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Abstract
Thermal anemometry sensors for time-resolved

velocity measurement average the measured signal
over the length of their sensor, thereby attenuating
fluctuations stemming from scales smaller than the
wire length. Several compensation methods have
emerged, the most prominent ones in wall turbulence
rely on the small-scale universality in canonical flows
or on the reconstruction based on two attenuated
variance profiles. To extend these methods to non-
canonical flows, the present work considers various
adverse-pressure gradient (APG) turbulent boundary
layer (TBL) flows in order to explore how the small-
scale energy is affected in the inner and outer layer and
how the two prominent correction methods perform as
function of wall-distance, wire length and flow con-
dition. Our findings show that the increased levels of
small scale energy associated with APG TBLs reduces
the applicability of empirical methods based on the
universality of the small-scale energy. On the other
hand, a correction based on the relationship between
the spanwise Taylor microscale and the two-point
streamwise velocity correlation function, is able to
correct the attenuated profiles of non-canonical cases.
We therefore explore the development of a compos-
ite profile for the Taylor microscale, which could
then be used for the correction of probe-length at-
tenuation effects across a multitude of flow conditions.

1 Introduction
In the pursuit of accurate velocity measurements in

high Reynolds (Re) number turbulent boundary layer
(TBL) flows, spatial averaging effects rising from the
use of finite-length sensing probes (most prominently
hot-wires), have been a widely acknowledged and
discussed problem. As pointed out by Hutchins et al.
(2009), hot-wire spatial averaging effects have been
the root cause of major disagreements in high-Re
streamwise velocity fluctuation profiles and trends in
the literature, e.g., with respect to the scaling of the
inner-peak (Örlü & Alfredsson, 2013) or the existence

of an outer peak in the streamwise variance profile
(Alfredsson et al., 2011). Due to the importance of
this phenomena, a number of correction schemes for
the missing fluctuations have been proposed during
the past 20 years. Miller et al. (2014) assessed the
most relevant ones in the literature, including the one
by Smits et al. (2011) based on the attached eddy
hypothesis, and the one by Segalini et al. (2011) based
on the relation of the spanwise Taylor microscale (λg)
and the two-point streamwise velocity correlation
function, finding good results for pipe, channel and
zero-pressure gradient (ZPG) TBL flows.

However, most of the aforementioned hot-wire
spatial resolution corrections were developed for
canonical flows under the premise of universality of
the small-scale energy scaled with viscous wall units
(L+) (Mathis et al. (2011)). The one by Segalini et
al. (2011), however, might be more generally applica-
ble, although it relies on a correlation between the at-
tenuation and λg , taking only ZPG TBL data as refer-
ence. As discussed in Sanmiguel Vila et al. (2020), this
could be a potentially erroneous assumption in non-
canonical flows, such as TBLs subjected to adverse
pressure gradients (APGs) or flows along roughness
walls (Gatti et al. (2022)). When the flow is deceler-
ated due to the presence of an APG, the overall struc-
ture and dynamics of the TBL are greatly affected: in-
ternal shear layers appear, with large scale structures
leaving a larger imprint at the wall, and small scale en-
ergy becoming more relevant in the outer region of the
TBL as discussed in Sanmiguel Vila et al. (2020) and
Pozuelo et al. (2022). The introduction of the pres-
sure gradient, summed with the already-known high
Reynolds number effects, leads to an increase in the
fluctuations in the outer region of the TBL, which de-
pending on the APG strength, may show a dominant
peak in the streamwise component of the Reynolds
stresses (Sanmiguel Vila et al., 2020). Nevertheless,
the conclusions drawn from spatial attenuation stud-
ies in canonical flows have been directly transferred
over to the study of APG TBLs. For example, it is



Table 1: Numerical datasets used in the present work.

Dataset Reθ Reτ H12 β

ZPG 3116− 6634 1002− 2007 1.41− 1.37 0
APG Pozuelo 4894− 8940 1031− 1967 1.61− 1.50 1.56− 1.12
APG Bobke 3079 748 1.56 0.85

Wing 3158 671 1.65 2.7
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Figure 1: Inner-scaled streamwise velocity mean (left) and fluctuations (right) profiles of the numerical datasets used in this
work. In the APG Pozuelo and ZPG datasets, the high and low Reτ are represented by solid and dashed lines
respectively. Black, dashed lines show the linear (U+ = y+) and logarithmic (U+ = 1

κ ln y+ + B, with κ = 0.38
and B = 4.1) velocity profiles.

common practice to use the same hot-wire length (in
viscous units) for flows with different pressure gradi-
ents as e.g. done in Mathis et al. (2011) and Harun et
al. (2013), thereby seemingly assuming that pressure-
gradient effects may not be biased by spatial resolution
effects.

Therefore, despite the plethora of correction tech-
niques available, none of them is directly applicable
to APG TBLs, as they were developed with or at least
based on data from canonical ZPG TBLs in mind.
In this work, we first study the hot-wire resolution
effects in APG TBLs and show their differences to the
ZPG cases. Furthermore, we assess the applicability
and effectiveness of the aforementioned correction
methods, as well as propose new pathways in the
correction of hot-wire anemometry (HWA) measure-
ments of APG TBLs that can also shed light on ways
to include other non-canonical effects.

2 Data Sets
In the following, we use data from previous

high-fidelity numerical simulations of ZPG by Eitel-
Amor et al. (2014) and near-equilibrium APG by
Pozuelo et al. (2022) and by Bobke et al. (2017).
Moreover, new wall-resolved LES simulations of a
NACA 4412 wing profile at an angle of attack of 5
degrees, and chord-based Reynolds number of 106 are
used. The rapidly evolving pressure gradient over the
suction side (in the present work, the profile analyzed
is located at x/c = 0.75) makes this new dataset

ideal for the study of non-equilibrium APGs. These
simulations were possible thanks to the introduction
of adaptive mesh refinement into the spectral-element
method code Nek5000, described and validated by
Tanarro et al. (2020). These data sets, summarized
in Table 1, are exploited to study the effect of probe
spatial averaging effects on the streamwise-velocity
fluctuations and in conjunction with it the effect on
the spanwise Taylor microscale in APG TBLs, which
according to Segalini et al. (2011) is associated with
the attenuation effect. As shown in Figure 1, the
datasets studied are quite diverse, with the matching
Reτ cases for different β conditions showing clear
differences in both their mean and fluctuation profiles.

3 Results
To simulate the effect of spatial resolution in hot-

wire anemometry measurements, the approach de-
scribed in Örlü and Schlatter (2013) and Philip et al.
(2013) is followed. In short: a box filter (in physical
space) with length equal to that of the hot-wire sensor
is applied to the velocity signals. This filter is a good
surrogate for wires with high length-to-diameter (as-
pect) ratios, for which end-conduction effects can be
neglected, as discussed by Philip et al. (2013).

The effect of insufficient spatial resolution for ZPG
TBLs is well-known and reproduced in the top row of
Fig. 2. It is apparent that the small-scale dominated
inner layer is strongly attenuated, while the outer layer
does not exhibit any reduced amplitude. For the APG



100 101 102 103

y+

0

2

4

6

8

10
u
u
+

ZPG, Reτ = 1002

100 101 102 103

y+

0

2

4

6

8

10

u
u
+

ZPG, Reτ = 2007

100 101 102 103

y+

0

2

4

6

8

10

u
u
+

APG Pozuelo, Reτ = 1031

100 101 102 103

y+

0

2

4

6

8

10

u
u
+

APG Pozuelo, Reτ = 1967

100 101 102 103

y+

0

2

4

6

8

10

u
u
+

APG Bobke, Reτ = 748

100 101 102 103

y+

0

2

4

6

8

10

u
u
+

Wing, Reτ = 670

Figure 2: Streamwise velocity fluctuations in a ZPG (top row), mild, quasi-equilibrium APG (middle row and bottom left)
and strong, non-equilibrium APG (bottom right). Full black lines are used for the original fluctuation profile, while
dashed and dotted lines represent the attenuated profiles obtained by using a probe of 20 and 50 viscous units length.
Profiles reconstructed using the correction by Smits et al. (2011) are shown in blue (with line-style depending on
the probe-length from which the profile was reconstructed), whereas profiles reconstructed using the correction by
Segalini et al. (2011) (which uses both attenuated profiles) are shown in red.

TBLs, on the other hand, the attenuation is also present
in the outer layer. In particular it is apparent that at-
tenuation is higher for lower Reτ and stronger β: the
strongest attenuation being present for the “wing” and
weakest for “APG Pozuelo”. It can hence be antici-
pated that correction methods based on the assumption
of small-scale universality limited to the inner layer
will not be able to correctly account for the missing
small-scale energy in the outer layer.

To assess the performance of the correction
schemes by Smits et al. (2011) and Segalini et al.
(2011), they have been applied on two attenuated
variance profiles, i.e representing measurements with

probe lengths of L+ = 20 and 50, see Fig. 2. For the
smaller probe length, the effects of the APG on the lost
energy is minimal, as only the inner region is affected.
Nonetheless, as the probe length increases, the effect
of the APG becomes apparent: not only the near-wall
peak of the variance profile is attenuated, but also the
outer peak. It is in this more extreme case in which the
limitations of the widely-used correction by Smits et
al. (2011) or related correction schemes based on the
small-scale universality can be appreciated: Although
the effect of the missing small-scale energy on the in-
ner peak is reasonably well corrected, the outer region
of the TBL remains problematic. This stems from the
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Figure 3: Contours of the attenuation of the streamwise velocity fluctuations (F2 = uum/uu) in a ZPG (top row), mild, quasi-
equilibrium APG (middle row and bottom left) and strong, non-equilibrium APG (bottom right) as a function of the
wall-normal position (y+) and probe length (L+). The full contour lines indicate the actual attenuation, while the
dashed ones correspond to the predicted one by the correction introduced in Smits et al. (2011), and the dotted lines
to the correction proposed by Segalini et al. (2011) (using the λg computed from the timeseries). Horizontal dashed
lines indicate probe lengths of 20, 50 and 100 viscous units, and the vertical lines delimit the TBL overlap region
(
√
Reτ < y+ < 0.3Reτ ).

fundamental assumption of the correction scheme: the
attached eddy hypothesis, which translates into a y−1

factor in the correction.

A better reconstruction of the original (non-
averaged) data is obtained with the correction scheme
proposed by Segalini et al. (2011). In fact, both the
inner and outer layer lie on top of the original data af-

ter the correction is applied. The method relies on an
approximation of the velocity-fluctuation correlation
function using the spanwise Taylor microscale (valid
in the limit of small probe lengths). The method es-
timates both the corrected variance of the streamwise
velocity fluctuations as well as its spanwise Taylor mi-
croscale. The outperformance of the method proposed
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Figure 4: Inner (left) and outer (right) scaled profiles of the Taylor microscale (λg). The vertical lines on the left plot correspond
to the position of y+ =

√
Reτ , and the one on the right panel to y/δ99 = 0.15.

by Segalini et al. (2011) over the one by Smits et al.
(2011) is clearly reflected in Figure 3, in which the
contours of the fluctuation attenuation predicted by
both methods for different probe-lengths at different
wall-normal positions are overlayed on top of the ac-
tual attenuation. As discussed previously, the assump-
tion of the attached eddy hypothesis leads to a decrease
proportional to y−1 in the correction scheme by Smits
et al. (2011), a faster rate than the actual one. This
leads to an under-correction of the attenuation start-
ing in the overlap layer of the TBL. In cases in which
the small-scale energy is confined to the inner layer
(i.e. ZPGs or mild APGs at high Reτ ), this departure
from the actual attenuation is not as drastic as long as
the probe lengths are small. However, for high β and
lower Reτ cases, larger deviations from the actual at-
tenuation are observed starting from the overlap layer
at moderate probe lengths. On the other hand, the at-
tenuation predicted by Segalini et al. (2011) correction
scheme is almost on top of the actual attenuation for
all the considered cases across the whole TBL. Nev-
ertheless, this method has two major drawbacks: it re-
quires two measurements (although not simultaneous)
using different wire lengths, and, as noted by Miller
et al. (2014) the optimization process used is prone to
amplifying experimental noise. Furthermore, the fit
used for estimating the attenuation as function of λg
may need to be adapted for non-canonical flow cases
as e.g., for strong pressure gradient cases.

In order to circumvent the issues presented by
both the Smits et al. (2011) and Segalini et al.
(2011) correction schemes, both approaches should
be combined. We propose the development of a
correction scheme based on a single expression as
in the Smits et al. (2011) correction which should
be capable of providing a meaningful correction
for the streamwise velocity fluctuations in the outer
layer of non-canonical flows (i.e., APGs). This
can be achieved through the relationship between
the spanwise Taylor microscale and the streamwise
velocity two-point correlation function Segalini et

al. (2011). As shown in Fig. 4, the spanwise Taylor
microscale plateaus in the inner region when scaled
in inner units across all cases. In the outer region, the
effects of the pressure gradient (and its history effects)
become relevant. A better collapse of the data in the
overlap region (

√
Reτ < y+ < 0.15Reτ ) is achieved

by scaling the wall-normal distance with the boundary
layer thickness, and the spanwise Taylor microscale
with the square root of the friction Reynolds number
(a mixed scaling as proposed in the original work
by Segalini et al. (2011)) with the addition of the
inverse of the shape factor, which is a quantity closely
related with both the strength and the history of
the pressure gradient, as discussed by Dróżdż et al.
(2020). Nonetheless, a collapse of the λg profiles in
the outer region (y/δ99 > 0.15) is yet to be found.

4 Conclusions and outlook
In this work, we analyzed the effect of hot-wire

length on the attenuation of the streamwise fluctu-
ation profiles in canonical and non-canonical TBLs.
We focused our attention in three kinds of profiles:
ZPGs, near-equilibrium APGs, and non-equilibrium
APGs (for which a new high-fidelity numerical sim-
ulation of the flow around a NACA 4412 wing profile
was carried out). Two correction methods based on
different approaches are analyzed: One the one hand,
Smits et al. (2011) propose a correction based on the
attached eddy hypothesis and empirical fittings to ZPG
datasets, and features a single expression; and, on the
other hand, Segalini et al. (2011) uses the relationship
between the Taylor microscale and the two-point cor-
relation function, which is more general but requires
two sets of measurments with different HW lengths.

We show that the correction by Smits et al. (2011)
fails to capture the presence of small-scale energy in
lower Reτ and high β cases, leading to an under-
correction of the outer peak characteristic of APGs.
We therefore recommend its use only in canonical
TBLs: either in ZPGs or in near-equilibrium APGs



with low β and high Reτ . On the contrary, the cor-
rection scheme proposed by Segalini et al. (2011) is
shown to perform equally well in canonical and non-
canonical flows. Nevertheless, it has one major draw-
back: it necessitates of two independent fluctuation
profiles measured with different HW lengths, and in-
volves an optimization process which could result in
the amplification of experimental uncertainties.

Lastly, we propose a path towards a more general
correction scheme, which involves the development
of a composite profile for the Taylor microscale in
TBLs. Insofar, a good collapse has been found for
both the inner and overlap regions, but a formulation
that collapses the different profiles in the outer (wake)
is still an open subject.

Acknowledgments
The simulations were performed on resources provided

by both the Swedish National Infrastructure for Com-
puting (SNIC) at the PDC Center for High Performance
Computing, in KTH (Stockholm), and by the Partnership
for Advanced Computing in Europe (PRACE) project
2021250090 on HAWK (HLRS Stuttgart).

References

Alfredsson, P. H., Segalini, A., & Örlü, R. (2011). A
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Örlü, R., & Schlatter, P. (2020). A description of
turbulence intensity profiles for boundary layers
with adverse pressure gradient. Eur. J. Mech.-
B/Fluids, 84, 470–477.
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