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Explicit algebraic turbulence modelling in buoyancy-affected
shear flows

Werner M.J. Lazeroms
Linné FLOW Centre, KTH Mekanik, Royal Institute of Technology
SE-100 44 Stockholm, Sweden

Abstract

Turbulent flows affected by buoyancy forces occur in a large amount of applica-
tions, from heat transfer in industrial settings to the effects of stratification in
Earth’s atmosphere. The two-way coupling between the Reynolds stresses and
the turbulent heat flux present in these flows poses a challenge in the search
for an appropriate turbulence model. The present thesis addresses this issue
using the class of explicit algebraic models.

Starting from the transport equations for the Reynolds stresses and the tur-
bulent heat flux, an explicit algebraic framework is derived for two-dimensional
mean flows under the influence of buoyancy forces. This framework consists
of a system of 18 linear equations, the solution of which leads to explicit ex-
pressions for the Reynolds-stress anisotropy and a scaled heat flux. The model
is complemented by a sixth-order polynomial equation for a quantity related
to the total production-to-dissipation ratio of turbulent kinetic energy. Since
no exact solution to such an equation can be found, various approximation
methods are presented in order to obtain a fully explicit algebraic model.

Several test cases are considered in this work. Special attention is given to
the case of stably stratified parallel shear flows, which is also used to calibrate
the model parameters. As a result of this calibration, we find a critical Richard-
son number of 0.25 in the case of stably stratified homogeneous shear flow,
which agrees with theoretical results. Furthermore, a comparison with direct
numerical simulations (DNS) for stably stratified channel flow shows an excel-
lent agreement between the DNS data and the model. Other test cases include
unstably stratified channel flow and vertical channel flow with either mixed con-
vection or natural convection, and a reasonably good agreement between the
model and the scarcely available, low-Reynolds-number DNS is found. Com-
pared to standard eddy-viscosity /eddy-diffusivity models, an improvement in
the predictions is observed in all cases.

For each of the aforementioned test cases, model coefficients and additional
corrections are derived separately, and a general formulation has yet to be given.
Nevertheless, the results presented in this thesis have the potential of improving
the prediction of buoyancy-affected turbulence in various application areas.

Descriptors: Turbulence, RANS, explicit algebraic Reynolds-stress models,
active scalars, stratified turbulence, stable and unstable stratification, mixed
and natural convection
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Explicit algebraisk turbulensmodellering i skjuvstromningar
med flytkraftseffekter

Werner M.J. Lazeroms
Linné FLOW Centre, KTH Mekanik, Kungliga Tekniska Hogskolan
SE-100 44 Stockholm, Sverige

Sammanfattning

Turbulenta stromningar som paverkas av flytkrafter &r vanliga inom flera tillimp-
ningsomraden, fran virmeoverforing i industriella sammanhang till effekterna
av stratifiering i atmosfiren. Kopplingen mellan de Reynoldska spdnningarna
och det turbulenta virmeflodet gor det ganska komplicerat att formulera adek-
vata turbulensmodeller for sadana stromningar. Avhandlingen behandlar detta
problem med avseende pa sa kallade explicita algebraiska modeller.

Utgaende fran transportekvationerna fér de Reynoldska spanningarna och
det turbulenta varmeflodet hirleds ett algebraisk ekvationssystem som &r giltigt
for stromningar med tvadimensionell medelhastighet under inverkan av flyt-
krafter. Systemet omfattar arton linjira ekvationer och dess 16sning leder till
explicita uttryck for de Reynoldska spinningarnas anisotropi och ett normalis-
erat varmeflode. Modellen kompletteras av en sjitte gradens polynomekvation
for en storhet som hénger ihop med forhallandet mellan den totala produk-
tionen och dissipationen av turbulent kinetisk energi. Eftersom ingen exakt
16sning till en sadan ekvation existerar, presenteras olika approximationsme-
toder for att erhalla en fullstdndigt explicit modell.

Flera testfall betraktas i detta arbete. Sérskild uppmérksamhet #gnas
at stabilt stratifierade parallella skjuvstromningar som #dven anvénds i kali-
breringen av modellparametrarna. Som ett resultat av kalibreringen erhaller
vi ett kritiskt Richardsontal lika med 0.25 for en stabilt stratifierad homogen
skjuvstromning, vilket 6verensstdmmer med teoretiska resultat. En jamforelse
med DNS-data for en stabilt stratifierad kanalstromning visar en utmérkt 6v-
erensstimmelse mellan DNS och modellen. Andra testfall som beaktas &r en
instabilt stratifierad kanalstromning och en vertikal kanalstromning med antin-
gen blandad konvektion eller naturlig konvektion. Modellresultaten i dessa fall
overensstammer nagorlunda bra med DNS-data for laga Reynoldstal. T samtliga
fall visar de erhallna resultaten en forbéttring jimfort med standardmodeller
som anvinder en virvelviskositet /diffusivitet.

Modellkoefficienterna hérleds separat for vart och ett av de ovanndmnda
fallen tillsammans med vissa justeringar av modellen som krdvs i vissa fall.
Trots att en generell formulering fortfarande saknas har de resultat som pre-
senteras i denna avhandling potential att forbéttra beskrivningen av turbulens
under inverkan av flytkrafter inom olika tillimpningsomraden.



Preface

This thesis explores the possibilities of using explicit algebraic models to
predict turbulent flows with stable stratification and other buoyancy-driven ef-
fects. The first part introduces some theoretical concepts of turbulence and
turbulence modelling, and the effects of buoyancy on turbulence. The second
part consists of one journal article and one internal report.

Paper 1. W.M.J. LAzErROMS, G. BRETHOUWER, S. WALLIN AND A.V.
JOHANSSON, 2013

An explicit algebraic Reynolds-stress and scalar-flux model for stably stratified
flows. J. Fluid Mech. 723, 91-125

Paper 2. W.M.J. LAzErROMS, G. BRETHOUWER, S. WALLIN AND A.V.
JOHANSSON, 2013

Explicit algebraic models for turbulent flows with buoyancy effects. Internal
Report
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CHAPTER 1
Introduction

Turbulence is all around us. An illustrative (though very unhealthy) example
is smoke coming from a cigaret, which nicely visualizes the typical chaotic
structures of the turbulent flow surrounding it. On a larger scale, we can see
similar flow structures in smoke coming out of a chimney. Going even further
up into the sky, the typical shape of clouds reveals the presence of turbulence
in the atmosphere, which is often experienced in airplanes.

Clearly, turbulent flows are associated with a vast range of different length
(and time) scales, from everyday examples to the atmosphere. This makes the
study of turbulent flow important for various applications. Within engineering,
one can think of the reduction of turbulent drag on aircraft or other vehicles,
or heat transfer through turbulent diffusion in heat exchangers. On the other
hand, turbulence plays a significant role in the transfer of momentum and
heat in the atmosphere, making its study relevant for weather and climate
predictions as well.

Many textbooks on turbulence start with summarizing its complex nature.
Quoting Pope (2000), “the flow is unsteady, irregular, seemingly random and
chaotic, and surely the motion of every eddy or droplet is unpredictable.” In-
deed, the governing equations of fluid motion, the Navier-Stokes equations,
contain a number of nonlinear terms that lead to the chaotic dynamics of tur-
bulent flows. A typical property of these flows is that they consist of larger
eddies that break down into smaller eddies, leading to a large range of scales
between the large-scale energy-containing flow structures and the smallest dis-
sipative scales, the so-called Kolmogorov scales. Due to this large range of
scales, it is very costly to accurately perform Direct Numerical Simulations
(DNS) of turbulent flows, since an appropriate numerical grid needs to resolve
everything down to the smallest scales. In fact, one can show that the required
number of grid points scales with Re%/4, where Re;, = UL/v is the Reynolds
number based on the large scales.! The Reynolds number typically ranges from
105 in engineering flows to 10® in the atmospheric boundary layer, which leads
to grid requirements that are unfeasible for today’s computers.

In real-world applications, it is therefore impossible to perform full-scale
DNS to study the effects of turbulence. These applications often rely on some

n this definition, U and L are characteristic velocity and length scales of the large eddies
and v is the kinematic viscosity.



4 1. INTRODUCTION

sort of modelling, for example Large-Eddy Simulations (LES), where only the
larger eddies are resolved in combination with a model for the so-called subgrid
scales. However, this still puts fairly high constraints on the required computer
power, and sometimes modelling all the turbulent eddies is the only solution.
This can be done by a statistical approach, in which one takes the average effect
of all the eddies and solves equations for the mean flow quantities, the so-called
Reynolds-averaged Navier-Stokes (RANS) equations. Appropriate models for
the turbulence statistics are needed in order to close this system of equations,
which is the focus of the field of RANS modelling.

Of particular interest are turbulent flows with heat transfer, which occur
both in engineering and atmospheric applications. If changes in temperature
and density are small enough, one can assume that the flow itself is not influ-
enced by heat transfer. In such a case, we speak of the temperature as being a
passive scalar. On the other hand, if the temperature gradients are significant,
fluid particles experience a buoyancy force that influences the flow, in which
case temperature acts as an active scalar. Finding an appropriate model for
turbulent flows with buoyancy forces is important both for the atmospheric
boundary layer and various industrial applications where such forces are no
longer negligible.

The present thesis deals with the (RANS) modelling of turbulent flows with
buoyancy forces. In particular, the work is based on the so-called explicit alge-
braic Reynolds-stress model (EARSM) by Wallin & Johansson (2000), which
was extended to the explicit algebraic scalar-flux model (EASFM) for passive
scalars by Wikstrom et al. (2000). In the case of buoyancy-affected flows, one
needs to take into account the two-way coupling between velocity and temper-
ature fluctuations, which is not present in the EARSM and EASFM. Various
attempts have been made to devise an appropriate model for such flows (Mel-
lor & Yamada 1982; Cheng et al. 2002; So et al. 2002, 2004; Violeau 2009),
but a fully explicit, coordinate-free, self-consistent and robust formulation has
not been found. The aim of the present work is to present a new model that
satisfies these requirements.

The following chapters introduce basic theoretical and practical concepts
and summarize the work. In chapter 2, we briefly present the governing equa-
tions of fluid motion and the RANS equations, and discuss some of the impli-
cations that the presence of buoyancy has for turbulent flows. Chapter 3 deals
with the basic concepts of RANS modelling and puts the current work in the
context of previously devised models. Chapter 4 provides a summary of the
appended papers in Part II of the thesis. In chapter 5, we finish with some
concluding remarks and an outlook of future research.



CHAPTER 2
Buoyancy effects in turbulent flows

In this chapter, we use the basic equations of fluid dynamics to introduce some
concepts of the theory of turbulence. In particular, the focus will be on the
effects of varying density and temperature, the buoyancy forces they exhibit,
and the influence of such forces on turbulence.

2.1. Governing equations

The dynamics of fluids is based on three fundamental physical principles: con-
servation of mass, conservation of momentum and conservation of energy. In
the case of a so-called Newtonian fluid, for which the shear stresses inside the
fluid are proportional to the velocity gradient, these conservation laws can be
described by the Navier-Stokes equations. Furthermore, we assume the flow
to be incompressible, and density /temperature variations are considered to be
small with respect to a reference state, so that the Boussinesq approzimation
can be used. The Navier-Stokes equations then take the following form:

0u; _

gj = 0, (21&)
ou; - Ou; 1 0p O 5

E + i 833j N _p—oal‘z + Vaxjaxj B 5T99“ (21b)
06 _ 06 9260

where u; is the instantaneous velocity, p is the instantaneous pressure, and 7]
is the instantaneous (potential) temperature. Moreover, g; is the gravitational
acceleration, pg is a (constant) reference density, v is the kinematic viscosity, x
is the molecular heat diffusivity, and Sp is the thermal expansion coefficient. A
detailed description of the equations above can be found in any fluid mechanics
textbook (e.g. Kundu et al. 2012).

Equations (2.1) form a coupled system of second-order nonlinear partial
differential equations, which makes the general description of fluid motion ex-
tremely complex. Of particular interest is equation (2.1b), describing con-
servation of momentum, and the nonlinear terms on its left-hand side that
correspond to inertial forces. These nonlinear terms are responsible for the
complicated chaotic nature of turbulent flows. Furthermore, one should note

5



6 2. BUOYANCY EFFECTS IN TURBULENT FLOWS

the last term on the right-hand side of (2.1b). This term corresponds to buoy-
ancy forces, which couples the momentum equation to equation (2.1c) for the
temperature. In other words, the temperature 0 acts as an active scalar that
influences the flow field.

For modelling purposes, the chaotic motion of turbulent flows is best de-
scribed by decomposing all instantaneous quantities into a mean part and a
fluctuating part, the so-called Reynolds decomposition. This can be expressed
as follows:

w; = U; + ug, p=P+np, §:@+97 (22)
in which (U;, P, ©) are the mean quantities and (u;, p, ) turbulent fluctuations.
In theory, the mean quantities correspond to the ensemble average of (infinitely)
many realizations of a turbulent flow. In the following, we shall denote this
averaging procedure by an overbar, for example:

N

- 1 o~

Ui =u; = Nll_rgo N E ng)» (2.3)
=1

where ﬂgk) is a specific realization of the instantaneous flow field. This aver-
aging operator is convenient for theoretical purposes because it has a number
of mathematical properties, such as commutativity with differential operators
(see, e.g., Nieuwstadt 1998; Wyngaard 2010). In practical situations, such as
numerical simulations, one usually relies on (finite) time or space averages to
calculate the mean quantities.
By using the Reynolds decomposition (2.2) in (2.1) and taking the average,
one can derive the Reynolds-averaged Navier-Stokes (RANS) equations:
oU;
8xj
9 N
DU; _ _10pP . o°U;  Ouin; ~ 3704, (2.4b)
Dt Lo &xz 8xj8xj 8xj
DO 0?0 Ou;f
Dt Haxjaxj 8xj ’
in which D/Dt = 90/0t + Uyd/0xy, is the material derivative along the mean
flow. These equations form the basis of many turbulence models, but they also
reveal some interesting theoretical facts. Comparing the RANS equations to
the original Navier-Stokes equations (2.1), we see that they are almost identical
except for two terms involving correlations between the velocity and tempera-
ture fluctuations, which appear due to the non-linear terms. The term involving
u;u; in (2.4b) has the form of a stress term, and for this reason w;u; is referred
to as the Reynolds-stress tensor. It describes the extra flux of momentum due
to the turbulent velocity fluctuations. Similarly, w;0 in (2.4c) corresponds to
the turbulent heat flur caused by the interaction of velocity and temperature
fluctuations. However, both w;u; and ;6 are unknown quantities, which makes
the set of RANS equations incomplete. This is the well-known closure problem

=0, (2.4a)

(2.4c)
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of turbulence. For this reason, w;u; and ;0 need to be modelled, which will
be discussed in more detail in the next chapter.

2.2. Scaling and dimensionless parameters

In fluid mechanics, one often makes use of scaling, dimensionless equations and
dimensionless parameters that define different flow regimes. A widely applied
scaling for wall-bounded turbulent flows uses the friction velocity u.,, defined
by:

u? = vy ou , (2.5)

Po dy wall

where 7, is the total shear stress at the wall, y is the wall-normal coordinate,
and U is the mean velocity parallel to the wall. In this way, we can define
dimensionless quantities in so-called wall units, e.g. U;” = U;/u, and wu; ™ =
wu;/u?. By also using a characteristic length scale § (e.g. boundary-layer
thickness in a boundary-layer flow or the half-width A in channel flow) and a
characteristic temperature difference AT, equation (2.4b) can be put in the
following dimensionless form:!

DU oPt 1 &UF dumt

- Re. 03;0%; 01,

. 59
S — Ri,©O=. 2.6
o o7 p (2.6)
This scaling has given rise to two well-known dimensionless numbers within the
field of wall-bounded stratified flows: the friction Reynolds number Re, and
the friction Richardson number Ri,, defined as:
u7—6 . ﬁTgAT6

Re,. = , Ri, 3
v u?

(2.7)

These parameters are often used to describe the strength of viscous forces and
buoyancy forces, respectively (see, e.g., Garcfa-Villalba & del Alamo 2011).
Another dimensionless parameter that often occurs in convection-dominated
flows (Iida & Kasagi 1997; Kasagi & Nishimura 1997), and which is closely
related to the aforementioned parameters, is the Grashof number:

BrgAT(26)
-T2

Gr = 8Re?Ri,. (2.8)
However, the viscous wall scaling described above is not appropriate in all wall-
bounded flows. An alternative scaling for natural-convection flows is based on
the molecular heat diffusivity k, leading to a velocity scale k/J (Versteegh &
Nieuwstadt 1999). Substituting this velocity scale for u, in (2.7) yields two
new parameters governing the flow:

K 1 BrgATS?

— = Pr-
v ’ K2

= +H = L PrRa, (2.9)

1We further define #; = x;/6, t = u,t/8, P+ = P/(pou2), and © = ©/AT.
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in which Pr is the Prandtl number and Ra is the Rayleigh number. The pa-
rameter H is sometimes called the modified Rayleigh number. The Prandtl
number also appears by applying viscous wall scaling to equation (2.4c).

2.3. Turbulent kinetic energy and temperature variance

Some aspects of turbulent flows can be conveniently described by a scalar quan-
tity, the turbulent kinetic energy:

K = lupug. (2.10)

This quantity basically describes the total intensity of the velocity fluctuations.
A transport equation for K can be derived by first considering the equations
for the velocity fluctuations, which in turn are obtained by subtracting (2.4b)
from (2.1b). After taking the inner product of these equations with w; and
averaging, the following is found:

% —_W%_Vaui%_ﬁ 00
Dt B ! ja.ﬁj 833j al‘j i%j_J/
—_— — G
P €
0 1 1 0K
—— | “wuu; + —up—v—> | . 2.11
oz, (zuuuj—f—poujp Vaxj) (2.11)
D

On the left-hand side of this equation, we have the advection term, whereas
the right-hand side contains a shear production term P (which is usually pos-
itive), a dissipation term e, a buoyancy production term G, and a transport
or diffusion term D. Disregarding the transport term, which only redistributes
kinetic energy in space, we see that the rate of change of K is governed by
the interplay between (shear/buoyancy) production and (viscous) dissipation.
Large-scale motions cause production of turbulent kinetic energy through mean
shear (mean velocity gradients), while viscous dissipation takes place at small
scales. This gives rise to the well-known energy cascade from large to small
scales in (three-dimensional) turbulent flows.

In a similar fashion, we can describe the intensity of temperature fluctua-
tions by defining the following quantity:

Ko = 162, (2.12)
which is half the variance of the temperature fluctuations. The equation for
the temperature fluctuations, obtained by subtracting (2.4c) from (2.1c), can
be used to derive the following transport equation for Ky:

DKy — 90 90 90 0 (1—0 0K,
Dt n uJ 833j Haxj 833j 833j <2uj9 Hal‘j ) ’ (213)
——— N——
P €6 Deg

From left to right, this equation contains an advection term, a production term
Py, a dissipation term €y and a transport/diffusion term Dy. Once again, we can
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F1GURE 2.1. Geometry for the horizontal channel.

see that temperature fluctuations are produced due to the mean temperature
gradient, which takes place at large scales, while the molecular diffusivity (in
this case k instead of v) causes a dissipation at small scales.

The study of the nature of turbulent flows, scale separation and energy
cascades is an extensive topic, and equations (2.11) and (2.13) only reveal very
basic truths. It is beyond the scope of this work to step into more details; the
reader is referred to any textbook on turbulent flows (e.g. Nieuwstadt 1998;
Pope 2000; Wyngaard 2010).

2.4. The effect of buoyancy forces

Buoyancy forces can affect turbulent flows in different ways. First of all, there is
a direct buoyancy forcing affecting the mean velocity field, described by the last
term in equation (2.4b). Secondly, there are buoyancy effects on the level of the
turbulent fluctuations, which in part can be described by the buoyancy term
G in equations (2.11). In some flow cases, for example (natural) convection,
the direct forcing can be the only driving force of the mean flow, or it can
function as an auxiliary force that aids or opposes a pressure-driven flow. In
other situations, the buoyancy force is perpendicular to the mean flow. We
shall first investigate the latter case.

Consider a parallel shear flow U; = U(y)d;, in the horizontal direction
with a temperature gradient in the vertical direction, aligned with gravity g; =
—gd;y. An example of such a flow geometry is shown in figure 2.1, and it
can also be thought of as a simplified version of the situation found in the
atmosphere (disregarding the earth’s rotation). In this case, a buoyancy force
only appears in the y-component of (2.4b), where it determines the cross-flow
pressure distribution, so the horizontal velocity component is only driven by a
streamwise pressure gradient.

However, we do retain the buoyancy contribution in equation (2.11), which
now becomes:

G = frgud. (2.14)

The nature of the flow is now determined by the sign of G, which is related
to the direction of the temperature gradient. If 900/0y > 0, a fluid parcel
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moving up (v > 0) transfers a lower temperature to a region with a higher
temperature, giving rise to a negative temperature fluctuation (6 < 0). This
causes the correlation vf to be negative. From (2.14), we conclude that G < 0
in this case, which means that buoyancy damps the production of turbulent
kinetic energy. An simple way to understand this is the fact that the fluid
parcel just considered will experience a downward buoyancy force, since it has
a lower temperature than the surroundings. Hence, upward moving fluid parcels
are pushed down by buoyancy, and vice versa, which explains the damping of
vertical motion. This situation is referred to as stable stratification.

Stably stratified flows are thus characterized by the damping of turbulent
fluctuations. This particular effect makes it difficult to correctly predict such
flows with standard turbulence models. Furthermore, in the same flow there can
be regions where the stratification effects are very high and other regions where
they are negligible. One example is stable stratification in a horizontal channel
such as depicted in figure 2.1, for which the damping of turbulence is small near
the wall but high in the centre of the channel (Garcia-Villalba & del Alamo
2011). Stable stratification also occurs in the atmosphere during nighttime
conditions (Stull 2009). However, the true nature of stably stratified turbulence
is very complex and cannot be described by (2.11) alone. Various studies show
that vertical motions are damped much more than horizontal motions, leading
to highly anisotropic turbulence and so-called pancake structures. This gives
rise to a debate whether this type of turbulence is still three-dimensional, as well
as questions concerning the direction of the energy cascade (see, e.g., Lindborg
2006; Brethouwer et al. 2007).

As mentioned in section 2.2, the strength of the buoyancy force can be
described by the friction Richardson number Ri, when using viscous wall scal-
ing. A more general form of this parameter is the gradient Richardson number,
which can be defined as follows for the parallel shear flow in figure 2.1:

00
ﬁTga—
Ri=—29Y (2.15)

(%)

This parameter follows from the ratio of G and P in equation (2.11) when
one assumes w0 ~ OU /Oy and vd ~ 9O /y. Hence, it is a local measure of the
strength of buoyancy compared to shear production. For stably stratified flows,
we can now define a critical Richardson number Ri. above which turbulence
is completely damped and the flow becomes laminar. A classical result of
linear stability theory found by Miles (1961) and Howard (1961) shows that
Ri. = 1/4.

A different type of flow is found for 00/0y < 0, and the same reasoning
as applied above reveals that v0 > 0 in this case. Equation (2.14) then shows
that G > 0, i.e. the production of turbulent kinetic energy is increased by
buoyancy. In other words, upward moving fluid parcels experience an upward
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FI1GURE 2.2. Geometry for the vertical channel.

buoyancy force, enhancing the vertical motions. In such wunstably stratified
flows, the convective motion caused by buoyancy enhances turbulent mixing.
It typically occurs in the atmosphere during daytime conditions (Stull 2009).
The convective effects caused by unstable stratification can be studied in the
simplified geometry of a horizontal channel (Tida & Kasagi 1997).

We have seen that buoyancy can cause both an increase and a decrease of
turbulent fluctuations. As mentioned, it can also act directly as a driving force
of the flow. This can be illustrated in the case of a parallel shear flow U; =
U(y)di,» in the vertical direction, with gravity g; = —g¢d; , perpendicular to the
temperature gradient, as depicted in figure 2.2. For such a flow, the buoyancy
force appears in the xz-component of (2.4b), where it can act as a driving
force of the mean flow together with the pressure gradient. In case buoyancy
is the only driving force, we speak about natural convection, whereas mixed
convection refers to a flow which is both pressure-driven and buoyancy-driven.
The buoyancy production G in (2.11) is now determined by the streamwise
turbulent heat flux uf.

The case of mixed convection in a vertical channel with a heated and a
cooled wall was studied by Kasagi & Nishimura (1997). In this case, one finds
an upward, aiding buoyancy force on the heated side of the channel and a
downward, opposing force on the cooled side. This causes a shift of the mean
velocity maximum towards the heated wall as compared to channel flow without
buoyancy. Furthermore, the streamwise heat flux uf is negative on the heated
side and positive on the cooled side, resulting in damped velocity fluctuations
(G < 0) on the heated side and enhanced velocity fluctuations (G > 0) on
the cooled side. However, the opposite effect was found for the temperature
fluctuations.

On the other hand, the same geometry with natural convection was inves-
tigated by Versteegh & Nieuwstadt (1998, 1999). Again, we have an upward
buoyancy force at the heated wall and a downward buoyancy force at the cooled
wall. In the absence of a streamwise pressure gradient, this causes a fully anti-
symmetric velocity profile, with an upflow on the heated side and a downflow
on the cooled side. The streamwise heat flux uf is now positive throughout the
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channel, causing a positive buoyancy production G. There is, however, a small
region near the wall where the shear production P becomes negative.

Obviously, the presence of buoyancy in turbulent flows has many different
features. For this reason, it is a challenge to devise a turbulence model that
correctly describes all physical phenomena caused by buoyancy forces. The
main concepts of turbulence modelling and the issues associated with it are the
focus of the next chapter.



CHAPTER 3
Explicit algebraic turbulence models

The previous chapter introduced some of the basic concepts of the theory of
turbulence that are needed for devising turbulence models. In particular, we
presented the RANS equations (2.4) and explained that these equations are
essentially incomplete. The only way to calculate the mean flow and mean
temperature from these equations is to determine the Reynolds stresses w;w;
and the turbulent heat flux u;6, for which we need suitable models. This is the
topic of the current chapter, in which we also present a summary of our own
work.

3.1. Model hierarchy

The search for an appropriate model for the Reynolds stresses and turbulent
heat flux has had a long history, and numerous types of models with varying
complexity exist today. The most simple formulation, which is still widely used,
is the eddy-viscosity approach. Such models are based on a hypothesis postu-
lated by Boussinesq (1877), who introduced the concept of an eddy viscosity
vy as a coefficient of proportionality between the Reynolds shear stress wov and
the mean strain rate, in analogy with the kinematic viscosity v appearing in
the viscous stress term. Similarly, one can introduce an eddy diffusivity sy to
describe the turbulent heat flux as aligned with the mean temperature gradi-
ent, in analogy with the molecular heat diffusivity . Following this approach,
the models can be expressed as follows:

oU; ~ 0U;
Uil = —V (8;5 + axj> + %K@j, (3.1&)
i i
00
u; = —Ky 07, (3.1b)

Unlike the constants v and x, which are fluid properties, v; and kt are non-
constant coefficients that depend on the flow. Finding a closed formulation for
w;u; and u;6 now amounts to modelling v and k. Standard eddy-viscosity/eddy-
diffusivity models (EDM) are often classified according to the number of ad-
ditional transport equations that are used. For example, a well-known two-
equation model is the K-w model by Wilcox (1993), which uses a transport
equation for K based on (2.11) and a transport equation for the quantity w, an
inverse time scale related to the dissipation rate €. The eddy viscosity is then

13
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modelled as vy = K/w. For the eddy-diffusivity one often takes ry = v/ Pry,
where the turbulent Prandtl number Pr; is given a constant value.

Even though the simplicity of EDMs makes them popular in various ap-
plications, the Boussinesq hypothesis is generally not valid. The anisotropic
part of w;u; is not necessarily aligned with the mean strain-rate tensor, and
the eddy-viscosity approach has been shown to fail in more complex flow situa-
tions. A more sophisticated class of models can be obtained by considering the
transport equations of w;u; and u;0 themselves, which are obtained in a way
similar to the derivation of (2.11) and (2.13). Symbolically, these transport
equations can be written as:

Dugu;
Dit J Dij = 'Pij + Hij —&ij + gij) (3'23‘)
Y Doi = Poi + 1oi — €0i + Goi- (3.2b)

In each of the equations above, we have terms describing, from left to right, ad-
vection, diffusion, (shear) production, pressure redistribution, dissipation, and
buoyancy. Models that make use of (3.2) are called differential Reynolds-stress
models (DRSM). Since some of these terms contain more unknown correla-
tions (as a result of the closure problem), new model expressions are required,
namely for the diffusion terms (D;; and Dy;), the pressure-redistribution terms
(IT;; and IIp;), and the dissipation terms (e;; and €4;). For example, a widely
used model for II;; was proposed by Launder et al. (1975), derived from the
Poisson equation for the pressure fluctuations. Furthermore, in order to close
the formulation of a DRSM, it should be used in conjunction with a suitable for-
mulation for the dissipation rate € of turbulent kinetic energy (e.g. the Wilcox
(1993) K-w model),! as well as equations for Ky and ¢4 (see (2.13)).

Differential Reynolds-stress models are clearly more general than EDMs,
and they have been shown to give a better description of the physics in more
complex flow situations. However, the fact that many partial differential equa-
tions need to be solved makes it hard to handle a DRSM numerically. Therefore,
we search for a compromise between the good physical description of DRSM
and the simplicity of EDM, which is the main topic of the current work.

3.2. Explicit algebraic models

The transport equations (3.2) are differential equations by virtue of the advec-
tion and diffusion terms on the left-hand sides. Therefore, one way of dealing
with the numerical issues of DRSMs would be to appropriately model these
advection and diffusion terms in order to turn equations (3.2) into algebraic
equations. Pioneering work for this modelling approach was performed by
Rodi (1972, 1976), who postulated that the advection and diffusion of the di-
mensionless quantity w;u; /K could be neglected, assuming that dimensionless

INote that the turbulent kinetic energy K = Tguy /2 follows from the diagonal components
of (3.2a).
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quantities only vary slowly in space and time. This so-called weak-equilibrium

assumption is a natural way of finding algebraic approximations of (3.2). More

recently, the weak-equilibrium assumption has been applied to the Reynolds-

stress anisotropy a;;, defined as:

wiw; 2
K 3

By rewriting the transport equations of an existing DRSM in terms of this

quantity and neglecting the corresponding advection and diffusion terms, one
obtains algebraic equations of the following form:?

Na = L(a;S,Q) (3.4)

aij =

dij- (3.3)

in which the right-hand side is a linear tensor function of @, the mean strain-rate
tensor S and the mean rotation-rate tensor € (see, e.g., Wallin & Johansson
2000).

The (scalar) factor N on the left-hand side of (3.4) is related to the
production-to-dissipation ratio of turbulent kinetic energy (P/e = —tr{aS}).
Hence, the resulting (implicit) algebraic equations for a are nonlinear and gen-
erally have multiple roots, of which only one is the valid physical solution.
This fact can lead to severe problems when using iterative numerical methods
to solve the equations. In practice, therefore, a fully explicit solution of the
algebraic equations is needed, i.e.:

a=a(S,Q). (3.5)

A systematic method of finding such a solution was first proposed by Pope
(1975), who used a linear expansion of @ into ten tensor groups involving S
and €. In this way, one can solve the linear part of (3.4) by further assuming
the factor N to be known. The result is an expression of the following form:

10
a=pS+ Z BT, (3.6)

=2

in which the tensors T*) are symmetric, traceless combinations of S and .
Equation (3.6) clearly shows the advantage of an explicit algebraic model over
a standard EDM. Except for the first term, the expansion contains terms that
are not aligned with the mean strain-rate tensor. Furthermore, the coefficients
B; depend on scalar (or invariant) combinations of S and €, as well as N.
Since Pope (1975), the class of explicit algebraic models has been im-
proved. A recently succesful example is the explicit algebraic Reynolds-stress
model (EARSM) by Wallin & Johansson (2000) (also to be found in Johansson
& Wallin 1996). The EARSM is derived from a DRSM with the pressure-
redistribution model of Launder et al. (1975) and an isotropic dissipation term.
The main advantage of this model is the use of the exact solution of NV, re-
sulting from a third-order polynomial equation, where previous models mainly

2Here we use matrix notation for tensors and vectors, i.e. @ = (a;;), etc.
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used ad-hoc assumptions for this quantity to obtain an explicit model. A sim-
ilar result was obtained independently by Girimaji (1996). Using the exact
expression for N results in a self-consistent formulation of the production-to-
dissipation ratio P/e and a correct asymptotic behaviour of this quantity for
large strain rates.

In the case of passive scalars, the EARSM can be solved without any knowl-
edge of the turbulent heat flux. An explicit algebraic model for the turbulent
heat flux can then be found by considering the normalized heat flux &;, defined
as:

& = . (3.7)

Applying the weak-equilibrium assumption to this quantity leads to a new
implicit algebraic equation for &;, which also depends on a;;. Wikstrom et al.
(2000) presented an explicit algebraic scalar-flux model (EASFM) that can be
obtained directly from a and the temperature gradient ® by inverting a matrix,
leading to the following expression:

E=-A""(a+2I)0, (3.8)

where A is a matrix involving S and € and a scalar factor Ny playing a role
similar to N in the EARSM. As shown by Wikstrom et al. (2000), Ny can be
obtained either from a fourth-order polynomial equation, or directly from N
by using a non-linear model for the terms Ily; — gg; in (3.2b). Compared to a
standard EDM, equation (3.8) clearly gives a more general model for the heat
flux that is not aligned with the temperature gradient.

In summary, the EARSM and EASFM yield fully explicit, coordinate-free,
algebraic expressions for w;u; and u;60 that can be used to solve the RANS equa-
tions, together with suitable models for K, e, Ky and €y. A correct treatment
of the factors N and Ny leads to a self-consistent formulation with a correct
asymptotic behaviour for P/e. The explicit algebraic models capture most of
the physics contained in a DRSM, but are easier to handle numerically. Nev-
ertheless, the weak-equilibrium assumption is not generally valid, and explicit
algebraic models may fail in regions with significant advection and diffusion
(e.g. the near-wall region in wall-bounded flows). Several corrections exist to
overcome such problems (also discussed by Wallin & Johansson 2000). Another
important issue is the fact that approximating PDEs by algebraic equations
may lead to singularities in the model, which puts certain constraints on model
parameters (see Wikstrom et al. 2000).

3.3. Modelling buoyancy-affected flows

The discussion above focussed on passive scalars. For active scalars, there is a
two-way coupling between equations (3.2a) and (3.2b) caused by the buoyancy
term G;;. This coupling remains in the algebraic equations and it makes the
search for an explicit algebraic solutions more complicated. A classical model
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of this type for atmospheric flows is the one by Mellor & Yamada (1982), who
obtained a non-coordinate-free algebraic model based on scaling arguments.

More recently, coordinate-free expressions have been obtained by So et al.
(2002, 2004) and Violeau (2009), which suffer from some important drawbacks.
These are discussed in Lazeroms et al. (2013b), in which we devise a new
explicit algebraic model by rewriting equations (3.2), including the buoyancy
contributions, in terms of a;; and &;, and applying the weak-equilibrium as-
sumption. This approach is a natural extension of the passive-scalar EARSM
and EASFM, and it leads to implicit algebraic equations of the form:

Na =LY (a,£:5,9,0,T), (3.9a)
No¢ = £ (a,¢;5,Q,0,T), (3.9b)

which, in analogy to (3.4), contain linear functions on the right-hand sides,
and non-linear terms on the left-hand sides. The vector T’ is related to the
gravitational acceleration (I'; ~ Srg;). The factors N and Ny are now related
to the total production-to-dissipation ratio (P + G)/e.

Since equations (3.9) are mutually coupled, we need to solve for a and &€
simultaneously. This involves writing both quantities as a linear combination
of basis tensors and basis vectors, respectively, in analogy to Pope (1975). As
shown in Lazeroms et al. (2013b), a correct non-singular formulation for two-
dimensional mean flows can be obtained by using ten tensor groups and eight
vectors in the expansions, i.e.:

10 8
a=>Y pT", £=> v, (3.10)
1=1 =1

in which the symmetric, traceless tensors T?) and the vectors V(¥ involve the
mean strain-rate tensor S, the mean rotation-rate tensor €2, the temperature
gradient ©, and the scaled gravitational vector I'. This approach is an im-
provement as compared to the model by Violeau (2009), who only used three
basis tensors and two basis vectors, leading to singular coefficients in the limit
of zero strain-rate. The coefficients 3; and \; are solved from a system of 18
linear equations, and they depend on invariant combinations of S, €2, ® and
T, as well as the unknown factors N and Ny.

As in the model of Wallin & Johansson (2000) without buoyancy, the exact
expressions for IV and Ny are needed to obtain a consistent formulation for the
production-to-dissipation ratio. However, one can show that the equation for
N is a sixth-order polynomial, for which no analytical solution exists. So et al.
(2002, 2004) do not discuss this issue and solve the non-linear equations for
P /e and G/e iteratively, which undermines the advantage of explicit algebraic
models compared to DRSMs. In fact, one could argue that such a model is not
explicit. Therefore, a fully explicit model for N and Ny is preferred, and in
Lazeroms et al. (2013a,b) we present methods to approximate the sixth-order
polynomial equation for N such that an explicit expression can be found.
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Ficure 3.1. Comparison of the explicit algebraic model
(dashed lines) with DNS by Garcia-Villalba & del Alamo
(2011) (solid lines) in stably stratified channel flow, for Re, =
550 and Ri, = 0 (blue), 120 (green), 480 (red), 960 (cyan).
The arrows point in the direction of increasing Richardson
number. Shown are (a) the mean velocity profile scaled with
the friction velocity u,, and (b) the mean temperature profile
scaled with the temperature difference between the walls AT.
(Taken from Lazeroms et al. 2013b)

The result of this derivation is a fully explicit, coordinate-free and self-
consistent algebraic model for the Reynolds stresses w;u; and the turbulent
heat flux w;0 in the case of active-scalar flows. Taking into account some re-
quirements for the model parameters in order to avoid singularities, the result-
ing model is robust for stably stratified parallel shear flows (Lazeroms et al.
2013b). Comparison with available DNS data shows that the model is well
adapted to capture the effects of stable stratification in turbulent channel flow
(figure 3.1).3 For other flow cases in which convection plays a role, the robust-
ness of the model is not guaranteed (Lazeroms et al. 2013a), posing a limit on
the strength of the buoyancy forces. Nevertheless, the model is able to give
reasonably good predictions in such flows, for example, a vertical channel with
natural convection (figure 3.2), with moderate levels of convection, and some
improvement over a standard EDM is obtained.

A more detailed discussion and further results can be found in the appended
papers, which are summarized in the following chapter.

3The calculations have been performed with explicit algebraic models in combination with
the Wilcox (1993) K-w model, a transport equations for Ky and, where appropriate, near-wall
corrections. A description of the numerical solver is given in appendix A.
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Ficure 3.2. Comparison of the explicit algebraic model
(dashed) with an eddy-diffusivity model (dashed-dotted) and
the DNS by Versteegh & Nieuwstadt (1998, 1999) (solid)
for the vertical channel with natural convection and H =
4.254 x 105, Shown are: (a) mean velocity, (b) mean tem-
perature, (¢) Reynolds shear stress, (d) wall-normal heat flux.
Only the heated half of the channel is shown. (Taken from
Lazeroms et al. 2013a)



CHAPTER 4
Summary of the papers

Paper 1

An explicit algebraic Reynolds-stress and scalar-fluz model for stably stratified
flows.

Starting from the transport equations for the Reynolds stresses and the turbu-
lent heat flux, we derive a framework for obtaining explicit algebraic turbulence
models in the case of two-dimensional mean flows with buoyancy. The formu-
lation consists of expanding the Reynolds-stress anisotropy and a normalized
heat flux in terms of ten basis tensors and eight basis vectors, which are shown
to give a complete, non-singular model. The coefficients in these expansions
can be obtained from a system of 18 linear equations, presented in the paper.

The full expressions for the 18 coefficients are found in the specific case of
parallel shear flows, in which the temperature gradient is aligned with gravity.
These expressions are applied to stably stratified flows. In order to obtain a
fully explicit, self-consistent model, the non-linear part of the algebraic equa-
tions needs to be solved through a sixth-order polynomial equation. Since an
exact expression for the root of such an equation does not exist, we devise a
method to approximate the root specifically for stably stratified flows. Further-
more, we discuss the use of a K-w model to close the formulation, and the need
for near-wall corrections to improve the model’s predictions in wall-bounded
flows.

The model is applied to two test cases: stably stratified homogeneous shear
flow and stably stratified channel flow. Some parameters in the model are
calibrated in order to optimize the results in these test cases, while others
have been given specific values to avoid the occurrence of singularities. In
the case of homogeneous shear flow, the model predicts a critical Richardson
number of 0.25 above which turbulence decays, which is in good agreement with
theoretical results. A comparison between the model results and DNS data is
made for the channel-flow test case, and a very good agreement is obtained. We
also show that the modelled root of the aforementioned sixth-order equation
leads to an appropriate, self-consistent formulation. Finally, the realizability of
the model is confirmed by means of the Lumley triangle.

20
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Paper 2

Ezxplicit algebraic models for turbulent flows with buoyancy effects.

This work considers two different geometries for parallel shear flows with buoy-
ancy: the horizontal channel in which the temperature gradient is aligned with
gravity (in the cross-flow direction), and the vertical channel in which the tem-
perature gradient and gravity are perpendicular, with gravity in the streamwise
direction. In both cases, explicit algebraic models for the Reynolds stresses and
heat flux are derived, based on the framework established in Paper 1, and using
a K-w model to close the formulation.

The case of the horizontal channel was already considered in the previous
paper specifically for stable stratification. Here we also investigate unstable
stratification, for which some features of the model need to be modified. In
particular, a different method is used for approximating the sixth-order poly-
nomial equation. Comparisons with DNS data are shown for both stable and
unstable stratification. Reasonably good predictions of the DNS are found for
the unstably stratified case, which are also slightly better than the results of a
standard EDM. Furthermore, the model is shown to be self-consistent.

For the vertical channel, we consider two test cases: mixed convection and
natural convection. The 18 model coefficients for this geometry can be obtained
directly from the linear system presented in the previous paper. Again, we show
how to approximate the sixth-order polynomial equation, and some additional
corrections to the model are presented. A comparison with DNS data reveals
that the model predictions are reasonably good and there is some improvement
over a standard eddy-viscosity/eddy-diffusivity model.



CHAPTER 5

Conclusion and outlook

The explicit algebraic models presented in this thesis give results that are
promising for many important application areas. In particular, the results ob-
tained for stably stratified channel flow show a very good agreement with the
DNS data. Apparently, the damping of turbulence in the centre of the channel
is well described by the model. This indicates that the model has great po-
tential for improving, for example, atmospheric models with stably stratified
conditions, in which the correct description of turbulence is still an issue.

Apart from stable stratification, the model was also applied to three other
test cases that are characterized by convection (unstable stratification, and
mixed and natural convection in a vertical channel). In general, the model
results agreed reasonably well with the DNS data in these cases, and the results
were slightly better than a standard EDM. However, one should note that
the DNS data used for the unstably stratified horizontal channel and the two
convection cases have a low Reynolds number, which means that the near-
wall region consitutes a large part of the full width of the channel. For this
reason, no near-wall corrections have been used in these cases, since they would
be active in the entire channel. For higher Reynolds numbers, including such
corrections will possibly improve the model predictions. Therefore, new DNS
data for higher Reynolds numbers is needed for a proper model validation.

The aim of every modeller is, of course, to find the “perfect” model that
is widely applicable. In the present work, we only considered specific cases of
two-dimensional mean flows. An important issue is the approximation of the
sixth-order equation for the factor N, which has been modelled using different
methods for different test cases. A general formulation applicable to all test
cases would be preferred, and this should be the subject of future research.
The current approximations could already be implemented for use in a more
general context if the different cases are selected in terms of the invariants that
define the geometry.

Furthermore, the model parameters currently have been chosen to avoid
singularities in the stably stratified cases. We also indicated that a singular
behaviour for the three convective cases might be inevitable if the buoyancy
forces are strong enough. One should, however, look into the equations and
search for an analytical result in order to confirm this, which has not been done
so far. Of further interest is the case of general two-dimensional mean flows,
for which the model coefficients can be directly derived from the linear system
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presented in Lazeroms et al. (2013b), and which most probably will lead to
more a complicated formulation and modified behaviour of the model.

As far as the applications are concerned, an interesting topic of future
investigations is the implementation of the model in an existing atmospheric
framework, and the comparison of the outcome to atmospheric data. In its
current form, the model is suitable for a so-called single-column model in which
the atmosphere is represented by a vertical column. Such a geometry is similar
to the horizontal channel-flow cases represented in this thesis. It will also be
interesting to investigate the behaviour of the model when rotational effects
are included. The case of a vertical channel is mainly relevant for industrial
applications with vertical boundary layers. These flows contain some particular
features, especially in the near-wall region, and the ability of the model to
capture these features needs to be investigated once DNS data for a higher
Reynolds number is available.



APPENDIX A
Description of the numerical solver for 1-D PDEs

The calculations of which the results are presented throughout this work have
been performed using the 1-D solver code, courtesy of Dr Stefan Wallin. Within
this code, model equations can be conveniently expressed in Maple in a sym-
bolic form. Specially written procedures discretize the implemented partial
differential equations, and the FORTRAN code describing the numerical solver
is automatically generated. Using this package, any system of PDEs of the

form
oq dq 0%q
_:f qv_v—gv"' (Al)
ot oy’ Oy
can be solved numerically for the vector of unknowns q = (¢',¢?,...). Equa-
tion (A.1) is discretized using second-order central differences in the spatial
domain and a second-order Crank-Nicholson scheme for time integration. This
leads to the following discrete system:
q— qud — gA* 1—g)A* old old A2
— ~ SA(@a+ (1 -9)AT (@) @, (A2)
where the Crank-Nicholson method is obtained for s = 1/2. For steady-state
calculations, a first-order implicit Euler scheme (s = 1) is sufficient. At each
timestep, q is obtained from the previous solution q°'¢ by an interative method,
which entails decomposing the matrix A* in a (tridiagonal) implicit part A™P!
and an explicit part APl ie.:

A*(q)g — A™Pg)g’ M + AP (o),
for each iteration step j (within the same timestep). By including an underre-
laxation r < 1, the iterative procedure can be written as follows:
¢ =rAT'R+(1-1r)g’ (A.3)
with
A =T1-sAtA™!(¢/),
R = ¢ 4+ sAtA™P (q/) g’ + (1 — s)At {Aimpl(q‘)ld) + AeXpl(qOId)} q°d.

The simulations are performed on a collocated grid (yo,...,yn+1) with the
boundaries at y; and yy. The solution vector q = (¢4, -, 5 @@+ @y ---)
is specified in between gridpoints. Typically, N = 201 gridpoints clustered in
the near-wall region have been used in the present work.

24



Acknowledgements

Even though this Licentiate thesis only symbolizes the half-way mark of a longer
academic journey, it cannot be left without showing gratitude to a number of
people that have helped to shape the final result. First of all, I wish to thank
my main supervisor, Prof Arne Johansson, for sharing his wisdom, his patience,
and for leading the project in the right direction. I also wish to thank my co-
advisor, Dr Geert Brethouwer, for many fruitful discussions, his eye for detail,
and giving me the opportunity not to forget my mother tongue. A special
thanks to Dr Stefan Wallin for teaching me how to use the 1-D solver, and
for his detailed knowledge of turbulence modelling in practice, which certainly
improved some major aspects of the work. Further thanks go to Prof Manuel
Garcia-Villalba for providing DNS data for stably stratified channel flow, to Dr
Mihai Mihaescu for proofreading the manuscript, and to Dr Erik Lindborg and
MSc Mattias Brynjell-Rahkola for their comments and corrections regarding
the Swedish abstract.

The financial support from the Bert Bolin Centre for Climate Research is
gratefully acknowledged, as well as the travel scholarship provided by Fonden
Erik Petersohns Minne.

During these two years and a few months in Stockholm, I have seen the
Mechanics department explode in terms of the amount of people working here.
And T certainly wish to thank everyone for the many interesting, but also fun
moments both inside and outside the department. Therefore, thank you, far-
away colleagues on the 4th floor, thank you, benevolent colleagues on the 5th
floor, thank you, inspiring colleagues on the 6th floor, thank you, exhilarating
colleagues on the 7th floor, thank you, invigorating colleagues on the 8th floor,
and not to forget, thanks to the laborious colleagues in the lab. Though Stock-
holm could use some more Dutch gezelligheid every now and then, it has not
been a disappointment. I look forward to two more amazing years.

Finally, of course and beyond doubt, I wish to thank my family in the
Netherlands (and occasionally in Spain), who never stopped supporting me,
even though I continue to astonish them with this fluid-mechanics stuff.

25



Bibliography

BOUSSINESQ, J. 1877 Essai sur la théorie des eaux courantes. Imprimerie Nationale.

BRETHOUWER, G., BILLANT, P., LINDBORG, E. & CHOMAZ, J.-M. 2007 Scaling
analysis and simulation of strongly stratified turbulent flows. J. Fluid Mech.
585, 343-368.

CHENG, Y., CanuTO, V.M. & HOwARD, A.M. 2002 An improved model for the
turbulent PBL. J. Atmos. Sci. 59, 1550-1565.

GARCIA-VILLALBA, M. & DEL Aramo, J.C. 2011 Turbulence modification by stable
stratification in channel flow. Phys. Fluids 23, 045104.

GIRIMAJI, S.S. 1996 Fully explicit and self-consistent algebraic Reynolds stress model.
Theoret. Comput. Fluid Dynamics 8, 387—402.

HowarD, L.N. 1961 Note on a paper by John W. Miles. J. Fluid Mech. 13, 158-160.

Ima, O. & Kasaci, N. 1997 Direct numerical simulation of unstably stratified tur-
bulent channel flow. J. Heat Transfer 119, 53-61.

JOHANSSON, A. V. & WALLIN, S. 1996 A new explicit algebraic Reynolds stress model.
In Proc. Sixth European Turbulence Conference, Lausanne (ed. S. Gavrilakis,
L. Machiels & P.A. Monkewitz), pp. 21-34. Kluwer.

Kasaci, N. & NIsHIMURA, M. 1997 Direct numerical simulation of combined forced
and natural turbulent convection in a vertical plane channel. Int. J. Heal and
Fluid Flow 18, 88-99.

Kunbpu, P.K., CoHEN, I.LM. & DowLING, D.R. 2012 Fluid Mechanics, 5th edn.
Academic Press, Elsevier Inc.

LAUNDER, B.E., REECE, G.J. & Robi, W. 1975 Progress in the development of a
Reynolds-stress turbulence closure. J. Fluid Mech. 68, 537-566.

Lazeroms, W.M.J., BRETHOUWER, G., WALLIN, S. & JOHANSSON, A.V. 2013a
Explicit algebraic models for turbulent flows with buoyancy effects. Tech. Rep..
KTH Mechanics, Stockholm, Sweden.

Lazeroms, W.M.J., BRETHOUWER, G., WALLIN, S. & JOHANSSON, A.V. 2013b
An explicit algebraic Reynolds-stress and scalar-flux model for stably stratified
flows. J. Fluid Mech. 723, 91-125.

LINDBORG, E. 2006 The energy cascade in a strongly stratified fluid. J. Fluid Mech.
550, 207-242.

MELLOR, G.L. & YAMADA, T. 1982 Development of a turbulence closure model for
geophysical fluid problems. Rev. Geophys. Space Phys. 20, 851-875.

26



MiLEs, J.W. 1961 On the stability of heterogeneous shear flows. J. Fluid Mech. 10,
496-508.

NieuwsTADT, F.T.M. 1998 Turbulentie. Epsilon Uitgaven.

Popre, S.B. 1975 A more general effective-viscosity hypothesis. J. Fluid Mech. 72,
331-340.

Porg, S.B. 2000 Turbulent Flows. Cambridge University Press.

Robi, W. 1972 The prediction of free turbulent boundary layers by use of a two
equation model of turbulence. PhD thesis, University of London.

Robi, W. 1976 A new algebraic relation for calculating the Reynolds stresses. Z.
Angew. Math. Mech. 56, T219-221.

So, R.M.C.; JiN, L.H. & Gartskr, T.B. 2004 An explicit algebraic Reynolds stress
and heat flux model for incompressible turbulence: Part 1T Buoyant flow. Theo-
ret. Comput. Fluid Dynamics 17, 377-406.

So, R.M.C., Vimara, P., JiN, L.H., Zuao, C.Y. & Gatski, T.B. 2002 Accounting
for buoyancy effects in the explicit algebraic stress model: homogeneous turbu-
lent shear flows. Theoret. Comput. Fluid Dynamics 15, 283-302.

StuLL, R.B. 2009 An Introduction to Boundary Layer Meteorology. Springer Science
+ Business Media B.V.

VERSTEEGH, T.A.M. & NIEUWSTADT, F.T.M. 1998 Turbulent budgets of natural
convection in an infinite, differentially heated, vertical channel. Int. J. Heal and
Fluid Flow 19, 135-149.

VERSTEEGH, T.A.M. & NIEUWSTADT, F.T.M. 1999 A direct numerical simulation
of natural convection between two infinite vertical differentially heated walls:
scaling laws and wall functions. Int. J. Heat and Mass Transfer 42, 3673-3693.

VIOLEAU, D. 2009 Explicit algebraic Reynolds stresses and scalar fluxes for density-
stratified shear flows. Phys. Fluids 21, 035103.

WALLIN, S. & JOHANSSON, A.V. 2000 An explicit algebraic Reynolds stress model for
incompressible and compressible turbulent flows. J. Fluid Mech. 403, 89-132.

WIKSTROM, P.M., WALLIN, S. & JOHANSSON, A.V. 2000 Derivation and investiga-
tion of a new explicit algebraic model for the passive scalar flux. Phys. Fluids
12, 688-702.

WiLcox, D.C. 1993 Turbulence Modeling for CFD. DCW Industries, Inc.

WYNGAARD, J.C. 2010 Turbulence in the Atmosphere. Cambridge University Press.



