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Introduction 
While hydrodynamic stability and transition to 
turbulence in straight pipes — as one of the most 
fundamental problems in fluid mechanics — has 
been studied extensively, the stability of curved 
pipes has received less attention. In the present 
work, the first (linear) instability of the flow inside a 
toroidal pipe is investigated as a first step in the 
study of the related laminar-turbulent transition 
process. The impact of the curvature of the pipe 
(defined as the ratio between the radius of the 
pipe and that of the torus) on the stability 
properties of the flow is studied in the framework 
of classical linear stability analysis. 
We focus on an idealised toroidal geometry which, 
albeit rarely encountered in industrial applications, 
is representative of a canonical flow and is 
relevant in the context of the research on the 
onset of turbulence. Moreover, the toroidal pipe 
constitutes the common asymptotic limit of two 
important flow cases: the curved pipe and the 
helical pipe. The technical relevance of these 
flows is apparent from their prevalence in 
industrial appliances, such as in heat exchangers, 
exhausts and other devices; for a comprehensive 
review of the applications, see Vashisth et al. [1]. 
The study of the flow in curved pipes has been the 
subject of several papers over the last decades: 
theoretical, experimental and numerical results 
have been presented [2-4], however, a thorough 
analysis of the causes and mechanisms of 
hydrodynamic stability and transition to turbulence 
in this flow is still missing. 
 
Base flow 
In order to determine the linear stability of the 
toroidal pipe flow, we investigate the growth of 
infinitesimal disturbances around a basic state. 
This base flow, i.e. the solution to the steady, 
incompressible Navier–Stokes equations, is 
invariant with respect to the axial pipe direction 
and is maintained in motion by a constant volume 
force. The base flow is characterized, as first 
discovered by Dean [5], by the presence of two 
counter-rotating vortices, so-called Dean vortices 
in his honour. These two primary vortices are 
present at every Re and for any value of � 
(different from zero), and are located 
symmetrically with respect to the equatorial plane 
of the torus. The shape of the vortices and the 
position of their centres depend on both Re and �. 
 

 
Figure 1: Critical mode for � =0.3, Re=3379 

Stability analysis 
Results show that the flow is linearly unstable for 
all curvatures investigated between 0.002 and 
unity, and undergoes a Hopf bifurcation at Re of 
about 4000. The bifurcation is followed by the 
onset of a periodic regime, characterised by 
travelling waves with wavelength O(1) pipe 
diameters. The neutral curve associated with the 
instability is traced in parameter space by means 
of a novel continuation algorithm, which provides 
a complete description of the modal onset of 
instability as a function of the two governing 
parameters. Several different modes are found, 
with differing properties and eigenfunction shapes. 
Some eigenmodes belong to groups with a set of 
common characteristics, deemed ‘families’, while 
others appear as ‘isolated’. Comparison with 
nonlinear DNS shows excellent agreement, 
confirming every aspect of the linear analysis, its 
accuracy, and proving its significance for the 
nonlinear flow. Experimental data from the 
literature are also shown to be in considerable 
agreement with the present results [6]. 
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