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Abstract This paper considers the analysis and control of
fluid flows using tools from dynamical systems and con-
trol theory. The employed tools are derived from the spec-
tral analysis of various linear operators associated with the
Navier–Stokes equations. Spectral decomposition of the lin-
earized Navier-Stokes operator, the Koopman operator, the
spatial correlation operator and the Hankel operator provide
a means to gain physical insight into the dynamics of com-
plex flows and enables the construction of low-dimensional
models suitable for control design. Since the discretization
of the Navier-Stokes equations often leads to very large-
scale dynamical systems, matrix-free and in some cases iter-
ative techniques have to be employed to solve the eigenvalue
problem. The common theme of the numerical algorithms is
the use of direct numerical simulations. The theory and the
algorithms are exemplified on flow over a flat plate and a jet
in crossflow, as prototypes for the laminar-turbulent transi-
tion and three-dimensional vortex shedding.

1 Introduction

Despite the long history of fluid mechanics we lack a com-
plete understanding of why fluid flows have a tendency to
change pattern when perturbed. Two examples of flows that
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transition from an organized and steady state to an irreg-
ular and fluctuating state when perturbed are the laminar-
turbulent transition of flows on slender bodies and the alter-
nating shedding of vortices of flows behind bluff bodies. It
has been known for over a century that these flow phenom-
ena are governed by the basic conservation laws of mechan-
ics, but the difficulties that arise when one attempts to solve
or analyze the system of equations have proved to be a major
obstacle.

In this paper, we are concerned with the laminar-turbulent
transition of a flow along a flat plate and the vortex shed-
ding in a jet in a crossflow. In particular, a global view-
point is adopted where the flow is allowed to move as it
wishes in the physical domain without assumptions about or
constraints on its dynamics. There are countless examples
in both nature and industry pertaining to the study of the
flow along a flat plate, since it is the archetype of boundary
layer flows. In these flows the layer of fluid in the immediate
vicinity of the surface is sheared, resulting in rapid velocity
change over a short distance normal to the surface. Exam-
ples of boundary-layer flows are the layer of air near the
ground or near an aircraft wing, where the observed flow
pattern depends on the smoothness of the surface, level of
diurnal heat, moisture, turbulence levels far away from the
surface and so on. The fundamental issue is a physical and
mathematical understanding of the transition of a laminar
smooth flow to a turbulent unpredictable one. Compared to
a laminar flow, a turbulent flow is more expensive and often
undesirable in practical applications. For instance, to sus-
tain a turbulent flow in a pipe, more pressure is required to
maintain the same volume of discharge as a laminar flow.
Also, turbulent flow around vehicles increases the friction,
resulting in higher fuel costs. Understanding the transition
process is adjacent to the field of flow control and in partic-
ular transition control, where the aim is to modify the flow
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conditions in order to delay the laminar-turbulent transition.
The necessary flow conditions can be obtained by chang-
ing initial and boundary conditions (e.g. surface roughness),
the flow properties (e.g. velocity, pressure distribution, tur-
bulence level) or the fluid properties (e.g. density, viscosity
and temperature).

The classical example of vortex shedding is the von Kár-
mán vortex street that can be observed in the formation of
clouds behind mountains and islands or in the flow behind
vehicles, buildings and chimneys of factories. It is of great
practical significance to identify the source from which al-
ternating pairs of vortices are shed downstream, since they
often lead to large structural vibrations, acoustic noise and
resonance. Another example of a flow dominated by vortex
shedding is the jet in crossflow, which is found when gas or
liquid is injected through a small orifice into a crossflow of
a similar fluid. The flow is related to a wide range of ap-
plications. A few examples are plume dispersal from smoke
stacks and volcanos, reduction of environmental pollution
(the “jet” represents a stream flowing into a lake) and film
cooling applications in jet engine combustors.

This introductory section is organized as follows. Sec-
tion 1.1 describes the laminar-turbulent transition of a flow
over a flat plate in a phenomenological way and introduces
the key ideas behind transition control. Section 1.2 gives
an insight into the physics of the jet in crossflow obtained
by direct numerical simulations and paves the way for the
analysis in Sect. 2. The present section concludes with an
overview of the main results of the paper and a brief moti-
vation of the global mode approach undertaken in the sub-
sequent section.

1.1 Physics of the Flow on a Flat Plate

Viscous flows in straight tubes, pipes, channels and on flat
plates are steady for sufficiently small values of the (dimen-
sionless) number UL/ν, where U and L are, respectively, a
velocity and a length characteristic of the flow and ν is the
kinematic viscosity of the fluid. At higher values, however,
the flow shows intermittent oscillations and eventually be-
comes highly irregular and unsteady. This transition from a
laminar flow to a turbulent one at a critical Reynolds num-
ber, Re = UL/ν was first investigated in a pipe by Reynolds
[82].

Consider a steady uniform stream of flow with speed
U that encounters a flat plate of length L. It is appropri-
ate to define the Reynolds number as Rex = Ux/ν where
0 ≤ x ≤ L is the distance on the plate from the leading edge.
The critical Reynolds number, Rex , for the laminar-turbulent
transition is notoriously difficult to determine. Transition
can occur abruptly, gradually and at completely different lo-
cations on the plate depending on the size, spatial structure
and temporal behavior of the disturbances that can be found

Fig. 1 Sketch of a numerical experiment of the evolution of a
wavepacket disturbance in a flat-plate boundary layer. The Reynolds
number at the computational inlet is Rex ≈ 3 × 105 and the computa-
tional outlet it is Rex ≈ 1 × 106. The numerical parameters are given
in Table 5 (case 3D-NLIN-BL) in Sect. 4.4

in the laboratory or numerical experiments. For example, the
presence (or combination) of acoustic waves, roughness on
the plate, vortical structures in the free stream critically af-
fects the transition process. A number of books [15, 89, 91]
treat the different laminar-turbulent transition scenarios in
boundary layers. We proceed by a simple numerical exper-
iment to characterize the evolution of a small disturbance
in the flow on a flat plate in order to highlight the essen-
tial physics that is relevant for our purposes. In practice,
flow conditions are significantly more complicated than our
single-disturbance example but the underlying physics is es-
sentially the same. The simulation is performed using the
pseudo-spectral code described in Sect. 4.4.

A sketch of the setup is given in Fig. 1. Prandtl [79] in-
troduced the concept of a boundary layer, as a thin (about
2–5 mm on a 180 cm plate) layer, where the effects of vis-
cosity are important. This layer is the region (marked in
Fig. 1 with solid black line) where diffusion of the vortic-
ity generated at the surface is significant. The thickness of
the laminar boundary layer δ is related to the viscosity and
the downstream distance as δ ∼ (νU/x)−1/2, which indi-
cates that the layer grows slowly in the downstream direc-
tion. Prandtl showed that for the boundary layer, the Navier–
Stokes equations (see Sect. 2.1) can be reduced to a simpler
form and it was Prandtl’s student Blasius [18] who formu-
lated a nonlinear ODE and solved it, with the velocity profile
shown schematically (as the inflow profile) in Fig. 1. Inside
the boundary layer and far upstream in the flow domain we
place a small localized perturbation. As the disturbance is
released, it propagates in the downstream direction and its
fate depends on its initial amplitude and on its initial physi-
cal shape. The disturbance could for instance be introduced
by using a loudspeaker to generate a short pulse, injected
through a small hole in the plate. The volume of the loud-
speaker would then determine the disturbance amplitude and
the structure of the hole in the plate its shape.

Figure 2 shows “snapshots” of the disturbance (top view
of the plate) at three different instances in time using iso-
contour levels of the λ2-criterion [46]. The λ2 levels are
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Fig. 2 Snapshots of the disturbance at t = 300,600 and t = 1000 are
shown in (a), (b) and (c) respectively. Red iso-contour levels depict the
λ2-criterion. The plate is shown in black and viewed from top (Color
figure online)

useful to identify vortical structures in the flow. In the ini-
tial stage (Fig. 2(a)), the disturbance is nearly two dimen-
sional in the spanwise direction (z) and it grows in amplitude
rapidly. After approximately 300 time units the disturbance
has a different structure; now significant three-dimensional
components (Fig. 2(b)) and smaller wavelengths are ob-
served. Finally at t = 1000, a localized turbulent spot is de-
veloped with a typical arrow-shaped structure. The distur-
bance is now characterized by a wide range of scales in all
spatial directions (Fig. 2(c)). The turbulent spot eventually
leaves the computational domain and the flow returns to the
steady boundary layer. We have thus identified three distinct
flow regimes; (i) the laminar region where a smooth distur-
bance grows in size; (ii) the transition region where there is
breakdown of the disturbance into a significantly more com-
plicated structure; (iii) turbulent region where a turbulent
spot emerges.

Depending on the Reynolds number, the drag due to the
skin friction in the laminar region can be as much as an or-
der of magnitude less than that in the turbulent region [89].
For an aircraft1 or a vehicle the reduced drag means longer
range, reduced fuel cost or increased speed. To illustrate this,
for each snapshot in Fig. 2, the streamwise velocity compo-
nent u at the location on the plate where the disturbance is

1Friction drag constitutes more than half of the total aircraft drag, with
18 %,4 %,3 % and 3 % for wing, horizontal tail plane, fin and nacelles,
respectively. If the flow were laminar on 40 % of the surfaces, the total
drag would be reduced by 16 % [92].

Fig. 3 Velocity profiles of the streamwise component (u) as a function
of the wall-normal distance from the plate (y). The profiles (a), (b)
and (c) correspond to the snapshots (a)–(c) in Fig. 2 and are extracted
approximately in the center of the disturbance

Fig. 4 The evolution of the kinetic energy of a disturbance in time
corresponding to a nonlinear simulation (solid black) and linear sim-
ulation (dashed black). The initial growth phase where the linear and
nonlinear curves nearly collapse is marked in red color (Color figure
online)

present is shown as a function of the wall-normal coordinate
y in Fig. 3. For the first snapshot, the characteristic laminar
boundary-layer profile (Fig. 3(a)) is observed, but already
after a short period, the disturbance has modified the pro-
file considerably (Fig. 3(b)), and an inflection point can be
observed. The third profile (Fig. 3(c)) extracted from the tur-
bulent spot is very distorted and the smooth boundary layer
has changed its character completely. The turbulent profile
changes rapidly over a very short distance normal to the sur-
face compared to the laminar profile. As a consequence the
local shear stress is considerably higher in the turbulent re-
gion.

1.1.1 Linear Amplification

If the upstream disturbances in the boundary layer are
small—determined by the receptivity [30] of the boundary
layer to external flow conditions—the initial stage in the
transition process is a linear amplification. In Fig. 4 the time
evolution of the disturbance kinetic energy of the numer-
ical experiment is shown with a black solid line. We ob-
serve a rapid energy growth until the disturbance is propa-
gated out of the computational domain at t = 1500. In the
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figure, the kinetic energy of a disturbance with an infinitesi-
mal amplitude—where the nonlinear effects are neglected—
is shown by the dashed line. We observe that the energy of
the infinitesimal amplitude and the finite-amplitude distur-
bance initially grow with the same rate.

The linearized flow is considerably easier to analyze,
since the temporal part of the disturbance can be decom-
posed into a number of waves that grow or decay indepen-
dently of each other as predicted by linear stability theory.
However, for the boundary layer, no single wave grows ex-
ponentially in time; in fact all waves decay for long times,
but their superposition may result in a wavepacket that
grows as it propagates downstream. Since late 1980’s a new
(linear) mathematical approach to characterize the distur-
bance behavior has emerged, based on transient growth anal-
ysis [81], pseudo spectra [102], categorizing flows as noise
amplifiers or oscillators [42] and analysis of input-output
norms [47].

1.1.2 Transition Control

The natural question that arises is: If we can suppress the
growth of the disturbance, can we delay the transition to tur-
bulence? In many cases the answer is yes; for our numerical
example above if we assign an order of magnitude smaller
amplitude to the initial disturbance, it breaks down further
downstream and the development of the turbulence spot is
delayed. One major objective of flow control is thus to damp
the amplitude of disturbances at an early stage in the bound-
ary layer in order to delay transition to turbulence. Since we
observe that the disturbance energy growth is initially a lin-
ear process [52, 91], transition control focuses mainly on the
simpler linear system.

If the necessary flow conditions resulting in lower distur-
bance growth are achieved in a way that requires energy in-
put, one needs to introduce actuators, such as loudspeakers,
synthetic jets [94], electro-magnetic actuators [74], plasma
actuators [32] or various MEMS actuators [39] constructed
using micro-machining techniques. Flow control is indeed
engineering, where besides the type of actuators, the distri-
bution and location of actuators has to determined. In gen-
eral, the more physical insight one has into the disturbance
behavior, the better design decision one is able to make. If
we know exactly what type of disturbances are present in the
flow, e.g. if perturbations are traveling waves or in the form
of elongated streamwise vortices called streaks, using the
actuators we can introduce other disturbances that counter-
act them. For example a second wave of appropriate ampli-
tude and phase would cancel the traveling wave by inter-
ference [67] or blowing and suction at the wall [37] would
cancel out the streaks. If we don’t know the exact form of
the disturbance, we can monitor the flow using sensors and
adjust the actuation accordingly to achieve the control ob-
jectives. This type of control is known as feedback control,

Fig. 5 Sketch of a numerical experiment of the jet in crossflow. The
initial fields are the flat-plate boundary layer profile and a parabolic jet
profile. The ratio between the jet flow and the crossflow denoted by R,
is three. The numerical parameters are given in Table 5 (case JCF) in
Sect. 4.4

where in addition to actuators, the design and distribution of
sensors have to be taken into account. The sensor measure-
ments could be a few pressure measurements using a small
microphone membrane mounted flush to the wall, veloc-
ity measurements using hot-wire anemometry near the wall
or shear-stress measurements using thermal sensors (wall
wires).

1.2 Physics of the Jet in a Crossflow

The jet in crossflow (JCF) is the interaction of two well-
studied canonical flows, the flat-plate boundary layer flow
and the flow ejected through an orifice into a quiescent en-
vironment, a free jet flow. Since vorticity cannot be created
or destroyed in the interior of a flow and is produced only at
boundaries (or by initial conditions), the orifice is the only
source of vorticity for a free jet and consequently, the dy-
namics of jets are commonly described by convection, dif-
fusion, stretching and turning of vorticity in an otherwise
irrotational flow. In contrast (as discussed previously), in
a flat-plate boundary layer, vorticity generated at the wall
convects and diffuses in the wall-normal direction, caus-
ing growth of the boundary layer. The interaction of the
boundary layer and the jet vorticity results in a highly un-
steady fully three-dimensional flow and a number of “vor-
tical structures”, which refer to flow features that are rela-
tively well organized and appear rotational in nature. These
structures can be identified in three different regions of the
flow domain as shown schematically in Fig. 5; the jet re-
gion, the wake region and the wall region. In particular, four
large-scale vortical structures of the JCF have been studied
extensively by researchers; (1) the counter-rotating vortex
pair [70]; (2) the horse-shoe vortex and its wall vortices [51];
(3) loop-like or ring-like vortices [50, 61] and (4) upright
vortices [27, 50].
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1.2.1 Steady-Unsteady Transition

We will now illustrate how a steady jet in crossflow grad-
ually exhibits unsteady behavior that is sustained for all
times when it is perturbed. One major obstacle towards un-
derstanding the physical mechanisms of the unsteadiness in
the flow is that the “natural state” of the JCF is unsteady.
A steady flow will never be observed in laboratory experi-
ments or in applications. One of the advantages of numeri-
cal experiments is that we can artificially force the unsteady
flow to become steady, in order to better understand the un-
derlying physics. Figure 5 shows a sketch of the numerical
setup used to simulate the jet in crossflow. In addition to the
laminar boundary-layer profile at the upstream inlet investi-
gated in the previous section, an inhomogeneous parabolic
boundary condition is imposed in order to model a laminar
pipe flow mounted to the plate.

The steady flow obtained by filtering out all the unsteady
structures [2] is “released” and its evolution in time is fol-
lowed by a numerical simulation. A disturbance is not ex-
plicitly introduced, instead background numerical noise acts
as flow perturbation. Figure 6 shows the λ2 criterion (red)
and the streamwise velocity (gray) of a sequence of snap-
shots from the numerical experiment. We observe how a
well organized smooth flow is gradually transformed into
a more complicated irregular flow with significantly smaller
vortices. The most dominant feature of the steady flow (la-
bel ① in Fig. 6(a))—and the largest vortical structure of the
JCF—is the counter-rotating vortex pair (CVP) that takes
the form of two distinct tubes. The direction of rotation is
in such a way that fluid is lifted up in between the vortices.
This vortex pair develops because the crossflow skirts later-
ally around the jet and shears the jet fluid along its edges and
then folds the face of the jet over itself to form the CVP. The
CVP emerge from the center of an cylindrical vortex sheet
(or a shear layer) developed when the crossflow and the jet
fluid come into contact. Close to the wall, when the cross-
flow encounters the jet, part of the crossflow is deflected in
direction of the jet flow and part of it is pushed towards the
wall, to form a spanwise oriented vortex, the horse-shoe vor-
tex (label ③ in Fig. 6(a)). This vortex wraps around the base
of the jet and forms a streamwise vortex pair, the wall vor-
tices in the wall region, as shown in by the gray contour
levels of the streamwise velocity (label ② in Fig. 6).

After a long time (t = 300) the disturbances triggered by
the background noise have grown sufficiently in amplitude
to modify the steady flow. As shown in Fig. 6(b), the dis-
turbance modifies mainly the CVP; a varicose out-of-phase
oscillation of the two vortex tubes is observed and “arches”
are created, i.e. the vortex loops coil up around the upper
side of the CVP and their bases join with the CVP. This type
of symmetric structures are associated with the roll-up of the
cylindrical vortex sheet. Finally, at t = 500, the symmetric

Fig. 6 Three instantaneous snapshots of the steady-unsteady transition
at t = 0,300 and t = 500 are shown in (a), (b) and (c) respectively. Red
contour levels represent the λ2 = −0.09 and the gray contour levels
represent the streamwise velocity u = 0.2. See text for explanations of
labels ①–④ (Color figure online)

vortex loops are distorted into half-ring shaped asymmet-
ric vortices (label ④ in Fig. 6(c)) which rapidly break down
into a series of smaller vortices. This flow is sustained for
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all times; half-ring shaped vortices are continuously gener-
ated from an internal source upstream, they grow as they are
convected downstream, and finally they gradually dissipate
due to viscosity.

1.2.2 Self-Sustained Oscillatory Behavior

It is of interest to determine whether the unsteadiness de-
pends on the external disturbance environment (in our case
numerical noise due to discretization errors) or if it is an
intrinsic property of the JCF. It is well known [43] that
(co-flowing) shear layers amplify upstream incoming dis-
turbances and the frequencies observed in the flow depend
highly on the frequencies present in the external disturbance
environment. However, under certain flow conditions a reso-
nance can arise where one observes a few dominant frequen-
cies, independent of the spectral content of the noisy out-
side environment. A resonance can for example be triggered
when one introduces a rigid body at an appropriate down-
stream location in the flow. The body creates a pressure feed-
back loop giving rise to oscillations at discrete resonant fre-
quencies.2 However, such a feedback loop can also be pro-
duced by purely hydrodynamic means, where a downstream
body is not necessary. Such flows often have a region of sig-
nificant reversed flow (e.g. backflow). A classical example
is the von Kármán vortex street developing behind a circular
cylinder at low Reynolds numbers. The unsteadiness usually
consists of small patches of vorticity being released period-
ically from a location, i.e. vortex shedding, where the os-
cillation frequency is insensitive to external low-amplitude
forcing. Many examples of hydrodynamic resonances exist,
[14, 21, 68, 97], and during the last decade a large number
of experimental and numerical studies have been devoted to
categorization of flows as oscillators or amplifiers [41, 42].

The simplest approach, that provides only supporting ev-
idence for oscillatory behavior, is to place probes in the
flow and study single-point spectral data. The time sig-
nal of a probe located in the shear layer of the JCF is
shown in Fig. 7(a), where Fourier analysis reveals a dom-
inant frequency of Strouhal number St2 ≡ f2D/Vjet = 0.14.
In addition to this high frequency, a distinct low frequency
St1 = 0.017 is observed by a probe located in the wall region
downstream of the jet orifice (Fig. 7(b)). Several time signals
from other probes have been obtained and all the additional
frequency peaks are linear combinations of St1 and St2, cor-
responding to higher harmonics triggered by nonlinear in-
teractions between the two main frequencies.

There is some evidence [36] and numerous studies
[4, 5, 14, 28, 64, 99] that connect self-sustained oscillations
in fluid systems with large unsteady separated regions. The

2Similar to bounded states in quantum mechanics, resulting in a dis-
crete energy spectrum.

Fig. 7 Time signals of two probes measuring the streamwise velocity
u component at a single point in the flow. In (a) the probe is placed in
the shear layer and in (b) near the separated region downstream of the
jet near the wall

flow under investigation here has two regions of reversed
flow: a smaller, steady separated region upstream of the jet
which coincides with the horse-shoe vortex, and a larger
unsteady region of reversed flow directly downstream of
the emerging jet near the wall. The animation of the DNS
data shows that the separation region downstream of the
jet orifice is highly unsteady. In the upper part of this re-
gion, patches of negative u are periodically released in
the wall-normal direction with the fundamental frequency
St2 = 0.14. The separated region also oscillates with the
lower fundamental frequency St1 = 0.017, however this
time the entire recirculation zone downstream of the jet
is periodically moving back and forth in the spanwise di-
rection. In Fig. 8, the movement of the separation region,
downstream of the jet, oscillating in two directions with two
distinct frequencies is shown.

1.3 Paper Overview

In the previous two sections, using numerical experiments,
we have observed the following:

(i) The breakdown of a small-amplitude disturbance in a
boundary layer, resulting in a turbulent spot. Our in-
terest lies in damping the growth of disturbances at an
early stage in the transition process in order to delay the
development of turbulence.

(ii) The nonlinear saturation of a small-amplitude distur-
bance (background numerical noise), resulting in self-
sustained oscillatory behavior of the flow. Our inter-
est lies in understanding the underlying mechanisms of
the disturbance growth and identifying the spatial flow
structures associated with the oscillations.

The aim of the present paper is to study these two phenom-
ena using global modes.
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Fig. 8 Yellow iso-contour levels represent zero streamwise velocity,
marking the region of reversed flow, red levels show positive wall-
normal velocity, marking the jet fluid. The blue streamlines originate
from the crossflow fluid and show how the crossflow is sucked into
the jet (a) and how it develops a pair of streamwise wall vortices (b).

Top figure is a side view, where the region of reversed flow oscillates
back and forth in the wall-normal direction. Bottom figure is a front
view, illustrating the movement of the separated region in the spanwise
direction (Color figure online)

1.3.1 Global Modes

The concept of global modes in fluid mechanics has over the
last two decades been used in various contexts. In the early
nineties it was part of a theoretical framework [42] for the
understanding of self-sustained oscillations. A global mode
was defined as a flow structure that oscillates with one sin-
gle frequency and satisfies certain boundary conditions, sim-
ilar to bound states in quantum mechanics. More recently
[38, 99], global modes have been associated with the eigen-
modes of the linearized Navier–Stokes operator for flows
that have two or three inhomogeneous spatial directions. The
term “global” in this context is used to differentiate from the
approach to the classical local hydrodynamic stability analy-
sis applicable to parallel shear flows, for example the eigen-
modes of the Orr-Sommerfeld/Squire equations. A third us-
age of the term “global mode” is to denote any localized

vortical structure that is contained in the full global spatial
domain. In this sense, global modes are not simply instan-
taneous snapshots of flow fields containing vortical struc-
tures, rather they are extracted from experiments or numeri-
cal simulations by some method to isolate certain dynamical
features, such as coherent structures either growing with one
rate, oscillating with one frequency or containing the largest
possible kinetic energy, etc. We adopt the latter definition of
a global mode.

In particular, the following global modes are considered:

(i) Linear global eigenmodes are small-amplitude pertur-
bations that grow or decay exponentially and pulsate
with one frequency. They are useful to determine the
linear stability of a steady flow and to describe the un-
derlying physical mechanisms for perturbation growth.
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(ii) Koopman modes represent spatial flow structures with
time-periodic motion. They are useful to characterize
oscillatory nonlinear flow dynamics.

(iii) Balanced modes are used to construct low-dimensional
models of large-scale flow systems in order to design
efficient controllers for transition delay. The reduced-
order model captures the relation between inputs (dis-
turbances and actuators) and outputs (sensors used for
flow measurements).

1.3.2 Organization

In Sect. 2, the transition from a steady flow to an unsteady
one is analyzed using linear global eigenmodes and Koop-
man modes. The global mode theory is presented for general
fluid systems followed by examples on the jet in crossflow.
Section 3 gives a treatment of linear systems theory includ-
ing model reduction and control design. Along the way, the
concepts are illustrated on the flat-plate boundary layer flow.
Section 4 provides a detailed description of the numerical al-
gorithms used to compute global modes, with a few simple
examples to demonstrate convergence behavior of the meth-
ods. The paper finalizes with a short summary and outlook
in Sect. 5.

2 Flow Analysis Using Global Modes

The jet in crossflow is a complex flow. It involves the in-
teraction of at least four shear layers, namely the bound-
ary layer, the jet shear layer, a separated shear layer and a
wake. Due to the strong coupling between the shear lay-
ers, one is obliged to study the global behavior of the flow,
in order to obtain a complete picture of the dynamics. The
complete steady-unsteady dynamics of the jet in crossflow
can be divided into a number of stages. Figure 9 shows
the time evolution of the streamwise velocity component at
(x, y, z) = (12,6,±2) extracted from the numerical simu-
lation discussed in Sect. 1.2. The trajectory starting at the
steady flow at t = 0 (marked with filled black circle in
Fig. 9), departs from the steady solution and advances to-
wards an attractor region where the trajectory appears to
fluctuate randomly back and forth. In this section, we de-
scribe the dynamics in the two regions (marked schemati-
cally with circles in Fig. 9): the linear dynamics in a small
neighborhood (black circle) of the steady solution and the
nonlinear dynamics evolving in the attractor region (blue cir-
cle).

Global linear stability analysis determines whether ex-
ponentially growing perturbations exist in a neighborhood
of the steady solution. These perturbations, called linear
global eigenmodes, represent spatially coherent structures
that grow or decay exponentially and pulsate with one fre-
quency. The fact that the instabilites are global modes does

Fig. 9 The streamwise velocity at (x, y, z) = (12,6,±2) is plotted
as function of time. The black circle marks the region where the flow
behavior is linear, whereas the blue circle marks the nonlinear flow
dynamics. The figure shows the entire linear-transient-nonlinear devel-
opment (Color figure online)

not mean that the elementary mechanisms of the instabilities
are not local. In fact, this is often the case, where locally the
inviscid Kelvin-Helmholtz instability, inviscid elliptic insta-
bility or viscous Tollmien-Schlichting waves are active, but
the coupling between them is a truly global phenomenon.
If unstable global eigenmodes exist, disturbances will grow
until they saturate nonlinearly to a more complicated state.
For self-sustained oscillatory flows, the nonlinear flow com-
monly evolves near a limit cycle or quasi-periodic attractors.
The most convincing reports so far are the milestone exper-
iments of [80] that showed that the vortex shedding behind
a circular cylinder at low Reynolds number is due to an am-
plified global instability that saturates via Hopf bifurcation
to a self-sustained limit cycle.

The flow dynamics evolving in the attractor region is dif-
ficult to analyze by studying individual trajectories. To un-
derstand the global features of the unsteady flow, an eas-
ier task is to study its statistical properties, such as time-
averages. One approach, explained in this paper, is the
decomposition of the unsteady nonlinear dynamics into a
set of global modes, referred to as the Koopman modes.
The modes can be considered as a generalization of the
time-averaged mean flow; the first mode is the mean flow,
whereas other Koopman modes are harmonic averages, i.e.
spatial structures that display periodic behavior in time. In
this way we can identify the flow structures that oscillate
with precisely the same frequency as the vortex shedding
observed in the flow.

This section is organized as follows. In Sect. 2.1, we
present the governing equations for an incompressible flow.
In Sect. 2.2, we define the linear global eigenmodes and dis-
cuss their significance for the jet in crossflow. Finally, in the
last part of the section we introduce the spectral properties
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of the Koopman operator and the nonlinear analysis of the
jet in crossflow.

2.1 Equations of Motion

The Navier–Stokes equations governing the rate of change
of momentum per unit volume of an incompressible fluid are
given by

∂u
∂t

+ (u · ∇)u = −∇p + 1

Re
∇2u + F (1a)

∇ · u = 0 (1b)

where u(x, t) = (u, v,w)3 and p(x, t) are the velocity and
pressure in space x = (x, y, z) ∈ Ω and time t ≥ 0, ∇ =
(∂x, ∂y, ∂z) is the divergence operator and the term F =
(f1, f2, f3) represents a body force. The Reynolds number
is defined as

Re = U∞δ∗
0

ν

where U∞ is the constant streamwise free-stream velocity,
δ∗

0 is the displacement thickness at a particular distance from
the leading edge x0 and ν is the kinematic viscosity. The
flow evolves in the spatial domain defined by,

Ω = {x ∈ R
3 | 0 ≤ x ≤Lx,0 ≤ y ≤Ly,−Lz/2 ≤ z≤Lz/2

}
.

For all flows investigated in this paper the solutions to (1a)–
(1b) are periodic in the streamwise x and spanwise z di-
rections with periodicity Lx and Lz respectively. For the
flow on a flat plate and the jet in crossflow, periodic bound-
ary conditions in the streamwise direction are artificially
enforced by F. In the wall-normal direction y, different
boundary conditions are imposed depending on the flow
configuration. See Sect. 4.4.2 and Table 5 for details on the
imposed boundary conditions.

We omit entirely any discussion of partial differential
equations and the subsequent analysis is presented for finite-
dimensional systems—ordinary differential equations—for
simplicity. One can either think that the flow is represented
on a number of grid points obtained by discretizing the do-
main Ω , or that the dynamics takes place over some finite-
dimensional smooth manifold [98].

Henceforth, let the flow dynamics be described by an
n-dimensional nonlinear system

u̇ = f(u) (2)

3A note on the basic notation used through out the paper is appropriate
at this point. Square brackets [ and ] are used to construct matrices and
vectors, i.e. [1 2]T is a column vector ∈ R

2×1 which is abbreviated
as R

2. Curved brackets ( and ) are used surrounding lists of entries,
delineated by commas as an alternative method to construct (column)
vectors, (1,2) = [1 2]T .

where u ∈ U is the state variable. The state space U ⊂ R
n

is endowed with the inner-product denoted by 〈·, ·〉U so that
the associated norm ‖ · ‖2

U
equals twice the kinetic energy

of the flow field. The subscript U will be omitted unless it is
necessary to include.

Associated with the vector-field is the evolution operator,
T(t) : U → U

u(s + t) = T(t)u(s) (3)

that satisfies (i) T(0) = I and (ii) T(s+ t) = T(s)T(t). Given
a flow field at time s, T(t) provides the velocity field at a
later time t + s by solving (2) with u(s) as initial condition.
Our analysis is often based on flow fields sampled at discrete
equidistant points in time, where for a fixed t = �t , (3) is a
discrete dynamical system,

uk+1 = g(uk), (4)

where g = T(�t) and k is an integer index. Note that, in the
context of fluid mechanics, g represents a numerical flow
solver, which in its simplest form, sets up a grid in space
and time and computes approximate solutions on this grid
by marching in time.

2.2 Linear Global Eigenmodes

We are interested in the behavior of disturbances evolving
near the steady-state solution as t → ∞, that is the linear
perturbation dynamics after “a short transient period”. For
highly unsteady flows, finding a steady solution us , so that
f(us) = 0 is a formidable task when n is large. Usually, one
has to resort to iterative [103] or filtering [2] techniques. For
now, suppose that we have found us .

To characterize the flow field near us , let

u = us + u′ (5)

with ‖u′‖ � 1 as a small perturbation. We substitute (5) into
(2) and expand in Taylor series around us to obtain

u̇′ = ∇f(us)u′ + O
(‖u′‖2),

where ∇f(us) is the Jacobian n×n matrix with the elements
as first partial derivative ∂fi/∂uj at us . Denoting the Jaco-
bian matrix by A, omitting the primes and neglecting high-
order terms, we obtain the linear system,

u̇ = Au. (6)

The matrix A can be regarded as the discretized and lin-
earized Navier–Stokes equations, and could also be obtained
by substituting (5) directly into the PDE (1a)–(1b), neglect-
ing nonlinear terms and then discretizing the spatial do-
main Ω .
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Fig. 10 The linear spectrum of the jet in crossflow at R = 3. The
eigenvalues marked with open squares correspond to anti-symmetric
eigenmodes, whereas black circles correspond to symmetric eigen-
modes

The linear global eigenmodes are defined as the eigen-
vectors and eigenvalues of A,

Aφj = λjφj , j = 1, . . . , n, (7)

where φj ∈ U are complex valued and

λj = σj + iωj . (8)

The modes form a basis, in which any perturbation u can be
expanded as follows

u(t) =
n∑

j=1

ajφj e
λj t ,

where aj are the scalar expansion coefficients. From the
above expression and (8), it is clear that if σj > 0 for any j ,
the corresponding mode φj will grow in time, regardless of
the behavior of other modes, and the steady flow (or “base-
flow”) is rendered unstable. Conversely if σj < 0 for all j

the steady flow is stable, since any perturbation for long
times will decay in time. If there exists σj = 0, the stabil-
ity of us cannot be determined by linearization and one has
to resort to other methods [33]. The frequency at which the
eigenmode φj pulsates is given by ωj .

2.2.1 Linear Global Eigenmodes of the Jet in Crossflow

In this section, the linear stability analysis of the steady solu-
tion (discussed in Sect. 1.2.1) of the jet in crossflow is pre-
sented. The steady solution is obtained using the selective
frequency damping (SFD) approach introduced by [2]. The
linear global eigenmodes of JCF are fully three-dimensional
(n ≈ 107), and must be computed using iterative algorithms
(such as the Arnoldi method) described in Sect. 4.1. From
the linear spectrum shown in Fig. 10 it is clear that σj > 0

Table 1 Properties of three global eigenmodes

Mode Local mechanism Symmetry Location

A Elliptic instability Anti-symmetric Jet & wake region

B Kelvin-Helmholtz
instability

Symmetric Jet region

C von Kármán instability Anti-symmetric Wall region

for all the leading modes, rendering the steady solution
strongly unstable for the chosen parameters (velocity ratio,
R = Vjet/U∞ = 3). The Strouhal number, defined as St =
f D/Vjet (D is the jet diameter), of the unstable modes are
in the range [0.04,0.17], and none of the frequencies of the
linear modes match the nonlinear shedding frequencies ob-
served in the numerical simulations. Recall from Sect. 1.2.2,
that one separation region just downstream of the jet orifice
was observed to oscillate in two directions, slowly in the
spanwise direction with St1 = 0.017 and rapidly along the
jet trajectory with St2 = 0.14. However, the stability anal-
ysis merely accounts for the linear dynamics in the neigh-
borhood of the steady solution, where the Strouhal numbers
can be considerably different from the saturated dynamics
near the attractor (also indicated by Fig. 9). The eigenvalues
in Fig. 10 marked by black circles are symmetric, where the
symmetry refers to the u and v component with respect to
the z = 0 axis, i.e.

(
u(x, y, z), v(x, y, z),w(x, y, z)

)

= (u(x, y,−z), v(x, y,−z),−w(x,y,−z)
)

The modes marked with open squares display opposite sym-
metry properties.

The global modes provide a remarkable insight into the
underlying growth mechanisms present in the flow. We will
focus on three global modes, listed in Table 1, each associ-
ated with one global spatial structure and one local physical
instability mechanism.

Mode A—Elliptic Instability The most unstable mode
(φ1), shown in Fig. 11(a) is an anti-symmetric mode. The
instability extends spatially in all three regions discussed in
Sect. 1.2 (see also [12, 88]); in the jet region it takes the
form of a wavepacket located on and around the CVP; in the
wake region it is associated with the upright vortices; and
finally the mode has a small amplitude in the wall region.
The various vortex systems are thus coupled and in a linear
approximation grow with the same rate and oscillate with
the same frequency, illustrating the global character of the
flow.

This instability has the strongest direct effect on the CVP;
the two vortex tubes of the CVP are modified by a sinuous
in-phase wavy oscillation in top view (xz-plane) and an out
of phase oscillation in side view (xy-plane). Moreover, the
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wavelength of the instability is of the same order as the di-
ameter of the vortex cores of the CVP. These observations
are the traits of a short-wavelength instability of a vortex pair
as observed by the experiments of [59] and the numerical
simulations of [55]. Such an instability is due to a resonance
between two waves of one vortex and the straining field in-
duced by the other vortex. In Fig. 12 the streamwise vortic-
ity component in a cross plane (yz-plane) far downstream is
shown for the baseflow and the most unstable global mode.

Fig. 11 Linear global eigenmodes A, B and C of the jet in crossflow
shown from top view. The red contour levels represent the λ2 criterion,
whereas the baseflow is shown in blue (λ2) and gray (u). The modes
are complex and shown at one phase only (Color figure online)

The CVP centered around y = 14 can clearly be seen in
Fig. 12(a). The global mode (Fig. 12(b)) shows a charac-
teristic two-lobe structure in each CVP vortex. This is re-
markably similar to the vorticity computed analytically for
the elliptic instability [105, Fig. 2] and the short-wave insta-
bility [59, Fig. 10].

Mode B—Kelvin–Helmholtz Instability The most unstable
symmetric mode is shown in Fig. 11(b). The global mode
consists of a symmetric spanwise oriented row of vortex
loops that wrap around the upper part of the CVP. They are
gradually stretched, and develop “legs” that align with the
direction of CVP tubes. In Fig. 13 the spanwise vorticity
of the steady flow and mode B is compared at the center
xy-plane (z = 0). The baseflow shows a shear layer, which
is due to the cylindrical vortex sheet emerging from the jet
nozzle and its interaction with the crossflow. The effect of
the global instability (Fig. 13(b)) on the shear layer is a pe-
riodic deformation of the shear layer, which results in a re-
distribution of the vorticity in an alternating manner. Such a
perturbation of a shear layer is unstable and is referred to as
the Kelvin-Helmholtz instability. More generally, when two
streams of different velocities come into contact, a vortex
sheet develops which is unstable to infinitesimal periodic
perturbations (see [15], p. 511 for an elementary stability
analysis of the vortex sheet). Mode B modifies the CVP in a
varicose fashion viewed from top (xz-plane). The nonlinear
simulation discussed in Sect. 1.2.1 (see Fig. 6(b)), shows
how mode B grows in amplitude and develops the charac-
teristic “arches”. This type of symmetric structures has been
observed in many experimental studies (see e.g. [50, 61]).

Mode C—von Kármán Instability Mode C shown in
Fig. 11(c), is an anti-symmetric mode that oscillates with
the frequency St = 0.043. Its global structure is mostly con-
centrated close to the wall, although it has a small amplitude
along the CVP. In particular, the structure near the wall is
considerably different compared to the other modes. The

Fig. 12 Streamwise vorticity at
x = 40 for the steady baseflow
(a) and mode A (b). Contour
levels are 0.1,0.2, . . . ,

1.0 · ωx,max, red is positive, blue
negative. Only a portion of the
zy-plane is shown (Color figure
online)
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Fig. 13 Spanwise vorticity at
z = 0 for the steady baseflow (a)
and the mode B (b). Contour
levels are 0.1, 0.2, . . . ,

1.0 · ωz,max, red is positive, blue
negative. Only a portion of the
xy-plane is shown

Fig. 14 Wall-normal vorticity at y = 1 for the steady baseflow (a)
and mode C (b). Contour levels are 0.1,0.2, . . . ,1.0 · ωy,max, red is
positive, blue negative. Inside the region marked by solid black line

there is a backflow. The small-scale wiggles are numerical artifacts.
Only a portion of the xz-plane is shown

wall-normal vorticity of mode C and the steady flow is com-
pared in Fig. 14. In Fig. 14(a) the black contour marks the re-
gion of reversed flow (u = 0) in the wall region downstream
of the jet orifice. On each side of the recirculation zone,
two lobes of positive and negative wall-normal vorticity are
observed. This is strikingly similar to the unstable steady
solution computed for the wake behind a circular cylinder
[13, Fig. 1]. Moreover, the global mode shown in Fig. 14(b)
shows alternating positive and negative wall-normal vortic-
ity, which is almost identical to the first global mode of the
cylinder wake [13, Fig. 3]. It thus seems that although, the
jet is a “soft” body and there exists a rigid flat wall, the
vortex street of von Kármán is present. One can compare
the low frequency oscillation of the separation bubble in the
spanwise direction with St1 = 0.017, with the Strouhal num-
ber of the von Kármán vortex street behind a solid cylinder.
For a cylinder wake, the relevant Strouhal number is defined
as Stc = f D/U with U being the uniform flow velocity in
the far field. Adapting the present definition of the frequency
based on the jet velocity gives Stc = St1(Vjet/U∞)(U∞/U).
Assuming U/U∞ ≈ 1/3 due to the reduced streamwise ve-
locity in the proximity of the wall gives Stc ≈ 9St1 = 0.153,
which is close to the cylinder wake frequency in the super-
critical range (Re = 50–100 is approximately Stc = 0.13–
0.16). It should be mentioned that mode A, which is as-
sociated with the elliptic instability in the jet region, also
contains the von Kármán instability near the wall, although
not as dominant and distinct as mode C.

Relation to the Separated Region Global modes do not di-
rectly identify the mechanisms that initially generate a dis-
turbance, i.e. rather than the source of the instability, the
consequences of the instability are identified. It has therefore
been difficult to establish a rigorous connection between un-
stable linear global eigenmodes and separated regions in the
flow, although there is some evidence [36, 78] and an in-
creasingly number of investigations [5, 14, 100] that couple
them. Instead, local stability concepts based on the notions
of absolute and convective instabilities applied to weakly
non-parallel flows have been useful in this context. It is
shown that spatially developing flows with self-sustained os-
cillatory behavior have localized regions in the flow that act
as oscillators and localized regions in the flow that act as
amplifiers (see [42], for a review). Observations and anal-
ysis indicate that sufficiently large separated regions act as
oscillators and various co-flowing shear layers act as ampli-
fiers. Although not rigorously investigated in this paper, it
is likely that for the jet in crossflow an oscillator—the sep-
arated region downstream of the orifice—periodically sheds
patches of vorticity, which are convected into the jet, wake
and wall regions and amplified due to different local mech-
anisms (such as Kelvin-Helmholtz or short-wave elliptic in-
stability).

2.3 Koopman Modes

When global instabilities saturate after a transient phase, a
global mode analysis of the fully nonlinear flow has to be
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undertaken. Another issue is that, while in numerical sim-
ulations and analytical studies the full state u can be “ob-
served”, in experiments this is not the case. Usually the
velocity is probed—either at a point using hot-wire mea-
surements or at 2D planes using Particle Image Velocime-
try (PIV)—or some bulk quantity associated with the flow
is measured (such as mass flux, drag, lift). It turns out (see
e.g. [73]) that by observations of one or more time signals
only, called observables, one can characterize the (possibly
low-dimensional) behavior of fluid systems (such as chaotic
or quasiperiodic attractors, heteroclinic cycles etc.). The im-
portant point here is that, monitoring an observable over a
very long time interval allows in a statistical sense the re-
construction of the phase space.

An observable is defined as a function a(u) that asso-
ciates a scalar to each u ∈ U. Define the Koopman4 operator
U : L2(U) → L2(U) [53], with respect to g, as the operator
that steps forward the observable, i.e.

Ua(u) = a
(
g(u)

)
. (9)

Comparing (9) with (4), we observe that whereas the finite-
dimensional and nonlinear operator g steps forward the
state, the Koopman operator is infinite-dimensional and it
steps forward an observable. The operator is linear since for
a, b ∈ L2(U),

U
(
αa(u) + βb(u)

) = αa
(
g(u)

)+ βb
(
g(u)

)

= αUa(u) + βUb(u).

We can study certain properties of the trajectory of the non-
linear flow g by the spectral properties of linear operator U .
Let therefore, ϕj : U → R denote the eigenfunctions and
λj ∈ C denote the eigenvalues5 of the Koopman operator,

Uϕj (u) = λjϕj (u), j = 0,1,2, . . .

4The analysis requires some measure theory, but here we make no at-
tempt to be mathematically precise and refer to [56] for rigorous treat-
ment on the subject. Most importantly, we need to introduce an invari-
ant measure, essentially meaning that we can find a measure μ such
that the value of a integral,
∫

U

a(u)dμ =
∫

U

a
(
g(u)

)
dμ.

is invariant. Henceforth we drop μ and use the notation dμ = du. Such
a measure can always be found [56] if g satisfies certain properties (that
g is a measure-preserving operator). Observables are thus elements in
the space

L2(U) =
{
a : U → R |

∫

U

|a|2du < ∞
}
.

5Here, we consider only the point spectrum of U , see [65] for the con-
tinuous spectrum.

It can be shown (e.g. [23]) that as t → ∞, U is a unitary
operator and therefore the sequence of its eigenfunctions
{ϕj }∞j=0 forms an orthonormal expansion basis.

We proceed with defining the global modes that are re-
ferred to as Koopman modes, by first introducing a vector-
valued observable a(u) : U → R

p . For example, the scalar
observable a(u) can be considered as an observation of a
velocity component at a single coordinate in Ω (obtained
via hot-wire measurements) and a(u) can be considered as
a velocity measurement in a plane in Ω (obtained via PIV).
Consider a long time series of the observable a on the tra-
jectory of the system g starting at the initial condition u0,

X = [a(u0) a(u1) a(u2) . . .
]
. (10)

Next, assuming that each of the components of a(u0) lies
within the span of {ϕj }∞0 (see [65] for the general case), an
orthogonal projection of a(u0) onto the space spanned by
the Koopman eigenfunctions yields,

a(u0) =
∞∑

j=0

φj ϕj (u0)

where the vector-valued expansion coefficient φj ∈ R
p ,

given by

φj = 〈a(u0), ϕj (u0)
〉
L2(U)

=
∫

U

a(u0)ϕ
∗
j (u0)du0 (11)

is defined as the j th Koopman mode under the map g. Note
that in numerical simulations, where the entire flow field is
observable a(u) = u, the Koopman modes are fully global,
φj ∈ U. The Koopman modes and eigenfunctions are deter-
mined only for the first sample in (10) and the remaining
samples on the trajectory can be expressed entirely in terms
of these. To see this, note that the kth sample in the series
(10) is given by,

a(uk) = Uka(u0) = Uk

( ∞∑

j=0

ϕj (u0)φj

)

=
∞∑

j=0

λk
jϕj (u0)φj .

We expand the entire sequence (10) in Koopman eigenfunc-
tions and write it in matrix form

X = �S, (12)

where the columns of � contain the Koopman modes and
the corresponding Koopman eigenfunctions,

� = [ϕ0(u0)φ0 ϕ1(u0)φ1 ϕ2(u0)φ2 . . .
]

and S is the infinite Vandermonde matrix

S =

⎡

⎢⎢
⎣

1 λ0 λ2
0 . . .

1 λ1 λ2
1 . . .

...
...

...
. . .

⎤

⎥⎥
⎦ . (13)
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Note that the first eigenfunction of U , corresponding to the
eigenvalue λ0 = 1, is related to the time average of a se-
quence X,

ϕ0(u) = lim
n→∞

1

n

n−1∑

j=0

a(uj ). (14)

This can be easily seen, since the average ϕ0 is constant on
the orbit g(u),

ϕ0(u) = ϕ0
(
g(u)

)= Uϕ0(u).

The sequence of observables obtained from g starting
with u0, can thus be decomposed into spatial structures
(Koopman modes) whose temporal behavior is given by the
associated Koopman eigenvalue, i.e. the phase arg(λj ) de-
termines its frequency, and the magnitude |λj | determines
the growth rate of mode φj . The Koopman eigenfunc-
tions ϕj , on the other hand, associate with each Koopman
mode φj an amplitude, which determines the significance of
that mode. As explained in [66] and [65], by investigating a
large number of trajectories (starting from different u0), the
state space can be partitioned into level sets of constant ϕj ,
i.e. one can identify regions in U that oscillate with a single
frequency only and the value ϕj determines how signifi-
cant that frequency is in the flow. For complex flows, after
a transient regime, the flow evolves near some attracting set
in U, which might show very complicated behavior such as
strange attractors or simple behavior, such as periodic orbits.
In this limit there exists a countable set of nonzero eigenval-
ues λj that all are on the unit circle, |λj | = 1 for all j . The
means that each eigenfunction ϕj is associated with a tem-
poral frequency ωj (the phase of λj ) only since the growth
rate is zero for all modes.

The Koopman modes can in principle be determined by
solving the integral (11). However, this is too expensive,
since every possible initial condition has to be considered.
Alternatively, one can use harmonic averages as described
by [65] or by finding the inverse of the truncated Vander-
monde matrix, i.e. � = XrS−1, as shown in Sect. 4.2.

2.3.1 Other Approaches

It has somewhat “accidentally” been noticed that a linear
stability analysis using the time-average mean flow, instead
of a truly steady flow, provides modes whose discrete fre-
quencies are in good agreement with the global nonlinear
shedding frequency. As a consequence a number of lin-
ear stability studies (see e.g. [13, 78, 101], and references
therein) have recently been conducted in order to identify
coherent structures that can be associated with vortex shed-
ding. Although the averaged mean flow takes into account
some of the nonlinear effects implicitly, such analysis is “ad-
hoc” and lacks rigorous foundation. In fact, it was shown

[93] that such an analysis works only for some specific
cases, such as the circular cylinder.

Proper orthogonal decomposition (POD) is a method to
extract information from large datasets, either obtained from
numerical simulations or experiments. The method was in-
troduced by [62] for fluid systems for extracting coherent
structures in turbulent flows. The POD modes identify those
parts of the phase space which contain the most kinetic en-
ergy, typically attractors in phase space [40]. It is likely that
the structures are a result of the vortex shedding. Unfortu-
nately, the POD method averages in time and the correla-
tion in time is completely lost, rendering the task of pinning
down one structure to one frequency difficult.

2.3.2 Koopman Modes of the Jet in Crossflow

A long sequence of flow-field snapshots are collected from
direct numerical simulations (DNS) of the jet in crossflow.
The transient time from the unstable fixed point to the at-
tractor is not sampled, i.e. only the asymptotic motion in
phase space is considered. The eigenvalues λj , eigenfunc-
tions ϕj and the global modes φj associated with the Koop-
man operator of the sequence are computed using the DMD
algorithm described in Sect. 4.2. The time-discrete spectrum
and the time-continuous spectrum of the Koopman oper-
ator are shown in Fig. 15. The two spectra are related to
each other via a linear transformation (see Sect. 4.1). From
the time-discrete (Fig. 15(a)) we can observe that nearly all
the eigenvalues lie on or very close to the unit circle. Note
that as t → ∞ all the eigenvalues will lie exactly on the
unit circle since the Koopman operator is unitary. The time-
continuous spectrum (Fig. 15(b)) confirms that all eigenval-
ues are marginally stable and therefore one cannot expect
any flow structures growing or decaying exponentially in the
nonlinear flow.

The Koopman mode corresponding to the Koopman
eigenvalue λ0 is the time-averaged flow and is depicted
with blue symbol in Fig. 15. The other (unsteady) Koop-
man eigenvalues vary smoothly in color from red to white,
depending on the magnitude (Koopman eigenfunctions) ϕj

of the corresponding Koopman mode. The magnitudes of
the modes are shown in Fig. 16(a) with the same coloring as
the spectrum, where a few (10–14) leading modes are ob-
served to have significantly larger values, as the magnitudes
rapidly decay and gradually level out. In Fig. 16(b) each
mode is displayed with a vertical line scaled with its magni-
tude at its corresponding Strouhal number. Only the ωj ≥ 0
are shown, since the eigenvalues come in complex conjugate
pairs. Ordering the modes with respect to their magnitude,
the first (1–2) and second (3–4) pair of modes oscillate with
St2 = 0.141 and St4 = 0.136 respectively, whereas the third
pair of modes (5–6) oscillate with St6 = 0.017. All linear
combinations of the frequencies excite higher modes, for in-
stance, the nonlinear interaction of the first and third pair
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Fig. 15 Time-discrete (a) and
time-continuous (b) Koopman
spectra of the JCF. The
Koopman eigenvalue λ0 is
shown with a blue symbol, while
the other eigenvalues vary
smoothly in color from red
(high magnitudes) to white,
depending on the magnitude ϕj

of the corresponding Koopman
mode (Color figure online)

Fig. 16 Left figure: The
magnitudes ϕj associated with
the Koopman modes
j = 1, . . . ,40. Right figure: The
magnitudes ϕj are plotted as a
function of the Strouhal number
Stj

Fig. 17 The zeroth Koopman mode (time-averaged mean flow) is
shown with red contour levels depicting the λ2-criterion and gray con-
tour level show the u component (Color figure online)

results in the fourth pair, i.e. St8 = 0.157 and so on. There-
fore, the spectral properties of the Koopman operator for the
jet in crossflow, suggest that the attractor dynamics is domi-
nated by a few discrete distinct frequencies. The associated
Koopman modes are considered next, where each global
mode identifies a region where the flow oscillates with its
corresponding frequency.

The zeroth Koopman mode φ0 (shown in Fig. 17) is the
time-averaged mean flow, corresponding to the eigenvalue
marked with a blue symbol in the spectrum. A common fea-
ture of unsteady flows with separated regions is a large dif-
ference between the steady solution and the time-averaged
mean flow solution, which is due to a significant transient

time from the fixed point to the attractor. The difference be-
tween the two flows, usually called mean flow distortion (or
mean flow correction), quantifies how much the saturated
disturbances modify the steady flow, i.e. where the mean
flow distortion is large there is significant alteration of the
steady solution due to the saturated disturbance. Physically,
the mean flow correction is due to the Reynolds stresses gen-
erated by the fluctuating field. The most significant change
in the flow is due to breakdown of the CVP (possibly at-
tributed to the elliptic instability) resulting in a retardation
of the two CVP vortex tubes, whereas the cylindrical vortex
sheet, horse-shoe/wall vortices are not modified noticeably.
The separated region downstream of the jet orifice is reduced
in size (compared to the steady flow), similarly to the obser-
vations made by other researchers [13, 71]. The mean flow
distortion being confined to the CVP and the separated re-
gion near the wall indicates that the saturating fluctuations
are large in those locations.

The first pair of unsteady Koopman modes φ1–φ2
oscillates with St2 = 0.14—which is precisely the fun-
damental shedding frequency observed in the numerical
simulations—and is an anti-symmetric nonlinear wave-
packet. The mode (shown in Fig. 18(a)) identifies the regions
in the flow domain where the frequency St2 = 0.14 can be
detected. The largest amplitude is along the jet trajectory;
the streamwise velocity of opposite sign gives rise to the



S. Bagheri

Fig. 18 The positive (red) and negative (blue) streamwise velocity component of the first (a) and fifth (b) Koopman modes. The flat plate is shown
in gray (Color figure online)

Table 2 Comparison of the frequencies (St) obtained from DNS probes (shown in Fig. 7); the global eigenmodes of the linearized Navier–Stokes;
POD modes 1 and 6, corresponding to mainly shear-layer and wall oscillations, respectively; and Koopman modes

Mode DNS Global POD Koopman

Shear layer 0.141 0.169 0.138,0.158,0.121 0.141

Wall 0.017 0.043 0.0188,0.0094,0.158,0.121 0.017%̃

spanwise-oriented vortex loops that gradually break up into
smaller vortex filaments in the downstream direction. Simi-
lar to the mean flow, most coherence in the spatial structure
is located in region where jet fluid and crossflow come into
contact; its shape is similar to the “array of transverse sec-
ondary vortex pairs” observed in the late nonlinear stages of
the short-wave instability as reported by [55] and [59]. This
analysis clearly shows that the fundamental shedding fre-
quency of the jet in crossflow is associated with vortex loop
structures on the jet, as a result from a saturation of the first
global instability mode discussed in the previous section.

The third pair φ5–φ6 oscillates with precisely the low-
frequency vortex shedding, St1 = 0.017 observed from nu-
merical simulations. This anti-symmetric mode is shown
in Fig. 18(b) and is clearly related to coherent structures
in the wall region. The alternating positive and negative
streamwise velocity near the wall contributes to the wall-
normal vorticity constituting the nonlinear von Kármán vor-
tex street. In fact, the structure of the wall-normal vorticity
near the wall is similar to the nonlinear wavepacket reported
by [78] and [13] for the cylinder wake flow. We conclude
that the low-frequency shedding of the jet in crossflow is in-
deed associated with the von-Kármán vortex street develop-
ing near the wall downstream of the jet, resulting from a sat-
uration of the global instability modes. It can be noted that
this mode has a nonzero amplitude in the jet region (along
the jet body), which is confirmed by the observation that the
whole jet wiggles back and forth in the spanwise direction.

2.3.3 Concluding Remarks

For complex flows, where several self-sustained oscillations
exist and are potentially coupled, one is interested in study-

ing the dynamics of the different oscillations separate from
each other. The Koopman modes are able decouple and iso-
late these dynamics. In Table 2 the frequencies obtained
from the analysis based on the Koopman modes and global
eigenmodes of the linearized system for the jet in cross-
flow are shown. For completeness, the frequencies extracted
from the Proper Orthogonal Decomposition (POD) modes
are also included in the table. The POD modes of the JCF
are described in [88]. The global eigenmodes capture the dy-
namics only in a neighborhood of the unstable fixed point,
resulting in linear frequencies that are different from the
nonlinear shedding frequencies. The Koopman modes, on
the other hand, correctly capture to the asymptotic dynam-
ics on the attractor of the nonlinear system. The method is
thus able (by construction) to extract global modes that os-
cillate with precisely the same frequency as the shedding
frequencies. Although, POD modes are also associated with
the nonlinear system, they capture the most energetic struc-
tures, resulting in modes that contain several frequencies.
The coefficient of the first POD mode oscillates mainly with
frequency St = 0.138, which is close to the shear-layer os-
cillation frequency St2 = 0.141 observed in DNS. However,
the signal contains other frequencies as well, resulting from
the interaction of the two fundamental oscillations (shear-
layer and wall), St = 0.138±0.017, which cause the beating
shown in Fig. 19.

3 Flow Control Using Balanced Modes

In wall-bounded shear flows, for a given Reynolds number
Re > Rec, a laminar flow is observed if disturbance ampli-
tudes are below a critical value, whereas a fluctuating tur-
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bulent flow is gradually developed for higher amplitudes.
As discussed in Sect. 1.1, the aim of transition control is to
keep the amplitudes of the incoming perturbations small, in
order to avoid turbulence. It thus suffices to focus on the
dynamics of small amplitude disturbances near the lami-
nar solution governed by the linear system u̇ = Au. For the
flat-plate boundary layer, significant amplification of distur-
bances u—usually several orders of magnitude—takes place
before disturbances eventually propagate out of the flow do-
main and leave behind the steady unperturbed boundary-
layer flow. This transient growth of disturbance energy is
due to the nonnormality [104] of the stable matrix A.

We return to the flat-plate example introduced in Sect. 1,
where the emergence of a turbulent spot from a finite-
amplitude disturbance was discussed. In Fig. 20 a sketch of
flat-plate configuration is shown, where in addition to the
disturbances upstream in the boundary layer, one row of sen-
sors and one row of actuators are introduced near the wall.
The objective is to use the sensor-actuator system to mini-

Fig. 19 Comparison of time coefficients: the projection of the flow
field onto the most energetic POD mode (black), and the coefficient of
the most energetic Koopman mode (gray)

mize the disturbance energy in a domain downstream in the
boundary layer. This domain is spanned by a number of pru-
dently chosen (objective) functions. In the present configu-
ration, there are 10 inputs (one disturbance, 9 actuators) and
19 outputs (9 sensors, 10 objective functions). Assuming all
inputs and outputs have been modelled appropriately, there
are a number of important decisions to be made:

– Given the sensor measurements, how do we determine
what action the actuators should take in order to minimize
the disturbance energy?

– Should the action of an actuator depend on all sensors
measurements or only the sensor located upstream of it?

– How can we model sensor noise or penalize the actuation
effort? Are there guarantees that the actuators will not in-
troduce more “dangerous” disturbances in flow?

These issues can be addressed in a systematic way by
control theory. In particular, the objective of feedback con-
trol is to minimize the effects of external influences on the
system behavior when not having a complete knowledge
of the disturbances that are present. This indirectly means
that a more reliable system (closed-loop system) is designed
whose amplifying behavior of disturbances is significantly
reduced, and as a consequence less likely to transition to tur-
bulence. In Fig. 21(a) the energy evolution (red solid line) of
a infinitesimal-amplitude disturbance clearly demonstrates
the transient growth phenomena; we observe an exponential
growth of three orders of magnitude until the energy peaks
at t = 2000 and then decays rapidly. In the same figure the
disturbance energy of the closed-loop system obtained us-
ing feedback control is shown with a blue line. We observe

Fig. 20 Sketch of the input-output configuration. The disturbance is
located far upstream inside the boundary layer. Approximately half
way in the downstream direction, 9 actuators are modelled by a span-
wise row of localized volume forcing. Similarly, the sensor measure-
ments used for estimation consist of a spanwise array of 9 localized

functions (same as actuators) near the wall placed a small distance up-
stream of the actuators. The inset figure shows the how the sensors are
connected to the actuators. Finally, 10 sensors, located further down-
stream are used to define the objective functional (36). The numerical
parameters are given in Table 5 (case 3D-LIN-BL) in Sect. 4.4
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Fig. 21 (a) Kinetic energy of a three-dimensional disturbance in the
flat-plate boundary layer without (red) and with feedback control
(blue). A sketch of the control configuration is given in Fig. 20. Snap-
shots of the disturbance field at t = 1750 without (b) and with feedback
control (c) (Color figure online)

that the peak value of the disturbance energy is consider-
ably smaller (about one order of magnitude) than the origi-
nal system. Snapshots of disturbances of the two systems at
t = 1750 are compared in Fig. 21(b)–(c), where we clearly
see that the nearly two-dimensional structure of disturbance
of the Navier–Stokes system has been replaced by a smaller
scale three-dimensional disturbance in the closed-loop sys-
tem.

Although optimal and robust feedback control have been
used for several centuries to modify dynamics and a rigor-
ous theory has existed for several decades, it is only very
recently that it has been used in flow control applications.
The main reason is that control theoretical tools have es-
sentially been unaccessible to all but the very simplest fluid
systems, due to the high-dimensional system that arise from
discretization of the Navier–Stokes equations. Model reduc-
tion, where the complex system is approximated with a very
low-order system, is therefore an important step in the con-
trol design process.

3.1 Control Design: an Overview

The main steps of the control design process are outlined
in this subsection. Throughout the section, examples on the
simpler two-dimensional flat-plate configuration are pro-
vided. The three-dimensional configuration can be treated

Fig. 22 A sketch of input-output configuration for the control of per-
turbations in a two-dimensional flat-plate geometry. The domain size
and numerical parameters are listed in Table 5 (case 2D-LIN-BL) in
Sect. 4.4

in an analogous manner, although the design requires more
care due to the additional direction in the spanwise direction.

A sketch of the configuration for the control of two-
dimensional perturbations is shown in Fig. 22. The first in-
put B1, located far upstream, models the initial receptivity
phase, where disturbances are induced by free-stream turbu-
lence, acoustic waves or wall roughness. The second input
is the actuator, B2, which provides a way to manipulate the
flow. Two sensors, C1 and C2, are used to provide measure-
ments of the perturbation. The upstream measurements are
used to estimate the amplitude and the phase of the incom-
ing perturbations, while the downstream sensor is used to
quantify the modification of the flow due to the action of the
actuator. The aim is to minimize the kinetic energy of the
disturbance in the region defined by C1, using the actuator
B2 and sensor C2. Of course, the overall goal is to reduce the
perturbation growth in the entire flow domain in order to de-
lay the initial phase of the transition process. However, this
is achieved by placing C1 far downstream: if we demand
the disturbance energy to be small at C1, the disturbance
amplitude has to decrease significantly before it reaches the
objective function to accomplish this task. For the three-
dimensional disturbance discussed in the beginning of this
section, C1 must be chosen with more care to achieve a sig-
nificant damping of perturbation. The choice of the relative
position of the actuator and sensor is based on the knowl-
edge of the behavior of boundary layer instabilities and is
described in [10].

The key point is that the signal given to the actuator at
each instant in time is based only on the measurement signal
provided by the sensor C2. Rather than velocity fields u ∈ U,
we are interested in characterizing time signals and in par-
ticular the relation between input signals and output signals,
since this relation underlies most of the basic treatments in
the control design. We adopt an operator-viewpoint, where
the operators represent “systems” that map input signals
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Table 3 Properties of the three systems considered in this paper. See
text for additional information

System Complexity 2-Norm ∞-Norm

Plant G 105 9.7 144.6

Reduced-order model Gr 60 9.4 144.3

Closed-loop system Gc 105 0.4 6.4

to output signals. In particular, three systems will be used
throughout this section, each of them related to one major
step in the control design:

1. The characterization of the input-output behavior of
the plant (open-loop system) G, represented by the
linearized Navier–Stokes equations including two-di-
mensional disturbances, actuators, sensors and objective
functions. In Sect. 3.2 the input-output behavior between
signals is evaluated by computing system norms (2-norm
and ∞-norm).

2. Section 3.3 describes a method to construct a low-
dimensional model Gr that essentially shows the same
input-output behavior as the plant G.

3. The final step is taken in Sect. 3.4, using Gr , the closed-
loop system Gc is designed such that its norms—thus
its amplifying behavior of disturbances—are small com-
pared to the plant G.

The three systems and their properties are listed in Table 3.

3.2 Linear Systems and Input-Output Signals

In order to characterize the input-output behavior of a linear
system we first need to define systems and signals. We begin
with defining a linear state-space system as

u̇ = Au + Bw (15a)

y = Cu + Dw (15b)

where u ∈ U is the state variable, w ∈ R
m is the input and

y ∈ R
p is the output of the system. The input space and

output space are endowed with the Euclidean norm denoted
by | · |. The matrices A ∈ R

n×n, B ∈ R
n×m and C ∈ R

p×n

are constant and the latter two matrices are usually low-rank,
i.e. m,p � n. We assume (15a)–(15b) is stable, meaning
that all the eigenvalues of A have negative real part. Since it
does not affect the results, assume for now that both the ini-
tial condition u0 and the feed-through term D ∈ R

p×m are
zero.

A signal is a (vector-valued) function of the independent
variable time only, and is an element of the function space

L2
s (t1, t2) =

{
z(t) : R → R

s |
∫ t2

t1

|z|2 ≤ ∞
}
,

where s = m for the input space s = p for the output space
(subscript will omitted in most cases). Often we will con-
sider signals over the infinite time intervals L2(−∞,∞),
L2(0,∞) and L2(−∞,0), which physically can be obtained
after the transients asymptotically die out (owing to sta-
bility). The time-domain space L2(−∞,∞) can be repre-
sented by a frequency-domain space L̂2(iR) by means of a
Fourier transform, which preserves the inner-product (Par-
seval’s theorem), i.e.

‖z‖L2 = ‖ẑ‖
L̂2 .

Therefore we will not make notational distinction be-
tween time-domain signals and their frequency-domain
counterparts.

A system is a linear mapping between an input signal to
an output signal, G : L2 → L2

y(t) = (Gw)(t).

We are interested in the asymptotic and causal input-output
properties; assuming knowledge of w(t) in the time interval
(−∞, t), the output at time t is uniquely given by the system
G : L2(−∞,∞) → L2(−∞,∞)

y(t) = (Gw)(t) = C
∫ t

−∞
eA(t−s)Bw(s)ds (16)

where exp(A) is the matrix exponential [104]. Similar to sig-
nals, linear time-invariant (LTI) systems can be represented
in the frequency domain. A Laplace transform of (16) results
in a transfer function matrix

y(s) = Ĝ(s)w(s) = (C(sI − A)−1B
)
w(s) (17)

with s ∈ C. Henceforth the hat on Ĝ is omitted since it is re-
lated to G by a linear transformation. Occasionally we write
the input-output system in compact form

G =
(

A B
C 0

)
. (18)

Performance criterions for control design and error
bounds for model reduction are given by different system
norms. In general, ‖G‖2 is an appropriate measure of perfor-
mance when the input signal is a stochastic process, whereas
‖G‖∞ is appropriate when considering largest possible am-
plification due to an input signal. The latter norm quantifies
the amplification of an input signal, which is given by the
induced L2-norm of a system,

‖G‖∞ = sup
w �=0

‖Gw‖L2

‖w‖L2
.

It can be shown (see e.g. [31], p. 92) that the induced norm
is the infinity norm of its transfer function matrix,

‖G‖∞ = sup
ω

|G(iω)|, (19)
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where |G| denotes the largest singular value of the transfer
function matrix. Moreover, this norm is finite for all stable
systems. So, ‖G‖∞ measures how much energy is transfered
from the input to the output.

The 2-norm of system G is the expected root-mean-
square (RMS) value of the output when the input is a white
noise process with unit variance. If w(t) is white noise, then

‖G‖2
2 = E

(
1

T
‖Gw‖2

L2

)
= E

(
1

T

∫ T

0
|y|2dt

)
(20)

where it can be shown (see e.g. [31], p. 94) that as t → ∞

‖G‖2
2 = 1

2π

∫ ∞

−∞
trace

(
G(iω)GT (iω)

)
dω. (21)

The 2-norm can be computed either by the average output
energy of a large number of realizations to stochastic forc-
ing, or by solving one Lyapunov equation [31]. However,
when n is large, as in our case, a more feasible way is to
compute the output energy of an impulse response, since
white noise is a set of impulses that are uncorrelated in time.

Comparing Eq. (21) with Eq. (19), we note that ∞-norm
measures the response to the “worst” frequency, whereas
2-norm measures the response to all frequencies in an av-
erage sense.

3.2.1 Input-Output Analysis of the Flat-Plate Boundary
Layer

Before we consider the full system in Fig. 22, the input-
output behavior between the disturbance and objective func-
tion is characterized; the “sensor”, “controller” and “actu-
ator” are not included in the analysis for now. Consider
the stable linear system G given by; (i) the Navier–Stokes
equations linearized about the steady boundary-layer flow
(A ∈ R

n×n), (ii) a two-dimensional volume forcing inside
the boundary layer at an upstream location (B1 ∈ R

n×1) and
(iii) a two-dimensional sensor (C1 ∈ R

1×n), also represented
by function inside the boundary layer, but located further
downstream.

We will characterize G by computing its 2-norm and
∞-norm, since these measures are necessary components
when performing model reduction and designing control
schemes in the subsequent sections. The norms are obtained
by computing the energy of the output signal y when the in-
put w is a impulse/stochastic (2-norm) signal and harmonic
signal (∞-norm).

The 2-norm, defined by Eq. (20), is given by the output
energy due to an impulsive input w(t) = δ(t). The impulse
response given by,

y(t) = CeAtB, (22)

Fig. 23 Impulse (a) and frequency response (b) of the flat-plate
boundary layer. The black lines show responses from DNS compu-
tations (n ≈ 105). The red symbols show the responses from the re-
duced-order model (r = 60) (Color figure online)

is shown in Fig. 23(a) with a black solid line. The impulse
triggers a wavepacket that grows in amplitude as is propa-
gates in the downstream direction. The output signal y(t) is
zero for a long time, but as the disturbance passes the sen-
sor location, the wavepacket is registered. The 2-norm of G,
which for the present case is ‖G‖2 = ‖y‖L2 = 9.7 quantifies
the signal amplification of a unit norm input in an averaged
sense.

The ∞-norm, defined by Eq. (19), is computed by find-
ing the harmonic input signal that results in the largest out-
put energy. The response to harmonic forcing w(t) = eiωt is
given by

y(t) = |G(iω)|eiωt+φ. (23)

Due to the linear nature of the system, the input frequency ω

will generate an output signal with same frequency but with
a phase shift φ = Arg(G) and a gain |G(iω)|. The gain is
shown in Fig. 23(b) with a black solid line. A range of fre-
quencies are amplified with the peak at ω = 0.055, whereas
the low and high frequencies are damped. The ∞-norm is
given by the peak value of the gain |G|. In Table 3 the norms
of G are listed. In the next section, we attempt to construct
a new system, Gr with system norms very close to G, but a
significantly smaller dimension.

3.3 The Model Reduction Problem

The state space U contains all possible solenoidal velocity
fields that satisfy the boundary conditions. However, for a
given structure of B and C, only certain velocity fields can
be triggered by the input and observed by the output. These
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states are called controllable and observable states respec-
tively. The flow structures that are neither controllable nor
observable are redundant for the input-output behavior. The
minimum number of states6 n̂ ≤ n that can be both observed
and controlled for a given B and C is defined as the com-
plexity of G. Henceforth we will omit the hat on n̂. It turns
out that when m,p � n, the complexity of G can be signifi-
cantly reduced, while preserving the relation between the in-
puts and outputs. The reason for this reduction is that a large
number of the states are nearly uncontrollable/unobservable
and they can be discarded since they have a very weak influ-
ence on the input-output behavior. A systematic approach of
removing these states is called balanced truncation [69].

A reduced-order system (ROM) is an “approximation”
of G, defined as

Gr =
(

Ar Br

Cr Dr

)
,

such that the complexity of Gr is r where r � n. We would
like to choose Gr such that

‖G − Gr‖∞ (24)

is small. Requiring a small error in the 2-norm is a substan-
tially more difficult problem.

3.3.1 SVD of the Hankel Operator

Matrices and linear systems are both linear transformations
and have thus a lot in common. It is well known that if one
wants to approximate an n-rank matrix A with a r < n rank
matrix Ar , then the smallest possible error is given by

min
rank(Ar )≤r

‖A − Ar‖ = σr+1, (25)

where ‖ · ‖ is the induced Euclidean norm and σr+1 is the
r + 1 largest singular value of A. One can also compute sin-
gular value decomposition (SVD) of signals which amounts
to a POD analysis [69]. However, a SVD of a linear input-
output system G in order to find a Gr is not straightforward,
since G is not always a finite rank operator. In fact there is
no known solution to the optimal model reduction problem
in the infinity norm. A simpler input-output mapping, is the
finite-rank Hankel operator �G : L2(−∞,0] → L2[0,∞)

of the system G, defined by

(�Gw)(t) =
∫ 0

−∞
CeA(t−s)Bw(s)ds.

The induced norm of �G is equal to the Hankel norm of G,

‖�G‖∞ = ‖G‖H

6In the literature, n̂ is refereed to as the McMillan degree.

Fig. 24 The controllability operator Lc relates past inputs to the
present state, while the observability mapping Lo relates the present
state to the future outputs. Their combined action is expressed by the
Hankel operator �G

The Hankel norm quantifies the energy transfered from past
inputs to future outputs. In this norm there is a solution to the
optimal model reduction problem, called the Hankel norm
approximation [29]. However, we will use the Hankel op-
erator to introduce a non-optimal model reduction problem,
referred to as balanced truncation, which has error bounds
very close (a factor of 2 larger in ∞-norm) to the Hankel
norm approximation, but is considerably easier to compute.

To understand why �G has finite rank, we decompose the
input-output operator into two parts

�G = LoLc.

The controllability operator Lc : L2(−∞,0] → U, maps
past input signals to an initial state u0,

Lcw =
∫ 0

−∞
e−AsBw(s)ds. (26)

The second mapping Lo : U → L2[0,∞), called observabil-
ity operator, is from the initial state to future outputs signals,

Lou0 = CeAtu0 t ≥ 0. (27)

As sketched in Fig. 24, the input is mapped via a state at a
reference time t = 0, given by u0 = Lcw, to the output given
by y = Lou0. Therefore in order to determine the output, it
is sufficient to know the state u0 that results from driving the
system with w. The key point is: all inputs that give rise to
the same u0 produce the same output. Any two linearly inde-
pendent states, u1,u2 ∈ U result in two linearly independent
future outputs y1,y2 ∈ R

p . Thus, the number of linearly in-
dependent outputs, and hence the rank of �G, is n.

We can compute the singular value decomposition (SVD)
of �G,

(�Gw)(t) =
n∑

j=1

σj 〈sj ,w〉L2tj , (28)

where sj ∈ L2(−∞,0) and tj ∈ L2(0,∞) are sets of or-
thonormal signals. The singular values of �G, σj > 0 are
called Hankel singular values (HSV) of G and are ordered
in descending order of magnitude. Of all possible unit-norm
(past) input signals, s1 results in the (future) output signal
with the largest norm, given by σ 2

1 t1.
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Fig. 25 Sketch of controllability (a) and observability (b) for the flat–
plate boundary layer. The response to an input is large downstream
(because of strong convection), which results in a large controllability
of flow structures in the downstream part of the domain. Similarly, the
flow structures that will after a transient time, result in a large sensor
output are located far upstream, resulting in strong observability in that
region

3.3.2 Reduced-Order System

The mappings, Lc and Lo, are related to the concepts of con-
trollability and observability. A state is called controllable if
it belongs to the range of Lc, that is, if u = Lcw exists for
some w. By forming the n × n positive (semi) definite ma-
trix P,

P = LcLT
c =

∫ ∞

0
eAtBBT eAT t dt, (29)

called the controllability Gramian, we can rank different
states according to how easily they can be influenced by an
input. In particular, the most easily influenced, or most con-
trollable, flow structures are the eigenvectors of P associated
to the largest eigenvalues of P.

The linear system G is observable if Lou0 = 0 occur only
if u0 = 0, i.e. if the knowledge of the output determines the
initial state uniquely. Fluid systems are rarely completely
observable when using localized sensing. However, among
all possible u0, we can find the initial conditions which pro-
duce the largest possible output energy, by forming the n×n

observability Gramian Q,

Q = LT
o Lo =

∫ ∞

0
eAT tCT CeAt dt. (30)

The matrix provides a way to rank states according to their
contribution to the output. The most observable states are
given by the eigenvectors of the matrix Q corresponding to
its largest eigenvalues. The sketch in Fig. 25, illustrates the
concepts of the Gramians. Note that LT

o and LT
c are the ad-

joint observability and controllability operators respectively
and are derived in [10].

It is easy to show (see [31], p. 344) that (28) holds if

PQφi = σ 2
i φi , i = 1, . . . , n. (31)

We call the eigenvectors, φj ∈ U, balanced modes. This
set is not orthogonal, and we define the set of left eigenvec-
tors of PQ as the adjoint balanced modes and denoted them
by ψj ∈ U. The two sets are bi-orthogonal, i.e.

〈φi ,ψj 〉U = δij .

The balanced mode φj is a global structure in the flow that
is “influenced” by the input B by an amount given by its
HSV σj , whereas the corresponding adjoint mode ψj is
a flow structure that—if used as an initial condition—will
result in an output energy ‖y‖L2 given also by σj . These
global modes that come in pairs have thus ranked the flow
fields according to their response behavior (controllability)
and output sensitivity (observability).

Let the columns of the matrices � and � contain r bal-
anced modes and r adjoint modes respectively, correspond-
ing to the r largest HSV,

� = [φ1 . . . φr ], � = [ψ1 . . . ψ r ].
The reduced order system Gr is given by,

Gr =
(

�T A� �T B
C� D

)
.

To obtain the above system, we have performed an oblique
projection of the original high-dimensional state-space sys-
tem (15a)–(15b) onto a subspace Ur ⊂ U spanned by r bal-
anced modes. The projection is along a direction orthog-
onal to the subspace U

∗
r ⊂ U spanned by the adjoint bal-

anced modes (see [1], p. 12). Traditionally, to obtain Gr one
adopts a transformation-truncation approach [69] called bal-
anced truncation. In this approach—which also explains the
term balancing—the system G is via a linear transformation
represented in coordinates, where the controllability and ob-
servability Gramians are diagonal and equal to the HSV (the
controllable and observable properties are thus “balanced”).

The system Gr is not optimal in any way, although it is
derived from SVD of the Hankel operator. Nevertheless, bal-
anced truncation is arguably the most widely used method
for model reduction of linear input-output systems, because
of the following two properties:

1. Gr is guaranteed to be asymptotically stable if σj �= σj+1

for all j [77];
2. there exist tight error bounds [29],

σr+1 ≤ ‖G − Gr‖∞ ≤ 2
n∑

j=r+1

σj (32)

that can be determined a priori to computing Gr .
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Fig. 26 Left: The streamwise
velocity component (positive in
red and negative in black) of
first balanced mode φ1 and it
associated adjoint mode ψ1.
Right: The ∞-norm model
reduction error. The upper and
lower theoretical bounds
(Eq. 32) are depicted with a
gray region and the actual
model reduction error is shown
with red symbols (Color figure
online)

Comparing the error bound to Eq. (25), we see that the Han-
kel singular values play a similar role in linear systems to
singular values of matrices.

3.3.3 Model Reduction of the Flat-Plate Boundary Layer

We return to the single-input single-output flat-plate bound-
ary layer example, where the number of degrees of freedom
to describe two-dimensional disturbances is n ≈ 105. In this
section, we construct a low-order model Gr using balanced
modes and compare its performance to the Navier–Stokes
system.

When the input B1 is placed upstream and the output C1

downstream, the controllable velocity fields and the observ-
able fields are spatially separated in the streamwise direc-
tion. As shown in schematically in Fig. 25, observability is
strong far upstream, whereas controllability is strong at the
downstream part of the domain. This is a consequence of
the convective nature of the instabilities arising in the Bla-
sius flow where disturbances grow in amplitude as they are
convected in the downstream direction. The large difference
between observable and controllable states, makes it partic-
ularly important to perform balancing in order to construct
a reduced-order model that captures the input-output behav-
ior. Figure 26(a)–(b) show that the first adjoint (ψ1) and for-
ward balanced mode (φ1) appear as localized wavepackets,
located at each end of the domain. Modes corresponding to
higher HSV look similar, but have different spatial wave-
lengths. It is because of the bi-orthogonal projection, where
the adjoint balanced modes account for the output sensitiv-
ity and the direct balanced modes for the most controllable
structures, that the resulting reduced-order model captures
the input-output behavior. It is interesting to point out that
for many convectively unstable flows, this spatial separation
is also observed between the global eigenmodes of the lin-
earized Navier–Stokes equations and eigenmodes of the ad-
joint Navier–Stokes equations, where it is associated to the
streamwise nonnormality of the system [20].

In Fig. 23 the impulse and frequency responses of the
balanced reduced-order model Gr (r = 60) are compared to

full Navier–Stokes system (n = 105). We observe that the
curves essentially collapse for both types of forcing, albeit
the remarkable reduction in the number of degrees of free-
dom. This clearly indicates that capturing the input-output
behavior of a linear system when m,p � n (in this single-
input single-output case m = p = 1) requires significantly
smaller degrees of freedom, compared to capturing the full
spatiotemporal disturbance dynamics. A more quantitative
evaluation is provided in Fig. 26(b), where the actual model
reduction error ‖G − Gr‖∞ is compared to the theoretical
error bounds given by HSV (32). We observe that the er-
ror (red circles) decays rapidly with increasing modes, and
is close to the lower theoretical bound. Note that the lower
bound in the ∞-norm holds for any model reduction pro-
cedure applied to a linear system and not only balanced
reduced-order model. See also Table 3 for the norms of Gr

(r = 60).

3.4 The Control Problem

In the previous sections, we have characterized the input-
output behavior of the plant (Navier–Stokes system) G by
computing system norms. In the context of flow stability,
large system norms are closely linked to transient growth
of perturbation energy (see e.g. [16, 17], for more on this
relation). By minimizing the system norms we can expect
smaller transient growth of perturbations and a laminar flow
system that is less likely to transition to turbulence.

The control problem can formulated as follows: By ap-
plying feedback control to G, find a closed-loop system

Gc =
(

Ac Bc

Cc Dc

)
,

such that

‖Gc‖2 < ‖G‖2 (33)

and its complexity is of the same order as the plant G. Re-
call from Sect. 3.2 that the 2-norm of a system is the output
energy when the input to the system is a stochastic process.
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In other words, forcing both systems G and Gc with unit-
variance white noise, the closed-loop system is required to
result in a significantly smaller output signal than the plant.
The aim of this section is to design Ac,Bc,Cc and Dc such
that the 2-norm of Gc is the smallest possible. We present a
systematic method to find Gc, known as the linear quadratic
Gaussian (LQG) optimal control problem [6, 25, 26, 60].
The main disadvantage of LQG is that it does not account
for uncertainties of the system G [24] which is required to
guarantee a robust performance and even robust stability of
the closed loop system Gc. One can only check the robust-
ness by ad-hoc testing the controller for various parameters.
The LQG problem can be extended to robust optimal control
problem referred to as the H∞ control, see [11, 106].

3.4.1 The Plant

So far in this section, the inputs has represented disturbances
and the outputs some arbitrary sensor measurements. In or-
der to construct Gc by formulating a feedback control prob-
lem, we need to arrange the inputs and outputs in a specific
manner [25]. Consider the following stable plant (or open-
loop system) with three inputs and two outputs,

u̇ = Au + B1w1 + B2w2 (34a)

y1 = C1u + lw2 (34b)

y2 = C2u + αg. (34c)

The system (34a)–(34c) in a compact form is given by

G =
⎛

⎝
A B1 0 B2

C1 0 0 l

C2 0 α 0

⎞

⎠ . (35)

Figure 22 shows a sketch corresponding to the above sys-
tem. The physical shape of the inputs/outputs, described by
the constant input and output vectors B = [B1 0 B2] and
C = [C1 C2]T , were discussed in Sect. 3.1. The correspond-
ing time signals w(t) = [w1 g w2]T and y(t) = [y1 y2]T
represent the following:

– The disturbance signal w1 is assumed to be a temporal
white noise with unit intensity.

– The control signal w2 is to be determined in order to min-
imize the objective function.

– The objective functional is the mean of the output sig-
nal y1,

E
(‖y1‖2

L2

)= E

(∫ ∞

0

(
uT CT

1 C1u + l2wT
2 w2

)
dt

)
. (36)

The disturbance energy is minimized in the domain de-
fined by C1, and at the same time the control effort is
penalized with a scalar l.

– The measurement signal y2 estimates amplification and
phase of temporal frequencies in the flow at the location
of the sensor C2. The signal is forced with an unit vari-
ance temporal noise g(t) (large values of the scalar α,
indicate high level of noise corruption).

As alluded to above, we will determine the optimal con-
trol w2(t) in (34a)–(34c) based on noisy measurements
y2(t) such that the cost functional (36) is minimized. The
assumptions that external disturbances w1 and the sensor
noise g are white noise may in some applications be un-
realistic, however, it is possible to describe a system with
colored noise input, in terms of an augmented system with
white-noise input [60].

3.4.2 Linear Quadratic Gaussian Design

One can show [25] that the system Gc with smallest 2-norm,
satisfies

‖Gc‖2
2 = ‖Gf ‖2

2︸ ︷︷ ︸
Full information

+ ‖Ge‖2
2︸ ︷︷ ︸

Estimation

.

In order to construct Gc we need to compute two simpler
linear systems Gf and Ge, by solving a full-information
control and an estimation problem. It turns out that the two
systems Gf and Ge can be solved independently from each
other. Moreover, if both subsystems are stable and optimal
then the closed-loop system is also guaranteed to be stable
and optimal.

We briefly state the solution of the two problems and refer
to [25] for details.

Full-Information Problem In this first step, assume we can
measure the full state at all times. We further assume that
the control w2(t) and the state u(t) satisfy a linear relation
involving some yet unknown matrix K, i.e.

w2(t) = Ku(t). (37)

Inserting (37) into (34a)–(34c) and neglecting the redundant
output y2, we get

Gf =
(

A + B2K B1

C1 + lK 0

)
.

It remains to choose K such that Gf is stable and the
control signal w2(t) minimizes the system norm ‖Gf ‖2.
The solution is provided by a optimal control state-feedback
problem, (see e.g. [6]), where the optimal control signal (37)
is given by the feedback gain,

K = −BT
2 X,

and X is a solution of the (algebraic) Riccati equation

0 = AT X + XA − XB2BT
2 X + CT

1 C1.
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Estimation Problem The second step in constructing Gc is
to estimate the full state u(t) via the linear system Ge given
only the noisy measurements y2. Denoting the estimation
error by ue = u − û, where û is the estimated state and as-
suming that both w1 and g are white noise processes, an
estimator can be formulated as follows

u̇e = Aue + B1w1 + L(y2 − ŷ2) (38a)

ŷ2 = C2û (38b)

y2 = C2u + αg. (38c)

In the above expression, we compare the measurement y2

from the state and the measurement ŷ2 from the estimated
state and feed back the mismatch in these two quantities us-
ing the estimator gain L.

It can be shown [49] that the estimation gain that mini-
mizes the estimation error ‖ue‖L2(0,∞) and results in a stable
estimator is given by

L = −YCT
2 ,

where Y is a solution of the Riccati equation,

0 = AY + YAT − YCT
2 C2Y + B1BT

1 .

Now, if the state has been successfully estimated, it can
be shown that the optimal control signal w2(t) is given by
w2(t) = Kû(t) where K is the full information control gain
computed previously. By substituting the explicit depen-
dence of the two measurements on the state u and the es-
timated state û, respectively, into the estimator (38a)–(38c)
we obtain the second part of the closed-loop system Gc:

Ge =
(

A + LC2 B1 αL
K 0 0

)
.

Note that the input of Ge is [w1 g]T and the output is the
control signal w2.

The Closed-Loop System The cost of solving a Riccati
equation is O(n3), which is a computationally intractable
task when n > 105. In the previous section we showed that
our reduced model Gr is able to capture the input-output be-
havior of the Navier–Stokes system G. During the design
of Gc we can assume that the reduced-model is the plant
that we wish to control. Once we have determined Ge and
Gf for this approximating model, we will apply it to the
full Navier–Stokes system. This means that the feedback
gains and have the same dimension (r) as the reduced-order
model Gr .

The final step is to connect the controller Gf and the
estimator Ge to the plant G given by Eq. (35) to obtain
the matrices Ac,Bc,Cc and Dc of closed-loop system Gc.
A straightforward derivation gives

Gc =
⎛

⎜
⎝

A B2K̂ B1 0

−L̂C2 Â + B̂2K̂ + L̂Ĉ2 0 −αL̂
C1 lK̂ 0 0

⎞

⎟
⎠ .

The output of the system is y1 and the inputs are [w1 g]T .
The state for the above system is [u û]T ∈ R

(n+r)×1 where
u ∈ U is the full state and the û ∈ R

r×1 is the reduced esti-
mated state. A sketch of the closed-loop system is shown in
Fig. 27. It is important to note that in the above closed-loop
system the quantifies marked with hat are of order r � n.
This results in a fast “online” controller running in paral-
lel with the experiments. As shown in Fig. 27, the con-
troller can be decomposed into an observer governed by
(Â + L̂Ĉ2)û + B̂2w2 + L̂y2 and the feedback gain K̂.

3.4.3 Feedback Control of the Flat-Plate Boundary Layer

The full input-output system G for the flat-plate boundary
layer is shown in Fig. 22 and was described in Sect. 3.1. Re-
call that LQG design minimizes the 2-norm of the closed-
loop system Gc when the external disturbances (w1, g) are
white noise process. We therefore force both systems G

Fig. 27 Sketch of the
closed-loop system Gc . The
controller (red borders) of order
r consists of an observer and
feedback gain K̂ that forces the
plant G of size n with the
control signal w2 based on the
noisy measurements y2 so that
the effect of w1 on the output
signal y1 is minimized. The
observer is governed by
Âo = Â + L̂Ĉ2 (Color figure
online)
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Fig. 28 (a) The streamwise rms-values of the uncontrolled system
(blacks), and the closed-loop (red) as a function of the streamwise di-
rection x. (b) Comparison of the frequency response from disturbances
to objective function of uncontrolled (black) and the closed-loop sys-
tem (red) (Color figure online)

and Gc with unit-variance white noise signal in w1 and
compare the root-mean-square values (averaged in the di-
rections z, y and the time t) of the streamwise velocity
component u. Note that the purpose of the measurement
noise g is to account for uncertainties in the sensor mea-
surements during the control design. When evaluating the
closed-loop performance the system is only forced with w1.
In Fig. 28(a) the performance of a controller is investigated
with (control penalty) l = 0.1 and (sensor noise contamina-
tion) α = 0.1. The rms-value of the disturbance grows expo-
nentially downstream in the uncontrolled case until x = 800.
The rms-value of the perturbation when the control is active
grows only until it reaches the actuator position (x = 400),
where it immediately begins to decay. At the location of the
objective function C1 (x = 750), the amplitude of the per-
turbation is one order of magnitude smaller than in the un-
controlled case.

There are a number of additional ways to evaluate the
control performance. In Fig. 28(b) the frequency response
from the disturbance B1 to the objective function C1 of the
uncontrolled system is compared to that of the closed-loop
system. The controller suppresses the most dangerous fre-
quencies close to ω = 0.055 significantly. Note that com-
pared to the uncontrolled model, the highly damped frequen-
cies ω > 0.11 have larger gain in amplitudes. This behavior
is often observed in closed-loop systems and is related to
the “water-bed” effect, i.e. when certain frequencies are sup-
pressed, the response at other frequencies is amplified. The
2-norm and the ∞-norm of Gc are compared to those of the
plant in Table 3, which illustrates the significantly smaller
of the amplifying behavior of Gc.

We have shown that by using systematic methods from
control theory in combination with localized sensing/actu-

ation, it is possible to reduce the growth of small-amplitude
disturbances in the boundary layer. As demonstrated in the
introduction of this section, using this approach, the energy
of three-dimensional disturbances are damped by an order
of magnitude. Further conclusions are provided in the final
section of this paper.

4 Algorithms for Global Modes

To accurately describe the flow dynamics in two- or three-
dimensional domains, a large number of degrees of free-
dom is necessary, yielding a high-dimensional dynamical
system (2). Table 4 shows the dimension of the state space
U for the flow cases. Dynamical-system analysis involving
the computation of steady solutions, global eigenmodes and
Koopman modes commonly involves solving nonlinear sys-
tems or eigenvalue problems of size n. In systems and con-
trol theory the most elegant results require the solution of
various matrix equations, such as the Riccati or Lyapunov
equations. All of these computations scale O(n3), which
means that even with the use of supercomputers it is pro-
hibitively expensive to solve such problems for large sys-
tems. Therefore, numerical linear algebra and numerical al-
gorithms to find approximate solutions have played a central
role in computational fluid mechanics.

The main idea of the methods presented here is to identify
a low dimensional subspace Ur ⊂ U with r � n, on which
the large systems can be projected along a certain direction.
The problem at hand can then be solved by standard methods
in this low-dimensional subspace. The subspace is spanned
by r prudently chosen states u

Ur = span{u1, . . . ,ur}.

In the simplest case, these states are simply sampled along
one or more state trajectories obtained by integrating the
governing equations, whereas in other cases a recurrence re-
lation provides the necessary states. In either case, all the
methods require flow fields at discrete time and it is there-
fore convenient to present the algorithms using discrete-time
systems. In this so called “time-stepper approach”, matrices
are never stored explicitly and storage demands in memory

Table 4 Example of the state-space dimension for some of flow con-
figurations

Dimension
of Ω

Dimension
of U

Storage
of A

Ginzburg-Landau 1D 102 1 MB

Flat-plate boundary
layer

2D 105 25 GB

Jet in crossflow 3D 107 500 TB
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of all algorithms are of the same order as r times the storage
of a single flow field.

Recall that the time-discrete dynamical system represent-
ing the discretized Navier–Stokes equations is given by

uk+1 = g(uk), (39)

and let the linearized equations be given by

uk+1 = Aμuk (40)

where

Aμuk = exp
(
A�t(k + 1)

)
u(k�t).

4.1 Linear Global Eigenmodes

In Sect. 2.2 we defined the linear global eigenmodes as
the eigenvectors φj and eigenvalues λj of the discretized
and linearized Navier–Stokes equations A. Solving the enor-
mous eigenvalue problem for the n×n matrix A using direct
methods (such as the QR algorithm) is not only an unfeasi-
ble computational task when n ≥ 105, but also very waste-
ful since we are interested in a small subset of the spectrum
only: in order to determine the stability of the baseflow and
to gain insight into the main instability mechanisms it is
sufficient to compute a few, say r � n, of the least stable
global modes. Fortunately, it turns out that we can compute
r approximate global modes λ̃j , φ̃j from a small eigenvalue
problem of size r × r .

Note that the j th eigenvalue, λj = σj + iωj , of the time-
continuous matrix A is related to the j th eigenvalue, λμ,j ,
of the time-discrete matrix Aμ as follows:

ωj = arg(λμ,j )/�t, σj = ln(|λμ,j |)/�t. (41)

The eigenvectors of A and Aμ are the same.7 Henceforth,
the subscript μ on Aμ and λμ is omitted and we work en-
tirely with discrete-time systems.

Denoting the residual (i.e. the error) introduced by the
approximation with rj , we have

Aφ̃j = φ̃j λ̃j + rj , j = 1, . . . , r. (42)

One can show that by requiring the residual rj to be orthog-
onal to a r-dimensional subspace Ur ⊂ U, we can choose
λ̃j , φ̃j such the error is the smallest possible. Let r of lin-
early independent vectors given in the matrix,

Xr = [u1 u2 . . . ur ] ∈ R
n×r , (43)

7The eigenvectors are the same if the sampling period �t is chosen
properly, i.e. so that it reflects the characteristic time scale of the phys-
ical structures in the flow. More specifically, to avoid aliasing �t must
be small enough such that two sampling points in one period of the
highest frequency mode are obtained (the Nyquist criterion).

span Ur . We call λ̃j the Ritz values of Xr associated with
the Ritz vectors φ̃j if

φ̃j ∈ span{Xr}, rj ⊥ span{Xr}.

Since φ̃j ∈ span{Xr}, we can expand it in terms of the
columns of Xr ,

�̃ = [φ̃1 φ̃2 . . . φ̃r ] = XrT, (44)

where the yet unknown matrix T = [T1 . . . Tr ] ∈ R
r×r

contains the expansion coefficients. Inserting this expansion
into (42), multiplying from left with XT

r and letting

Λ̃ = diag{λ̃1, λ̃2, . . . λ̃r},

we get

XT
r AXr︸ ︷︷ ︸

Cr

T − XT
r Xr︸ ︷︷ ︸
Br

TΛ̃ = 0, (45)

since XT
r rj = 0 for all j . The expansion coefficients T are

thus the eigenvectors and the Ritz values the eigenvalues of
the small r × r matrix B−1

r Cr ,

(
B−1

r Cr

)
T = TΛ̃. (46)

We have replaced the large eigenvalue problem (7) of size
n with a smaller one (46) of size r � n. The question is,
how fast the Ritz values and vectors converge to exact linear
global eigenmodes and with what accuracy? The answer de-
pends on the choice of vectors uj in Xr . Note that the matrix
Cr can be interpreted as the orthogonal projection of A onto
the space spanned by the columns of Xr , where the projector
is given by Pr = XrB−1

r XT
r .

4.1.1 Arnoldi Algorithm

The best—and computationally the most involved to determine—
choice of basis for Ur , resulting in a fast convergence with
a satisfactory accuracy is an orthonormal basis. The Arnoldi
method [8] is an algorithm that simultaneously computes an
orthonormal sequence Br = XT

r Xr = I and an upper Hes-
senberg matrix Cr = XT

r AXr .
The method of Arnoldi computes the j + 1 basis vector

in Xr by the recurrence

v = Auj − (h1j u1 + h2j u2 + · · · + hjj uj ) (47a)

uj+1 = v/hj+1,j (47b)

where hij = 〈Auj ,ui〉 and hj+1,j = ‖v‖. This is simply the
Gram-Schmidt method of orthogonalizing and normalizing
a sequence. If we start with some unit-norm initial vector
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Algorithm 1 Arnoldi method
[Φ,Λ, r] = Arnoldi(u1)

Input: unit norm initial vector u1

Output: r Ritz vectors �

r Ritz values Λ

residuals r
Requires: time stepper Aμ

1: X(:,1) = u1

2: for j = 1 to r do
3: v = Aμuj

4: for i = 1 to j do
5: M(i, j) = innerproduct(Auj ,ui )

6: v = v − M(i, j)uj

7: M(j + 1, j) = norm(v)

8: uj+1 = v/M(j + 1, j)

9: end for
10: X(:, j + 1) = uj+1

11: end for
12: [T,Λ] = eig(M)

13: � = XT
14: r = norm(A� − �Λ,1)

(usually noise) u1 and perform the above recurrence r + 1
times, we arrive at the following expression,

AXr = XrM + hr+1,rur+1eT
r ,

where eT
r = [0 0 . . . 0 1] ∈ R

1×r and M is a upper Hes-
senberg matrix

M =

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

h11 h12 . . . h1r

h21 h22 . . . h2r

0 h32 . . . h3r

...
...

0 0 . . . hrr

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

∈ R
r×r .

By construction of the Arnoldi algorithm we have
ur+1 ⊥ Xr , therefore from (45) it is easy to see that M =
B−1

r Cr = Cr . The Ritz values of A in Ur are the eigen-
values Λ̃ of the upper Hessenberg matrix M and the Ritz
vectors are given by �̃ = XrT where the columns of T are
the eigenvectors of M (see Algorithm 1).

The residual in Eq. (42) of the j th Ritz pair is thus given
by

rj = (A − λ̃j I)φ̃j = hr+1,rTj (r)ur+1,

where Tj (r) is the last component of the j th eigenvec-
tor of M. One can stop the algorithm when the desired
accuracy—usually ‖rj‖ ≤ 10−10—is attained for the Ritz
vectors of interest. To avoid a very large r and still obtain

low residuals, one can repeat the Arnoldi algorithm with
the initial vector u1 replaced by a Ritz vector or a combi-
nation of Ritz vectors [86]. In the Arnoldi-software package
ARPACK [58] a more efficient method based on polynomial
filtering [96] is applied to obtain an improved initial guess.
Moreover, the standard Gram-Schmid (47a)–(47b) gives rise
to severe cancellation errors, so in practice more advanced
techniques such as the modified Gram-Schmid method [103]
are used.

4.1.2 Dynamic Mode Decomposition

The simplest—and most ill-conditioned—choice of basis
for Ur (see [85, 86]) is simply samples (or snapshots) ob-
tained from the time-stepper

uj+1 = Auj .

The basis Xr = [u1 Au1 Au2 . . . Aur−1] becomes grad-
ually ill-conditioned, since its columns gradually align with
the dominant eigenvectors of A. For some r , the vector at
step r + 1 becomes nearly linearly dependent of the previ-
ous r vectors, i.e.

ur+1 = c1u1 + c2u2 + · · · + crur + ũr+1, (48)

where ũr+1 is the residual, i.e. the part of ur+1 that is not in
the span of Xr . We can write (48) in matrix form,

AXr = XrM + ũr+1eT
r , (49)

where eT
r = [0 0 . . . 0 1] ∈ R

1×r and

M =

⎡

⎢⎢⎢⎢⎢
⎣

0 0 . . . 0 c1

1 0 . . . 0 c2

0 1 . . . 0 c3
...

. . .
...

0 0 . . . 1 cr

⎤

⎥⎥⎥⎥⎥
⎦

∈ R
r×r (50)

is a matrix in companion form. It remains to determine
the scalar elements cj of M. If we choose them such that
ũr+1 ⊥ Xr then from (45) it is easy to see that M = B−1

r Cr :
the Ritz values of A in Ur and the Ritz vectors �̃ = XrT
are thus attained by diagonalizing the companion matrix M,
instead of the upper Hessenberg matrix obtained via the
Arnoldi method.

A few remarks are appropriate at this point. There is no
normalization step in the algorithm, and hence the modes
come with amplitudes, ai = |φ̃i | that provide a way to rank
their contribution to the overall energy in the set Xr . The
normalized amplitude ai/a1 for mode φ̃i serves as a condi-
tion number for that mode. If ai/a1 ≤ τ where τ is some
tolerance (usually τ = 10−15), then the corresponding mode
is discarded. See the example in Sect. 4.1.3.
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The companion matrix may be a highly nonnormal ma-
trix, which results in an ill-conditioned eigenvalue decom-
position problem. One can improve the accuracy in several
steps as it is done by default in the eigenvalue routines of
Lapack (DxGEEV) and Matlab (EIG); first, balancing [75]
of the matrix by a similarity transformation is performed,
followed by a reduction to upper Hessenberg form via a sec-
ond similarity transformation and finally the eigenvalues are
computed using the QR algorithm. Alternatively, as a pre-
conditioning, one can perform a similarity transformation
(via a singular value decomposition) of the companion ma-
trix to obtain a full matrix M̃ [90].

The norm of the residual in Eq. (42) of the j th Ritz pair
is given by

rj = (A − λ̃j I)φ̃j = ũj+1Tj (r) (51)

For a given dimension of Ur , the residuals from this algo-
rithm are significantly higher than the Arnoldi method. The
advantage of this algorithm is that it provides Ritz vectors
and values of any sequence of data. In contrast to the Arnoldi
method, it does not perform Auj at each step and is unaware
of A altogether. As observed by [90], the present algorithm
which we call Dynamic mode decomposition algorithm can
thus also be used to extract Ritz vectors and values from
experimental data or even from a sequence of snapshots col-
lected from nonlinear simulations. In the next section we
show that in the nonlinear case the Ritz vectors approximate
the Koopman modes. However, first we compare the DMD
and the Arnoldi method for a linear flow.

4.1.3 Example: Linearized Blasius Boundary Layer

The Arnoldi and the DMD algorithm are applied to the
Navier–Stokes equations linearized about a steady Blasius
boundary layer solution to demonstrate the convergence be-
havior of the two methods. The resulting matrix A (n ≈ 105)
is stable, i.e. the flow is globally stable but it is locally unsta-
ble to two-dimensional Tollmien–Schlichting wavepackets
(see e.g. [9]). Figure 29 shows the frequency ωj and growth
rates σj associated with the linear global eigenmode φj

computed with both the Arnoldi method (red symbols) and
the DMD algorithm (black and gray symbols). It is interest-
ing to note that, although the DMD algorithm is numerically
less stable than the Arnoldi algorithm, the TS-wave branch
in the spectrum matches the Ritz values obtained from the
Arnoldi algorithm.

The residuals ‖rj‖ of the Ritz vectors computed using
the Arnoldi method are of order 10−15. For the DMD algo-
rithm, the average residual of the Ritz vectors are shown in
Fig. 30(a) as a function of the number of snapshots included
in the matrix Xr . Initially, there is a rapid decay with increas-
ing snapshots, but the average residual levels out at a rather
large value. As discussed previously, this is due to the fact

Fig. 29 The two-dimensional global linear spectrum of the flat-plate
boundary layer. Ritz values computed using the Arnoldi method (red
symbol) and the DMD algorithm (black and gray symbols). DMD Ritz
values that correspond to Ritz vectors with smaller magnitude than
10−15 are shown in gray. The numerical parameters are given in Ta-
ble 5 (case 2D-LIN-BL) in Sect. 4.4 (Color figure online)

Fig. 30 The average residuals, given by Eq. (51) as function of the
number of snapshots included in Xr are shown in (a). The magnitude
aj of the 32 first Ritz values computed for r = 390 is shown in (b)

that the columns of Xr become increasingly linearly depen-
dent as they align with the most dominant Ritz vectors. The
magnitudes aj of the Ritz vectors from the DMD method are
shown in Fig. 30(b), where—in contrast to the residuals—
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a decay of several orders of magnitude is observed for first
few Ritz vectors. The Ritz values obtained from the DMD
algorithm that correspond to Ritz vectors with magnitudes
smaller than 10−15 are shown in gray symbols in the spec-
trum (Fig. 29). Thus it seems that the magnitudes (or con-
dition numbers) of the Ritz vectors provide a way to rank
the modes according to their significance; modes with very
small magnitudes can be regarded as numerical noise and
thus discarded.

4.2 Koopman Modes

The DMD algorithm described in the previous section yields
Ritz vectors and values of a sequence of data without the
knowledge of the system that generated the data sequence.
It turns out, as first noticed by [84], that if the nonlinear
system g(uk) generated the sequence of data, then the Ritz
vectors are approximations of Koopman modes under the
map g.

Let r vectors form the columns of the full-rank matrix,

Xr = [a(u0) a(u1) a(u2) . . . a(ur−1)
]

(52)

where a(uj ) could be full flow field snapshots uj ∈ U ⊂ R
n

obtained from numerical simulations or vector-valued ob-
servables a(uj ) ∈ R

p from experimental measurements. By
shifting the sequence with one time step, we obtain

Xr+1 = [a(u1) a(u2) a(u3) . . . a(ur )
]
.

For a sufficiently long time series, we can assume that the
r th sample a(ur ) is nearly linearly dependent on the previ-
ous r − 1 observables. Denoting the residual by ũr , we have
the following relation between the two sequences

Xr+1 = XrM + ũreT
r , (53)

where M is a companion matrix. If Xr is a sequence from
a linear mapping A, then Xr+1 = AXr and we recover the
DMD algorithm for computing Ritz values and vectors for
linear systems. If, on the other hand, (52) is sequence of
the observable a on the trajectory of the system g starting
at the initial condition u0, then Xr+1 is given by apply-
ing the Koopman operator U on each element of this se-
quence

Xr+1 = [Ua(u0) Ua(u1) Ua(u2) . . . Ua(ur−1)
]

= UXr .

The companion matrix for Xr is uniquely determined by the
direction of the residual ũr . Similar to the previous section,
we choose the elements of M such that ũr ⊥ Xr . Now, we
can define the empirical Ritz values of Xr as the eigen-
values Λ̃ = diag{λ̃0 λ̃1 . . . λ̃r−1} of M associated with

Algorithm 2 Dynamic mode decomposition
[Φ,Λ, r] = DMD(X)

Input: r + 1 sequence of
observables

X = (u1, . . . ,ur+1)

Output: r empirical Ritz vectors Φ

r empirical Ritz values Λ

scalar residual r

1: n = size(X,1)

2: r = size(X,2) − 1
3: ur+1 = X(:, r + 1)

4: Xr = X(:,1 : r)
5: Xr+1 = X(:,2 : r + 1)

6: c = Xr\ur+1

7: M = companion(c)
8: [T,Λ] = eig(M)

9: Φ = XrT
10: r = norm(Xr+1 − XrC)

the empirical Ritz vectors �̃ = [φ̃0 φ̃1 . . . φ̃r−1] given
by

�̃ = XrT (54)

where the columns of T are the eigenvectors of M. If the
Ritz values are distinct, the matrix containing the left eigen-
vectors of the companion matrix is the Vandermonde ma-
trix

T−1 =

⎡

⎢⎢⎢
⎢⎢
⎣

1 λ0 λ2
0 . . . λr−1

0

1 λ1 λ2
1 . . . λr−1

1
...

...
. . .

...

1 λr−1 λ2
r−1 . . . λr−1

r−1

⎤

⎥⎥⎥
⎥⎥
⎦

∈ R
r×r . (55)

Recall that in Sect. 2.3 the Vandermonde matrix S given in
(13) was identified as the expansion coefficients when ex-
panding the sequence of observables (12) in terms of the
Koopman modes �, i.e. X = �S. Similarly, we can observe
that T−1 contains the expansion coefficients when expand-
ing the finite sequence Xr in terms of the empirical Ritz
vectors, Xr = �̃T−1; each element in Xr can be written
as

a(uk) =
r−1∑

j=0

λ̃k
j φ̃j , k = 0, . . . , r − 1. (56)

The empirical Ritz vector φ̃j thus approximates the prod-
uct of the Koopman mode and the Koopman eigenfunction,
ϕj (u0)φj , and the Ritz value λ̃j approximates the Koop-
man eigenvalue λj . Algorithm 2 applied to a set of data
Xr obtained from nonlinear flow provides the approximate
Koopman modes and eigenvalues.
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Fig. 31 The streamwise velocity component of a snapshot from the
nonlinear simulation at t = 85 (a), the zeroth (b), first (c) and third (d)
Koopman modes computed using the algorithm explained in Sect. 4.2

4.2.1 Example: Periodically Forced Nonlinear Blasius
Boundary Layer

When the sequence (52) is periodic, i.e. ur−1 = u0, the com-
panion matrix becomes

M =

⎡

⎢⎢⎢⎢⎢
⎣

0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

. . .
...

0 0 . . . 1 0

⎤

⎥⎥⎥⎥⎥
⎦

∈ R
r×r

with the empirical Ritz values given by λk = eiωk , with
ωk = 2πk/r . In this case the Vandermonde matrix T−1 is
the discrete Fourier transform matrix. This means for peri-
odic data the Ritz vectors are Fourier modes, given by the
discrete Fourier transform of the sequence.

Consider again the flow on a flat plate, where forcing is
continuously applied upstream in the boundary layer with
a given temporal frequency ωf = 0.036 (non-dimensional
frequency F = 120). The amplitude of the forcing is suffi-
ciently high to introduce a few higher harmonics. A snap-
shot at t = 85 of the streamwise velocity component from
the simulation is shown in Fig. 31(a), where we observe
how the boundary layer is altered due to the periodic forc-
ing. The snapshots (r = 100) separated by �t = 10 from the
simulation are stacked up in the matrix Xr and its empirical
Ritz values and vectors were computed using the DMD al-
gorithm.

The Koopman modes φ0,φ1 and φ3 are shown in
Fig. 31(b)–(d). The zeroth Koopman mode corresponds to
the mean flow, which in this case is close to the steady Bla-
sius boundary-layer flow. The first Koopman mode corre-
sponds to a TS wave, where the corresponding Koopman
eigenvalue λj has zero growth rate and a frequency that
matches the forcing frequency ωf precisely. The TS wave

(Fig. 31(c)) decays in amplitude short distance downstream
of the forcing location, but begins to grow exponentially at
particular streamwise location (branch I) until a location fur-
ther downstream (branch II). The location of branch I and
II for this particular frequency matches the TS neutral curve
found in the literature (see e.g. [91]). As we expect from
the theory in Sect. 2.3, the first pair of Koopman modes
correspond to the flow structure oscillating with the dom-
inant frequency. The second pair of Koopman modes (one
mode shown in Fig. 31(d)) correspond to the subharmonic
2ωf frequency generated due to nonlinear interactions. This
mode is also a TS wave but with a higher frequency. This
simple example demonstrates how the DMD algorithm in
Sect. 4.2 can be used to decompose a sequence of flow fields
into spatial structures with periodic motion.

4.3 Balanced Modes

We turn our attention to the linear input-output system
(15a)–(15b) introduced in Sect. 3. In the following, it is con-
venient to represent the time-continuous system matrix as A
and the discrete-time (i.e. time stepper) matrix as Aμ (so far
in this section the subscript μ has been omitted).

4.3.1 Laub’s Method

In Sect. 3.3.2 it was shown that the balanced modes are the
eigenvectors of the product of the controllability Gramian P
(29) and observability Gramian Q (30). It can be shown [31]
that P and Q associated with the linear system (15a)–(15b)
satisfy, respectively, the following Lyapunov equations

AP + PAT + BBT = 0

AT Q + QA + CT C = 0.

For low and moderate dimensional systems n ≤ 103, there
are efficient direct or iterative methods for solving the Lya-
punov equations [35, 95] and for computing balanced modes
[57, 87].

One common way [57] of computing the balanced modes
is as follows. Solve the two Lyapunov equations and com-
pute their Cholesky factors X ∈ R

n×n, Y ∈ R
n×n as

P = XXT , Q = YYT

and compute the SVD of the n × n matrix

YT X = U�VT . (57)

The direct and adjoint balanced modes are then, respec-
tively, given by

� = XV�−1/2, � = YU�−1/2 (58)
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such that �T � = I. Note that X and Y are the numeri-
cal counterparts of the controllability operator Lc and the
observability operator Lo defined in Sect. 3.3.1. Similarly
YT X is the Hankel matrix, representing the Hankel operator
�G and the diagonal matrix � contains the Hankel singu-
lar values. Unfortunately, the above method is unfeasible for
high-dimensional systems as the computational complexity
is O(n3) and storage requirement is O(n2).

4.3.2 Low-Rank Cholesky Factors

Usually the number of inputs and outputs is much smaller
than the state dimension, m,p � n. Therefore, the Grami-
ans often have very low numerical rank k � n and the
storage requirements can be reduced to O(nk) and com-
putational complexity to O(k3). Moreover, if the purpose
is model reduction, it seems imprudent to solve for all n

balanced modes, to construct a reduced-order model of size
r � n.

Consider the low-rank Cholesky factors Xr ∈ R
n×r and

Yr ∈ R
n×r ,

P = XrXT
r + RP , Q = YrYT

r + RQ (59)

where RP and RQ are residuals due to replacing the full
Cholesky factors with partial ones. The SVD given in (57)
can now be computed for the small r × r matrix YT

r Xr =
Ur�rVT

r and subsequently r approximate balanced modes
can be obtained from,

�r = XrVr�
−1/2
r , �r = YrUr�

−1/2
r . (60)

The question is, how close �r and �r using low-rank
Cholesky factors are to the “true” balanced modes � and
� using full-rank factors. Are the two important prop-
erties (stability and tight error bounds) of the balanced
reduced-model preserved when computed by �r and �r?
Antoulas [7] derives non-trivial estimates of the residu-
als given in (59). In general, numerical tests [1, 9, 10, 44]
show that �r is a good approximation and that �r are
close to the true HSV. This can be attributed, as mentioned
earlier, to the low numerical rank of the Gramians, when
m,p � n. Unfortunately, stability of the reduced-model is
no longer guaranteed when using Xr . Note that Ar is stable
if AT

r M + MAr + N = 0 has a solution for any N = NT > 0
and M = MT > 0. One can derive (see e.g. [7]),

Ar�r + �rAT
r + BrBT

r + �T
r

(
ARP + RP AT

)
�r = 0

where the additional term due to the residuals in not neces-
sarily positive definite.

We have thus dealt with the high-dimensionality prob-
lem if we can find low-rank Cholesky factors. The reduced-
order model Gr can be computed for very large system us-
ing Algorithm 3. Various methods may be used to find Xr

Algorithm 3 Balanced reduced model
[Gr , el, eu] = balmodes(Xr ,Yr )

Input: low-rank Cholesky factor of P Xr

low-rank Cholesky factor of Q Yr

Output: linear reduced-order model Gr = (Ar ,Br ,Cr)

lower theoretical error bound el

upper theoretical error bound eu

1: [U,�,V] = SVD(YT
r Xr )

2: � = XrV�−1/2

3: � = YrU�−1/2

4: Ar = �T A�

5: Br = �T B
6: Cr = C�

7: el = �(r + 1, r + 1)

8: eu = 2(sum((r + 1:end, r + 1:)))

and Yr : ADI/Smith methods [34, 76], snapshot-based meth-
ods [54, 83] and Krylov subspace methods [45]. As was
observed by Sorensen & Rowley (private communication),
there exists a close connection between Smith-type of meth-
ods and snapshot-based methods. The former is an itera-
tive process aiming directly at solving the Lyapunov equa-
tion and requiring the knowledge of A. The snapshot-based
method on the other hand computes low-rank Cholesky fac-
tors directly from the definition of the Gramians, where the
integrals are approximated by numerical simulations of the
linear system.

4.3.3 Snapshot-Based Method

We describe the snapshot-based method [83] for comput-
ing the low-rank Cholesky factor Xr of the controllability
Gramian P. To obtain the factor Yr of the observability
Gramian Q, the method is applied to the dual input-output
system, defined by

G∗ =
(

AT CT

BT 0

)
.

Comparing the above dual equations with (18) we observe
that the output and input matrices have exchanged place;
the state is now forced with the adjoint of C and the out-
put is given by the adjoint of B. Note that AT represents the
discretized adjoint Navier–Stokes equations (see [10], for a
thorough derivation of the dual system). This is a dual prob-
lem to G (18), in the sense that the controllability Gramian
of G∗ is equal to the observability Gramian of G.

Suppose that we have p constant input vectors,

B = [B1 . . . Bp] ∈ R
n×p

associated with the input signals

w(t) = [w1(t) . . . wp(t)
] ∈ R

p×1.
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When wj = δ(t) and u0 = 0, the state at any time is given
by,

uj (t) = eAtBj .

The controllability Gramian can thus be written as a sum of
impulse responses to p inputs,

P =
∫ ∞

0
eAtBBT eAT t dt =

∫ ∞

0

p∑

j=1

uj (t)uj (t)
T dt.

Define the empirical controllability Gramian as the quadra-
ture approximation of P,

P̃r =
r∑

j=1

p∑

i=1

ui (tj )
(
ui (tj )

)T
δj = XrXT

r ,

where the Cholesky factor Xr ∈ R
n×pr is given by

Xr = [u1(t1)
√

δ1 . . . u1(tr )
√

δr . . .

up(t1)
√

δ1 . . . up(tm)
√

δr

]
(61)

and δj are the quadrature coefficients (for example resulting
from a trapezoidal rule). To compute Xr , one needs to per-
form p numerical simulations of the linear system. For each
simulation r snapshots are collected, which results in mem-
ory requirements of the order O(npr) to store the Cholesky
factor.

To obtain the factor Yr of the observability Gramian Q,
the above method is applied to the dual input-output system.
Suppose

zj (t) = eAT tCT
j , j = 1, . . . ,m

is the impulse response of the adjoint system to output vec-
tor CT

j . Then the empirical observability Gramian is

Q̃r =
r∑

j=1

m∑

i=1

zi (tj )
(
zi (tj )

)T
δj = YrYT

r .

Similarly, Yr ∈ R
n×mr is obtained by m numerical simula-

tions of the adjoint system,

Yr = [z1(t1)
√

δ1 . . . z1(tm)
√

δm . . .

zm(t1)
√

δ1 . . . zm(tr )
√

δr

]
. (62)

The snapshot method to compute Cholesky factors thus
amounts to collecting snapshots from p simulations of the
forward linear system and m simulation of the adjoint sys-
tem. In this way, we trade the storage of very large matrices
for numerical simulations.

A few remarks on the method are noteworthy. As shown
by [63] a theoretical equivalence between snapshot-based

balanced truncation and a system identification technique
called eigensystem realization algorithm (ERA) [48] exists.
Unlike the snapshot-based method, ERA does not require
the dual system (adjoint simulations) and the oblique pro-
jection onto a set of balanced modes is not performed. The
method is significantly cheaper than the snapshot method;
the main disadvantage is that it does not provide a set of
global balanced modes, which can be useful for physical in-
sight into the input-output properties of the linear system.

For more complex three-dimensional configurations, the
number of inputs and output may become of the order
p,m ∈ O(102) and a large number of snapshots r ∈ O(103)

must be collected if there are slowly decaying modes that
pulsate with different frequencies. As a consequence the
storage requirement for each Cholesky factor is demanding
and the SVD to compute the approximate balanced modes
might become computationally intractable. Moreover, many
inputs and outputs may have the same spatial structure and
are located close to each other. This is the situation for actu-
ators and sensors in the three-dimensional set-up sketched
in Fig. 20. In such cases, the states triggered by the im-
pulse response of each input/output do not differ signifi-
cantly from each other. As a consequence the factors Xr ,Yr

become gradually ill-conditioned for increasing number of
snapshots, since the columns are nearly linearly dependent.
There is remedy for very large and ill-conditioned Cholesky
factors as first addressed by [34] for the so called modi-
fied Smith’s method. However, the “modified” method also
applies to the method of snapshot for computing low-rank
Cholesky factors.

4.4 Time Stepping

The methods presented to compute global modes are all
“matrix-free” and based on flow field snapshots. These snap-
shots are obtained by abstract notion of a time stepper g,

uk+1 = g(uk). (63)

In practice, the implementation of a validated, three-dimen-
sional and efficient time-stepper to solve the time-dependent
nonlinear Navier–Stokes equations is a formidable task to
undertake. The Navier–Stokes equations given by (1a)–(1b)
can be solved by splitting the task into a number of sub-
problems. Examples of subproblems are a scheme for time
advancement, method for spatial discretization and how to
address the pressure term in the Navier–Stokes equations
(since an evolution equation for the pressure is missing in
explicit form, the equations are not fully parabolic in time).
Moreover, the choice of numerical method for each subprob-
lem depends on the complexity of the geometry, numerical
accuracy, efficiency, ability to parallelize etc. For example,
even small modifications of a highly efficient parallelized
Fortran implementation, where the different subproblems
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are tightly coupled might turn out to be very time consum-
ing and prone to errors. In other cases, flexible codes for
example implemented using object-oriented design, makes
the switch between different equations (linear, nonlinear,
adjoint) simple and advanced algorithms (for computing
global modes, steady solutions) can easily be “wrapped”
around the code.

4.4.1 Overview of Pseudo-Spectral Code

Essentially, all the results presented in this paper are based
on an existing simulation code called Simson. The main
structure of the code and the simulation parameters are given
in the following. For details, the reader is referred to the
comprehensive user guide [19].

The approach adopted in the Simson code, is based on
pressure-free formulation of the Navier–Stokes equation
(1a)–(1b). By applying the Laplace and curl operators to
the momentum equations given by Eq. (1a), the Navier–
Stokes equations in primitive variables u = (u, v,w) can be
replaced with a nonlinear advection-diffusion equation, de-
scribing quantities related to the wall-normal component of
the velocity and vorticity.

The Simson code implements a spectral algorithm, where
the solution is approximated by an expansion in Fourier
functions in the wall-parallel directions (x, z) and Cheby-
shev polynomials in the wall-normal direction (y). In the
so called pseudo-spectral approach, the nonlinear advection
term is computed by forming products in physical space,
whereas the linear diffusion term is computed in Fourier
space. Therefore, efficient transformations between physi-
cal and spectral space are performed at each time-step us-
ing FFT routines and aliasing errors from the evaluation of
the nonlinear terms are removed by the 3/2-rule. For suffi-
ciently smooth velocity fields, the spectral approach is a sig-
nificantly more accurate approximation compared to other
discretization methods, such as finite difference or finite el-
ement. To preserve the spectral accuracy however, mapping
of grid-points cannot be applied, and therefore more com-
plex geometries are difficult (and inefficient) to model. The
time advancement is a four-step third-order Runge-Kutta
method for the nonlinear advection term, and a second-order
Crank-Nicolson method the linear diffusion term.

4.4.2 Boundary Conditions

Fourier expansion in the wall-parallel directions requires pe-
riodic boundary conditions in x and z, i.e.

u(0, y, z) = u(Lx, y, z),

u(x, y,−Lz/2) = u(x, y,Lz/2).
(64)

However, since neither the boundary-layer flow nor the jet
in crossflow are periodic in the streamwise direction x,

a “fringe” region can be added at the downstream end of
the computational box. In this region, the forcing function

F(u) = λf (x)(v − u), (65)

is applied. The desired inflow velocity is denoted by v,
which for simulations of boundary layer and the jet in cross-
flow is chosen as the laminar Blasius boundary-layer profile.
The fringe function λf (x) is identically zero inside the phys-
ically relevant domain, and raises smoothly to order one in-
side the fringe region. The length of the region with λf > 0
is about 20 % of the complete domain length. The fringe
forcing has been thoroughly validated and we refer to [72]
for details on the convergence properties and upstream in-
fluence of the method. The computation of the linear global
eigenmodes is slightly dependent on the fringe (shape of the
forcing and position). As discussed by [3] the growth rate
of individual damped eigenvalues might depend on the out-
flow boundary condition. Moreover, there are also additional
modes in the global spectrum related to the fringe forcing.
However, these changes have been observed in the damped
part of the spectrum; due to the nature of the fringe forcing,
there is no growing fringe eigenmode to be expected.

For the simulation of disturbances evolving in the bound-
ary layer, homogeneous no-slip condition is prescribed on
the flat plate (y = 0). Far away from the wall, in the free-
stream the perturbation velocity is vanishingly small, where
a Dirichlet boundary condition can be imposed. The bound-
ary conditions in the wall-normal direction for the jet in
crossflow are as follows. On the flat plate, no-slip conditions
for the wall-parallel velocity components u and w are pre-
scribed. The jet discharging into the crossflow is imposed by
a wall-normal velocity

v(r, y = 0) = Vjet

U∞
(
1 − r2) exp

(−(r/0.7)4),

with r being the distance from the jet center (xjet, zjet), nor-
malized by half the jet diameter D. This inflow profile cor-
responds to a (laminar) parabolic velocity profile of the pipe
flow, smoothened with a super-Gaussian function to allow
for an efficient treatment with the spectral discretization of
the simulation code. At top boundary of the computational
box y = Ly the following Neumann condition is imposed,

∂u
∂y

|y=Ly = ∂U
∂y

|y=Ly , (66)

where U(x, y) is a Blasius solution.
In Table 5 the parameters of the simulations performed in

this paper are listed.

5 Conclusions

This section contains an overview of the results and a few
suggestions for future work.



Computational Hydrodynamic Stability and Flow Control Based on Spectral Analysis of Linear Operators

Table 5 Parameters of the
numerical simulations
performed in this paper. For all
simulations the fringe region is
20 % of the length of the
domain (Lx )

Case Reδ∗
0

Box (Lx,Ly,Lz) Grid (nx, ny, nz) B.C. y = 0/y = Ly

JCF 165 (75,20,30) (256,201,144) Parabolic/Neumann

2D-LIN-BL 103 (1000,30,1) (768,101,1) No-slip/Dirichlet

3D-LIN-BL 103 (1000,30,370) (768,101,120) No-slip/Dirichlet

3D-NLIN-BL 103 (1000,30,250) (768,101,256) No-slip/Neumann

5.1 Analysis of Complex Flows

For complex flow configurations, assumptions like periodic-
ity in a direction, a separation in space or time between the
development of perturbations and the basic flow and other
similar simplifications are not obvious to make. In many ap-
plications, there are a number of flow mechanisms and dy-
namic structures developing at different temporal and spa-
tial scales. Moreover, the various structures might be tightly
coupled, competing and interacting with each other. To get a
complete picture of the dynamical structures that are present
and their significance to the overall flow, it is necessary to
adopt a global viewpoint.

The work presented here is among the first to apply a
linear and a nonlinear analysis, using tools that have a the-
oretical foundation, to a fully three dimensional and highly
unsteady flow, namely the jet in crossflow. In practice, the
analysis is performed by the use of DNS in conjunction with
“matrix-free” techniques from numerical linear algebra (e.g.
Arnoldi and DMD). The work on the jet in crossflow can be
considered as a “proof-of-concept” as it shows that is possi-
ble and numerically feasible to perform linear and nonlinear
analysis of complex flows without making a number of sim-
plifications on the geometry, the fluid properties or the flow
parameters.

In the study performed here, the unsteady dynamics of
the jet in crossflow was broken into two parts; the linear sta-
bility analysis of the steady flow and the nonlinear attractor
analysis of the unsteady flow. The results and physical in-
sights gained can be summarized as follows. Analysis of the
computed global eigenmodes and the unstable steady solu-
tion of the jet in crossflow at a velocity ratio R = 3 have
revealed the presence of three types of elementary instabil-
ities: elliptic instability; Kelvin-Helmholtz instability and a
von Kármán type of instability. These instabilities have been
studied extensively on simple canonical flows, and it is im-
portant to identify them in more complex flows, since they
provide an understanding of the elementary physical mecha-
nism for perturbation growth. This knowledge is indispens-
able for the modification of the flow behavior by external
means, since the perturbations are responsible for the initial
stage of the transition between different flow regimes.

In flows exhibiting vortex shedding, identifying precisely
where in the domain the oscillations have a significant ef-
fect is useful both for the physical understanding and for

applications. For the jet in crossflow, placing probes in sin-
gle points in the domain gave supporting evidence of two
distinct sustained global oscillations: one high-frequency as-
sociated with the jet flow and one low-frequency associated
with the wall region. However, probe placement is a local
analysis, and collecting spectral data of each relevant spatial
point in a three-dimensional domain is an impossible task.
In this work, we have presented a method based on spectral
analysis of the Koopman operator—that can be applied to
experimental data as well—to extract global flow structures
with periodic motion. The analysis identified a shear mode
and wall mode corresponding to the high and low oscilla-
tions respectively.

There exists a number of future research directions. We
outline a few examples.

Sensitivity Analysis and Passive Control Recent theoret-
ical results [28] show that much physical insight can be
gained by investigating the sensitivities of various flow prop-
erties to different parameters. The methods have their roots
in calculus of variations and generally involve adjoint-based
analysis and optimization. By solving the adjoint equations
we can locate regions where the flow is most sensitive to
forcing and we can compute the perturbations that are the
most dangerous to the flow.

Oscillator Versus Amplifier Region Absolute and convec-
tive instabilities are local concepts applicable to weakly non-
parallel flows and is not straight-forward to conduct such an
analysis for the jet in crossflow. However, due to the fact
that globally unstable flows have a region or pocket of local
absolute instability somewhere in the flow [22] and that this
pocket is connected to a region of significant backflow [36],
it is likely that the separated region acts as an oscillator in
the jet in crossflow. A local analysis of the steady solution
could reveal regions in the flow that act as oscillators and
regions that act as amplifiers.

Bifurcation Analysis We have performed linear global sta-
bility analysis of a steady solution of the jet in crossflow
at a single velocity ratio. To fully understand the type of
bifurcation that the flow undergoes, a more encompassing
global stability analysis of the jet in crossflow, where the
velocity ratio is varied should be performed. If the critical
velocity ratio is found, a weakly nonlinear analysis could be
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employed by tracing a global instability in time from its in-
ception through its small-amplitude linear stage to saturation
in order to evaluate the coefficients of the Landau equation.

Koopman Modes of the Transient Regime The theory
based on the Koopman operator presented in this work con-
sidered the asymptotic nonlinear dynamics, whereas the lin-
ear analysis considered the dynamics in a small neighbor-
hood of the steady solution. In the transition from a steady
to unsteady flow, the transient time from the unstable fixed
point to the attractor has not been considered. It could be
possible to incorporate the spectral theory of the Koopman
operator to account for this regime. An accurate description
of the transient regime using global modes is important for
reduced-order modeling of globally unstable flows [71].

5.2 Laminar-Turbulent Transition Delay

Many aspects in flow control have traditionally been based
on intuition and physical insight into the specific flow con-
figuration. There are a number of situations where this ap-
proach has proven successful. Nevertheless, there is a well
established theory and a large number of methods for a more
systematic approach to flow control. The advantages are
that even small improvements in the control performance in
many applications may have important consequences. For
instance, the world-wide shipping consumes over 2.1 bil-
lion barrels of oil per year and the airline industry consumes
more than 1.5 billion barrels per year. Finding the best pos-
sible solution, given certain constrains, that results in a few
percents increase of performance can save a lot of money
and resources. The work presented hereing takes us one step
closer to incorporating theoretical tools into the flow control
community.

The starting point of modern optimal and robust control
design is an input-output formulation. Given the physical
distribution of the inputs and outputs, the control design pro-
cess amounts to the determination of input signals when out-
put signals are given. Therefore, for successful control de-
sign it is sufficient to capture only a fraction of the dynamics,
namely the relationships between the input and output sig-
nals. We have built a model of low dimension that captures
the input-output behavior of the flat-plate boundary layer,
and used this model for optimal feedback control design.
We have shown that by using systematic methods from con-
trol theory in combination with localized sensing/actuation,
it is possible to reduce the growth of small-amplitude dis-
turbances in the boundary layer. It was demonstrated that
the energy of two and three-dimensional disturbances are
damped by an order of magnitude.

Although the significance of the order-of-magnitude re-
duction of perturbation energy for transition control remains
to be tested, such a drastic energy reduction is likely to re-
sult in a delay of the initial stages of the transition process. If

the actuators and sensors represent realistic models of phys-
ically implementable devices, it is possible to use the low-
dimensional controller designed numerically in laboratory
experiments. The fact that we have modeled the inputs and
outputs as volume forcing does not mean that they are un-
realistic (see [9], for a similar analysis, but instead of vol-
ume forcing, the actuators are in homogeneous boundary
conditions). It is the effect of an actuator that is important
to model, and not the actuator itself. Therefore, the action
that the volume forcing has on the flow, could possibly be
reproduced for example using plasma actuators. Another is-
sue that needs to be taken into account is control robust-
ness. If the numerically-designed controller is used in lab-
oratory experiments, it is unavoidable that some parameters
(such as Reynolds number and pressure gradients) will mis-
match. Fortunately, modern developments in robust control
theory take rigorously into account uncertainties that may
be present in the design process. The method for optimal
control presented in this context, can be incorporated into a
robust control framework. Another way that numerical in-
vestigations can be useful for wind-tunnel experiments, is
by providing guidelines for the shape and spatial distribu-
tion of actuators and sensors. In this sense, one can set-up
experiments after evaluating a large number of numerical
simulations, in order to understand how to design and place
actuators and sensors.

We have focused on the flat-plate geometry which still
poses a computational challenge, however, the flow control
techniques presented here do not rely on physical insight
into the specific flow configuration and can in principle be
applied to any geometry. A similar analysis on more com-
plex flows, such as flows in ducts, corners, diffusers and on
elliptic leading edges are waiting to be undertaken.
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