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Abstract

A new parallelisation of the existing fully spectral research code has been im-
plemented and validated, and used to perform simulations on massively parallel
computer architectures with O(1000) cores. Using the parallelised code, direct
numerical simulations (DNS) and large-eddy simulations (LES) of a spatially
developing turbulent boundary layer with and without passive scalars over a flat
plate under zero-pressure gradient (ZPG) have been carried out. The Navier-
Stokes equations are solved employing a spectral method with up to 600 M
grid points. The Reynolds numbers obtained are the highest for a turbulent
boundary layer obtained to date with such a numerical setup. An extensive
number of turbulence statistics for both flow and scalar fields are computed and
compared to the well-established experimental/numerical database. In general,
good agreements are found. Premultiplied spanwise and temporal spectra are
also used to identify the large-scale motions in the outer part of the boundary
layer. The similarities shared by the streamwise velocity and the scalar with
Pr = 0.71 indicate that they might be generated by the same mechanism. The
effects from the different Prandtl numbers and wall boundary conditions are
also discussed in detail. Furthermore, the effects of the free-stream turbulence
(FST) on the heat transfer on the wall are examined. This problem is of great
interest in industrial applications. The momentum and heat transfer on the
wall are compared with those obtained with a clean free stream and augmen-
tations of both momentum and heat transfer in the turbulent region are found.
In addition, the boundary layer structures are studied and a change of the
structures in the outer region are found due to the presence of the free-stream
turbulence. By examining the one-dimensional spanwise spectrum, it is specu-
lated that the increase of the momentum and heat transfer are associated with
the large-scale motions in the outer layer.

Descriptors: direct numerical simulation (DNS), large-eddy simulation (LES),
turbulent boundary layer, passive scalar, large-scale structures, massively par-
allel simulations
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Preface

This thesis deals with spatially evolving turbulent boundary-layer flows includ-
ing heat transfer. A brief introduction on the basic concepts and methods is
presented in the first part. The second part is a collection of the following
articles:

Paper 1. Q. Li, P. Schlatter & D. S. Henningson,
Spectral simulations of wall-bounded flows on massively-parallel computers. In-
ternal report (2008)

Paper 2. P. Schlatter, R. Örlü, Q. Li, G. Brethouwer, J. H. M.

Fransson, A. V. Johansson, P. H. Alfredsson & D. S. Henningson,
Turbulent boundary layers up to Reθ = 2500 studied through numerical simu-
lation and experiments. Published in Phys. Fluids 21, 051702 (2009)

Paper 3. P. Schlatter, Q. Li, G. Brethouwer, A. V. Johansson

& D. S. Henningson,
Simulations of high-Reynolds number turbulent boundary layers. Submitted to
Int. J. Heat Fluid Flow, invited paper from TSFP-6, Seoul, South Korea, 2009

Paper 4. Q. Li, P. Schlatter, L. Brandt, & D. S. Henningson,
Direct numerical simulation of a spatially developing turbulent boundary layer
with passive scalar transport. Int. J. Heat Fluid Flow, in press (2009)

Paper 5. Q. Li, P. Schlatter & D. S. Henningson,
Simulations of heat transfer in a boundary layer subject to free-stream turbu-
lence. Published in TSFP-6, Seoul, South Korea, 2009
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Part I

Introduction





CHAPTER 1

Introduction

Most flows in nature and engineering applications are turbulent and thus char-
acterised by rapid fluctuations in both time and space. Over hundred years
have passed and people still do not fully understand turbulence even though it
is a universal phenomenon. Examples of such flows include billowing of clouds
in the sky, oceanic currents, the flow over the wing of an aircraft or over gas
turbine blades. Even the blood flow in our bodies is sometimes turbulent, e.g.
the blood in the heart, especially in the left ventricle. Moreover, some flows
in everyday life are deliberately made to be turbulent, e.g. coffee stirring, tea
pouring and cocktail shaking. Such inherent random and complex character-
istics make turbulence to be an intellectual challenge for a great number of
scientists and engineers and will continue to pose this challenge in the future.
Consequently, a huge amount of theoretical and experimental work has been
performed during the last centuries to shed light on this mysterious field.

(a) (b)

Figure 1.1. (a) Sketch from Leonardo da Vinci’s notebooks.
The picture is taken from Geurts (2003). (b) Meandering of
smoke from a cigarette. The picture is taken from Libby
(1996).
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2 1. INTRODUCTION

Dating back to early 16th century, the Italian genius Leonardo da Vinci
sketched the famous “Old Man with Water Studies” (see Figure 1.1 (a)) and
the following observations (Piomelli 2001) are made: “The water has eddying
motions, one part of which is due to the principal current, the other to the ran-
dom and reverse motion.” These pure observations may be seen as a precursor
to the Reynolds’ decomposition which is a sophisticated way to study turbu-
lence. The first example of a visualisation of a flow developing from laminar
into turbulent motion is the famous experiment carried out by Osborne Rey-
nolds in 1883. He studied the flow of water in a glass tube using ink as a dye.
For low flow rates a steady dye stream was observed to follow a straight path
through the tube. As the flow rate was increased, at some point, “the colour
band would all at once mix up with the surrounding water, and fill the rest of
the tube with a mass of coloured water”, see e.g. Jackson & Launder (2007). In
order to quantify these experimental results, he introduced a non-dimensional
number Re = UL

ν , now known as the Reynolds number, in his classic paper
(Here U denotes the velocity scale, L the length scale and ν is the kinematic
viscosity). Now it is known that the flow will become turbulent in practice, if
the Reynolds number exceeds a value about 2000.

Another typical example demonstrating the nature of a turbulent flow is
the meandering of the smoke from a cigarette (see Figure 1.1 (b)). The smoke
first moves straight upward and suddenly changes to a turbulent status. This
experiment not only provides the visualisation of the turbulent motion but also
the spreading of a passive scalar in a turbulent flow. A passive scalar is a
diffusive contaminant in a fluid flow that, due to its low concentration, has no
influence on the fluid motion but is however influenced by the fluid motion.
Typical passive scalars are e.g. small amounts of heat, salt in the sea or pollu-
tants in atmospheric or oceanic flows. An understanding and prediction of the
passive scalar behaviour in a turbulent flow is crucial since the turbulent mo-
mentum and scalar transport play a key role in many engineering applications
and will be of growing importance in global environmental problems (Kasagi
& Iida 1999).

When fluids flow above a solid body, the fluid elements in a thin layer near
the body surface will be retarded due to the effect of friction while the other
elements outside this thin layer are not affected. This thin layer is usually
called boundary layer. The concept of the boundary layer was first proposed
by Ludwig Prandtl in 1905. He hypothesised that the viscous effects are negli-
gible everywhere except in the boundary layer. Furthermore, many interesting
parameters of the aerodynamic property of a body, e.g. drag coefficient, are
determined in precisely this boundary layer. Thus it is of great engineering
significance in most applications to understand and (numerically or experi-
mentally) fully resolve this thin layer of fluid.

Although the phenomena of turbulent flows vary from one to the other, the
governing equations describing the motion of the Newtonian fluids are always
the same. These equations are the so-called Navier-Stokes (NS) equations,
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named after Claude-Louis Navier and George Gabriel Stokes who first formu-
lated them in the 19th century. Together with the continuity equation (conser-
vation of mass) and the scalar transport equation which governs the evolution
of the scalar field, a system of equations consisting of five variables (three ve-
locity components, pressure and scalar concentration) is established. However,
the full equation system is non-linear and time dependent partial differential
equations, and thus no analytical solutions exists except for the non-turbulent
cases. Therefore, one has to calculate approximate solutions numerically with
the aid of computers as an alternative to experiments.

Thanks to the rapid progress in high-performance computers, direct nu-
merical simulation (DNS) and large-eddy simulation (LES) became important
tools for turbulence research in the last couple of decades (Rogallo & Moin 1984;
Moin & Mahesh 1998) whereas it is still dominated by the Reynolds-averaged
Navier-Stokes (RANS) type of simulations in commercial codes. Additional
reviews of the turbulent heat transfer and passive scalars are made by e.g.
Kasagi & Iida (1999) and Warhaft (2000). DNS provides three-dimensional,
time-dependent numerical solutions to the NS equations and the scalar trans-
port equation. These equations are supposed to be solved as accurately as
possible without employing any turbulence models, hence the errors come only
from the numerical approximations and domain truncation. On the other hand,
LES solves the equations with less grid points but supplemented with a so-
called sub-grid scale (SGS) model to compensate for the omitted grid points.
The overall performance of a LES calculation thus to a large extent depends
on the chosen SGS model assuming sufficient grid points to resolve the relevant
physics. RANS only gives averaged solutions to the Navier-Stokes equations
with the so-called k − ε model being most commonly used. One may refer to
Pope (2000) for more detailed discussions about RANS models.

One important feature of turbulent flow is that it consists of temporal and
spatial scales with a broad spectrum. The smallest scale arising in turbulent
flows is usually the so-called Kolmogorov microscale η which is determined by
the flow properties itself while the largest scales are commonly restricted by
the flow geometry, e.g. the channel height or the boundary-layer thickness. A
simple dimensional scaling argument leads to the conclusion that the resolu-
tion (number of grid points) of a DNS calculation required in each direction

is proportional to Re
3
4 (Piomelli 2001; Jiménez 2003) and the exponent can

increase up to 0.9 depending on the definitions of the Reynolds number (Rey-
nolds 1989). The total computational time is then roughly proportional to Re3

(Geurts 2003). This means a doubling of the Reynolds number would be feasi-
ble every 6 to 7 years if the rate of increase of the computer performance was
maintained (Sandham 2002). Up to now, it seems that there is no signs of the
computational capacity to slow down and especially recently there is a trend of
using massively parallel processing (MPP) system, e.g. the Blue Gene systems,
for large calculations.
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For wall-bounded flows, the resolution requirement of a well-resolved LES
calculation is that the number of grid points has to be sufficient to resolve the
wall layer according to Piomelli (2001), i.e. to capture the energy-producing
structures, e.g. the so-called streaks. The cost of the LES calculations also
depends on the Reynolds number. As estimated by Chapman (1979), the res-
olution required to resolve the viscous sub-layer (y+ < 5) is proportional to

Re1.8. The + denotes the wall scaling, i.e. scaled by ν
uτ

where uτ =
√

τw

ρ is the

friction velocity and τw the wall shear stress. Jiménez (2003) made a similar
estimation that the resolution is proportional to Re2

τ where Reτ is the Rey-
nolds number based on the friction velocity uτ . This means that using LES
one can obtain results at higher Reynolds number than DNS for equivalent
cost, but the Reynolds number reached is still not high enough for practical
engineering flows. Recent studies have shown especially for wall-bounded tur-
bulent flows, that a good LES is almost as expansive as a DNS, e.g. see the
discussion in Fröhlich & Rodi (2002). Therefore, one has to resort to the wall
models (Piomelli & Balaras 2002) or hybrid LES/RANS or detached eddy sim-
ulation (DES) (Spalart 2009) approach to perform calculations in an acceptable
time for practical engineering applications. This in turn requires a good RANS
model.

For the DNS of scalar transfer in turbulent flows, not only the Reynolds
number but also the molecular Prandtl number (Pr) has to be considered. The
molecular Prandtl number is a dimensionless number which is a measure of the
ratio between viscous diffusion and scalar diffusion. Typical values for Pr are
0.71 for air, around 7 for water, between 100 and 40,000 for engine oil and
around 0.025 for mercury (White 2006). For turbulent flows with scalar trans-
port, the smallest scales in the scalar fluctuations decrease with the increase of
Pr which makes the calculation even more expensive. The ratio of the largest

to the smallest scales is approximately proportional to Re
3
4 Pr

1
2 at very high

Pr (Batchelor 1959; Tennekes & Lumley 1972).

In 1960s, the first LES calculations were performed by meteorologists
(Smagorinsky 1963; Deardorff 1970) to predict atmospheric flows. A brief his-
tory of LES can be found in Lesier et al. (2005). The first DNS of turbulent
flow starts with decaying isotropic turbulence using spectral methods, see the
historical account by Canuto et al. (1988), on a 323 grid by Orszag & Patter-
son (1972). Later, Kim et al. (1987) simulated a fully developed channel flow
using Fourier/Chebyshev algorithms at Reτ = 180 where Reτ is the Reynolds
number based on the friction velocity uτ and the channel half width h. The
first simulation of a fully turbulent boundary layer was performed by Spalart
(1988) using an innovative spatio-temporal approach at Reθ = 300, 670, 1410
where the Reynolds number Reθ is based on the free-stream velocity U∞ and
momentum thickness θ. The first DNS with passive scalars was performed by
Rogers et al. (1986) in a homogeneous shear flow and by Kim and Moin (1989)
in a channel flow of Pr = 0.1, 0.71 and 2.0 at Reτ = 180. DNS of turbulent
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boundary layer were performed for the first time by Bell and Ferziger (1993)
with Pr = 0.1, 0.71 and 2.0 up to a medium Reynolds number of Reθ = 700.

For canonical geometries, such as channel or flat-plate boundary layer,
usually highly accurate and efficient algorithms, e.g. spectral methods (Canuto
et al. 1988) which have barely no dissipation and dispersion errors, can be
employed. However, spectral methods have difficulties in handling complex
geometries. One way to overcome this drawback is to use the so-called spectral-
element method first introduced by Patera (1984) and later developed by many
others, see e.g. Maday & Patera (1989); Karniadakis & Sherwin (2005). The
latter method combines the geometric generality/flexibility of the finite element
method with the accuracy of spectral methods. However, the running cost,
inefficient algorithms and stability issues have limited the applications of this
method so far mainly to laminar and early transitional flows. Other possibilities
are the use of the low-order schemes with extra grid points to compensate for
the low accuracy. See more discussions in Sandham (2002).

One unique feature of numerical simulations is that they are able to sim-
ulate “wrong” physics as mentioned in Jiménez & Pinelli (1999), e.g. such as
spurious modes, wrong thresholds, incorrect reattachment points, underesti-
mated/overestimated functions due to under-resolved simulations, irrelevant
size of the computational box, not appropriate boundary conditions or unreal-
istic parameters, etc. Thus, to generate simulation data with good quality is
not simple or cheap at all. Therefore, the validation of the results becomes rel-
atively important. Suggestions made in Sandham (2002) for DNS calculations
are summarised here:

• validate the code against analytical solutions (if possible), asymptotic
limits and well-established database;

• carry out systematic studies by varying the resolutions, box sizes, time
steps and numerical methods.

For LES, Geurts (1999) interpreted it as a balancing between different
sources of errors, i.e. modelling and numerical ones. This makes the validation
of LES results even more complicated. In addition to the guidelines suggested
for DNS, one should also follow the rules (Geurts & Leonard 2002)

• avoid dissipative numerical methods;

• vary the filter width while fixing the resolution;

• use dynamic modelling.

Moreover, to validate a given SGS model, one could conduct either a priori
or a posteriori tests during which accurate data from either DNS or experi-
ments are required. In a priori test, no actual simulations are carried out.
The SGS model is evaluated based on the available DNS or experimental data
and compared with the exact SGS stress. However, care has to be taken when
interpreting the results since a successful a priori test does not guarantee good
results in an actual LES calculation; sometimes the simulations can be even
unstable (Vreman et al. 1995). On the other hand, a poor a priori test does not
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necessarily lead to poor results in an actual run (Meneveau 1994). Therefore,
to judge whether a SGS model performs well or not, one has to run a simulation
with the correctly implemented model and then compare the results with DNS
or experimental data. This approach is known as a posteriori test (Piomelli
et al. 1988) in the LES community. To correctly compare the obtained LES re-
sults with DNS or experimental database, one should refer to e.g. Winckelmans
et al. (2002); Sagaut (2005) for more detail.



CHAPTER 2

Theoretical formulation

2.1. Governing equations

2.1.1. Direct numerical simulation (DNS)

The governing equations for the direct numerical simulation (DNS) of an in-
compressible (laminar, transitional or turbulent) flow with passive scalars are
the Navier-Stokes equations and the scalar transport equation, here written in
non-dimensional form and tensor notation as

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂p

∂xi
+

1

Re

∂2ui

∂xj∂xj
,

∂ui

∂xi
= 0 ,

∂θ

∂t
+ ui

∂θ

∂xi
=

1

RePr

∂2θ

∂xi∂xi
,

(2.1)

where (x1, x2, x3) = (x, y, z) are the Cartesian coordinates in the streamwise,
wall-normal and spanwise direction, respectively. (u1, u2, u3) = (u, v, w) are the
corresponding instantaneous velocity fields, p is the pressure and θ the scalar
concentration. The Reynolds number Re is defined as

Re =
UrefLref

ν
,

where Uref , Lref and ν are the dimensional reference velocity and
length and kinematic viscosity, respectively, which are also used for non-
dimensionalisation. Pr is the Prandtl number defined by

Pr =
ν

α
,

where α is the scalar diffusivity.

The summation convention is implied over repeated indices throughout this
thesis unless stated otherwise. The streamwise and spanwise directions will be
alternatively termed as the horizontal/wall-parallel directions.

7



8 2. THEORETICAL FORMULATION

2.1.2. Large-eddy simulation (LES)

The governing equations for large-eddy simulation (LES) are the spatially fil-
tered Navier-Stokes equations and the scalar transport equation which in di-
mensionless form read

∂ũi

∂t
+ ũj

∂ũi

∂xj
= − ∂p̃

∂xi
+

1

Re

∂2ũi

∂xj∂xj
− ∂τij

∂xj
,

∂ũi

∂xi
= 0 ,

∂θ̃

∂t
+ ũi

∂θ̃

∂xi
=

1

RePr

∂2θ̃

∂xi∂xi
− ∂σi

∂xi
,

(2.2)

where the so-called SGS stresses τij = ũiuj − ũiũj and σi = ũiθ− ũiθ̃ represent
the impact of the unresolved velocities/scalar on the resolved ones and have to
be modelled. Mathematically, they arise from the nonlinearity of the convection
term which does not commute with the linear filtering operation.

A filtered quantity f̃(x) in one dimension is defined by

f̃(x) = GP ∗ f =

∫

Ω

GP (x, x′, ∆)f(x′)dx′ ,

where Ω is the computational domain, GP is the primary filter with ∆ being
the filter width. A three-dimensional filter can be easily formulated and the
common filters are the sharp cut-off filter, Gaussian filter and top-hat filter.
For more mathematical properties of these filters, one could refer to e.g. Pope
(2000). The filtering operation separates the large and small scales and the
filter function GP determines the size and structures of the large scales. For the
differentiation and the filtering operation to commute, GP has to be a function
of x − x′ only (Leonard 1974). A rough classification of the LES models can
be made depending on the primary filter GP : implicitly filtered models if the
primary filter GP is the grid filter, e.g. the ones used in the classical eddy-
viscosity models; explicitly filtered models where an explicit filter operation
is taken, e.g. the graded primary filter used in the approximate deconvolution
model (ADM) (Stolz & Adams 1999).

2.2. Sub-grid scale modelling

In LES, the effects of the unresolved scales on the resolved ones have to be
provided via the sub-grid scale (SGS) model. Therefore, a good SGS model is
in generally desirable.

2.2.1. Smagorinsky model (SM)

The Smagorinsky model proposed first by Smagorinsky (1963) is the most
widely used SGS model today. It belongs to the class of eddy-viscosity models
since the traceless/deviatoric part of the SGS stresses τij is modelled as

τij −
δij

3
τkk = −2νtS̃ij ,
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where δij is the Kronecker delta, defined by

δij =
{ 1 if i = j

0 if i 6= j
.

The strain rate of the resolved velocity field S̃ij is calculated according to

S̃ij =
1

2

(
∂ũi

∂xj
+

∂ũj

∂xi

)
.

The eddy viscosity νt is obtained by

νt = (Cs∆)2|S̃| ,

where |S̃| is defined by

|S̃| =

√
2S̃ijS̃ij .

∆ is a typical length scale of the primary filter usually computed from the grid
size as ∆ = (∆x∆y∆z)

1
3 (Deardorff 1970). The model coefficient Cs known as

the Smagorinsky constant is actually not a constant and has to be determined
a priori based on the flow case. Lilly (1967) derived an approximate value
for the Smagorinsky constant Cs ≈ 0.18 in homogeneous isotropic turbulence.
However, this value is found to cause excessive damping in wall-bounded flows
and has to be reduced to Cs ≈ 0.1 to sustain turbulence as reported by Dear-
dorff (1970); Moin & Kim (1982); Piomelli et al. (1988). McMillan et al. (1980)
confirmed in a priori tests that in homogeneous turbulence Cs does decrease
with increasing strain rate.

Despite that SM with constant coefficient is successful in certain flow types,
it suffers from a number of drawbacks. One major drawback is that the sub-
grid scale stress does not vanish close to solid walls. One remedy is to use the
so-called van Driest wall damping function (van Driest 1956). Other drawbacks
are that e.g. the model does not predict the correct growth rate of the initial
disturbances due to excessive damping and it does not account for the so-called
“backscatter”, i.e. energy transfer from unresolved scales to resolved scales,
which in certain circumstances can be significant (Piomelli et al. 1991; Härtel
et al. 1994). The capability of accounting for backscatter is usually considered
as a merit of a LES model.

2.2.2. High-pass filtered Smagorinsky model (HPF-SM)

Alternatively, high-pass filtered (HFP) velocities can be used instead of the
low-pass filtered ones to calculate the SGS model contribution. Ducros et al.
(1996) showed that the filtered structure function (FSF) model based on the
structure function (SF) model proposed by Métais & Lesieur (1992) was able
to predict transitional flow. Later, Sagaut et al. (2000) employed a high-pass
filtered velocity to calculate the eddy viscosity. Not only the eddy viscosity, but
also the strain rate could be calculated based on high-pass filtered quantities.
These models were first proposed by Vreman (2003) and Stolz et al. (2005)
based on SM closure. With the high-pass filtered velocities H ∗ ũ where H is a
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high-pass filter, the computation of the SGS stress τij , the strain rate Sij(H ∗ũ)
and the eddy viscosity νHPF

t become

τij −
δij

3
τkk = −2νHPF

t Sij(H ∗ ũ) ,

Sij(H ∗ ũ) =
1

2

(
∂H ∗ ũi

∂xj
+

∂H ∗ ũj

∂xi

)
,

νHPF
t = (CHPF

s ∆)2|S(H ∗ ũ)| ,

|S(H ∗ ũ)| =
√

2Sij(H ∗ ũ)Sij(H ∗ ũ) .

There is a close relation between the HPF models and the variational multi-
scale (VMS) method presented by Hughes et al. (2000, 2001). The two methods
differ in how the scale separation is treated. In the HPF methodology, the fil-
tering approach is adopted while in the VMS method, the scale separation is
performed by projection onto disjunct functional spaces.

One advantage of the HPF-SM is that the model contribution vanishes on
solid boundaries so that no near-wall damping is needed. Moreover, the ability
to handle transitional flows is shown in Stolz et al. (2005) and it accounts
for backscatter (Schlatter et al. 2005). However, the model constant CHPF

s

does not have the correct asymptotic behaviour which gives rise to restricted
time steps (Jeanmart & Winckelmans 2007). Therefore, more general remedies
other than the ad-hoc near-wall damping have been proposed. This leads to the
introduction of the wall-adapting local eddy viscosity (WALE) model (Nicoud
& Ducros 1999) and the dynamic procedure (Germano et al. 1991; Lilly 1992).

Using the square of the velocity tensor, the WALE model evaluates the
viscosity in such a way that it has the proper near-wall behaviour. However, the
more widely used method is the dynamic procedure first proposed by Germano
et al. (1991) and later refined by Lilly (1992). The idea is to use the local flow
information to calculate the model coefficient rather than determine it a priori .
Here SM will be used as an example to show the formulation of the dynamic
procedure.

Filtering the LES equations (2.2) by a second filter, the so-called test filter,
denoted by ,̂ one obtains

∂̂̃ui

∂t
+

∂̂̃ui
̂̃uj

∂xj
= − ∂̂̃p

∂xi
+

1

Re

∂2̂̃ui

∂xj∂xj
− ∂Tij

∂xj
, (2.3)

where Tij = ̂̃uiuj − ̂̃ui
̂̃uj is the SGS stress at the test filter level. The test filter

is usually chosen to be a sharp cut-off filter applied only in wall-parallel planes
leaving the wall-normal direction unfiltered. Although not fully justified, this
two-dimensional filtering approach is widely used in LES community. The test

filter width is usually set to ∆̂ = 2∆. Different widths have been tested in
channel flow simulations but no noticeable difference has been reported (Ger-
mano et al. 1991). By simple mathematical manipulations of equations (2.2)
and (2.3), the so-called Germano identity (Germano et al. 1991; Germano 1992)
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is recovered

Lij = τ̂ij − Tij (2.4)

where Lij = ̂̃ui
̂̃uj − ̂̃uiũj is the so-called resolved turbulent stress (Germano

et al. 1991; Lilly 1992). Applying the Smagorinsky closure to both τij and Tij ,
one obtains

τij −
δij

3
τkk = −2(Cs∆)2|S̃|S̃ij ,

Tij −
δij

3
Tkk = −2(Cs∆̂)2|̂̃S|̂̃Sij .

Inserting into the Germano identity (2.4) yields

Lij −
δij

3
Lkk = 2(Cs∆̂)2|̂̃S|̂̃Sij − 2(Cs∆)2|̂̃S|S̃ij = 2CdynMij (2.5)

where Mij = ∆̂2|̂̃S|̂̃Sij −∆2|̂̃S|S̃ij is used as an abbreviation and C2
s is replaced

by Cdyn. In Germano et al. (1991), equations (2.5) were contracted with the

resolved strain rate S̃ij to determine Cdyn without physical justification. Note
that Cdyn solved in this way can become negative and this will account for the
backscatter. Lilly (1992) suggested a least-squares approach to minimise the

residual Q = (Lij − δij

3 Lkk − 2CdynMij)
2 and this leads to

Cdyn =
1

2

MijLij

MlmMlm
.

In practise, averaging in homogeneous direction is usually applied to smoothen
Cdyn which is considerably fluctuating otherwise. However, this will limit the
dynamic model to flows with at least one homogeneous direction.

The dynamic model formulation for the HPF-SM follows the same recipe
and will not be repeated here. One may refer to Bruhn (2006); Schlatter et al.
(2006a) for more details.

2.2.3. Inverse model

It was realised some time ago that, to some extent, an accurate approximation
of a sub-grid scale quantity can be reconstructed from the resolved quantities.
The first model based on this idea is introduced by Leonard (1974). Later, the
so-called tensor-diffusivity model (TDM) was proposed where the filtered non-
linear term is expressed in filtered quantities using Taylor expansions (Leonard
& Winckelmans 1999; Winckelmans et al. 2001). The SGS stress τij with
uniform filter width ∆ then reads

τij = ∆2 ∂ũi

∂xk

∂ũj

∂xk
+

∆4

2!

∂2ũi

∂xk∂xl

∂2ũj

∂xk∂xl
+

∆6

3!

∂3ũi

∂xk∂xl∂xm

∂3ũj

∂xk∂xl∂xm
+ · · · ,

where summation is assumed over triply repeated indices. For more general
filters, one could refer to e.g. Carati et al. (2001). If the expansion is truncated
after the second-order term, one recovers the so-called gradient model (Clark



12 2. THEORETICAL FORMULATION

et al. 1979). However, these SGS models tend to provide not enough dissipa-
tion, therefore, a Smagorinksy eddy-viscosity term is usually supplemented as
a regularisation.

Another approach sharing the same idea is the so-called approximate decon-
volution model (ADM) which was proposed by Stolz & Adams (1999) for both
incompressible and compressible flows (Stolz et al. 2001a,b; Stolz & Adams
2003). Following the notation used in Stolz et al. (2001a), the approximation
of the unfiltered velocity ui is denoted by u⋆

i and the SGS stress is modelled by

τij = ũ⋆
i u

⋆
j − ũiũj ,

where the approximately deconvolved quantities u⋆
i is defined by

u⋆
i = QN ∗ ũi (2.6)

with

QN =

N∑

ν=1

(I − G)ν ≈ G−1 , (2.7)

where I is the identity operator, G the primary filter and QN the approximate
inverse of G. N is usually set to 5 and results obtained by using N > 5 do not
give significant improvements (Stolz et al. 2001a). Combining equations (2.6)
and (2.7), u⋆

i can be approximated by

u⋆
i = QN ∗ ũi = 3ũi − 3 ˜̃ui +

˜̃̃
ui + · · · .

For high level deconvolution, the van Cittert iterative method used in the ADM
is more efficient than evaluating the higher-order terms in the direct reconstruc-
tion series as in the TDM (Winckelmans et al. 2001). Furthermore, a relaxation
regularisation is also needed for ADM which models the interaction of the re-
solved scales and those not represented on the numerical grid.

Schlatter et al. (2006,b) showed that for simulations using spectral methods
the deconvolution operation applied in the ADM approach is usually not neces-
sary. This leads to a promising and simple LES model, i.e. the relaxation-term
(RT) model. In this model, the 3D primary filter only applies to the relax-
ation term while the non-linear terms are directly computed from the resolved
quantities. The SGS forcing then simply reads

∂τij

∂xj
= χ(I − QN ∗ G) ∗ ũi = χ(I − G)N+1 ∗ ũi = χHN ∗ ũi

where HN = (I − G)N+1 is a high-pass filter and χ is the model constant.
The constant χ can be determined dynamically, however, tests showed that the
results are rather insensitive to it (Stolz et al. 2001a; Schlatter et al. 2006).

The RT model has been shown to obtain accurate results in transitional
and turbulent incompressible wall-bounded flows (Schlatter et al. 2004, 2006,
2009a) and is related to the spectral vanishing viscosity approach by Kara-
manos & Karniadakis (2000). Since (I −QN ∗G) is positive semidefinite (Stolz
et al. 2001a), the relaxation term is always dissipative and only the small scales
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are affected while the large ones are not directly influenced by the model con-
tributions.

2.2.4. Eddy-diffusivity model

The sub-grid scale (SGS) model for the passive scalar corresponding to eddy-
viscosity models is the so-called eddy-diffusivity model. The SGS stress σi is
obtained by

σi = − νt

Prt

∂θ̃

∂xi
or

σi = −νHPF
t

Prt

∂H ∗ θ̃

∂xi

for classic or high-pass filtered eddy-viscosity models and

σi = − χ

Prt

∂HN ∗ θ̃

∂xi

for RT model. A constant turbulent Prandtl number Prt = 0.6 is usually
assumed. Note that all the drawbacks of the models for the velocity are present
in the scalar models as well. It should be noted that the literature on SGS
modelling of passive scalars is much less extensive than that for the velocities.
In particular high Péclet numbers (high Re or Pr) are seldomly addressed.

2.3. Inner and outer scaling of wall turbulence

In many applications, it is the mean flow rather than the rapid fluctuations
that is interesting and important. Naturally the Reynolds decomposition of
the flow field variables into a mean and a fluctuating quantity is introduced by

ui = 〈ui〉 + u′
i ,

p = 〈p〉 + p′ ,

θ = 〈θ〉 + θ′ ,

where the angular brackets denote a suitably defined mean and a prime denotes
the fluctuating part. In a statistically stationary turbulent flow, the mean value
of a flow quantity can be taken as the time average or as an average in the
homogeneous directions. Generally the mean of a quantity is the ensemble
average over an infinite number of realisations. In the present case the mean
of a quantity f(x, y, z, t) is defined by

〈f〉(x, y) = lim
T→∞

1

T

∫ T

0

f(x, y, z, t)dt ,

where the spanwise (z) dependence disappears since it is a homogeneous direc-
tion.

The behaviour of the flow in the near wall region is of great importance
and it was first treated by Ludwig Prandtl. A usual measure of the boundary-
layer thickness is δ99 which is defined as the wall-normal position at which
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the mean streamwise velocity 〈u〉 reaches the 99% of the free-stream velocity
U∞. However, this is a poorly conditioned quantity both experimentally and
numerically, since it depends on the measurement of a small velocity difference
(Pope 2000). Therefore, other measures have been proposed based on integral
quantities such as the displacement thickness

δ∗ =

∫ ∞

0

(
1 − 〈u〉

U∞

)
dy ,

and the momentum thickness

θ =

∫ ∞

0

〈u〉
U∞

(
1 − 〈u〉

U∞

)
dy .

The Rotta-Clauser length is also often used and defined by

∆ =
U∞δ∗

uτ
.

Another quantity known as the shape factor H12 which indicates the “fullness”
of the mean velocity profile can be defined based on δ∗ and θ as

H12 =
δ∗

θ
.

For the laminar Blasius boundary layer profile the shape factor H12 = 2.59
and decreases with increasing Re with an asymptotic value being unity (Nagib
et al. 2007).

In the vicinity of the wall, i.e. y/δ99 ≪ 1, one can show that the total shear
stress τ is nearly constant and the viscous effects are important, see e.g. Pope
(2000). This is true for all canonical wall-bounded flows, i.e. channel, pipe and
turbulent boundary-layer flows. Therefore, the so-called friction velocity uτ

and viscous length scale l∗ are chosen to be the velocity and length scales and
defined as

uτ ≡
√

τw

ρ
=

√
ν

∂〈u〉
∂y

∣∣∣
y=0

and l∗ =
ν

uτ
,

where ρ is the density.

Using the viscous scalings derived above, the mean streamwise velocity
very close to the wall can be written in the form

u+ =
〈u〉
uτ

= Φ(
y

l∗
) = Φ1(y

+) , (2.8)

where the “+”denotes normalisation in viscous (wall) units and equation (2.8)
is referred to as the law of the wall. Far away from the wall, say y ∼ δ99, the
viscous effects are not crucial, in contrast, the dynamics are dominated by the
turbulence. In this outer region, the so-called velocity-defect law describes the
mean streamwise velocity distribution and reads

〈u〉 − U∞

uτ
= Ψ(

y

∆∗
) = Ψ1(η) ,

where ∆∗ is the outer length scale.
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Following the argument by Millikan (1938), a so-called overlap region, i.e.
l∗ ≪ y ≪ ∆∗, exists and within which the derivatives of the law of the wall
and of the velocity-defect law should asymptoticly match. This yields

y+ dΦ(y+)

dy+
= η

dΨ(η)

dη
=

1

κ
.

This equation can be satisfied only when both sides are constant, which leads
to the introduction of the von Kármán constant κ. Integrating the equation
one obtains logarithmic velocity profiles

Φ1(y
+) =

〈u〉
uτ

=
1

κ
ln(y+) + A ,

Ψ1(η) =
〈u〉 − U∞

uτ
=

1

κ
ln(η) + B ,

where A and B are the integration constants.

The von Kármán constant κ and integration constants are generally consid-
ered to be universal, i.e. independent of Reynolds number and flow geometries.
However, there is no generally agreed values for these constants since these
constants are different from one experiment/simulation to the other, see e.g.
Nagib & Chauhan (2008). Except for the log-law, there are other proposed scal-
ings for the overlap region, e.g. a power-law description. For more discussion
about power law, one may refer to George & Castillo (1997) and the references
therein.

Similarly, one can also derive the law of the wall, the defect law and the
log-law for the scalar field. The resulting equations read

θ+ =
θw − 〈θ〉

θτ
= Φθ(y

+, P r) ,

〈θ〉 − θ∞
θτ

= Ψθ(η, Pr) ,

Φθ(y
+, P r) =

θw − 〈θ〉
θτ

=
1

κθ
ln(y+) + Aθ(Pr) ,

Ψθ(η, Pr) =
θ∞ − 〈θ〉

θτ
=

1

κθ
ln(η) + Bθ(Pr) ,

where κθ is the von Kármán constant for the scalar field with Aθ and Bθ being
functions of Pr. θw and θ∞ are the scalar concentration at the wall and in
the free stream, respectively. The friction scalar θτ is analogous to the friction
velocity uτ and defined by

θτ =
qw

ρcpuτ
,

where ρ is the density of the fluid, cp is the scalar capacity of the fluid, uτ is
the friction velocity and qw is the rate of the scalar transfer from the wall to

the flow which is defined by Fick’s first law qw = −k ∂〈θ〉
∂y

∣∣∣
y=0

, where k is the

scalar conductivity.
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CHAPTER 3

Turbulent boundary layer

3.1. Mean statistics

Figure 3.1 depicts the mean velocity profiles at four different Reynolds numbers
ranging from Reθ = 671 to Reθ = 2512 obtained from DNS. As the Reynolds
number increases, the logarithmic region becomes much more extended and
clearer. The data at Reθ = 1410 obtained by Spalart (1988) differs from the
one by Schlatter et al. (2009), probably due to a suspected lower actual Reθ in
the former simulation. The excellent agreement between the simulation data
and the experimental one indicates that the mean statistics are insensitive to
the numerical and experimental setup. The root-mean-square (RMS) values of
the scalar fluctuation are shown in Figure 3.2. With increasing Pr, the RMS
values increase and the peak positions move towards the wall. Due to isoflux
wall boundary condition, the RMS values remain constant near the wall while
the ones with isoscalar wall boundary condition decrease to zero.
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Figure 3.1. Mean streamwise velocity profiles U at Reθ =
671, 1000, 1412, 2512. DNS by Schlatter et al. (2009),
• experimental data by Schlatter et al. (2009), DNS by
Spalart (1988). The thin lines indicate the linear and loga-
rithmic laws, using 1

κ ln y+ + 5.2 with κ = 0.41. A detailed
discussion of the figure is found in Paper 2.
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Figure 3.2. Profiles of the RMS values of the scalar fluctu-
ation θrms at Reθ = 830. + θ1 with Pr = 0.2, θ2 with
Pr = 0.71, θ3 with Pr = 0.71, θ4 with Pr = 2.0,

θ5 with Pr = 2.0. Isoscalar wall: θ1, θ2 and θ4. Isoflux
wall: θ3 and θ5. A detailed discussion of the figure is found in
Paper 4.

3.2. Coherent structures

Even though wall-bounded turbulence is characterised by chaotic and random
motions, there are actually recurrent and well-organised features, i.e. coherent
structures and motions present in the flow. Taking the definition used in Robin-
son (1991), a coherent structure or motion is defined as “a three-dimensional
region of the flow over which at least one fundamental flow variable (veloc-
ity component, density, temperature, etc.) exhibits significant correlation with
itself or with another variable over a range of space and/or time that is signif-
icantly larger than the smallest local scales of the flow.”

Figure 3.3. Photograph of the structure of a flat-plate tur-
bulent boundary layer at y+ ≈ 2.7. The picture is taken from
Kline et al. (1967).
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The most widely studied structure in wall-bounded flow is the so-called
near-wall streaks which are alternating high- (positive fluctuation) and low-
speed (negative fluctuation) regions elongated in the streamwise direction. Fig-
ure 3.3 shows such streaky structures near the wall in a water channel taken
from Kline et al. (1967) using tiny hydrogen bubbles released periodically from
a thin platinum wire on the top. These streaky structures have a spanwise
spacing of about ∆z+ ≈ 100, and a streamwise spacing ∆x+ > 1000 (Smith
& Metzler 1983). However, recent simulations (Li et al. 2009; Schlatter et al.
2009) and experiments (Lin et al. 2008) reported a value around 120 for the
spanwise spacing of the streaks. These structures are relatively quiescent most
of the time. However, the low-speed fluid near the wall occasionally erupts
violently into the outer region of the boundary layer (ejection motion). Kline
et al. (1967) and Kim et al. (1971) were among the first to name this process
as “bursting” which was later used by Wallace et al. (1972), Willmarth & Lu
(1972) and Lu & Willmarth (1973) among others. During a bursting process,
as described by Kim et al. (1971), the low-speed streaks were observed first to
lift up slowly away from the wall, then start a growing oscillation and finally
break up into more chaotic motion. Intermittently, the high-speed fluid also
rushes in toward the wall at a shallow angle (sweep motion). Together with the
ejection motion, these two events contribute to most of the production of the
turbulence and are considered to be a self-sustained and quasi-cyclic sequence
(Robinson 1991). Jiménez & Pinelli (1999) showed that both the formation
of streaks and the generation of vortices from the instability of streaks are
important to maintain the turbulence.

Besides the near-wall streaks, there are also structures existing in the outer
region of the boundary layer (Kim & Adrian 1999; del Álamo and Jiménez
2003; Abe et al. 2004; Hutchins & Marusic 2007; Schlatter et al. 2009). These

Figure 3.4. Spanwise two-point correlation Rττ of the wall-
shear stress τw . corresponds to 0.85δ99, corresponds
to 2∆z+ = 120. A detailed discussion of the figure is found in
Paper 2.
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(a) (b)

Figure 3.5. Instantaneous streamwise velocity and scalar
fields at y+ ≈ 7. (a) u′, (b) θ′ with Pr = 0.71. A detailed
discussion of the figure is found in Paper 4.
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Figure 3.6. Mean velocity and temperature fields with FST
at Reθ ≈ 850. (a) 〈u〉, (b) 〈θ〉 with Pr = 0.71. no
FST, Tu = 4.7% at the inlet, Tu = 40% at the inlet,

log-law. A detailed discussion of the figure is found in
Paper 5.

structures relate to the “inactive”motion by Townsend (1976) and usually scale
with outer units, e.g. the channel height h or the boundary-layer thickness δ99.
Even though the near-wall cycle seems to be self-sustained, it is believed that
the outer structures have at least a modulating influence on the near-wall events
(Robinson 1991). This has been observed both in simulation and experiments,
see e.g. Hutchins & Marusic (2007b); Schlatter et al. (2009). One such example
is shown in Figure 3.4 where the spanwise two-point correlation of the wall-
shear stress τw is shown as a function of Reynolds number. Except for the
near-wall peak at 2∆z+ ≈ 120 (dash line) showing the existence of the streaks,
a second peak (solid line) is clearly visible for Reθ > 1500 which indicates the
footprints of the large-scale structure onto the fluctuating wall-shear stress.

Kim and Moin (1989) reported that the correlation coefficient between the
streamwise velocity and the scalar (Pr = 0.71) is as high as 0.95 in the near-
wall region. Therefore, it is expected that the mean spanwise spacing of the
scalar/thermal streaks is about 100 in wall units as well. Furthermore, it is also
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(a) (b)

(c) (d)

Figure 3.7. Premultiplied spanwise energy spectra of
Φuu(λz)/u2

rms and Φθθ(λz)/θ2
rms with Pr = 0.71 at Reθ ≈

900. (a) Φuu(λz)/u2
rms with no FST at inlet, (b) Φθθ(λz)/θ2

rms

with no FST at inlet, (c) Φuu(λz)/u2
rms with Tu = 40% at in-

let, (d) Φθθ(λz)/θ2
rms with Tu = 40% at inlet.

confirmed that the low-speed fluids are associated with low scalar concentration
regions and high-speed fluids with high scalar concentration regions (Iritani
et al. 1985; Kong et al. 2000; Li et al. 2009). A visualisation of near-wall
velocity and scalar streaks is shown in Figure 3.5. However, when there are
disturbances present in the free stream, differences start to appear. Previous
experimental work by Simonich & Bradshaw (1978); Blair (1983a,b) found that
the heat transfer on the wall grows with increasing turbulence intensity in the
free stream. This is very crucial for the industry application since it has direct
influences on the cooling design and the hardware durability. Moreover, the
wake region of the mean velocity and temperature profiles is depressed due to
a high free-stream turbulence (FST) as also shown in Figure 3.6.

For the large-scale structures of the scalar without FST, Abe and Kawa-
mura (2002) reported the existence of such structures in channel flow for
Reτ = 640 with Pr = 0.025 and 0.71, but no detailed discussion was provided.
Li et al. (2009) also observed the large-scale structure in the outer region of the
boundary layer at Reθ = 830. But at such a relatively low Reynolds number,
the outer peak in the energy spectra is not obvious due to insufficient scale



22 3. TURBULENT BOUNDARY LAYER

separation. With FST present, the spanwise scale of the outer structures grows
from O(δ99) to 3 ∼ 4O(δ99), see Figure 3.7. It is speculated that it is these
large structures which cause the increase of the heat transfer from the wall.



CHAPTER 4

Numerical method

The results presented in this thesis are obtained using the simulation code
SIMSON (Chevalier et al. 2007) developed at KTH Mechanics over many
years. The governing equations are discretised based on a standard spectral
method (Canuto et al. 1988). The discretisation in the horizontal directions
uses Fourier expansions assuming periodic solutions. In the wall-normal direc-
tion, Chebyshev polynomials with the Chebyshev tau method (CTM) (Canuto
et al. 1988) are used to discretise the solution and the boundary condition.
The time advancement used is a third-order Runge-Kutta method for the non-
linear terms and a second-order Crank-Nicolson method for the linear terms.
Adaptive time stepping is adopted to exploit the maximum stable time step.
The non-linear terms are calculated in physical space rather than spectral space
(pseudo-spectral method). Aliasing errors from the evaluation of the non-linear
terms are removed by the 3/2-rule (Canuto et al. 1988) when the horizontal
FFTs are performed.

laminar turbulent

fringe region
computational box

U 8

trip forcing

Tu, L

transition

Figure 4.1. Sketch of the computational domain with free-
stream turbulence.

A sketch of the computational box is shown in Figure 4.1. The periodicity
in the wall parallel directions is fulfilled by adding a so-called “fringe region”
(Bertolotti et al. 1992; Nordström et al. 1999) at the downstream end of the

23



24 4. NUMERICAL METHOD

Nodes (2 processors per node)

S
pe

ed
 u

p
 

 

10
1

10
2

10
3

10
1

10
2

10
3

Figure 4.2. Speedup curve for the benchmark case. © 1D
parallelisation, � 2D parallelisation, linear speedup.

domain. In this region, the outflow is forced by a prescribed volume force to the
laminar Blasius inflow. In addition, to trigger rapid (natural) laminar-turbulent
transition, a random volume forcing directed normal to the wall is located at
a short distance downstream of the inlet. The turbulent field generated by
the trip force leads to very good quality at the expense of a slightly enlarged
transitional inflow region. In particular, there are no streamwise correlations in
the fluctuations as opposed to e.g. the rescaling and recycling method proposed
by Lund et al. (1998).

SIMSON is also capable of simulating free-stream turbulence (FST).
As described in Grosch & Salwen (1978), the continuous eigenmodes of
the Orr-Sommerfeld/Squire operator provide a basis for the FST. Therefore,
the generation of the FST is by a superposition of eigenmodes of the Orr-
Sommerfeld/Squire operator with prescribed energy spectrum, i.e. the von Kár-
mán spectrum. For more details about the generation of FST, one could refer
to Brandt et al. (2004); Schlatter (2001); Jacobs & Durbin (2000). The FST is
homogeneous and isotropic, and satisfies the continuity constraint as well.

The numerical code is written in FORTRAN 77/90 and consists of two ma-
jor parts: one linear part where the equations are solved in spectral space, and
one non-linear part where the non-linear terms are computed in physical space.
The main computational effort in these two parts is in the FFT which consumes
more than 55% of the total execution time. Thanks to the parallelisation, the
expensive computation of the FFTs is not the main problem; the communi-
cation between processors being the bottle neck. The present code has been
highly parallelised either using OpenMP (Multi Processing) on shared memory
machines or MPI (Message Passing Interface) on distributed memory machines.
Recently, a new parallelisation has been implemented in which the data is dis-
tributed in a “pencil-based”2D manner instead of the previous“slice-based”1D
way. Figure 4.2 shows a performance of the benchmark case (512× 513× 512)
and very good speedup of the code is obtained.



CHAPTER 5

Summary of the papers

Paper 1

Spectral simulations of wall-bounded flows on massively-parallel computers.
In order to take advantages of the large number of processors which the mas-
sively parallel computer systems usually have, a new 2D parallelisation of the
code SIMSON is introduced in this report. The performance of the ma-
jor subroutines is analysed in detail to identify the bottle-necks of the code.
The overall performance of the new 2D version is promising. In addition, a
performance model is proposed and it predicts the performance well for the
benchmark cases.

Paper 2

Turbulent boundary layers up to Reθ = 2500 studied through simulation and
experiment.
Twenty years passed since the first numerical simulation of turbulent boundary
layer was done. However, the Reynolds number achieved then is still among
the highest despite the rapid development of super computers and algorithms.
This article is about a joint experimental/DNS work of a flat-plate turbulent
boundary layer aiming at providing the research community with reliable data
for a truly spatially developing flow. It is the fist time that the Reynolds number
is high enough to compare DNS to carefully obtained experimental data. On
the other hand, it is also a big challenge for the experimentalists to conduct an
experiment at such a low Reynolds number with good quality. The excellent
match of the data obtained from both simulation and experiments indicates
that quantities of interest are not sensitive to the experimental and numerical
limitations.

Paper 3

Simulations of high-Reynolds number turbulent boundary layers.
This paper is a continuation of the previous work of a flat-plate turbulent
boundary layer using LES technique reaching the high Reθ = 4300. A promis-
ing LES model is used with comparably good resolution and the results ob-
tained at lower Reynolds number Reθ = 2500 compare very well with the
DNS data. With the high Reynolds number reached in this study, the scale
separation is much more clearer and the outer structures are studied through

25
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one-dimensional spanwise and temporal premultiplied spectra. The coherent
structures observed in the simulation compare very well with previous experi-
mental studies at similar Reynolds number.

Paper 4

DNS of a spatially developing turbulent boundary layer with passive scalar trans-
port.
A turbulent boundary layer is simulated together with five different passive
scalars upto Reθ = 830. The focus is on the outer region behaviour of the
scalar statistics which is distinct from channel flows. The influences of the dif-
ferent boundary conditions and Prandtl numbers are also discussed. With such
a variety of scalars, the Reynolds number reached in this study is the highest
in the current literature.

Paper 5

Simulations of heat transfer of a boundary layer subject to free-stream turbu-
lence.
This proceeding article is a continuation of the work presented in Paper 4 but
with additional influence of the free-stream turbulence. It has been long time
that researchers have observed that in the presence of free-stream turbulence,
the heat transfer on solid walls increases dramatically. Since there are diffi-
culties in experiments to measure very close to the wall, numerical simulations
become a good alternative to shed light on the physical mechanisms. The
present study summarises the previous experimental and simulation results,
and furthermore attributes the increase of the heat transfer on the wall to the
large-scale structures residing in the outer region of the boundary layer.



CHAPTER 6

Conclusions and outlook

In the present thesis, spatially evolving turbulent boundary layers together with
passive scalars are investigated numerically. The research code is parallelised
so that it can run on more than 1000 processors and this together with the
quickly developing parallel computer systems opens the possibility to study
wall turbulence at numerically very high Reynolds numbers.

The close agreement with the experimental data at Reθ = 2500 increases
the credibility of obtained statistics at the low to medium Reynolds numbers. It
further validates that the results are insensitive to the details of the experimen-
tal and numerical setup, e.g. the surface roughness, tripping device, streamwise
pressure gradients, boundary conditions. By analysing the spanwise and tem-
poral spectra, the large-scale structure is found to be about 0.85δ99 in width
and persists for about 10δ99/U∞ time units.

For the results pertaining to heat transfer, the mean scalar profiles are inde-
pendent of the different boundary conditions whereas the effects on the scalar
variances and high-order statistics are obvious in the near-wall region. The
scalar with isoscalar boundary condition is highly correlated with the stream-
wise velocity component in the near-wall region. However, near the boundary-
layer edge, only a mild correlation between these two quantities was observed.
With the presence of free-stream turbulence, a more prominent depression of
the wake region can be observed with increasing turbulence intensity for the
mean velocity and temperature profiles. As much as 15% increases of both
the skin-friction coefficient and the Stanton number are found for a turbulence
intensity of 20% at the inlet.

Therefore, a natural extension of the present work is to simulate such
canonical flows at even higher Reynolds numbers since most engineering appli-
cations happen at very high Reynolds numbers. With the present increasing
speed of the computer power, by the middle of 21 century, to simulate the wing
of an airplane will not be a dream anymore. Another possibility is to study the
vortical structures residing in the outer layer of the boundary layer in details.
One and two-dimensional spectra will be analysed and visualisations of those
structures will be done, see also Figure 6.1.

For the SGS modelling, the various models used in the present work have
been shown to be very efficient and accurate. Recently, a new variant of mixed
model, e.g. HPF-WALE model, also shows promising results in channel flows.
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(a) (b)

Figure 6.1. (a) A visualisation of an instantaneous flow field
at Reθ ≈ 4000. (b) Iso-surfaces of the second invariant of the
velocity gradient tensor Q. See also Wu & Moin (2009).
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Figure 6.2. LES results of channel flow with passive scalar
(Pr = 0.71) at Reτ = 590. • DNS (unfiltered), ◦ DSM model,
HPF-WALE model.

Extensions of these models including passive scalar are interesting. Preliminary
results of channel flow simulations with heat transfer (Pr = 0.71) at Reτ = 590
are shown in Figure 6.2 with comparison to the results obtained using DSM
model and DNS data. In general, the results obtained with the new HPF-
WALE model outperform those from DSM model. Both models overpredict the
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mean velocity and scalar variance profiles in the centre of the channel. However,
the resolved stresses and scalar fluxes predicted by the HPF-WALE model are
in good agreement with the unfiltered DNS data. Further validation of these
models will be performed in zero-pressure gradient turbulent boundary layers
since whether the LES models are able to reproduce the high Reynolds number
effects in turbulent boundary layer flows or not is still an open question. Other
alternatives will be to investigate LES models which account for anisotropy, e.g.
the explicit algebraic Reynolds stress model (EARSM) developed by Marstorp
(2008). It is also interesting to combine the stochastic modelling approach with
the available models. Furthermore, to test the SGS models in non-equilibrium
situations and flows with separation induced by adverse pressure gradient would
also be interesting.
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del Álamo, J. C. & Jiménez, J. 2003 Spectra of the very large anisotropic scales
in turbulent channels. Phys. Fluids 15 (6), L41–L44.

Batchelor, G. K. 1959 Small-scale variation of convected quantities like tempera-
ture in turbulent fluid: Part 1. General discussion and the case of small conduc-
tivity. J. Fluid Mech. 5, 113–133.

Bell, D. M. & Ferziger, J. H. 1993 Turbulent boundary layer DNS with passive
scalars. In Near-Wall Turbulent Flows (ed. R. M. C. So, C. G. Speziale & B. E.
Launder), pp. 327–366. Elsevier, Amsterdam, The Netherlands.

Bertolotti, F. P., Herbert, T. & Spalart, P. R. 1992 Linear and nonlinear
stability of the Blasius boundary layer. J. Fluid Mech. 242, 441–474.

Blair, M. F. 1983a Influence of free-stream turbulence on turbulent boundary layer
heat transfer and mean profile development, Part I – Experimental data. ASME
J. Heat Transfer 105, 33–40.

Blair, M. F. 1983b Influence of free-stream turbulence on turbulent boundary layer
heat transfer and mean profile development, Part II – Analysis of results. ASME
J. Heat Transfer 105, 41–47.

Brandt, L., Schlatter, P. & Henningson, D. S. 2004 Transition in boundary
layers subject to free-stream turbulence. J. Fluid Mech. 517, 167–198.

Bruhn, T. 2006 Large-eddy simulation of zero-pressure gradient turbulent boundary
layers. Master’s thesis, KTH Mechanics, Stockholm, Sweden.

Canuto, C., Hussaini, M. Y., Quarteroni, A. & Zang, T. A. 1988 Spectral
Methods in Fluid Dynamics. Springer, Berlin, Germany.

Carati, D., Winckelmans, G. S. & Jeanmart, H. 2001 On the modelling of the
subgrid-scale and filtered-scale stress tensors in large-eddy simulation. J. Fluid
Mech. 441, 119–138.

Chapman, D. R. 1979 Computatisnal aerodynamics development and outlook. AIAA
J. 17 (12), 1293–1313.

31



32 BIBLIOGRAPHY

Chevalier, M., Schlatter, P., Lundbladh, A. & Henningson, D. S. 2007
A pseudo-spectral solver for incompressible boundary layer flows. Tech. Rep
TRITA-MEK 2007:07. Royal Institute of Technology, Stockholm.

Clark, R. A., Ferziger, J. H. & Reynolds, W. C. 1979 Evaluation of subgrid-
scale models using an accurately simulated turbulent flow. J. Fluid Mech. 91 (1),
1–16.

Deardorff, J. W. 1970 A numerical study of three-dimensional turbulent channel
flow at large Reynolds numbers. J. Fluid Mech. 41 (2), 453–480.

van Driest, E. R. 1956 On the turbulent flow near a wall. J. Aero. Sci. 23, 1007–
1011.

Ducros, F., Comte, P. & Lesieur, M. 1996 Large-eddy simulation of transition
to turbulence in a boundary layer developing spatially over a flat plate. J. Fluid
Mech. 326, 1–36.
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Turbulent Shear Flows 6 (ed. J.-C. André, J. Cousteix, F. Durst, B. E. Launder
& F. W. Schmidt), pp. 85–96. Springer-Verlag, Berlin, Germany.

Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel
flow at low Reynolds number. J. Fluid Mech. 177, 133–166.

Kim, K. C. & Adrian, R. J. 1999 Very large-scale motion in the outer layer. Phys.
Fluids 11 (2), 417–422.

Kline, S. J., Reynolds, W. C., Schraub, F. A. & Runstadler, P. W. 1967 The
structure of turbulent boundary layers. J. Fluid Mech. 30, 741–773.

Kong, H., Choi, H. & Lee, J. S. 2000 Direct numerical simulation of turbulent
thermal boundary layers. Phys. Fluids 12 (10), 2555–2568.

Leonard, A. 1974 Energy cascade in large eddy simulation of turbulent fluid flows.
Adv. Geophys. 18 (A), 237–248.

Leonard, A. & Winckelmans, G. S. 1999 A tensor-diffusivity subgrid model for
large-eddy simulation. In Proc. Isaac Newton Institute Symposium / ERCOF-
TAC Workshop, pp. 12–14. Kluwer, Dordrecht, The Netherlands.
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Technical report

1. Introduction

Due to the rapid development of high-performance super-computers for the
last several decades, highly resolved time-dependent numerical simulations, i.e.
direct numerical simulation (DNS) and large-eddy simulation (LES), have be-
come an important tool for transition and turbulence research (Moin & Mahesh
1998; Sagaut 2005).

Such super-computers can be primarily classified into two groups with re-
spect to the architecture of the processor: vector processor and scalar proces-
sor. A vector processor, or array processor, is designed with the so-called vector
registers which are able to operate on multiple data elements simultaneously,
thus the operations are done in parallel at least to some extent. In contrast,
a scalar processor has registers for data as a scalar quantity and in princi-
ple only processes one data element at a time. Vector processors were widely
used to form the basis of most super computers in the 1980s and 1990s, but
have nearly disappeared in super-computers nowadays. Another classification
of super-computers is according to the memory configuration. Shared and dis-
tributed memory are the two main memory configurations. In the former case,
all the processors share the same memory while in the latter one, each proces-
sor has its own memory so that data has to be sent and received if used by
another processor. According to the categories above, there are four different
combinations of the types of the computers as shown in Table 1. Throughout
this report, only the first combination, i.e. scalar processors with distributed
memory, is considered and discussed since this is the most dominant architec-
ture in use with most Linux clusters at the moment. The term “processor”
means central processing unit (CPU) and will alternatively be termed “core”.

distributed memory shared memory
scalar processor 1 2
vector processor 3 4

Table 1. The four combinations of the types for the parallel computers.
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The simplest parallel computing architecture might be the multi-core ar-
chitecture usually consisting of two or more independent cores. The cores may
or may not share the memory and message passing or shared memory inter-core
communication methods may be implemented. Another type is a distributed
memory computer system, e.g. a computer cluster, consisting of a group of in-
dependent computers which are connected by network such that they can work
together and can be viewed as a single parallel machine. A cluster has usually
about 200 to 300 processors in total. However, in order to obtain higher perfor-
mance to solve large-size problems, a massively parallel computer system has to
be used. A massively parallel computer system is a single machine with a very
large number of processors, usually more than 1000 processors. In such a sys-
tem, a single processor may have a lower performance compared to a processor
of a regular cluster, but this is compensated by the larger amount of processors.
All the processors are connected via a high speed interconnection. Therefore,
the overall performance might be better than a common cluster depending on
the application.

Once equipped with a modern parallel computer, the availability of an
efficient numerical code for simulating turbulent flow becomes more important.
An efficient numerical code (SIMSON) to solve the Navier–Stokes equations
for incompressible channel and boundary-layer flows has been developed at
KTH Mechanics for the last years, see the reports by Lundbladh et al. (1992),
Lundbladh et al. (1999) and Chevalier et al. (2007). The numerical method
is based on a standard fully spectral Fourier/Chebyshev discretization, leading
to high numerical accuracy and efficiency. The nonlinear convective terms
are evaluated pseudo-spectrally in physical space using fast Fourier transforms
(FFT) to avoid the evaluation of convolution sums. Aliasing errors are removed
by using the 3/2-rule (Canuto et al. 1988) in the wall-parallel directions. The
governing equations are then solved and the prescribed boundary conditions are
applied in Fourier/Chebyshev space. Time integration is done by a mixed third
order Runge–Kutta/Crank–Nicolson method. The code can be run in either
temporal mode or spatial mode. It also supports disturbance formulation and
linearised formulation. Multiple passive scalars, e.g. a temperature field, can
be solved together with the velocity field. For boundary-layer flows, the “fringe
region” is added to fulfil the periodic boundary condition in the streamwise
direction (Nordström et al. 1999).

2. Parallelisation

2.1. Code structure

The numerical code SIMSON is written in FORTRAN 77 and the coarse
structure can be divided into four steps (Chevalier et al. 2007). In the first step,
initialisation of the flow solver is done, e.g. reading in the input files, setting
the initial parameter values, opening the output files, etc. In the second step,
the time integration loop is started and the computations in physical space, i.e.
the evaluation of non-linear terms, are executed. In the third step, the linear
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part of the evolution equations are solved in Fourier/Chebyshev space and the
time-stepping parameters are recalculated for the next time step. In the last
step, the output files are written after the time integration loop is finished. The
major computational effort of the code is in the subroutines nonlinbl (step
2) in which the nonlinear terms are calculated in physical space and linearbl

(step 3) in which the linear part of the governing equations are solved and
the boundary conditions are evaluated in Fourier/Chebyshev space, see also
Figure 1. For a typical run in serial mode, it turns out that about 55% of the
total execution time is spent in subroutine nonlinbl and 40% in subroutine
linearbl.

RK

nonlinbl

linearbl

getpxy

putpxyz

y

it=it+1

Main Storage

getpxz

putpxz

Figure 1. The main structure of the code for the 1D parallelisation.

2.2. Domain decomposition

The most straightforward parallelisation method is to use data parallelisation
or domain decomposition through which the work has been divided among the
processors so that each processor has approximately the same amount of work
to do. Thus the efficiency is maximised and therefore the overall performance
is greatly increased.

2.2.1. 1D parallelisation

The main structure of the code for the 1D parallelisation is shown in Alvelius
& Skote (2000). The computations are done plane by plane, i.e. in an xy-plane
in linearbl and an xz-plane in nonlinbl where x, y and z are the spatial
coordinates representing the streamwise, wall-normal and spanwise direction,
respectively. Outside these subroutines, there is a loop over the third direction,
i.e. z for linearbl and y for nonlinbl. This means that the calculation in
each plane is independent of any other one. If one processor calculates one
plane at each time, as many processors as there are planes can be used running
in parallel. As seen from Figure 1, in order to get the data from the main
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storage onto planes, the subroutines getpxz for nonlinbl and getpxy for lin-
earbl are called. The corresponding subroutines for putting data back to the
main storage after the calculations in nonlinbl and linearbl are putpxz and
putpxy, respectively.

m
em

ny

m
em

nxmemnz

1 2 30

x

y

z

Figure 2. Data distribution among all the processors.

The code supports parallelisation with both shared memory (OpenMP)
and distributed memory (MPI). Here only the distributed memory machines
based on MPI communication are discussed in detail. The main storage is
distributed in the z-direction only; a sketch of that distribution is shown in
Figure 2. The data in the horizontal plane, i.e. xz-plane, is stored in Fourier
space while the data in the wall-normal direction is in physical space. The
total number of the processors is denoted by nproc. In the sketch nproc = 4
is chosen as an example. Then the amount of data stored on each processor
is 2 × memnx × memny × memnz where memnx = nx

2 , memny = nyp and
memnz = nz

nproc . nx, nyp and nz are the number of collocation points in the

streamwise, wall-normal and spanwise direction, respectively. memnx is nx
2

becuase complex Fourier modes are considered; the factor 2 represents the real
and imaginary parts. nyp has to be an odd number since it represents the
total number of Chebyshev modes. By distributing the data in this way, the
calculations in the subroutine linearbl are easily done in parallel since each
processor has full access to the data on one xy-plane in each z-loop. Note
that the subroutines getpxy and putpxy are called by all the processors at
the same time and they operate on nproc wall-normal planes seperated in z
in each z-loop without involving communication between any two processors.
However, when doing the calculations in the subroutine nonlinbl, in order to
obtain full access to the data on an xz-plane, each processor has to collect
data from all the other processors. The data collection is accomplished by
calling the subroutines getpxz and putpxz. This global data transfer gives rise
to a significant amount of communication among all the processors. In fact,
the majority of the total communication among the processors happens in the
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subroutine nonlinbl, more precisely in the subroutines getpxz and putpxz.
As similarly for the subroutines getpxy and putpxy, the subroutines getpxz

and putpxz are also called by all the processors at the same time but they
operate on nproc consecutive wall-parallel planes in each y-loop.

The data distribution after the global communication is shown in Figure 3.
After the global communication in getpxz, each processor has full access to the
data in one xz-plane and is thus able to perform the 2D FFTs on this xz-plane
to transform the data from spectral space to physical space. Since the cost
of the communication is relatively high for parallel computers with distributed
memory, the best way to implement the 2D FFTs is to perform the FFTs by
each processor. Thus 1D FFTs have to be performed twice in both directions
on each xz-plane. Following the FFTs, all the data is stored in physical space
and then the nonlinear terms can be evaluated pseudo-spectrally. To remove
the aliasing errors from the evaluation of the nonlinear terms, the 3/2-rule
has been used. Once the calculation of the nonlinear terms is finished, inverse
FFTs have to be performed to transform the data back to spectral space. Last,
another global communication has to be done in putpxz to write the data
back to the storage location as shown in Figure 2. Then the calculations in
linearbl can be easily done. It turns out that the evaluation of FFTs are the
main computational cost of the whole code which may take up to 55% of the
total execution time for a serial run, i.e. without communication.
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Figure 3. Data distribution after the global communication.

For the global communication needed in the subroutines getpxz and put-

pxz, two different ways are currently implemented. On the one hand, a self-
written version of the global transpose which is based on the explicit point
to point communication using MPI commands MPI ISEND, MPI WAIT
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and MPI RECV is available. For more details about this implementation,
see Alvelius & Skote (2000). On the other hand, an alternative version is to
adopt the standard collective communication command MPI ALLTOALL.
This standard MPI command transfers a subset of data from all members to

ip=0 ip=1 ip=2 ip=3 ip=0 ip=1 ip=2 ip=3

A0 A1 A2 A3

B0 B1 B2 B3

C0 C1 C2 C3

D0 D1 D2 D3

A0 B0 C0 D0

B3 C3 D3

A1 B1 C1 D1

A2

A3

B2 C2 D2

MPI_alltoall

Figure 4. The MPI ALLTOALL command illustrated for
a group of four processors ip = 0, 1, 2, 3.

all members within a group. Each processor sends distinct data to each of the
other processor. How the data is transfered is illustrated in Figure 4. As seen
from the figure, the MPI ALLTOALL actually does a global transpose of
the data among all the members in the group. A performance model for the
MPI ALLTOALL is developed, see the later chapter for more detail.

Both versions of implementation for the global communication essentially
perform approximately the same in terms of speed and memory requirement.
However, if the collective communication version is used, the amount of data
stored on each processors is slightly larger and thus the amount of communi-
cation compared to the hand-written version is marginally increased. This
is because memny has to be (int( nyp

nproc) + 1) × nproc instead of nyp to

fulfil the requirement of the MPI ALLTOALL command. The operation
“int” means taking only the integer part. Another issue concerning the col-
lective communication version is that user-defined data types including the
MPI TYPE STRUCTURE and MPI UB commands have to be used in
order to fit the data structure of the code. These user-defined data types in
the subroutines getpxz and putpxz are realg1 and realg2. realg1, represent-
ing the data type as in the Figure 2, has memnz blocks, memnx elements in
each block and memnx × memny elements between the start of each block.
An upper-bound of size memnx has to be added to the data type realg1 to
give the correct displacement between consecutive elements. The upper-bound
data type can be considered as a “pseudo-data type” which extends the up-
per bound of a data type. It does not have any effects on the content or the
size of the data type and does not influence the message defined by the data
type. What it changes is the spatial extent of the data type in the mem-
ory. The data type realg2, representing the data type as in the Figure 3,
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has also memnz blocks, memnx elements in each block, but (nxp
2 + 1) ele-

ments between the start of each block where nxp = 3
2nx. An upper-bound of

size (nxp
2 + 1) × memnz has also to be added to the data type realg2. Note

that the two data types realg1 and realg2 have exactly the same size, i.e.
they contain the same amount of real numbers. Different blocks of the same
data type or different data types can be constructed as a general data type
by using MPI command MPI TYPE STRUCTURE. For more about the
user-defined data type, refer to MPI standard documentation.

2.2.2. 2D parallelisation

The distribution of the main storage in only the spanwise direction introduced
in the previous section naturally imposes a restriction to the code, i.e. the upper
limit of the maximum possible number of processors to be nz. For typical flow
cases, nz is not larger than 256. Nowadays, as the computer clusters become
more powerful with more and more processors and cores available, a new way
to parallelise the code is strongly needed such that more processors than just
nz processors can be used.

There are potentially three possible spatial directions along which the data
can be distributed among the different processors. The number of grid points
in y, discretized by Chebyshev expansion, is required to be odd and thus not
evenly divisible by the number of processors. So choosing y (the wall-normal)
direction is out of consideration. Either x (the streamwise) or z (the spanwise)
direction can be easily chosen as the direction to parallelise over since the
number of the grid points in these two directions are naturally even and can be
chosen to be divisible by the number of processors. The number of grid points
in the streamwise direction is usually larger than that in the spanwise direction.
If the streamwise direction is chosen to be the direction to parallelise over, it is
possible to use more processors, however again limited by the number of modes
in x. In addition, there might be a local load-levelling when treating the y
and z directions with much less collocation points. Therefore, in order to fully
exploit massively parallel computer systems with large amounts of processors
and without being limited by the number of grid points in either the x or z
direction, parallelising in both the x and z directions, i.e. a 2D parallelisation
operating on a number of pencils, becomes a natural choice.

Hence the whole field (velocity, pressure or scalar) is distributed in both x
and z direction among the different processors. A sketch of the data distribution
is shown in Figure 5.

The main structure of the code for the 2D parallelisation is shown in Fig-
ure 6. It looks quite similar to the structure of the 1D parallelisation given in
Figure 1. As seen from Figure 6, in order to get the data from the main storage
onto part of the planes, subroutines getpxz_z in nonlinbl and getpxy in lin-

earbl have to be called. The corresponding subroutines for putting data back
to the main storage after calculations are putpxz_z for nonlinbl and putpxy

for linearbl. In a similar way as for the 1D parallelisation, FFTs in both
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Figure 5. Initial data distribution among all the processors.
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nonlinbl

linearbl

getpxy

putpxyz
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it=it+1

Main Storage

getpxz_x getpxz_z

putpxz_x putpxz_z

Figure 6. The main structure of the code for the 2D paral-
lelisation. Note that there exist FFTs between calls to the sub-
routines getpxz_z and getpxz_x and inverse FFTs between
calls to putpxz_z and putpxz_x.

directions in each xz-plane have to be performed by each processor. However,
due to the data distribution on each xz-plane now, only the 1D FFT in the
spanwise direction is possible to do without further communication. Thus in
order to perform the 1D FFT in the streamwise direction, another global data
communication has to be performed. This is done by calling the subroutine
getpxz_x. The corresponding subroutine for putting data back to the tempo-
rary storage is putpxz_x. The details about both global data communications
will be explained in later sections. Note that the global communication will
inherently not scale linearly with the number of processors that are involved
in the communication. This will pose a challenge for using large number of
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processors. Again, most of the total communication of the code is in nonlinbl

and the main computational effort is the FFTs.

Due to the 2D parallelisation, none of the processors has full access to the
data of any whole xz-plane. When carrying out the communication and calcu-
lations, the processors are divided into different groups. These groups are dif-
ferent from the default MPI communication group, MPI COMM WORLD,
which contains all the processors. At each time, only a certain fraction of the
total number of the processors will be involved in each group to do the com-
munication in each plane and different groups take care of the different planes.
In this way all the processors then run in parallel. Again, similar to the 1D
parallelisation, the subroutines getpxz_z, getpxz_x, putpxz_z and putpxz_x

in nonlinbl are called by all the processors at the same time and nprocz con-
secutive wall-parallel planes are treated in each y-loop. Remember that in the
1D parallelisation, the subroutines getpxy and putpxy in linearbl are called
by all the processors at the same time and nproc wall-parallel planes are treated
simultaneously.

A short description of how the data is transferred in nonlinbl is given
now. As depicted in Figure 5, initially the field is equally distributed among all
the processors, here 16 processors are used as an example. nproc, nprocx and
nprocz represent the number of the total processors, the processors in the x and
z direction, respectively. Thus in this case nproc = 16 and nprocx = nprocz =
4. Note that with the present implementation of the 2D parallelisation, it is
required that the number of processors should be equally distributed along both
the x and z directions, i.e. nprocx = nprocz =

√
nproc. The size of the domain

is nx
2 in x-direction, nz in z-direction and nyp in y-direction where nx, nyp and

nz are the same as defined in the 1D parallelisation. Note that the size of the
domain in the x-direction is nx

2 rather than nx which is due to the fact that the
real and imaginary parts of the complex numbers are stored in separate arrays.
The amount of data stored on each processor is memnx × memny × memnz
where memnx = nx

2nprocx , memny = (int( nyp
nprocz ) + 1) × nprocz and memnz =

nz
nprocz .

For the 2D parallelisation, the global communication is implemented only
using the standard collective MPI command MPI ALLTOALL, so memny
needs to be (int( nyp

nprocz ) + 1)× nprocz. To make the transfer of data more effi-

cient, user-defined data type rather than the default ones provided by the MPI
library have to be used. The data types used in the subroutines getpxz_z and
putpxz_z are realg1 and realg2. realg1 has memnz blocks, memnx elements
in each block and memnx×memny elements between the start of each block.
As detailed previously, an upper-bound (MPI UB) of memnx has to be added
to the data type realg1. The data type realg2 has memnz blocks, memnx el-
ements in each block and memnx elements between the start of each block.
Note that no explicit upper-bound element is needed here. In the subroutines
getpxz_x and putpxz_x, the data types used are realg3 and realg4. The data



52 Q. Li, P. Schlatter & D. S. Henningson

type realg3 has nzp
nprocz blocks, memnx elements in each block and memnx ele-

ments between the start of each block while realg4 has nzp
nprocz blocks, memnx

elements in each block and (nxp
2 + 1) elements between the beginning of each

block, again a upper-bound of size memnx has to be used for realg4. Similar
to the 1D parallelisation, realg1 and realg2 have the exact same size and repre-
sent the data types before and after the transpose. This is also true for realg3
and realg4. nxp and nzp are related to the dealiasing and will be defined later.

Before calculating the nonlinear terms, the FFTs in both x and z direction
have to be performed as mentioned before. Due to the data storage after
getpxz_z, the FFTs can be performed in only z-direction. Thus it is necessary
to transfer the data among different processors once more such that every
processor can perform the FFTs in the x-direction.
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Figure 7. The configuration of the groups for the first transpose.
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Figure 8. The data distribution after getpxz_z.
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First, the processors are separated into nprocx groups and each group
contains nprocz processors. The creation of groups is shown in Figure 7. Then
the standard MPI command MPI ALLTOALL is used to transpose the data
within each group. This is done by calling the subroutine getpxz_z. The data
storage configuration after the transpose is shown in Figure 8. For convenience
only the first consecutive nprocz planes in the wall-normal direction are plotted.
The layout of the other wall-parallel planes is just a repetition of the first
nprocz planes. The creation of groups and the data storage for the second
global data transpose are shown in Figures 9 and 10 and will be discussed later.
Now, aliasing errors which are caused by representing higher wavenumber data
at lower wavenumbers have to be considered. A detailed description can be
found in e.g. Canuto et al. (1988). In order to eliminate the aliasing errors,
the standard 3/2-rule is employed which means to expand the original grid
and pad high-wavenumber part with zeros. The original grid, as shown in
Figure 11 (a), is therefore expanded to a finer grid which has a dimension
of nx

2 in the x-direction and nzp in the z-direction where nzp = 3
2nz, see

Figure 11 (b). If nzp is not divisible by nprocz, the dealiasing grid needs to be
( nzp

nprocz + min(1, mod(nzp, nprocz)))× nprocz, where the operation “min” is to

take the minimum and “mod” is the modulo operation. Then part of the data
denoted by the “slashed area” is moved to the upper part of the fine grid and
the middle part is padded with zeros denoted by the ©. The so-called“oddball
mode” is also set to zero which is denoted by the grided lines, in Figure 11.
For more details about the oddball mode, refer to Chevalier et al. (2007). At
the end of this step, each processor can perform the backward FFTs in the
z-direction on the fine grid.
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Figure 9. The configuration of the groups for the second transpose.
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Figure 10. The data distribution after getpxz_x.

In a second step, nprocz new groups are created and each group contains
nprocx processors. This is to prepare for the FFTs in the x-direction to be
performed. The newly created groups are sketched in Figure 9. Then another
transpose of the data in each group can be executed. This second data transpose
is done by calling subroutine getpxz_x. After the data transpose, the data
storage configuration on each processor is shown in Figure 10. The grid is
expanded in the x-direction this time in order to account for the 3/2-rule and
the dimension of the dealiasing grid is nxp

2 + 1 in the x-direction where nxp =
3
2nx. In the spanwise direction, nzp are continued to be used. This grid is
shown in Figure 11 (c). The additional grid point in streamwise direction is
due to requirement of the FFT. For a complex to real FFT, two more points,
i.e. two zeros for the imaginary parts, are added. One is for the zero frequency
component and the other for the Nyquist frequency component. Since the real
and imaginary parts are stored separately, this leads to the additional point
in the x-direction. The right-hand part is padded with zeros and the oddball
mode is also set to zero. Last, the FFTs in the x-direction on each processor are
performed. After the FFTs, all the data is in physical space and the nonlinear
terms can be calculated. Afterwards, all the data has to be transformed back
to the spectral space to match the configuration shown in Figure 5. This will
be exactly a reverse process of the steps mentioned above.

In the subroutine linearbl, the data is put onto xy-planes by calling the
subroutine getpxy. As shown in Figure 12, each processor only calculates a
portion of one xy-plane at each time, therefore the computation is carried out
in parallel and there is no communication involved between any two processors
as the same for 1D parallelisation. After the calculation, the data is put back
to the main memory through subroutine putpxy, again without requiring any
MPI communication.
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Figure 11. The dealiasing grid and the oddball location in a
xz-plane. (a) Grid before dealiasing, (b) Grid after dealiasing
in z, (c) Grid after dealiasing in z and x.

2.3. Amount of communication

2.3.1. 1D parallelisation

The main communication between the processors is in the nonlinear part, i.e.
subroutine nonlinbl. Consider in the following only the velocity field, i.e. with-
out pressure nor scalar fields. Then for each call to nonlinbl, five variables
(three velocity components and two components of the vorticity) are collected
from the main memory by calling subroutine getpxz and three variables (three
vorticity components) are put back to the main memory via the subroutine
putpxz for the 1D parallelisation. Thus a total of eight variables have to be
communicated which is independent of the implementation of the global com-
munication. Here only the version of collective communication using standard
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Figure 12. The data distribution in linearbl.

command MPI ALLTOALL is discussed. For the hand-written version based
on explicit point-to-point communication, more details can be found in Alvelius
& Skote (2000). However, the amount of data to be communicated is roughly
the same.

Each processor performs calculation on approximately (int( nyp
nproc) + 1) xz-

planes. The data types of the message are the user-defined data types, i.e.
realg1 and realg2. Both of them have a size of memnx×memnz or nx

2 × nz
nproc .

The number of messages that one processor collects is

2 × (nproc − 1) × (int(
nyp

nproc
) + 1) . (1)

Note that each processor collects data from all the other processors and both
the real and imaginary part gives a factor of 2 for the total number of messages
which has to be communicated. This gives that for one flow variable each
processor needs to collect

(nproc − 1) × (int(
nyp

nproc
) + 1) × nx × nz

nproc
(2)

real numbers from all the processors at each Runge-Kutta substep. Since each
number has double precision, i.e. 8 bytes for each real number, the total amount
of data that needs to be communicated for a single processor for all 8 variables
and one iteration (Runge-Kutta substep) is

8 × 8 × (nproc − 1) × (int(
nyp

nproc
) + 1) × nx × nz

nproc
(3)

bytes. The amount of data that each processor has to send at the same time
is as large as the amount that has to be received.
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2.3.2. 2D parallelisation

For the 2D parallelisation, the situation is slightly different than that for the
1D case. As explained earlier, the data has to be transposed twice in order
to perform the FFTs. For each call to nonlinbl, five variables (three velocity
components and two vorticity components) are collected from the main mem-
ory with getpxz_z and later three variables (the evaluated non-linear terms)
are put back to the main memory with putpxz_z within nonlinbl. Six vari-
ables (three velocity and three right-hand side components) are collected from
the temporary storage via getpxz_x and only three variables (three vorticity
components) are put back with putpxz_x to the temporary storage. In the 2D
case, each processor performs calculations on approximately (int( nyp

nprocz ) + 1)

xz-planes. The data types used for the message are realg1 and realg2 in get-

pxz_z and putpxz_z while realg3 and realg4 in getpxz_x and putpxz_x. Both
realg1 and realg2 have a size of nx

2nprocx × nz
nprocz and the size of realg3 and

realg4 is nx
2nprocx × nzp

nprocz . Following the same steps as for the 1D parallelisa-

tion, the number of messages needs to be communicated for the first and the
second transpose are

2 × (nprocz − 1) × (int(
nyp

nprocz
) + 1) (4)

and

2 × (nprocx − 1) × (int(
nyp

nprocz
) + 1) (5)

respectively. The total amount of data which has to be collected for one pro-
cessor for each Runge-Kutta substep and all 17 variables is

8 × (nprocz − 1) × (int(
nyp

nprocz
) + 1) × (8 × nx

nprocx
× nz

nprocz
) +

8 × (nprocx − 1) × (int(
nyp

nprocz
) + 1) × (9 × nx

nprocx
× nzp

nprocz
) (6)

bytes. Again the same amount of data has to be sent by each processor at the
same time.

2.3.3. Communication comparison

In this section, the total amount of messages sent by each processor (including
the messages it sends to itself) at each Runge-Kutta substep are compared for
both 1D and 2D parallelisations with a fixed size for nx, nyp and nz. The
results are plotted in Figure 13. For a fixed resolution, it is clear that the 2D
parallelisation does involve more communication than the 1D parallelisation.
Nevertheless, the overall performance of the 2D parallelisation is better. The
main reason is that the processors are divided into groups and each processor
only communicates within its own group and not globally. All the groups run
in parallel and the influences due to the congestions from the one group to the
other are small. Therefore, the total performance is better for the 2D paralleli-
sation. The ratio between the messages sent by the 1D and 2D parallelisation is
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also plotted in Figure 13. As the number of processors increases, the ratio de-
creases slowly for small number of processors. However, for a typical simulation
case, this ratio is always larger than unity.
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Figure 13. A comparison of the total amount of communica-
tion for the 1D and 2D parallelisation for a size of 2048×2049×
2048. Left: Messages that being sent for the two parallelisa-
tions, 1D parallelisation, 2D parallelisation, Right:
The ratio of the messages being sent for the two parallelisa-
tions.

3. Performance analysis

For the parallel computing, the maximum speed-up of a code can be obtained
is

speed-up =
1

F + (1 − F )/N
(7)

where F is the fraction of a calculation that is sequential, i.e. the part that
cannot benefit from parallelisation, and thus (1−F ) is the fraction that can be
parallelised where N is the number of processors used for the calculation. This
is usually referred as the Amdahl’s law (Amdahl 1967). Ideally, if the whole
code can run in parallel, a maximum of speed-up of N can be obtained, i.e. the
so-called linear speed-up. However, a real application code always has some
part which cannot be parallelised in practice. This will lead to a maximum
speed-up by 1

F for large N . Therefore, a lot of effort is devoted to reducing F
to a value as small as possible. Additionally, even the parallelisible parts of a
code will usually not scale linearly, but rather at a reduced rate.

A benchmark for the parallelisation of SIMSON has been performed on
a BlueGene/L machine manufactured by IBM. The building block of the Blue-
Gene/L system is the compute card consisting of 1 node. On each node there
are two processors (cores) with up to 1024 Mbytes of memory. Each processor
is an embedded 32-bit PowerPC 440 with a clock frequency of 700 MHz. The
system-on-chip design contains three interconnections: Gbit Ethernet, global
tree (collective communication) and 3D Torus. Two execution modes are avail-
able for each node. One is the co-processor mode (CO), i.e. only one MPI
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process per node with maximum 1024 Mbytes of memory per process. In this
mode, one processor is dedicated to communication and the other to general
processing. The other mode is the virtual-node mode (VN), i.e. two MPI pro-
cesses per node with maximum 512 Mbytes of memory per process. In this
case, each processors uses half of the resources and works as an independent
processor. A detailed description about the BlueGene/L machine can be found
in the online manual (Mullen-Schultz & Sosa 2007).

3.1. Performance of the MPI ALLTOALL

As the main communication pattern for the communication in the present
code and also one of the most important collective communication used
in scientific computing, it is necessary and crucial to understand how the
MPI ALLTOALL collective operation performs. Therefore, a performance
test has been carried out and a performance model for MPI ALLTOALL is
developed.

During an MPI ALLTOALL operation, each process holds m × n data,
where n is the number of processes involved in the communication and m is the
message size (measured in bytes) sent to or received from one other process.
Following the linear point-to-point model, the communication time spent on
one process is

T = (n − 1) × (α + m × β−1) (8)

where α is the start-up time, i.e. the latency between two processes, and β
is the bandwidth of the link. Unfortunately, this model does not work so well
when intensive communication happens as pointed out by Steffenel et al. (2007).
Thus, network contention-aware communication models are suggested. How-
ever, due to the non-deterministic behaviour of the network contention, some
authors suggested a few techniques to adapt the existing models, e.g. Clement
et al. (1996) introduced the contention factor to correct the performance model.
Bruck et al. (1997) came up with the similar ideas to use the slowdown factor.
Recently, Steffenel et al. (2007) proposed a new model consisting of determin-
ing a contention ratio. For simplicity, the contention ratio is considered to be a
constant and only depends on the network characteristics. Following the model
by Steffenel et al. (2007), the performance model which is an extension of the
linear point-to-point model reads

T = (n − 1) × (α + γ × m × β−1) (9)

where γ is the contention ratio. If N is chosen to represent the total message
that has to be sent by all the processes, m would be N

n2 . Then the equation (9)
will read

T = (n − 1) × (α + γ × N

n2
× β−1) . (10)

Using this performance model of MPI ALLTOALL, a series of tests has
been run on a BlueGene/L machine using both VN and CO mode. The total
amount of the message to be sent is fixed, i.e. N = 3072 × 3072, with the
number of cores involved in the communication varying from 2 to 1024.
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Figure 14. Performance of the MPI ALLTOALL for VN
and CO mode. ◦ Measurements, � Model prediction. Left:
VN mode with α = 3 [µs], β = 300 [Mbytes/s] and γ = 4.29,
Right: CO mode with α = 3 [µs], β = 300 [Mbytes/s] and γ
= 2.14.

The results of the execution time spent on one core are shown in Figure
14. As seen from the figure, the model predictions compare well with the
measurements for number of cores larger than 4. The discrepancies for the
measurements at low number of cores are partially due to the not fully con-
tentioned network and also due to the non-linear affects when the messages sent
by each process is sufficiently large. The latency α for both cases are on the or-
der of 1 µs which is consistent with the theoretical value from the BlueGene/L
manual. On the other hand, the bandwidth used for both cases are obtained
from measurement of a point-to-point communication. The contention ratio
for the CO mode is about twice as for the VN mode. The reason is due to the
fact that for the VN mode case, both processors (cores) share one link (bus,
port) within each node which leads to twice the contention ratio for each core.

3.2. Code performance

Two cases of different sizes are tested for both 1D and 2D parallelisations. The
smaller case has the resolution of 1024× 129× 128 (run1) while the resolution
of the larger one is 512× 513× 512 (run2). Only the velocity field, i.e. without
pressure and scalar fields, is simulated for periodic channel flow, and the code
has been run in virtual-node mode (VN). As mentioned before, most of the
execution time is spent in the linear and nonlinear parts, i.e. in the subroutines
linearbl and nonlinbl, and the main computational effort is the FFTs in
nonlinbl. The speed-up plots shown later are thus only based on the execution
times from these two subroutines. The execution time per time step, i.e. four
Runge-Kutta substeps, is chosen to calculate the speed-up.

In Figure 15 the two parallelisations are compared for the smaller case
(run1). Due to the requirement of the 2D parallelisation, i.e. that the processors
need to be equally distributed along both wall-parallel directions, the first data
point corresponds to 2 nodes or 4 processors. Clearly seen from the figure, the
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Figure 15. Performance of the two parallelisations for the
Run1 (run1). Linear speed-up, � linearbl, ◦ nonlinbl.
Left: 1D parallelisation, Right: 2D parallelisation.

linear part has a linear behaviour, even a slightly super-linear behaviour for
the 2D parallelisation. However, the speed-up curves of the nonlinear part for
both parallelisations deviate from the linear speed-up curve further and further
as more and more processors are used.
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Figure 16. Performance of the two parallelisations for the
Run2 (run2). Linear speed-up, � linearbl, ◦ nonlinbl.
Left: 1D parallelisation, Right: 2D parallelisation.

In Figure 16 the larger test case (run2) is shown for the two parallelisations.
Note that due to the larger memory requirements, a minimum number of nodes
of 16 has to be used for the 1D parallelisation and 32 for the 2D parallelisa-
tion. Similarly to the smaller case, the linear parts of both parallelisations still
have linear performance. But for the nonlinear parts, a clear difference can be
observed for the two parallelisations. As seen from the plots, the 1D paralleli-
sation shows a similar behaviour as for the smaller case reaching a saturation
of the performance at 256 node, and the 2D parallelisation has almost linear
performance up to 512 nodes.

As known from the previous section, in the nonlinear part, i.e. subrou-
tine nonlinbl, the speed-up curve will inherently not scale linearly with the
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number of processors used since a global data transpose has to be performed.
However, there is another important fact which leads to this suboptimal be-
haviour, i.e. the particular number of discretization points in the wall-normal
direction. Since a Chebyshev representation in the wall-normal direction is
used, the number of grid points in the y-direction is not divisible by the num-
ber of processors, i.e. nyp

nproc for the 1D parallelisation or nyp
nprocz for the 2D

parallelisation is not an integer number. Therefore, for the last y-loop outside
the subroutine nonlinbl, not all the processors are active. The last instance of
the loop is not completely parallelised. If nproc or nprocz is of the same order
of magnitude as nyp, this will have very large effect on the performance. This is
what are observed from the 1D parallelisation. If nproc or nprocz is relatively
small compared to nyp, the effect form this last y-loop is much smaller. This
is clearly demonstrated by the 2D parallelisation. In general, for the 2D par-
allelisation, since nprocz is only the square root of nproc, the effect of the last
y-loop should be smaller than the 1D parallelisation. However, if increasing the
number of processors for the 2D parallelisation even more, the same problem
will appear eventually.

To investigate the behaviour of subroutine nonlinbl in more detail, the
total execution time of nonlinbl is split into two parts: one part only involves
communication (tcom), the other part is the computation (tser), e.g. the FFTs.
Hence the relation tnonlinbl = tcom + tser is obtained. Note that these times
correspond to the wall-clock time on one processor, and that all processors are
synchronised using appropriate barriers.

In Figure 17, the time for communication and computation in subroutine
nonlinbl are compared for both parallelisations. As expected, for both paral-
lelisations the speed-up curves for the communication part do have suboptimal
behaviours, i.e. not scaling linearly. It is clear by comparing the computational
part for the two parallelisations that the effect of the last y-loop has a smaller
effect for the 2D parallelisation. Remember that the main computational effort
is the FFTs which indicates that the time spent by the computation should
be larger than that by the communication and this is also observable from the
plots for the 1D parallelisation. Note that since 1

time is plotted, the lower the
data point the large the execution time is. As the number of processors is
increased, more and more communication will happen which means that tcom

will take a larger and larger portion of the total time spent in nonlinbl. For
the 2D parallelisation, there is even more communication happening, so the
growth of tcom is even faster. As seen from the plots, tcom can become larger
than tser even at small number of processors, e.g. 32 nodes (64 cores).

A summary of the execution time (measured in wall-clock time [s]) of one
time step on one processor for both the small and the large runs is shown in
Tables 3.2–3.2. Note that the numbers in the bracket are the corresponding
percentage of the total execution time (tsum).
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Figure 17. Performance of tcom and tser in nonlinbl.
Linear speed-up, � tcom, ◦ tser . Top: Run1, Bottom:

Run2. Left: 1D parallelisation, Right: 2D parallelisation.

linearbl nonlinbl

nproc tlinearbl tser tcom tnonlinbl tsum

1 147.5 (42.3%) 186.0 (53.4%) 15.0 (4.3%) 201.1 (57.7%) 348.6
2 87.0 (39.5%) 117.6 (53.4%) 15.8 (7.2%) 133.3 (60.5%) 220.4
4 43.2 (36.5%) 59.2 (50.0%) 15.9 (13.5%) 75.1 (63.5%) 118.3
8 21.7 (33.8%) 30.4 (47.4%) 12.0 (18.7%) 42.5 (66.1%) 64.2
16 10.9 (32.3%) 16.0 (47.7%) 6.7 (19.8%) 22.7 (67.5%) 33.7
32 5.5 (30.4%) 8.8 (48.1%) 3.9 (21.5%) 12.7 (69.6%) 18.3
64 2.8 (27.4%) 5.2 (51.1%) 2.2 (21.4%) 7.4 (72.5%) 10.2
128 1.4 (20.9%) 3.4 (50.0%) 2.0 (28.9%) 5.3 (78.9%) 6.8

Table 2. Execution time of the Run1 using the 1D parallelisation.

3.3. Modelling

To eliminate the effect of last y-loop on the performance, a factor k is multiplied
with each sampled data from nonlinbl. This correction is just to help to
develop the model of the whole performance of the code. Since the effect for
the 2D parallelisation is much smaller than that for the 1D parallelisation, this
correction is only done for the 1D parallelisation. The correction factor k is a
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linearbl nonlinbl

nproc tlinearbl tser tcom tnonlinbl tsum

4 40.9 (36.2%) 53.8 (47.7%) 18.1 (16.0%) 71.9 (63.7%) 112.8
16 9.6 (29.9%) 12.8 (40.0%) 9.6 (29.8%) 22.4 (69.8%) 32.1
64 2.4 (26.3%) 3.0 (33.9%) 3.5 (38.5%) 6.6 (73.6%) 9.0
256 0.5 (18.6%) 0.8 (26.9%) 1.6 (53.7%) 2.4 (80.9%) 2.9
1024 0.1 (12.5%) 0.2 (20.0%) 0.7 (60.4%) 0.9 (80.5%) 1.1

Table 3. Execution time of the Run1 using the 2D parallelisation.

linearbl nonlinbl

nproc tlinearbl tser tcom tnonlinbl tsum

32 48.1 (34.5%) 60.3 (43.2%) 30.1 (22.2%) 91.2 (65.5%) 139.4
64 24.1 (33.6%) 31.8 (44.4%) 15.7 (21.9%) 47.6 (66.3%) 71.8
128 12.2 (28.8%) 17.6 (41.5%) 12.5 (29.5%) 30.1 (71.1%) 42.3
256 6.1 (25.3%) 10.4 (42.8%) 7.7 (31.5%) 18.1 (74.3%) 24.3
1024 3.1 (18.6%) 6.8 (40.8%) 6.7 (40.3%) 13.6 (81.1%) 16.7

Table 4. Execution time of the Run2 using the 1D parallelisation.

linearbl nonlinbl

nproc tlinearbl tser tcom tnonlinbl tsum

64 20.9 (29.4%) 23.5 (33.0%) 26.7 (37.5%) 50.2 (70.5%) 71.3
256 5.6 (26.0%) 5.3 (24.6%) 10.6 (49.2%) 16.0 (73.9%) 21.7
1024 1.5 (27.1%) 1.4 (23.8%) 2.7 (46.9%) 4.0 (70.7%) 5.7

Table 5. Execution time of the Run2 using the 2D parallelisation.

function of the number of processors and is defined as

k =
nyp

(int( nyp
nproc ) + 1) × nproc

. (11)

After the correction, the total time spent in subroutines linearbl and non-

linbl are shown in Figure 18 and the communication and computation parts
within nonlinbl are shown in Figure 19, respectively. Except the communica-
tion part, all the other parts, i.e. linearbl and the computation part within
nonlinbl, have linear speed-up performance. And this is also true for the 2D
parallelisation, however without requiring a correction for the last y-loop.

In order to roughly estimate the performance on BlueGene/L without run-
ning a simulation, a performance model has been developed for the code of
both 1D and 2D parallelisations. Known from the previous section that after
eliminating the effects from the last y-loop, only the communication part does
not have a linear speed-up behaviour. Therefore this part needs to be modelled.
In the model, only the latency, bandwidth and contention ratio are considered
to be the most important factors and all the other influences are neglected,
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Figure 18. Performance of the 1D parallelisation after cor-
rection for the 1D parallelisation. Linear speed-up, �

linearbl, ◦ nonlinbl. Left: Run1, Right: Run2.

Nodes (2 processors per node)

1 
/ t

im
e

10
0

10
1

10
2

10
−2

10
−1

10
0

Nodes (2 processors per node)

1 
/ t

im
e

10
0

10
1

10
2

10
−2

10
−1

10
0

Figure 19. Performance of tcom and tser in nonlinbl after
correction for the 1D parallelisation. Linear speed-up, �

tcom, ◦ tser. Left: Run1, Right: Run2.

e.g. the topology of the system, the distance between the two communicating
processors, etc.

For the MPI ALLTOALL version of the 1D parallelisation, the model
of the execution time of communication tcom for one Runge-Kutta substep
and one variable can be built up as the following steps: First, each processor
performs calculation on approximately (int( nyp

nproc) + 1) xz-planes. Second, for

each xz-plane each processor needs to collect

2 × (nproc − 1) × nx
2 × nz

nproc

messages (real numbers) from all the other processors for one variable and
Runge-Kutta substep. The associated count for latency of one processor for
collecting all these data is

2 × (nproc − 1)

times. Note that the factor of 2 is from the real and imaginary part of the
data needs to be collected. The execution time of communication tcom of one
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processor for one time step, i.e. 4 Runge-Kutta substeps, and all the 8 variables
is approximately given by

tcom = 4×8×2×(int(
nyp

nproc
)+1) ·(nproc−1) ·(α+8 ·γ ·nx

2
· nz

nproc
·β−1) (12)

where α is the latency [s], β is the bandwidth [bytes/s] and γ is the contention
ratio. The number of messages has been multiplied by a factor of 8 to convert
to bytes, since double precision is used, i.e. 8 bytes for each real number. The
corresponding model for the hand-written version of the 1D parallelisation is
also given here as,

tcom = 4 × 8 × 2 × nyp

nproc
· (nproc − 1) · (α + 8 · γ · nx

2
· nz

nproc
· β−1) . (13)

There is only very little difference when comparing these two models given by
equations (12) and (13). Following the same steps, a model of the execution
time of the communication tcom for the 2D parallelisation can be developed.
For one time step and all variables, the execution time of communication tcom

is approximately given by

tcom = 4 × 17 × 2 × (int(
nyp

nprocz
) + 1) · (nprocz − 1) · (α + 8 · γ

·( 8

17
· nx

2 · nprocx
· nz

nprocz
+

9

17
· nx

2 · nprocx
· nzp

nprocz
) · β−1) . (14)

Once having the model for the communication part, the model for the total
execution time can easily be developed since all the other parts have a linear
behaviour after some correction. As already mentioned before, the sum of the
execution time from subroutines linearbl and nonlinbl is used to represent
the total time for the code. Hence the total execution time (t1D

total) for the 1D
parallelisation can be expressed as

t1D
total = tlinearbl + tnonlinbl = tlinearbl + tcom + tser

and tlinearbl, tser , tcom are calculated as

tlinearbl = t1linearbl ·
nproc1

nproc

tser =
t1ser

k
· nproc1

nproc

tcom =
t∗com

k
where all the terms with a superscript 1 are the first available measurement
data from a simulation, because it is not always possible to get the data from a
serial version of the code, e.g. due to memory requirements. k is the correction
factor defined in equation (11) and t∗com is the value calculated from equation
(12) or (13) depending on which version of the global communication is used.
The total execution time (t2D

total) for the 2D parallelisation can be expressed in
a similar way as

t2D
total = tlinearbl + tnonlinbl = tlinearbl + tcom + tser
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and tlinearbl, tser , tcom are given as

tlinearbl = t1linearbl ·
nproc1

nproc

tser = t1ser ·
nproc1

nproc

tcom = t∗com

where again all the terms with a superscript 1 are the first available measure-
ment data from a simulation. t∗com is the value calculated from equation (14).
Remember that the correction for the last y-loop in case of the 2D parallelisa-
tion is not applied, so there is no correction factor in the model.

3.4. Comparison to the measurements

The predicted total execution time as well as the one from the simulation
measurements for one time step of both parallelisations are shown in Figures
20 and 21. In general, both models predict the behaviours of the code for all
the cases very well.
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Figure 20. Model prediction versus the measurements for
the 1D parallelisation. � Model prediction, ◦ Measurements.
Left: Run1 with α = 40 [µs], β = 300 [Mbytes/s] and γ =
4.29, Right: Run2 with α = 80 [µs], β = 300 [Mbytes/s] and
γ = 4.29.

Note that the values of the bandwidth used in the model is obtained from
a point-to-point communication test and is 300 [Mbytes/s]. The theoretical
value given by the specification of the BlueGene/L machine for global tree in-
terconnection (used for the collective communication) is about 350 [Mbytes/s].
The latency used in the model is much larger than the theoretical value which
is usually less than 10 µs, this might be due to the models themselves which
do not capture some non-linear effects. However, as long as large messages are
sent, the influence of the latency is always small enough to be neglected.
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Figure 21. Model prediction versus the measurements for
the 2D parallelisation. � Model prediction, ◦ Measurements.
Left: Run1 with α = 30 [µs], β = 300 [Mbytes/s] and γ =
4.29, Right: Run2 with α = 30 [µs], β = 300 [Mbytes/s] and
γ = 4.29.
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Figure 22. Model prediction of the Run2 (run2) for the 2D
parallelisation. Linear speed-up, ◦ Model prediction with
α = 5 [µs], β = 300 [Mbytes/s] and γ = 4.29.

3.5. Limiting behaviour

The model for the 2D parallelisation is used to predict the limiting performance
for large processor counts and the plot is shown in Figure 22. If a large number
of processors is used, the message size becomes comparably small. The influence
of the latency is then much more important. Therefore, in the model, the
value for the latency is chosen from the machine specifications. As mentioned
before, the effect from the last y-loop will become significant once the number
of processors is large enough. This is clearly seen in the figure. The predicted
maximum speed-up is about 1000 (on 2048 nodes), 2000 (on 8192 nodes) and
2000 (on 32768 nodes). In practice, 8192 nodes might be the upper limit.
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4. Conclusions

An efficient pseudo-spectral code (SIMSON) for solving the incompressible
Navier–Stokes equations in channel and boundary-layer geometry has been de-
veloped during the last years at KTH Mechanics with the parallelisation only in
the spanwise direction. Due to the limitation of this parallelisation approach,
the total number of processors that can be used is at most the number of
spanwise grid points, i.e. on the order of 256. This is definitely not suitable
for the massively parallel super-computers which are getting more and more
common at computer centres. Therefore, a 2D parallelisation has been imple-
mented. This gives us the possibility to run simulations with more than 1000
cores (processors).

By looking into the details of the performance pertaining to different parts
of the code, the suboptimal performance is due to the fact that for the last
y-loop the code is not fully parallelised, i.e. some processors are idling. This
problem cannot be eliminated completely due to the algorithm used now, but
the effect of the problem can be reduced to some extent. Nevertheless, the
code scales efficiently with the number of processors and therefore a high per-
formance can be achieved. For the 2D parallelisation, the total amount of
communication is larger than that in the 1D case, but due to parallel disjunct
groups among processors, the overall performance is even better. For a large
test case, a speed-up of about 130 (on 256 nodes) and 400 (on 512 nodes) for
the 1D and 2D parallelisation respectively can be obtained.

Associated performance models for both parallelisations are developed and
they predict the behaviours of the code reasonably well. The only part which
needs modelling is the communication part, all the other parts have inher-
ent linear behaviour after some simple modification. Benchmarks have been
performed on a BlueGene/L machine with up to 1024 nodes.
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Turbulent Boundary Layers up to Reθ = 2500

studied through simulation and experiment
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Direct numerical simulations (DNS) and experiments of a spatially developing
zero-pressure-gradient turbulent boundary layer are presented up to Reynolds
number Reθ = 2500, based on momentum thickness θ and free-stream velocity.
For the first time direct comparisons of DNS and experiments of turbulent
boundary layers at the same (computationally high and experimentally low)
Reθ are given, showing excellent agreement in skin friction, mean velocity and
turbulent fluctuations. These results allow for a substantial reduction of the
uncertainty of boundary-layer data, and cross-validate the numerical setup and
experimental technique. The additional insight into the flow provided by DNS
clearly shows large-scale turbulent structures, which scale in outer units growing
with Reθ, spanning the whole boundary-layer height.

The study and understanding of the turbulent flow close to solid walls is
a major topic in today’s research in fluid dynamics. Although in nature or
technical applications the surfaces are usually curved, possibly rough and the
mean flow is seldomly exactly two-dimensional, the spatially developing, zero-
pressure gradient turbulent boundary layer on a smooth, flat plate is an impor-
tant canonical flow case for theoretical, numerical as well as experimental stud-
ies. In recent years, particularly careful experiments have been conducted. For
instance, Österlund et al. Österlund et al. (2000) performed extensive measure-
ments of mean quantities in the MTL (minimum turbulence level) wind tunnel
at KTH Stockholm using hot-wire anemometry and oil-film interferometry for
Reynolds numbers Reθ (based on momentum thickness θ and free-stream ve-
locity U∞) ranging from 2530 to 27300, with five measurement positions below
Reθ = 6000. Recall that Reθ provides a measure of the streamwise position
under consideration.

Direct numerical simulation (DNS) of turbulent flows relies on numerically
resolving all relevant scales of motion. As the Reynolds number is getting larger
the scale separation between the large and smallest scales is increasing consider-
ably, limiting the Reynolds number attainable in DNS to low values compared
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to experiments. As opposed to turbulent channel Hoyas & Jiménez (2006) and
pipe flow Wu & Moin (2008), only few numerical results from direct numeri-
cal simulations (DNS) of turbulent boundary layers have been performed for
medium or high (computational) Reynolds numbers. The main reason is the
extreme cost of spatial DNS due to the long and consequently wide and high
domains required, and the loss of one homogeneous direction. Spalart’s simu-
lations Spalart (1988) using an innovative spatio-temporal approach provided
valuable data at Reθ = 300, 670, 1410, which have become a standard reference
for numerical boundary-layer data. Komminaho and Skote Komminaho and
Skote (2002) performed a spatial DNS up to Reθ = 700. The highest Reynolds
number reached in DNS to date is the data reported by Ferrante and Elghobashi
Ferrante & Elghobashi (2005) at Reθ = 2900, however obtained in a compa-
rably short computational domain in which the turbulence, in particular the
large-scale structures, may not be fully developed. Either the computational
approaches were too different to the experiments or the Reynolds numbers were
too low to make possible a robust comparison between all those simulations and
experiments.

For turbulent boundary layers, the Reynolds number Reθ ≈ 2500 has to
be considered at present high from a DNS point of view. On the other hand, a
high-quality boundary layer can be hard to establish and accurately measure
at such Reθ, since low Reynolds-number boundary-layer experiments need to
be carried out at low velocities and for small distances from the leading edge.
In the case of hot-wire measurements the need for accurate calibration at low
velocities is needed especially for the near-wall measurements, whereas the
choice of tripping may affect the onset of transition to turbulence. The latter
will affect the structure of the turbulence mainly in the outer part, leading to
influences in the turbulent statistics. Near the leading edge a pressure gradient
is unavoidable, but can be reduced to nearly zero by adjusting the geometry
of the set-up. Turbulent boundary-layer data available in the literature have
usually been taken in a range of Reθ by varying the free-stream velocity. The
pressure gradient has often been tuned for one specific case, since readjustment
of the pressure gradient is usually time-consuming and therefore not realized in
many experiments. This means that some of the data available in the literature
are not taken in the optimal configuration for the Reθ in question.

Due to the difficulty of both DNS and experiments at Reynolds numbers
Reθ on the order of a few thousand, there is a comparably large spread of
the existing data in the literature, both for integral, mean and fluctuating
turbulent quantities, see e.g. Ref. Honkan & Andreopoulos (1997). There is
thus a need for accurate and reliable DNS data of spatially developing turbulent
boundary layers with Reθ to be compared to high-quality experimental results.
To this end, the inflow in the numerical simulation should be positioned far
enough upstream, i.e. comparable to where natural transition occurs, to ensure
that the flow reaches a fully developed, undisturbed equilibrium state further
downstream.
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The present paper reports a combined experimental and numerical study
of zero-pressure-gradient turbulent boundary layers, aiming to provide a well-
validated data set pertaining to the dynamics of the mean and fluctuating
turbulent quantities as a function of the downstream distance. Both the exper-
iments and simulations are performed with well-established and reliable meth-
ods. In addition, by considering the same generic flow case both experimen-
tally and numerically, the sensitivity of the results to the respective method
limitations, e.g. surface roughness, tripping technique, pressure gradients and
boundary conditions etc., can be examined.

The simulations are performed using a fully spectral method to solve
the three-dimensional, time-dependent, incompressible Navier-Stokes equa-
tions Chevalier et al. (2007). In the wall-parallel directions, Fourier series
with dealiasing are used whereas the wall-normal direction is discretized with
Chebyshev polynomials. Time is advanced with a standard mixed Crank-
Nicolson/Runge-Kutta scheme. Periodic boundary conditions in the stream-
wise direction are combined with a spatially developing boundary layer by
adding a “fringe region”at the end of the domain. In this region, the outflowing
fluid is forced via a volume force to the laminar inflowing Blasius boundary-
layer profile, located at Reδ∗

0
= 450 based on the inflow displacement thickness

δ∗0 . A low-amplitude trip force acting in the wall-normal direction is used to
cause rapid laminar-turbulent transition shortly downstream of the inlet. The
chosen spectral method provides excellent accuracy and dispersion properties
as compared to low-order discretizations.

The computational domain is xL × yL × zL = 3000δ∗0 × 100δ∗0 × 120δ∗0 with
3072×301×256 spectral collocation points in the streamwise, wall-normal and
spanwise directions, respectively. The height and width of the computational
domain are chosen to be at least twice the largest boundary-layer thickness,
which reaches δ99 ≈ 45δ∗0 at Reθ = 2500. The grid points are non-equidistantly
distributed in the wall-normal direction, with at least 15 collocation points
within the region y+ < 10. The grid resolution in viscous units is then ∆x+ ×
∆y+

max × ∆z+ = 17.9 × 8.6 × 9.6. The streamwise and spanwise resolution is
about a factor 1.5 lower than in the channel-flow study by Hoyas and Jiménez
Hoyas & Jiménez (2006), however, to ensure adequacy of the chosen grid, we
also performed a resolution study based on the same box dimensions, but an
increased number of grid points as 4096× 385× 480 showing only insignificant
differences regarding the results. The statistics are sampled over ∆t+ ≈ 24, 000
viscous time units, or 30 in units of δ99/Uτ at Reθ = 2500. Owing to the high
computational cost of the simulations, the numerical code is fully parallelized
running on O(1000) processors.

The turbulent boundary-layer measurements were performed in the MTL
wind tunnel on a 7 m long flat plate at x=1.6 m from the leading edge, where
the ceiling of the tunnel was adjusted for each measurement run to obtain
zero-pressure-gradient conditions. The set-up is similar to that of Österlund
Österlund (1999). The free-stream velocity was 12.0 m/s and the streamwise
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velocity component was measured by means of hot-wire anemometry using a
single wire probe. The sensor length was 0.50 mm, corresponding to about 15
viscous length units. According to Ref. Johansson & Alfredsson (1983) this
is sufficiently small in order not to observe effects of spatial averaging on the
measured fluctuation levels in the near-wall region of wall-bounded flows. A
three-dimensional deterministic surface roughness in combination with sand-
paper was used to trip the boundary layer in order to obtain a fixed transition
point. The skin friction was measured directly and independent from the hot-
wire measurements using oil-film interferometry Rüedi et al. (2003).

The focus of the results presented here is on demonstrating averaged quan-
tities, i.e. mean velocities and pressure and the fluctuations around that mean
value. The considered case consists of a statistically two-dimensional boundary
layer evolving in x and y, statistically homogeneous in the spanwise direction
z and stationary in time t. The Reynolds decomposition

u = 〈u〉 + u′ = U + u′ (1)

is used, the brackets indicating the average in z and t. Based on the mean
velocity profile U(x, y) the shear stress at the wall is obtained as τw(x) =
µ(dU/dy)|y=0. Following the classical theory of turbulent boundary layers (see

e.g. Ref. Schlichting (1987)), the friction velocity Uτ ≡
√

τw/ρ provides the rel-
evant velocity scale throughout the boundary layer, whereas the viscous length
scale ℓ⋆ ≡ ν/Uτ is the characteristic length at least close to the wall. The scaled
quantities in wall scaling are thus written as, e.g., U+ = U/Uτ and y+ = y/ℓ⋆.

In both the simulation and the experiment, the initially laminar boundary
layer is tripped at approximately the same distance from the leading edge in
terms of Reθ. Further downstream of the tripping location, fully developed
turbulence is established in which the boundary layer reaches an equilibrium
state with the local production and dissipation of turbulent kinetic energy
balancing each other. In the simulations, the extent of the self-similar region
downstream of the tripping can be estimated by considering the von Kármán
integral equation relating the local skin friction to the growth of the momentum
thickness θ. Based on this argument, the useful region in the simulation may
be defined as ranging from Reθ = 550 to 2500, corresponding to 75% of the
total computational domain. The peak skin-friction Reynolds number Reτ =
Uτδ/ν with δ being the 99%-boundary-layer thickness is approximately 900 at
Reθ = 2500.

Characteristic mean quantities of the turbulent boundary layer up to
Reθ = 2500 are shown in Fig. 1. The skin friction is shown as the friction
velocity scaled by the free-stream velocity, i.e. Uτ/U∞ =

√
cf/2. Surprisingly,

the simple correlation cf = 0.024Re
(−1/4)
θ Kays and Crawford (1993) provides

an accurate fit to the DNS data for the range of Reynolds numbers considered.
The agreement with the new experimental measurement point at Reθ = 2500
is very good. Recall that, experimentally the skin friction is obtained using
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Figure 1. Skin friction Uτ/U∞ =
√

cf/2 and shape fac-
tor H12 as a function of Reθ. present DNS, • present
experimental measurements. ⋄ DNS by Spalart Spalart

(1988). cf = 0.024Re
(−1/4)
θ Kays and Crawford (1993),

correlation for H12 based on the composite profile sug-
gested by Monkewitz et al. Monkewitz et al. (2007).

the oil-film technique Rüedi et al. (2003) independently of the velocity mea-
surements. The shape factor H12 = δ∗/θ, i.e. the ratio of displacement to
momentum thickness, is also shown; this quantity provides a useful way of
characterizing the development state of the boundary layer. It turns out that
H12 is a sensitive indicator which might be used as a scalar estimate of the
quality of the boundary-layer data at a given Reθ. The agreement with both
the new measurements and the shape factor based on the composite velocity
profile developed by Monkewitz et al. Monkewitz et al. (2007) is again satis-
factory. Note that the coefficients in the composite profile have been calibrated
for experimental boundary layers at higher Reθ than the present one.

For comparison, the data points of the DNS by Spalart Spalart (1988) are
also shown in Fig. 1. The skin friction is overpredicted by approximately 5%
at the highest Reθ = 1410, whereas the shape factor is lower than the data
obtained from both the composite profile and the present DNS. This might be
a residual effect of the spatio-temporal approach employed for the simulation.

Profiles of the mean velocity scaled by viscous units U+(y+) obtained from
both the present DNS and experiments are shown in Fig. 2. The similarity
at the highest Reynolds number shown, Reθ = 2500, is excellent. However,
there is a discrepancy between the present simulation data and that of Spalart
at Reθ = 1410, probably due to a suspected lower actual Reθ in the latter
simulation. In the wake region and the free stream, Spalart’s results agree
better with the present data at Reθ = 1000. In the near-wall region, all data
collapse nicely on the linear relation U+ = y+ according to the asymptotic
expansion for the viscous sublayer. The von Kármán coefficient κ used to
indicate the logarithmic region (1/κ) log y+ + B is chosen as κ = 0.41 which
seems to best fit the data at this Reθ. Inspection of the log-law indicator
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Figure 2. Mean velocity profile U+ in viscous units for
present DNS at Reθ = 671, 1000, 1412, 2512, • present

measurements at Reθ = 2541. DNS by Spalart Spalart
(1988) at Reθ = 670, 1410. The profiles are shifted by U+ = 3
along the ordinate for increasing Reθ. The linear and logarith-
mic regions are indicated by a thin line, using 1/κ log y+ + B
with κ = 0.41 and B = 5.2.
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Figure 3. Turbulent fluctuations u+
rms, w+

rms, v+
rms and shear

stress 〈u′v′〉+ (from top). present DNS at Reθ = 2512,
• experiments at Reθ = 2541. Correlations based on the
attached-eddy hypothesis Marusic & Kunkel (2003); Kunkel &
Marusic (2006); Perry et al. (2002).

function Ξ = y+(dU+/dy+) shows that the current DNS velocity profile closely
follows the composite profile proposed in Ref. Monkewitz et al. (2007) up to
y+ = 100. For a boundary layer at Reθ = 2500, this wall-normal position can
approximately be considered as the beginning of the wake region, in which the
mean-flow gradient quickly rises to Ξ ≈ 5.2 at y+ ≈ 600. The minimum of Ξ is
reached at y+ ≈ 70 with a value of 1/Ξ ≈ 0.428 in good agreement with Ref.
Monkewitz et al. (2007).

The velocity fluctuations, e.g. urms =
√
〈u′u′〉, and the Reynolds shear

stress are depicted in Fig. 3 in wall scaling, and compared to the formulations



Turbulent Boundary Layers up to Reθ = 2500 79

Reθ

2∆
 z

+

500 1000 1500 2000 2500

10
2

10
3

Figure 4. Spanwise two-point correlation Rττ of the wall-
shear stress τw computed from the present DNS. The span-
wise axis is scaled by the displacement 2∆z+ in order to di-
rectly show the spanwise pattern spacing. corresponds
to 0.85δ99, corresponds to 120ℓ⋆. Shades range from dark
(Rττ ≤ −0.06) to light (Rττ ≥ 0.06) ; contour lines go from
-0.15 to 0.15 with spacing 0.02.

derived from the attached-eddy hypothesis by Marusic and Kunkel Marusic &
Kunkel (2003); Kunkel & Marusic (2006); Perry et al. (2002). The agreement
between DNS and the experimental data for the streamwise component is very
good throughout the boundary layer. Higher-order statistics (skewness and
flatness, not shown) of the streamwise fluctuations u′ also show good agree-
ment at all positions. Concerning the other velocity fluctuations and the shear
stresses, the predictions from the attached-eddy hypothesis describe the present
DNS data accurately.

As a side note, the pressure fluctuations close to the wall obtained from
DNS (not shown) seem to scale best with a mixed scaling, yielding pw,rms/(Uτ ·
U∞) ≈ 0.112. In pure inner scaling, a constant increase with Reθ is observed,
reaching p+

w,rms ≈ 2.74 at Reθ = 2500, which is approximately 10% higher
than for channel flow at a corresponding Reτ = Uτδ/ν with δ being the 99%-
boundary-layer thickness or the channel-half width, respectively.

Averaged results give only a limited insight into the complex dynamics of
the turbulent flow close to a wall. In particular, flow structures of different
scales and energies are populating the near-wall and logarithmic region and
contribute to the turbulent stresses. Close to the wall, the well-known turbu-
lent streaks are the characteristic structures, essentially scaling in wall units
with a length and spacing of approximately 1000 × 120 wall units Kline et al.
(1967). In this region, the present DNS results agree well with channel-flow
data at high Reτ Hoyas & Jiménez (2006). However, recent evidence from both
experiments in pipes and boundary layers (see e.g. Ref. Kim & Adrian (1999);
Hutchins & Marusic (2007) and the references therein), and DNS in channel

flows del Álamo and Jiménez (2003) clearly shows that large structures, scal-
ing in outer units, are also present. These structures reach their maximum
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amplitude in the overlap region, but they penetrate into the buffer layer and
might even contribute to a modulation of the near-wall streaks Hutchins &
Marusic (2007b). Evidence from experiments and channel DNS suggests that
the scaling of the large structures might be different for the various canoni-
cal flow cases, e.g. channel and boundary-layer flows. As the scale separation
between inner and outer scaling is given by the Reynolds number Reτ , such
larger structures are more easily detected at higher Reθ. For a quantification
of the large-scale influence on the wall dynamics, we consider the fluctuating
streamwise wall-shear stress τw. The fluctuation amplitude τ ′

w/τw is approx-
imately 0.42 at Reθ = 2500, in good agreement with DNS and experimental
data from channel and boundary-layer flows at similar Reτ Alfredsson et al.
(1988). The normalized spanwise two-point correlation Rττ is shown in Fig. 4.
This correlation indicates the spanwise spacing of the dominant (streamwise)
structures at the wall. The inner peak, corresponding to the near-wall streaks
Kline et al. (1967), can clearly be seen with a spacing of about 120 (local) wall
units, as the first minimum of Rττ at 2∆z+ ≈ 120 (dashed line in Fig. 4). How-
ever, a second peak (solid line) scaling as 2∆z ≈ 0.85δ99 is clearly visible in the
two-point correlation for higher Reθ, indicating the footprint of the large-scale
structures onto the fluctuating wall-shear stress. Similar observations have also
been made in channel-flow simulations by Abe et al. Abe et al. (2004). For
Reθ < 1000, the two peaks merge into one and no clear separation is present.
However, for Reθ > 1500 two distinct peaks can be observed. Note that for
these Reθ the outer peak is more dominant in terms of the correlation Rττ .
These results show for the first time numerical evidence of these structures at
the wall for a continuously increasing Reynolds number. It further highlights
the fact that at least Reθ ≈ 1500 is needed for a sufficient separation of the in-
ner and outer spanwise peaks. Additionally, in agreement with boundary-layer
measurements Hutchins & Marusic (2007), strong maxima of the streamwise
velocity spectra related to the outer peak are reached at a wall-normal dis-
tance of approximately 0.15δ99 and 0.4δ99 when scaled with either U2

τ or the
local u2

rms, respectively. The inner peak is consistently found at a wall-normal

distance of y+ ≈ 15 (see e.g. Ref. del Álamo and Jiménez (2003)).

In the present Letter, new simulations and experiments pertaining to the
important canonical flow case of a spatially developing turbulent boundary
layer under zero pressure gradient are presented up to Reθ = 2500. The lam-
inar Blasius inflow in the simulations is located at Reθ = 174, and a localized
trip forcing shortly after the inflow is causing rapid transition to turbulence, in
a similar way as in the experiments. Thus, the spatial evolution of the bound-
ary layer can be tracked over a large streamwise extent. Excellent agreement
of both mean and fluctuating quantities is achieved, greatly reducing the un-
certainty of boundary-layer statistics at the low to medium Reynolds numbers
considered. The close agreement further validates that the results are insensi-
tive to, e.g., the details of surface roughness, tripping device, streamwise pres-
sure gradients, boundary conditions. Thus, a generic zero-pressure-gradient
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turbulent boundary layer is recovered in both cases, which allows for a careful
comparison.

A first quantification of the turbulent flow structures close to the wall is
presented in terms of two-point correlations of the wall-shear stress. It is seen
that the boundary layer is dominated by large structures with sizes on the
order of the boundary layer thickness that extend from the free stream down
to the wall. At the wall, these structures are even more clearly visible in the
fluctuating wall-shear stress than the well-known near-wall turbulent streaks,
indicating that these large-scale structures might play a significant role for e.g.
the skin friction.

Computer time was provided by the Swedish National Infrastructure for
Computing (SNIC) and the Centre for Parallel Computers (PDC) at KTH,
Stockholm. Financial support by the Swedish Research Council (VR) is thank-
fully acknowledged.
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Well-resolved large-eddy simulations (LES) of a spatially developing tur-
bulent boundary layer under zero pressure gradient up to comparably high
Reynolds numbers (Reθ = 4300) are performed. The laminar inflow is located
at Reδ∗ = 450 (Reθ ≈ 200), a position where natural transition to turbulence
can be expected. Simulations are validated and compared extensively to both
numerical data sets, i.e. a recent spatial direct numerical simulation (DNS)
up to Reθ = 2500 (Schlatter et al. 2009) and available experimental measure-
ments, e.g. the ones obtained by Österlund (1999). The goal is to provide the
research community with reliable numerical data for high Reynolds-number
wall-bounded turbulence, which can in turn be employed for further model de-
velopment and validation, but also to contribute to the characterisation and
understanding of various aspects of wall turbulence.

The results obtained via LES show that good agreement with DNS data at
lower Reynolds numbers and experimental data can be obtained for both mean
and fluctuating quantities. In addition, turbulence spectra characterising large-
scale organisation in the flow have been computed and compared to literature
results with good agreement. In particular, the near-wall streaks scaling in
inner units and the outer layer large-scale structures can clearly be identified
in both spanwise and temporal spectra.

1. Introduction

Turbulent flow around bodies with solid walls is a very important research
topic today for both technical and industrial as well as environmental appli-
cations. Whereas these flows are usually occuring in complex geometries with
curved surfaces leading to pressure gradients or even bluff shapes promoting
separation, the two-dimensional, spatially developing, zero-pressure-gradient
turbulent boundary layer on a flat plate has emerged as an important canoni-
cal flow case for theoretical, numerical as well as experimental studies. Of large
interest is for example the aspect of universality of the wall-normal profile of
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the streamwise velocity component in the limit of high Reynolds numbers. Go-
ing back to the seminal work conducted by von Kármán in the first half of the
20th century, the so-called “law of the wall” composed of the linear region close
to the wall, followed by a logarithmic overlap region up to about 10% of the
boundary-layer thickness, has been the centre of intense discussions, see e.g.
the section in the book by Pope (2000). In recent years, several careful exper-
iments have been conducted for this canonical flow. For instance, Österlund
et al. (2000) performed extensive measurements of mean and fluctuating quan-
tities in the MTL wind tunnel at KTH Stockholm using hot-wire and hot-film
anemometry for Reynolds numbers Reθ based on the momentum thickness θ
and the freestream velocity U∞ ranging from 2530 to 27300; this data set in-
cludes five measurement positions below Reθ = 6000, which could are becoming
accessible to numerical simulations. Partly based on these experimental data,
Monkewitz et al. (2007) have recently presented various asymptotic results for
high Reynolds numbers, including the mean velocity profile.

Careful analysis (Örlü 2009) of a large amount of literature data for (ex-
perimentally) low Reynolds number turbulent boundary-layer measurements
yields that some of these data do not necessarily adhere to accurate zero-
pressure-gradient equilibrium conditions and independent determination of the
skin friction. Therefore, new experimental measurements in the MTL wind-
tunnel at KTH Stockholm were performed by Örlü (2009) for a generic, two-
dimensional turbulent boundary layer with special focus on equilibrium condi-
tions, for Reθ = 2331 to 8792. Sample results have been included in Schlatter
et al. (2009). This data will certainly be helpful in the future for detailed
comparisons with simulation data obtained at high Re.

To get additional insight into the mean-flow properties of turbulent wall-
bounded flows, there is increased interest in understanding the dynamics of such
flows, both at large and small scales. This is highlighted by the recent article by
Marusic (2009). Furthermore, initial studies by Kim & Adrian (1999) who dis-
covered large-scale structures in wall-bounded flows, motivated the subsequent
analysis of these channel, pipe and boundary-layer flows by many authors (see

e.g. Hutchins & Marusic (2007); Guala et al. (2006); del Álamo and Jiménez
(2003)).

However, as opposed to turbulent channel and pipe flow, relatively few
numerical results of direct or large-eddy simulations (DNS/LES) pertaining to
canonical turbulent boundary layers have been published for medium or high
Reynolds numbers. In recent years, the advancement of computer technology
has made it possible to perform simulations based on O(109) grid points; in
channel geometry this allowed for reaching high Reynolds number higher than
Reτ = 2000 (based on friction velocity Uτ and channel half width h) by means
of DNS Hoyas & Jiménez (2006). The spatially developing boundary-layer
geometry, however, proves more difficult for accurate simulations. In particular,
the long streamwise extent of the domain, and the resulting longer averaging
times due to the loss of one homogeneous directions require large computational
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Figure 1. Instantaneous side view with grey-scale contours of
the streamwise velocity component. The domain shown corre-
sponds to the computational box for the present LES, reaching
up to approximately Reθ = 4400. Note that only half of the
domain extent in the wall-normal direction is shown, and the
fringe region connecting outflow and inflow is not included.
The representation of the box is enlarged by a factor four in
the wall-normal direction.

effort even for moderate Re. In addition, the specification of inflow and outflow
conditions, and equally important, proper freestream boundary conditions are
essential for a successful simulation setup.

DNS relies on resolving all relevant temporal and spatial scales on the
underlying numerical grid. In LES, however, the resolution requirements can
be relaxed to some extent (Sagaut 2005). The large, energy-carrying scales of
the flow are discretised on the grid and accurately simulated in both space and
time, whereas the influence of the smaller scales, which are presumably more
homogeneous, is modelled. For this purpose, a so-called subgrid-scale (SGS)
model is then added to the equations of motion to compensate for the truncated
resolution. Depending on flow case, accuracy requirements and employed SGS
model, typically a reduction of the number of grid points by a factor of O(10)
can be obtained for wall-resolved simulations compared to a DNS of the same
case.

For boundary-layer flows, the DNS by Spalart (1988) using an innovative
spatio-temporal approach provided valuable data at Reθ = 300, 670, 1410; this
data set has been extensively used as reference for model development, and
validation of experimental techniques for the last decades. As a next step, a
simulation taking into account the true growth of the boundary layer in the
downstream direction has been performed by Komminaho and Skote (2002)
up to Reθ = 700. This technique to include proper inflow and outflow condi-
tions in a spatially developing setting is usually termed “spatial simulation” as
opposed to flow cases with parallel mean flows such as channel or pipe flows.
Very recently, Wu & Moin (2009) performed a spatial DNS of a boundary layer
undergoing transition due to a periodically passing box of turbulence; the tur-
bulent state just after transition was located Reθ = 900 close to the outlet.
A similar Reθ was also simulated spatially by Li et al. (2009); this simulation
also includes the advection of passive scalars with various Prandtl numbers.
Focusing on higher Reynolds numbers, using a spectral method but limited to
a fairly short domain, Reθ = 2240 was reached by Khujadze & Oberlack (2004).
The highest Reynolds number reached in DNS to date is the data reported by
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Ferrante & Elghobashi (2005) at Reθ = 2900, however obtained in a compa-
rably short computational domain in which the turbulence, in particular the
large-scale structures, may not be fully captured.

A DNS using a spectral method similar to the one used by Komminaho
and Skote (2002) was presented by Schlatter et al. (2009), reaching Reθ = 2500
in a fully spatial setup with the (laminar) inlet located at Reθ ≈ 200. A
comparison with new experiments performed at the same Reynolds number
revealed excellent agreement between DNS and measurements. This dataset
will be used in the present work extensively to validate the chosen simulation
approach.

For turbulent boundary layers, the Reynolds number Reθ ≈ 4300 has to be
considered at present high from a simulation point of view. Due to the difficulty
of performing simulations and experiments at Reynolds numbers Reθ on the
order of a few thousand, there is a comparably large spread of the existing
data in the literature for integral, mean and fluctuating turbulent quantities,
see e.g. Honkan & Andreopoulos (1997). There is thus a need for accurate
and reliable simulation data of spatially developing turbulent boundary layers
with Reθ to be compared to high-quality experimental results. To this end, the
inflow in the numerical simulation should be positioned far enough upstream,
i.e. comparable to where natural transition occurs, to ensure that the flow
reaches a fully developed, undisturbed equilibrium state further downstream.
However, as pointed out by Österlund et al. (2000), a clear overlap region can
only be detected above Reθ ≈ 6000, which might be just about to become
accessible for adequately resolved transient numerical simulations.

The aim of the present study is to perform and validate well-resolved spatial
large-eddy simulations (LES) in an effort to obtain accurate and reliable data
at higher Reynolds numbers exceeding Reθ = 2000. A snapshot of such a
simulation is presented in Fig. 1, with several relevant downstream positions
indicated. The inflow is positioned at a low streamwise Reynolds number,
Reδ∗ = 450 based on the displacement thickness δ∗ at the inlet. An exhaustive
amount of statistics, e.g. one and two-point statistics, Reynolds-stress budgets
and time series pertaining to turbulent quantities, are collected and evaluated.

The paper is organised as follows. In Section 2 the numerical method and
the simulation parameters are introduced. Then, Section 3 discusses statistical
quantities such as mean profiles, fluctuations and budgets. Spectral information
about turbulent structures are introduced in Section 4. Finally, conclusions are
given in Section 5.
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2. Numerical methodology

The simulations are performed using a fully spectral method to solve the three-
dimensional, time-dependent, incompressible Navier-Stokes equations (Cheva-
lier et al. 2007). In the wall-parallel directions, Fourier series with dealias-
ing are used, whereas the wall-normal direction is discretised with Cheby-
shev polynomials. The discretisation is based on a velocity-vorticity formu-
lation to exactly enfore continuity. Time is advanced with a standard mixed
Crank-Nicolson/Runge-Kutta scheme. The periodic boundary conditions in
the streamwise direction are combined with a spatially developing boundary
layer by adding a “fringe region” at the end of the domain (Chevalier et al.
2007; Nordström et al. 1999). In this region, the outflowing fluid is forced
via a volume force to the laminar inflowing Blasius boundary-layer profile, lo-
cated at Reδ∗

0
= 450 based on the displacement thickness δ∗0 at the inlet. A

low-amplitude trip force acting in the wall-normal direction is used to cause
rapid laminar-turbulent transition close to the inlet (see Fig. 1). Compared to
the reference DNS (Schlatter et al. 2009) the forcing amplitude is marginally
reduced which leads to slightly later transition. The boundary conditions in
the freestream are of Neumann type, i.e. the wall-normal variation of the ve-
locity components is forced to zero at the upper boundary. This requirement
together with incompressibility leads to a constant streamwise velocity at the
upper boundary, whereas the normal velocity component might be non-zero to
account for the boundary-layer growth. The spectral method provides excellent
accuracy and dispersion properties as compared to low-order discretisations.

The computational domain is xL × yL × zL = 6000δ∗0 × 200δ∗0 × 240δ∗0 with
4096 × 385 × 384 spectral collocation points in the streamwise, wall-normal
and spanwise directions, respectively. The height of the computational domain
is chosen to be at least three times the largest 99%-boundary-layer thickness
δ99; in the spanwise direction an even larger domain has been chosen to ensure
the correct development of large-scale structures scaling in outer units. The
grid points are non-equidistantly distributed in the wall-normal direction, with
at least 10 collocation points within the region y+ < 10. The maximum grid
spacing in viscous units is then ∆x+ × ∆y+

max × ∆z+ = 25.3 × 14.2 × 10.8.
The statistics are sampled on-the-fly over ∆t+ ≈ 50, 000 viscous time units, or
36 in terms of δ99/Uτ at Reθ = 4300. Owing to the high computational cost
of the simulations, the numerical code is fully parallelised running on O(1000)
processors (Li et al. 2008). In total, the present simulation required 2 ·106 core
hours on a PC cluster.

Since the chosen resolution is not adequate for a direct numerical simula-
tion, the unresolved quantities have to be treated via a subgrid-scale model.
In the present case, the ADM-RT model (Schlatter et al. 2004) has been em-
ployed, supplementing the governing equations with a dissipative term. The
equations of motion for the resolved velocity ui and pressure p thus read

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂p

∂xi
+

1

Re

∂2ui

∂xj∂xj
− χHN ∗ ui , (1)
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together with the incompressibility contraint ∂ui/∂xi = 0. The relaxation term
χHN ∗ui is based on a high-order three-dimensional filter operation HN convo-
luted with ui. The model coefficient χ was chosen to be a constant throughout
the whole flow domain (Schlatter et al. 2006). The effect of this addition is to
cause fluctuations close to the numerical cutoff to be damped. This additional
dissipation regularises the flow solution, and allows to perform accurate simu-
lations of both transitional and turbulent flows at reduced resolution, in partic-
ular for simulation methods based on spectral discretisation, see e.g. Schlatter
et al. (2006). Note that the ADM-RT model converges by construction towards
a DNS with increasing resolution. For the present simulation case the grid res-
olution has been chosen to be very fine for an LES. It is not the aim here to
validate the modelling per se, but rather to obtain accurate simulation data at
high Reynolds numbers for turbulent boundary layers.

3. Averaged results

As mentioned above, the laminar inflow for the present simulation is located
at Reδ∗ = 450, roughly corresponding to Reθ = 200, which is low enough to
ensure a physical flow development further downstream, see also Fig. 1. Once
a statistically stationary state has been reached, statististics are averaged over
the spanwise direction z and time t. Thus the Reynolds decomposition

u = 〈u〉 + u′ = U + u′ (2)

is used, the brackets 〈·〉 indicating the average in z and t. Based on the
mean velocity profile U(x, y) the shear stress at the wall is obtained as
τw(x) = µ(dU/dy)|y=0. Following the classical theory of turbulent bound-
ary layers (see e.g. Pope 2000), the friction velocity Uτ provides the relevant
velocity scale throughout the boundary layer, whereas the viscous length scale
ℓ⋆ is the characteristic length at least close to the wall. The scaled quantities
in wall scaling are thus written as, e.g., U+ = U/Uτ and y+ = y/ℓ⋆.

First, integral quantities of the boundary layer such as the friction coeffi-
cient are presented. Then, the mean velocity profile and profiles and budgets
of turbulent fluctuating quantities are discussed. Section 4 is devoted to an
analysis of the turbulent structures.

The skin-friction coefficient cf is shown in Fig. 2. The transitional region at
the beginning of the domain is clearly visible. According to the computed value
of cf the LES is seen to reach a fully-developed state around Reθ ≈ 700. The
comparison of the LES data with two data sets obtained from DNS (Schlatter
et al. 2009; Li et al. 2009) is very good. Note that both DNS data were ob-
tained based on a similar numerical setup as the present LES; however in the
LES the forcing amplitude was slightly reduced in order to have a smoother
laminar-turbulent transition close to the inlet. This is clearly visible in Fig. 2
and subsequent figures as a tendency of the LES to approach the fully developed
turbulent state later than the reference DNS. Somewhat surprisingly, the com-

parably simple empirical correlation cf = 0.024Re
(−1/4)
θ (Kays and Crawford
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Figure 2. Skin-friction coefficient cf as a function of
Reθ. present LES, DNS (Schlatter et al. 2009),

cf = 0.024Re
(−1/4)
θ (Kays and Crawford 1993), cf =

2[(1/0.38) logReθ + 4.08]−2 (Österlund 1999). • DNS by
Spalart (1988), � experimental results by Österlund (1999),

DNS by Li et al. (2009).

1993) provides an accurate fit to the present LES data for the range of Reynolds
numbers considered; this has already been observed for the DNS data. On the
other hand, the correlation cf = 2[(1/0.38) logReθ + 4.08]−2 based on the log-

arithmic region (Österlund 1999) is marginally underpredicting the friction for
lower Re. Moreover, the agreement with the experimental measurement points
(Österlund 1999) in the range Reθ = 2500 to 4300 is very good. Recall that
experimentally the skin friction is obtained using an oil-film technique which is
independent of the hot-wire velocity measurements. For comparison, the data
points of the DNS by Spalart (1988) are also shown in Fig. 2. In this case, the
skin friction is overpredicted by approximately 5% at his highest Reθ = 1410.
This might be a residual effect of the spatio-temporal approach employed for
the simulation, which does not extend to higher Reynolds numbers.

The shape factor H12 = δ∗/θ, defined as the ratio of displacement δ∗ to
momentum thickness θ, is shown in Fig. 3; H12 is often used as an easy way of
characterising the state of development of a boundary layer. Moreover, it has
been shown that H12 is a sensitive indicator of the quality of the boundary-
layer data (Chauhan et al. 2009). In Fig. 3 it can again be seen that the
LES is undergoing transition later than the DNS as mentioned above, and
consequently approaches a fully developed state later; it is interesting to note
that this state can be estimated to be reached at about Reθ ≈ 900. This number
appears to be slightly higher than what has been estimated for cf ; this further
indicates that the the region close to the wall is reaching a fully turbulent
state earlier than the region further away from the wall. Therefore, for the
present simulation the boundary layer can be assumed to be in equilibrium for
an extended range of Reynolds numbers of about Reθ = 900 − 4300, which
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Figure 3. Shape factor H12 as a function of Reθ.
present LES, DNS (Schlatter et al. 2009),
correlation by Monkewitz et al. (2007), • DNS by

Spalart (1988), � experimental results by Österlund (1999),
DNS by Li et al. (2009).

corresponds to Reτ = 350− 1350 with Reτ being based on the boundary-layer
thickness δ99.

Profiles of the mean velocity scaled in viscous units U+(y+) obtained from
the present LES are shown in Figure 4. For comparison, both DNS data from
Spalart (1988) and Schlatter et al. (2009) and experimental results by Österlund
(1999) are shown as well. The similarity at the higher Reynolds numbers, i.e.
Reθ = 2500 − 4300, is very satisfactory. In particular, the scaled U+

∞ in the
freestream is accurately predicted by the simulation, and the onset and general
shape of the wake region matches the one from the experiment. However, there
is a discrepancy between the present simulation data and that of Spalart highest
Reynolds number, Reθ = 1410. This difference might again be attributed to the
spatio-temporal simulation approach in the latter. In addition, at Reθ = 2500
there is virtually no difference between the DNS and the present LES, which
indicates that the mean flow is well captured even by the lower resolution
LES. In the near-wall region, all data collapse nicely on the linear relation
U+ = y+ as expected according to the expansions in the viscous sublayer. In
the figure, the von Kármán coefficient κ used to indicate the logarithmic region
(1/κ) log y+ + B is chosen as κ = 0.41 which seems to be a good compromise
for the present Reθ.

The log-law indicator function Ξ = y+(dU+/dy+) is presented in Fig. 5.
The general shape of the composite profile proposed by Monkewitz et al. (2007)
is followed up to y/δ99 ≈ O(0.1), the position where the wake region is expected
to begin (indicated by the symbol • in the Figure). In the overlap region Ξ
essentially measures the (inverse) von Kármán constant κ. From the present
data, the minimum of Ξ is reached at y+ ≈ 70 with a value of 1/Ξ ≈ 0.428
in good agreement with the prediction by Monkewitz et al. (2007), but also
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Figure 4. Mean velocity profile U+ in viscous units for
present LES at Reθ = 685, 1433, 2560, 3660, 4307, • mea-

surements by Österlund (1999) at Reθ = 2532, 3651, 4312.
DNS by Spalart (1988) at Reθ = 670, 1410, and DNS

by Schlatter et al. (2009) at Reθ = 2511 (practically invisi-
ble). The profiles are shifted by U+ = 3 along the ordinate
for increasing Reθ. The linear and logarithmic regions are in-
dicated by a thin line, using 1/κ log y+ + B with κ = 0.41 and
B = 5.2.

DNS results in both channel and boundary layers. The higher the Reynolds
number, the longer the present LES data follows the composite profile, includ-
ing the decreasing κ (increasing Ξ) after the minimum at y+ ≈ 70. However,
even Reθ = 4300 is too low to reach an asymptotical logarithmic region (Öster-
lund et al. 2000) with the proposed κ ≈ 0.38. Ξ in the wake region shows a
clear trend towards higher maxima for increasing Re. In addition, it is inter-
esting to note that in the inner region (y+ ≈ 10) the channel data by Hoyas
& Jiménez (2006) features a slightly larger Ξ than the boundary-layer data.
This behaviour is similar to a boundary layer under (weak) favourable pressure
gradient (Schlatter & Brandt 2008), which demonstrates the sensitivity of the
near-wall region to possible pressure gradients as present in e.g. channel flow.

The velocity fluctuations, e.g. urms =
√
〈u′u′〉, and the Reynolds shear

stress 〈u′v′〉 are depicted in Figure 6 in wall scaling. The agreement between
the LES and DNS at Reθ = 2500 is good; slight differences can be observed
for the high fluctuation regions close to the wall, in which the LES tends to
underpredict the maxima by 1-2 percent. A similar issue related to the spanwise
resolution is further discussed in connection with Fig. 16 further down.

As mentioned in many studies, there is only incomplete collapse in inner
scaling (see e.g. Hoyas & Jiménez 2006), most dominantly for the streamwise
and spanwise fluctuations. In particular, the maximum wall-normal value of
urms is constantly increasing with Re as shown in e.g. Metzger & Klewicki
(2001), as well as in channel-flow simulation results. On the other hand, the
total shear stress, −〈u′v′〉 + (1/Re)d〈U〉/dy, scales very well in outer length
units for the considered range of Reθ, and is therefore not shown.
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670, 1410 and Schlatter et al. (2009). Right: Reynolds
stresses for Reθ = 685, 1433, 2560, 3660, 4307.

The fluctuation of the wall-normal gradient of the velocity, i.e. the fluc-
tuating streamwise wall-shear stress τw is considered in Fig. 7. As shown
by Alfredsson et al. (1988) in good agreement with data obtained by vari-
ous experimental techniques and simulation approaches, τ+

rms ≈ 0.4 in wall-
bounded flow. For the present LES, a Re-dependence is clearly found. A fit
τw,rms = 0.0155 logReτ + 0.317 describes the present data. Here, Reτ is based
on the friction velocity Uτ and the boundary-layer thickness δ99 or the channel
half-width h. The correlation provides a reasonable description for Spalart’s
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Figure 7. Fluctuations of the wall shear stress τrms for
present LES, DNS Schlatter et al. (2009), ⋄ DNS by

Spalart (1988), • DNS by Wu & Moin (2009), � DNS of chan-

nel flow (Moser et al. 1999; del Álamo et al. 2004). Fit
to present data: 0.0155 logReτ + 0.317.

DNS and various channel-flow simulations (see also e.g. Abe et al. 2004). How-
ever, the data point obtained from the DNS by Wu & Moin (2009) clearly shows
a higher value. This suggests that these data are in fact not fully-developed tur-
bulence, but rather transitional in nature; also for the present boundary-layer
data, a higher τ+

rms is obtained shortly after transition.

Based on the simulation results, the individual terms in the von Kármán
integral equation, here written for a zero-pressure-gradient boundary layer,

u2
τ = U2

∞

dθ

dx
+

d

dx

∫ ∞

0

(
〈u′2〉 − 〈v′2〉

)
dy , (3)

relating the local skin friction to the growth of the momentum thickness θ may
be considered, see Fig. 8. It turns out that the term U2

∞dθ/dx is O(50) times
larger than the second relevant term, the integrated normal-stress difference.
On the other hand, the expressions on both sides of the equation sign balance
each other to within less than 0.5%. In addition, Fig. 8 also provides a practical
measure for the useful region of the simulation, i.e. the region in which an
equilibrium turbulent boundary layer adhering to the boundary-layer equations
is recovered. For the present case, Reθ = 900−4300 can be estimated (see also
comments to Figs. 2 and 3 above).

Particularly in the modelling community, there is considerable interest in
data pertaining to the behaviour of the pressure and its fluctuations throughout
the boundary layer. Experimentally, it is very difficult to accurately measure
the pressure (Tsuji et al. 2007). In Fig. 9 the wall-pressure fluctuations are
shown, and Fig. 10 provides wall-normal profiles of prms with different scalings.
Although the pressure in an incompressible LES is strictly not a well-defined
quantity as it might contain subgrid-scale contributions, the agreement between
DNS and LES at Reθ = 2500 is statisfactory. It can further be seen that a
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Figure 9. Pressure fluctuations at the wall p+
w,rms as a

function of the friction Reynolds number Reτ , present
LES, DNS Schlatter et al. (2009), (p+

w,rms)
2 =

6.5+1.86 log(Reτ/333) (Farabee & Casarella 1991). � DNS of

channel flow (Moser et al. 1999; del Álamo et al. 2004; Hoyas
& Jiménez 2006).

mixed scaling pw,rms/(Uτ · U∞) is most appropriate close to the wall, reaching
a value of approximately pw,rms ≈ 0.11UτU∞ at the wall y = 0. In pure inner
scaling, a collapse of the data at various Reθ > 1000 can be seen for y+ > 200.
At the wall, prms is approximately 10% higher than the pressure fluctuations
in channel flow at a corresponding Reτ .

In addition to the various mean and fluctuating quantities, of which a selec-
tion has already been presented, the budgets of the full Reynolds-stress tensor
were computed. A sample result in Fig. 11 shows the budget of the turbulent
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Figure 11. Budget of the turbulent kinetic energy for
present LES and DNS (Schlatter et al. 2009) at

Reθ = 2114. Budget terms are multiplied with y/δ99 and
scaled in outer units u3

τ/δ99. Quantities in the direction of the
arrow: Convection, dissipation ( resolved dissipation for
LES), velocity-pressure correlation, viscous diffusion, produc-
tion, turbulent diffusion.

kinetic energy k = (1/2)〈u′
iu

′
i〉. The activity of the SGS model during the sim-

ulation is clearly highlighted by the difference between the resolved dissipation
and the total dissipation which includes the dissipation due to the SGS trans-
fer. In the near-wall region this additional dissipation contributes as much as
20% to the total dissipation of the turbulent energy k. Furthermore, the com-
parison of the budget terms obtained from DNS and LES compare favourably
at Reθ = 2100. Close to the wall, the classical visous scaling does show the
well-known behaviour of wall-bounded flows (see e.g. Pope 2000), and a very
good collapse of the individual terms with increasing Re is observed. The outer
part of the boundary layer however is more interesting, as it highlights some
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of the major differences between internal (channel, pipe) and external wall-
bounded flows. In the highly intermittent region close to the boundary-layer
edge y ∼ δ99, a new balance between turbulent diffusion as a source, and turbu-
lent convection and velocity-pressure correlation on the loss side is established;
convection is virtually absent from the near-wall region, and identically zero in
parallel flows.

4. Turbulent structures

Turbulent flow is characterised by the interaction of fluctuations and eddies of
various sizes, shapes and energies. It is the ensemble of these eddies that even-
tually lead to, e.g., the characteristic law of the wall, or the well-known profiles
of the rms values. Close to the wall, the kinematic restrictions lead to the
appearance of distinct flow structures which evolve with their own dynamics.
The most apparent turbulent structures close to solid walls are the turbulent
streaks, described and characterised by many researchers, see e.g. Kline et al.
(1967); Kim et al. (1987), and more recently Lin et al. (2008). Streaks are
regions of elevated or decreased velocity as compared to the local mean veloc-
ity; their size is essentially scaling in wall units, and their medium length and
spacing is usually given as approximately 1000× 100 wall units.
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Figure 12. Spanwise two-point correlation Rαα(∆z) for
streamwise velocity u, wall-normal velocity v,
spanwise velocity w (at y+ ≈ 8) and the wall shear

stress τw. Left: Reθ = 1430, Right: Reθ = 4006.

The spanwise organisation of the structures in near-wall turbulence may
be considered by calculating spanwise two-point correlations Rαα of a given
turbulent quantity α. In Fig. 12, the spanwise two-point correlations of the
velocity components at y+ ≈ 8, and of the wall shear stress τw are shown. It
can be observed that the behaviour of Rττ and Ruu is very similar, featuring
a first minimum at ∆z+ ≈ 60. The two-point correlation of the wall-normal
velocity component Rvv exhibits a strong minimum at ∆z ≈ 25 (Kim et al.
1987), about at half the separation as for u. However, with increasing Reθ the
first minimum of Ruu weakens and moves to higher values, and a second flat
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Figure 13. Spanwise two-point correlation Rττ of the wall-
shear stress τw computed from the present LES. The spanwise
axis is scaled by the displacement 2∆z in order to directly show
the spanwise pattern spacing. corresponds to 0.85δ99,

corresponds to 120 plus units. The colors range from
blue (Rττ ≤ −0.06) to red (Rττ ≥ 0.06); contour lines go from
-0.15 to 0.15 with spacing 0.02.

minimum appears at large separation ∆z = O(δ99) (Österlund 1999). This
indicates that superimposed onto the smaller-scale streaky structures a wider
modulation must exist. Such large-scale turbulent structures have received con-
siderable interest over the last years, both experimentally (e.g. Kim & Adrian

1999; Guala et al. 2006; Hutchins & Marusic 2007) and numerically (del Álamo
and Jiménez 2003); open questions relate to the dynamic importance of these
structures and possible explanations of their origin and regeneration. To further
characterise the spanwise scaling, Fig. 13 shows a map of the two-point correla-
tion of the wall-shear stress Rττ as a function of the Reynolds number Reθ. At
any sufficiently high Reθ two minima can be discerned: The inner peak, corre-
sponding to the near-wall streaks, can clearly be seen with a spacing of about
120 (local) wall units, as the first minimum of Rττ at 2∆z+ ≈ 120 (dashed line
in Figure 13). However, a second peak (solid line) scaling as 2∆z ≈ 0.85δ99 is
clearly visible in the two-point correlation for higher Reθ, indicating the foot-
print of the large-scale structures onto the fluctuating wall-shear stress. For
Reθ < 1000, the two peaks merge into one and no clear separation is present.
However, for Reθ > 1500 two distinct peaks can be observed. A similar plot is
also shown in Schlatter et al. (2009), however being restricted to Reθ < 2500.
The scales measured at the wall are essentially the same in the DNS and LES.

4.1. Spanwise spectra

The influence of the Reynolds number on the scale separation between the small
scale (inner) peak and the larger scale (outer) peak is demonstrated in Fig. 14
with the help of premultiplied spanwise spectra kzΦuu(λz)/u2

rms of the stream-
wise velocity u. The small-scale peak corresponding to the streaks is centred



102 P. Schlatter et al.

Figure 14. Premultiplied spanwise spectra kzΦuu(λz)/u2
rms

of the streamwise velocity fluctuation u. The vertical lines
indicate λz = δ99, the horizontal lines y = 0.35δ99; contour
lines have a spacing of 0.1. From left to right and top to
bottom: Reθ = 1433, 2560, 3660, 4307.

Figure 15. Premultiplied spanwise spectra kzΦuu(λz)/U2
τ of

the streamwise velocity fluctuation u. The vertical lines indi-
cate λz = 0.85δ99, the horizontal lines y = 0.2δ99, contour line
spacing 0.5. Top: Reθ = 1433, bottom: Reθ = 4307.

around 120 plus units, whereas the large-scale peak is clearly scaling in outer
units, i.e. attaining its maximum at a wall-normal distance of approximately
y = 0.35δ99 with a spanwise size λz ≈ δ99. Scaling the energy spectra with
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Figure 16. Dependence of resolved urms fluctuations on the
range of spanwise scales included at Reθ = 4307. urms

with full LES resolution ∆z+ = 10.8, in direction of
arrow: scales ≥ 2000+, ≥ 250+, ≥ 100+, ≥ 40+.

U2
τ (Fig. 15), the inner peak features a clear maximum at y+ = 15 (see e.g.

del Álamo and Jiménez 2003)), and the outer peak reaches its maximum at a
wall-normal distance of approximately 0.2δ99.

Closely connected to the spectral distribution of fluctuation energy in a
signal is the way how such a signal might be measured with reduced resolution.
For example, hotwire sensors have a finite length, and thus measure in fact an
average signal over this specific length (Hutchins et al. 2009). This averaging
operation could be simplified (i.e. by not considering any nonlinear transfer
function of the wire etc.) as an integral in wavenumber space of the fluctuation
energy with a lower limit that corresponds to the cutoff wavenumber (i.e. the
inverse sensor length). The result of such a calculation is shown in Fig. 16 for
the streamwise velocity fluctuation urms. It becomes apparent that limiting the
integration of the total fluctuations to scales larger than 40 plus units already
has a significant impact on the results. In particular, for a lower limit of ≥ 250+,
the outer peak becomes more dominant than the inner peak (Hutchins et al.
2009).

4.2. Temporal spectra

As opposed to channel flow computed in a (streamwise) periodic domain, the
definition of streamwise spectra and thus the streamwise size of the turbulent
structures is not as obvious in boundary-layer flow due to the spatial develop-
ment. Usually, temporal signals are recorded at a given position, and then the
Taylor hypothesis is invoked, assuming a certain convection velocity Uc(x, y) in
an effort to transform temporal spectra into spatial ones. This procedure nat-
urally assumes that the convection velocity is only a function of the position,
but not of the size of scales; which might not be entirely true. Therefore, in
the present contribution only temporal spectra are shown, without conversion
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into spatial spectra. Nevertheless, as a side note, the convection velocity for
the present LES has been evaluated and similar results as e.g. Quadrio & Lu-
chini (2003) have been obtained: The mean convection velocity closely follows
the mean velocity profile, and levels off close to the wall with about U+

c ≈ 11,
featuring a small dip at y+ ≈ 5.
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Figure 17. One-dimensional premultiplied temporal spec-
trum ωΦuu(λt)/U2

τ of the streamwise velocity fluctuation u at
Reθ = 2500 for present LES, DNS Schlatter et al.
(2009). In direction of the arrow: y+ = 15, 30, 100, 300.

The temporal spectra were recorded at various positions in the flow and
subsequently transformed using Hanning windows based on the Welch method
with up to 64 overlapping windows. In Fig. 17 premultiplied temporal spec-
tra obtained from the present LES and the reference DNS are compared at
Reθ = 2500 at various wall-normal positions. Both simulation approaches show
spectra which are very similar; the main peak at λt ≈ 3δ99/U∞ (corresponding
to about 1000 plus units when converted in spatial spectrum) and the flanks
are accurately reproduced by the LES.

Contour plots of premultiplied temporal spectra are presented in Fig. 18
for two Reynolds numbers Reθ = 1433 and 4307. Note the good agreement of
the present higher-Re data to the results reported in the experimental study
by Hutchins & Marusic (2007). A fairly broad range of temporal frequencies is
seen to be excited in the near-wall region (y ≈ 15), and with higher Re a ten-
dency towards larger (i.e. longer lasting) structures is seen in the outer region
y > 0.1δ99. The longest relavant scales can be estimated to be O(40) in units of
δ99/U∞, however longer events > 100δ99/U∞ are also observed. The most dom-
inant structure in the outer region is observed at a constant (temporal) period
of approximately λt = 10δ99/U∞. Via the consideration of two-dimensional
spectra (not shown) this structure could be identified with having a spanwise
scale λz = 0.85δ99. Assuming a convection speed of about 0.6U∞, a length
scale λx = 6δ99 is obtained, which compares well to the experimental finding
presented by Hutchins & Marusic (2007) for boundary-layer flow.
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Figure 18. Premultiplied temporal spectrum ωΦuu(λt)/U2
τ

of the streamwise velocity fluctuation u. Contour spacing 0.3.
Left : Reθ = 1433, right : Reθ = 4307.

5. Conclusions

Well-resolved large-eddy simulations (LES) of a spatially developing turbulent
boundary layer under zero pressure gradient up to relatively high Reynolds
numbers (Reθ = 4300) are presented. The employed subgrid-scale model is the
ADM-RT model (Schlatter et al. 2004), which is an efficient and simple regu-
larisation method based on high-order filters. The (laminar) inflow is located
at Reδ∗ = 450 (Reθ ≈ 200), a position far enough upstream to ensure a proper
flow development further downstream. Results are validated and compared
extensively to both numerical data sets (Schlatter et al. 2009) and available
experimental measurements, e.g. the ones obtained by Österlund et al. (2000).

The LES results are in good agreement with these existing data for both
mean and fluctuating quantities, e.g. mean velocity, skin friction and shear
stress, budget terms and pressure fluctuations. In addition, spanwise and tem-
poral spectra characterising large-scale flow organisation have been analysed.
In particular, the near-wall streaks scaling in inner units and the outer layer
large-scale structures can clearly be identified in both spanwise and temporal
spectra. The spacing of the near-wall streaks is estimated as 120 plus units in
width and about 1000 in length, whereas the dominant large-scale structure is
about 0.85δ99 wide and persists for about 10δ99/U∞ time units.

The goal of the present study is to provide reliable numerical data for high
Reynolds-number wall-bounded turbulence, which can in turn be employed for
further model development and validation, but also to contribute to the further
characterisation and understanding of wall turbulence, in particular boundary-
layer flows.

The data of the present LES will be made available at www.mech.kth.se.
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A direct numerical simulation (DNS) of a spatially developing turbulent bound-
ary layer over a flat plate under zero pressure gradient (ZPG) has been carried
out. The evolution of several passive scalars with both isoscalar and isoflux wall
boundary condition are computed during the simulation. The Navier-Stokes
equations as well as the scalar transport equation are solved using a fully spec-
tral method. The highest Reynolds number based on the free-stream velocity
U∞ and momentum thickness θ is Reθ = 830, and the molecular Prandtl num-
bers are 0.2, 0.71 and 2. To the authors’ knowledge, this Reynolds number
is to date the highest with such a variety of scalars. A large number of tur-
bulence statistics for both flow and scalar fields are obtained and compared
when possible to existing experimental and numerical simulations at compara-
ble Reynolds number. The main focus of the present paper is on the statistical
behaviour of the scalars in the outer region of the boundary layer, distinctly
different from the channel-flow simulations. Agreements as well as discrepan-
cies are discussed while the influence of the molecular Prandtl number and wall
boundary conditions is also highlighted. A Pr scaling for various quantities is
proposed in outer scalings. In addition, spanwise two-point correlation and in-
stantaneous fields are employed to investigate the near-wall streak spacing and
the coherence between the velocity and the scalar fields. Probability density
functions (PDF) and joint probability density functions (JPDF) are shown to
identify the intermittency both near the wall and in the outer region of the
boundary layer. The present simulation data will be available online for the
research community.

Nomenclature

cp specific scalar capacity
h channel half width
H12 shape factor
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k scalar conductivity
p pressure
Pe Péclet number = RePr
Pr molecular Prandtl number or Schmidt number = ν

α
Prt turbulent Prandtl number
qw rate of the scalar transfer from the wall to the flow = −k ∂θ

∂y

∣∣
y=0

Re Reynolds number
Reδ∗

0
Reynolds number based on the inlet displacement thickness δ∗0

Reθ Reynolds number based on the momentum thickness θ
Reτ Reynolds number based on the friction velocity uτ

St Stanton number = qw

ρU∞cp(θw−θ∞)

t time
ui, u, v, w instantaneous velocity components in the streamwise, wall-normal
and spanwise direction (in direction i)

uτ friction velocity =
√

τw

ρ

U∞ free-stream mean velocity
xi, x, y, z Cartesian coordinates in the streamwise, wall-normal and spanwise
direction (in direction i)
yL height of the domain
O Landau symbol (order of )
P production of turbulent energy
Ui Blasius laminar base flow

subscript
f properties of the fluid
w properties at the wall
∞ properties in the free stream
rms root-mean-square value of the quantity

superscript
ˆ dimensional term for the variable quantity
′ fluctuating part
+ scaling in viscous (wall) units
out scaling in outer units
〈〉 average over time and the homogeneous direction

Greek symbols
α scalar diffusivity = k

ρcp

αt eddy diffusivity = − 〈v′θ′〉
∂〈θ〉
∂y

β pressure gradient coefficient = δ∗

τw

dp
dx

∣∣
free−stream

δ∗ displacement thickness
δ∗0 inlet displacement thickness
δ99
θ 99% local scalar boundary-layer thickness
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ε dissipation of turbulent energy
Ξ log-law diagnostic function
Ξθ log-law diagnostic function for scalar
θ momentum thickness
θ scalar
θi scalar i
θτ friction scalar = qw

ρcpuτ

θw scalar concentration at the wall
θ∞ scalar concentration in the free stream
κ von Kármán constant
κθ von Kármán constant for the scalar
λ fringe function
λ streak spacing
ν kinematic viscosity = µ

ρ

νt turbulent eddy viscosity = − 〈u′v′〉
∂〈u〉
∂y

ρ density
τw shear stress at the wall

1. Introduction

The understanding of the spreading of a passive scalar in turbulent flows was
initially gained solely through wind tunnel experiments. The early studies
of heat transfer were performed by e.g. Corrsin (1952), Warhaft and Lum-
ley (1978) in grid-generated turbulence and homogeneous turbulence. Hishida
and Nagano (1979) and Nagano and Tagawa (1988) measured various types
of moments of velocity and scalar fluctuations in fully developed pipe flow to
investigate the transport mechanism in turbulence and to correlate the trans-
fer processes of momentum and scalar with coherent motions. In particular,
the importance of the coherent motions in the turbulent diffusion process of
Reynolds-stress components and scalar-fluxes was demonstrated for the first
time. Later, Mosyak et al. (2001) and Hetsroni et al. (2001) carried out experi-
ments to study the wall-temperature fluctuations under different wall-boundary
conditions and the thermal coherent structure in a fully developed channel flow.
For turbulent boundary-layer flows, Perry and Hoffmann (1976) examined the
similarity between the Reynolds shear stress 〈u′v′〉 and scalar flux 〈v′θ′〉 using
quadrant analysis. However, the Reynolds stress 〈u′v′〉 was analysed in the
(u, v) plane and the turbulent scalar flux 〈v′θ′〉 in the (v, θ) plane. Therefore
the correspondence between fluids motions and scalar transport was not strictly
specified. Subramanian and Antonia (1981) measured several quantities in a
slightly heated boundary layer to address the effect of Reynolds number. Kr-
ishnamoorthy and Antonia (1987) and Antonia et al. (1988) investigated the
temperature dissipation and the correlation between the longitudinal velocity
fluctuation and temperature fluctuation in the near-wall region.
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Due to the rapid progress in high-performance computers, direct numeri-
cal simulation (DNS) of turbulent flows involving passive scalars, especially in
channel geometry, has matured to an important research tool during the past
few decades. The first direct numerical simulations of passive scalar transport
were performed by Rogers et al. (1986) in a homogeneous shear flow. Numer-
ical simulations in channel geometry were pioneered by Kim and Moin (1989)
with Pr = 0.1, 0.71 and 2.0 at Reτ = 180 where Reτ is the Reynolds number
based on the friction velocity uτ and the channel half width h and Pr is the
molecular Prandtl number. Heat is introduced by an internal source created
and removed from both walls. A high correlation between the streamwise ve-
locity and temperature was found in the wall region. Later, Kasagi et al. (1992)
and Kasagi and Ohtsubo (1993) performed DNS at Reτ = 150 with Pr = 0.71
and 0.025. The scalar-fluxes budgets were shown and the low Pr number ef-
fects were discussed. However, the Reynolds number of these simulations still
remains at a low value. Wikström (1998) performed a DNS at a higher Rey-
nolds number of Reτ = 265 with Pr = 0.71. Abe et al. (2004) reached up to
Reτ = 1020 and Pr = 0.025 and 0.71. All these simulations are done, however,
with a Prandtl number lower than two. This is due to the fact that the smallest
scales in the scalar fluctuation decrease with the increase of Pr. Therefore the
DNS becomes an even more difficult task when the Prandtl number is high.
With the help of larger parallel computers, Kawamura et al. (1998) performed
the DNS in periodic channel flow at Reτ = 180 but for a wider range of Pr
from 0.025 to 5.0. Later, Tiselj et al. (2001) performed a channel DNS at
Reτ = 150 with Pr from 0.71 to 7. In his work, the ideal isoflux boundary
condition was compared to the previous results and underestimated values for
the wall-temperature fluctuations of the previous simulations were reported.
Recently, Redjem-Saad et al. (2007) performed a DNS in a fully turbulent pipe
flow to explore the impact of the wall curvature on the turbulent heat transfer.
The Reynolds number based on the pipe radius is 5500 (Reτ = 186) and the
Pr varies from 0.026 to 1. For pipe flows, slightly more intense temperature
fluctuations than in channel flow were found.

However, for flat-plate boundary layers with zero pressure gradient (ZPG),
which is a relevant canonical flow case for theoretical, numerical as well as
experimental studies, relatively few numerical results have been published for
medium or high Reynolds numbers. The direct numerical simulation by Spalart
(1988) using an innovative spatio-temporal approach provided valuable data at
Reθ = 300, 670, 1410. Later, Komminaho and Skote (2002) performed a true
spatial DNS up to Reθ = 700. Concerning boundary-layer simulations with
passive scalars, to our knowledge the first DNS was performed by Bell and
Ferziger (1993) up to a medium Reynolds number of Reθ = 700 with Pr being
0.1, 0.71 and 2.0. Later, a DNS was performed by Kong et al. (2000) up to
a lower Reynolds number of Reθ = 420 and Pr = 0.71 with isothermal and
isoflux boundary conditions. Recently, Hattori et al. (2007) performed a DNS
to study the buoyancy effects on the boundary layer starting from Reynolds
number of Reθ = 1000 to Reθ = 1200 and Pr = 0.71. A new DNS was
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performed by Tohdoh et al. (2008) up to a low Reynolds number of Reθ = 420,
with Pr = 0.71 and 2.0.

This paper is a study of passive scalar transport in a turbulent boundary
layer spatially developing over a flat plate with zero pressure gradient (ZPG).
The investigation is performed using direct numerical simulation (DNS). A
spatial formulation (inflow/outflow setting) was adopted since it is the best
model for a boundary layer which grows in the downstream direction rather
than in time. Moreover, all the scalars were simulated simultaneously, i.e. one
velocity field accommodates all the scalars. The Reynolds number Reδ∗

0
based

on the free-stream velocity U∞ and the inlet displacement thickness δ∗0 is 450
and Prandtl number Pr are chosen to be 0.2, 0.71 and 2.0. Isoscalar and isoflux
wall boundary conditions are employed for comparison. Since similarities exist
between the boundary layer and channel flow in the near-wall region, this study
mainly focuses on the outer region of the boundary layer, i.e. the wake region.
Based on the present data, the scalings based on the Prandtl number are also
proposed for various scalar quantities and also for the budgets of the scalar
fluxes in both inner and outer units. The goal of this paper is to extend our
knowledge about the scalar transport in turbulent boundary-layer flows to a
wider range of both Reynolds number and Prandtl numbers. In addition, a data
base for the research community is generated, which can be useful in particular
for modelling purposes.

2. Numerical methodology

2.1. Governing equations & numerical method

The three-dimensional, time-dependent Navier-Stokes equations for incom-
pressible flow as well as the transport equation for the passive scalar in non-
dimensional form using the summation convention are given by

∂ui

∂xi
= 0 , (1)

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂p

∂xi
+

1

Reδ∗
0

∂2ui

∂xj∂xj
, (2)

∂θ

∂t
+ ui

∂θ

∂xi
=

1

Reδ∗
0
Pr

∂2θ

∂xi∂xi
=

1

Pe

∂2θ

∂xi∂xi
, (3)

where (x1, x2, x3) = (x, y, z) are the Cartesian coordinates in the streamwise,
wall-normal and spanwise direction, respectively. (u1, u2, u3) = (u, v, w) are
the corresponding instantaneous velocity components, t represents the time, p
is the pressure and θ the scalar quantity. The Reynolds number Reδ∗

0
is based

on the free-stream velocity U∞ and the inlet displacement thickness δ∗0 while
Pr denotes the molecular Prandtl (or Schmidt) number and Pe = Reδ∗

0
Pr for

the Péclet number.
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In the present paper, the dimensional variables are non-dimensionalised as
in Kong et al. (2000), i.e.

ui =
ûi

U∞
, xi =

x̂i

δ∗0
, p =

p̂

ρU2
∞

, t =
U∞t̂

δ∗0
, (4)

θ =
θw − θ̂

θw − θ∞
, for the isoscalar boundary condition, (5)

θ = 1 − k(θ̂ − θ∞)

qwδ∗0
, for the isoflux boundary condition. (6)

The dimensional reference quantities are defined as follows. U∞ is the free-
stream velocity, δ∗0 the inlet displacement thickness, ρ the density, k the scalar
conductivity, qw the scalar flux at the wall, θw the scalar concentration on the
wall and θ∞ the scalar concentration in the free stream. The hat ˆ denotes the
dimensional term for the variable quantities, i.e. ui, xi, p, t and θ.

Reθ = 175 Reθ = 830Reθ = 670Reθ = 300
x

Figure 1. Instantaneous contour plot of the fluctuating scalar
field in a x − y plane, starting from Reθ = 175 to Reθ = 850.
Note that the fringe region is not shown in the figure. The box
height is enlarged by a factor of 2.

The simulation code (Chevalier et al. 2007) used in the present study em-
ploys a pseudo-spectral method comparable to that used by Kim et al. (1987).
Fourier series expansion is used in streamwise and spanwise directions (wall-
parallel directions) assuming periodic boundary conditions. In the wall-normal
direction, Chebyshev expansions employing the Chebyshev-tau method are
used. The time advancement uses a four-step third-order Runge-Kutta scheme
for the nonlinear terms and a second-order Crank-Nicolson scheme for the linear
terms. The nonlinear terms are calculated in physical space to avoid convolu-
tion sums. Aliasing errors are removed by using the 3/2-rule in the wall-parallel
directions. Figure 1 shows the computational box together with a contour plot
of an instantaneous scalar fluctuation. To fulfil the periodic boundary condi-
tions in the streamwise direction, a “fringe region” (Bertolotti et al. 1992) is
added at the downstream end of the domain. It is implemented by adding a
volume force Fi to the Navier–Stokes equations. The force is of the form

Fi = λ(x)(Ui − ui) (7)

with Ui being the desired inflow condition. Note that the fringe forcing is also
applied for the scalar field in a similar fashion. The fringe function λ(x) which
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has continuous derivatives of all orders has a prescribed shape to minimise the
upstream influence (Nordström et al. 1999) and is non-zero only in the fringe
region. In the fringe region, the outflow is forced by the volume force to the
laminar inflow condition which is a Blasius boundary-layer profile. In addition,
to trigger rapid (natural) laminar-turbulent transition, a random volume forc-
ing located at a short distance downstream of the inlet (x = 10, Rex = 72950) is
used. The trip forcing can be used to generate noise at low amplitude or turbu-
lence. The volume force is directed normal to the wall with a steady amplitude
and a time dependent amplitude. The generated noise has a uniform distribu-
tion covering all the frequencies lower than the cutoff frequency corresponding
to π

2 in the present DNS. The turbulent field generated by the trip force leads
to very good quality at the expense of a slightly enlarged transitional inflow
region. In particular, there are no streamwise correlations in the fluctuations
as opposed to e.g. the rescaling and recycling method employed by Kong et al.
(2000).

2.2. Boundary condition

The velocity and scalar fields are periodic in the horizontal directions while
boundary conditions at the wall and in the free-stream are needed to solve the
governing equations.

At the solid wall, the no-slip boundary conditions for the velocities

u|y=0 = 0, v|y=0 = 0, w|y=0 = 0,
∂v

∂y

∣∣∣
y=0

= 0 , (8)

are applied. For the boundary conditions in the free-stream, a Neumann con-
dition, i.e.

∂ui

∂y

∣∣∣
y=yL

=
∂Ui

∂y

∣∣∣
y=yL

(9)

is imposed with yL being the height of the domain and Ui(x, y) the Blasius
laminar base flow.

In the present implementation for the scalar field, two types of wall-
boundary conditions are available. Similar to those used by Kong et al. (2000),
one is an isoscalar wall and the other an isoflux wall. These two kinds of wall
boundary conditions are given by

θ|y=0 = 0 , for the isoscalar boundary condition, (10)

∂θ

∂y

∣∣∣
y=0

= 1 , for the isoflux boundary condition. (11)

They corresponds to two limiting cases of the physical configuration (Tiselj
et al. 2001), i.e. the scalar activity ratio being 0 for an isoscalar wall and ∞ for

an isoflux wall where the scalar activity ratio is defined as
√

ρfcpfkf/ρwcpwkw

with ρ, cp and k being density, scalar capacity and conductivity, respectively.
The subscript f corresponds to the properties of the fluid where subscript w
corresponds to the ones of the wall. For the boundary condition in the free-
stream, a Dirichlet condition is imposed. A Neumann condition was also tested
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and the results turned out to be indistinguishable to those obtained with the
Dirichlet condition. The boundary condition in the free-stream thus reads

θ
∣∣
y=yL

= 1 . (12)

2.3. Simulation parameters

The computational box has a dimension of 750δ∗0×40δ∗0×34δ∗0 in the streamwise,
wall-normal and spanwise directions, respectively. The corresponding resolu-
tion is 1024× 289× 128 which gives a grid spacing of 17, 0.025–4.6 and 6.3 (in
viscous units and based on the friction velocity at the x = 150 or Reθ = 400) in
the three directions. The Reynolds number based on the free-stream velocity
U∞ and momentum thickness θ at the inlet is Reθ = 175 and Reθ = 830 at
the outlet. A comparison of the wall-normal resolution with the corresponding
Kolmogorov and Batchelor scales for Pr = 2.0 is shown in Figure 2. It can
be concluded that a sufficient amount of grid points is used in the wall-normal
direction.
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Figure 2. Resolution check. Wall-normal resolution
∆y+, Kolmogorov scale η+, Batchelor scale ηθ

+ for
Pr = 2.0.

A summary of the molecular Prandtl number together with the wall bound-
ary condition and the boundary-layer thickness, based on the 99% thickness,
for all the scalars is listed in Table 1.

All results presented unless specified are averaged results. The average,
denoted by the angular brackets, was performed over both time and the ho-
mogeneous spanwise direction. The corresponding fluctuating part is denoted
by a prime. The averaging time after the initial transient is about 12000 time

units (
δ∗
0

U∞
) corresponding to t+ = 13500 in viscous units to make sure that all

the statistics are sufficiently converged.
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scalar no. θ1 θ2 θ3 θ4 θ5

wall boundary condition isoscalar isoscalar isoflux isoscalar isoflux
Prandtl number Pr 0.2 0.71 0.71 2.0 2.0

boundary-layer thickness δ+
99 365 340 340 320 320

Table 1. Parameters for the scalars. Note that the boundary-
layer thicknesses δ+

99 are in viscous units and measured at
Reθ = 830. The corresponding velocity boundary-layer thick-
ness is about δ+

99 = 315 at Reθ = 830.

3. Results

The present paper is focused on the results pertaining to the scalar transport.
In the interest of space, only one representative result of the mean velocity
profile compared with other DNS data is shown, other hydrodynamic results
(stresses, budgets etc.) are not shown here. However, these hydrodynamic
results were carefully validated and compared with other available numerical
and experimental results and the agreements are very good in general, see Li
et al. (2008).

3.1. Spatial evolution & flow quality

The shape factor H12, defined as the ratio between the displacement thickness
δ∗ and the momentum thickness θ, provides a direct assessment of the flow
field. As seen in Figure 3 (a), a slow decrease of H12 with the increase of the
Reynolds number in the turbulent region is observed and the agreement with
the experimental data is good in the fully turbulent region close to the outlet,
Reθ = 830, H12 = 1.49. The variation of the ratio of the integrated turbulent
kinetic energy production P and dissipation ε along the streamwise direction
is shown in Figure 3 (b). Based on this figure, the range of Reynolds number
in which the boundary layer can be assumed to be in equilibrium is for the
present DNS from about Reθ = 350 to 830.

The non-dimensional parameter β related to the pressure gradient is defined
as

β =
δ∗

τw

dp

dx

∣∣∣
free−stream

, (13)

where δ∗ is the displacement thickness and τw is the shear stress at the wall.
The β calculated from the simulation is of O(10−9) indicating that the flow far
away from the wall is indeed subjected to zero pressure gradient.

Österlund et al. (1999) suggested a turbulent correlation for the skin-
friction coefficient which reads,

cf = 2

(
1

0.384
lnReθ + 3.75

)−2

. (14)

The present results of the skin-friction coefficient compare well with this cor-
relation even at comparably low Reynolds numbers.
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Figure 3. Streamwise evolution of the shape factor H12 and
the ratio of the wall-normal integrated turbulent kinetic energy
production P and dissipation ε. Present DNS, ◦ T3A
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Figure 4. Streamwise evolution of the Stanton number St.
+ θ1, θ2, θ3, θ4, θ5, ◦ Kays and Crawford
(1993).

The Stanton number St for a scalar boundary layer is the counterpart of the
skin-friction coefficient for a momentum boundary layer. This non-dimensional
scalar-transfer coefficient is defined by

St =
qw

ρU∞cp(θw − θ∞)
, (15)

where qw is the rate of the scalar transfer from the wall to the flow, ρ is the
density of the fluid, U∞ is the free-stream velocity, cp is the specific scalar, and
θw and θ∞ are the scalar concentrations at the wall and in the free-stream,
respectively. The variations of the Stanton number with different downstream
positions are shown in Figure 4. The turbulent correlation according to Kays
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and Crawford (1993) which reads

St = 0.0125Pr−
2
5 Re

− 1
4

θ , P r > 0.5 , (16)

is included for comparison. The difference might be related to the fact that
the correlations suggested by Kays and Crawford (1993) are for high Reynolds
numbers. An overshoot of the peak is observed which also exists in the profile of
the skin-friction coefficient, see e.g. Brandt et al. (2004). The overshoot is con-
sistent with the general behaviour of spectral methods applied to transitional
flows and it is slightly diminished with increased resolution. It is observed that
the overshoot vanishes for the scalars with isoflux wall boundary condition.

3.2. Instantaneous fields

(a) (b)

(c) (d)

(e) (f)

Figure 5. Instantaneous flow and scalar fields at y+ ≈ 7. (a)

u′+, (b) θ′1
+
, (c) θ′2

+
, (d) θ′3

+
, (e) θ′4

+
, (f) θ′5

+
.
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Figure 5 shows the instantaneous streamwise disturbance velocity at y+ ≈ 7
in the (x, z) plane as well as the corresponding scalar fluctuations. All the plots
are obtained at the same time instant, and the visualised box is centred around
Reθ = 625 and has a length of ∆x+ = 2000 and width of ∆z+ = 700 in viscous
units. The viscous unit is defined by the friction velocity uτ at the centre of
the domain, i.e. x = 350, Rex = 189500 and Reθ = 625. Streaky structures
are clearly observed and a strong similarity exists between the velocity field
and the scalar field, mainly Pr = 0.71. The regions of low and high scalar
concentrations are elongated in the streamwise direction with a mean spanwise
spacing similar to that of the streamwise velocity fluctuation. Finer structures
with stronger spanwise and wall-normal gradients are observed with increasing
Pr. In the case of the isoflux wall boundary condition, a clear difference can
be observed: The scalar fluctuations are enhanced by the isoflux boundary
condition in contrast to the ones with isoscalar boundary condition. It is also
consistent with previous work by e.g. Kong et al. (2000) that the low-speed
fluids are associated with low scalar concentration region and high-speed fluids
with high scalar concentration region.

3.3. Mean results & turbulence intensities

For the mean profile and fluctuations of the velocity field, good agreements
are observed with the DNS data from Spalart (1988) and the DNS data from
Komminaho and Skote (2002) as seen in Figure 6. A small deviation can be
observed for the mean streamwise velocity profile when comparing to Spalart
(1988). This is probably due to the temporal approach used for the latter
simulation and is also seen in other boundary-layer simulations, e.g. Schlatter
et al. (2009). The von Kármán constant κ used in the log-law is 0.41 and it
gives good agreement for this comparably low Reynolds number. The log-law
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at Reθ = 620, at Reθ = 830, κ = 0.41.

diagnostic function Ξ= y+ d<u>+

dy+ is plotted in Figure 7. This sensitive function

Ξ is supposed to approach a constant value of the inverse von Kármán constant
1
κ in the overlap region according to the log-law (Nagib et al. 2007). As seen
from the plot, the present DNS does not yet have a well developed logarithmic
overlap region due to the comparably low Reynolds number.
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Figure 8. Profiles of the diagnostic function Ξθ with κθ =
0.41 and scalar variance θ+

rms at Reθ = 830. + θ1, θ2,
θ3, θ4, θ5. Isoscalar wall: θ1, θ2 and θ4. Isoflux

wall: θ3 and θ5. (a) Ξθ, (b) θ+
rms.

The von Kármán constant for the mean scalar distributions κθ, is assumed
to be independent of the Prandtl number and the Reynolds number in the
logarithmic region. Similar to the diagnostic function for the velocity field, a

constant log-law diagnostic function for scalar fields Ξθ, defined as y+ d<θ>+

dy+ ,

is plotted in Figure 8 (a). The present κθ is chosen to be 0.41 which is close
to the channel-flow results by Kawamura et al. (1999) of about 0.4 but smaller
than 0.47 suggested by Kader (1981).
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The root-mean-square (RMS) of the fluctuations for different scalars are
shown in Figure 8 (b) which clearly demonstrates the effects of the different
boundary conditions. The data with isoscalar boundary condition go to zero
as the wall is approached whereas the cases with isoflux boundary condition
remain finite. Far away from the wall, the profiles of the RMS of the scalar
fluctuations with different wall boundary conditions collapse with each other
indicating that the influence from the boundary conditions is only confined to
the near-wall region. The limiting value of the scalar variance for θ3 (Pr = 0.71)
with isoflux boundary condition was reported to be 2.0 and independent of the
Reynolds number by Kong et al. (2000). However, having a higher Reynolds
number range for the present DNS, a slight increase of the limiting wall value for
increasing Reynolds number was observed for both θ3 and θ5, roughly following
Re0.1

θ . For example, a value of 2.12 at Reθ = 850 was found for θ3 (Pr = 0.71).
However, to what extent this growth continues for high Reynolds number is
still unclear due to the limited maximum Reθ in the present study. Comparing
the wall RMS values for θ3 (Pr = 0.71) and θ5 (Pr = 2.0), one can find that
they roughly scale as Pr0.6 over the present Reynolds number range. It is also
noticeable that the maximum RMS values of the scalar fluctuation increase as
Pr is increasing. The peak values of the RMS of the scalar fluctuations at
Pr = 2.0 are about twice as those at Pr = 0.71. It is also observed that the
peak position moves away from the wall as Pr is decreased. The present DNS
results agree well with various results from Kader (1981), Kasagi et al. (1992)
and Kawamura et al. (1998) for both the mean profile and the RMS of the
scalar fluctuation in the near-wall region.
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Figure 9. Profiles of the scalar fluxes 〈u′θ′〉 and −〈v′θ′〉
at Reθ = 830. + θ1, θ2, θ3, θ4, θ5.
Isoscalar wall: θ1, P r = 0.2, θ2, P r = 0.71 and θ4, P r = 2.0.
Isoflux wall: θ3, P r = 0.71 and θ5, P r = 2.0. ◦ Kasagi
et al. (1992) at Reτ = 150, P r = 0.71, � Abe et al. (2004)
at Reτ = 1020, P r = 0.71, ♦ Kawamura et al. (1998) at
Reτ = 180, P r = 5.0. (a) 〈u′θ′〉+, (b) −〈v′θ′〉+.
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The previous study by Kawamura et al. (1998) reported that in the vicinity
of the wall for isoscalar boundary condition, 〈θ〉+ and θ+

rms are proportional

to Pry+ while 〈u′θ′〉+ and −〈v′θ′〉+ vary as Pry+2
and Pry+3

, respectively,
except for low Pr. This is also true for the present DNS (see Figure 9) and for
the turbulent pipe-flow simulation by Redjem-Saad et al. (2007). For scalars
with isoflux boundary condition, using the above exponent for the wall fluctu-
ations, θ+

rms is found proportional to Pr0.6y+ in the vicinity of the wall while
the scaling for the mean scalar profile remains the same as for the isoscalar
case. For the streamwise and wall-normal scalar fluxes, Kong et al. (2000) con-

cluded that 〈u′θ′〉+ and −〈v′θ′〉+ are proportional to y+ and y+2
, respectively,

based on near-wall asymptotic expansion of u′, v′ and θ′. Since only one scalar
with isoflux wall was computed in their simulation, the relation with Pr is not
clear. Based on the present data, 〈u′θ′〉+ and −〈v′θ′〉+ with isoflux boundary

condition vary as Pr0.6y+ and Pr0.6y+2
, respectively.
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Figure 10. The wall-normal distribution of the turbulent
Prandtl number Prt at Reθ = 830. + θ1, θ2, θ3,

θ4, θ5. The boundary-layer thickness are ranging
from y+ = 320 to y+ = 365 for different scalars.

An important parameter in scalar transfer is the turbulent Prandtl number
Prt which is defined as the ratio of the turbulent eddy viscosity νt to the eddy
diffusivity αt. νt and αt are defined by

νt = −〈u′v′〉
∂〈u〉
∂y

(17)

and

αt = −〈v′θ′〉
∂〈θ〉
∂y

, (18)

respectively. The turbulent Prandtl number (see Figure 10) is often assumed
to be a constant value which is independent of the wall-normal distance and
the molecular Prandtl number. However, the dependence on the wall-normal
position and Pr has long been a subject of many investigations, e.g. Antonia
and Kim (1991). For the present DNS, Prt for the scalars θ2 and θ4 (isoscalar
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boundary condition) approach approximately a constant value of about 1.1
at the wall independent of the molecular Prandtl number. Both reach their
maxima at around y+ ≈ 45. Similar values are also reported by previous
studies, e.g. Kong et al. (2000) for turbulent boundary-layer flow and Antonia
and Kim (1991) for fully developed turbulent channel flow. However, the profile
pertaining to the scalar θ1 with Pr = 0.2 is different from the others throughout
the boundary layer. The value of Prt at the wall for θ1 is about 0.9 and
increases from the wall to the peak value of 1.2 at y+ ≈ 45. Bell and Ferziger
(1993) obtained a similar peak value for Pr = 0.1, but their peak position
occurs slightly closer to the wall. In addition, similar to the observation by
Bell and Ferziger (1993), the peak values of Prt for all the Prandtl numbers
are slightly lower than those reported by Kim and Moin (1989) in channel flow.
However, Kawamura et al. (1998) found even lower peak values of Pr = 0.71
at Reτ = 180. In the wake region all the Prt start increasing again and reach
a second peak near the boundary-layer edge. This second peak is due to the
intermittency in the wake region of the boundary layer. Comparing with the
data from Bell and Ferziger (1993), they only observed the second peak for
Pr = 0.1, but not for the other Prandtl numbers. Outside the boundary layer,
in all cases, Prt decreases again.

To analyse the near-wall asymptotic behaviour of the turbulent Prandtl
number, one can expand the velocity and scalar distributions in Taylor series
as discussed previously. Then the turbulent Prandtl number for the isoscalar
wall is found to be constant near the wall while for the isoflux wall it has a
linear behaviour with Pr0.4y+. These limiting behaviours are shown in Figure
10 (b).

3.4. Budget equations

From the DNS, the full budgets of the Reynolds-stress and scalar-flux equations
are obtained. The transport equations for Reynolds stresses can be written as

∂〈u′
iu

′
j〉

∂t
+ Cij = Pij + Πij + Gij + Tij + Dij − εij , (19)

where the interpretations of the different terms can be found e.g. in Pope (2000).

Similarly, the transport equations for the scalar fluxes are given by

∂〈u′
iθ

′〉
∂t

+ Cθi = Pθi + Πθi + Gθi + Tθi + Dθi − εθi . (20)
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The different terms in the equation (20) are commonly expanded as

Cθi ≡ 〈ul〉
∂〈u′

iθ
′〉

∂xl
,

Pθi ≡ −〈u′
lθ

′〉∂〈ui〉
∂xl

−〈u′
iu

′
l〉

∂〈θ〉
∂xl

,

Πθi ≡ 〈p′ ∂θ′

∂xi
〉 ,

Gθi ≡ −∂〈p′θ′〉
∂xi

,

Tθi ≡ −∂〈u′
iu

′
lθ

′〉
∂xl

,

Dθi ≡ ∂

∂xl

(
1

Pe
〈u′

i

∂θ′

∂xl
〉 +

1

Reδ∗
0

〈θ′ ∂u′
i

∂xl
〉
)

,

εθi ≡ (
1

Reδ∗
0

+
1

Pe
)〈∂u′

i

∂xl

∂θ′

∂xl
〉 ,

where Cθi is denoted as the mean convection, Pθi is the production term due
to both the mean gradients of velocity and scalar. Πθi is the pressure scalar-
gradient correlation term representing the inter-component redistribution of
the turbulent energy between scalar-flux terms. Gθi is the divergence of the
pressure-scalar correlation term which represents spatial redistribution of the
energy among different scalar-flux components due to inhomogeneities in the
flow field. Πθi+Gθi is the scalar pressure-gradient correlation term also denoted
as the pressure scrambling term. Tθi is the turbulent diffusion, which is the
divergence of the triple correlation tensor, acting as a spatial redistribution
term. Dθi is the molecular diffusion term and εθi the dissipation term.

All the terms in the budget equations are explicitly evaluated including the
pressure terms. Two scalings are used: First, a scaling in wall units (inner scal-

ing), i.e. non-dimensionalised by
u4

τ

ν for the Reynolds-stress budgets and
u3

τ θτ

ν
for the scalar-flux budgets where θτ is the friction scalar and defined by qw

ρcpuτ
.

Secondly, an outer scaling is used, i.e. quantities are non-dimensionalised by
U3

∞

δ∗ for the Reynolds-stress budgets and
U2

∞(θ∞−θw)

δ99
θ

for the scalar-flux bud-

gets where δ∗ is the local displacement thickness and δ99
θ the 99% local scalar

boundary-layer thickness. The residual for all the budgets is at most O(10−3)
in viscous scaling.

All the Reynolds-stress budgets compare very well with previous studies
in both inner and outer scalings, e.g. see Spalart (1988) and Komminaho and
Skote (2002). Therefore, these budgets are not discussed further in the interest
of space.

In Figure 11, the budget for the streamwise scalar flux of θ4 (Pr = 2.0) is
shown. All the terms are normalised such that the sum of the square of all terms
is unity. One can clearly see that the mean convection term, which is negligible
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Figure 11. Budgets of normalised streamwise scalar flux in
outer scaling at Reθ = 830 pertaining to θ4 with Pr = 2.0.
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convection.

near the wall, becomes a major balancing term near the boundary-layer edge,
together with the pressure-diffusion and the turbulent diffusion terms. The
latter is noticeable in the near-wall region and near the boundary-layer edge,
similar as for the Reynolds stresses. For the case of θ2 (Pr = 0.71), the budget
for the wall-normal scalar flux 〈v′θ′〉 at Reθ = 830 compares well with the data
from Hattori et al. (2007) at a higher Reynolds number Reθ = 1000.

To further investigate the Pr effects, the budgets of the streamwise and
wall-normal scalar fluxes are scaled such that all the dominant terms collapse
for both inner and outer scalings. For the budgets in inner scaling as shown

in Figure 12 (a) and (b), the streamwise budget 〈u′θ′〉 normalised by Pr
1
2

and the wall-normal budget 〈v′θ′〉 normalised by Pr
1
4 are found to scale with

Pr
1
4 y+. The channel data from Kawamura et al. (1999) with Pr = 0.71 at

Reτ = 395 is also included, and very good agreement can be seen for both
the streamwise and wall-normal scalar fluxes. For the streamwise scalar fluxes
of θ3 and θ5, due to the different boundary conditions the agreement with
the channel data is only good except in the close vicinity of the wall. The
production and dissipation terms are dominant and the molecular diffusion
term is only noticeable in the near-wall region. The scalar pressure-gradient
correlation term always lies on the loss side and becomes comparable with the
dissipation term at y+ ≈ 40. Further away from the wall, the scalar pressure-
gradient correlation term becomes larger than the dissipation term (see Figure
11). For the wall-normal scalar flux (see Figure 12 (b)), a larger but still
insignificant difference is observed. The wall boundary condition seems to only
influence the dissipation and turbulent diffusion terms and it is less effective
in the wall-normal scalar fluxes compared to the streamwise scalar fluxes. The
production term is negative for the wall-normal scalar flux. Due to the isotropy
in the dissipation scale, the dissipation is negligible for fluids with Pr ≥ 0.7
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Figure 12. Prandtl-number dependent scaled budgets of the
streamwise and wall-normal scalar fluxes at Reθ = 830.

θ2, θ3, θ4, θ5, ◦ Production, � Dissipa-
tion, ♦ Scalar pressure-diffusion, ⊳ Molecular diffusion, ⊲ Tur-
bulent diffusion, ∗ Mean convection. Symbols are from Kawa-
mura et al. (1999) at Reτ = 395 with Pr = 0.71. (a) Budget
for 〈u′θ′〉 in inner scaling, (b) Budget for 〈v′θ′〉 in inner scaling,
(c) Budget for 〈u′θ′〉 in outer scaling, (d) Budget for 〈v′θ′〉 in
outer scaling.

(Kawamura et al. 1998). This is also true for the present DNS except in the
close vicinity of the wall. Thus, the production is balanced mainly by the scalar
pressure-gradient correlation term. According to Kawamura et al. (1998), in a
low Prandtl-number fluid, the dissipation is dominant because it takes place in
eddies of a larger scale. They reported that the scalar pressure-gradient term
is dominant for Pr = 0.4 and 5.0 while the dissipation term is overwhelming
for Pr = 0.05. They also reported that the scalar pressure-gradient and the
dissipation terms become comparable at Pr = 0.2 which is however not true
for the present DNS (not shown here).

For the outer scaling as shown in Figure 12 (c) and (d), the budgets are

normalised empirically by Pr−
1
3 to collapse all the curves. The budgets be-

longing to the scalar with Pr = 0.2 are excluded due to low Pr effects. The
present scalings are based on the range of Pr of the simulation, therefore fur-
ther investigations are needed to confirm the validity of the results. In addition,
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except for the low Pr case, all the budgets of the scalar fluxes 〈u′θ′〉 and 〈v′θ′〉
look very much like those of the Reynolds stresses 〈u′u′〉 and 〈u′v′〉, respec-
tively. Further discussions concerning low Pr effects can be found in Kasagi
and Ohtsubo (1993).

3.5. Higher-order statistics

For a normally distributed random variable, the respective skewness and flat-
ness factors are 0 and 3, respectively. In the near-wall region, the behaviours
of the skewness and flatness factors for the velocity and pressure components
are similar to those in the channel-flow simulation by Kim et al. (1987). The
wall values of the skewness and flatness factors for the pressure fluctuation are
−0.04 and 4.9 which are comparable to the results −0.1 and 5.0 obtained by
Kim (1989).
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Figure 13. Skewness and flatness-factor distributions of the
scalars at Reθ = 830. + θ1, θ2, θ3, θ4, θ5.
(a) Skewness factor S(θ′), (b) Flatness factor F (θ′). The scalar
boundary-layer thicknesses at Reθ = 830 are ranging from
y+ ≈ 320 to 365.

The skewness and flatness factors for the scalars are shown in Figure 13.
The profiles of θ2 and θ4 compare well with the data by Tohdoh et al. (2008).
The skewness factors for the isoflux wall are closer to zero in the vicinity of
the wall which implies more symmetric fluctuations than those of the isoscalar
wall (Kong et al. 2000). Within the conductive sub-layer, S(θ′) with isoscalar
wall are positive which is consistent with the positive S(u′) (Antonia and Danh
1977). Redjem-Saad et al. (2007) reported that in a turbulent pipe simulation
F (θ′) = 7 at the wall for Pr = 0.71 which is higher than the present DNS
results, which might be due to the surface curvature in the pipe. In addition,
F (θ′) reaches its first minimum at about the wall-normal position where the
corresponding RMS of the scalar fluctuations are maximum. A similar be-
haviour can be observed for the streamwise velocity (Durst et al. 1987). An
interesting observation is that the effects of the different boundary conditions
seem to influence not only the near-wall region; a clear difference can be ob-
served up to y+ ≈ 150. On the other hand, the wall values of the higher-order
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terms for isoscalar boundary condition, i.e. about 1.0 for the skewness and
4.5 for the flatness, appear to be Prandtl-number independent. In the outer
region, the skewness and flatness factors increase rapidly which indicates the
intermittent region similarly as for the velocity and pressure components. The
maximum peak values of S(θ′) and F (θ′) are however much higher than S(u′)
and F (u′) which is also observed in experiments by Antonia and Danh (1977).

3.6. Probability density functions

A different perspective on the characteristics of the fluctuations of one or more
variables is provided by analysing the probability density functions (PDF). The
PDF distributions of the velocity and pressure fluctuations at various wall-
normal positions, ranging from y+ ≈ 5 in the viscous sub-layer to y+ ≈ 500 in
the free-stream (the boundary-layer thickness is about y+ = 315 at Reθ = 830),
are obtained from the simulation as well as the corresponding distributions of
the different scalar fluctuations.

The general shape of P (u′) agrees well with the experiment study by Durst
et al. (1987). For the PDF of the wall-normal velocity fluctuation, Nagano and
Tagawa (1988) reported that the distributions are close to the Gaussian distri-
bution in the near-wall region and depart from the Gaussian distribution far
away from the wall. However, the present DNS shows more pointy distribu-
tions very close to the wall due to the large F (v′) values, a behaviour which
has been reported virtually for all simulations of wall-bounded turbulence. The
PDF of the pressure fluctuation (not shown here) is negatively skewed through-
out the boundary layer until the free-stream and the wall-pressure distribution
compares well with the data from Kim (1989).
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The PDF of the scalar fluctuations of the isoscalar boundary condition are
similar to the distributions of the streamwise velocity which reflects the overall
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similarity between the streamwise velocity u and scalar θ (Antonia et al. 1988).
The PDF distribution of θ4 (Pr = 2.0) is shown in Figure 14 at different
wall-normal positions. A Gaussian distribution with zero mean and matching
variance is also included as a reference. All the fluctuations are normalised
by the corresponding RMS values and the probability density functions are
normalised to unit area. The PDF for the other scalars with isoscalar boundary
condition have a similar shape. In particular, a long positive tail at y+ ≈ 5
also exists as for streamwise velocity u. This tail is caused by the sweep-type
motion of the low momentum fluids and low concentration of scalars (Nagano
and Tagawa 1988). The positive tail shortens with increasing Pr and also with
increasing wall-normal distance as shown in Figure 14. As the Pr or the wall-
normal distance is increased, the negative tail extends longer. For the scalars
with isoflux boundary condition (not shown here), the PDF distributions are
closer to the Gaussian distribution in the near-wall region. Far away from the
wall (y+ > 50), there is no noticeable difference between the distributions with
the different boundary conditions. At y+ ≈ 300, all the PDF of the scalar
fluctuations are extremely negatively skewed which indicates the existence of
the intermittent region. In the free-stream, as expected, the profiles are again
close to the Gaussian distribution with extremely small variance.
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Figure 15. JPDF of (u′, θ′) (Pr = 2.0) at y+ ≈ 5 with
Reθ = 830. (a) P (u′, θ′4), (b) P (u′, θ′5). Contour levels are
0.025:0.025:0.5 for (a) and 0.016:0.016:0.32 for (b).

The high correlation between streamwise velocity and the scalar is also
illustrated by the joint probability density function (JPDF). The results of
θ′2 at y+ ≈ 5 are consistent with the previous results from a channel DNS
simulation by Kim and Moin (1989). JPDF of (u′, θ′) of Pr = 2.0 at y+ ≈ 5
and Reθ = 830 are shown in Figure 15. A less correlated relation between the
streamwise velocity and the scalars with isoflux boundary condition is observed,
indicating the influence of the different boundary conditions for u and θ for
these cases.

The JPDF of (u′, θ′2) and (u′,−v′) at y+ ≈ 200 with Reθ = 830 are shown
in Figure 16. Far away from the wall, all the JPDF distributions show mildly
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Figure 16. JPDF of (u′,−v′) and (u′, θ′2) at y+ ≈ 200 with
Reθ = 830. (a) P (u′,−v′), (b) P (u′, θ′2). Contour levels are
0.012:0.012:0.24 for (a) and from 0.01:0.01:0.2 for (b).

correlated shapes as expected. The scalar boundary condition has almost no
effect at this wall-normal position. It is noticeable that not all the contours
have their centres located at the origin and the peaks of (u′, θ′) moves from the
third quadrant to the first quadrant as the wall-normal position increases.

Note that in JPDF Figures 15 (a) and 16 (b), one can observe a sharp cut-off
for the scalar fluctuation θ′. This is caused by the Dirichlet boundary condition,
which bounds the scalar values to be between θw and θ∞. In consequence, the
scalar fluctuations have strict lower and upper bounds, depending on the local
mean values.

3.7. Spanwise two-point correlation

The spanwise two-point correlations of the velocity components and pressure
at Reθ = 830 at several wall-normal positions from y+ ≈ 5 to y+ ≈ 300 are
obtained. In general the results are consistent with the numerical results by
Kim et al. (1987). As also observed by Kim (1989), the spanwise two-point
correlation coefficient of the pressure does not have the negative excursion.

The spanwise two-point correlations of the scalars near the wall are similar
to those observed by Kim and Moin (1989). On the other hand, the scalars of
the isoflux boundary condition seem to be much more affected by the Prandtl
number. In general, scalars with isoflux wall have larger mean spanwise spac-
ings than those of the isoscalar wall (Kong et al. 2000). Far from the wall, the
boundary conditions do not have an influence on the profiles.

For the mean low-speed streak and scalar streak spacings obtained from
twice the first minimum of the spanwise two-point correlations, the results for
θ2 and θ3 compare well with Kong et al. (2000). As also noted by Kong et al.
(2000) that the low-speed streak spacing is similar to that of θ2 and the differ-
ences from the boundary conditions are only observable in the near-wall region.
One can also observe that the mean scalar streak spacings are larger for smaller
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Figure 17. Streamwise variation of the mean spanwise
streaks spacing λ+ at y+ ≈ 7. � u, ◦ θ1, △ θ2, ∇ θ3, ⊳

θ4, ⊲ θ5.

Pr near the wall. Due to the isoflux wall boundary condition, the scalar spac-
ings first decrease and then increase again as being away from the wall (not
shown here). The streamwise evolution of the mean streak spacings at y+ ≈ 7
from Reθ = 390 to Reθ = 830 is shown in Figure 17. In general all the steak
spacings grow slightly downstream with increasing Reynolds numbers, however,
the growth rate levels off towards larger Reynolds numbers. The large growth
rate in the low Reynolds number range may be due to a low Reynolds-number
effect (Antonia and Kim 1994). At Reθ = 830, the streaks have a spacing of
about 110 in wall unit which is slightly larger than the usual value of about 100
(Kim et al. 1987). On the other hand, this spacing is in good agreement with
recent studies in turbulent boundary layer by Schlatter et al. (2009). These
authors also found that the velocity streak spacing continues to grow up to
Reθ = 1500 and then settles at a constant value around 115. The streaks per-
taining to scalars with isoflux boundary condition are growing faster than those
with isoscalar boundary condition at the same Pr. It is also suggested by the
present results that the streak spacing with lower Pr grows faster. It has also
been shown by Österlund (1999) and Abe et al. (2001) that the spanwise two-
point correlations of the wall-shear stress τw and streamwise velocity fluctuation
u′ have less prominent negative peaks with increasing Reynolds number, which
is confirmed by the present DNS. This effect is due to the dominating large-scale
structures which scale with outer units, i.e. the boundary-layer thickness or the
channel half width, see also Schlatter et al. (2009). Schlatter et al. (2009) also
showed that at least Reθ = 1500 is needed to clearly observe a second peak
indicating the footprint of the large-scale structure in a contour plot of the
two-point correlation of the wall-shear stress τw versus the Reynolds number.
Concerning the scalar two-point correlations, Abe et al. (2004) showed that less
prominent negative peaks with increasing Reynolds number only exist for the
surface heat flux qw with Pr = 0.71, but not for the case with Pr = 0.025 due
to a low Prandtl-number effect. However, for the Pr-range considered here, all
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scalars irrespective of the boundary condition feature a decreasing near-wall
(inner) peak.
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Figure 18. Premultiplied energy spectra of the streamwise
velocity and scalars at Reθ = 830. (a) kzΦuu(λz)/u2

τ ,
kzΦθ2θ2

(λz)/θ2
τ , (b) kzΦθθ(λz)/θ2

τ at Pr = 2.0,
isoscalar boundary condition, isoflux boundary con-

dition, (c) kzΦθθ(λz)/θ2
τ with isoscalar boundary condition,

Pr = 0.2, Pr = 0.71, Pr = 2.0. Contour
levels are 1:0.375:2.5 in (a); 2:1.5:8 in (b); and 0.3:0.3:0.9 for
Pr = 0.2, 1:0.75:2.5 for Pr = 0.71 and 2:3:8 for Pr = 2.0 in
(c).

The spanwise two-point correlations not only contain the information about
the spanwise organisation of the near-wall streaks but also the large-scale mo-
tions in the outer region of the boundary layer. By showing the premulti-
plied spanwise spectra kzΦuu(λz) of the streamwise velocity u, both experiment

(e.g. Hutchins & Marusic (2007)) and simulation (e.g. del Álamo and Jiménez
(2003)) showed evidence of the large-scale structures existing in the outer layer.
For the scalar field, Abe and Kawamura (2002) reported the existence of the
large-scale structure in the outer layer of the channel for Reτ = 640 with
Pr = 0.025 and 0.71, but no detailed discussion was provided. Figure 18 (a)
shows the one-dimensional spanwise spectra kzΦuu(λz) and kzΦθ2θ2

(λz) scaled
with u2

τ and θ2
τ , respectively, at Reθ = 830. In general, both spectra are similar

in appearance with the inner peak located at y+ ≈ 15 (see also Figure 8 (b))
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and λz ≈ 110 indicating the near-wall streaks. However, differences can be ob-
served in the outer region (y+ > 100) where the outer peak of θ2 is weaker than
that of u. Figure 18 (b) shows the spanwise spectra for scalars θ4 and θ5 with
different boundary conditions but same Pr = 2.0. The influence of the different
boundary conditions is clearly seen. The spectrum of θ5 with isoflux boundary
condition has a constant value down to the wall whereas the spectrum of θ4 is
decreasing to zero to fulfil the boundary condition. Above y+ = 10, there is no
clear difference. Compared to Figure 18 (a), it is important to note that the
outer peak (λ+

z ≈ 400) does not exist for Pr = 2.0. Figure 18 (c) shows Pr
effects on the spanwise spectra. With increasing Pr, the spectral peaks move
towards the wall and towards smaller spanwise wavelengths λz (see also Figure
17). Note that the inner peak for the case of Pr = 0.2 resides at y+ ≈ 50 which
is also observed in the RMS value of the scalar variance as shown in Figure
8 (b). If the spanwise spectrum of θ1 (Pr = 0.2) is scaled by θ2

rms instead of
θ2

τ , the peak extends towards y+ ≈ 10, however the corresponding fluctuations
θrms close to the wall are extremely small.

4. Conclusions

A direct numerical simulation (DNS) of a spatially developing turbulent bound-
ary layer with passive scalars over a flat plate under zero pressure gradient
(ZPG) has been carried out. The Reynolds number based on the inlet dis-
placement thickness Reδ∗

0
is 450, and Prandtl numbers are varying from 0.2 to

2 while two wall boundary conditions, i.e. isoscalar and isoflux, are employed.
The highest Reynolds number obtained is Reθ = 850 based on the momen-
tum thickness θ. The computed velocity and scalar fields are compared with
existing data from the literature and the agreement is very good in general.

The main conclusions of the present study are summarised as follows:

• The mean scalar profiles are virtually independent of the employed wall
boundary conditions whereas the effects on the scalar variances are obvious in
the near-wall region. Further away from the wall, the effects from different
wall boundary conditions are negligible. The skewness and flatness profiles are
different up to about 150 in viscous units, i.e. to the middle of the boundary
layer for the present simulation parameters.

• The results (mean scalar profiles, Prt, JPDF, two-point correlations etc.)
for θ2 with Pr = 0.71 and isoscalar boundary condition obtained from the
present DNS and those from Kim and Moin (1989) using an internal heat source
appear similar in the near-wall region. This implies that these two boundary
conditions might not have a significant influence on the low-order statistics in
the near-wall region.

• All the terms in the Reynolds-stress and scalar-flux budgets are explicitly
evaluated including the pressure terms. Far away from the wall, both the mean
convection and the turbulent diffusion term become balancing terms in the
scalar-flux budgets, together with the pressure-diffusion term. This is in good
agreement to the Reynolds-stress budgets.



DNS of a turbulent boundary layer with passive scalar 139

• Prandtl-number scalings for the scalar-flux budgets and several other
scalar quantities in both inner and outer units are proposed based on the present
data, however, further investigations at wider Pr range are needed to validate
the results.

• The intermittency in the outer region is identified and quantified via
higher-order statistics and PDF distributions.

• The scalar with isoscalar boundary condition is highly correlated with the
streamwise velocity component in the near-wall region, however showing the
influence of the wall boundary condition. Near the boundary-layer edge, a mild
correlation between these two quantities was observed, especially independent
of the boundary condition.

• All the scalar streak spacings grow downstream with increasing Rey-
nolds numbers. The scalar streak spacings pertaining to the isoflux boundary
condition and lower Pr grow faster.

• The large-scale structures could be identified with the help of the pre-
multiplied spanwise energy spectra. There certainly exist large-scale structures
for the velocity field and scalar with Pr = 0.71. For the higher Pr cases, no
large-scale structures are identified. The inner spectra peaks move away from
the wall and towards larger wavelengths λz as Pr decreases.

• Even though the Reynolds number considered in the present study is so
far the highest with such a variety of scalars, it is still low compared to the
experiments. Therefore, low Reynolds-number effects are important and play
a role when interpreting the results.

In the future, the large amount of data from the simulation will be further
processed and new and existing LES/RANS closures for modelling the scalar-
fluxes will be developed and critically evaluated against the present database.

The present database will be open to public access through the following
link: http://www.mech.kth.se/.
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The present study investigates the effects of the ambient free-stream turbulence
(FST) on the momentum and heat transfer in a turbulent flat-plate boundary
layer via large-eddy simulations (LES) using the ADM-RT model. Due to a FST
of 20%, the skin-friction coefficient cf and Stanton number St are substantially
elevated up to 15% in the fully turbulent region. The depression of both the
mean velocity and temperature profiles in the wake region due to the FST is
observed, however, the influence on the wall-normal heat flux in the near-wall
region is negligible.

1. Introduction

The aim of this study is to perform numerical simulations to investigate the
influence of free-stream turbulence (FST) on the momentum and heat transfer
in a spatially evolving, fully turbulent boundary layer. Due to the ambient
turbulence, such a boundary layer will undergo rapid bypass transition see
e.g. Brandt et al. (2004) before reaching a turbulent state. This problem is of
interest in many industrial applications in particular related to turbomachinery.
Bradshaw (1974) performed the landmark work in this field and later a series of
studies have been carried out, e.g. by Simonich & Bradshaw (1978), Hancock
& Bradshaw (1983, 1989). These authors analysed the influence of the grid-
generated FST in terms of both turbulence level and turbulent length scale.
Up to 30% increase in the Stanton number due to 6% FST is reported. Blair
(1983a,b) also reported that the momentum and heat transfer is augmented by
grid-generated FST and that the heat transfer seems to be much more affected
in a turbulent boundary layer. However, only as much as 20% increase for the
heat transfer of a boundary layer under 7% FST was reported. Using the wake
of a free jet as the inflow FST, Maciejewski & Moffat (1992a,b) reported a 1.8 ∼
4 fold absolute augmentation in Stanton number due to free-stream turbulent
fluctuations from 20% ∼ 60%. The extraordinarily high increase in the Stanton
number might, however, be due to the incoming large-scale, anisotropic FST.
In spite of the number of studies during the last decades, the problem at hand
is still not fully understood. The conclusions from all the studies are general,

145



146 Q. Li, P. Schlatter, & D. S. Henningson

but the magnitude of the heat transfer enhancement varies considerably from
one study to another (Maciejewski & Moffat 1992a,b).

Therefore, one could resort to numerical simulation. As the modern com-
puters developed during the last 20 years, numerical simulation, in particular
direct numerical simulations (DNS) and large-eddy simulations (LES), have
become important tools for transition and turbulence research. Péneau et al.
(2000, 2004) investigated the influence of high levels of FST on a spatially evolv-
ing turbulent boundary layer using LES with a dynamic mixed subgrid-scale
(SGS) model. Some of the previous experimental observations were reproduced
by their simulations. They further reported that the mean temperature profiles
exhibit different slopes in the logarithmic region with increasing FST intensity
whereas the velocity profiles remain essentially unchanged. Jacobs & Durbin
(2000) have performed DNS of bypass transition at lower turbulence intensi-
ties including heat transfer (Pr = 0.71) and found a generally high correlation
between the temperature and (streamwise) velocity during transition. In the
turbulent regime, a minor reduction of the temperature profile in both the wake
and logarithmic region could be observed.

The aim of the present study is to numerically examine the influence of
ambient FST on the momentum and heat transfer at the wall in a fully turbu-
lent boundary layer. Open questions related to quantifying the increase of the
friction coefficient and the Stanton number due to high levels of FST shall be
addressed. Coupled to these issues is the validity of the Reynolds analogy com-
monly applied for modelling purposes. As also suggested by Blair (1983a,b),
effects of the FST on turbulent heat transfer within the boundary layer are
discussed.

2. Numerical methodology

2.1. Numerical method and SGS modelling

The filtered three-dimensional, time-dependent, incompressible Navier–Stokes
equations are solved using a pseudo-spectral method (Chevalier et al. 2007),
i.e. Fourier series are employed in the wall-parallel directions and the wall-
normal direction is discretised with Chebyshev polynomials. One more equation
governing the heat transfer is solved with the same discretisation with the
Prandtl number being 0.71. Since there is no feedback force, the temperature
field is considered as a passive scalar. No-slip and isothermal wall boundary
conditions are employed for velocity and temperature, respectively. The sub-
grid scale stress model used is the ADM-RT model (Schlatter et al. 2004)
extended to also include passive scalars. Time is advanced with a mixed Runge–
Kutta/Crank–Nicolson scheme. At the downstream end of the domain, a“fringe
region” is added to fulfil the periodic boundary condition in the streamwise
direction. In this region, the outflow is forced by a volume force to the laminar
inflow condition, i.e. the Blasius boundary-layer profile. In addition, to trigger
rapid laminar-turbulent transition, a random volume forcing located at a short
distance downstream of the inlet (x = 10, Rex = 33400) is used.
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2.2. Free-stream turbulence generation

The boundary layer is subject to external disturbances, i.e. free-stream tur-
bulence which is generated by a superposition of eigenmodes of the Orr-
Sommerfeld/Squire operator from the continuous spectrum (Brandt et al.
2004). A similar way is also used by Jacobs & Durbin (2000). The generated
FST is designed to be homogeneous and isotropic, following the von Kármán
spectrum,

E(κ) ∝ κ4

(C + κ2)17/6
(1)

with C being a constant and κ denoting the spatial wavenumber. For small
wavenumbers κ, i.e. large scales, such a spectrum is asymptotically proportional
to κ4, whereas the Kolmogorov − 5

3 spectrum is recovered for large κ. Following
Tennekes & Lumley (1972), an integral length scale L characterising the FST
is defined as

L =
1.8

κmax
, (2)

where κmax is the wavenumber of the maximum energy.

Note that each individual eigenmode of the Orr-Sommerfeld/Squire opera-
tor satisfies the continuity constraint, so the disturbances obtained by summing
up different modes satisfy continuity as well. These disturbances are then intro-
duced in the fringe region and subsequently advected downstream. Due to the
high level of FST at the top boundary, the time step is limited and numerical
instabilities might appear. Therefore, all the eigenfunctions are multiplied by
a smooth step function above certain hight ydamp (non-dimensionalised by the
displacement thickness at the inlet δ∗0). In the present simulations, ydamp is
chosen to be yl − 20 where yl is the total height of the computational domain.

Besides the free-stream turbulence in the velocity field, ambient disturban-
ces in the temperature field are generated in a similar fashion as generating
the “velocity” turbulence, but based on the continuous spectrum of the lin-
earised temperature equation. The intensities of both the velocity and temper-
ature disturbances can be controlled independently, therefore their influences
on transitional and turbulent heat transfer can be examined individually.

The comparisons from different cases are made at the same Reynolds num-
ber based on certain measures of the boundary-layer thickness, e.g. Reθ = U∞θ

ν

or Reτ = uτ δ95

ν where U∞ is the free-stream velocity, uτ the friction velocity, θ
the momentum thickness and δ95 the 95% boundary-layer thickness. By using
these Reynolds numbers, the effect of the transition location on the data is
removed. Due to the high FST levels, the momentum thickness θ is not appro-
priate, therefore, another definition θ95 defined by only integrating up to the
95% boundary-layer thickness is used in some cases. For the present numerical
setup, possible history effects of the FST cannot be considered, i.e. the FST
effects only depend on the local turbulence intensity and the length scale. To
investigate the historical effects of the FST, one has to include the leading edge
of the plate.
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Table 1. Spatial resolution and box dimensions (including
fringe region) for the present simulations.

xl × yl × zl Nx × Ny × Nz Reδ∗
0

δ∗0 (resolution)
Box 1 1000× 60 × 50 256 × 121 × 36 300
Box 2 1500× 90 × 90 384 × 121 × 96 300
Box 3 1500 × 180 × 180 384 × 201 × 128 300
Box 4 750 × 40 × 34 1024 × 289 × 128 450

Table 2. Parameters used to define the FST and the corre-
sponding computational domain for the simulations. Note that
in Case 1, laminar-turbulent transition is only due to the FST
whereas in the other cases an additional random forcing close
to the inflow, i.e. the trip forcing, is active such that a large
part of the computational box is turbulent. Case 5 corresponds
to the DNS simulation by Li et al. (2008).

Tu Tθ L Box
% % δ∗0

Case 1 4.7 0, 4, 10, 40, 80 5 Box 1
Case 2 0 0 0 Box 2
Case 3 4.7, 20 0 2.5, 5, 7.5 Box 2
Case 4 4.7, 20 0 5, 7.5, 15 Box 3
Case 5 0 0 0 Box 4

2.3. Simulation parameters

The main parameters defining the problem are the Reynolds number, the in-
tensities of both the velocity free-stream turbulence Tu and the thermal free-
stream turbulence Tθ and the corresponding turbulence length scale L. The
size of the computational box has to be large enough to accommodate the
largest scales of the FST, in particular its width and height which does restrict
the admissible inflowing FST modes. Therefore, different computational boxes
have been chosen depending on the length scale L of the FST, see Table 1 and
2. The inflow Reynolds number is defined by the displacement thickness of the
boundary layer at the inflow boundary of the computational domain (δ∗0) and
was chosen 300 for all cases; thus the laminar inflow is located at Rex ≈ 30400.
All the quantities are non-dimensionalised with the inlet displacement thickness
δ∗0 and the free-stream velocity U∞.
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3. Results

3.1. Validation of the LES results

The ADM-RT model has been shown to obtain accurate results at a fairly
low computational cost in turbulent channel flows by Schlatter et al. (2004,
2006). Recently, this model has been extended also to include passive scalar by
assuming a constant turbulent Prandtl number Prt being 0.6. A comparison
with the DNS results obtained by Li et al. (2008) at Reθ = 800 is shown in
Figure 1. In general, the results of both the velocity and heat transfer compare
reasonably well with the DNS data, especially the turbulence intensities and
the heat fluxes are predicted accurately. The larger discrepancies in the mean
temperature profile are mainly due to the low resolution used in the streamwise
direction. The grid spacing in the streamwise direction ∆x+ (the wall units
are calculated based on the friction velocity uτ at centre of the domain) for the
present LES is about 60.
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Figure 1. Validation of the LES results (Case 2) at Reθ =
800. Present LES data, ◦ DNS data from Li et al. (2008).
(a) Mean streamwise velocity, (b) Mean temperature, (c) Rey-
nolds stresses, the arrow indicates the quantities: −〈u′v′〉+,
v+

rms, w+
rms, u+

rms, (d) Heat fluxes, the arrow indicates the
quantities: −〈v′θ′〉+, θ+

rms, 〈u′θ′〉+.
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Figure 2. Influence of the thermal free-stream turbulence
(Case 1). Tθ = 0%, Tθ = 10%, Tθ =
80%, (a) Mean temperature profile at Reθ = 395 (Rex =
210400), laminar temperature profile, (b) Stanton num-
ber, laminar and turbulent correlation.
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Figure 3. RMS fluctuation of the temperature at Reθ = 790
(Rex = 390400) (Case 1). Tθ = 4%, Tθ = 10%,

Tθ = 40%, Tθ = 80%.

3.2. Influence of the thermal free-stream turbulence Tθ

The influence of the thermal free-stream turbulence Tθ = θrms has been in-
vestigated in a smaller computational box (Box 1). In Figure 2, the mean
temperature at a fixed downstream position, Rex = 210400 or Reθ = 395,
as well as the evolution of the Stanton number are shown. The laminar tem-
perature profile is also included for comparison. For these cases, the velocity
disturbance level is fixed at Tu = 4.7% while the thermal intensity Tθ is varied
from 0% up to 80%. Nevertheless, the changes in the mean profile and the
Stanton number are almost negligible. It can therefore be concluded that a
higher fluctuation level of the temperature will not lead to an increased heat
transfer at the wall. To further confirm these findings, the distributions of the
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temperature fluctuations at Rex = 390400 or Reθ = 790 are compared in Fig-
ure 3. Note that the decay of the fluctuations for y > 45 is due to the employed
damping function in the free stream. The high levels of temperature fluctu-
ations outside the boundary layer do not influence the growth of the streaky
disturbances close to the wall. Consequently the heat transfer at the wall is
not increased even for Tθ = 80%, as shown in Figure 2 (b). Therefore, only Tu
will be considered afterwards, and Tθ is set to zero.

3.3. Decay of the free-stream turbulence

The FST is well characterised by both the turbulence intensity of the three
different velocity components and a measure of the length scale together with
energy spectrum. At the inlet, the generated FST is supposed to be nearly
isotropic and homogeneous. In particular, the decay rate of the FST is similar
to that of the grid turbulence widely used in the experiments. Figure 4 shows
the downstream decay of the FST. Tu at different wall-normal positions above
the boundary layer and the differences among the velocity intensity components
indicate that the homogeneity and the isotropy of the FST are well achieved. It
is possible to show that the decay obeys an power law and a more rapid decay
of the FST for smaller length scale can be observed (not shown here) which is
consistent with the previous results by Brandt et al. (2004).
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Figure 4. Downstream decay of the FST (Case 4). (a)
Turbulence intensity versus the Reynolds number at y =
50, 100, 150 with L = 7.5, (b) Root-mean-square of the ve-
locity fluctuations versus the Reynolds number at y = 50 with
L = 7.5. urms, vrms, wrms.

3.4. Averaged results

The averaging denoted by the angular brackets 〈〉 is performed over both the
homogeneous spanwise direction and time. The corresponding fluctuating part
is denoted by a prime. The influence of the free-stream turbulence level Tu and
length scale L on the skin-friction coefficient cf and the Stanton number St for
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Figure 5. Influence of the turbulence intensity on the skin-
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Figure 6. Influence of the length scale on the skin-friction
coefficient cf and Stanton number St with Tu = 20%. The
arrow indicates the increasing L = [0, 2.5, 5, 7.5, 15]. (a) cf ,
(b) St.

Pr = 0.71 are shown in Figures 5 and 6. The present LES results of the skin-
friction coefficient cf and the Stanton number St from the no FST reference
case (Case 2) are about 4% and 7% larger than the DNS results by Li et al.
(2008). Consistent results for the skin-friction coefficient cf compared to the
previous numerical simulations, e.g. Brandt et al. (2004), can be established:
For a higher turbulence intensity Tu, a clearly earlier transition to turbulence
leading to an increase of cf can be observed. A similar behaviour also applies
to the Stanton number St. Different trends were observed in the simulations
by Péneau et al. (2000). All the increases in the skin-friction coefficient cf are
about the same for the FST intensities investigated in their simulations from
7% ∼ 21%. Due to the small length scale L = 2.5, the effects from the FST are
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much reduced (Hancock & Bradshaw 1983). The FST decays very rapidly and
therefore the distributions of both skin-friction coefficient cf and the Stanton
number St are almost lying on top of the case with no FST in the fully turbulent
region. Once the length scale is increased, the FST will decay slower and this
will lead to elevation in both cf and St. For the length scales examined in the
present study, the larger the length scale is, the more the skin-friction coefficient
and Stanton number will increase. However, the skin-friction coefficient and
Stanton number will start decreasing if the length scale is too large compared
to the boundary-layer thickness, assuming at a given FST level Tu (Hancock
1978). The reason for the decreased effects of the FST for increasing length scale
is that the no-slip condition of the wall-normal velocity at the wall reduces the
intensity of the wall-normal velocity component (Thomas & Hancock 1977).
This effect is not observed in the present simulation due to the comparably
small length scales of the generated FST. As noted by Blair (1983a,b), the
impact of the length scale of the FST is to reach the maximum at Lu

δ99
= 1

with Lu being the streamwise dissipation length scale and δ99 being the 99%
boundary-layer thickness. For the ratio which is either significantly larger or
smaller than unity, the effects would be expected to diminish.
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Figure 7. Increase of Stanton number St versus the length
scale L. at Reθ95

= 800, at Reτ = 300, ◦ at Tu =
4.7%, at Tu = 20%.

The increases of St compared to Case 2, (i.e. no FST reference case, de-
noted by a suffix “0”,) at Reθ95

= 800 and Reτ = 300 are plotted in Figure 7.
Similar results are obtained also for cf (not shown). In general, for both cf and
St when plotted against Reθ95

, the increase is less than when plotted against
Reτ . For the present simulations at Reτ = 300, a maximum of 15% for St at
the turbulence intensity of 20% is achieved. However, Simonich & Bradshaw
(1978) reported that at a nominal turbulence intensity of 7% in the fully tur-
bulent region, 10% increase for cf and 30% for St was observed. At essentially
the same turbulence intensity, Blair (1983a,b) reported that both cf and St
increase as much as 20% in the fully turbulent region. In the simulations by
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Péneau et al. (2000), an increase of 10% in cf and 20% in St are obtained at
a turbulence intensity of 21% at Reθ ≈ 1100. At Reθ = 800, Jacobs & Durbin
(2000) obtained about 5% increase in cf and 12% in St with turbulence inten-
sity around 4%. The considerably larger increase in St than in cf observed in
the experiments by Simonich & Bradshaw (1978) and the mentioned other sim-
ulations are not confirmed in the present simulations. This might be due to the
present employed LES model and the low resolution used for the simulations.
However, as pointed out in Maciejewski & Moffat (1992a,b), the larger effects
observed by Simonich & Bradshaw (1978) are possiblely due to the change in
the transition location on the flat plate. The FST for the present simulation
decays fast compared to the experiments due to relatively small length scales.
The local FST level at Reθ95

or Reτ = 300 is less than 3% (see Figure 4).
Taking this into account, 15% increases of both cf and St for a local Tu = 3%
are comparable to the experiments.
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Figure 8. Influence of the FST on the mean profiles of veloc-
ity and temperature at Reθ95

= 800. Case 2, Case 4
with Tu = 4.7%, L = 15, Case 4 with Tu = 20%, L = 15,
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The mean velocity and temperature profiles from Case 4 showing the in-
fluences of the FST are plotted in Figure 8. All of the profiles are taken at
Reθ95

= 800. The log-law is also included for comparison. It is clearly seen
that the profiles in the logarithmic region are insensitive to the FST whereas in
the wake region significant depression of the boundary-layer wake starts appear-
ing. Especially for the case of Tu = 20%, the wake region even vanishes. For
the temperature profiles, a similar conclusion can be drawn, i.e. only the wake
region is influenced by the FST while the viscous sub-layer and logarithmic
region are unchanged. These results are consistent with the previous exper-
imental work by Blair (1983a,b). However, Maciejewski & Moffat (1992a,b)
reported that only for the temperature profile, the depression extends even be-
low the wake region down to the logarithmic region. The results by Péneau
et al. (2000) show that the slope of the logarithmic region varies significantly
with Tu for the temperature profile, which can not be confirmed here.



Simulations of heat transfer with FST 155

 y+

 u
rm

s
+

10
0

10
1

10
2

10
3

0

0.5

1

1.5

2

2.5

3

 y+

 <
u

’ θ
’>

+

10
0

10
1

10
2

10
3

0

1

2

3

4

5

6

7(a) (b)

 y+

 <
v’

 θ
’>

+

10
0

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1(c)

Figure 9. Influence of the FST on the turbulent intensity,
heat fluxes and turbulent Prandtl number at Reθ95

= 800.
Case 2, Case 4 with Tu = 4.7%, L = 15, Case

4 with Tu = 20%, L = 15, ◦ DNS data from Li et al. (2008).
(a) u+

rms, (b) 〈u′θ′〉+, (c) 〈v′θ′〉+.

The RMS fluctuation of the streamwise velocity for different turbulence in-
tensities together with the DNS data from Li et al. (2008) are shown in Figure
9 (a). A slight increase of the peak value and a decrease of the peak position
from the wall for the urms are observed. The relatively large increase far away
from the wall, i.e. y+ > 200, due to the FST is also noticeable. A similar be-
haviour also exists for the temperature fluctuations. On the contrary, the shear
stress 〈u′v′〉+ (not shown here) and the wall-normal heat flux 〈v′θ′〉+ remain
unchanged except in the outer part of the boundary layer. The reason for the
unaltered profiles of 〈u′v′〉+ and 〈v′θ′〉+ in the near-wall region might be that
the perturbations enter the boundary layer mainly in the streamwise velocity
component (Brandt et al. 2004). However, Péneau et al. (2000) observed a dif-
ferent trend: The peak values of 〈u′v′〉+ and 〈v′θ′〉+ are increased considerably
in both the logarithmic and wake region and the peak positions are displaced
noticeably towards the wake.

4. Conclusions and outlook

Simulations of turbulent boundary-layer flow with heat transfer under the in-
fluence of free-stream turbulence have been performed. Since the behaviour of
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the velocity disturbances inside and outside the boundary layer for a transi-
tional case is well understood, see e.g. Brandt et al. (2004), the focus of the
present contribution is to examine the influences of the ambient turbulence on
momentum and heat transfer in a fully turbulent flow; in particular whether
an increased Stanton number can be observed for high turbulence intensities.

A detailed parameter study varying both the turbulence intensity and the
length scale of the velocity has been conducted. In particular, the simula-
tion domains are chosen large enough such that the relevant part of turbulent
boundary-layer flow can be included in the computational domain. The results
obtained are consistent with previous observations. The LES results with no
FST are validated against the DNS results and the agreement in general is
reasonably good.

The mean velocity and temperature profiles are unaffected by the FST in
the viscous sub-layer and the logarithmic region. On the other hand, more
depression of the wake region can be observed with increasing turbulence in-
tensity. Both the skin-friction coefficient and the Stanton number increase
with increasing free-stream turbulence intensity (as much as 15% for a nominal
turbulence intensity of 20% at the inlet). Taking into account the low local
turbulence intensity, the increase is on the same level as observed in the exper-
iments. In the future, to validate the heat-transfer results with FST, a series
of direct numerical simulations shall be carried out to ensure the accuracy of
the current LES predictions.
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