is on laminar-to-turbulence transition and not
on turbulence itself, a deconvolution model is used for large-eddy simulations
(LES) to avoid increasing the spatial resolution (Stolz et al. 2001).

The perturbation is introduced at X = 65 via the following volume forcing:

fd =
∑
l

bd,l(x) dl(t). (3.8)

The 25 forcing shapes bd,l are equally-spaced along the spanwise direction
and are modelled as synthetic vortices and each disturbance signal dl(t) is a
uniformly-distributed white-noise signal that ranges between ±ad (Fabbiane
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Figure 3.4: Perturbation attenuation and transition delay. The amplitude of the
perturbation field as defined in (3.9) is reported as a function of the streamwise
coordinate X for the controlled and uncontrolled cases in Figure 3.3.

et al. 2015a, Paper 5). Reference and error sensors yl and zl are positioned
at Xy = 300 and Xz = 500 with the same spanwise spacing ∆Z = 10 as
the disturbance sources. As in the previous section, the sensors measure the
shear-stress fluctuation of the perturbation field averaged, in this case, over
the spanwise extension of the sensor ∆Z. The actuators are positioned at
Xu = 400 and are spaced along Z as the sensors. They are modelled by a
modulated volume forcing similar to the disturbance sources; the forcing shapes
are computed in order to model a plasma actuator, based on the experimental
data by (Kriegseis et al. 2013).

The disturbance sources are fed with white-noise signals with amplitude
ad = 2× 10−3. A snapshot of the resulting flow is shown in Figure 3.3a: the
grey shaded area reports the skin friction fluctuation with respect to the laminar
solution, while isosurfaces of λ2 = −2× 10−3 are depicted in green (Jeong &
Hussain 1995). The random forcing triggers a pattern of random wave-packets
that travel downstream in the domain while growing in amplitude, as it can be
seen by their friction footprint. At X = 900 the flow departs from the laminar
solution and the turbulent structures identified by the λ2-criterion appear. This
is the TS-wave driven transition to turbulence, cfr. §1.1.

Figure 3.3b reports the same disturbance scenario when the control is active.
The perturbation is almost completely cancelled downstream of the actuators,
as it can be seen by the friction fluctuations. The same transition scenario
is present but moved downstream with respect to the uncontrolled case. The
control is effective in delaying the laminar-to-turbulence transition.

A measurement of the perturbation field amplitude is introduced to quanti-
tatively asses the control action:

A2(X) = max
Y

〈(
u− U
U

)2
〉
Z,t

, (3.9)

where U(X,Y, Z) is the streamwise component of the mean flow. Figure 3.4
reports the amplitude values for the controlled and uncontrolled cases illustrated
in Figure 3.3. The two curves depart from each other directly downstream of
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Figure 3.5: Control kernel. The thick line indicates K0(t), i.e. the connection
between sensors and actuators at the same spanwise location.

the actuators; the uncontrolled case saturates first around the uncontrolled
transition location, while the controlled case shows a lower disturbance amplitude
up to its transition location. The perturbation field is hence attenuated by the
control action.

The kernel that results from the MIMO fxLMS dynamic design is shown
in Figure 3.5: the solid thick line depicts K0(i), i.e. the connection between
sensors and actuators at the same spanwise position. The kernel is similar to
the 2D solution in the previous chapter and it has a compact support along
the spanwise direction; hence, each sensor drives a limited number of actuators,
that does not depend by the distance between sensors and actuators (Fabbiane
et al. 2015a).

In order to better evaluate the effect of the control on the friction drag, the
spanwise averaged friction coefficient is introduced as:

cf (X) =
〈τw〉Z
1
2ρU

2
, (3.10)

where 〈·〉Z is the spanwise average operator. The friction coefficient for the
current flow case is shown in Figure 3.6a for both the controlled and uncontrolled
cases. In the controlled case the transition in simply delayed without introducing
any additional friction with respect to the laminar solution. Hence, the spatial
delay of the transition is directly related to the drag-save resulting from applying
the control (Paper 5).

The disturbance amplitude is then increased up to the point where no
residual effect of the control is visible. Figure 3.6b shows the transition location
as a function of the disturbance amplitude; the perturbation field amplitude at
X = 100 is used as a measure of the amplitude of the disturbance. The transition
point is identified as the point where the friction coefficient crosses the average
between the laminar and the turbulent value of the friction coefficient, dot-
dashed line in Figure 3.6a. The control is effective up to a seeded perturbation
amplitude A(100) = 0.40%, that rises up to approximately 2% at the actuator
location.
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Figure 3.6: Transition delay. (a) reports the Z-averaged friction coefficient
for the flow case in Figure 3.3, A(100) ≈ 0.12%. (b) reports the transition
location for increasing disturbance amplitude A(100). The transition positions
are computed based on a time-averaged flow over 1200 time units.

3.3. Energy budget

A control strategy is successful when its benefit is larger than its cost. Hence,
the power consumption of the control Pc is estimated via two different actuator
models: the ideal actuator and the plasma actuator. The ideal actuator is
based on the fluid-dynamical power that the volume forcing exchanges with the
flow; this ideal actuator, however, does not take into consideration the energy
spent in order to create the volume forcing given by the actuator. A model
of the plasma-actuator power consumption is obtained by combining the two
experimental works by Kriegseis et al. (2011, 2013). Two different operation
modes are considered: (i) dual where two plasma actuators are considered, one
responsible for the positive forcing and one for the negative one, and (ii) hybrid
where an offset forcing is used in order to avoid negative forcing by the actuator.
Further details about this procedure can be found in Paper 5.

The power gain is defined as:

Γ =
Ps
Pc
, (3.11)

where Ps = U ∆D is the power saved by the drag-reduction ∆D that results
from applying the control. Figure 3.7 shows Γ for the different actuator models
as a function of the disturbance amplitude. In the ideal case the control strategy
is capable of power gains up to 103. This means that the power saved is 1000
times the power that is spent to perform the control action. For increasing
amplitudes, the gain decreases until the break-even point Γ = 1 is reached for
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Figure 3.7: Energy budget. The reported quantities are computed based on a
time-averaged flow over 1200 time units. The solid black line indicates Γ = 1,
i.e. the break-even point for the control strategy.

A(100) = 0.46%. At this point the control is on the limit of its effective range
and it is not effective in delaying the transition any more, cfr. Figure 3.6b.

Unfortunately, the power-gain Γ barely reaches the break-even point when
a plasma actuator model is considered; a reason for this can be found in the
lower efficiency of the plasma actuator (Jolibois & Moreau 2009; Cattafesta
& Sheplak 2010). The results by Kriegseis et al. (2011) are based on research
studies on plasma actuators at the time and no new data on the state-of-the-art
is available in the literature. These results highlight that the energy efficiency
of the plasma actuator is critical to its use for this type of control. However,
this is not a rejection of this type of actuator; this preliminary estimation of
the energy consumption by a real actuator has to be considered as an invitation
for the scientific community to improve the design of plasma actuators.



Chapter 4

Conclusions and outlook

Linear reactive control of boundary-layer instabilities has been addressed. The
model-based control – more precisely LQG regulator – is able to attenuate the
perturbation amplitude by using the knowledge of the flow status close to the
wall. Because of the relative position of sensors and actuators, the control law
results in a feed-forward wave-cancellation. For this technique, an accurate
model of the perturbation behaviour is crucial to performance; it is in fact shown
that, when model inaccuracies occur, the compensator performance rapidly
degrades (Paper 2).

Robustness to model inaccuracies is recovered via adaptive control (Paper 1;
Paper 2). The perturbation attenuation is monitored on-line by a second sensor
downstream of the actuator and the control law is modified in order to maximize
the performance. This approach gives the compensator a feed-back not directly
on its action but on the validity of its control law. A recovery in robustness to
model inaccuracies is shown by the fxLMS adaptive algorithm.

A self-tuning approach is proposed based on this algorithm. The modelling
requirement by fxLMS are reduced to a time-delay that is computed by measur-
ing the phase speed upstream the actuator via a third sensor. The performance
of the compensator is unchanged by this model approximation both in DNS
and in in-flight experiments (Paper 3).

Transition delay is achieved in a low-amplitude 3D disturbance scenario
(Paper 5). The consequent drag-reduction is computed and an energy budget is
performed: the power saved thanks to the delay of the laminar-to-turbulence
transition is three orders of magnitude larger then the ideal power spent to
perform the required forcing to control the flow.

For increasing disturbance levels, non-linear interactions arise in the flow.
Since the compensator assumes a linear behaviour of the perturbation field, it
gradually reduces its performance because its perturbation model fails with
respect to the actual flow conditions. No transition-delay and energy-saving
are achieved for perturbation amplitudes greater than 2% of the free-stream
velocity. If the fxLMS algorithm is used, the adaptivity nature of the algorithm
is able to marginally compensate the non-linearities in the flow.

29



30 4. Conclusions and outlook

(a) Plasma actuator
(Kriegseis et al. 2013)

(b) Synthetic vortex
(Semeraro et al. 2013)

Figure 4.1: Actuator impulse response. Isosurfaces of positive and negative
perturbation velocity are depicted in red and blue. The generated wave-packets
are reported at t = 400 and t = 800; even if the two volume forcings are different,
the resulting wave-packets are almost identical.

Actuator

The net-energy-saving of the control set-up depends on the actuator and its
efficiency. The theoretical results are obtained for an ideal actuator model
(Paper 5); this actuator presents a unitary efficiency, i.e. the supplied energy is
transferred to the flow with no losses. Real actuators behave differently: the
supplied energy is not entirely transferred to the flow and part of it is lost in the
forcing process. For plasma actuators this energy loss is considerable (Jolibois
& Moreau 2009) and may invalidate the control performance. This confirms
the overall energy-saving based on the plasma actuator model by Kriegseis
et al. (2011); this estimation confirms the need to improve the design of these
actuators in order to improve their energy-efficiency.

It is also possible to consider different types of actuators (Cattafesta &
Sheplak 2010). In this case, the control takes place by wave-packet superposition:
the actuator generates a wave-packet with opposite phase to the one that is
detected by the reference sensors and, therefore, the original disturbance is
cancelled. In the light of this, every actuator that is able to produce a TS
wave-packet is suitable for the presented control approach. Figure 4.1 shows,
as an example, the impulse response for two different volume forcings used
for flow control by Semeraro et al. (2013) and Paper 5, respectively; the final
wave-packet is almost identical. This leads to two conclusions: (i) it is the effect
of an actuator that is important to model, and not the actuator itself (Bagheri
2010) and (ii) many different actuators may be equally suitable for reactive
control.
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Disturbance

In this work, the disturbances are introduced directly inside the boundary layer
(Bagheri et al. 2009a; Semeraro et al. 2011, 2013). The receptivity process
of free-stream disturbances is then modelled by assuming it will result in
TS wave-packets. This assumption is valid for various disturbance scenarios
(Saric et al. 2002): free-stream disturbances interacting with surface roughness
(Goldstein 1985) or sound waves interacting with the leading-edge (Giannetti
& Luchini 2006; Shahriari et al. 2016). However, TS wave-packets are not the
only perturbations that populate the boundary layer: in presence of high free-
stream turbulence, streaks are induced inside the boundary layer (Matsubara
& Alfredsson 2001) and structures different from TS-waves may also appear in
a linear framework (Dadfar et al. 2014).

This suggests further investigation of the presented control approach when
the disturbance is introduced outside of the boundary-layer. Since the leading-
edge has a crucial role in the receptivity process, a full flat-plate/wing geometry
has to be taken into consideration for these investigations, e.g. the DNS set-up
in Paper 3. This may lead to computationally challenging simulations, in
particular if a 3D computational box is considered in order to evaluate the
transition-delay. An example of the required simulation set-up can be found in
Hosseini et al. (2013), where boundary-layer stabilisation by roughness elements
is studied under a free-stream turbulence forcing.

Control algorithm

The two design approaches presented in this work – although effective for
the investigated control problem – cover only a part of the possible control
techniques used in flow control. Figure 4.2 is a complete schematic of the most
popular control techniques used in fluid-dynamics (Brunton & Noack 2015).
The proposed model-based approach combines a linear reduced-order-model
obtained via BPOD and H2 optimal control (§2.2.1), while the adaptive fxLMS
algorithm can be seen both as opposition and extremum-seeking control (§2.3.1).

These two design approaches result in a linear compensator: the control
signal is linearly dependent on the time history of the reference signal through
the control kernel, that is computed based on a linear model of the system. The
compensator uses the model to predict the control effect on the system. When
non-linearities arise, the model fails, its prediction is not reliable and, therefore,
the compensator fails at controlling the flow. Adaptive control can be used to
partially recover the control performance; the fxLMS algorithm, for example,
shows the ability to compensate for small non-linearities. However, since its
adaptation path is also based on a linear model of the flow, the adaptation fails
when the flow behaviour is too non-linear.

The performance of the control is model dependent. Enhancing the model
complexity and/or robustness may result in an extension of the compensator
performance-envelope: non-linear models (Noack et al. 2003), system identifica-
tion (Hervé et al. 2012) and dynamic observers (Guzmán Iñigo et al. 2014) are
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typically very high dimensional, sometimes exceeding the
capacity of computer memory. For example, a high Reynolds
number three-dimensional unsteady flow will exhibit important
spatial structures that span many orders of magnitude in scale.
The Reynolds number can be estimated from the ratio between
the largest-scale structures to the smallest structures in the flow.
Thus, for a generic geometry, the state dimension will scale with
Re9=4, along with the memory cost [77–79]. The computational
cost will scale with Re3 because of the addition of multiple tempo-
ral scales, which generally scale with Re3=4. For a channel flow,
the scaling may even be worse with Reynolds number, as Re3 in
space and Re4 in space and time [80,81]. If a spatial discretization
is required with 1000 elements in each direction; then, a three-
dimensional simulation will contain 109 states for every flow vari-
able (velocity, pressure, etc.).

The highest-order fully resolved simulation to date is a wall-
bounded turbulent channel flow with Res¼ 5200 (Reynolds num-
ber based on the friction velocity), containing 2.4" 1011 states
[81]. This simulation is about 3.5 times larger than the previous
record holder [82], and it uses slightly over 3/4 of a million pro-
cessors in parallel. Even with Moore’s law, it will take nearly 40
yr for this type of computation to become a lightweight “laptop”
computation [83] and decades longer before being useful for

in-time control, since the parallel code takes 7 real seconds per
simulated time-step, as benchmarked in Ref. [81]. However, im-
pressive and useful for design and optimization, it is unclear that
this level of resolution is even necessary for many control
applications.

3.2.2 Modal Representation (Gray-Box). Instead of resolving
every detail of the flow field at all scales, it is often possible to
represent most of the relevant flow features in terms of a much
lower dimensional state. This state represents the amplitudes of
modes, or coherent structures that are likely to be found in the
flow of interest. Galerkin models based on modal expansions con-
stitute one class of gray-box models, which resolve the coherent
structures of the white-box models while accounting for small-
scale fluctuations with subscale closures.

The POD is one of the earliest and most successful modal rep-
resentations used in fluids [84,85], resulting in dominant spatially
coherent structures. POD benefits from a physical interpretation
where modes are ordered hierarchically in terms of the energy
content that they capture in the flow. There are numerous methods
to compute POD, and the snapshot POD [86] is efficient when a
limited number of well-resolved full-state measurements are
available from simulations or experiments. Snapshot POD is

Fig. 5 Schematic illustrating popular choices at the various levels of kinematic and dynamic
descriptions of the turbulent system P and choices for designing the controller K.
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Figure 4.2: Schematic illustrating popular choices at the various levels of
kinematic and dynamic descriptions of the turbulent system P and choices
for designing the controller K. (Courtesy of Steven L. Brunton and Bernd R.
Noack.)

an example of this. In this direction, the past decade saw a growing interest
in data-driven techniques (Fleming & Purshouse 2002), in particular in model
free-approaches as machine-learning control. These techniques learn about the
system behaviour by observing it and build input-output maps that are used to
perform the control action. They are very powerful when no reliable model of
the system is available a-priori, or when it comes to turbulence control – i.e.
chaotic systems – since they are able to follow the chaotic-attractor dynamics
modified by the control itself. However, their validity envelope depends on the
extent of their training; uncertainties of the environmental condition and/or the
presence of unmodelled disturbances may still present a robustness problem.
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Papers





Summary of the papers

Paper 1

Adaptive and model-based control theory applied to convectively-unstable flows

A review of the control methodologies aimed at delaying the laminar-to-turbulent
transition in convectively unstable flows is presented. A simple one-dimensional
system – the Kuramoto-Sivashinsky (KS) equation – able to replicate the
stability of this type of flows is introduced to illustrate the different techniques
via applied-control examples.

The compensator design is investigated as a coupling of a controller and an
estimator. The former is responsible for computing the control signal assuming
a complete knowledge of the system state. Optimal control techniques are
reviewed: Linear Quadratic Regulator (LQR) and Model Predictive Control
(MPC) are examined, in particular when saturation constraints are applied to
the actuator. The estimator provides to the controller an estimation of the
system state based on limited measurements in the flow. The conventional
Kalman filter is introduced as well as system identification techniques borrowed
from signal-processing theory.

In the end, the complete compensator is analysed. The difference between
static (LQG) and adaptive (fxLMS) compensators is investigated, highlighting
a strong sensitivity of the static controller to inaccuracies of the model used in
the design process.

Scripts to generate all the presented data and figures are available in
MATLAB format at http://www.mech.kth.se/~nicolo/ks/.

Paper 2

On the role of adaptivity for robust laminar-flow control

The control problem is addressed in an experimental set-up in order to investigate
the necessity of adaptivity in real flow applications. An fxLMS adaptive
compensator is compared with a model-based LQG regulator when attenuating
2D TS-waves in a zero-pressure-gradient boundary layer flow.

The experiments are conducted in the open-circuit wind tunnel at TU
Darmstadt, Germany. A 2D disturbance is generated by a disturbance source
and is downstream detected by a surface-mounted hot-wire sensor. Based on
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these measurements, the compensator prescribes a suitable forcing to a dielectric-
barrier-discharge (DBD) plasma actuator in order to cancel the upcoming
wave. A second hot-wire sensor is placed farther downstream to monitor the
compensator performance. DNS of the experimental set-up are carried out and,
based on these, the LQG regulator is designed.

The model-based regulator is found to be less effective than the fxLMS
compensator because of unavoidable modelling inaccuracies. Moreover, the
performance of the LQG regulator degrades as the flow response departs from
the design model. In particular, free-stream velocity variation is investigated:
the static compensator turns out not to be able to prescribe the correct phase
information to the actuator. Otherwise, the adaptive compensator is able to
autonomously adjust to the modified flow conditions and effectively perform
the control action for a broader interval of velocity variations.

Paper 3

In-flight active-wave-cancelation via delayed-x-LMS control algorithm in a lami-
nar boundary layer

The adaptive control techniques investigated in Paper 2 are pushed towards a
black-box approach. In particular, the stability properties of the fxLMS algo-
rithm are used to further simplify the model of the flow and design a self-tuning
compensator.

The secondary path – i.e. the transfer function between actuator and error
sensor – is modelled by a time-delay only. This control technique, that is known
as delayed-x LMS (dxLMS) algorithm, is successfully tested in cancelling 2D
TS-waves in-flight; the experiment is set on a motor-glider Grub G-109 at TU
Darmstadt. The set-up is similar to that in Paper 2: the disturbance is artificially
generated by a row of 12 loudspeakers and it is detected downstream by the
reference sensor, a surface hot-wire. Hence, the control action is performed by
a wall-mounted DBD plasma-actuator. A second surface hot-wire is mounted
farther downstream, to provide the performance information needed by the
adaptive algorithm.

The time-delay for the secondary path modelling is computed via a measure-
ment of the perturbation group speed. A third sensor is positioned upstream of
the reference sensor for this purpose. This allows the design of a self-tuning
controller that needs no external information about the flow; the resulting
“black-box” approach is to be considered a big step forward towards a real
application of this control technique.

Paper 4

Centralised versus decentralised active control of boundary layer instabilities

The control of 3D disturbances in a zero-pressure-gradient boundary-layer flow
is addressed via model-based optimal control. In particular, this work focuses
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on the possibility to divide and replicate the control law along the homogeneous
span-wise direction in order to reduce the complexity of the controller.

DNS are performed to investigate the control performance. Evenly localised
objects are distributed in the spanwise direction in the wall region (18 distur-
bances sources, 18 actuators, 18 estimation sensors and 18 objective sensors)
and span-wise subsets of these objects are identified by signal-energy based
techniques. LQG compensators are designed based on these subsets and repli-
cated along the span-wise direction to fill the computational domain. Hence,
the performance loss due to the missing connections are evaluated in order to
identify a “minimal” control unit, i.e. a minimal subset of sensors and actuators
able to perform an effective control action.

Paper 5

Energy efficiency and performance limitations of linear adaptive control for
transition delay

Transition-delay and energy-saving capabilities of reactive flow control are
investigated. A MIMO fxLMS algorithm is introduced in order to control a 3D
disturbance scenario in a 2D zero-pressure-gradient boundary-layer flow.

Random disturbances are introduced in the flow via localised volume forcing
inside the boundary layer. The compensator performance is evaluated for
increasing disturbance level; the investigated control setup results able to delay
the laminar-to-turbulence transition up to the point where transition occurs in
the control region.

The energy efficiency is also evaluated: ideal as well as real actuators
models are considered in order to compute the power needed to perform the
control action. When ideal actuators are considered, a net-energy-saving up
to 1000 times the power spent for the control is recorded and the balance
remains positive as long as transition delay is achieved. However, when plasma
actuators are considered, the break-even point is barely reached because of their
low efficiency. This result should motivate further studies on the design and
optimisation of these type of actuators.
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Research on active control for the delay of laminar-turbulent transition in
boundary layers has made a significant progress in the last two decades, but
the employed strategies have been many and dispersed. Using one framework,
we review model-based techniques, such as linear-quadratic regulators, and
model-free adaptive methods, such as least-mean square filters. The former
are supported by a elegant and powerful theoretical basis, whereas the latter
may provide a more practical approach in the presence of complex disturbance
environments, that are difficult to model. We compare the methods with a
particular focus on efficiency, practicability and robustness to uncertainties.
Each step is exemplified on the one-dimensional linearized Kuramoto-Sivashinsky
equation, that shows many similarities with the initial linear stages of the
transition process of the flow over a flat plate. Also, the source code for the
examples are provided.

1. Introduction

The key motivation in research on drag reduction is to develop new technology
that will result in the design of vehicles with a significantly lower fuel consump-
tion. The field is broad, ranging from passive methods, such as coating surfaces
with materials that are super-hydrophobic or non-smooth (Bushnell & Moore
1991), to active methods, such as applying wall suction or using measurement-
based closed-loop control (Kim & Bewley 2007). This work positions itself
in the field of active control methods for skin-friction drag. In general, the
mean skin friction of a turbulent boundary layer on a flat plate is an order of
magnitude larger compared to a laminar boundary layer. One strategy to reduce
skin-friction drag is thus to push the laminar-turbulent transition on a flat plate
downstream (Schlichting & Gersten 2000). Different transition scenarios may
occur in a boundary layer flows, depending on the intensity of the external dis-
turbances acting on the flow, (Saric et al. 2002). Under low levels of free-stream
turbulence and sufficiently far downstream, the transition process is initiated
by the linear growth of small perturbations called Tollmien-Schlichting (TS)
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waves (Schlichting & Gersten 2000). Eventually, these perturbations reach finite
amplitudes and breakdown to smaller scales via nonlinear mechanisms (Schmid
& Henningson 2001). However, in presence of stronger free-stream disturbances,
the exponential growth of TS waves are bypassed and transition may be directly
triggered by the algebraic growth of stream-wise elongated structures, called
streaks (Saric et al. 2002). One may delay transition by damping the growth of
TS waves and/or streaks, and thus postpone their nonlinear breakdown. This
strategy enables the use of linear theory for control design.

Fluid dynamists noticed in the early 90’s, that many of the emerging
concepts in hydrodynamic stability theory already existed in linear systems
theory (Jovanovic & Bamieh 2005; Schmid 2007). For example, the analysis of
a system forced by harmonic excitations is referred to as signalling problem by
fluid dynamicists, while control theorists analyze the problem by constructing a
Bode diagram, (Glad & Ljung 2000); similarly, a large transient growth of a
fluid system corresponds to large norm of a transfer function and matrix with
stable eigenvalues can be called either globally stable or Hurtwitz, (Schmid &
Henningson 2001; Huerre & Monkewitz 1990).

However, the systems theoretical approach had taken one step further, by
“closing the loop”, i.e providing rigorous conditions and tools to modify the
linear system at hand. It was realized by fluid dynamists that the extension of
hydrodynamic stability theory to include tools and concepts from linear control
theory was natural (Joshi et al. 1997; Bewley & Liu 1998; Cortelezzi et al.
1998). A long series of numerical investigations addressing the various aspects of
closed-loop control of transitional (Högberg et al. 2003a; Chevalier et al. 2007a;
Monokrousos et al. 2008) and turbulent flows (Lee et al. 2001; Högberg et al.
2003; Chevalier et al. 2006) followed in the wake of these initial contributions.

At the same time, research on active control for transition delay has been
advanced from a more practical approach using system identification methods
(Ljung 1999) and active wave-cancellation techniques (Elliott & Nelson 1993).
Most work (but not all) is experimental, which due to feasibility constraints,
has favoured an engineering and occasionally ad hoc methods. One of the
first examples of this approach is the control of TS waves in the experiments
by Milling (1981) using a wave-cancellation control; the propagating waves
are cancelled by generating perturbations with opposite phase. This work
was followed by number of successful experimental investigations (Jacobson &
Reynolds 1998; Sturzebecher & Nitsche 2003; Rathnasingham & Breuer 2003;
Lundell 2007) of transition delay using more sophisticated system identification
techniques.

On the other hand, both numerical and experimental approaches have
pushed forward flow control research, they have in a large extent evolved
disconnected from each other; the systems control theoretical approach has
provided very important insights into physical mechanisms and constraints that
has to be addressed in order to design active control that is optimal and robust,
but most work has stayed at a proof-of-concept level and have not yet been
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fully implemented in practical applications. Although, there are exceptions
(McKeon et al. 2013; Goldin et al. 2013), the majority of experimental active
control has essentially suffered from the opposite; most controllers are developed
directly in the experimental setting on a trial-and-error basis, with many tuning
parameters, that have to be chosen for each particular set-up.

This review aims at presenting model-based and model-free techniques that
are appropriate for the control of TS waves in a flat-plate boundary layer. We
compare and link the two approaches using a linear model, that similar to
the linearized Navier-Stokes equations, exhibits a large transient amplification
behaviour and time delays. This presentation is unavoidably influenced by
the authors background and previous work; complementary reviews on flow
control can be found in Kim & Bewley (2007), Sipp et al. (2010) and Bagheri &
Henningson (2011), where the linear approach is analyzed, and in the reviews by
Bagheri et al. (2009c) and Sipp & Schmid (2013), focussed on the identification
of reduced-order models for the linear control design. Finally, we refer to Gad-el
Hak (1996), Bewley (2001) and Collis et al. (2004) for a broader prospective.

1.1. The control problem

Consider a steady uniform flow U∞ over a thin flat plate of length L and infinite
width. Inside the two-dimensional (2D) (Blasius) boundary layer that develops
over the plate, we place a small localized disturbance (denoted by d in Figure 1)
of simple Gaussian shape; the set-up is the same as in Bagheri et al. (2009)
and the simulation is performed using a spectral code (Chevalier et al. 2007).
Figure 2 summarizes the spatio-temporal evolution of the disturbance. It shows
a contour plot of the stream-wise component of the perturbation velocity at a
wall normal position Y = δ∗(0), where δ∗(X) is the displacement thickness of
the boundary layer. The temporal growth of this disturbance is determined by
classical linear stability theory (i.e. eigenvalue analysis of the linearized Navier-
Stokes equations). Such an analysis reveals that asymptotically a compact
wave-packet emerges – a TS wave-packet – that grows in time at an exponential
rate while travelling downstream at group velocity of approximately U∞/3.
This disturbance behaviour is observed as long as the amplitude is below a
critical value (usually a few percent of U∞) (Schmid & Henningson 2001).
Above the critical value, nonlinear effects have to be taken into account; they
eventually result in a break down of the disturbance to smaller scales and finally
to transition from a laminar to a turbulent flow (Schmid & Henningson 2001).
However, the key point – that enables the use of linear theory for transition
control – is that the disturbance may grow several orders of magnitude before
it breaks down.

Using a spatially localized forcing (denoted by u in Figure 1) downstream of
the disturbance, one may modify the conditions in order to reduce the amplitude
of the wave-packet and thus delay the transition to turbulence. Physically this
forcing is provided by devices called actuators. An example of an actuator is
a loudspeaker that generates short pulses through a small orifice in the plate.
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Figure 1: Scheme of a Blasius boundary-layer flow developing over a flat plate.
A disturbance modelled by d grows exponentially while convected downstream.
The actuator u is used to attenuate the disturbance before it triggers transition
to turbulence; the actuation signal is computed based on the measurements
provided by the sensor y. The output z, located downstream of the actuator,
estimates the efficiency of the control action.

The volume of the loudspeaker and the shape of the orifice determines the type
of actuation. Another example is plasma actuators, where a plasma arch is used
to induce a forcing on the flow (Grundmann & Tropea 2008).

In closed-loop control, a sensor (denoted by y in Figure 1) is used to measure
the disturbance that is meant to be cancelled by the actuator (u): based on
these measurements one computes the actuator action in order to effectively
reduce the amplitude of the perturbation. Examples of sensors include pressure
measurements using a small microphone membrane mounted flush to the wall,
velocity measurements using hot-wire anemometry near the wall or shear-stress
measurements using thermal sensors (wall wires). Finally, we place a second
sensor (denoted by z in Figure 1) downstream of the actuator to measure the
amplitude of the perturbation after the actuator action. The minimization
of this output signal may serve as an objective of our control design, but the
measurements also provide a means to assess the performance of the controller.

Having introduced the inputs and outputs, the control problem can be for-
mulated as the following: given the measurement y(t), compute the modulation
signal u(t) in order to minimize a cost function based on z(t). The system that
when given the measurement y(t), provides the control signal u(t) is referred to
as the compensator. The design of the compensator has to take into account
competing aspects such as robustness, performance and practical feasibility.

The objective of this review is to guide the reader through the steps of
compensator design process. We will exemplify the theory and the associated
methods on a one-dimensional (1D) model based on the linearized Kuramoto-
Sivashinsky (KS) equation (presented in §2). The model reproduces the most
important stability properties of the flat-plate boundary layer, but it avoids
the problem of high-dimensionality and thus the high numerical costs. In §3
full-information control problem is addressed via optimal control theory; linear
quadratic regulator (LQR) and model-predictive controller (MPC) strategies
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Figure 2: Response to a small, localized initial condition in a Blasius boundary-
layer flow. A Tollmien-Schlichting wave-packet emerges and grows exponentially
while propagating downstream. Contours of the streamwise component of the
velocity are shown as a function of the streamwise direction (x ) and time (t).
The location along the normal-direction y is chosen in the vicinity of the wall.

are derived and compared. The disturbance estimation problem is addressed in
§4, where classical Kalman estimation theory and least-mean-square techniques
will be introduced and compared. The techniques of sections §3 and §4, will be
combined in order to design the compensator in §5. This section also contains
adaptive algorithms that enhance the robustness of the compensator. The review
finalizes with a discussion §6 about some important features characterizing
the control problem when applied to three-dimensional (3D) fluid flows and
conclusions §7.

2. Framework

We first introduce our choice of model KS equation, inputs (actuators/disturbances)
and sensors. This is followed by a presentation of concepts pertinent to our work,
namely the state-space formulation (§2.4), transfer functions and finite-impulse
response (§2.5), controllability and observability (§2.6), closed-loop system (§2.7)
and robustness (§2.8). This chapter contains the mathematical ingredients that
will be used in the following sections.

2.1. Kuramoto-Sivashinsky model

In this paper, we focus our attention on flows dominated by convection/advection,
where disturbances have negligible upstream influence and are quickly swept
downstream with the flow. We make use of a particular variant of the KS
equation to model a linear and convection-dominated flow. Originally, the KS
equation was developed to describe the flame front flutter in laminar flames
(Kuramoto & Tsuzuki 1976; Sivashinsky 1977). This model exhibits in its
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space-periodic form a spatio-temporal chaotic behaviour, with some similarities
to turbulence (Manneville 1995). The standard KS equation reads

∂ṽ

∂t̃
+ ṽ

∂ ṽ

∂x̃
= −η ∂

2ṽ

∂x̃2
− µ∂

4ṽ

∂x̃4
, (1)

where t̃ is the time, x̃ ∈ [0, L̃) the spatial coordinate and ṽ = ṽ(x̃, t̃) the velocity.
The boundary conditions accompanying (1) are periodic in x̃. The second term
on the left side in (1) is the nonlinear convection term, while on the right side
two viscosity terms appear. The two latter terms may be associated to the
production and dissipation of energy at different spatial scales. In particular,
the second-order derivative term is related to the production of the energy
via the variable η, called anti-viscosity, while the dissipation of the energy is
connected to the fourth-order derivative term, multiplied by the hyper-viscosity
µ (Cvitanović et al. 2012).

Equation (1) can be rewritten such that it is parametrized by a Reynolds-

number-like coefficient. Introducing a reference length l̃ and a reference velocity
Ṽ , define the non-dimensional position x, velocity v and time t by

x =
x̃

l̃
, v =

ṽ

Ṽ
, t =

Ṽ

l̃
t̃. (2)

Applying the transformation to (1), the KS equation in dimensionless form
becomes

∂v

∂t
+ v

∂v

∂x
= − 1

R

(
P ∂2v

∂x2
+
∂4v

∂x4

)
, (3)

where x ∈ [0, L). The parameters R and P are defined as

R =
Ṽ l̃3

µ
, P =

η

µ
l̃2, (4)

where R takes the role of the Reynolds number Reδ∗ , and P regulates the
balance between energy production and dissipation.

We assume that the system is sufficiently close to a steady solution V (x) = V .
Then, it is possible to describe the dynamics of perturbations using the linearized
KS equation. For the chosen parameters, the steady solution is stable, but an
external perturbation may be amplified by an order-of-magnitude before it dies
out (this requires non-periodic boundary conditions in the streamwise direction
as we impose below). Introduce the perturbation v′(x, t)

v(x, t) = V + ε v′(x, t), (5)

where ε� 1. By inserting this decomposition into (3) and neglecting the terms
of order ε2 and higher, the linearized KS equation is obtained

∂v′

∂t
= −V ∂v

′

∂x
− 1

R

(
P ∂2v′

∂x2
+
∂4v′

∂x4

)
. (6)

It is the convective and amplifying properties of this non-normal system that
makes it a good model of the 2D Blasius boundary layer flow. Following
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Figure 3: The real frequency ωr and its imaginary part ωi are shown as a
function of the spatial frequency α, in (a) and (b), respectively. The relation
among the spatial and temporal frequencies is given by the dispersion relation
(8). Positive values of ωi characterize unstable waves (grey region).

Charru (2011), we analyze the stability properties of (6), by assuming travelling
wave-like solutions:

v′ = v̂ ei(αx−ωt), (7)

where α ∈ R and ω = ωr +iωi ∈ C. Substituting (7) in (6), a dispersion relation
between the spatial wave-number α and the temporal frequency ω is obtained

ω = V α+ i

(
P
R
α2 − 1

R
α4

)
. (8)

This relation is shown in Figure 3 for R = 0.25, P = 0.05 and V = 0.4.
The parameters are chosen to closely model the Blasius boundary layer at
Reδ∗ = 1000. The imaginary part of the frequency ωi is the exponential
temporal growth rate of a wave with wave-number α. In (8) it can be observed
that the term in α2 (associated to the production parameter P), is providing
a positive contribution to ωi, while the α4 term (related to the dissipation
parameter R), has a stabilizing effect. The competition between these two
terms determines stability of the considered wave. From Figure 3, it can be
observed that for an interval of wave-numbers α, ωi > 0, i.e. the wave is
unstable. The real part ωr determines the phase speed of the wave in the x
direction,

c ,
ωr
α

= V. (9)

Note that the phase speed c is independent of α, in contrast to the boundary-
layer flow, which is dispersive (Schmid & Henningson 2001).



P1-8 N. Fabbiane, O. Semeraro, S. Bagheri & D.S. Henningson

x

t

0 100 200 300 400 500 600 700 800
0

500

1000

1500

2000

Figure 4: Response to a small, localized initial condition in a 1D KS flow (6)
with R = 0.25, P = 0.05 and V = 0.4. The contours are shown as a function
of the streamwise direction (x) and the time (t). The initial condition triggers
a growing and travelling wave-packet, similar to the 2D boundary-layer flow
shown in Figure 2. [script00.m].

2.2. Outflow boundary condition

So far in our analysis we have assumed periodic boundary conditions for the KS
equation. As we are interested in modelling the amplification of a propagating
wave-packet near a stable steady solution (as observed in the case of boundary-
layer flow), it is appropriate to change the boundary conditions to an outflow
condition on the right side of the domain

∂3v′

∂x3

∣∣∣∣
x=L

= 0,
∂v′

∂x

∣∣∣∣
x=L

= 0, (10)

while on the left side of the domain, at the inlet, an unperturbed boundary
condition is considered

v′|x=0 = 0,
∂v′

∂x

∣∣∣∣
x=0

= 0. (11)

With an outflow boundary condition, a localized initial perturbation in the
upstream region of the domain travels in the downstream direction while growing
exponentially in amplitude until it leaves the domain. This is the signature
of a convectively unstable flow. Note the this choice of boundary conditions
is the main variant with respect of the original KS equation, characterized by
periodic boundaries. Figure 4 shows the spatio-temporal response to a localized
initial condition of KS equation with outflow boundary condition. The set
of parameters R, P and V has been chosen to mimic the response of the 2D
boundary-layer flow, shown in Figure 2. However, note that in the KS model the
wave crests travel parallel to each other with the same speed of the wave-packet,
whereas in the boundary layer, they travel faster than the wave-packet which
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Figure 5: Spatial support of the inputs and outputs along the streamwise
direction. All the elements are modelled as a Gaussian function in (14), with
σd = σu = σy = σz = 4.

they form. Indeed the system is not dispersive, i.e. the phase speed c equals
the group speed cg as shown by (9); conversely, as already noticed, the 2D BL
is dispersive.

2.3. Introducing inputs and outputs

Having presented the dynamics of the linear system, we now proceed with a
more systematic analysis of the inputs (actuators/disturbances) and sensor
outputs described in §1.1. Consider the linearized KS equation in (6)

∂v′

∂t
= −V ∂v

′

∂x
− 1

R

(
P ∂2v′

∂x2
+
∂4v′

∂x4

)
+ f ′(x, t), (12)

where the forcing term f ′(x, t) now appears on the right-hand side. This term
is decomposed into two parts,

f ′(x, t) = bd(x) d(t) + bu(x)u(t). (13)

The temporal signal of the incoming external disturbance and of the actuator
are denoted by d(t) and u(t), respectively, while the corresponding spatial
distribution is described by bd and bu. In this work, the time-independent
spatial distribution of the inputs is described by the Gaussian function,

g(x; x̂, σ) =
1

σ
exp

[
−
(
x− x̂
σ

)2
]
. (14)

The scalar parameter σ determines the width of the Gaussian distribution,
whereas x̂ determines the centre of the Gaussian. The two forcing distributions
in (13) are

bd(x) = g(x; x̂d, σd), bu(x) = g(x; x̂u, σu). (15)

The disturbance d is positioned in the beginning of the domain at x̂d = 35,
while the actuator u in the middle of the domain at x̂u = 400 (see Figure 5).
In the presentation above, the particular shape bd(x) of the disturbance d is
part of the modelling process. However, note that the introduction of the
upstream disturbance using a localized and well defined shape bd(x) is a model.
In practice, due to the receptivity processes, the distribution and the appearance
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of the incoming disturbance is not known a-priori, and thus difficult to predict
using – for instance – a low-order model.

A similar issue may arise for the model of the actuator bu(x), where the
forcing distribution can even be time varying. For example the spatial force
that a plasma actuator induces in the flow depends on the supplied voltage,
e.g. modulated by the amplitude u(t) (Grundmann & Tropea 2008). As we will
discuss in the following sections, one may design a controller without knowing
bd(x) and bu(x), but for the sake of presentation we may assume in this section,
that such models exist.

By using (14) as integration weights, we define two outputs of the system
as

y(t) =

∫ L

0

cy(x) v′(x, t) dx+ n(t), (16)

z(t) =

∫ L

0

cz(x) v′(x, t) dx, (17)

where L is the length of the domain defined earlier and

cy(x) = g(x; x̂y, σy), cz(x) = g(x; x̂z, σz).

The output y provides a measurement of an observable physical quantity – for
example shear-stress, a velocity component or pressure near the wall – averaged
with the Gaussian weight. In realistic conditions, this measured quantity is
subject to some form of noise, that may arise from calibration drifting, truncation
errors and/or incomplete cable shielding, etc. This is taken into account by
the forcing term n(t). It is often modelled as random noise with Gaussian
distribution of zero-mean and variance α, and can be regarded as an input of
the system. The second output z(t), located far downstream, represents the
objective of the controller: assuming that the flow has been already modified
due to the action of the controller, this controlled output is the quantity that
we aim to keep as small as possible.

In Figure 6, we show the response of our system to a Gaussian white noise
in d(t) with a unit variance, where all temporal frequencies are excited. Via
the dispersion relation (8), each temporal frequency ωr is related to a spatial
frequency α = V ωr. The input signal d(t) is thus filtered by the system, where
after a short transient, only the unstable spatial wavelengths are present in the
state v(t), Figure 6(a), and the two output signals y(t) and z(t), Figure 6(c-d).
The variance of the output z(t) is higher than the variance of y(t) by a factor
10, independently by the realization; this is because the wave-packets generated
by d is growing in amplitude while convected downstream. We note that each
realization will generate a different time evolution of the system but with the
same statistical properties (black and grey lines in Figure 6(b-d)).
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2.4. State-space formulation

We discretize the spatial part of (12) by a finite-difference scheme. As further
detailed in §7, the solution is approximated by

v′i(t) = v′(xi, t) i = 1, 2, ..., nv
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defined on the equispaced nodes xi = iL/nv, where nv = 400. The spatial
derivatives are approximated by a finite difference scheme based on five-points
stencils. Boundary conditions in (11–10) are imposed using four ghost nodes
i = −1, 0 and i = nv + 1, nv + 2. The resulting finite-dimensional state-space
system (called plant) is

v̇(t) = A v(t) + Bd d(t) + Bu u(t), (18)

y(t) = Cy v(t) + n(t), (19)

z(t) = Cz v(t), (20)

where v ∈ Rnv represents the nodal values v′i. The output matrices Cy and Cz

approximate the integrals in (16–17) via the trapezoidal rule, while the input
matrices Bd and Bu are given by the evaluation of (15) at the nodes.

Some of the control algorithms that we will describe are preferably formu-
lated in a time-discrete setting. The time-discrete variable corresponding to
a(t) is

a(k) = a(k∆t), k = 1, 2, ... (21)

where ∆t is the sampling time. Accordingly, the time-discrete state-space
system is defined as:

v(k + 1) = Ã v(k) + B̃d d(k) + B̃u u(k), (22)

y(k) = C̃y v(k) + n(k), (23)

z(k) = C̃z v(k), (24)

where Ã = exp (A ∆t) , B̃ = ∆tB and C̃ = C. For more details, the interested
reader can refer to any control book, see e.g. (Glad & Ljung 2000).

2.5. Transfer functions and Finite-impulse responses

Given a measurement signal y(t), our aim is to design an actuator signal u(t).
The relation between input and output signals is of primary importance. Since
we are interested in the effect of the control signal u(t) on the system, we assume
the disturbance signal d(t) to be zero. Thus, given an input signal u(t) and a
zero initial condition of the state, the output z(t) of (18–20) may formally be
written as

z(t) =

∫ t

0

Pzu(t) u(t− τ) dτ, (25)

where the kernel is defined by

Pzu(t) , Cz e
At Bu, t ≥ 0. (26)

Note that the description of the input-output (I/O) behaviour between u(t) and
z(t) does not require the knowledge of the full dynamics of the state but only a
representation of the impulse response between the input u and the output z,
here represented by (26). A Laplace transform results in a transfer function

ẑ(s) = P̂zu(s)û(s) = (Cz(sI −A)−1Bu)û(s)
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with s ∈ C. Henceforth the hat on the transformed quantities is omitted since
related by a linear transformation to the corresponding quantities in time-
domain. One may formulate a similar expression for the other input-output
relations, which for our case with three inputs and two outputs, induces 6
transfer functions, i.e.[

z(s)
y(s)

]
=

[
Pzd(s) Pzu(s) Pzn(s)
Pyd(s) Pyu(s) Pyn(s)

] d(s)
u(s)
n(s)

 . (27)

I/O relations similar to (25) can be found for the time-discrete system. The
response z(k) of the system (with v0 = 0) to an input u(k) is

z(k) =
k∑
i=1

P̃zu(i) u(k − i), (28)

where
P̃zu(k) , C̃z Ãk−1 B̃u, k = 1, 2, ... (29)

This procedure is usually referred to as z-transform; for more details, we refer
to Glad & Ljung (2000) and Skogestad & Postlethwaite (2005). In the limit
of k → ∞, it is possible to truncate (28), since the propagating wave-packet
that is generated by an impulse in u will be detected by the output z after a
time-delay (this can be observed in Figure 7, where the impulse response is

depicted). Thus, P̃zu(i) is non-zero only in a short time interval and one may
truncate the sum to a finite number of time steps, Nzu, f . Due to the strong
time-delay, the initial part of the sum is also zero and the lower limit of the
sum can start from Nzu, i. This results in a sum

z(k) ≈
Nzu, f∑
i=Nzu, i

P̃zu(i) u(k − i), (30)
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which is called the Finite Impulse Response (FIR), Aström & Wittenmark
(1995). Note that the presence of time delays in the system is a limiting factor
of the control performance. In general, a disturbance with a time scale smaller
than the time delay that affects the system is difficult to control (Glad & Ljung
2000). In particular, while the compensator could still be able to damp those
disturbances, it may lack robustness, §2.8.

2.6. Controllability and observability

The choice of sensors and actuators is particular relevant for the control design;
indeed, the measurement of the sensor y enables to compute the control signal
u(t), that feeds the actuator. Thus, it is important to know: (i) if the system
can be affected by the actuator u; (ii) if the system can be detected by the
sensor y. In other words, we aim at identify the states of the system that are
controllable and/or observable. These two properties of the I/O system are
referred to as observability and controllability (Glad & Ljung 2000; Bagheri
et al. 2009c) and can be analyzed introducing the corresponding Gramians Go

and Gc

Go ,
∫ ∞

0

eA
Ht CHC eAt dt, (31)

Gc ,
∫ ∞

0

eAt B BH eA
Ht dt. (32)

By construction, the Gramians (Go,Gc) are positive semi-definite matrices in
Rnv×nv and can be computed for each or all the outputs/inputs. It can be
proved that the two Gramians are solutions of the Lyapunov equations (Glad
& Ljung 2000)

AH Go + Go A + CH C = 0, (33)

A Gc + Gc AH + B BH = 0. (34)

The spatial information related to the Gramians can be analyzed by diagonal-
izing them; the corresponding decompositions allow to identify and rank the
most controllable/observable structures (Bagheri et al. 2009c). On the other
hand, for systems characterized by a small number of degrees of freedom, it
is possible to directly identify the regions where the flow is observable and/or
controllable. Figure 8 shows the controllability Gramian related to the actuator
u (Gc, u) and the observability Gramian related to the sensor y (Go, y) for our
system. The region downstream of the actuator is influenced by its action, due
to the strong convection of the flow. The observability Gramian Go, y indicates
the region where a propagating perturbation can be observed by the sensor
y. Note that the two regions do not overlap, thus wave-packets generated at
the location u are not detected by a sensor y, when is placed upstream of the
actuator. This feature has important consequences on the closed-loop analysis,
as introduced in the next section.
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2.7. Closed-loop system

The aim of the control design is to identify a second linear system Kuy, called
compensator, that provides a mapping between the measurements y(t) and the
control-input u(t), i.e.

u(t) =

∫ ∞
0

Kuy(τ) y(t− τ) dτ

The chosen compensator is also called output feedback controller (Doyle et al.
1989; Zhou et al. 2002). This definition underlines the dependency of the control
input u(t) from the measurements y(t). By considering the relation in frequency
domain and inserting it into the plant (27), the closed-loop system between d(s)
and z(s) is obtained in the form,

z(s) =

[
Pzd(s) +

Pzu(s)Kuy(s)Pyd(s)
1− Pyu(s)Kuy(s)

]
d(s). (35)

By choosing an appropriate Kuy(s), we may modify the system dynamics. The
graphical representation of the closed-loop system is shown in Figure 9. The
transfer function Pyu(s) describes the signal dynamics from the actuator u to the
sensor y. By definition, a feedback configuration is obtained when Pyu(s) 6= 0,
i.e. when the sensor can measure the effect of the actuation. On the other hand,
if Pyu(s) is zero (or very small), the closed-loop system reduces to a disturbance
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Figure 9: Schematic figure showing the 5 transfer functions defining the closed-
loop system (35). The transfer functions Pyd, Pzd describe the input/output
behaviour between the disturbance d and the outputs y and z, respectively; Pyu
and Pzu relate the actuator u to the two outputs y and z, respectively, while
Kuy is the compensator transfer-function. Because of the convectively unstable
nature of the flow, Pyu is negligible for the chosen sensor/actuator locations;
thus it does not allow any feedback.

feedforward configuration (Doyle et al. 1989; Zhou et al. 2002). In this special
case, from the dynamical point of view such a system behaves as an open-loop
system despite the closed-loop design (Skogestad & Postlethwaite 2005). Due to
this inherent ambivalence within the framework of the output feedback control,
sometimes the definition of reactive control is used for indicating all the cases
where the control signal is computed based on measurements of the system;
thus, the definition of closed-loop system more properly applies to a system
where the reactive controller is characterized by feedback (Gad-el Hak 2007).

In a convection-dominated system, the sensor should be placed upstream
of the actuator, in order to detect the upcoming wave-packet before it reaches
the actuator (see also Figure 8); if it is placed downstream, the actuator has
no possibility to influence the propagating disturbance once it has reached the
sensor. Figure 10 shows the state and signal responses of the KS system to
impulse in u, where it is clear that the actuator’s action is not detected by
the sensor y, in practice Pyu(s) ≈ 0. Note that no assumptions about the
compensator has been made; the feedback or feedforward setting is determined
by the choice of sensor and actuator placement.

2.8. Robustness

In practice, model uncertainties are unavoidable and it is important to estimate
how much the error arising from the mismatch between the physical system and
the model affects the stability and performance of the closed-loop system. In
general, one wishes to have a controller that does not amplify un-modelled errors
over a range of off-design conditions: a robustness analysis aims at identify this
range. A useful quantity in this context, is the sensitivity transfer function,
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which is defined as the denominator in the second term on the right-hand side
of (35), i.e.

S(s) =
1

1− Pyu(s)Kuy(s)
. (36)

Robustness can be quantified as the infinity norm of S(s). Good stability
margins are guaranteed when this norm is bounded, typically ‖S‖∞ < 2.0, see
Skogestad & Postlethwaite (2005). A second measure is the phase margin, that
represents the maximum amount of allowable phase error before the instability
of the closed-loop occurs. Indeed, the gain margin and the phase margin are
the upper limit of amplification and phase error, respectively, that guarantee
marginal stability of the closed-loop system.
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Note that the internal stability functions are characterized by a proper
dynamics. In the loop-shaping approach, the controller is designed by shaping
the behaviour of the internal transfer function (Skogestad & Postlethwaite 2005).
Unfortunately, this methodology is difficult to be applied in complex system. A
systematic approach for the robust design is represented by the optimal, robust
H∞ (see (Zhou et al. 2002)), where the sensitivity margins can be optimized. A
more computationally demanding alternative is represented by the controllers
based on numerical optimization running on-line, such as the model-predictive
control (MPC) (§3.2) or adaptive controllers (§5.4).

Thus, feedback controllers may be designed to have small sensitivity. In
that regard robustness is a non-issue in a pure feedforward configuration;
indeed, Pyu(s) ≈ 0 and ‖S‖∞ ≈ 1. However, a feedforward controller is highly
affected by unknown disturbances and model uncertainty, that drastically reduce
the overall performance of the device. Moreover, a feedforward controller is
not capable in modifying the dynamics of an unstable plant; thus, feedback
controllers are required for globally unstable flows (Sipp & Schmid 2013).

The studies performed by Juillet et al. (2013) and Belson et al. (2013) show
that in convectively unstable flows a feedback configuration allows the possibility
of robust-control design but it does not guarantee optimal performances in terms
of amplitude reduction. In this review, we adopt a feedforward configuration
in order to achieve optimal performances. As we will show in §5.4, robustness
may be addressed to some extent using adaptive control techniques.

3. Model-based control

In this section, we assume the full knowledge of the state v(t) for the computation
of the control signal u(t). This signal is fed back into the system in order to
minimize the energy of the output z(t). For linear systems, it is possible to
identify a feedback gain K(t), relating the control signal to the state, i.e.

u(t) = K(t)v(t). (37)

The aim of the section is to compare and link the classical LQR problem (Lewis
& Syrmos 1995) to the more general MPC approach (Bewley et al. 2001; Kim
& Bewley 2007). In the former approach, one assumes an infinite time horizon
(t→∞), allowing the computation of the feedback gain by solving a Riccati
equation (see §3.1.1). In the latter approach, the optimization is performed
with a final time T that is receding, i.e. it slides forward in time as the system
evolves. In §3.2.1, we introduce this technique for the control of a linear system
with constraints on the actuator signal, while in §3.2.3 the close connection
between the unconstrained MPC and the LQR is shown. Finally, note that the
framework introduced in this section makes use of a system’s model. Model-free
methods based on adaptive strategies are introduced in §5.



Adaptive and model-based control in convectively-unstable flows P1-19

3.1. Optimal control

The aim of the controller is to compute a control signal u(t) in order to minimize
the norm of the fictitious output

z′(t) =

[
z(t)
u(t)

]
=

[
Cz

0

]
v(t) +

[
0
1

]
u(t), (38)

where now the control signal is also included. We define a cost function of the
system

L (v(u), u) =
1

2

∫ T

0

[
z
u

]H [
wz 0
0 wu

] [
z
u

]
dt. (39)

This cost function is quadratic and includes the constant matrices wz ≥ 0 and
wu > 0. The matrix wz is used to normalize the cost output, specially when
multiple z(t) are used, while the weight wu determines the amount of penalty
on control effort (Lewis & Syrmos 1995). Using (38), (39) is rewritten as

L (v(u), u) =
1

2

∫ T

0

(
vH

(
CH
z wzCz

)
v + uH wu u

)
dt =

=
1

2

∫ T

0

(
vH Wv v + uH wu u

)
dt (40)

where Wv = CH
z wzCz. We recall from §2.3 that the sensor Cz is placed far

downstream in the domain, so we are minimizing the energy in localized region.
We seek a control signal u(t) that minimizes the cost function L (v(u), u) in
some time interval t ∈ [0, T ] subject to the dynamic constraint

v̇(t) = A v(t) + Bu u(t). (41)

Note that we do not consider the disturbance d(t) for the solution of the optimal
control problem. In a variational approach, one defines a Lagrangian

L̃ (v(u), u) =
1

2

∫ T

0

(
vH Wv v + uH wu u

)
dt+

+

∫ T

0

pH (v̇ −A v −Buu) dt, (42)

where the term p(t) acts as a Lagrangian multiplier (Gunzburger 2003), also
called the adjoint state. The expression in the last term is obtained via integra-
tion by parts. Instead of minimizing L with a constraint (41) one may minimize

L̃ without any constraints.

The dynamics of the adjoint state p(t) is obtained by requiring ∂L̃/∂v = 0,
which leads to

−ṗ(t) = AH p(t) + Wv v(t),

0 = p(T ). (43)
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The adjoint field p(t) is computed by marching backwards in time this equation,
from t = T to t = 0. The optimality condition is obtained by the gradient

∂ L̃
∂u

= BH
u p + wu u. (44)

The resulting equations’ system can be solved iteratively as follows:

1. The state v(t) is computed by marching forward in time (41) in t ∈ [0, T ].
At the first iteration step, k = 1, an initial guess is taken for the control
signal u(t).

2. The adjoint state p(t) is evaluated marching (43) backward in time, from
t = T to t = 0. The initial condition p(T ) is taken to be zero.

3. Once the adjoint state p(t) is available, it is possible to compute the
gradient via (44) and apply it for the update of the control signal using a
gradient-based method; one may for example apply directly the negative

gradient ∆uk = −∂L̃k
∂u

, such that the update of the control signal at

each iteration is given by

uk+1 = uk + µk∆uk.

The scalar-valued parameter µk is the step-length for the optimization,
properly chosen by applying backtracking or exact line search (Boyd
& Vandenberghe 2004). An alternative choice to the steepest descent
algorithm is a conjugate gradient method (Press et al. 2007).

The iteration stops when the difference of the cost function L estimated at
two successive iteration steps is below a certain tolerance or the gradient value
∂L̃/∂u→ 0. We refer to Gunzburger (2003) for more details and to Corbett &
Bottaro (2001) for an application in flow optimization.

3.1.1. Linear-quadratic regulator (LQR)

The framework outlined in the previous section is rather general and it can
be applied for the computation of the control signal u(t) also when nonlinear
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systems or receding finite-time horizons are considered. However, a drawback
of the procedure is the necessity of running an optimization on-line, next to
the main flow simulation/experiment. When a linear time-invariant system is
considered, a classic way to proceed is to directly use the optimal condition (44)
in order to identify the optimal control signal u(t)

u(t) = −w−1
u BH

u p(t). (45)

The computed control signal u(t) is optimal as it minimizes the cost function
L (v(u), u) previously defined. Assuming a linear relation between the adjoint
state and the direct state, p(t) = X(t)v(t), the feedback gain is given by

K(t) = −w−1
u BH

u X(t). (46)

It can be shown that the matrix X(t) is the solution of a differential Riccati
equation (Lewis & Syrmos 1995). When A is stable, X(t) reaches a steady
state as T →∞, which is a solution of the algebraic Riccati equation

0 = AHX + XA−X Buw
−1
u BH

u X + Wv. (47)

The advantage of this procedure is that K is a constant and needs to be
computed only once. The spatial distribution of the control gain K is shown in
Figure 11 for the KS system analysed in §2, where the actuator is located at
x = 400 and the objective output at x = 700. From Figure 11 one can see that
the gain is a compact structure between the elements Bu and Cz. The control
gain is independent on the shape of external disturbance Bd.

For low-dimensional systems (nv < 103), solvers for the Riccati equations
(47) are available in standard software packages (Arnold & Laub 1984). For
larger systems nv > 103, as the ones investigated in flow control, direct methods
are not computationally feasible. Indeed, the solution of (47) is a full matrix,
whose storage requirement is at least of order O(n2

v). The computational
complexity is of order O(n3

v) regardless the structure of the system matrix A
(Benner et al. 2008). Alternative techniques include the Chandrasekhar method
(Banks & Ito 1991), Krylov subspace methods (Benner 2004), decentralized
techniques based on Fourier transforms for spatially invariant system (Bamieh
et al. 2002; Högberg & Bewley 2000; Högberg et al. 2003a) and finally iterative
algorithms (Akhtar et al. 2010; Martensson & Rantzer 2011; Pralits & Luchini
2010; Semeraro et al. 2013b). Yet, a different approach consists of reducing
nv before the control techniques are applied. In practice, we seek a low-order
surrogate system, typically of O(nv, r) ≈ 10− 102, whose dynamics reproduces
the main features of the original, full-order system. Once the low-order model
is identified, the controller is designed and fed into the full-order system; such
an approach enables the application of a controller next to real experiments,
using small (and fast) real-time computations. The model-reduction problem is
an important aspect of control design for flow control; we refer to §6 for a brief
overview.
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Figure 12: MPC strategy: the controller is computed over a finite time-horizon
Tc, based on the a predicted time-horizon Tp. Once the solution is available, the
control signal is applied on a shorter time windows Ta. In the successive step,
the time-window slides forward in time and the optimization is performed again,
starting from a new initial condition at t = Ta. The procedures is iterated while
proceeding forward in time.

3.2. Model-predictive control (MPC)

MPC controllers make use of an identified model to predict the behaviour of
the system over a finite-time horizon (see Garcia et al. (1989), Qin & Badgwell
(2003) and Noack et al. (2011) for an overview on the technique). In contrast
with the optimal controllers presented in the previous section, the iterative
procedure is characterized by a receding finite horizon of optimization. This
strategy is illustrated in Figure 12; at time t0, a control signal is computed
for a short window in time [t0, t0 + Tc] by minimising a cost function (not
necessarily quadratic); Tc is the final time of optimization for the control
problem. The minimization is performed on-line, based on the prediction of
the future trajectories emanating from the current state at t0 over a window
of time [t0, t0 + Tp], such that Tp ≥ Tc. In other words, the control signal is
computed over an horizon Tc in order to minimize the predicted deviations from
the reference trajectory evaluated on a (generally) longer time of prediction
Tp. Once the calculation is performed, only the first step Ta is actually used
for controlling the system. After this step, the plant is sampled again and the
procedure is repeated at time t = t0 + Ta, starting from the new initial state.
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The MPC approach is applicable to nonlinear models as well as all nonlinear
constraints (for example an upper maximum amplitude for the actuator signals).
We present an example of the latter case in the following section.

3.2.1. MPC for linear systems with constraints

Although it is possible to define MPC in continuous-time formulation (see
for instance (Garcia et al. 1989), (Bewley et al. 2001)), we make use of the
more convenient discrete-time formulation. Let M = Tp/∆t and N = Tc/∆t,
where the parameter ∆t is the sampling time. Since Tp ≥ Tc, we have M ≥ N .
Augmenting the expression (28) with a term representing an initial state v(k)
at time k, we get

z(k + j|k) = C̃zÃ
j v(k) +

min(j,N)∑
i=1

C̃zÃ
i−1B̃u u(k + j − i) =

= P̃zv(j) v(k) +

min(j,N)∑
i=1

P̃zu(i) u(k + j − i), (48)

where j = 1, 2, . . . ,M . The state equation can be written in matrix form by
recursive iteration, resulting in the matrix-relation

zp(k) = Pzvv(k) + Pzuup(k). (49)

The matrix Pzv appearing in (49) is the observability matrix of the discrete-time
system

Pzv =


P̃zv(1)

P̃zv(2)
...

P̃zv(M)

 =


C̃zÃ

C̃zÃ
2

...

C̃zÃ
M

 , (50)

while the matrix Pzu, related to the convolution operator, reads

Pzu =



P̃zu(1)

P̃zu(2) P̃zu(1)
...

...
. . .

P̃zu(N) P̃zu(N − 1) · · · P̃zu(1)
...

...
...

P̃zu(M) P̃zu(M − 1) · · · P̃zu(M −N + 1)


=



C̃zB̃u

C̃zÃB̃u C̃zB̃u

...
...

. . .

C̃zÃ
N−1B̃u C̃zÃ

N−2B̃u · · · C̃zB̃u

...
...

...

C̃zÃ
M−1B̃u C̃zÃ

M−2B̃u · · · C̃zÃ
M−N B̃u


. (51)
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In literature, the matrix Pzu is also referred to as dynamic matrix, because it
takes into account the current and future input changes of the system. Note
that the entries of the observability matrix (50) are directly obtained from the
model realization, while the entries of the dynamic matrix (51) are represented
by the time-discrete impulse response between the actuator u and the sensor
z. The input vector zp(k) and output vector up(k) are defined collecting the
corresponding time-signals at each discrete step

zp(k) =


z(k + 1|k)
z(k + 2|k)

...
z(k +M |k)

 , up(k) =


u(k|k)

u(k + 1|k)
...

u(k +N − 1|k)

 . (52)

Thus, the matrix relation (49) provides a linear relation between the state v(k)
and the output zp(k) when the system is forced by the control input up(k).
The evaluation of the future output vector zp(k) represents the prediction step
of the procedure; indeed, assuming that the control signal contained in the
vector up(k) is known, we aim at computing the future output zp(k), related
to the trajectory emanating from the initial condition v(k).

By following the same rationale already adopted in the optimal control
problem, a cost function L(k) that minimizes the output z(t) while limiting the
control expense is defined,

L(k) =

M∑
i=1

zH(k + i|k)wz z(k + i|k)

+

N−1∑
i=0

uH(k + i|k)wu u(k + i|k) =

= zp(k)H Wz zp(k) + up(k)H Wu up(k). (53)

The parameters Wz and Wu are represented by block diagonal matrices contain-
ing the weights wz and wu. One may also have non-quadratic costs functions in
MPC; examples are given by Bewley et al. (2001) for the control of a turbulent
channel. In our case, we choose a quadratic cost function in order to compare
performance with the LQR controller. By combining the cost function (53) and
the state equation (49), we get

L(k) = zp(k)H Wz zp(k) + up(k)H Wu up(k) =

= [Pzvv(k) + Pzuup(k)]
H

Wz [Pzvv(k) + Pzuup(k)] +

+ up(k)H Wu up(k). (54)

Note that this manipulation is analogous to the definition of Lagrangian already
shown for the LQR problem (42). The minimization of L(k) with respect of
up(k) reads

min
up(k)

{
1

2
uHp (k) H up(k) + c(k) up(k) : Cup(k) 6 D

}
(55)



Adaptive and model-based control in convectively-unstable flows P1-25

43500 43700 43900 44100 44300 44500 44700 44900 45100 45300 45500
−3

−2

−1

0

1

2

3

t

u
(t

)

 

 

LQR + saturation constrained MPC LQR

Figure 13: Control design in presence of constraints: the grey regions indicate
the limits imposed to the amplitude of the control signal u(t). The control
u(t) is designed following two different strategies: LQR with a saturation
function (−) and constrained MPC (−), see §3.2.2. The LQR solution (− −)
is introduced as reference. The performances of the controllers are shown in
terms of rms-velocity reduction in Figure 14.

where

H = 2
(
PH

zuWzPzu + Wu

)
c(k) = 2 vH(k)PH

zvWzPzu (56)

and Cup(k) 6 D is a constraint (Bryd et al. 1999), which we have not specified
yet. Once this minimization problem is solved, the control signal is applied for
one time step, corresponding to ∆T = Ta, followed by a new iteration at step
k + 1.

3.2.2. Actuator saturation as constraint

The need of introducing constraints in the optimization process usually arises
when we consider real actuators characterized by nonlinear behaviour, due
for instance to saturation effects. For example, the body force generated by
plasma actuators (Grundmann & Tropea 2008; Corke et al. 2010) – usually
approximated by considering the macroscopic effects on a flow – is often modelled
as a nonlinear function of the voltage (Suzen et al. 2005; Kriegseis 2011).

Consider now a control signal, whose amplitude is required to be bounded
in the interval −umax 6 u 6 umax. We thus minimize

min
up(k)

{
1

2
uHp (k) H up(k) + c(k) up(k) : ūmin 6 up(k) 6 ūmax

}
, (57)

where H and c are given by (56). One may solve this constrained MPC using
nonlinear programming (Boyd & Vandenberghe 2004). Since the function
to be minimized is a quadratic function, we have used a reflective Newton
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Figure 14: Control of the KS equation. The rms velocity as a function of the x
direction is analyzed; the uncontrolled configuration (−) is compared to three
diffrent control strategies already considered in Figure 13 (same legend).

method suggested by Coleman & Li (1996); this method is implemented in the
MATLAB R© routine quadprog.m.

We proceed by comparing the performance of the MPC controller with the
LQR solution discussed in §3.1.1. For a direct comparison, we apply an ad hoc
saturation function to the LQR control signal, i.e.

uLQR =

 uLQR if ūmin < uLQR < ūmax
ūmin if ūmin > uLQR
ūmax if ūmax 6 uLQR

. (58)

As shown in Figure 13, the control signal computed by the MPC (blue solid
line) closely follows the LQR solution (dashed black line), except in the intervals
where the value is larger or smaller than the imposed constraint. By simply
applying the saturation function in (58) to the LQR signal, the controller
becomes suboptimal; the resulting solution deviates from the optimal one and
settles back on it after t ≈ 300 time units. Simply cutting off the actuator signal
of LQR results in a significant reduction of performance, which in terms of
root-mean-square (rms) is almost one order of magnitude (shown in Figure 14).
The main drawback of the constrained MPC is the computational time required
by the on-line optimization, that can be prohibitive in experimental settings.

3.2.3. MPC for linear systems without constraints

For a linear system with the quadratic cost function (40) but without constraints,
a prediction/actuation time sufficiently long allows to approximate the solution
of the LQR. This is not obvious from the mere comparison of the continuous-time
LQR-objective function, (40) and (42), and the discrete-time MPC-objective
function, (53) and (54). For a detailed discussion, we refer to Anderson & Moore
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Figure 15: In (a) the LQR solution (§3.1.1) is compared to the MPC gains
computed for two different times of optimization Tp without constraints, see
§3.2.3. The optimization times are compared to the impulse response Pzu(t)
(b). Note that for longer time Tp, covering the main dynamics of the impulse
response Pzu(t), the MPC and LQR solutions are equivalent.

(1990), where the equivalence is demonstrated analytically. In the following, the
equivalence is exemplified using the KS equation.

When there are not imposed constraints, the optimization problem in (55)
corresponds to a Quadratic Program (Boyd & Vandenberghe 2004); by taking
the derivative of L(k) with respect of up(k), we may obtain up(k) as solution
of the following least-square problem

up(k) = −H†cH =

= −
(
PH

zuWzPzu + Wu

)†
PH

zuWzPzvv(k) =

=


K0

K1

...
KN−1

 v(k), (59)
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where (·)† indicates the Moore-Penrose generalized inverse matrix, (Penrose
1955). Note that this is a least square problem (in general, M ≥ N). If we
assume an actuation time-horizon Ta = ∆t, at each time step the control signal
u(k) reads

u(k) = K0 v(k). (60)

In Figure 15(a), the solid dashed line corresponds to the LQR gain obtained by
solving a Riccati equation, while the coloured lines correspond to the uncon-
strained MPC solution for different final time of prediction Tp. For a shorter
time of optimization (Tp = 750, red solid line) only a portion of the dynamics

of P̃zu(i) (see Figure 15(b)) is contained in the MPC gain. For longer times
(Tp = 1250, blue solid line) the MPC converges to the infinite-time horizon
LQR solution.

4. Estimation

In this section, we assume that the only information we can extract from the
system is the measurement y(t). This signal is used to provide an estimation
v̂(t) of the state such that the error given by

e(t) = v(t)− v̂(t), (61)

is kept as small as possible. We first derive the classical Kalman Filter, where
in addition to y(t), one requires a state-space model of the physical system.
Then we discuss the least-mean square (LMS) technique, which only relies on
the measurement y(t).

4.1. Luenberger observer and Kalman filter

The observer is a system in the following form

˙̂v(t) = A v̂(t) + Bu u(t)− L (y(t)− ŷ(t)) , (62)

ŷ(t) = Cy v̂(t), (63)

ẑ(t) = Cz v̂(t). (64)

This formulation was proposed for the first time by Luenberger in Luenberger
(1979), from whom it takes the name. Comparing this system with (18), it can
be noticed that it takes into account the actuator signal u(t) but it ignores the
unmeasurable inputs – the disturbance d(t) and the measurement error n(t).
In order to compensate this lack of information, a correction term based on
the estimation ŷ(t) of the measurement y(t) is introduced, filtered by the gain
matrix L.

The aim is to design L in order to minimize the magnitude of the error
between the real and the estimated state, i.e. expression defined in (61). Taking
the difference term by term between (18) and (62), an evolution equation for
the e(t) is obtained,

ė(t) = (A + LC) e(t) + Bd d(t)− Ln(t). (65)
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It can be seen that the error is forced by the disturbance d(t) and the measure-
ment error n(t), i.e. precisely the unknown inputs of the system.

4.1.1. Kalman filter

In the Kalman filter approach both the disturbance d(t) and the measurement
error n(t) are modelled by white noise, requiring a statistical description of the
signals. The auto-correlation of the disturbance signal is given by

Rd(τ) ,
∫ +∞

−∞
d(t) dH(t− τ) dt. (66)

This function tells us how much a signal is correlated to itself after a shift τ in
time. For a white noise signal this function is non-zero only when a zero shifting
(τ = 0) in time is considered and its value is the variance of the signal. Hence,
the correlation functions for the considered inputs signal d(t) and n(t) are

Rd(τ) = Rd δ(τ) and Rn(τ) = Rn δ(τ), (67)

where Rd and Rn are the variances of the two signals and δ(τ) is the continuous
Dirac delta function. When a system is forced by random signals, also the
state becomes a random process and it has to be described via its statistical
properties. Generally the calculation of these statistics requires a long time
history of the response of the system to the random inputs. But for the linear
system (65), it is possible to calculate the variance of the state Re ∈ Rnv×nv

by solving the following Lyapunov equation (Bagheri et al. 2009c)

(A + LCy)
H

Re + Re (A + LCy) + BdRd BH
d + LRn LH = 0. (68)

The trace of Re is a measure of how much the mean value of the error e(t)
differs from zero during its time evolution. One may thus define the following
cost function for the design of L

N = Tr (Re) = lim
T→∞

1

2T

∫ T

−T
eH(t) e(t) dt, (69)

where Tr (·) indicates the trace operator.

With a similar approach as in §3.1, we define a Lagrangian:

Ñ = Tr
{

Re + λλλ
[
(A + LCy)

H
Re + Re (A + LCy) +

+BdRd BH
d + LRn LH

]}
(70)

where the Lagrangian multiplier λλλ enforce the constraint given by (68). The
solution of the minimization is obtained by the imposing the solution to be
stationary respect the three parameters L, Re and λλλ. The zero-gradient
condition for L gives us the expression for the estimation gain,

L = −R−1
n Cy Re. (71)

The zero-gradient condition for the Lagrangian multiplier λλλ returns the Lyapunov
equation in (68): combining this equation with (71), a Riccati equation is
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Figure 16: Kalman estimation gain L computed for Rd = 1 and Rn = 0.1, (see
§4.1.1). [script06.m]

obtained for Re:

AHRe + ReA−Re CH
y R
−1
n Cy + BdRdB

H
d = 0. (72)

In Figure 16 the estimation gain L is shown, where it can be observed that the
spatial support is localized in the region immediately upstream of the sensor y.
In this region the amplitude of the forcing term in the estimator is the largest
to suppress estimation error. In Figure 17 we compare the full state (a) to the
estimated state (b) when the system is forced by a noise signal d(t). As a result
of strong convection, we observe that an estimation is possible only after the
disturbance has reached the sensor at x = 300, since upstream of this point
there are no measurements. For control design it is important that v(t) is well
estimated in the region where the actuators are placed; hence, the actuators
have to be placed downstream of the sensors (Belson et al. 2013; Juillet et al.
2013).

4.2. Estimation based on linear filters

A significant drawback of the Kalman filter, is that it requires a model of the
disturbance Bd for the solution of the Riccati equation (72). One may circumvent
this issue by using FIR to formulate the estimation problem. In analogue to
the formulations based LQR (model based) and on MPC (FIR based), we
will compare and link the Kalman filter to a system identification technique
called the Least-Square-Mean filter (LMS). Many other system identification
technique exists, the most common being the AutoRegressive-Moving-Average
with eXogenous inputs (ARMAX) employed in the work of Hervé et al. (2012).

From (62–64), we observe that the estimator-input is the measurement y(k),
while the output is given by the estimated values of z(k). The associated FIR
of this system is

ẑ(k) =

Nf, zy∑
i=Ni, zy

(
−Cz

ˆ̃Ai−1 ∆tL
)
y(k − i) =

Nf, zy∑
i=Ni, zy

Ẽzy(i) y(k − i) (73)



Adaptive and model-based control in convectively-unstable flows P1-31

x

plant

0

200

400

600

800

 

 

v(x,t)

−20 −15 −10 −5 0 5 10 15 20

x

observer

0

200

400

600

800

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

−2

10
−1

10
0

t

e
rr

 

 

||v
obs

 − v||
2
 / ||v||

2
||v

obs
 − v||

°
 / ||v||

°° °

(a)

(c)

(b)

Figure 17: Spatio-temporal evolution of the response of the system to a distur-
bance d(t) (a), compared to the estimated full-order state, using a Kalman filter
(b); the contours are shown as a function of the streamwise direction (x) and
time (t). The error-norm between the original state and the estimated state
is shown in (c). The vertical blue, dashed line indicates when the estimator is
turned on. [script06.m]

where ˆ̃A = e(A+LCy)∆t and Ẽzy(i) denotes the impulse response from the
measurement y(k) to the output z(k). Note that, since we are considering a
convectively unstable system, the sum in (73) is truncated using appropriate
limits Ni, zy and Nf, zy (Aström & Wittenmark 1995). Next, we present a

method where Ẽzy(i) is approximated directly from measurements, instead of
its construction using the state-space model.
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4.2.1. Least-mean-square (LMS) filter

The main idea is to identify an estimated output ẑ(k) for the system, by
minimizing the error

e(k) = ẑ(k)− z(k) =

 Nf, zy∑
i=Ni, zy

Ẽzy(i) y(k − i)

− z(k), (74)

where z(k) is the reference measurement. The unknown of the problem is the

time-discrete kernel Ẽzy(i). Thus, we aim at adapt the kernel Ẽzy(i) such that
at each time step the error e(k) is minimized, i.e.

min
Ẽzy

e2(k). (75)

The minimization can be performed using a steepest descent algorithm (Haykin

1986); thus, starting from an initial guess at k = 0 for ẑ(k), Ẽzy is updated at
each iteration as

Ẽzy(i|k + 1) = Ẽzy(i|k) + µ(k)λ(i|k), (76)

where λ(i|k) is the direction of the update and µ(k) is the step-length. Note
that each iteration corresponds to one time step. The direction can be obtained
from the local gradient, which is given by,

λ(i|k) = − ∂e
2(k)

∂Ẽzy(i)
= −2 e(k) y(k − i). (77)

This expression was obtained by forming the gradient of the error e(k) with

respect to Ẽzy(i) and making use of the estimated output ẑ(k) (73).
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and shown as a function of the discrete-time (i∆t). The estimation starts at
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The second variable that needs to be computed in (76) is the step-length
µ(k). Consider the error at time-step k computed with the updated kernel

Ẽzy(i|k + 1)

ẽ(k) =

 Nf, zy∑
i=Ni, zy

Ẽzy(i|k + 1) y(k − i)

− z(k) =

= e(k) + µ(k)

 Nf, zy∑
i=Ni, zy

λ(i|k) y(k − i)

 , (78)

where (75) and (76) have been used. The step-length µ(k) is calculated at each
time step in order to fulfil

min
µ(k)

ẽ(k)2 (79)

by imposing a zero-derivative condition with respect to µ(k),
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∂ẽ(k)2

∂µ(k)
= 2 ẽ(k)

 Nf, zy∑
i=Ni, zy

λ(i|k) y(k − i)

 = 0. (80)

Assuming that
Nf, zy∑
i=Ni, zy

λ(i|k) y(k − i) 6= 0 (81)

and considering (78), the optimal step length becomes

µ(k) = − e(k)∑
i λ(i|k)y(k − i)

. (82)

In Figure 19(a), the LMS-identified kernel Ẽzy(i) is shown as a function
of time t = k∆t. When the LMS filter is turned on at t = 4000, the filter
starts to compute the kernel, which progressively adapts. While the iteration
proceeds, the error decreases as shown in Figure 19(b). In the limit of T →∞,
when a steady solution can be assumed, the kernel computed by the LMS filter
converges to the kernel Ẽzy obtained by the Kalman filter (see Figure 18).

The main drawback of the LMS approach is that the method is susceptible
to a numerical stability (Haykin 1986). A usual way for improving the stability
is to bound the the step-length µ(k) by introducing an upper limit. In particular,
it can be proven that in order to ensure the convergence of the algorithm, the
following condition has to be satisfied

0 < µ(k) < µ̄ =
2

Ry
, (83)

where the upper-bound µ̄ is defined by the variance Ry of the measurement y,
i.e. the input signal to LMS filter.

5. Compensator

Using the theory developed in §3 and §4, we are now ready to tackle the
full control problem (Figure 20): given the measurement y(t), compute the
modulation signal u(t) in order to minimize a cost function based on z(t). In
the first part of this section we will focus on the LQG regulator, that couples a
Kalman filter to a LQR controller. Then we present a compensator based on
adaptive algorithms using LMS techniques.

5.1. Linear-quadratic Gaussian (LQG) regulator

By solving the control and estimation Riccati equations and the associated
gains (L and K), we build a system that has as an input the measurement y(t)
and as an output the control signal u(t):

˙̂v(t) = (A + BuK + LCy) v̂(t)− L y(t) (84)

u(t) = K v̂(t). (85)
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Figure 20: Block-diagram of the closed-loop system. The compensator, consist-
ing of a controller coupled to an estimator, computes the control signal u(t)
given the measurement y(t). The minimization of the measurement z(t) is the
target parameter of the controller. Note that in a feedforward controller, the
output z can be used to add robustness to the compensator (for instance, in
adaptive filters, §5.4).

This linear system is referred to as the LQG compensator. The estimation
and control problem, discussed in the previous sections, are both optimal and
guarantee stability as long as the system is observable and controllable (Glad
& Ljung 2000). In particular, the disturbance d and the output z have to be
placed respectively in the y-observable and u-controllable region (Figure 8).
Under these conditions, a powerful theorem, known as the separation principle
(Glad & Ljung 2000), states that optimality and stability transfer to the LQG
compensator.

The closed-loop system obtained by connecting the compensator to the
plant becomes[

v̇(t)
˙̂v(t)

]
=

[
A BuK
−LCy A + BuK + LCy

] [
v(t)
v̂(t)

]
+

[
Bd

0

]
d(t). (86)

Figure 21 shows the response of (86) when a white random noise is considered
as an input in d(t). The horizontal solid black line in the top frame depicts
the location of y sensor: this signal is used to force the compensator at the
location depicted in the lower frame with a black dashed line. The compensator
then provides a signal to the actuator (dashed black line in the upper frame) to
cancel the propagating wave-packet. We let the two systems start to interact
at t = 4000, as depicted by the dashed blue line. As soon as the first wave-
packet, that is reconstructed by the compensator, reaches the actuation area,
the compensator starts to provide a non-zero actuation signal back to the plant.
Recall that the state v̂(t) of the LQG compensator is an estimation of the
state of the real plant v(t). This can be seen by comparing Figure 21(a) and
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Figure 21: Spatio-temporal response in presence of a white noise input d(t) for
the closed-loop system (a) and the compensator (b); the disturbance is shown as
a function of the streamwise direction (x) and time (t). The measurement y(t),
feeding the compensator, is shown in (c). At t = 4000 (− −), the compensator
starts its action and after a short lag the actuator is fed with the computed
control signal u(t). The perturbation is cancelled, as shown in the contours
reported in (a) and the output z(t) minimized (t > 5000). [script08.m]
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Figure 22: The rms velocity as a function of the streamwise location x is shown
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Figure 21(b); downstream of the sensor y the state of the compensator matches
the controlled plant.

Optimal controllers were applied to a large variety of flows, including
oscillator flows, such as cavity and cylinder-wake flow, where the dynamic is
characterized by self-sustained oscillations at well-defined frequencies, see Sipp
et al. (2010). Note that v(t) and v̂(t) have the same size: if complex systems
are considered, a full-order compensator can be computationally demanding
(Semeraro et al. 2013b); model reduction and compensator reduction enable to
tackle these limitations and design low-order compensators, see §6.

5.2. Proportional controller with a time delay

One may ask how a simple proportional controller compares to the LQG for
our configuration. In a proportional compensator, the control signal u(t) is
simply obtained by multiplying the measurement signal y(t) by a constant P .
Because of the strong time delays in our system, one needs to introduce also a
time-delay τ between the measurement y(t) and the control signal u(t). The
simplest control law for our system is

u(t) = P y(t− τ), (87)

where the “best” gain P and the time-delay τ can be found via a trial-and-error
basis (in our case, τ = 250 and P = −0.5432). This technique is also similar
to opposition control (Choi et al. 1994), where blowing and suction is applied
at the wall in opposition to the wall-normal fluid velocity, measured a small
distance from the wall.

In Figure 22, we compare the velocity rms obtained with LQG compensator
(red) and P -τ compensator (green). It can be observed that although both
techniques reduce the perturbation amplitude downstream of the actuator



P1-38 N. Fabbiane, O. Semeraro, S. Bagheri & D.S. Henningson

position (x = 400), the performance of the LQG regulator is nearly an order
of magnitude better than the proportional controller. This can be mainly
attributed to the additional degrees of freedom given by the nv × nv LQG
feedback gains, as opposed to the two-degree freedom P − τ controller. Indeed,
the LQG gains are computed assuming an accurate knowledge of the state-space
model. Also shown (dashed-solid line) is the full-information LQR control
whose performance is comparable the partial-information LQG controller: the
difference between the two is due to the difference between the estimated state
v̂(t) and the real state v(t), i.e. the estimation error e.

5.3. Model uncertainties

The LQG compensator is based on coupling an LQR controller and a Luenberger
observer. Both of them are based on a model of the system and, as a consequence,
their effectiveness is highly dependent on the quality of the model itself. Any
difference between the model and the real plant can cause an abrupt reduction
of the performances of the compensator (Doyle 1978; Belson et al. 2013). Model
error can be attributed to, for example, nonlinearities due to the violation of the
small perturbation hypothesis, nonlinearities of the actuator or sensors/actuators
shape and positioning.

The robustness problem can be illustrated using a simple example. Suppose
that one wants to cancel a travelling wave with a localized actuator; what one
should do is to generate a wave that is exactly counter-phase with respect to
the original one. Suppose that exact location of the actuation action is difficult
to model. Shifting the actuator position slightly is equivalent to adding an error
in the estimation of the phase of the original signal. This will in turn cause a
mismatch between the wave that is meant to be cancelled and the wave created
by the actuator, thus resulting in an ineffective wave cancellation – in the worst
case, it may result in an amplification of the original wave.

As shown in Figure 23, when we displace the actuator further downstream
by 5 spatial units and apply the compensator designed for the nominal condition
to this modified system, the performance of the LQG regulator deteriorates.
Since, the compensator provides a control signal that is meant to be applied in
the nominal position of the actuator the control signal is not able to cancel the
upcoming disturbance. Essentially, we are suffering from the lack of robustness of
the feedforward configuration, since the sensor cannot measure the consequence
of the defective actuator signal. There are different means to address this issue.

One can combine the feedforward configuration with a feedback action, in
order to increase robustness. This can be accomplished using the second sensor
z – downstream of the actuator – in combination with the estimation sensor y –
placed upstream of the actuator. The combination of feedback and feedforward
is the underlying idea of the MPC controller applied to our configuration (Goldin
et al. 2013). However, there are some drawbacks due to the computational costs
of the algorithm; indeed, the entries of the dynamic matrix (51) are computed
during the prediction-step using time integration, whose domain increases with
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Figure 23: Robustness to uncertainties of the system: the actuator is dispaced
of 5 length units from its nominal position. The performance of the adaptive
filter FXLMS (− − and · −) are compared to the LQR (− −), LQG (−) and
P -τ (−) compensators; as a reference, the uncontrolled case is shown (−).
The rms-velocity is shown as a function of the streamwise direction (x). The
adaptive filter performs reasonably well in presence of un-modelled dynamics;
the performances are enhanced by the use of a on-line identified P̃zu (− −).
The performances of the LQG (−) and P -τ (−) compensators are significantly
reduced (compare with Figure 22).[script10.m]

the time-delays of the system. Thus, the integration and the dimensions of the
resulting matrices can represent a bottleneck for the on-line optimization. An
alternative is the use of an adaptive algorithm, which adapts the compensator
response according to the information given by z(t), as shown in the next
section.

5.4. Filtered-X least-mean square (FXLMS)

The objective of FXLMS algorithm is to adapt the response of the compensator
based on the information given by the downstream output z. The first step of
the design is to describe the compensator in a suitable way in order to modify
its response. The FXLMS algorithm is based on a FIR description of the
compensator. Recall again that the compensator is a linear system (input is the
measurement y(t) and output is the control signal u(t)), which in time-discrete
form can be represented by,

u(k) =

∞∑
j=1

K̃uy(j) y(k − j) ≈
Nuy∑
j=1

K̃uy(j) y(k − j), (88)

where K̃uy(j) is a time-discrete kernel. Due to the stability of the system, we

have K̃uy(j)→ 0 as t→∞, so that the sum can be truncated after Nuy steps.
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In the case of LQG compensator K̃uy has the form

K̃uy(j) , K exp [(A + LCy + BuK) ∆t (j − 1)] L

for i = 1, 2, . . . The kernel K̃uy(j) of the LQG controller is shown with red

circles in Figure 24. In this case Nuy = 533, which gives
∣∣∣K̃uy(j)

∣∣∣ < 10−2 for

j > Nuy.

The FXLMS technique modifies on-line the kernel K̃uy(j) in order to
minimize the square of measurement z(t) at each time step (Sturzebecher &
Nitsche 2003), i.e

min
K̃uy(j)

z2(k). (89)

The procedure is closely connected to the LMS filter discussed in §4.2.1 for
the estimation problem. The kernel K̃uy(j) is updated at each time step by a
steepest-descend method:

K̃uy(j|k + 1) = K̃uy(j|k) + µ(k)λ(j|k) (90)

where µ(k) is calculated from (82) and λ(j|k) is the gradient of the cost function

z(k) with respect of the control gains K̃uy(j). In order to obtain the update
direction, consider the time-discrete convolution for z(k),

z(k) =

∞∑
i=0

P̃zd(i) d(k − i) +

∞∑
i=0

P̃zu(i) u(k − i) =

=

∞∑
i=0

P̃zd(i) d(k − i) +

∞∑
i=0

P̃zu(i)

Nuy∑
j=0

K̃uy(j) y(k − i− j) =

=

∞∑
i=0

P̃zd(i) d(k − i) +

Nuy∑
j=0

K̃uy(j)

∞∑
i=0

P̃zu(i) y(k − j − i).

From this expression it is possible to obtain the gradient

λ(j|k) = − ∂z(k)2

∂K̃uy(j)
= −2 z(k)

∞∑
i=0

P̃zu(i) y(k − j − i), (91)

which can be simplified by introducing the filtered signal yf (k),

yf (k) =

∞∑
i=0

P̃zu(i) y(k − j − i) ≈
Nf, zu∑
i=Ni, zu

P̃zu(i) y(k − i) (92)

Note that a FIR approximation of P̃zu(i) has been used. Hence, the expression
in (91) becomes,

λ(j|k) = −2z(k) yf (k − j). (93)

In order to get the descend direction, the measurement y(t) is filtered by the

plant transfer function P̃zu(i).

Starting the on-line optimization from the compensator kernel K̃uy(j) given
by the LQG solution, the algorithm is tested on our problem. In Figure 23 we
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observe that the algorithm is able to recover some of the lost performance of LQG
(due to shift in actuator position) and it is comparable to the full-information
control performed by the LQR controller with the nominal gain K. This is
possible because of the adaptation of the kernel K̃uy(j), to the new actuator
location. Figure 24 shows how the convolution kernel has been modified by the
algorithm; the kernel is shifted in time in order to restore the correct phase shift
between the control signal u(t) and the measurement signal y(t) in the modified
system. The shift in time between the two peaks (visible in the inset figure)
is exactly the time that it takes for the wave-packet to cover the additional
distance between the sensor and the actuator. Recalling from §2, that the
wave-packet travels with a speed V = 0.4, it will take ∆xu/V = 5/0.4 = 12.5
time units to cover the extra space between u and y.

From (91), it can be noted that the FXLMS is not completely independent

from a model of the system; in fact the convolution kernel P̃zu(i) is needed to
compute the gradient λ(j|k) used by the algorithm. In the previous example,
the nominal transfer function has been used, given by the model of the plant

P̃zu(i) = Cz e
A ∆t(i−1) Bu, i = 1, 2, ... (94)

One may obtained a kernel P̃zu(i) that is totally independent by the model –
thus without any assumption on placement/shape of both actuator and sensors
– by using the LMS identification algorithm derived in §4.2.1. In Figure 23, we
compare P̃zu(i) obtained from (94) using inaccurate state-space model – since

actuator position has shifted (solid blue) – with P̃zu(i) obtained by model-
free identification using LMS technique (dashed blue). We observe that when

combining adaptiveness with a more accurate model-free identification of P̃zu(i),
the performance is improved significantly.
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Figure 25: Two strategies are possible to compute a reduced-order compensator,
reduce-then-design an design-then-reduce. In general, the two paths do not lead
at the same results.

Note that this algorithm when applied to flows dominated by convection,
and thus characterized by strong time-delays, results in a feedforward controller
where the feedback information is recovered by the processing of the measure-
ments in z. This method is known to as active noise cancellation (Sturzebecher
& Nitsche 2003; Erdmann et al. 2012). We can identify two time scales: a fast
time-scale related to the estimation process and a slow time-scale related to the
adaptive procedure (Gad-el Hak 2007). For this reason, this method is suitable
for static or slowly varying model discrepancies.

6. Discussion

In this section, we discuss a few aspects that have not been addressed so far, but
are important to apply the presented techniques to an actual flowing fluid. Many
other important subjects such as choice of actuator and sensors, nonlinearities
and receptivity are not covered by this discussion.

Low-order control design. The discretization of the Navier-Stokes system
leads to high-dimensional systems that easily exceed 105 degrees of freedom.
For instance, the full-order solution of Riccati equations for optimal control and
Kalman filter problems cannot be obtained using standard algorithms (Benner
2004). One common strategy is to replace the high-dimensional system with a
low-order system able to reproduce the essential input-output dynamics of the
original plant. This approach is referred to as reduce-then-design (Anderson
& Liu 1989), left part of Figure 25. First, a reduced-order model is identified
using an appropriate model reduction or system identification technique; then
the validated reduced-order model is used to design a low-order compensator.
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The dual approach is called design-then-reduce or compensator reduction, right
part of Figure 25. In this case, a high-order compensator is designed as first
step (if possible). The second step is the reduction of the compensator to a
low-order approximation.

Both the approaches lead to a low-order compensator that can be used to
control the full-order plant, but they are not necessarily equivalent (Anderson
& Liu 1989). I the reduce-then-design approach, we neglect a number of
states during the model-order reduction of the open loop, that might become
important for the dynamics of the closed-loop system. Despite these limitations,
the reduce-then-design approach is the most common in flow control due to its
computational advantages; indeed, the challenge of designing a high-dimensional
compensator to be reduced strongly limits this alternative.

Model reduction. Following the reduce-then-design approach, the first step
consists of identifying a reduced-order model, typically reproducing the I/O
behaviour of the system. We can distinguish two classes of algorithms. The
first category is based on a Petrov-Galerkin projection of the full-order system.
In this case, the I/O behaviour of the system is reconstructed starting from
a low-order approximation of the state-vector vr, characterized by a number
of degree of freedom r � n; the projection can be performed on global modes
(Akervik et al. 2007), proper orthogonal modes (POD), obtained from the
diagonalization of the controllability Gramian (see §2.6), or balanced modes,
for which the controllability and observability Gramians are equal and diagonal
(Moore 1981; Rowley 2005; Bagheri et al. 2009c). This strategy has been widely
used in the flow-control community in the past years for the identification of
linear (Akervik et al. 2007; Ilak & Rowley 2008; Bagheri et al. 2009; Barbagallo
et al. 2009; Semeraro et al. 2011) and nonlinear models (Noack et al. 2003; Siegel
et al. 2008; Ilak et al. 2010). In particular, when nonlinear effects are considered,
it is necessary to take into account the effect that a finite disturbance in the flow
has on the base-flow, as shown by Noack et al. (2003) for a cylinder wake flow.
At low Reynolds numbers, a small number of modes are sufficient to reproduce
the behaviour of oscillators such as the cylinder wake, while a larger number of
modes is required to reproduce the I/O behaviour of convective unstable flows.
This is mainly due to the presence of strong time-delays (Glad & Ljung 2000)
that characterize this type of systems, §2.5.

The second approach stems from the I/O analysis of the formal solution car-
ried out in §2.5; we note that a low-order representation of the transfer function
is enough to reconstruct the I/O behaviour of the system. The computation
of this representation can be performed applying system identification algo-
rithms (Ljung 1999). Once the transfer functions are identified, one constructs
a reduced-order model in canonical form. These techniques were widely used
for experimental investigations (see e.g. Lundell (2007) and Rathnasingham
& Breuer (2003)) and have been recently applied also in numerical studies
(Huang & Kim 2008; Hervé et al. 2012). Indeed, for linear systems, it can be
shown that projection-based techniques and system identification techniques
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Figure 26: Control configuration for a three dimensional (3D) flow developing
over a flat plate. A possible configuration consists of localized sensors and
actuators placed along the spanwise direction.

can provide equivalent reduced-order models (Ma et al. 2011). We refer the
reader to the reviews by (Bagheri & Henningson 2011) and (Sipp & Schmid
2013) for a broader overview.

Control of three-dimensional disturbances. A sketch of the three-dimensional
control setup of the flow over a flat-plate is shown Figure 26. Compared to
the 2D boundary-layer flow a single actuator u, sensor y and output z are now
replaced by arrays of elements localized along the span-wise direction, resulting
in a multi-input multi-output (MIMO) system. The localization (size and
distance between elements) of sensors and actuators may significantly influence
efficiency of the compensator (Semeraro et al. 2011, 2013). An important
question one must address for MIMO systems is how to connect inputs to
outputs. A first approach consists of coupling one actuator with only one
sensor (for instance, the one upstream); in this case, the number of single-input
single-output (SISO) control units equals the number of sensor/actuator pairs.
This approach is called decentralized control-design; despite its simplicity in
practical implementations, the stability in closed loop is not guaranteed (Glad
& Ljung 2000). The dual approach where only one control-unit is designed and
all the sensors are coupled to all the available actuators is called centralized
control. In Semeraro et al. (2011), the centralized-controller strategy was found
necessary for the design of a stable TS-wave controller. The main drawback of
a fully centralized-control approach is that the number of connections for a flat
plate of large span quickly becomes impractical due to all the wiring. One may
then introduce a semi-decentralized controller, where small MIMO control-units
are designed and connected to each other; in Dadfar et al. (2014), it is shown
that a number of control-units can efficiently replace a full centralized control
with a limited lost of performance.

Another important aspect that has be accounted for in a MIMO setting,
is the choice of the objective function z. The minimization of a set of signals
obtained from localized outputs with compact support does not necessarily
correspond to a reduction of the actual perturbation amplitude in a global
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sense. For 1D and 2D flow systems any measurement taken locally, close
to the solid wall and downstream in the computational domain, is sufficient
for obtaining consistency between the perturbation and signal minimization
(Bagheri et al. 2009); this is not the case for 3D systems. An optimal way for
choosing the output Cz is the output projection suggested by Rowley (2005),
where a projection on a POD basis is performed. The resulting signal z(t)
corresponds to the amplitude coefficients of the POD modes, i.e. the temporal
behaviour of the most energetic coherent structure of the flow. This method
can also provide useful guidelines for the location of output sensors.

7. Summary and conclusions

This work provides a comprehensive review on standard model-based techniques
(LQR, Kalman filter, LQG, MPC) and model-free techniques (LMS, X-filtered
LMS) for the delay of the transition from laminar to turbulence. We have
focussed on the control of perturbation evolving in convective flows, using
the linearized Kuramoto-Sivashinsky equation as a model of the flow over the
flat-plate to characterize and compare these techniques. Indeed, this model
provides the two important traits of convectively unstable fluid systems, namely,
the amplifying behaviour of a stable system and a very large time delay.

Much research have been performed on flow control using the very elegant
techniques based on LQR and LQG (Bagheri et al. 2009c; Semeraro et al. 2013;
Juillet et al. 2013). Although, these techniques may lead to the best possible
performance and they have stability guarantees (under certain restrictions),
their implementation in experimental flow control settings raises a number
obstacles: (1) The choice of actuator and sensor placement that yields a good
performance of convectively unstable systems results in a feedforward system.
We have highlighted the robustness issues arising from this configuration when
using standard LQG-based techniques. (2) Disturbances, such as free-stream
turbulence, and actuators, such as plasma actuators, can be difficult to model
under realistic conditions. (3) The requirement of solving two Riccati equations
is a major computational hassle, although it has successfully been addressed by
the community using model-order reduction techniques (Bagheri et al. 2009) or
iterative methods (Semeraro et al. 2013b).

Model-free techniques based on classical system-identification methods or
adaptive-noise-cancellation techniques can cope with the limitations of model-
based methods (Sturzebecher & Nitsche 2003). For example, we have presented
algorithms that improve robustness by adapting to varying and un-modelled
conditions. However, model-free techniques have their own limitations; (i)
one may often encounter instabilities, which in contrast to LQR/LQG, cannot
always be addressed in a straight-forward manner by using concepts such as
controllability and observability. (ii) The number of free parameters (such as
the limits of the sums appearing in FIR filters) that need to be modelled are
many and chosen in a somewhat ad-hoc manner.
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The conclusion is that there does not exist one single method that is
able to deal with all issues, and the final choice depends on the particular
conditions that must be addressed. While a model-based technique may provide
optimality and physical insight, it may lack the robustness to uncertainties that
adaptive methods are able to provide. We believe that future research will
head towards hybrid methods, where controllers are partially designed using
numerical simulations and partially using adaptive experiment-based techniques.

The authors acknowledge support the Swedish Research Council (VR-2012-
4246, VR-2010-3910) and the Linnè Flow Centre.

Appendix A. Numerical method

Finite-difference (FD) schemes are used to approximate the spatial derivatives
in (12). In particular, a centered scheme based on stencils of five-nodes are used
for the second-order and fourth-order derivatives while a one-node-backward
scheme is used for the first-order derivative. The latter is required due to the
convective nature of the system: a de-centered scheme reduces the spurious,
numerical oscillation of the approximated solution (Quarteroni 2009).

The grid is equispaced xi = i L
nv

, with i = 1, 2, ..., nv. Once the FD scheme
is introduced, the time evolution at each of the internal node is solution of the
ODE equation

dv′(t)

dt
= −V

1∑
j=−3

db1,j v
′
i+j(t)−

P
R

2∑
l=−2

dc2,l v
′
i+l(t) +

− 1

R

2∑
l=−2

dc4,l v
′
i+l(t) + bd(xi) d(t) + bu(xi) u(t), (95)

where v′i(t) = v′(xi, t) for i = 1, 2, ..., nv. The outflow boundary conditions in
(10) on the right boundary of the domain lead to the linear system of equations,

∂v′

∂x

∣∣∣∣
x=L

= 0 ⇒
1∑

j=−3

db1,j v
′
nv+j(t) = 0 (96)

∂3v′

∂x3

∣∣∣∣
x=L

= 0 ⇒
2∑

j=−2

dc3,j v
′
nv+j(t) = 0 (97)

The solution of this system allows us to express the boundary nodes i =
nv + 1, nv + 2 as a linear combination of the inner nodes. Similarly, the left
boundary condition in (11) leads to an expression for the nodes i = 0,−1:

v′|x=0 = 0 ⇒ v′0(t) = 0 (98)

∂v′

∂x

∣∣∣∣
x=0

= 0 ⇒
3∑

j=−1

df1,j v
′
0+j(t) = 0 (99)
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where a forward FD scheme is used for the first-order derivative approximation.
Equation (95) together with the boundary conditions can be rewritten in
compact form as

v̇(t) = A v(t) + Bd d(t) + Bu u(t)

where Bd = {bd(xi)}, Bu = {bu(xi)} and the matrix A ∈ Rnv×nv is a banded
matrix (see also (18)).

The Crank-Nicolson method is used to march the system forward in time
(18). Given a time step ∆t, the value of the state v(t + ∆t) is given by the
expression:

v(t+ ∆t) = CN−1
I [CNE v(t) + ∆t (Bd d(t) + Bu u(t))] (100)

where CNI = I− ∆t
2 A and CNE = I + ∆t

2 A. This is an implicit method, i.e.

requires the solution of the linear system CN−1
I , and this operation can be

numerically expensive.

Appendix B. Numerical code

A downloadable package of the MATLAB routines used to produce the results
presented in this paper can be found at http://www.mech.kth.se/ nicolo/ks/.
The 11 scripts listed below cover all the methods that are presented in this
work.

script00.m: Time evolution of a spatially localized initial condition. The
time response of the plant to a Gaussian-shaped initial condition is calculated:
the generated wave-packet travels downstream while growing and is detected by
the outputs y and z. The spatio-temporal time evolution of v(x, t) is plotted
together with the output signals.

script01.m: Response to a white Gaussian disturbance d(t). A white noise
signal is considered as input d(t) and the time-response of the plant is calculated.
The statistics of the velocity are computed and visualized for comparison with
the controlled cases.

script02.m: External description. An alternative description of the system,
based on the Input/Output behaviour of the system is calculated. In particular,
the response of the system is calculated via a FIR filter and compared with the
LTI system description, i.e. internal description.

script03.m: Controllability and observability Gramians. The controllabil-
ity and observability Gramians are computed solving the Lyapunov equations
in (33–34).

script04.m: Linear-Quadratic Regulator. A LQR controller is applied to
the plant and tested when the system is excited by a white Gaussian noise
d(t). The statistics of the velocity are computed and visualized in order to be
compared to the other controlled cases.

script05.m: Model Predictive Control. Constrained MPC is used in pres-
ence of saturation of the actuator. The system is excited by a white Gaussian
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noise d(t). The statistics of the velocity are computed and visualized in order
to be compared with the other controlled cases.

script06.m: Kalman filter. A Kalman filter is designed for the plant and
used to estimate the system state when excited by a white Gaussian noise d(t).

script07.m: Least-Mean Square filter. A LMS filter is used to identify
the FIR-kernel Ezy. The resulting kernel is compared with the Kalman filter
solution.

script08.m: Linear-Quadratic Gaussian compensator. A LQG compen-
sator is designed coupling a LQR controller and a Kalman filter. The compen-
sator is tested when the system is excited by a white Gaussian noise d(t).

script09.m: P − τ compensator. A simple opposition control is designed
using explicitly the time-delay. The system is excited by a white Gaussian noise
d(t). The control gain has been obtained by a trial and error procedure.

script10.m: Filtered-X Least-Mean Square algorithm. FXLMS algorithm
is implemented. The initial condition is provided by the impulse response of
the corresponding LQG compensator; a robustness test is carried by displacing
the actuator location.

Following functions are required by the above scripts:

[A,x,I] = KS init(nq). Given the number of degree of freedom nv, it
provides the state matrix A obtained by a FD discretization of the spatial
derivatives. Five grid-point stencil FD schemes are used: in particular, a one
grid point de-centered scheme is used to enhance the stability of the numerical
solution.

d = fd coeff(n,dx). It provides the FD coefficients used by KS init.
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In this work, we use numerical simulations and experiments to compare the
robustness of adaptive and model-based techniques for reducing the growth
of two-dimensional TS disturbances. In numerical simulations, the optimal
Linear Quadratic Gaussian (LQG) regulator shows the best performance under
the conditions it was designed for. However, it is found that the performance
deteriorates linearly with the drift of the Reynolds number from its nominal
value. As a result, an order-of-magnitude loss of performance is observed when
applying the computation-based LQG controller in wind-tunnel experiments. In
contrast, it is shown that the adaptive Filtered-X Least-Mean-Squares (FXLMS)
algorithm is able to maintain an essentially constant performance for significant
deviations of nominal values of disturbance amplitude and Reynolds number.

Key words: boundary-layer control, flow control, instability control

1. Introduction

Over the last decades the spatiotemporal behavior of the instabilities leading
to transition from a laminar to a turbulent regime in boundary-layer flows has
been thoroughly characterized. In a low-turbulence environment the initial
phase of the transition process is an exponential growth of Tollmien Schlichting
(TS) waves (Saric et al. 2002). Both numerical and laboratory experiments have
shown that it is possible to use linear control techniques to damp the amplitude
of the instabilities by several orders of magnitude, with the consequences that
the transition is delayed and the skin-friction drag is reduced (Lundell 2007;
Bagheri & Henningson 2011; Semeraro et al. 2013; Goldin et al. 2013). However,
the linear control approach have not yet been established as a competitive
technique in applied settings, and essentially all work is at a proof-of-concept
level. Understanding how linear controllers perform under varying conditions is
a first step towards making this flow control approach a realistic and competitive
alternative in applications.

One of the first attempts to design a compensator in order to delay the
laminar-to-turbulent transition was presented by Bewley & Liu (1998). Optimal
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Figure 1: Experimental set-up. The computational domain used in the DNS
simulations (dashed line) starts at (x, y) = (0, 0) and it extends 750 δ∗0 in stream-
wise direction and 30 δ∗0 in the wall-normal direction, where δ∗0 = 0.748 mm is
the displacement thickness at the beginning of the domain. In the last part
of the domain (grey area) a fringe region enforces the periodicity along the
streamwise direction (Nordström et al. 1999).

and robust control theory were used to precompute the compensator based on a
state-space formulation of the governing equations. It was a natural extension
of the classical Orr-Sommerfeld theory; by connecting the inputs to outputs
via a compensator, all aspect of disturbance dynamics – which was previously
performed for the open-loop system – could now be performed for the closed-
loop system. The optimality and the guaranteed stability of the closed-loop
system (under certain conditions, Glad & Ljung 2000; Doyle 1978), resulted
in a rapid spread in the stability community (Barbagallo et al. 2009; Bagheri
et al. 2009; Semeraro et al. 2013b; Juillet et al. 2014). In this class of static
methods the compensator is first precomputed off-line based on a linear model
of the flow and then applied to the laboratory or numerical experiment. The
most widely used compensator in this context is the Linear Quadratic Gaussian
(LQG) regulator. In contrast, in adaptive control techniques, which was first
employed in the work of Sturzebecher & Nitsche (2003), the control law is not
precomputed but it is identified on-line, i.e. the algorithm is able to adjust
the compensator through measurements and only partial modelling of the flow
response is required. In this category of methods – with the Filtered-X Least
Mean Square (FXLMS) algorithm being the most common one – the stability
of the closed-loop system is not guaranteed and the disturbance energy is not
reduced in an optimal way (Aström & Wittenmark 1995).

The aim of this work is to compare the robustness of static and adaptive
controllers and assess their advantages and limitations. First, we investigate
robustness of the closed-loop system in experiments by applying a LQG com-
pensator that is designed based on a numerical model of the experimental
configuration. This approach has many uncertainties incorporated, since a
perfectly exact model of the flow, actuators, sensors and disturbances is not
possible to obtain. Second, we compare the performance of LQG and FXLMS
by systematically inducing a drift in the Reynolds number and the disturbance
amplitude.
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2. Experimental set-up

A 2D TS wave is generated by a disturbance source (denoted by d in Figure 1)
in a flat-plate boundary-layer flow and is detected further downstream by a
surface hot-wire (y in Figure 1). This sensor provides the reference signal to the
compensator to compute the control action and a dielectric barrier discharge
(DBD) plasma actuator (u) provides the prescribed forcing on the flow. A
second surface hot-wire sensor (z) is positioned downstream of the actuator to
evaluate the compensator performance.

The experiments are conducted in an open-circuit wind tunnel at TU
Darmstadt, which provides a 450 mm× 450 mm test section and an averaged
turbulence intensity of Tu = 0.1%, measured at the end of the 1:24 contraction
nozzle. A 1600 mm long flat plate with an 1:6 elliptical leading edge and
adjustable trailing edge is mounted horizontally in the middle of the test section.
Figure 1 shows a sketch of the flat plate containing surface mounted sensors,
the disturbance source and the plasma actuator. The zero position is chosen to
be 70 mm upstream of the disturbance source as the DNS computational box
starts at this point.

A dSPACE system consisting of a DS1006 processor board, a DS2004 A/D
board as well as a DS2102 high resolution D/A Board provides the computational
power for the flow control algorithm. An additional 16bit NI PCI 6254 A/D
board is used for data acquisition of hot wire sensors signals as well as the
disturbance source signals.

Disturbances are created by pressure fluctuations at the wall, caused by
conventional loudspeakers. The disturbance source consists of 16 Visaton BF 45
speakers, amplified by 16 Kemo M031N, which can be controlled individually by
the 16 channels analog output module NI9264. The set of loudspeakers is placed
outside of the test section and 1.2 m long tubes are led into the test section from
below the flat plate. The tubes are arranged along a line in spanwise direction
beneath a 0.2 mm wide slot in the flat plate surface while the construction
priciple is similar to Borodulin et al. (2002); Würz et al. (2012). Five tubes
with an outer diameter of 3 mm are connected to every loudspeaker leading
to a total width of the disturbance source of 240 mm. Two spanwise rows of
30 Sennheiser KE 4-211-2 microphones enable the on-line monitoring of the
phase and amplitude of the artificially excited TS waves in order to assure an
even 2D wave front (Figure 2). The first row is positioned upstream of the
plasma actuator at x = 164 mm while the second row downstream of the plasma
actuator at x = 224 mm. All microphones are mounted below the surface and
are connected to the surface through a 0.2 mm circular orifice with a spacing
of only 9 mm in spanwise direction. All channels are sampled by two NI 9205
A/D converter modules with 4 kHz.

In addition, a boundary-layer hot wire probe Dantec 55P15 is mounted on
a 2D traverse for phase-averaged boundary layer measurements. The DC signal
is filtered with an 1 kHz low pass filter to avoid aliasing.
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Figure 2: Phase-averaged microphone signals mi(φ) for a 200 Hz TS-wave: the
wave front is aligned along the spanwise direction resulting in a 2D disturbance.
The signals are from the upstream microphone row are sampled at 4 kHz and
time-average for 10 s.

2.1. Actuator and sensors for flow control

The plasma actuator consists of a 10 mm wide grounded lower electrode of
35µm thickness and a 5 mm wide upper electrode, which are divided in the
vertical direction by five layers of Kapton tape with a total thickness of 0.3 mm.
A GBS Minipuls 2.1 high voltage supply is driving the 230 mm long plasma
actuator, which is installed flush mounted to a spanwise groove in order to
minimize roughness of the surface.

The plasma actuator driving frequency fPA is chosen to be 10 kHz, which is
more than one order of magnitude higher than the unstable TS wave frequency
band for this experiment. In order to assure a stable discharge in time and space,
an operation range from V = 5 kVpp to 13 kVpp has to be maintained for this
actuator design (Barckmann 2014): therefore a mean voltage supply V = 7 kVpp

is chosen for all experiments. The compensator can modulate the amplitude of
the high voltage supply via the control signal u(t) and, as consequence, vary
the plasma actuator force on the time scale of the TS waves. The control signal
u(t), fed into the high voltage generator, is a linearized function with respect to
the plasma actuator force at that working point.

Two surface hot-wires sensors are used to provide the compensator the
required information to compute a suitable control signal u(t). As introduced by
Sturzebecher & Nitsche (2003), the surface hot-wire has proven to be an excellent
sensor type for reactive flow control (Lundell 2007; Kurz et al. 2013). Due to
the high electromagnetic interference of the plasma actuator, a classic hot-wire
design with prongs is preferred and modified to serve as a surface hot-wire. Two
conventional needles are moulded in a plastic case, which can be flush mounted
on the flat plate. A small groove between the needle tips avoids heat loss to the
structure and improves the signal-to-noise ratio. The 5µm thin and 1.25 mm
long gilded-tungsten wire is heated with an overheat ratio of 1.7. Due to shielded
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Figure 3: Compensator schemes for static (LQG) and adaptive (FXLMS)
strategies. The measurements by the error sensor z are used by the FXLMS
algorithm to adapt to the current flow conditions. The grey lines indicate the
I/O relations required to be modelled by each strategy.

signal lines, this sensor is less sensitive for electromagnetic interferences than
the conventional surface hot-wire design based on photo-etched printed circuit
boards. A 4 channels Dantec Streamline constant temperature anemometer
(CTA) provides the band pass filtered AC signal of the sensors (10 Hz− 1 kHz).
All hot wire sensor signals are acquired with an sample rate of 10 kHz. The
surface hot-wires are calibrated for quantifying the TS wave amplitude according
to the definition in (2). The calibration was conducted by exciting 2D TS waves
whose maximum amplitude was measured above the surface hot-wire using the
traversable boundary-layer hot-wire probe as a reference.

3. Static and adaptive compensators

Given the sensor measurements the compensator provides the control sign to
the actuator (Figure 3). The compensator response is described by the finite
impulse response (FIR) filter (Haykin 1986),

u(n) =

Nk∑
i=1

K(i) y(n− i) (1)

where u(n) = u(n∆t) and y(n) = y(n∆t) are the time-discrete representation
of the time-continuous signals u(t) and y(t) and ∆t = 1 ms is the sampling time.
The NK coefficients K(i) are the kernel of the filter and they describe how
the compensator filters the measurements y(n) in order to provide the control
action u(n).

One may identify two types of compensators depending on whether the
kernel is static or adaptive. In this work, the LQG regulator is chosen as
representative of the static compensator class (Figure 3a). It is designed by
solving two independent optimization problems based on a state-space model
of the plant (Glad & Ljung 2000). The estimation problem constructs a low-
dimensional approximation of the flow from the measurements y(t). The optimal
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control problem, computes the signal u(t) from the estimated state. A FXLMS
algorithm represents the class of adaptive compensators (Sturzebecher & Nitsche
2003; Engert et al. 2008). As reported in Figure 3b, it uses the measurement
signal of the error sensor z(t) to dynamically adapt and is therefore able to
adjust to varying conditions (such as Reynolds number) of the flow. The design
requires a model of the input-output relation between the plasma actuator
and the error sensor (u → z). Compared to LQG algorithm, FXLMS is only
sub-optimal; we refer to Fabbiane et al. (2014) for more detailed information
on both approaches.

Figure 4 compares the performance of the two compensators when the
disturbance source is fed with a white-noise signal d(t) for a wind tunnel speed
UWT = 12 m s−1. The flow filters the introduced disturbances and amplifies
only a band of frequencies (Schmid & Henningson 2001): the spectrum of z(t)
that results from this process is depicted by the solid line. Note that z(t) is a
measure of the wall-stress fluctuations and therefore related to the amplitude
of the TS wave-packets that are generated by the disturbance d(t). The dashed
and dot-dashed lines depict the spectrum z(t) when the LQG and FXLMS
compensators are applied: the FXLMS algorithm appears to be more effective
than the LQG regulator. As mentioned in §2.1, the plasma actuator is operated
at a mean high voltage V = 7 kVpp, corresponding to an average specific-power
consumption of P = 16 W m−1. The resulting constant forcing is small and has
therefore only a marginal stabilizing effect on the flow, as it is shown by the
dotted line in Figure 4.

4. A DNS model of the flow

In order to provide a model for the LQG design, numerical simulations are used
to simulate the flow in the test section. The experimental set-up described in
§2, produces sufficiently small perturbations in order to not trigger non-linear
phenomena. Therefore, the linearized Navier-Stokes (NS) equations around a
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Figure 5: TS-wave amplitude for fd = 200 Hz. Lines and circles depict simulated
and experimental data respectively. (a) shows the integral TS-wave amplitude
(ATS,int) as a function of the streamwise position. The top axis reports Rex =
(x−xLE) U∞

ν , where xLE is the leading-edge position. (b) and (c) show the TS-
wave shape at two different x positions upstream and downstream the actuator.
The triangles indicate where the reference sensor, plasma actuator, and error
sensor are positioned, cfr. Figure 1.

laminar zero-pressure-gradient boundary-layer flow are considered to describe the
temporal evolution of the disturbances. The free-stream velocity U∞ = 14 m s−1

and the displacement thickness in the beginning of the domain δ∗0 = 0.748 mm
are identified by a parameter fitting procedure of the laminar solution over
10 measured mean-velocity profiles between x = 0 mm and x = 330 mm. The
resulting Reynolds number is Re = U∞ δ∗0/ν = 656. A pseudo-spectral DNS
code is used to perform the simulations (Chevalier et al. 2007). Fourier expansion
over Nx = 768 modes is used to approximate the solution along the streamwise
direction, while Chebyshev expansion is used in the wall-normal direction on
Ny = 101 Gauss-Lobatto collocation points. The computational domain is
shown in Figure 1.

The disturbance source and the plasma actuator are modelled by volume
forcings. Each forcing term is decomposed into a constant spatial shape and
in a time dependent part (i.e. the input signal). The forcing shape for the
disturbance source is a synthetic vortex localized at the disturbance source
position (Bagheri et al. 2009). The plasma actuator shape, instead, is modelled
by a distributed streamwise forcing, according to the results by Kriegseis et al.
(2013). As the forcing shape depends on the high-voltage supply to the actuator,
a linearisation around V = 7 kVpp is considered. The surface hot-wires sensors
y(t) and z(t) are modelled as point-wise measurements of the skin-friction
fluctuations.

Numerical simulations and experimental measurements of the performance
of the LQG compensator are reported in Figure 5. The flow is excited by a
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single-frequency constant-amplitude signal d(t) with frequency fd = 200 Hz.
The amplitude of the velocity fluctuation in the flow is measured by an hot-
wire probe mounted on a traverse system. A non-dimensional measure for the
TS-wave amplitude is introduced:

ATS,int(x) =
1

δ∗0

∫ ∞
0

|U(x, y, fd)|
U∞

dy =
1

δ∗0

∫ ∞
0

ATS(x, y) dy (2)

where U(x, y, f) is the Fourier transform of the streamwise component of the
velocity. From Figure 5a it can be observed that the direct simulations (black
solid line) of the flow matches very well the experimental data (black circles).
When the LQG-controller is active in experiments (blue squares), one order-
of-magnitude reduction of disturbance amplitude is observed. This is, to the
authors knowledge, the first time a computation-based LQG controller, designed
without any fitting parameters nor system identification, suppresses disturbances
in wind-tunnel experiments. However, LQG controller is optimal for the exact
model only, which it was designed for; as shown in Figure 5a, the attainable
reduction of disturbance is two-orders of magnitude, when the controller is
applied to the numerical simulation (dashed-blue line). The difference of one-
order of magnitude is due to the fact that in experiments a steady forcing
was applied in addition to LQG control signal (see Sec. 2). The performance
prediction is improved if the average constant forcing by the plasma actuator
is considered when computing the baseflow used for testing the compensator
(green dotted line). This shows that there is a small difference between the
modelled flow and the experimental flow.

In Figure 5(b-c) the profile of TS disturbance is compared with and without
controller active. The profiles are measured at the streamwise location of the
reference sensor y and the error sensor z. From Figure 5c, one observes that the
disturbance is damped all along the wall-normal direction, both in simulation
(green dotted line) and experiment (blue squares). A double-peaked shape is
visible near the wall that can be explained by the proximity to the plasma
actuator. In fact, the lower peak of the TS amplitude is located at the wall-
normal position where Kriegseis et al. (2013) measured the maximum forcing of
a similar plasma actuator. However, as the controlled TS-wave evolves further
downstream the double peak structure is less pronounced.

From Figure 5(b-c) it can be seen that the maximum amplitude of the
disturbance goes from 0.01U∞ at y-sensor location to 0.02U∞ at z-sensor
location. These small amplitudes confirm the small-perturbation hypothesis,
for which the linear model and control are based on. In order to cancel the
disturbance, the plasma actuator induces velocity fluctuations of the same order
of magnitude as the TS disturbance, i.e. between ±0.14 m s−1 and ±0.28 m s−1.

5. Robustness

In this section, the robustness of the two control techniques is analysed. In
the present context, robustness refers to the capacity of the compensator to
overcome differences between design and working conditions. In particular, the
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Figure 6: Effect of the TS-wave amplitude on the performance indicator Z. The
flow is excited by the disturbance source operated with a 200 Hz single-frequency
signal.

effect of deviations of disturbance amplitude and the free-stream velocity on
the control performance is investigated. It has been shown by Belson et al.
(2013) and Fabbiane et al. (2014), that the current sensor/actuator configuration
results in a feed-forward control, which is well-known to have robustness issues.
The type of robustness analysis performed here is ad-hoc in the sense that
model uncertainties have systematically been introduced in order to assess the
performance.

A 200 Hz single-frequency disturbance is used to investigate the robustness
of the LQG controller against higher TS-wave amplitude. The amplitude is
gradually increased and the rms of the reference sensor signal y(t) is used as
an indicator of disturbance amplitude. A performance index is defined as the
ratio between the root-mean-square (rms) of the controlled and uncontrolled
sensor signals, i.e.

Z =
rms (zctr(t))

rms (zunctr(t))
. (3)

In Figure 6, it can be observed that controller performance is gradually degraded
while the amplitude rises and saturated around rms(y) = 0.6. The FXLMS
compensator, instead, is able to maintain good performance until an abrupt
breakdown of the performance around rms(y) = 0.6. At these large amplitudes,
the compensator adaptivity can not compensate the strong non-linearities of
the flow.

Variation of the free stream conditions may also degrade the control perfor-
mance, since it changes the baseflow. The wind-tunnel speed is varied around
the design condition UWT = 12 m s−1, changing the Reynolds number and,
as a consequence, the stability properties of the flow (Schmid & Henningson
2001). A white-noise is low-pass filtered with a cut-off frequency of 4 kHz and
considered as disturbance signal d(t). The disturbance is monitored in order to
ensure a 2D wave-front. The ratio between rms(y) and the wind-tunnel speed
UWT is kept constant and equal to 6.5 · 10−3 in order to avoid non-linear effects.
Note that the asymptotic velocity U∞ differs from UWT because of blockage
effects due to the presence of the flat-plate and experimental equipment.
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Figure 7: Effect of wind-tunnel speed variation ∆UWT on the performance
indicator Z. The solid line in (b) depicts the DNS data shifted to fit the
experimental curve. The flow is excited by the disturbance source operated
with a white noise signal d(t).

Figure 7a shows Z as a function of the wind-tunnel speed variation ∆UWT .
It is observed (blue dashed line) that the LQG performance is sensitive to
variation of the free-stream velocity. Note that the best performance is obtained
for a velocity lower than the design speed. This shift can be attributed to
the fact that an experimental flow can only be modelled numerically up to a
certain accuracy. Uncertainties such as for example fluctuations in temperature
(and thus a shift in Reynolds number) are unavoidable and lead to loss of
performance, as described in the previous section. The FXLMS compensator,
on the other hand, is able to adapt to the changed conditions. Even if the
required input-output relation u → z – which is a static part of the FXLMS
algorithm – is changed by the speed variation, the adaptive nature of the
controller is able compensate for this error and provide an almost unaltered
performance for significant wind-tunnel speed variations.

The robust property of FXLMS is also confirmed by the numerical experi-
ments (Figure 7b). Similar to the experiment, the free-stream velocity is varied
with respect to its nominal value and the performance of the control action is
monitored. At the design conditions ∆UWT = 0 m s−1, the model for which the
LQG was designed is a very accurate representation of disturbance behavior.
Interestingly, the attenuation achieved by the FXLMS algorithm is very close
to the optimal performance of the LQG regulator. For the latter compensator
however, Z increases linearly with ∆UWT . This can be explained as follows.
Assume that z(t) is the superposition of the two counter-phase TS-waves, one
generated by the disturbance source and one by the plasma actuator,

z(t) = zd(t) + zu(t) = a sin(ω(t+ ∆τ))− a sin(ωt). (4)

The leading order effect of a change in the free-stream is on the phase-speed of
the TS-wave, which in turn results in a modification of the phase-shift parameter
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Figure 8: Compensator kernels K(i) for different wind-tunnel speeds for LQG
(a) and FXLMS (b). The solid line represents the design condition. When UWT
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adapts to the new conditions by stretching or shrinking the compensator kernel.

∆τ . Rewriting expression (4) to highlight the role of ∆τ ,

z(t) = 2a sin

(
ω

∆τ

2

)
cos

(
ω

(
t− ∆τ

2

))
≈ aω∆τ cos

(
ω

(
t− ∆τ

2

))
. (5)

it is observed that for small values of ω∆τ , the amplitude of z(t) is a linear
functions ∆τ . The black solid line in Figure 7a shows the simulated LQG
performance (dashed-blue in Figure 7b) when it is shifted to the left to coincide
with minima of experimental control values of Z. Note that Z corresponding to
numerical data asymptotically approaches the experimental data (blue dashed
line), showing the same linear behaviour predicted by (5).

The solid lines in Figure 8 depict LQG and FXLMS kernels for the design
condition, i.e. ∆UWT = 0 m s−1. When the wind-tunnel speed is decreased, the
amplification of the TS wave is reduced and the propagation speed of the TS
wave decreases, i.e. the TS wave moves slower than under design conditions. In
this particular new condition, the FXLMS algorithm reacts by stretching the
convolution kernel in time and reducing the magnitude of the K(i) coefficients
(dashed line in Figure 8b). On the other hand, if the speed increases, the effect
on the flow is opposite; the TS wave moves faster and is more amplified. Hence,
the compensator reacts by shrinking the kernel and increasing the magnitude of
the K(i) coefficients (dotted line). The LQG kernel, instead, is fixed and does
not adapt to the actual flow conditions.
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To quantify the phase-shift in the kernel, let τ represent the time for
which the kernel attains its minimum value. Further, one may define the
difference between the phase- shift of the two compensator kernels by |∆τ | =
|τLQG − τFXLMS |. In Figure 9, a strong correlation between |∆τ | and the
performance loss ∆Z (i.e the gap between the two curves in Figure 7a) is
observed. This correlation shows that the compensator performance is mainly
depending on a correct prediction of the time it takes for the TS wave to
propagate from the reference-sensor and to the plasma-actuator. In the LQG
approach, this information is given by the designed static model: any inaccuracy
in this model may lead to an incorrect computation of the phase-shift and,
eventually, to a performance loss.

The FXLMS adaptive algorithm is not equivalent to a feedback sen-
sor/actuator configuration (Belson et al. 2013). The FXLMS algorithm is
able to adapt to modified flow conditions (i.e. weak nonlinearities, free-stream
variation, etc. ) by adapting its response (e.g. by stretching/shrinking the
kernel when velocity fluctuations occur). However, it has to be noted that (i)
the measurement signal z(t) has not a direct influence on the control signal
but on the kernel only and (ii) the adaptation time-scale – approximately 15 s
from zero initial condition to the asymptotic value – is significantly larger than
the TS-wave time-scale. Therefore the compensator is able to adapt only to
slow changes in the flow and the adaptation loop can not be characterized as a
conventional feedback. These results extend and confirm our earlier work on the
Kuramoto-Sivashinsky equation to a physical fluid flow (Fabbiane et al. 2014).

6. Conclusions

From a general viewpoint, the role of optimality have been overemphasized
in investigations with linear theoretical approach to transition and turbulence
control. Although, these studies provide important physical insight into perfor-
mance limitations as well as the best achievable flow control performance, they
remain at a proof-of-concept level, since any deviation of the design conditions
can destabilize the controller; at best it will render the control performance
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suboptimal. In this paper, it is shown that adaptivity plays a crucial role to
achieve robustness in transition control, even when a simple 2D-disturbance case
is considered. Whereas the optimal LQG outperforms simple wave-cancellation
techniques significantly (Fabbiane et al. 2014), FXLMS obtains nearly as good
performance as LQG but in addition possess the robustness, making it the
choice for transition control.

The authors acknowledge support the Swedish Research Council (VR-2012-
4246, VR-2010-3910), German Research Foundation, and the Linné FLOW
Centre.
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This manuscript demonstrates the first successful application of the delayed-x-LMS
(dxLMS) control algorithm for TS-wave cancelation. Active wave cancelation
of two-dimensional broad-band Tollmien-Schlichting (TS) disturbances is per-
formed with a single DBD plasma actuator. The experiments are conducted in
flight on the pressure side of a laminar flow wing glove, mounted on a manned
glider. The stability properties of the controller are investigated in detail with
experimental flight data, DNS and stability analysis of the boundary layer.
Finally, a model-free approach for dxLMS operation is introduced to operate the
controller as a “black box” system, which automatically adjusts the controller
settings based on a group speed measurement of the disturbance wave packets.
The modified dxLMS control algorithm allows to operate the controller without
a model and an adaption based on varying conditions that may occur during
flight in atmosphere.

Key words: active flow control, active wave cancelation, fxLMS, dxLMS, in-flight
measurements, DNS, DBD plasma actuator.

1. Introduction

Delaying laminar-turbulent transition of a boundary layer has been a major
topic of fluid mechanic-research during the last decades. Besides passive control
techniques which are related to the favourable pressure distribution of natural
laminar flow (NLF) airfoils, active methods can be used to attenuate disturbances
in the boundary layer and move the transition to turbulence further downstream.
Predetermined flow control techniques (Gad-el Hak 2000) e.g steady boundary-
layer suction have been investigated intensively but require relatively high
actuation power levels because the mean boundary layer profile is altered.
Reactive flow control techniques such as the active wave cancelation (AWC)
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only act on the fluctuations in the laminar boundary layer and therefore require
less energy.

Early attempts of AWC with moving wall actuators by Thomas (1983)
successfully attenuated the amplitude of artificially generated TS-disturbances
in a laminar boundary layer while Sturzebecher & Nitsche (2003) showed the
cancelation of natural occurring TS-waves on a glider wing in flight. Motivated
by the previous work with moving wall actuators, Grundmann & Tropea (2008)
first showed that the plasma actuator (PA) is also able to cancel out TS-waves
in a laminar boundary layer. Further studies with PAs by Kurz et al. (2013)
and Kotsonis et al. (2013, 2015) suggest that PAs can be used to delay the
onset of transition.

Several in-flight measurement projects have been conducted with the PA at
Technische Universität Darmstadt by Duchmann et al. (2014), Kurz et al. (2014)
and Simon et al. Simon et al. (2016). Despite the low fluid-dynamic efficiency
Kriegseis et al. (2013a) and the limited body force of the PA, the actuator is
well-suited for research applications on flow control topics. The lack of moving
parts and short response times make PAs attractive for many applications.
Recent articles by Wang et al. (2013) and Kriegseis et al. (2016, accepted)
show comprehensive reviews of PAs as flow control devices, in particular for
boundary-layer flow-control.

Model-based AWC algorithms showed promising results in DNS as reported
by Semeraro et al. (2013) and Dadfar et al. (2013), whereas experiments
were mainly conducted with adaptive control algorithms as the filtered-x-LMS
(fxLMS) algorithm (Sturzebecher & Nitsche 2003; Kotsonis et al. 2013, 2015).
The fxLMS is an extended version of the adaptive ’least mean square’ (LMS)
algorithm Elliott & Nelson (1993) that compensates the distance and therefore
the transfer path from the actuator to the error sensor downstream. Fabbiane
et al. (2015a) and Simon et al. (2015) investigated the adaptivity of the fxLMS
algorithm and its limits. The required model of the so called secondary path,
between actuator and error sensor, should not change significantly during the
experiment otherwise the algorithm becomes unstable.

For narrowband disturbances in laminar boundary layers the dxLMS algo-
rithm can be used as shown later in this manuscript. Until now the dxLMS
algorithm has only been applied to acoustic problems (Kuo & Morgan 1995;
Kim & Park 1998; Snyder & Hansen 1990; Hansen & Snyder 1996) but the
savings in computational power makes its application promising for future 3D
application with multiple PAs in spanwise direction for the delay of natural
transition. The reduction of the complexity of the secondary-path model to a
simple delay N combined with a model free approach for the determination
of the required N leads to a promising “black box” system as shown in this
manuscript for the first time.

This work presents a detailed study on the application of the dxLMS
algorithm for laminar flow control. It is structured as follows:
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Figure 1: Grob G109b motor glider.

Section 2 gives an overview of the experimental setup while section 3 presents
the applied control theory. The numerical tools used in this work are described
in section 4 and the in-flight measurements of the base flow as well as the DNS
results are shown section 5. Section 6 and section 7 deal with the dxLMS oper-
ation in flight and a model-free approach for online-delay adaption, respectively.
Concluding remarks summarize the content in section 8.

2. Experimental Setup

The in-flight experiments are conducted with a manned Grob G109b motorized
glider, which combines the advantages of vibrationless gliding flight with a
96 kW engine for take off and altitude gain. The three-view drawing in Fig. 1
shows the glider with a wing span of 17.4 m and an aspect ratio of 15.9. The
sweep angle is close to zero which leads to a negligible spanwise pressure gradient
and an almost two-dimensional flow along the chord. A temporary ’permit to
fly’ allows an additional payload for the measurement equipment and leads to a
maximum take-off weight of mMTOW = 950 kg. Due to flight speed limitations
the angle of attack exploitable for the experiments ranges between αmin = −3◦

and αmax = 13◦ close to stall speed. The flight speed is around U∞ = 41 m/s for
α = 2.5 ◦, the actual valued depends on the environmental conditions at flying
altitude. The chord-based Reynolds number is Re ≈ 3.75 · 106.

The right wing of the glider can be equipped with a natural laminar flow
(NLF) airfoil wing glove. The airfoil (Fig. 2) was developed by Weismüller
(2012) to quantify the influence of atmospheric turbulence on NLF airfoils
and Reeh & Tropea (2015) intensively investigated the flow around the airfoil
in flight. The flat airfoil shape on the pressure side creates an almost linear
pressure gradient which is adjustable between moderate positive and negative
values. The flow was shown to be 2D in the inner region of the wing glove by
Reeh (2014). All base flow considerations and resulting pressure distributions
are discussed later in section 5.

The wing glove itself (Fig. 3) forms a square shape with a chord length of
c = 1.35 m and is slipped over the wing. The pressure distribution is measured
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Figure 2: Airfoil shape.
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Figure 3: Sketch of the wing glove pressure side.

with 64 pressure taps distributed over the suction and pressure side of the wing
glove and acquired by a Pressure Systems ESP-64HD pressure transducer. The
reference atmospheric pressure p∞ is gained at a boom protruding upstream
into the flow mounted at the wing glove.

An exchangeable plexi-glass insert is arranged flush mounted to the surface
(see Fig. 3) and accommodates the sensors and actuators. The disturbance
source d is located at xd/c = 0.18 and consists of 12 miniature loudspeakers
installed underneath the measurement insert in spanwise direction with a spacing
of 20 mm. A circular array of six 0.2 mm holes connects each speaker to the
aerodynamic surface.
Three surface hot-wires probes p, r and e are located at xp/c = 0.26, xr/c = 0.29
and xe/c = 0.38. The in-house manufactured hot-wire sensors are flush mounted
to the surface and consist of two needles molded in a plastic case with a 1.25 mm
long and 5µm thin gold plated tungsten wire welded on top. All hot-wires are
operated by Dantec MiniCTA constant temperature anemometers. A signal
conditioner filters the analog signals (first order bandpass 50 Hz to 3.8 kHz) and
amplifies the signal fluctuations by a factor of 400. The following geometrical
distances between sensors and actuator have been measured at the wing glove:

• pr = 35 mm
• rc = 47 mm
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• ce = 76 mm.

The PA c is positioned flush mounted in a groove at xc/c = 0.33. It consists
of a 10 mm wide grounded lower copper electrode of 35µm thickness and a
5 mm wide upper electrode divided by five layers of polyimid tape with a total
thickness of 0.3 mm. The driving high voltage signal is generated at a fixed
frequency of fPA = 9.8 kHz by a GBS Minipuls 2.1 while the high voltage
amplitude can be modulated with an analog input signal. The modulation of
the driving frequency allows the generation of a variable volume force in time
(Kurz et al. 2013) which can be divided in a stabilizing steady ’force offset’
and an unsteady part which is used for active wave cancelation. In spanwise
direction the PA is 230 mm long and a 2D behavior is assumed in the following.

A dSPACE digital signal processor, consisting of a DS1007 processor board,
a DS2004 A/D board and a DS2102 D/A board mounted in a dSPACE Au-
toBox acquires the hot-wire signals and generates the input signals for the
disturbance source and the high-voltage generator. Data acquisition and the
control algorithm (section 3) run at a sampling frequency of fS = 20 kHz.

An environmental data acquisition setup mounted on the left glider wing
completes the in-flight testing setup (see Fig. 1). The angle of attack α and the
side-slip angle β are measured with a Dornier Flight Log, which is a wind vane
mounted on a second boom. In addition the atmospheric pressure p∞, dynamic
pressure q and temperature T∞ are measured upstream of the left wing. All
ambient flow conditions are acquired with a sampling frequency of 1 kHz by a
NI6221 USB A/D converter, synchronized to the other measurement data with
a digital trigger.

All measurement equipment is operated by an onboard DC 24 V lead acid
battery with a capacity of 16 Ah which allows a system operation time of about
one hour. More details about the measurement procedure is given in section
5.1.

3. Control Theory

This section briefly explains the implemented control algorithms and gives an
insight on the application of these algorithms for active flow control in a laminar
boundary layer. Further detailed information on the control theory background
can be found in several text books (Elliott & Nelson 1993; Kuo & Morgan 1995).

3.1. Filtered-x-LMS Control Algorithm

The flow-control system sketched in Fig. 4 is a single-input-single-output
(SISO) system as it consits of one reference sensor r, an error sensor e and
the actuator c. An adaptive feed-forward least mean squares (LMS) control
algorithm which is applied adapts a digital finite impulse response (FIR) filter
in order to minimize the signal at the error sensor. The filter output y(n) of a
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Figure 4: 2D wing setup and extended fxLMS control algorithm sketched below.

FIR filter w = [w0 ... wM−1]T and an input signal x is given by

y(n) =

M−1∑
i=0

wix(n− i). (1)

The variable n indicates the discrete-time step and the filter order is M = 256
for most examples presented in this manuscript. The filter w is adapted by the
LMS control algorithm as indicated in Fig. 4 by the arrow. The adaptation is
based on

w(n+ 1) = w(n) + α r(n) e(n), (2)

where α is the step size, which is set to α = 10−3, and r = [r(n) ... r(n−M+1)]T

a vector of the last M values of the reference sensor signal.

The transfer function from x to y is defined as Hyx (to actuator/sensor y,
from actuator/sensor x) therefore Her denotes the primary path (to e, from
r) while Hec is the secondary path (to e, from c). Thus, the secondary path
describes the transfer function between the plasma actuator c and the error
sensor e while the primary path describes the transmission behavior between
reference sensor r and error sensor e. The feedback path Hrc (to r, from c)
is negligible in the presented flow control system as the Tollmien-Schlichting
disturbances in the laminar boundary layer only propagate downstream.

The LMS control algorithm adapts the filter w which describes the behavior
of the control path Hcr. The LMS algorithm alone requires the same position
for the actuator c and the error sensor e otherwise the phase-angle shift due to
the secondary path Hec would lead to an unstable controller behavior (Elliott
& Nelson 1993). The experimental setup does not allow to place the sensors
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Figure 5: Secondary path model Ĥec and corresponding delay of NP = 124
samples for the dxLMS algorithm.

very close to the plasma actuator due to the high voltage and geometrical
concerns. This is often the case also for acoustic or structural vibration problems.
Therefore, the physical secondary path Hec is modelled with another FIR filter
Ĥec to filter the reference signal r(n) and compensate the phase shift. An

example for a filter Ĥec is presented in Fig. 5 which shows the convective
behavior of the transmission path. The filtered signal r′(n) is now fed into the
LMS algorithm as shown in Fig. 4 and the algorithm is now called filtered-x-LMS
or fxLMS:

w(n+ 1) = w(n) + α r′(n) e(n). (3)

Former investigations by the authors (Fabbiane et al. 2015a; Simon et al.
2015) showed a robust controller behavior as long as the phase-angle error

between the physical secondary path Hec and the secondary path model Ĥec

is between ±90◦. This is a well known boundary for the controller stability
(Elliott & Nelson 1993; Hansen & Snyder 1996).

3.2. Delayed-x-LMS Control Algorithm

For a narrow band disturbance problem, such as TS-waves in the laminar bound-
ary layer, a delay z−N with N samples might be good enough to approximate
a model for the convective behavior of the secondary path. Fig. 5 shows such
a model for the secondary path Ĥec as well as the approximation of Hec with
a delay of NP = 124 samples. The index P indicates a delay corresponding
to the global maximum (peak) of Ĥec. Li & Gaster (2006) proposed a related
approach for the simplification of a transfer function for active flow control by
simplifying the already calculated control kernel with a delay. With the delay
z−N the LMS algorithm (equation (2)) can be written as follows and is now
called delayed-x-LMS (dxLMS):
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Figure 6: 2D wing setup and dxLMS control algorithm sketched below.

w(n+ 1) = w(n) + α r(n) z−N e(n)

= w(n) + α r(n−N) e(n). (4)

Snyder & Hansen (1990) as well as Kim & Park (1998) applied the dxLMS
algorithm for acoustic problems with narrow-band noise. The experiments
presented in this manuscript show its application for laminar boundary layer
flow control for the first time.

Fig. 6 shows the dxLMS controller sketched below the 2D wing setup.
Besides the dxLMS algorithm a second upstream sensor p is introduced which
serves as an input signal p(n) for the block C together with the reference sensor
signal r(n). Block C is responsible for the identification of the delay N in
equation (4). In the following the procedure for calculating the time-delay N is
described.

3.2.1. Delay identification

The downstream propagating disturbance a is a superposition of travelling-
waves:

a(x, t) = A ei(ωt−kx) = A eiΦ, (5)

where ω is the angular frequency, k the streamwise wave-number and Φ the
phase angle of the wave. The growth in amplitude A is neglected, since it is not
relevant for the following analysis. The phase speed c is defined by c = ω

k while
group speed cg is defined as the derivative of ω with resprect to the modulus of
the wave number k:

cg =
∂ω

∂k
. (6)
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Assuming a group speed cg, the cross correlation function of two sensor
signals at location x1 and x2 gives the time shift between both sensor signals τ :

τ(ω) =

∫ x2

x1

1

cg(ω)
dx. (7)

If a parallel flow or a slowly varying boundary layer is considered, the group
speed is constant between the two locations (x2 − x1 = ∆x). If a constant
group-speed is assumed in the range of the amplified frequencies, equation (7)
reduces to

τ(ω) ≈ τ =
x2 − x1

cg
=

∆x

cg
. (8)

This translates in a time-discrete delay or lag L between the sensors p and r

L = fS τ = fS
∆x

cg
, (9)

where fS is the sampling frequency.

As the dSPACE digital signal processor executes the algorithm at a rather
low frequency of fS = 20 kHz the phase-angle resolution δΦ(f) = f

fS
360◦ has

to be taken into account for the accuracy of the signal shift measurement L. If
the assumption of an almost constant average group speed is correct, the signal
shift L in samples can be normalized by the distance between the sensors p and
r (pr) and a specific time delay γ is introduced as follows:

γ =
L

pr
=
N

ce
=
fS
cg
. (10)

This is valid if the group speed is constant between the sensors p and r: this
assumption is verified later in the manuscript in section 5.2.

Equation (10) indicates that the required delay N for the dxLMS operation
can then directly be calculated from a measurement of the signal-shift L by

N = γ · ce, (11)

where N is rounded to the closest integer. This link leads to a ’black box’
system which could operate the controller without any knowledge of the laminar
boundary layer flow around the wing glove. Section 7 discusses the application
of the dxLMS in real flight application and the advantages in comparison to
the well known fxLMS approach.

The key to this reduction of the complexity of the secondary path is the
similarity between the phase response given by the time-delay and the actual
phase response by a TS-wave. The phase response associated to a time delay
reads:

∆Φ = −
(

360◦
N

fS

)
f. (12)

As mentioned before, a similar expression can be derived for the disturbances in
the TS-wave band. A downstream propagating wave in (equation (5)) causes a
phase-angle shift ∆Φ of the sensor signals between the two different stream-wise
positions. It can be shown that the derivative of the phase-angle shift ∆Φ with
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respect to the angular frequency ω is equal to minus the previously computed
time-delay τ :

∂

∂ω
(∆Φ) =

∂

∂ω
(−k∆x)

= − ∂k
∂ω

∆x = −∆x

cg
= −τ. (13)

Hence, by integrating ∂
∂ω (∆Φ) in this region, we obtain that the phase-angle

shift (in deg) is given by:

∆Φ(f) = −
(

360◦
∆x

cg

)
f + ∆Φ0, (14)

where f = 2π ω is the frequency and ∆Φ0 ∈ [0◦, 360◦) is the zero-cross phase.
By comparing equations (12) and (14), the possible values of ∆Φ0 reduce to
0◦, if a positive gain is used in front of the time delay, or 180◦, if a negative
gain is considered. Hence, once the time-delay τ is identified via a measurement
of the group speed cg, the only free parameter for the dxLMS design is the
positive/negative gain associated with the time-delay.

3.3. Offline Controller Simulation

The knowledge of all transmission paths of the flow control problem makes
an offline investigation of the fxLMS and dxLMS controller behavior possible.
Either the sensor signals of a test flight or the DNS solution of a flow field can
describe the required paths between sensors and actuators. This offline-controller
simulation in MATLAB-Simulink saves measurement time and allows a detailed
preparation for the test flights, where time is valuable. In the following, the
controller simulation based on flight data and DNS are discussed.

For the identification of the secondary path model Ĥec during an experiment,
the Minipuls high voltage amplifier is operated with a pseudo random binary
signal (PRBS). This results in a modulated high voltage signal at the PA which
creates broad-band TS-waves travelling downstream. The transmission behavior
of Hec can either be estimated online with a LMS or calculated offline with the
power spectral density Scc(Ω) and the cross-spectral density Sec(Ω) (Elliott &
Nelson 1993):

Scc(Ω) = lim
n→∞

1√
2T

(C∗T (Ω)CT (Ω)) (15)

Sec(Ω) = lim
n→∞

1√
2T

(E∗T (Ω)CT (Ω)). (16)

The transmission behavior Ĥec(Ω) is defined as follows:

Ĥec(Ω) =
Sec
Scc

. (17)
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Figure 7: Block diagram for controller simulation with recorded flight data.

The magnitude and phase information, which is contained in Ĥec(Ω) can

then be converted to a digital FIR filter Ĥec(z), e.g. with the invfreqz command

in MATLAB. For offline controller simulation Ĥec(z), a record of a flight case
with only disturbance source in operation is required (uncontrolled case). The
discrete reference and error sensor signals r(n) and e(n) are the input signals for
the fxLMS offline controller simulation as indicated in Fig. 7a. The incoming
reference sensor signal r(n) is therefore the same as if the controller would be

operated during flight and the filtering of r(n) with Ĥec is exactly the same as
in flight. Because the controller actuation is only performed offline the physical
transmission path path Hec has to be modelled and c(n) is filtered by Ĥec.
The result is then subtracted from the measured ’desired’ signal e(n) and the
simulated error sensor signal e′(n) is the second input for the LMS adaptation
algorithm. It is obvious that this procedure does not completely describe the
flight conditions because the estimated paths Ĥec in the upper and lower row
in Fig. 7a are exactly the same. In a real case the physical transmission path
Hec changes due to varying inflow conditions and can even cause an unstable
controller behavior as discussed later in section 7 and shown by Simon et al.
(2015).

Fig. 7b shows the block diagram for the dxLMS offline-controller simulation
with recorded flight data. The only difference to the fxLMS approach in Fig.
7a is the filtering of r(n) and the online-adaptation of the delay N as described
earlier in this section.
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Figure 8: Block diagram for controller simulation with transfer paths obained
with DNS.

Direct numerical simulations (DNS) allow to extract detailed information of
the boundary layer transmission behavior. For the given problem, the FIR filter
coefficients of the transfer path models Ĥpd, Ĥrd, Ĥed and Ĥec are available and
implemented in the controller simulation as shown in Fig. 8. Analogous to the
in-flight data controller simulation the reference sensor filtering can be changed
for the fxLMS controller simulation, see Fig. 7. The incoming disturbances are
not given by in-flight sensor data, a white noise signal d(n) is the only input
signal required for the DNS data controller simulation.

4. Numerical Tools

A spectral-element method (SEM) code – Nek5000 – is used to perform two-
dimensional (2D) direct numerical simulations (DNS) of the incompressible flow
close to the wing, Fischer et al. (2008). The code is based on a discretisation
of the computational domain in spectral elements (Patera 1984) and in each
element the flow is approximated by 2D Legendre-Gauss-Lobatto polynomials
up to degree N .

The Reynolds number Re = U∞ c
ν for the simulations is 3.75 · 106. The

computational domain extends along the airfoil from x/c = 0.1 of its upper
surface to x/c = 0.65 on the lower side, see Fig. 9. The domain is discretized in
20000 2D spectral elements of order N = 12 on both directions: 400 elements are
distributed along the airfoil surface and 50 along the wall normal direction with
cosine distribution to form a curvilinear grid. The wall-normal and wall-wise
size of the elements goes respectively from a minimum of 4 · 10−5 and 7 · 10−4

close to the wall to a maximum of 1 · 10−2 and 7 · 10−3 in the free-stream.

No slip boundary condition is enforced on the airfoil surface. On the free-
stream boundary, a Dirichlet boundary-condition enforces the solution to the
potential solution of the flow, corrected for the presence of a boundary-layer.
The two outflow boundaries are treated according to Brynjell-Rahkola (2015):
on the boundary pressure and velocity are linked by the relation

1

Re

∂un
∂n
− p = −pa, (18)
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Figure 9: DNS mesh.

where n is the boundary-normal direction and un the component of the velocity
normal to the boundary. The pressure is indicated by p and the boundary
pressure pa is computed from the superposition of the potential flow and
Falkner-Skan boundary-layer solution.

4.1. Linear simulations

Linear simulations are perfomed with respect to the steady solution. The
boundary condition for the perturbation velocity are similar to the baseflow
boundary conditions: no-slip on the surface, homogeneous Dirichlet on the
free-stream boundary and homogeneous outflows (i.e. pa = 0). In addition,
sponges are placed in front of each outflow in order to avoid reflections: both
upper and lower sponges have the tickness ∆x/c = 0.05.

Input and output devices used in the experimental setup are modelled in
the numerical simulations. Surface hot wires are represented by a weighted-
average of the wall-shear stress: a Gaussian function with variance 10−3c is
used as a weight function. The disturbance introduced by the loud-speakers
is modelled by a train of synthetic vortices introduced at the same location as
the loudspeakers in the experimental set-up, Bagheri et al. (2009). The plasma
actuator, instead, is represented by a volume forcing based on the experimental
results by Kriegseis et al. (2013b) at the PA’s location, Fabbiane et al. (2015b).

5. Base Flow

All test flights are conducted in gliding flight without engine which requires
a special in-flight testing procedure, explained in section 5.1. Based on this
experiments the base flow around the wing is characterized and the boundary
layer properties are investigated in section 5.2.

5.1. In-Flight Testing Procedure

The in-flight tests presented in this paper enable boundary layer measurements
in a realistic flight environment. It does not, however, determine the performance
parameters of the aircraft as flight testing is usually understood. Nonetheless,
the measurements are related to flight mechanics, environmental conditions
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and flight planning - challenges which only exist for measurements under flight
conditions (Joslin 1998). Despite the difficulties of in-flight measurements
compared to wind-tunnel tests, there are reasons for experiments on a airplane
wing in flight. The investigations of Weismüller (2012) on the atmospheric
turbulence indicate the need for in-flight experiments as the turbulence intensity
is very low. More importantly, isentropic turbulence is achievable for high
Reynolds numbers. In addition acoustic disturbances make the investigation on
natural transition in the wind tunnel difficult as the ambient noise can trigger
laminar-turbulent transition. Last but not least, a flow control technology in
flight is very close to application.

The measurement time, preparation, maintenance and costs exceed the
effort for wind tunnel experiments by far. For the current setup, one test
flight of 1.5 h includes only 20 min of measurement time, the rest of the time
is spend on cruise flight and altitude gain. During a measurement flight, the
glider climbs up to altitude of 10,000 ft and the pilot switches off the engine.
As soon as the propeller is turned away from the wind the pilot starts to
adjust the angle of attack α according to the flight display in front of him; an
online-visualization of the low-pass filtered values for α and the slideslip-angle
β assists the pilot in setting and maintaining the desired flight state. Flight
mechanics couple flight speed U∞ and α depending on the weight, required
lift, density of the air and other parameters and therefore do not allow the
same boundary conditions for each flight, even during one single gliding flight.
Numerical studies based on linear stability analysis concerning these issues have
been conducted by Duchmann (2012). They revealed a stronger sensitivity of
the streamwise position of the naturally occurring transition to changes of the
angle of attack than to a slowly drifting Reynolds number. Therefore, the active
flow control experiments in gliding flight were conducted for constant angle of
attack conditions instead of constant Reynolds number condition. Nevertheless,
only small Reynolds number fluctuations are observed in the presented data.
The first measurement run can be recorded in gliding flight at 9,000 ft and the
measurements have to be stopped at an altitude of about 3,000 ft to turn back
on the engine. The measurement time of one gliding flight is about 10 min
while typically 15 measurement runs of 20 to 40 s are recorded. All experiments
have been conducted early in the morning under calm conditions to avoid
changes in α. Unavoidable limitations to in-flight experiments are given by
traffic, inversion layers and battery power supply, which operates the whole
measurement equipment.

5.2. Base Flow Characterization

As discussed before, the angle of attack measurement with the Dornier Flight
Log only gives a rough estimate of the in-flow conditions as the systematical
error due to positioning of the probe is not taken into account. Because of this
the pressure distribution around the wing glove as well as the dynamic pressure
q measured upstream of the wing are the reference values for comparison with
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Figure 10: Measured and calculated pressure distribution, α = 2.5 ◦.

numerical investigations. Fig. 10 shows a pressure distribution measured in
flight. The boundary layer is tripped artificially on the suction side of the wing
glove by surface roughness, which can be seen in the pressure distribution as a
rising pressure at x/c = 0.3.

Due to the high Reynolds number, small displacement thickness and mod-
erate α potential flow theory provides a good estimate of the pressure around
the wing glove. The potential flow solution, calculated with a Morino method,
is drawn as a dashed line in Fig. 10. All experiments are conducted on the
pressure side of the wing glove. Therefore the angle of attack is iterated for the
potential flow solution in order to match the pressure distribution and, more
important, the pressure gradient on the lower side. In the following discussions
only the value for α measured during the experiment in flight is given.

The potential flow solution serves as an initial condition for DNS calculations
which aim at two points;

1. comparison between flight and numerical simulations;
2. parameter studies under controlled conditions.

A comparison between numerical and experimental baseflow is presented in Fig.
10. It shows a good agreement on the pressure side.

Active wave cancellation in the laminar boundary layer requires a sufficiently
low amplitude of the disturbances at the actuator position such that the
transition process is in the linear regime. For the in-flight experiments this
leads to a range of 1.5◦ < α < 3.5◦ in which the experiments with artificially
introduced 2D disturbances are reasonable. The pressure distributions for the
considered range is shown in Fig. 11. It is obvious that the pressure gradient in
this region can be altered from slightly negative for high α to slightly positive
for lower α.

The boundary layer profiles extracted from DNS calculations enable in-
vestigations on the linear stability of the boundary layer in the considered
range of flight states. Three neutral stability curves and N-factor contour plots,
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Figure 11: Measured and calculated pressure distribution for different angles of
attack.

calculated with PSE (Juniper et al. 2014), are shown in Fig. 12. The sensor
positions are indicated as triangles (see Fig. 6) and the disturbance source
d with a M. Because the experiments are conducted on the pressure side of
the wing glove, the pressure gradient is decreasing for higher α and therefore
stabilizes the laminar boundary layer. This results in a downstream shifted
neutral stability curve (αi = 0) and a slightly shifted amplified frequency band.
The flat shape of the middle region of the airfoil (Fig. 2) leads to rather
low amplification transition scenarios but also a significant movement of the
transition region for a change of α which was shown by Reeh (2014) for the
same airfoil in flight. For all three presented cases, the actuation with the
PA (N) is active in a low amplified region where N ≈ 4. The low amplification
rates are necessary to introduce artificial 2D waves which dominate the natural
disturbances. Future experiments on wave cancellation of natural disturbances
with distributed actuators would not require such a low amplification (Peltzer
et al. 2009).

Based on the PSE results the propagation behavior of the disturbances
can be investigated more in detail. Fig. 13 shows the non-dimensionalized
phase speed c and group speed cg for the local maximum N-factor Nmax and
1.5 ◦ ≤ α ≤ 3 ◦ . The PSE results allow the calculation of the phase speed c.

As indicated in Fig. 13 the phase speed c and the group speed cg slow down
about 5 % in the region between the sensors p (�) and e (H). The consequences
of a changing group speed cg for the specific time delay γ (equation (10)) is
discussed later in section 7.

The flow control setup is a SISO system as mentioned before in section
3. Since only one actuator is mounted in spanwise direction a 2D wave front
is required for the experiment. Natural TS-waves occur in wave packets with
a modulation in spanwise direction (Peltzer et al. 2009; Saric et al. 2002).
Therefore artificial disturbances with an even wave front are created by the
disturbance source. Fig. 14 shows the power spectra of the reference sensor
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(b) α = 2.5◦.
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Figure 12: Neutral stability curve (αi = 0, black solid line) and N -factor
contours for different α and Re = 3.75 · 106. The dashed black line shows the
most amplified frequency (αi = min) while the dashed white line indicates the
local N -factor maximum Nmax. The triangles below indicate the sensor and
actuator positions (see Fig. 6).

signal r(t) for the natural and artificial case (disturbance source on). The
artificially created 2D waves show amplitudes which are 12 to 15 dB higher
compared to the natural case, depending on the angle of attack α. This
emphasises that the naturally occurring 3D waves can be neglected and a
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Figure 13: Non-dimensionalized phase speed c/U∞ and group speed cg/U∞ of
the disturbances at the frequency for Nmax. The triangles below indicate the
sensor and actuator positions (see Fig. 6).

2D problem is present for the experiments. Limited space for sensors and
measurement time does not allow a measurement of the 2D character of the wave
front as it was conducted by the authors in wind-tunnel experiments (Fabbiane
et al. 2015a). The speakers are positioned directly beneath the surface and the
resulting small dead volume leads to the assumption that the speakers create
a 2D wave. The steady part of the PA force alters the boundary layer profile
and therefore also the stability properties of the boundary layer (Duchmann
et al. 2014). For the present case, the high flight speed in combination with the
rather low steady forcing of the PA leads to the assumption of a negligible effect
of the boundary-layer stabilization. Changing flow conditions during flight do
not allow to extract this small effect for the low actuator power levels from the
recorded data, see section 5.1.

6. Controller Operation in Flight

Several experiments with successful TS-wave cancelation of broad-band dis-
turbances with adaptive fxLMS algorithms have been reported in literature
(Fabbiane et al. 2015a; Simon et al. 2015; Sturzebecher & Nitsche 2003). The
successful application of the fxLMS controller for U∞ = 40.3 m/s and α = 3◦

with a broad-band disturbance is shown in Fig. 15a. The disturbances at the
error sensor e, which range from about 500 Hz to 1100 Hz are almost completely
damped.

The dxLMS control algorithm works as good as the fxLMS algorithm even
with this very simplified model of the transmission behavior of the secondary
path Hec. Fig. 15b shows a amplitude reduction of 12 to 15 dB, if the controller
is operated. For dxLMS controller operation, a digital bandpass filter (400 to
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Figure 14: Power density spectra of the error sensor signal e(t) for natural and
artificially induced TS-wave disturbances.

1100 Hz) is implemented in the Simulink model for all sensor signals. The filter
is necessary because the dxLMS controller adaptation can become unstable for
low frequency disturbances due to a phase-angle error, which is discussed later
in this section.

For direct comparison of both controller concepts the boundary conditions
have to be the same. Wind-tunnel experiments can fulfill this requirement but
for the flight test case an offline simulation of the controller behavior is necessary,
see section 3.3. The physical secondary path Hec is modelled with a FIR filter
Ĥec. Fig. 16 shows the offline simulated controller behavior for exactly the
same boundary conditions. The direct comparison shows that both controllers
perform equally well while small deviations are caused by an adaptation of the
LMS algorithm. It should be noted here, that the dxLMS controller shows
almost exactly the same signal reduction for NP = 118 samples compared to a
shorter delay of N = 115 samples.

The LMS adaptation algorithm estimates the control path Hcr with a FIR
filter w, which describes the transmission behavior from the reference sensor r
to the PA c. The filter w is also known as “kernel” and shown in Fig. 17 for the
offline simulated cases presented in Fig. 16. The FIR filters differ only for the
first twenty coefficients but the most characteristic peaks, which are responsible
for a successful TS-wave damping (Fabbiane et al. 2015a), match perfectly.

The control success with the dxLMS algorithm can be explained by looking
at the phase response of the transmission paths. As shown by Simon et al.
(2015), the fxLMS controller performance is almost constant for the stable
controller parameters but decreases abruptly if ±90◦ phase-angle error of the
secondary path model is exceeded. The solid blue line in Fig. 18 shows the
phase response of the secondary path model filter Ĥec while the dotted lines
indicate the ±90◦ boundary. The phase response of a delay is a straight line
with the slope ∂Φ

∂f = − 360◦N
fS

and for the presented case with NP = 118 the

phase response lies in-between the ±90◦ boundary for the amplified region
of the boundary layer. The frequency response of Ĥec is plotted as a black
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Figure 15: Control success of the active wave cancelation for fxLMS and dxLMS
(NP = 128) algorithm at α = 3◦. The spectra show the signal reduction at the
error sensor e.

solid line and marks the important region below the TS-wave ’hump’ where
the disturbances in the boundary layer are amplified. For the optimal delay of
NP = 118 the phase responses of Ĥec and the delay meet at the most amplified
frequency f ≈ 720 Hz whereas the curve for N = 115 intersect above the
amplified band at f ≈ 1030 Hz. Both lie in-between the ±90◦ boundary for
the whole band as indicated in Fig. 18. The dxLMS controller requires an
additional bandpass filter to avoid an unstable controller adaptation caused by
disturbances below the TS-wave frequency band which are not amplified by the
boundary layer but can exceed the ±90◦ boundary.

The in-flight measurements are limited to the measurement with un-
calibrated surface hot-wires. A measurement of the control success in terms of
disturbance amplitude growth along the streamwise direction is not possible.
The DNS results allow to measure the control success from the flow field. Fig.
19a shows the error-sensor spectra for the uncontrolled case as well as for dxLMS
and fxLMS operation. The fxLMS controller reaches about 15 dB reduction
in the amplified region while the dxLMS control algorithm performs equally
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Figure 16: Controller simulation (offline) of fxLMS and dxLMS for the same test
case. The transmission path is recorded at α = 2.5◦ and the dxLMS algorithm
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Figure 17: Kernel w of the dxLMS and fxLMS controller for the test case shown
in Fig. 16.

well for f < 900 Hz but slightly better for f > 900 Hz, which is consistent with
the experimental results in Fig. 16. The converged kernels w for both control
approaches (Fig. 19b) match well but the dxLMS kernel differs slightly, similar
to the experimental case shown in Fig. 17.

An evaluation of the whole flow control approach is not possible only by
analyzing the error sensor signals because it includes only the performance at one
point. The flow field obtained by DNS allows a prediction of the perturbation
energy evolution for both control approaches, dxLMS and fxLMS. An integral
value for the perturbation amplitude at a certain streamwise location is defined
as follows:

A(x) =

∫ ∞
y=0

〈(u′(x, y))2〉dy. (19)
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Figure 18: Phase response of the secondary path model filter Ĥec and a delay
of NP = 118 for dxLMS operation for the test case shown in Fig. 16.

Fig.19c shows the streamwise evolution of A. The amplitude drops down at the
actuator position PA (N) and grows again. The DNS results demonstrate that
e(t) is a good measure for the control success and the wave cancelation has a
sustained effect on the disturbance amplitude downstream.

6.1. Variable Flow Conditions in Flight

The stability and robustness of the fxLMS and dxLMS control algorithm is
mainly dependent on the secondary path model Ĥec and the delay N . The
corresponding FIR filters are shown in Fig. 20 for different angles of attack α
and flight speeds U∞. It is obvious that the curves of Ĥec are stretched for
higher angles of attack α and the amplitude is higher for lower α.

Simon et al. (2015) introduced scaling and stretching factors for a model
adaptation and extended the stable operation range in a wind tunnel experiment
for the fxLMS controller. This was done by a system identification and controller
calibration for a certain range of wind tunnel speeds and an online-adaptation
during the experiment. The black curve (α = 2.5◦, U∞ = 37.2 m/s) in Fig. 20
shows that such a pre-calibration of the system is not possible. Because of
flight mechanics the flow around the wing changes during flight. All transfer
functions but the black curve are recorded at a flight altitude of about 8000 ft
while the other curve is recorded at 3000 ft during the same gliding flight. Even
if the mass of the glider (wing surface area S) and required lift FL remain the
same, the air density ρ changes with altitude and therefore the flight speed U∞
changes for a constant α (or lift coefficient cL):

FL = cL ·
ρ

2
U2
∞S. (20)
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Figure 19: Comparison between fxLMS and dxLMS by linear DNS for α = 2.5 ◦

and Re = 3.75 · 106. Data are normalized with respect to the introduced
disturbance.

The increased density ρ at the lower altitude leads to a lower flight speed
U∞ and therefore to a lower group speed cg of the Tollmien-Schlichting waves
which is visible in a shift to the right in Fig. 20. The amplification of the
disturbances is mainly influenced by the pressure gradient or α, respectively.
This is why the amplitude of both measurements for α = 2.5◦ remains constant.
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Figure 20: Secondary path model Ĥec for different angles of attack and flight
altitudes.

A pre-calibrated system would lead to an unstable controller behavior, if the
phase-angle shift because the decreased group speed is higher than 90◦.

Due to the changing boundary conditions the flight data are not ideal for a
parametric study of α and U∞. The DNS calculations shown in Fig. 21 enable
to investigate the influence of each parameter independently. A variation of
α in Fig. 21a is associated with an increasing amplification for lower α but
also the shape of the filter Ĥec is shifted to the left because of the increased
group speed cg, see Fig. 13. The flow speed U∞ is varied by ±10 % at α = 2.5 ◦

and the resulting secondary path model Ĥec is shown in Fig. 21b. The shift
of the curves is more significant for the change of U∞ compared to α but the
amplification is almost not influenced by U∞. Compared to the experimental
values the DNS results do not match exactly because α and U∞ are coupled
in-flight but the observations of the parameter study can also be made with the
experimental results in Fig. 20.

7. dxLMS Stability and a Model-Free Approach for
Online-Delay Adaptation

The discussion of the varying flow conditions during flight in the last paragraphs
shows the need for a model adaptation during operation of the LMS algorithm.
In section 3 the calculation of the required delay N with an online-measured
specific time delay γ was introduced (equation (11)).

Fig. 22 shows two upstream sensor signals p(t) and r(t) extracted from the
test case shown in Fig. 16. The characteristics of the signals are almost the
same while r(t) is slightly shifted to the right due to the sensor distance pr and
the group speed cg of the downstream traveling waves. The shift between the
signals, L, is extracted from the cross-correlation of both signals, presented in
Fig. 23. A number of 2000 samples was found to give reliable results for the
online-calculation on the dSPACE system which, implies an update of L every
0.01 s. The determined value of L = 53 samples can now be used to determine
γ. For the presented example this leads to
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Figure 21: Parameter study of the secondary path model Ĥec for parameters α
and U∞, computed with DNS data .

γ =
L

pr
=

53 samples

35 mm
= 1.514 samples/mm. (21)

The required delay N can now be calculated based on γ :

N = γ · ce = 115 samples. (22)

Compared to the optimal delay NP = 118 samples the delay determined by
cross-correlation is slightly underestimated. The change of the group speed
cg leads to an error of ∆N = −3 samples but it can be compensated by the
adaptive character of the LMS algorithm as shown earlier in Fig. 16.

The phase-angle resolution δΦ(f) of a disturbance with the frequency f is
critical for the stability of the controller because a phase-angle error for the
secondary path model Ĥec of less than ±90◦ is required as explained in section
3. A sample rate of fS = 20 kHz leads to a phase-angle resolution δΦ = 14.4◦

for a disturbance with a frequency of f = 800 Hz. Flow control at higher flow
speeds requires higher sampling rates. The model-free approach can only work,
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Figure 22: Upstream sensor signals p(t) and r(t). The lag sensor signal p(t) is
amplified by a factor of 2 for better comparison.
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Figure 23: Cross-correlation of two upstream sensor signals p(t) and r(t),
presented in Fig. 22.

if the phase-angle shift ∆Φ can be resolved. In addition the ratio of the sensor
distance pr compared to the distance ce influences the resolvable signal shift.
For the given example the required delay N can only be determined with a
resolution of

δN = 1 sample
ce

pr
= 2.17 samples. (23)

In conclusion the sample rate and the upstream sensor distance are most
important for the success of the presented model-free control approach. The
positioning of the lag sensor p between r and c could provide a possibility to
minimize the influence of a changing group speed in the streamwise direction.

The numerical simulation results allow the computation of the time delay
N based on different methods;

• group speed cg, based on the stability properties;

• based on a peak in the secondary path model Ĥec;
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Figure 24: Delay N for dxLMS operation, computed using group speed, the
(negative) peak of Hec and the cross-correlation or the envelope of the cross-
correlation from p(t) and r(t), respectively. The data is obtained from the DNS
results.

• correlation techniques, based on the sensor signals p(t) and r(t)

Fig. 24 shows a comparison between the listed methods for determining
the required delay N for the dxLMS algorithm. Based on the stability of
the boundary layer the average group speed cg between PA (c) and e can be
calculated (see Fig. 13). Equations (8) and (9) then translate the time shift τ
with the sample rate fS to a delay N . The resulting N increases with α because
cg slows down due to the decreasing flight speed U∞.

Plotting the position of the delay in a secondary path FIR filter curve (Fig.
25) shows an interesting fact: the group speed is represented by the global
minimum of the impulse response curve. A reason for this behaviour, is that
the peak (global minimum) of the impulse response is a very good measurement
of the center of the wave packet. A model-free dxLMS operation based on
the cross-correlation of the upstream sensor signals p(t) and r(t) has been
introduced and works well for the data recorded in flight, see Fig. 23. However,
for the cases calculated by DNS, the dxLMS controller is unstable because the
second positive peak is lower in amplitude, compared to the experimentally
obtained curves in Fig. 20 which leads to a slightly changed phase response.

Another correlation technique is a time shift measurement based on the
envelope of the cross-correlation, see Fig. 26. The maximum of the envelope
is the lag L between the sensor signals p(t) and r(t). Due to the envelope
technique, the corresponding delay N is now close to the group speed cg and
therefore the minimum-peak in Fig. 25. As already discussed earlier cg is
decreasing with x and the envelope technique underestimates the delay slightly.

The most critical part which can be well investigated with the DNS results
is the phase-angle error ∆Φe between the secondary path model Ĥec and the
actual secondary path Hec. Fig. 27 shows ∆Φe for all four different delay
approaches. The two methods based on the group speed cg and the (negative)
peak lie on top of each other due to the same delay N . The curves are shifted
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Figure 26: Cross-correlation of two upstream sensor signals p(t) and r(t) com-
puted from DNS data at α = 2.5◦.

by a zero-cross phase of ∆Φ0 = 180 ◦ because of the negative gain, described in
equation (14). In comparison to the group speed method, the cross-correlation
method fulfills the stability criteria of the LMS (±90 ◦ limit) only in a short
band and does not match the slope of Hec well but crosses the phase response,
as already seen in the experimental results in Fig. 18. The group speed and
peak based delay match the slope much better which leads to a phase-angle
error ∆Φe close to zero for a wide range of the amplified frequency band, see Fig.
12b. A model-free dxLMS operation is more robust in terms of LMS controller
stability with the envelope method introduced above; the DNS results in Fig.
19 are obtained by using this method.

For dxLMS controller operation the zero-cross phase of ∆Φ0 = 180 ◦ can
be realized by adjusting the control law (equation (4)) with a negative gain (-1)
as follows:

w(n+ 1) = w(n) + (−1)αr(n)z−Ne(n) (24)
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Figure 27: Phase error ∆Φe with respect to the secondary path Hec. The
data is obtained via DNS simulations at α = 2.5◦. A negative gain is used in
the time-delay approximations, i.e. ∆φ0 = π = 180 ◦, for the time delays N
computed via group speed, (negative) peak of Hec and the cross-correlation or
the envelope of the cross-correlation from p(t) and r(t), respectively.

The discussion above illustrates that particular care has to be taken in
identifying the center of the wave-packet trace. A cross-correlation method may
lead to an error in the time-delay or phase-angle, respectively. Moreover, the
error of the correlation is also due to the variation in the group-speed between
p-r and c-e location: in this setup, this error does not compromise the stability
of the control algorithm and the error reduces by increasing the angle of attack,
see Fig. 24. However, a small systematic error will always be present.

8. Conclusions

The main focus of the work is the controller stability paired with a detailed
investigation of the boundary layer transmission behaviour, supported by DNS.
The performance of the reliable fxLMS control algorithm and the newly intro-
duced modified dxLMS control algorithm has been investigated for active wave
cancelation in flight under realistic atmospheric conditions.

Performance-wise the dxLMS and fxLMS control algorithms work equally
well, if the delay N is chosen in such a way that the phase-angle error ∆Φ ≤
±90 ◦. In-flight measurements and DNS simulations showed that the group speed
of the TS-wave disturbances change significantly dependent on the environmental
conditions and therefore also e.g. on the altitude. The resulting phase-angle
error ∆Φ therefore leads to an unstable controller behaviour, if a previously
identified model of the boundary layer transmission is not valid any more.

The introduced model-free “black box” system successfully works without
any previous information about the environmental conditions and successfully
cancel out TS-wave disturbances with the presented SISO system. An advanced
method for dxLMS controller operation and the determination of N , based on
the group speed measurement, has been introduced and theoretically derived.
In addition, the dxLMS algorithm requires less computational power because
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a FIR filter is replaced by a simple delay N . With regard to future MIMO
systems for active wave cancelation of naturally occurring wave packets the
dxLMS approach is a key development for less complex controllers and lower
requirements on the computational power.
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We use linear control theory to construct an output feedback controller for
the attenuation of small-amplitude three-dimensional Tollmien-Schlichting (TS)
wavepackets in a flat-plate boundary layer. A three-dimensional viscous, in-
compressible flow developing on a zero-pressure gradient boundary layer in a
low Reynolds number environment is analyzed using direct numerical simula-
tions. In this configuration, we distribute evenly in the spanwise direction up
to 72 localized objects near the wall (18 disturbances sources, 18 actuators,
18 estimation sensors and 18 objective sensors). In a fully three-dimensional
configuration, the interconnection between inputs and outputs becomes quickly
infeasible when the number of actuators and sensors increases in the spanwise
direction. The objective of this work is to understand how an efficient controller
may be designed by connecting only a subset of the actuators to sensors, thereby
reducing the complexity of the controller, without comprising the efficiency. If
n and m are the number of sensor-actuator pairs for the whole system and for
a single control unit, respectively, then in a decentralised strategy, the number
of interconnections deceases mn compared to a centralized strategy, which has
n2 interconnections. We find that using a semi-decentralized approach – where
small control units consisting of 3 estimation sensors connected to 3 actuators
are replicated 6 times along the spanwise direction – results only in a 11%
reduction of control performance. We explain how “wide” in the spanwise direc-
tion a control unit should be for a satisfactory control performance. Moreover,
the control unit should be designed to account for the perturbations that are
coming from the lateral sides (crosstalk) of the estimation sensors. We have
also found that the influence of crosstalk is not as essential as the spreading
effect.

Key words: active control, boundary layer instabilities, decentralised controller

1. Introduction

Drag reduction methodologies in vehicles and aircrafts have received considerable
attention during the past decades (Thomas 1984). These techniques provide the

P4-1
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possibility to significantly reduce the operational cost in transportation sector
and also improve the environmental consequences. In boundary layer flows, drag
reduction can be achieved by extending the laminar region on the aerodynamics
parts of vehicles by delaying the transition from laminar to turbulence. Although,
different techniques are used to delay the transition, currently significant efforts
are devoted to active control strategies e.g. opposition control (Hammond et al.
1998), wave cancellation (Sturzebecher & Nitsche 2003), optimal controller
(Dadfar et al. 2013) and etc. This approach adds external energy to the system
in terms of predetermined actuation (open loop) or on-line computation of
the actuation law using feedback information from the measurement sensors
(reactive control). One particular reactive control strategy employed in this
study is output feedback control (Doyle et al. 1989), where the actuation is
determined by measuring external disturbances.

In an environment characterised by low turbulence levels, two-dimensional
perturbations – Tollmien-Schlichting (TS) – wavepackets are triggered inside
the boundary layer. The TS waves grow exponentially in amplitude as they
move downstream until a point where nonlinear effects are significant and
transition to turbulence is triggered. An important trait of this transition
scenario, which also enables the use of linear control theory, is that the initial
stage of the perturbation growth inside the boundary layer is well described
by a linear system. Moreover, due to the large sensitivity of such flows to an
external excitation, one can influence the TS waves by introducing small local
perturbation in small region of the flow via proper localised devices requiring
minute energy. There is now substantial literature where linear control theory
is combined with numerical simulations to control transition in wall-bounded
flows. Pioneering work include the control of Orr-Sommerfeld equations (Joshi
et al. 1997), distributed control using convolution kernels (Cortelezzi et al.
1998; Högberg et al. 2003) and a localised control approach (Dadfar et al. 2013;
Bagheri et al. 2009). The term localized in the latter approach refers to the
use of a limited number of small compact actuation and estimation devices
positioned in specific manner to allow efficient control. The fact that the number
of inputs/outputs (O(10)) is order of magnitudes smaller than the dimensions of
flow system (O(107)) provides amenable conditions for reducing the order of the
system by constructing a low-dimensional model (ROM). Here, we report on our
most advanced configuration (placing up to 72 inputs/outputs) so far. In order
to have a physically realizable configuration, our numerical system is chosen
as to resemble the experimental study performed by Li & Gaster (2006). This
investigation extends or complements our previous work on two-dimensional
disturbances using blowing/suction and shear stress measurements (Bagheri
et al. 2009a), three-dimensional linear (Semeraro et al. 2011) and nonlinear
(Semeraro et al. 2013) investigations. Relevant reviews on this subject are
provided in Bewley (2001),Kim & Bewley (2007) and Bagheri & Henningson
(2011).
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We will report on the efficiency of a centralised and a decentralised control
strategy (Glad & Ljung 2000; Lewis & Syrmos 1995). In the former approach all
the sensors are connected to all the actuators. Since the complexity of a controller
is related to the number of interconnections, this approach becomes infeasible
when reaching O(102) inputs and outputs. This is certainly a restrictive
issue, since in a localized control approach the number of required sensors and
actuators increase with the span of the plate. A solution to this restriction is
a decentralised controller where one disregards some of the interconnections
which are not essential to the dynamics of the system. Then one replicates
the same controller (called control unit) along the span of the system to cover
a larger spanwise distance. In this study, several different control units are
designed and their performances are compared.

2. Flow and Control Configuration

2.1. Governing equations

The dynamics and control of small-amplitude perturbations in a viscous, incom-
pressible flow developing over an unswept flat plate are investigated using direct
numerical simulation (DNS). The disturbance dynamics is governed by the
Navier-Stokes equation linearised around a spatially developing zero-pressure-
gradient boundary layer flow as

∂u

∂t
= −(U · ∇)u− (u · ∇)U −∇p+

1

Re
∇2u+ λf (x)u, (1a)

∇ · u = 0, (1b)

u = u0 at t = t0, (1c)

where the disturbance velocity and pressure fields are denoted by u(x, y, z, t)
and p(x, y, z, t); x, y and z denote the streamwise, wall normal and spanwise
direction, respectively. Furthermore, U(x, y) and P (x, y) represent the baseflow
velocity and pressure; they are a solution to the steady, nonlinear Navier-Stokes
equation. In this study, all the spatial coordinates are normalised with the
displacement thickness δ∗ at the inlet of the computational box. The Reynolds
number is defined based on the displacement thickness as Re = U∞δ

∗/ν where
the U∞ denotes the uniform free stream velocity and ν is the kinematic viscosity;
all the simulations are performed at Re = 915 which correspond to a distance
of 312δ∗ from the origin of the plate to the inlet of the computational box. The
no-slip boundary condition is considered at the wall (y = 0), while Dirichlet
boundary condition with vanishing velocity is employed at the upper boundary
(y = Ly); this boundary condition is applied far enough from the boundary layer
to ensure negligible influence on the dynamics of the perturbations. Periodicity is
assumed in the spanwise and streamwise directions. In the latter, the term λ(x)
is implemented to enforce this periodicity so that a spectral Fourier expansion
technique can be employed. The function λ(x) is zero inside the physically
relevant part of the domain where the dynamics are investigated and has nonzero
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Figure 1: Input-output configuration of the system. The input B1 is a row of
localised disturbances located at x = 60, convected downstream and converted
to a TS wavepacket. The control action is provided by the input B2, consists
of a row of actuators located at x = 167. A set of localised estimation sensors,
at x = 150 upstream of the actuator is employed. A row of output sensors
at x = 375 is implemented as the objective function of the controller. Two
control strategies, centralised and decentralised are used. In the former all the
sensors and actuators are wired together while in the latter, a control unit with
a limited interconnections is designed and replicated along the span. There are
in total 18 disturbances B1, 18 sensors C2, 18 actuators B2 and 18 outputs C1.
Only 8 of those are depicted in the figure. For a centralised controller with n
sensor-actuator pairs, the connections are n2 while in a decentralised controller,
each control unit contains m sensor-actuator pairs, the connections are mn.

value at the end of the domain where a fringe region is applied (Nordström
et al. 1999). The simulation is performed using a pseudo-spectral DNS code
(Chevalier et al. 2007) where Fourier series are employed in the wall-parallel
directions and the wall-normal direction is expanded in Chebyshev polynomials.
The computational domain Ω = (0, 500)× (0, 30)× (0, 162) is discretized with
384 × 101 × 128 grid points in x,y and z directions, respectively. The time
integration is performed using a Crank-Nicolson scheme for the linear terms
and a third order Runge-Kutta method for the advective terms (Chevalier et al.
2007). The time step is 0.4δ∗/U∞ for the current simulations.
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2.2. Input-Output System

A schematic representation of the input-output configuration is depicted in
Figure 1. The linearised Navier-Stokes equation with inputs and outputs can
be written is state space form as

u̇(t) = Au(t) +B1w(t) +B2φ(t), (2a)

v(t) = C2u(t) + αg(t), (2b)

z(t) =

(
C1

0

)
u(t) +

(
0

R1/2

)
φ(t). (2c)

Henceforth, u(t) ∈ Rn denotes the state vector, whereas w(t) ∈ Rd, φ(t) ∈
Rm, v(t) ∈ Rp, g(t) ∈ R and z(t) ∈ Rk denote time signals. The matrix
A ∈ Rn×n represents the linearised and spatially discretised Navier-Stokes
equation. The above form has been reported in numerous works (see e.g.
Semeraro et al. (2010)) and only a short description is provided here:

• The first input (B1w(t)) is composed of B1 ∈ Rn×d representing the
spatial distribution of d localised disturbances located at the upstream
end of the domain and white noise signals w(t) ∈ Rd. These inputs
represent a model of perturbations introduced inside the boundary layer
by e.g roughness and free-stream perturbations.

• In the second input (B2φ(t)), B2 ∈ Rn×m represents the spatial support
of m actuators located inside the boundary layer near the wall. They
are fed by the control signal φ(t) ∈ Rm, which is to be determined by
an appropriate controller.

• The p output measurement provided by v(t) ∈ Rp detect information
about the travelling structures by the localised sensors C2 ∈ Rp×n. These
measurements are corrupted by αg(t). More precisely, g(t) ∈ Rp is a
white noise signal and α the level of noise.
• The output z(t) ∈ Rk extracts information from the flow in order to

evaluate the performance of the controller. This is done by localised
outputs C1 ∈ Rk×n with a spatial distribution located far downstream in
the computational box. It also contains the weighted control input. In
fact, the minimisation of the output signal detected by C1 is the objective
of our LQG controller; the aim is to find a control signal φ(t) able to
attenuate the amplitude of the disturbance detected by C1. Hence, the
objective function reads

‖z‖2L2
[0,∞]

= E
{
uTCT1 C1u+ φTRφ

}
, (3)

where E(·) is the expectation operator. The matrix R ∈ Rm×m contains
the control penalty l2 in each diagonal entry and represents the expense
of the control. This parameter is introduced as a regularisation term
accounting for physical restrictions. Large values of control penalty
results in weak actuation and creates low amplitude control signal whereas
low values of control penalty leads to strong actuation.



P4-6 R. Dadfar, N. Fabbiane, S. Bagheri & D.S. Henningson

Element Symbol Number Location Parameters
− − (x0, y0) (σx, σy, σz)

Disturbances B1 18 (60, 0) (6, 1.5, 8)
Sensors C2 18 (150, 0) (2, 1.5, 2)

Actuators B2 18 (167, 0) (6, 1.5, 8)
Outputs C1 18 (375, 0) (5, 1.5, 6)

Table 1: The main parameters characterising the spatial distribution of the
sensors and the actuators. All the elements are located at z0 = −76.5 and
distributed along the span with the spanwise spacing ∆z = 9.

Following Semeraro et al. (2011), we define the spatial distribution of the
sensors and actuators with a Gaussian divergence-free function as

h(x, y, z) = a

 σxγy
−σyγx

0

 e−γ
2
x−γ

2
y−γ

2
z , (4)

where

γx =
x− x0

σx
, γy =

y − y0

σy
, γz =

z − z0

σz
, (5)

and (x0, y0, z0) is the centre of the Gaussian distribution. The scalar quantities
(σx, σy, σz) represent the corresponding size (values given in Table 1). The
scalar a represents an amplitude which is equal to 2× 10−3 for the actuators
and one for the sensors. Most of our simulation is performed for the setup
reported in Table 1. We denote the ith element of the disturbance vector B1

by B1,i corresponding to the signal wi(t).

2.3. Model Reduction

We construct a reduced-order model of the system by projecting the n−dimensional
state onto a low-dimensional subspace of dimension r. Expanding the state in a
linear combination of columns of the expansion basis Φ = (φ1, φ2, · · ·φr) ∈ Rn×r
as

u = Φû (6a)

û = ΨTu, (6b)

where Ψ = (ψ1, ψ2, · · ·ψr) ∈ Rn×r are the adjoint modes, bi-orthogonal to the
expansion basis Φ, i.e. ΨTΦ = I. Substituting Eq. (6a) into the system Eq. (2)
and using the bi-orthogonality of the basis, the reduced system of order r is
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Figure 2: Impulse response of the system (a) from the input B2,8 to the output
C1,8, (b) from the input B1,8 to the output C2,8 and (c) from the input B1,8

to the output C1,8. The red line shows the DNS results, while the dotted lines
indicates the impulse response of the reduced model (Case N Table 2)

obtained as

Ar = ΨTAΦ, (7a)

B1r = ΨTB1, B2r = ΨTB2, (7b)

C1r = C1Φ, C2r = C2Φ. (7c)

The choice of the basis function is crucial for the performance of the reduced
order system (Bagheri et al. 2009c; Barbagallo et al. 2009). We use a balanced-
mode-basis (Moore 1981; Willcox & Peraire 2002; Rowley 2005) that preserves
the dynamics between the inputs and outputs of the system. The states that
are equally observable and controllable form a hierarchy of so-called balanced
modes. The method is based on the concepts of observability and controllability
(Zhou et al. 2002), which provide a means to characterize the states in terms
of how easily triggered they are by the inputs and observed by the outputs,
respectively. The states which are neither controllable nor observable or the
ones that are weakly controllable or observable are redundant for the input-
output behaviour of the system. A limitation pertaining to this method is
the necessity of computing the adjoint balanced modes. The Eigensystem
Realisation Algorithm (ERA) (Juang & Pappa 1985; Ma et al. 2011) is a system
identification technique that allows to circumvent this limitation. It is only
based on sampling measurements extracted directly from the flow, see a detailed
description of the method in Ma et al. (2011).

As an example of the performance of the reduced-order model with r = 435,
in Figure 2 we show the impulse responses:

φ8 → z8, w8 → v8, w8 → z8.
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In the figure, the solid lines are the impulse response of the full system obtained
from solving Navier-Stokes equation while the dotted lines presents the results
of the reduced-order model. We observe an equally good agreement for all the
inputs and output, when comparing the full system and the ROM. Now that
an efficient ROM is constructed, may design a linear controller.

2.4. Control Design

We use a classical LQG-approach to determine a controller that minimises the
energy of disturbances captured by output C1 (Lewis & Syrmos 1995; Zhou
et al. 2002). The control signal φ(t) is designed for the actuator B2 such that
the mean of the output energy, z(t), is minimised (see Eq. 3). The LQG design
procedure involves a two-step process: first the full state - represented in this
case by the velocity field - is reconstructed from the noisy measurement v(t)
via an estimator. Once the estimated state û is computed the control signal
can be computed by the following linear relationship

φ(t) = Kû(t), (8)

where K ∈ Rm×r is referred to as the control gain. When the disturbances
are modelled as white Gaussian noise, the separation principle allows the two
steps (estimation and full-information control) to be performed independently.
Furthermore, both problems are optimal and stable and the resulting closed
loop is also optimal and stable (Zhou et al. 2002). The final form of the reduced
order controller (also called compensator) of size r is

˙̂u(t) = (Ar +B2rK + LC2r)û(t)− Lv(t), (9a)

φ(t) = Kû(t), (9b)

where the term L ∈ Rr×p is the estimator gain and can be computed by solving
a Riccati equation (Glad & Ljung 2000), such that the error ε = ‖û − u‖2 is
minimised. The controller is thus a state-space system with the measurements
v(t) as input and the control signal φ(t) as output. The evolution of the
perturbations is simulated by marching in time the full DNS, while the controller
runs on-line, simultaneously. Eq. 9a is based on the reduced-order model and is
solved by using a standard Crank-Nicholson scheme.

2.5. Centralised and Decentralised Controllers

A multivariable control approach is necessary since our system has more than
one actuator and sensor. The degree of control complexity in a multivariable
approach depends on the degree of coupling between inputs and outputs. For
example consider the transfer function between the input wj to the output vk.
Then the effect on vk due to a small change in wj may depend on one, a few
or all other inputs wh for h 6= j, if the system is uncoupled, weakly coupled or
fully coupled, respectively. The degree of coupling depends usually not only on
the actuator/sensor placement but also on the dynamics of the TS wavepackets.
As we shall see, we have a situation of a weakly coupled system, due to the fact
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that a TS wavepacket generated from a point source spreads only in a limited
spanwise region.

The most straight-forward approach is the so called centralised controller
where all the inputs and outputs are connected together. The main disadvantage
is that the number of interconnections – thus the complexity of the controller
– increase significantly as we aim to control perturbations over a larger span
of the domain. In contrast, a fully decentralised controller connects only one
sensor to one actuator, and thus requires by definition the same number of
actuators and sensors. This approach disregards any influence of an input which
is not placed directly upstream the output; this is a risky model assumption, as
the influence that may exist in reality will induce an over- or underestimation
of the signals, causing instabilities. A compromise between the centralised and
fully decentralised approach is a semi-decentralised approach (henceforth only
referred to as decentralised), where the system is divided into a collection of
independent sub-systems. For each sub-system a controller is designed – called
a control unit – for a few number of sensors and actuators. Then, the same
controller is replicated along the span to cover a broader region. As we will
see the division into control units provides an efficient means for control of TS
waves, since the disturbance source upstream is only observable at a subset
of sensors; thus some of the interconnections which are not relevant to the
dynamics of the system are neglected (see Figure 1).

The number of interconnections in a control system determines the com-
plexity of a controller. Reducing the complexity has a number of advantages
including, easier implementation (less hardware) low-dimensionality of the sys-
tem (faster system). In a system with a centralised controller using n sensors
and n actuators, n2 interconnections are required. However if we split this
system into ∼ n/m control units with m sensors and m actuators each, the
total number of interconnections becomes n/m ×m2 = nm. This is a linear
function of n instead of a quadratic function. The net gain of a decentralised
controller is more evident when the number of sensors and actuators increases
in the system e.g. when the objective is to control a larger span of the boundary
layer.

3. Results

In the following sections, we first design and analyse a centralised controller
for the attenuation of small–amplitude TS wavepackets. After a parametric
study of the control penalty, we identify a reference controller, as the centralised
controller that for the chosen flow parameters (Re, domain, etc) provides the
best performance. Second, we design a set of decentralised controllers by
assembling several control units of different sizes. Their control efficiency in
terms of performance (robustness is left for future studies) will be compared to
the reference controller. In order to determine the performance of the controller,
we use the 2-norm of a system G. When the inputs of the system are white
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Case Description Control Order Norm Energy
Penalty Reduction Reduction

k − l r 1− ‖Gk‖22
‖Gn‖22

Ēk

N 18/18− 18− 18− 18/1 − − 0% 0.00
A 18/18− 18− 18− 18/1 100 435 45% 0.27
B 18/18− 18− 18− 18/1 10 435 98% 0.80
C 18/18− 18− 18− 18/1 1 435 98% 0.80

Table 2: The performance of a LQG controller designed with different control
penalties. The noise autocovariance on the estimation sensors and for all cases
are assumed constant α2 = 10−6. The norms are computed in the time interval
t ∈ [2000, 8000]. The description identifier is defined as the following; number of
disturbances B1 / the design configuration of the system consists of d−p−m−k
disturbances-estimation sensors-actuators-outputs/ number of control units.

noises with variance σ2
w, ‖G‖22 can be computed as:

‖G‖22 =
1

dσ2
w

∑
i

1

T

∫ t1

t0

(C1iu)2dt (10)

where T = t1 − t0 is the period over which the performance is evaluated. In
Table 2-4, we compare the norm of the uncontrolled system ‖Gn‖22 to the ones

with control ‖Gk‖22 .

3.1. Centralised Controller

In Table 2 the effect of different control penalties (parameter l in Eq. 3) on the
performance of the closed-loop system is investigated for a centralized LQG
controller and the setup in Table 1. The optimal value of the control penalty is
usually not known before applying the controller to the full DNS and involves an
iterative procedure. In general, small values of the control penalty correspond
to a reduction of the perturbation amplitude; however, too low values of control
penalties may result in unfavourable behaviour such as unphysical control signal
(Semeraro et al. 2011). Case C in Table 2 is selected as the baseline reference
controller, for which all decentralized controller will be compared to, while case
N represents the system without implementing the control (uncontrolled case)
and is used to compute the performance of the controller.

First, we characterize the performance of controller C using a number of
different observables. Figure 3 represents the input-output behaviour of the
closed-loop system for case C. In this setup, there are totally 18 inputs B1;
each of them are exited by an independent white noise of variance 1

3 . In the first
frame (Figure 3a), the disturbance input w8 is shown. It is a white noise signal
that provides a continuous forcing at B1,8. Figure 3b shows the measurement



Centralised vs. decentralised control of boundary layer instabilities P4-11

2000 2500 3000 3500 4000 4500

−1

0

1

w
8

(a)

2000 2500 3000 3500 4000 4500
−0.5

0

0.5

w
→
C

2
u(b)

2000 2500 3000 3500 4000 4500
−0.2

0

0.2

φ

(c)

2000 2500 3000 3500 4000 4500
−10

0

10

w
→
C

1
,8
u

(d)

t

Figure 3: Noise response of the closed-loop system: Stochastic excitation of
the input B1,8 is shown in (a), estimation signals C2,8 (dashed blue line) and
C2,18 (solid green line) in (b), control signal feeding the actuator B2,8 (dashed
blue lines) and B2,18 (solid green line) in (c) and measurement extracted by
sensor C1,8 for uncontrolled (solid line) and controlled and dashed (dashed line)
system (cases N and C in Table 2) in (d).

detected by upstream sensors C2,8 and C2,18. The sensors are located close
to the wall, inside of the boundary layer and can register the evolution of the
disturbance. One clearly observes that certain frequencies are amplified by
the system, whereas others are damped. Figure 3c reports the control signals
related to actuators B2,8 and B2,18. Since the disturbances are uncorrelated, we
can observe independent behaviour for different actuators. Finally, in Figure 3d,
the signal extracted from output C1,8 for the uncontrolled and controlled cases
is shown. The root mean square (r.m.s) of the signal is reduced up to 89%.

The input-output behaviour of the closed-loop system in frequency domain
is shown in Figure 4. The power spectrum density of the input signal w8 together
with the output signal C1,8u in the controlled and uncontrolled configuration are
plotted (cases N and C). In this configuration the most amplified frequency in
the system is 0.00171, where its energy is damped up to one order of magnitude.

In a three-dimensional configuration, the minimisation of the sensor mea-
surements near the wall, does not guarantee the reduction of the perturbation
energy in the full domain. This has to be evaluated a posteriori. Figure 5 shows
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Figure 4: Power spectrum density (PSD) of the input signal w8 (dashed-dots
blue – cases N − C), uncontrolled output signal C1,8u (solid red – case N) and
the controlled output signal C1,8u (dashed black – case C) are shown.

the energy, E(t) = uTu/2, of the perturbation as a function of time. The mean
value of the energy reduction Ēk is defined as

Ēk =

∫ t1
t0
ENdt−

∫ t1
t0
Ekdt∫ t1

t0
ENdt

, (11)

where [t0, t1] is the time interval in which the statistics are computed. In
Figure 5, the uncontrolled energy EN is shown by a solid red line while the
controlled energy, Ek is shown with a blue line. We observed that the energy is
reduced by approximately 80%.

Finally, in order to gain an insight into where in the physical domain,
the controller has a strong effect, we show in Figure 6 the distribution of
the r.m.s value of the streamwise velocity of disturbances in horizontal plane
(streamwise-spanwise) averaged along wall normal direction. The disturbances
B1 are located at x = 60 from the beginning of the computational box. We
expect the amplitude of the perturbations to grow as we move toward the end
of the domain in uncontrolled case N (Figure 6a). Figure 6b shows the resulting
r.m.s value of the perturbations when the controller is active. The suppression of
the perturbations begin from x = 167 where the actuators are located. Figure 6c
reports the percentage of the reduction in r.m.s of the perturbation. Since
the objective function of the controller is to attenuate the amplitude of the
perturbation where the outputs are located, a significant reduction is observed
at that region; the reduction is also homogeneous in spanwise direction.

3.2. Decentralised Controllers

Having shown that centralized controller with a very high complexity may reduce
energy by nearly an order of magnitude, we now investigate how decentralized
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Figure 5: Energy of the perturbations E as a function of time t; solid red
line corresponds to the energy of uncontrolled case EN and solid blue line
to the controlled case EC . The statistics are computed for the time interval
t ∈ [3000 8000].

Case Description Control Order Norm Energy
penalty Reduction Reduction

k − l r 1− ‖Gk‖22
‖GN‖22

Ēk

D 18/5− 3− 3− 9/1 20 155 4.6% 0.109

E 18/5− 1− 3− 9/1 20 155 2.2% 0.044
F 18/3− 3− 3− 9/1 20 119 3.4% 0.087
G 18/5− 3− 3− 3/1 10 87 8.4% 0.083

Table 3: In each case only one control unit is employed. The noise autocovariance
for all the cases are assumed as α2 = 10−6 and the norms are computed for
time t > 2000.

controllers of lower complexity compare in performance. As already mentioned,
the decentralized controllers are designed in two steps; (i) constructing a control
unit using only a few actuators and sensors; (ii) by replicating the units in the
spanwise direction.

3.2.1. Design and Performance of Single Control Units

The simplest control unit is obtained by to connecting one sensor C2 to one
actuator B2. Despite the relative simplicity of this configuration both in terms
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Figure 6: Streamwise root mean square velocity averaged along wall normal
direction for the uncontrolled case N (a) and controlled case C (b) and the
corresponding percentage of the reduction (c). The statistics are computed
for the time interval t ∈ [3000, 8000]. The white dots indicate the location of
estimation sensors C2 and the actuators B2.

of the design and implementation, the results are prone to the stability problems
and poor control performance (Li & Gaster 2006; Semeraro et al. 2011).

Motivated by the experimental work of Li & Gaster (2006), we choose to
investigate two control units:

1. The first one consists of three actuators (the center actuator B2,8 and
two adjacent to the center B2,7 and B2,9), three estimation sensors
(C2,7, C2,8 and C2,9) and 9 objective sensors C1,(4,5,··· ,12). During the
design process of the control unit, we assume that there exists 5 upstream
disturbances B1,(6,7,··· ,10), but the actual performance of the controller is
assessed when 18 disturbance sources are active (see sketch in Figure 7a).
The description identifier of this control unit is (18/5 − 3 − 3 − 9/1),
where the different numbers are respectively; number of disturbances
B1 / the design configuration of the system consists of d - p - m - k
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(a)

18/5-3-3-9/1

(b)

18/5-1-3-9/1

Figure 7: A schematic view of two control units. The controller shown in (a) is
designed considering 5 upstream disturbances B1,(6,7,··· ,10), 3 estimation sensors
C2,(7,8,9), 3 actuators B2,(7,8,9) and 9 outputs C1,(4,5,··· ,12) as the objective
function (circles). This control unit performs when 18 disturbances are evolving
into the domain (squares). The layout and the number of sensors and actuators
remain the same for the control unit depicted (b), but only one estimation
sensor C2,8 is used.

(disturbances-estimation sensors-actuators-outputs) / number of control
units.

2. The second one (18/5 − 1 − 3 − 9/1) has only one estimation sensor,
namely the center one (C2,8) as shown in Figure 7b. The remaining
parameters are the same the first control unit.

Figure 8 shows the control signal for the two lateral actuators B2,7 and
B2,9 for both control unit one and two. It is obvious that the two actuators
behave in the same manner for the second controller (case E in Table 3) while
they are acting independently for the multiple sensor control unit (case D in
Table 3). After designing the control units, their performances are monitored
while 18 disturbances B1 evolve and convect downstream (18/5− 3− 3− 9/1).
Figure 8 depicts the control signal for the two lateral actuators B2,7 and B2,9

for both cases. It is obvious that the two actuators behave in the same manner
for the symmetric controller (case E) while they are acting independently for
the asymmetric one (case D).

Figure 9 shows the streamwise velocity cancellation at two different planes
z = −13.5 and y = 0.6 for case D. The maximum rms reduction in this case
is 48%. The same number of sensor and actuators (1 sensor - 3 actuators) are
used in the experimental setup by Li & Gaster (2006). The maximum rms
reduction in this case is similar to the one obtained in the experiment. In the
experimental setup the data is extracted at a lower plane y = 0.36 but the
maximum reduction in case D occurs at y ≈ 0.6. The difference between the
two cases may arise from the fact that the effect of the actuators are different
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Figure 8: Control signal driving the actuators B2,7 (solid line) and B2,9 (dotted
line) are shown in (a) for a three-estimation sensors-based control unit (case
D in Table 3) and in (b) for single-estimation sensors-control unit (case E in
Table 3).

in both cases. Moreover, in this case we use 18 sources of disturbance with a
periodic boundary condition which numerically analogues to using an infinite
number of actuators while in the experimental setup, they only used 15 sources
of disturbance. Figure 10 shows the streamwise velocity cancellation averaged
along wall normal direction. The white dots indicate the spatial configuration
of the sensors and actuators for the two cases D and E. The Figs. 10a and
10b confirm that a level of cancellation up to 40% is achieved in the central
area downstream of the actuators while it faded away as we move downstream.
Controller based on only one upstream sensor can act on a limited region while
the controller based on three sensors is able to influence a broader domain.
The reason is that the latter controller can identify the discrepancy between
the disturbances coming from lateral sides, i.e. the observability of the system
is significantly larger. This controller can attenuate the energy of the system
up to 10.9% (see Table 3 case D), while the single-sensor controller can only
suppress the energy up to 4.4%. Furthermore, in terms of norms of the system,
the corresponding reduction between the two controllers are 4.6% and 2.2%. In
the following section we use the control unit, case F .

3.2.2. Effect of Crosstalk

As a localised disturbance propagates downstream, it will – after a short transient
– develop into a wavepacket that grows in size and spreads along the spanwise
direction. Each estimation sensor C2,j does not only receive a signal from the
disturbance source directly upstream of it (wj), but also the lateral sources (wh,
for h 6= j) contribute to the total measured signal. The additional perturbations,
originated from the lateral sources and detected by the estimation sensors C2,
are referred to as crosstalk (see Figure 12).
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Figure 9: Percentage reduction in streamwise velocity cancellation (case E) at
a) plane z = −13.5 and (b) plane y = 0.6. White lines at y = 0.6 and z = −13.5
resemble the cross section of the two planes and solid black line at y = 0.36 is
used by (Li & Gaster 2006) to extract the results.
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Figure 10: Percentage reduction in streamwise velocity cancellation averaged
along wall normal direction for case D (a) and E (b) is shown. The white dots
indicate the location of sensors C1, C2 and actuators B2.

Consider now the control unit, Case F , from the previous section (3 estima-
tion sensors and 3 actuators). The energy of the signals received by 3 estimation
sensors from different numbers of disturbance sources B1 is shown in Figure 11a.
As one can observe, around 70% of the total energy of the signals originate
from 3 disturbance sources directly upstream of the estimation sensors. In order
to capture 90% of the total energy of the signals, 5 disturbance sources are
required in which, the additional 20% of the energy belongs to the two lateral
disturbance sources.

To investigate the effect of the crosstalk in the performance of the control
unit, we compare two cases. The only difference between them is the number
of disturbance sources B1 considered in the design process. Just as before we
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Figure 11: Energy captured by 3 estimation sensors C2,(7,8,9) originates from
impulse response of different number of disturbances (a) and energy harvested
by using different number of outputs C1 from the impulse response of 3 actuator
B2,(7,8,9)(b). The data is normalised by the maximum value when j = 18. The
number of disturbances or outputs (elements) denotes as j. j = 1 corresponds
to an element located at z = −13.5 (i=7). j = 3 corresponds to 3 elements
i ∈ (6, 7, 8). The numbering convention continues the same with the central
element located at i = 7; for instance, j = 5 corresponds to 5 elements
i ∈ (5, 6, 7, 8, 9) and so on.

Crosstalk

C
2
B
2
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Figure 12: A schematic layout of the control unit. Two kind of perturbations,
observed by 3 sensors C2,(7,8,9) are depicted; they include the perturbation
coming from sources directly in front of the sensors and the lateral perturbations
coming from sides which is referred to as crosstalk.

consider 5 disturbance sources B1 in case with crosstalk (case D) while we
reduce the effect of crosstalk and only design the controller for 3 disturbance
sources B1 ( 18/3 − 3 − 3 − 9/1 or case F in Table 3). Table 3 shows the
performance of the two systems; the configuration that takes into account 90%
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of the total energy can attenuate the energy of the disturbances up to 10.9%
while the configuration taking into account only 70% of the total energy can
reduce the energy up to 8.7%. This indicates the number of disturbance sources
in the control design process depends on the nature of the disturbance (e.g. how
fast it spreads in the spanwise direction). Capturing only part of the spreading
of a disturbance has a sizable effect on the control performance.

Next, we investigate the performance of the controllers when the control
units are replicated along the spanwise direction. First, we consider 6 control
units based on the configurations with high level crosstalk and with reduced-
level of crosstalk. Table 4 reports the reduction in the energy of the system
using these controllers. The performance of 6 control units considering the
crosstalk effect (case H) is only 11% less than the centralised controller (case C
in Table 2) where all the interconnections between the sensors and the actuators
are taken into account. On the other hand, if we only capture part of the
crosstalk effect (case J) we loose an additional 9% of performance.

3.2.3. Capturing the spread of the disturbances

Since the wavepackets spread along the spanwise direction while propagating
downstream, we need to distribute a minimum number of objective sensors
C1,j along the span to correctly capture the energy of the disturbances. On
the other hand, we have to be able to control the disturbances detected by
outputs C1 using the actuators B2. In fact, the further away the outputs
are from the centreline of an actuator, the less we can control the structures
detected by that outputs. More specifically, we consider again control units
which have 3 actuators (B2,(7,8,9)). Figure 11b reports the energy of the signals
captured by different number of outputs C1, which originate from the impulse
responses of the 3 actuators. We can observe that over 90% of the total energy
that originated from an impulse in the 3 actuators is captured by 9 outputs.
According to this observation, we compare two controllers, whose differentiate
only in the number of employed outputs in the control design. In the first
configuration (case D in Table 3) we consider 9 outputs (C1,i, i = 4, · · · , 12)
while in the second configuration (case G in Table 3) we implement 3 outputs
only (C1,i, i = 7, 8, 9). As one can observe in Table 3, the reduction in the
energy of the system Ēk in the case with 9 outputs is 10.9% while in the case
with 3 outputs is 8.3%.

It is important to note that in both configurations, we take into account
the crosstalk effect. If we compare the performance of the controller with 3
outputs (case G) to the controller that only partially accounts for the crosstalk
from the previous study in sec 3.2.2 (case F ), we can observe that the energy
reduction in the second case is larger, 8.3% vs 8.7%. Finally, we compare on
the performance of the 6 control units with 9 and 3 outputs in Table 4 (cases H
and K). In the former, the energy is attenuated up to 69% while in the latter,
it is reduced up to 48%.



P4-20 R. Dadfar, N. Fabbiane, S. Bagheri & D.S. Henningson

Case Description Norm Energy
Reduction Reduction

k − 1− ‖Gk‖22
‖Gn‖22

Ēk

H 18/5− 3− 3− 9/6 88.0% 0.69

J 18/3− 3− 3− 9/6 85.5% 0.60
K 18/5− 3− 3− 3/6 64.7% 0.48

Table 4: In each case 6 control unit are used. The control units distributed
equidistantly along the span and does not have any overlap. The noise autoco-
variance for all the cases are assumed as α2 = 10−6. In addition, the norms are
computed for time t > 2000.

4. Conclusion

We have investigated and compared two different control strategies, namely a
centralised and a decentralised. In the former approach where all the sensors
and actuators are connected together, the complexity of the system (due to the
number of interconnections) may be to high for implementation in experiments,
in particular, as we aim to control over a wider span of the domain. We have
presented an alternative decentralised strategy, where several small control
units consisting of 3 pairs of actuators-sensors are assembled to cover the full
spanwise length of the flat plate. The choice 3 actuators-sensors as well as the
number of source disturbances and objective sensors included in the design of a
single control unit needs to be chosen with a physical insight on the spatial and
temporal scales of the perturbation inside the boundary layer. We have focused
on TS wavepackets, streaky structures observed under different conditions inside
the boundary layer, may need control units of different order.

As explained in Sec.3.2.3 our results reveal that the best performance
is obtained for a control unit which (i) has “sufficient” number of output
measurements and (ii) is designed to account for the perturbations which are
coming from the lateral sides (crosstalk) of the estimation sensors. We may
also conclude that the influence of crosstalk is not as essential as the spreading
effect.

The authors wish to thank Ardeshir Hanifi and Onofrio Semeraro for
fruitful discussions. Computer time was provided by the Center for Parallel
Computers (PDC) at the Royal Institute of Technology (KTH) and the National
Supercomputer Center (NSC) at Linköping University in Sweden.
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Reactive-control techniques have been longly investigated to control local flow
instabilities in boundary-layer flows – Tollmien-Schlichting waves – that would
eventually cause laminar-to-turbulence transition. Several studies have been
published about the control of two-dimensional (2D) disturbances supposing a
transition delay. In this study, a three-dimensional (3D) disturbance environment
is considered in a 2D zero-pressure-gradient boundary-layer flow. A control-
law based on a multi-input-multi-output (MIMO) filtered-x least-mean-squares
(fxLMS) adaptive algorithm is introduced and its performances are analysed
for increasing disturbance amplitude. Transition delay is achieved by the
investigated control set-up; moreover, an energy budget is conducted in order
to asses the net energy saving capabilities of the investigated control approach.
Ideal as well as real actuators models are considered, focusing in particular on
dielectric-barrier-discharge (DBD) plasma actuators. To our knowledge, this is
the first time that drag-reduction and energy-saving capabilities are studied for
reactive transition-delay techniques.

Key words: fxLMS, plasma actuator, drag reduction

1. Introduction

In low free-stream turbulence conditions, the transition to turbulence in a flat-
plate boundary-layer is dominated by Tollmien-Schlichting (TS) instabilities.
These disturbances have the form of travelling waves that grow exponentially
while propagating downstream. When they reach a critical amplitude, around
1% of the free-stream velocity, they non-linearly interact with each other and
eventually lead to turbulent state. This scenario is known as the classical route
to transition, as described in the review work by Kachanov (1994). Since a
turbulent boundary layer leads to higher friction force, it is of engineering
interest to develop control techniques that allow the flow to stay laminar as
long as possible.

The general aim is to control the TS-waves instabilities when their amplitude
is still small such as they reach the critical amplitude farther downstream. In
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this way, the non-linear breakdown is used to our advantage; the disturbances
are cancelled when their amplitude is low and the force requirement is small,
where one can expect that the energy-saving because of the drag-reduction
induced by the transition-delay is very large. These considerations lead to an
inherent – but not verified – high energy-gain by this control strategy. Because
of its potential, reactive flow control has been subjected to several studies in
the past decades; the two-dimensional (2D) control of flow instabilities has been
widely investigated both from a numerical (e.g. Bagheri et al. 2009; Dadfar et al.
2013) and experimental (e.g. Kurz et al. 2013; Juillet et al. 2014; Kotsonis et al.
2015) point of view. Successful attempts to control complex three-dimensional
(3D) environments can be found in the literature (Li & Gaster 2006; Semeraro
et al. 2013; Dadfar et al. 2014) but, to our knowledge, no systematic study on
transition delay and energy saving has been conducted yet.

The present work aims to understand the transition-delay capabilities of
reactive flow control and assess the potential net-energy-saving. In particular,
the present work focuses on an adaptive control technique, which is based on
an on-line computation of the control law. This is in contrast to static control
techniques (Semeraro et al. 2013; Juillet et al. 2014), where the control law is
precomputed, usually based on a model of the flow.

A multi-input multi-output (MIMO) filtered-x least-mean-squares (fxLMS)
algorithm is used. This adaptive control technique has been studied by the
experimental community and shown to be effective in 2D TS-wave control
(Sturzebecher & Nitsche 2003; Kurz et al. 2013). A recent study by Fabbiane
et al. (2015b) highlighted its robustness to varying external conditions when
compared to static control. In particular, the algorithm was able to change the
control law when the free-stream velocity was slightly varying from the nominal
condition. The weak non-linearities that TS-waves encounter in the first stages
of the transition to turbulence can also be regarded as uncertainties; therefore,
the algorithm should be able to adapt to the weak non-linearities and extend
the transition-delay capabilities of the investigated control set-up.

The manuscript is organised as follows: after a brief introduction to the
numerical set-up (§2) and the implemented adaptive algorithm (§3), the control
performances are investigated in linear (§4.1) and non-linear (§4.2) regimes and
transition-delay capabilities are analysed (§4.3). Finally, the energy efficiency
of reactive transition-delay is evaluated (§5) by using both ideal actuators and
plasma-actuator models.

2. DNS/LES simulations

The incompressible Navier-Stokes equations govern the flow:

∂u

∂t
+ (u · ∇) u = −∇p

ρ
+

1

Re
∇2u + λ(x) u + f , (1)

∇ · u = 0, (2)
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where ρ is the density, u(x, t) the velocity, p(x, t) the pressure at each time t
and position x = (X,Y, Z) ∈ Ω. The axis X is aligned with the free-stream
velocity U , Y is normal to the surface and Z defines a right-hand triad with the
others, see Figure 1. Using a pseudo-spectral code (Chevalier et al. 2007), DNS
and LES simulations are performed in order to analyse the control strategy.
Periodicity is assumed in the spanwise and streamwise directions; the fringe
forcing λ(x) enforces periodicity in the streamwise direction in the last 20% of
the streamwise domain length (Nordström et al. 1999). The spatial coordinates
are non-dimensionalised by the displacement thickness in the beginning of the
domain δ0. The resulting Reynolds number is defined as Re = Uδ0/ν = 1000,
where ν is the kinematic viscosity. For the time-integration a fourth-order Crank-
Nicholson/Runge-Kutta method is used with a constant time-step ∆t = 0.4.

Two different computational domains are used in this work. A shorter
domain ΩS is used for the parametric study over the perturbation amplitude in
§4.2. It extends for [0, 1000]× [0, 30]× [−75, 75] in the X, Y and Z directions
and the flow is expanded over 1536× 384 Fourier modes in the XZ-plane and
101 Chebyshev’s polynomials in the wall-normal direction. A second and longer
domain ΩL is used to assess the transition delay and energy saving capabilities
of the control technique in §4.3. It extends for [0, 2000]× [0, 45]× [−125, 125]
and it uses 1536× 151× 384 Fourier-Chebyshev-Fourier basis. De-aliasing is
performed along the Fourier-discretised direction with a 3/2 rule.

Depending on the disturbance magnitude, turbulence may appear at the
end of the longer domain. Since we are interested in the onset of turbulence and
not in turbulence itself, a relaxation-term model (ADM-RT) is used as sub-grid
model in order to avoid to increase the spatial resolution (Stolz et al. 2001).
This model has shown to be accurate and robust in predicting transitional flows
(Schlatter et al. 2004).

2.1. Inputs and outputs

The input/output (I/O) set-up is composed of four rows of equispaced and
independent objects (Figure 1). Two rows of sensors are placed at X = 300
and X = 500, a row of actuators is placed at X = 400. The disturbances are
introduced farther upstream at X = 65 by a row of synthetic vortices. These
objects are positioned with a constant spanwise separation to cover the domain
span. Semeraro et al. (2013) showed that a span-wise spacing ∆Z = 10 is
necessary to effectively control a TS wave-packet for the current setup; this
results in 15 objects per row in the smaller domain ΩS and 25 in the larger
domain ΩL. Disturbance sources and actuators are modelled by the forcing
term f(X,Y, Z, t) in (1):

f = fd + fu =
∑
l

bd,l dl(t) +
∑
l

bu,l ul(t). (3)

The constant spatial functions bd,l(X,Y, Z) and bu,l(X,Y, Z) are modulated
by the disturbance and control signals dl(t) and ul(t), respectively.
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Figure 1: Control set-up. Random 3D disturbances are generated by a row of
localised independent forcings d. The measurements from the sensors y and z
are used by an adaptive FXLMS algorithm to compute the actuation signal for
the actuators u in order to reduce the amplitude of the detected disturbances.

Disturbance sources are modelled by localised synthetic vortices (Semeraro
et al. 2013),

bd,l =

 χ Ỹ

−γ X̃
0

 exp
(
−X̃2 − Ỹ 2 − Z̃2

)
, (4)

where:

X̃ =
X −Xd,l

χ
, Ỹ =

Y

γ
and Z̃ =

Z − Zd,l
ζ

.

The l-th disturbance source is centred at (Xd,l, 0, Zd,l) and its spatial support
is given by χ = 2, γ = 1.5 and ζ = 4.

The control actuators are modelled as plasma actuators based on the
experimental data by Kriegseis et al. (2013). This type of actuators has been
adopted by Kurz et al. (2013); Fabbiane et al. (2015b); Kotsonis et al. (2015).

Following the work by Fabbiane et al. (2015b), localised measurement of the
streamwise skin friction are used as sensors in order to model surface hot-wires
(Li & Gaster 2006; Sturzebecher & Nitsche 2003; Kurz et al. 2013). Each signal
is subtracted by its time-average over 750 time units in order to remove the
mean-flow contribution to the wall stress.

2.2. Flow configurations

Each disturbance source dl is independently fed with unitary uniform white-noise
wl(t),

dl(t) = ad wl(t), (5)

where the gain ad defines the amplitude. A uniformly distributed noise provides
a better control of the maximum forcing amplitude that is fed to the flow, since
the disturbance signal ranges between ±ad. Since the disturbance forcing in (4)
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ad A(100) A(400) Short box (ΩS) Long box (ΩL)

Linear behaviour

1.0× 10−4 0.006% 0.01% S-LIN0 –
1.0× 10−3 0.056% 0.09% S-LIN1 L-LIN1
2.0× 10−3 0.113% 0.19% S-LIN2 L-LIN2

Weakly non-linear behaviour

3.0× 10−3 0.170% 0.33% S-WNL1 L-WNL1
4.0× 10−3 0.226% 0.55% S-WNL2 L-WNL2

Non-linear behaviour

5.0× 10−3 0.283% 0.86% S-NL1 L-NL1
6.0× 10−3 0.340% 1.33% S-NL2 L-NL2
7.0× 10−3 0.398% 2.03% S-NL3 L-NL3

Transitional behaviour

8.0× 10−3 0.456% 2.97% S-TR1 L-TR1
9.0× 10−3 0.511% 4.00% – L-TR2
1.0× 10−2 0.568% 5.21% – L-TR3

Table 1: Flow configurations. The simulations are classified by the perturbation
behaviour in the actuation region. The disturbance signals dl(t) are uniform
white noises that ranges between ±ad. The amplitude A(X) of the resulting
perturbation field is reported close downstream the disturbance source (X = 100)
and at the actuators position (X = 400).

in aligned with the streamwise direction and its spanwise component is zero,
the resulting perturbation is dominated by TS-wave.

Table 1 reports the flow configurations that are used in this work. The
amplitude of the perturbation field is defined as:

A2(X) = max
Y

〈(
u′

U

)2
〉
Z,t

, (6)

where u′ is the streamwise component of the velocity with respect to the mean-
flow. The angled brackets 〈·〉 indicate the average operator and the subscripts
the averaging variables. In Table 1, the perturbation amplitude is reported
at X = 100, closely downstream to the disturbance-source location; a linear
relation holds between the measured perturbation amplitude and the disturbance
signal range ad for all the investigated flow cases. Hence, A(100) is used to
identify the introduced disturbance in the following.
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The cases are grouped according to the perturbation behaviour at the
actuators location (X = 400). In this study, three levels of non-linear behaviour
are identified. The flow is weakly non-linear when the perturbation amplification
deviate from the linear prediction but the control algorithm performance is
not effected by the non-linearity. Increasing the amplitude further, however,
the adaptive algorithm is able to compensate only partially for the non-linear
behaviour of the flow; this scenario is thus identified as non-linear. By increasing
even further the disturbance amplitude, the laminar-to-turbulence transition
reaches the actuation location and the control does not effectively control the
perturbation field. The latter flow cases are transitional.

3. Control strategy

The control action is performed by a row of localized, equispaced actuators
forcing the flow in the proximity of the wall. Their action ul(t) is computed
based on the measurements ym(t) by a row of sensors upstream of the actuators:
for this set-up, the number of sensors is equal to the number of actuators and
they are aligned with the flow direction (Figure 2).

We assume a linear control law and an equal number (M + 1) of sensors
and actuators. As a consequence, the number of transfer functions between the
M +1 sensors ym and the actuators ul is (M +1)2. This imposes a computation
constraint when M +1 is large, which is the case when covering a large spanwise
width with the controller. However, since the flow is spanwise homogeneous,
the same transfer Km function from all the sensors yl to one actuator can be
replicated for each actuator um (Figure 2). This assumption reduces the number
of transfer functions to be designed from (M + 1)2 to M + 1. The finite impulse
response (FIR) filter representation of the control law reads,

ul(n) =

M/2∑
m=−M/2

N∑
j=0

Km(j) ym+l(n− j) (7)

where ul(n) and yl(n) are the time-discrete control and measurement signals
respectively, Km(j) ∈ R(M+1)×(N+1) is the convolution kernel of the compen-
sator and N∆t is the time horizon of the FIR filter (Aström & Wittenmark
1995; Fabbiane et al. 2014).

The design of the compensator consists in computing the time-discrete
convolution kernel Km(j). In this work, a MIMO version of the FXLMS
algorithm is used to dynamically design the compensator. The algorithm
aims to minimise the sum of the squared measurement signals zl(n), i.e. the
downstream row of sensors in Figure 1,

min
Km

 M/2∑
l=−M/2

z2
l (n)

 . (8)

The kernel is updated via a steepest descend algorithm at each time step,

Km(i|n+ 1) = Km(i|n)− µλm(i|n), (9)
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ul

ym+l

Kmflow

X

Z

Figure 2: Compensator structure. The action of each actuator um is computed
by filtering the signals from all the sensor yl via a linear filter Km. An adaptive
FXLMS filter is responsible of computing the Km response in order to maximize
in real time the control performances measured by the error sensors zl.

where the descend direction λm(j|n) is given by

λm(i|n) =
∂
(∑

l z
2
l (n)

)
∂Km(i)

= 2

M/2∑
l=−M/2

zl(n)
∂zl(n)

∂Km(i)
. (10)

In order to compute the derivative in the previous equation, it is necessary to
carry out the z(n) dependencies by the control kernel Km(i). The error sensor
signal is given by the superposition of the disturbance sources dl and actuators
ul,

zl(n) = zl,d(n) + zl,u(n). (11)

Only the term zl,u depends on the control law Km(i),

zl,u(n) =
∑
r

∑
j

Pzu,r(j) ur+l(n− j) =

=
∑
r

∑
j

Pzu,r(j)
∑
m

∑
i

Km(i) ym+r+l(n− j − i) =

=
∑
m

∑
i

Km(i)
∑
r

∑
j

Pzu,r(j) yr+m+l(n− j − i) =

=
∑
m

∑
i

Km(i) fm+l(n− i), (12)

where fl(n) =
∑
r

∑
j Pzu,r(j) yr+l(n− j) are the filtered signals. For sake of

simplicity, the limit of the sums are omitted in (12): indices r, l step from −M/2
to M/2 and i, j from 0 to N . The same spanwise homogeneity assumption has
been made for the plant kernel Pzu,r(j), which represents the transfer functions
ur → zl. Hence the descend direction reads

λm(i|n) = 2

M/2∑
l=−M/2

zl(n)
∂zl(n)

∂Km(i)
= 2

M/2∑
l=−M/2

zl(n)fm+l(n− i). (13)
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(a) uncontrolled

(b) fxLMS

Figure 3: Disturbance attenuation and transition delay. The shaded gray area
report the skin friction fluctuations τ ′w (eq. (14)). The green sourfaces indicate
the λ2-criterion with a threshold of −2× 10−3. The distrurbance sources result
in a perturbation field with amplitude A(100) = 0.11% (case L-LIN2). The
fringe region is not shown.

Note that this method is not completely model free as Pzu,l+m(i) is needed
to compute fl(n). In this paper, this transfer function is computed via a
linear impulse response of the actuator ul. This transfer function is commonly
addressed as the secondary path (Sturzebecher & Nitsche 2003).

3.1. The compensator in action

The fxLMS algorithm is used to control randomly generated perturbations.
Figure 3a shows the transition to turbulence in the uncontrolled case. The flow
is perturbed with 25 disturbance sources; each one of these inputs is fed with an
independent uniform white-noise signal that ranges between ±2×10−3, (L-LIN2
in Table 1). In Figure 3, turbulent eddies are visualised by the λ2-criterion in
green (Jeong & Hussain 1995); the disturbances grow and trigger transition
in the second half of the domain. The gray shaded area shows the friction
fluctuation τ ′(X,Z, t) at the wall with respect to the laminar solution:

τ ′w = τw − τw,lam. (14)

From the friction footprint, it can be seen that the disturbance sources create a
random pattern of TS-wave-packets that grow while being convected downstream
by the flow. When they reach a critical amplitude, they non linearly interact
and trigger turbulence. The controlled configuration is shown in Figure 3b; it is
asked to delay the transition process, within the same disturbance environment.
The disturbance amplitude drops downstream of the actuators (in blue) and
the transition is significantly delayed with respect to the uncontrolled case.
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Figure 4: Control kernel. The thick line indicates K0(t), i.e. the connaction
between sesors and actuators at the same spawise location.

The algorithm builds the control kernel Km(i) on-line based on the measure-
ment upstream and downstream of the actuation region. In a low disturbance
environment, the kernel will eventually converge to a steady solution; Figure 4
shows the control kernel Km(i) for the presented simulation. The subscript
m is the spanwise shift between actuator ul and reference sensor ym+l, hence
it is directly related to the spanwise support of the control law. Its compact
support in the spanwise direction indicates that the information given by the
sensor is relevant only to compute the control signal for a limited number of
actuators. This fact is related to the spanwise spreading of a wave-packet and
shows how the control kernel is related to the structure of the disturbance that
is meant to control. The spanwise support of the control kernel is independent
of the streamwise distance between sensors and actuators rows, as reported by
Fabbiane et al. (2015a).

4. Control performance and limitations

In this section, the performance of the control is analysed for small (§4.1) and
increasing magnitude of the perturbation field (§4.2), up to the point where no
transition delay and drag reduction is observed (§4.3).

4.1. Linear control of linear perturbations

In order to better understand how the compensator acts on the flow, the
performance of the controller is studied when the perturbation field is small
enough for its behaviour to be considered linear. For the flow case S-LIN0,
the smaller computational domain ΩS is used and the flow is perturbed by
15 disturbance source fed by 15 independent uniform-white-noise signals with
amplitude ad = 1.0× 10−4.

A Fourier transform is computed in time and in the spanwise direction.
Hence a general flow quantity, e.g. the streamwise wall stress τw, is transformed
as:

τ̂w(X,β, ω) = (Fz ◦ Ft) (τw(X,Z, t)) , (15)
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Figure 5: Control performace in low-disturbance environment. (a-b) depict the
skin-friction spectra τ̂ for controlled and uncontrolled simulations at zl-sensors
location X = 500, while (c-d) report the energy-based amplitude Ae at the same
streamwise location. The spectra refer to the flow case S-LIN0, see Table 1.
The dark-blue areas indicate values below the lower bound of the colorbar. The
white cross indicates the Fourier-mode reported in Figure 6.

where β and ω are the spanwise wave-number and angular frequency, respectively.
The temporal transform is based on 512 flow fields, 10 time-units apart from
each other; they are sampled after simulations reach statistical uniformity.

Figure 5a-b shows uncontrolled and controlled spectra for the skin friction τ̂
at the error sensor location, X = 500. In the uncontrolled case, the disturbance
field is present in a limited region of the spatio-temporal frequency space. The
effect of the control is to damp the peak near to (ω, β)/2π = (0.01, 0), as it can
be observed in Figure 5b.

Figure 6a shows a mode in the region of maximum amplification for the
uncontrolled simulation. The mode has the appearance of a TS-wave triggered
at the disturbance location and spatially growing throughout the domain. The
effect of the control on the mode is clearly visible in Figure 6b; the perturbation
grows until the actuator location (X = 400), after which it is cancelled almost
completely within 100 spatial units. This confirms that the cancellation is not
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(a) uncontrolled

(b) fxLMS

Figure 6: Fourier mode û(X,Y, β, ω) in physical space for ω/2π ≈ 0.01 and
β/2π = 2/LZ . Positive (red) and negative (blue) isosurfaces depict the real
part of the streamwise velocity. The data refers to the same flow case as shown
in Figure 5 (S-LIN0).

occurring suddenly at the actuator location. The actuator generates a counter-
phase wave-packet that – once fully developed – cancels the original disturbance.
Farther downstream, towards the end of the domain, the perturbation reappears
and is convected out of the domain. A similar behaviour is common to all the
Fourier-modes in the damped region of the spectrum.

The control introduces some disturbances that are not present in the un-
controlled case, such as the double-peak at β/2π = 0.1 in Figure 5b. This
perturbation is introduced by the actuators’ spatial shape and spanwise distri-
bution. These peaks are present for the super-harmonics of the fundamental
spanwise wave-number of the actuator spacing 2π/∆Z. The actuator spacing is
chosen according to Semeraro et al. (2013) in order to avoid these disturbances
having support in TS-wave region and, hence, interacting with the control
action. Because of the limited amplitude and their short spanwise wave-length,
they do not appear to compromise the control effect, also for higher disturbance
levels.

The streamwise wall-stress τw is a measurement of the disturbance at the
surface. An integral measurement along the wall-normal direction is introduced
to assess whether an overall reduction of the disturbance is correlated to a
reduction of τw:

A2
e(X,β, ω) =

∫ LY

0

|û(X,Y, β, ω)|2 dY, (16)

where û(X,Y, β, ω) is the Fourier transform of the velocity u(X,Y, Z, t). Fig-
ure 5c-d report Ae for the controlled and uncontrolled case; both present the
same features as the wall-stress spectra in Figure 5a-b. This shows that a
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Figure 7: Performance indicator σz,c/σz,0 as a function of the seeded perturba-
tion amplitude A(100). The filled markers indicate the flow cases reported in
Figures 9-10.

reduction of the disturbance stress corresponds to a reduction of the disturbance
energy; moreover, it confirms that the choice of measuring the disturbance
amplitude by measuring its friction footprint is prudent.

4.2. The non-linear challenge

In this section, it is shown (i) how the linear-control limits the performance
of the investigated control strategy when non-linearity is present and (ii) how
adaptivity can reduce this performance loss. A parametric study over the
perturbation amplitude is performed, where the 15 disturbance sources in ΩS
are fed with independent white-noise signals of increasing amplitude.

Once the coupled compensator-flow system has reached the statistical
steady state, the performance of the control action is tracked as a function
of the disturbance level upstream the actuation point. As introduced in §2.1,
the sensors yl and zl measure wall-stress fluctuations, hence they are related
to the amplitude of the perturbations at the sensing location. The amplitude
measured by the error sensors is given by the measurement-signals variance,

σ2
z =

1

M + 1

M/2∑
l=−M/2

〈
zl(t)

2
〉
t
, (17)

where each signal zl(t) has a zero temporal mean. The performance of the control
action is assessed by the ratio between the controlled (σz,c) and uncontrolled
(σz,0) standard deviation of the error signals.

Figure 7 reports the performance indicator as a function of the perturbation
amplitude A(100). For perturbation amplitudes up to 0.11%, the control
performance does not appear to be influenced by the disturbance amplitude.
For higher amplitudes the control performance gradually departs form the
linear behaviour, as the non-linearities start to become relevant at the actuator
position. Figure 8 reports A(X) at the actuator location X = 400 for the
uncontrolled case; the perturbation behaves nonlinearly when A(100) is greater
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Figure 8: Perturbation amplitude A(400) at the location of the actuators as a
function of the perturbation amplitude A(100).

than ∼ 0.17%. Comparing with Figure 7, it is clear that the performance loss
of the control strategy is related to the rise of non-linearities in the flow.

The gradual loss of performance by the compensator can be analysed by
studying at the wall-friction spectra at the location of error-sensors; Figure 9
shows the uncontrolled and controlled spectra for increasing disturbance ampli-
tudes, while Figure 10 reports instantaneous flow fields for the same simulation
parameters. For the lowest reported amplitude, the flow has a linear behaviour.
TS-waves start to non-linearly interact with themselves and generate the struc-
tures close to the β-axis; this is visible both for the uncontrolled and control
cases.

As the amplitude increases (Figure 9a-b and Figure 10a) obliques waves
appear for the uncontrolled case at (ω, β)/2π ≈ (0.005, 0.075), while in the
controlled case they are present only in a limited region of the spectrum and
with a lower amplitude. By cancelling the the perturbation in the TS-wave
region, the control is able to delay the growth of the secondary disturbances
that will eventually lead to turbulence.

Figure 9c-d and Figure 10b show the limit amplitude for which the control
has an effect on the perturbation field. The peak related to the TS-wave is still
damped but the modes due to non-linear interactions of the perturbation field
are clearly visible in both cases; the perturbation behaviour is already non-linear
at the actuation location (see Figure 8). Finally, in Figure 9e-f and Figure 10c
the uncontrolled and controlled simulations are almost undistinguishable; for
this amplitude, transition to turbulence will take place just downstream the
error sensor location and no transition delay is noticeable, see §4.3.

In all the presented scenarios the control is able to directly damp only
disturbances in the TS-wave region. The algorithm shapes the control law based
on a linear model of secondary path Pm, i.e. the transfer function between
the actuators ul and the error-sensor zl+m; in other words, the secondary path
provides the algorithm the information of how it can effect the flow.
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(c) A(100) = 0.34% (S-NL2): uncontrolled
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(e) A(100) = 0.46% (S-TR1): uncontrolled
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(f) A(100) = 0.46% (S-TR1): fxLMS

Figure 9: Skin-friction spectra for uncontrolled and controlled simulations at
zl-sensors location X = 500. The distrurbance sources produce a perturbation
field with amplitude A(100) as in the subcaption of the figures. The dark-blue
areas indicate values below the lower bound of the colorbar.

The adaptivity properties of the fxLMS algorithm are favourable when it
comes to slowly varying conditions in the flow (Fabbiane et al. 2015b). However,
when it comes to non-linearities, they are only capable of a marginal improvement
of the control performance. As introduced in §3, the fxLMS algorithm acts
on the control law by changing the control kernel Km(i) according to the
measurement from the error sensors. The role of the adaptivity in controlling
non-linear flows is highlighted by comparing the adaptive fxLMS algorithm
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Figure 10: Velocity fluctuations isosurfaces u′ with respect to the laminar
solution for increasing disturbance amplitude. Red and blue isosurfaces are
obtained for u′/U = ±0.25%. The green plane indicates the streamwise position
(X = 500) where the spectra in Figure 9 are computed.

to a static control law, where the adaptive fxLMS algorithm is switched off.
The red diamond symbols in Figure 7 report the control performance when
the static control law is considered. Figure 11 shows the converged control
kernel connection K0(i) between sensors and actuators with the same spanwise
location, for three different disturbance amplitudes.
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Figure 11: Comparison of the control kernelsK0(i) for three different disturbance
levels. The kernel for the case S-LIN0 is also the static control law in Figure 7.

Adaptive effects appear when the non-linearities arise in the flow. In this
range of amplitudes, the fxLMS solution show slightly better performances with
respect to the static controller. At this point the non-linearities are weak and
their effect is limited to a change in the amplification and phase shift of the
travelling waves. The algorithm modifies the control kernel by increasing the
gain and reducing the time-shift between sensors and control signals (dashed line
in Figure 11). However, the adaptive capabilities of the algorithm have a limit.
Since the non-linear flow modification also has an effect on the input/output
behaviour of the system, the secondary-path model used by the algorithm is
no more consistent with the real secondary-path in the flow. The algorithm is
able to compensate this error, if the phase difference between real and modelled
secondary path is lower than π/2 in absolute value (Snyder & Hansen 1994;
Simon et al. 2015). Hence, the control will continue to reduce the amplitude
of the disturbances modelled by the secondary path, up to the point where
the phase error caused by the non-linearities in the flow is large enough to
destabilize the fxLMS algorithm.

At this point, the performance margin given by the adaptivity with respect
to the static control tends to zero. This occurs when the transition is incipient in
the region of the flow where the control action takes place, as seen in Figure 9g-h.
The dot-dashed line in Figure 11 shows the control kernel in this scenario; the
flow is already transitional at the actuator location and the adaptive algorithm
introduces non-physical solutions of the control kernel.

4.3. Transition delay

It has been shown in the previous section that the control is able to reduce the
perturbation amplitude downstream of the actuators. This section analyses how
this disturbance reduction translates into a transition delay. The long box ΩL
is used to assess where the transition to turbulence occurs both in uncontrolled
and controlled cases.

Delaying the laminar-turbulent transition means extending the portion of
the flow that is laminar, which results in a lower total skin friction. Figure 12a
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Figure 12: Transition delay. (a) reports the spanwise averaged friction coefficient
for the flow case in Figure 3, L-LIN2. (b) reports the transition location for
increasing perturbation amplitude A(100); the reported positions are computed
based on a time-averaged flow over 1200 time units. The top axis reports
ReX = (X − Xle)U/ν, where Xle is the extrapolated leading-edge position
according to Blasius boundary-layer solution.

shows the spanwise-averaged friction coefficient, defined as

cf (X) =
〈τw〉Z
1
2ρU

2
, (18)

corresponding to the flow shown in Figure 3. The friction rise related to the
onset of the turbulent regime is clearly delayed and the laminar friction region
is extended in the controlled case.

The transition location is identified as the point where the average friction
in the flow crosses the average between the laminar solution and the turbulent
value as predicted by the Schultz-Grunow formula (Schultz-Grunow 1940).
The transition location moves upstream as the disturbance level increases
(Figure 12b). The perturbation-amplitude reduction, which the control is
capable of, leads to a transition-delay for all investigated disturbance levels.
However, the delay reduces as the amplitude increases and the disturbance
reduction becomes less effective.

The green diamond symbols in Figure 12b report the transition location
when the error sensor is displaced downstream by 100 spatial units. A per-
formance loss is observed for lower amplitude than the original set-up; this
shows that the performance limit is given by the disturbance amplitude at the
error sensor location and not at the actuator location. This is in contrast with
the linear analysis by Fabbiane et al. (2015a), where they show that better
performances are obtained when the error sensors are far from the actuators.
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Figure 13: Drag save and transition-delay as a function of the perturbation
level A(100). The reported quantities are based on a time-averaged flow over
1200 time units.

The transition delay results in a drag reduction. The amount of saved
drag is given by the area between the controlled and uncontrolled curves in
Figure 12a:

∆D

LZ
=

∫ LX

0

〈τw,0 − τw,c〉Z dX, (19)

where τw,0 is the wall shear-stress in the uncontrolled case and τw,c in the
controlled one. By repeating the same procedure for the different disturbance
amplitudes in Figure 12b, the drag reduction as a function of the perturbation
level is shown in Figure 13.

For the higher amplitudes the transition location approaches the region
where the actuation takes place; as shown in the previous section, the non-
linearities that eventually lead to transition start to develop at the error sensors
location, which reduces the control capabilities of the algorithm. Hence, the
investigated control technique is effective in delaying the laminar-to-turbulence
transition when the perturbation amplitude at the actuation location is lower
than 2% of the free-stream velocity, according to the amplitude definition in
(6). For higher amplitudes, the control is not able to delay the already incipient
transition; the strong non-linear behaviour of the flow inhibits the adaptive
algorithm to converge to an effective control-law. This introduces eventually
disturbances that shorten the transition region and, as a consequence, leads to
the drag-increase as shown in Figure 13.

5. Energy efficiency

In the previous section it was shown that the investigated control strategy is able
to delay the transition to turbulence and consequently reduce the friction drag.
In this section, ideal and real actuator models are introduced in order to asses
the energy efficiency of this control technique. To the best of our knowledge,
this is the first time that the energy gain given by reactive laminar-flow control
techniques is assessed in a systematic manner.
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Figure 14: Plasma-actuator consitutive laws. The tilde indicates dimensional
quantities.

5.1. Actuator models

Actuator models are introduced in order to compute the consumed power by the
actuators in order to perform the control action. An ideal actuator is introduced
in order to assess the theoretical energy gain and then compared with a more
realistic experimental model of plasma actuators.

The ideal actuator is based on the volume integral across the domain of
the local power (u · ρ fu) exchanged between the flow and the volume forcing:

Pc,i =

〈∣∣∣∣∫
Ω

u · ρ fu dΩ

∣∣∣∣〉
t

. (20)

The actuator use power both if it is on average pulling (negative integral) or
pushing (positive integral) the flow. A similar approach is used when it comes
to blowing/suction actuators (e.g. Stroh et al. 2015), where the time average of
the absolute value of the instantaneous power needed to enforce the the mass
flux is used to compute the used power by the control technique.

As introduced in §2.1, a dielectric-barrier-discharge (DBD) plasma actuator
is considered as a model for the actuator volume forcing. In particular, the
work by Kriegseis et al. (2013) is used, where the plasma actuator force field
is reconstructed starting from PIV flow measurements. Based on their mea-
surement it is possible to correlate the AC voltage supply Vp and the provided
force F/L. As reported in Figure 14a, the voltage-force relation can be well
represented by the linear regression:

Vp = Φ
F

L
+ V0, (21)

where L is the spanwise length of the actuator and Φ and V0 are ad-hoc
coefficients. In particular, the latter indicates the voltage for which the plasma
actuator is giving zero force and can be considered as a lower limit for the
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supplied voltage. In fact, the plasma actuator is not capable to supply a negative
force; in order to overcome this issue, two different operation modes are typically
considered:

1. Dual mode: two plasma actuator facing each-other are considered for
each actuation station ul. One is responsible for the positive part of the
actuation signal and one is responsible for the negative one.

2. Hybrid mode: a single plasma actuator is considered. An offset is applied
to the voltage in order not to cross the zero-forcing voltage V0; the offset
depends on the minimum amplitude of the control signal ul(t) in the
averaging window. The constant forcing that results from the offset
has a stabilizing effect on the boundary layer (Kurz et al. 2013); in the
present study this effect is not taken into account.

Once the operation mode is defined, the power used by the actuator is
estimated via the relation proposed by Kriegseis et al. (2011):

P

L
= Θ

√
V 7
p f

3
p = Θ

√(
Φ
F

L
+ V0

)7

f3
p , (22)

where fp is the plasma-actuator AC-supply frequency. The coefficient Θ is found

to be an almost-universal coefficient equal to 5 × 10−4 W/m(kHz)−
3
2 (kV)−

7
2

(Kriegseis et al. 2011). For the current case a dimensional supply frequency

f̃p = 15 kHz is considered. All the quantities in (22) are non-dimensionalised
by considering kinematic viscosity ν̃ = 1.5 × 10−5 m2/s, free-stream velocity

Ũ = 60 m/s, density ρ̃ = 1.225 kg/m3 and Reynolds number Re = Ũ L̃/ν̃ = 1000
as in the simulations, see §2.

The force (F/L)l required by each actuator can be computed by knowing
the control signal ul(t) and its forcing shape bu,l from (3). Since the control
forcing is time-dependent, the time-averaged power is considered to evaluate the
power consumption of the actuator. Hence, the individual power consumption
(P/L)l is computed and the total power consumption Pc,p is estimated by
summing the time-averaged contribution of each actuator:

Pc,p =

M/2∑
l=−M/2

〈(
P

L
(t)

)
l

∆Z

〉
t

. (23)

where ∆Z is the spanwise support of the actuator.

5.2. Power gain

The saved power is quantified by the product of the drag reduction ∆D and
the free-stream velocity U (Stroh et al. 2015):

Ps = U ∆D. (24)

In Figure 15a Ps is compared with the power used by the actuators computed
via the different actuator models. Ideal and plasma actuator show similar
trends with increasing disturbance level; they consumes more power as the
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Figure 15: Energy budget. The reported quantities are computed based on a
time-averaged flow over 1200 time units. The solid black line in (b) indicates
Γ = 1, i.e. the break-even point for the control strategy.

disturbance amplitude becomes larger. On the other hand, the saved power
reduces because of the control performance loss due to the non-linearities at
the actuation location.

The power-gain coefficient is defined as:

Γ =
Ps
Pc
. (25)

This coefficient gives the saved power because of the transition delay as fraction
of power Pc invested in the control. The break-even point is given by Γ = 1,
when the energy that is spent for the control is equal to the saved energy Ps.

For the ideal actuator, a theoretical gain between 103 and 102 is possible
for perturbation amplitude on the order of few percent (Figure 15b). For larger
disturbance amplitudes, the gain gradually decays and eventually crosses the
break-even point.

The energy gain based on the plasma-actuator power-consumption estima-
tion is lower than the break-even value for all the investigated cases. In order to
better compare it to the ideal actuator model, let us introduce a measurement
of the actuator efficiency:

ηp =
Pc,i
Pc,p

=
Γp
Γi
. (26)

According to this definition, the plasma actuator has an efficiency on the order of
0.1% (Figure 16). This result is in agreement with the experimental investigation
by Jolibois & Moreau (2009) who showed a similar efficiency for a steady forcing.
Hence, the present estimation, based on the work by Kriegseis et al. (2011, 2013),
indicates that the low efficiency by the plasma actuators erodes the potential
gain by the presented control technique. A technical challenge in designing
more efficient plasma-actuators is to increase the efficiency from 0.1% to 1%
in order to push Γ over the break-even point. A critical aspect is identified in
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Figure 16: Plasma actuator efficiency η with respect to the ideal actuator.

the zero-forcing voltage V0 in (21); this offset represents the energy that the
plasma actuator needs to create the plasma stream that will cause the force on
the flow. This energy is not directly used to control the disturbance in the flow
and, hence, it does not contribute to the transition delay.

However, the presented control technique can be generalised to other types
of actuators that are able to produce a TS-wave-like disturbance. Examples
of this type of actuators can be found in the review by Cattafesta & Sheplak
(2010).

6. Conclusions

Reactive laminar-flow control can efficiently delay the laminar to turbulence
transition in a realistic low-amplitude disturbance environment. Moreover, it
is shown that the drag reduction that results from the transition delay leads
to a net power saving up to the order of 103, when an ideal-actuator model is
considered.

The proposed control scheme is able to delay the laminar-to-turbulence
transition up to an incipient transition occurs at the actuation position. The
performance degrades gradually as the amplitude of the perturbation increases.
Adaptivity is able to marginally improve the control performances with respect
to the non-linear behaviour of the flow, at least for the investigated set-up.

Large net energy saving is shown in an ideal framework, highlighting the
potential performances of reactive transition-delay control. However, in a more
realistic scenario where a plasma actuator model is considered (Kriegseis et al.
2011), the energy gain is estimated to drop below the break-even point for
almost all the investigated cases. The reason for this is be found in the poor
efficiency of plasma actuators; an improved actuator design is solicited in order
to take advantage of the potential of the investigated control technique.
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