KTH MECHANICS

SE-100 44 STOCKHOLM, SWEDEN

ACTIVITY REPORT 2010

Contents

- 1. Introduction
- 2. Personnel
- 3. Economy
- 4. Teaching activities
 - 4. 1 Undergraduate courses
 - 4. 2 Master's thesis projects
 - 4. 3 Graduate courses

5. Research activities

- 5. 1 Doctoral theses defended
- 5. 2 Licentiate theses presented
- 5. 3 Publications
- 5. 4 Seminars at the department

Preface

This report gives a short overview of the structure and activities at the department of Mechanics, KTH during the year of 2010. More information may be found at the department web site http://www.mech.kth.se.

The teaching activity of the department during 2010 included basic, intermediate, advanced-level as well as graduate courses in mechanics, fluid mechanics and structural mechanics given for students and programmes from almost all schools at KTH.

The scientific activity of the department resulted in the defences of 7 doctoral theses and presentations of 6 licentiate theses during 2010. The publication list for the department this year consists of 57 publications in archival journals, 44 publications in conference proceedings and 13 internal reports, for a total of 114 publications.

Stockholm in April 2010

Dan Henningson, department chairman

Anders Eriksson, department vice chairman

1 Introduction

The department of Mechanics is one of the seven departments within the School of Engineering Sciences at KTH. The Department had around 100 employees and a turnaround of about 85 MSEK during the year 2010.

Prof. Dan Henningson is the chairman of the department, with Prof. Anders Eriksson as the vice chairman. Docent Gunnar Tibert was programme responsible ('PA') for the combined MSc. programme in Engineering Mechanics, and was towards the end of the year appointed as PA also for the new Ph.D. programme of the same name. Docent Hanno Essén is the director of undergraduate studies in mechanics and Docent Erik Lindborg has the same role for fluid mechanics. Docent Anders Dahkild is the director of graduate studies. The department was managed by a group consisting of: Henrik Alfredsson, Gustav Amberg, Nicholas Apazidis, Fritz Bark, Anders Eriksson, Hanno Essén, Laszlo Fuchs, Dan Henningson (chairman), Arne Johansson, Hans Silverhag.

The undergraduate teaching activity at the department offers a comprehensive course selection in basic mechanics attended by 1 500 students, in fluid mechanics with 400 students and in structural and advanced mechanics with 200 students. With a staff including 10 professors and 18 lecturers, the department is large enough to provide an excellent research environment in a wide range of areas for about 40–50 graduate students. During the year 2010, 7 students defended their Ph.D. theses and 6 presented their Licentiate theses.

The department also, together with the Department of Solid Mechanics and the Marcus Wallenberg laboratory, serves as host for the International Masters Programme in Engineering Mechanics, which offers a broad spectrum of high level courses in solid, structural and fluid mechanics.

Mechanics of solids, structures, fluids and gases are fundamental areas within classical physics and play pivotal roles in the design and analysis for almost all branches of engineering science. Today, this position is emphasized by the increasing width of areas affected and facilitated by the ideas and methods of the subject. Mechanics, and especially fluid mechanics is the basis for almost all electricity generation, such as wind, hydro, nuclear or combustion, but is increasingly important also for the transportation sector. Another developing area is chemical and material sciences in combination where fluid mechanics leads to a deeper understanding of various physical phenomena and also leads to new technical innovations. The research methods of mechanics are also well established and are successfully used in the biological sciences, with applications to the human body. Such a cross-scientific approach opens new possibilities for a better understanding from cells to muscles and locomotion. These exciting new areas go hand in hand with the more traditional applications in a multitude of technological processes used in construction, transportation, paper manufacturing, electro-chemical and pharmaceutical industries, all contributing to the generation of new and challenging research problems. The researchers in the department are divided into seven research groups, without strict formal borders:

- The group of Structural mechanics (headed by Prof. Anders Eriksson) studies advanced load-carrying structures in both natural and man-made contexts. Numerical modelling is the main tool for static and dynamic equilibrium situations. The main fields of study in recent years have been on one hand flexible and deployable structures for, e.g., space structures, and on the other hand the human musculoskeletal system. For the latter, both the muscular force production, and the neuro-muscular motion planning have been major study areas. Primary applications of the developed methods are clinical investigations of movement disorders and optimal movements in sports activities.
- The Stability, transition and control group (headed by Prof. Dan Henningson) studies how and why orderly laminar flow transitions to chaotic turbulent flow occur. Large scale numerical experiments are often used to predict this process. In the area of flow control and optimization a step further from just analyzing and understanding flows is taken, and deals with how flows can be manipulated and optimized in order to achieve the objectives at hand. Research is performed in cooperation with universities, research institutes and industry worldwide, e.g. in projects funded by the European Union.
- The Fluid physics laboratory (headed by Prof. Henrik Alfredsson) deals with five main research areas at present: fundamental studies of transition to turbulence in boundary layer flows, high Reynolds number and complex turbulent flows, multiphase flows, e.g. fibre suspension flows related to paper industry, internal compressible flows and shock wave research with applications to shock focusing. The experimental research has access to most modern measurement equipment for fluid flows and several high quality flow research rigs. The compressible flow research is coupled to KTH CICERO, Center for Internal Combustion Engine Research Opus, where gas management of IC engines are studied with the aim to increase efficiency and also to significantly reduce emissions such as CO₂, NO_x and unburned hydrocarbons. Although most research projects within the laboratory are of basic character, collaboration with industry (e.g. aeronautical, vehicle and paper industry) is common.
- The research group for Applied fluid mechanics and multiphase flows (headed by Prof. Laszlo Fuchs) focuses on fluid mechanical problems arising in different applications and in particular turbulent mixing, transport in single and multiphase systems as well as flows involving phase change and chemical reactions. Examples of such flows include the process industry (such as papermaking and pharmaceuticals), propulsion and energy conversion systems. The group has close collaboration and common areas of interest with other groups at the department, in particular the Fluid physics group and KTH CICERO.
- The Turbulence group (headed by Prof. Arne Johansson) is active in different areas of turbulence research, including modelling and simulations of high Reynolds number flows, development of subgrid models for Large Eddy Simulations (LES), multiphase turbulent flows and simulation of reactive flows. In the latter project we focus on a wall-jet flow configuration

and use a fully compressible flow code for the simulations. In collaboration with the Stability transition and control group we develop a new code with high-order compact finite difference schemes with the aim of simulating high Reynolds number turbulent pipe flow. A collaboration project with Airbus concerns active flow separation control by means of vortex generators. Another growing research area is the study of geophysical flows through theoretical development and simulations, in particular flows subjected to strong stratification. A new research subject is the study of quasi-geostrophic turbulence, i.e., large scale turbulence strongly affected by the combined effects of rotation and stratification.

- The group of *Physio-chemical fluid mechanics* (headed by Prof. Gustav Amberg) studies problems in fluid mechanics dominated by effects such as capillarity, phase change, heat and mass transfer, etc. Examples of application areas are micro fluidics and materials processes.
- In the group of *Theoretical and applied mechanics* (headed by Dr. Hanno Essén) research is performed in the following areas: dynamical systems with discontinuous forces, non-linear acoustics, statistical mechanics with magnetic interaction forces, kinetic gas theory, and asymptotic methods in classical and quantum mechanics.

Personnel related matters during 2010

Retirements

Our experienced student administrator Anne-Marie Olofsson retired during 2010.

New appointments during 2010

Fredrik Lundell, Elena Gutierrez-Farewik, Philipp Schlatter, and Gunnar Tibert were appointed as senior lecturers during the year.

Carolina Enequist was employed in our administration.

Eleven new graduate students started their Ph.D. education at the department during 2010.

We had several post-docs and guest students at the department during the year. Eva Voronkova from St Petersburg State University worked as a post-doc sponsored by SI, the Visby programme. Antonio Segalini from University of Bologna worked as a FLOW Post-doc. Mireia Altimira from University of Navarra worked as a post-doc.

Awards, prizes and funding

Jens Fransson was awarded a 'starting independent research' grant from ERC. Dan Henningson was awarded a Humboldt prize.

Philipp Schlatter was awarded a Göran Gustafsson prize.

The department was successful in obtaining funding from many different sources. In addition to a continued and increased funding from VR, new funding came from the strategic research areas in E-science, climate and energy. A wide variety of funding was obtained (STEM, Vindforsk, WSC, Vinnova, SNIC, EU, Promobilia, ESA, GGS, FHS and others).

Miscellaneous

Gunnar Tibert was given the responsibility for the new combined international Masters programme in Engineering Mechanics. He also was given the responsibility for the Doctors programme with the same name.

The planning for a re-building of our premises at Teknikringen 8 was intense during the year, but the planning came to a long temporary stop in the autumn.

A minor reorganization of offices was performed in the autumn.

Work on course and teaching strategy for the future was continued.

Common department activities

The academic year 2009/2010 was ended by a boat trip on lake Mälaren on June, 1st. The department also gathered for a Christmas dinner at restaurant Ulriksdals Wärdshus on December 15.

The research groups have had a number of formal and informal gatherings.

2 Personnel

Professors

- Alfredsson Henrik, PhD in mechanics, KTH 1983, and Docent at KTH 1985. Professor of fluid physics 1989. Director of CICERO.
- Amberg Gustav, PhD in fluid mechanics, KTH 1986, and Docent at KTH 1990. Professor of fluid mechanics 1999. Dean of the school of Engineering sciences, since December 1, 2004.
- Eriksson Anders, PhD in steel structures, KTH 1981, and Docent at KTH 1988. Professor of structural mechanics 1992. Department vice chairman 2008—.
- Fuchs Laszlo, PhD in gas dynamics, KTH 1977, and Docent at KTH 1980. Professor of fluid mechanics at LTH 1994–2007. Professor of fluid mechanics at KTH 2007.
- Henningson Dan, PhD in mechanics, KTH 1988, and Docent at KTH 1992. Professor of fluid mechanics 1999. Department chairman since July 2005. Director of Linné Flow Center –Aug. 2010. Director of the Swedish e-Science Research Centre (SeRC) from 2010.
- Johansson Arne, PhD in mechanics, KTH 1983, and Docent at KTH 1984.
 Professor of mechanics 1991. Secretary general for Natural and Engineering Sciences at the Swedish Research Council (VR) (July 2004-June 2010, with 75% at VR, 25% at KTH). Director of Linné Flow Center (since Sept. 2010).

Guest Professor

• Lingwood Rebecca, PhD, Cambridge 1996. Director of continued education, Cambridge University.

Adjunct professors

- Hanifi Ardeshir, PhD in fluid mechanics, KTH 1995, and Docent at KTH 2003. Adj. Professor of fluid mechanics since 2005 (40% at KTH, 60% at FOI).
- Söderberg Daniel, PhD in fluid mechanics, KTH 1999. Adj. Professor of process fluid mechanics since 2008 (20% at KTH, 80% at Innventia).

Professors/lecturers emeriti

- Bark Fritz, PhD in applied mechanics, KTH 1974. Professor of hydromechanics, 1985. Retired in 2009.
- Enflo Bengt, PhD and Docent in theoretical physics, Stockholm Univ. 1965.
 'Biträdande professor' at KTH 1996. Retired in 2000.

- Lesser Martin, PhD in aerospace engineering, Cornell, Docent and Professor at LTU. Professor of mechanics at KTH 1987. Retired in 2005.
- Söderholm, Lars, PhD and Docent in theoretical physics, Stockholm Univ. 1970.
 Retired in 2009.

Affiliated Professors

- Nagib Hassan, IIT, Chicago, USA.
- Gutmark Ephraim. Univ. Cincinnatti, USA.

Senior Lecturers

- Apazidis Nicholas, PhD in mechanics, KTH 1985, and Docent at KTH 1994.
- Brandt Luca, PhD in fluid mechanics, KTH 2003, and Docent at KTH 2008.
- Dahlkild Anders, PhD in mechanics, KTH 1988, and Docent at KTH 1992. Director of graduate studies.
- Essén Hanno, PhD in theoretical physics, Stockholm Univ. 1979, and Docent 1986. Director of undergraduate studies.
- Fransson Jens, PhD in fluid mechanics, KTH 2003, and Docent at KTH 2006.
- Gutierrez Farewik Elena, PhD in orthopedics, KI 2003, and Docent at KTH 2007. Appointed in 2010.
- Hsieh Richard, PhD in mechanics, KTH 1978, and Docent at KTH 1980.
- Lindborg Erik, PhD in Mechanics, KTH 1996, and Docent at KTH 2001. Director of undergraduate studies in fluid mechanics.
- Lundell Fredrik, PhD in fluid mechanics, KTH 2003, and Docent at KTH 2008. Appointed in 2010.
- Nordmark Arne, PhD in mechanics, KTH 1992, and Docent at KTH 1999.
- Nyberg Christer, PhD in mechanics, KTH 1979.
- Schlatter Philipp, PhD in fluid mechanics, ETH Zürich 2005, and Docent at KTH 2009. Appointed in 2010.
- Thylwe Karl-Erik, PhD in theoretical physics, Univ. of Uppsala 1981, and Docent 1987.
- Tibert Gunnar, PhD in structural mechanics, KTH 2002, and Docent at KTH 2009. Appointed in 2010. Programme responsible for MSc. and PhD programmes in Engineering mechanics.

Lecturers, research associates and researchers

- Brandefelt Jenny, PhD in meteorology, Stockholm Univ. 2005.
- Brethouwer Geert, PhD in fluid mechanics, TU Delft 2001.
- Do-Quang Minh, PhD in fluid mechanics, KTH 2004.
- Maxe Gunnar, MSc.
- Prahl Wittberg Lisa, PhD, Lund University 2008.
- Robert Etienne, PhD, EPFL, Lausanne 2008.
- Tillmark Nils, PhD in fluid mechanics, KTH 1995. Responsible for the department's lab. facilities.
- Örlu, Ramis, PhD in fluid mechanics, KTH 2009.

Adjunct Lecturers

• Wallin Stefan, PhD in fluid mechanics, KTH 2000. Adj. lecturer in fluid mechanics with turbulence modelling application, (30% at KTH, 70% at FOI).

Guest researchers, post-docs

- Guest lecturer: Professor Alessandro Talamelli, Univ. of Bologna (3 months).
- Post-doc: Ilak Milos, Princeton, USA.
- Post-doc: Xu Yechuan, Polytechnic University, Hong Kong.
- Post-doc: Eva Voronkova, St
 Petersburg State University, Russia.
- Post-doc: Antonio Segalini, University of Bologna, Italy.
- Post-doc: Mireia Altimira, University of Navarra, Spain.

Technical and administrative staff

- Bauer Nina, secretary.
- Bellbrant Karina, course administrator. Recruited from Proffice in 2010.
- Ekstrand Pär, MSc., system manager.
- Eneqvist, Carolina, staff manager. Recruited 2009, employed 2010.
- Hornk, Heide, financial manager.
- Karlström Joakim, tool maker.
- Olofsson Anne-Mari, course administrator. Retired in 2010.
- Rådberg Göran, tool maker.
- Silverhag Hans, head of administration.
- $\bullet\,$ Skult Stefan, administrative assistant.

Changes in the department personnel in recent years are summarized in the following table (seen as averages over the year).

]	Numbe	er of er	nploye	es dur	ing 20	03-201	.0
Position	2003	2004	2005	2006	2007	2008	2009	2010
Prof./Adj. Prof.	11	10	10	10	11	11	11	10
Lect./Adj. Lect.	16	16	16	16	15	14	15	18
Ass. lect./Researcher/Adjunct	9	11	12	12	15	15	10	10
Technical/adm staff	10	10	9	9	9	7	9	9
Guest Res./Post-docs	3	5	5	4	6	5	6	5
Doctoral students	46	42	38	37	40	36	46	$\bf 54$
External doct. stud.	6	11	8	6	5	9	3	2
Total	101	105	98	94	101	97	100	108

Active gradu	ate student	s at KTH Med	chanics du	ring 2010)
Name	Affiliation	Adv.	Start	TeknL	TeknD
Alenius Emma	MWL	LF/MÅ		12/2010	
Amer Malik	Mech	GA	11/2008		
Bagheri Shervin	Mech	DH/LB/PS	04/2006	06/2008	02/2010
Bellani Gabrielle	Mech	FL/DS	02/2006	10/2008	
Berger Marit	Mech	$_{ m JB}$	09/2010		
Bodin Olle	Mech	LF	09/2006	03/2009	
Carlsson Andreas	Mech	GA	12/2007		
Dadfar Reza	Mech	DH	09/2010		
Dalilsafaei Seif	Mech	AE/GT	11/2008		
Deusebio Enrico	Mech	EL	01/2010		
Fallenius Bengt	Mech	m JF/HAL	04/2006	05/2009	
Farkas Robert	Mech	LF	05/2009		
Fjällman Johan	Mech	LF	04/2010		
Hellström Fredrik	GM PT	LF	09/2005	03/2008	05/2010
Hosseini Mohammad	Mech	AH	12/2010		
Håkansson Karl	Mech	DS/LPW	11/2009		
Imayama Shintaro	Mech	HAL/RL	04/2010		
Kalpakli Athanasia	Mech	HAL/NT/RÖ	03/2009		
Kjellander Malte	Mech	NA/NT	05/2007	4/2010	
Klets Olesya	Mech	LGF/AE	09/2008	,	
Klinkenberg Joy	Mech	LB/DH	06/2009		
Kosterina Natalia	Mech	$\stackrel{'}{\mathrm{AE}/\mathrm{LGF}}$	11/2006	06/2009	
Kurian Thomas	Mech	m HAL/JF	08/2005	,	06/2010
Kvick Mathias	Mech	$\overline{\mathrm{DS/FL}}$	11/2009		,
Laurantzon Fredrik	Mech	m HAL/NT	06/2007	12/2010	
Lenaers Peter	Mech	${ m AJ/GB/PS}$	02/2009	,	
Li Qiang	Mech	DH/PS	05/2007	10/2009	
Malm (Ohlsson) Johan	Mech	DH/LB	03/2007	12/2009	
Manda Krishnagoud	Mech	$\overrightarrow{\mathrm{AE}/\mathrm{GT}}$	10/2008	12/2010	
Mellgren Niklas	Mech	$MV^{'}$	05/2003	09/2009	
Monokrousos Antonios	Mech	DH	02/2007	06/2009	
Muld Tomas	MWL	$\mathrm{DH/LB}$	04/2007	05/2010	
Odemark Ylva	Mech	${ m JF}^{'}$	02/2010	,	
Pastuhoff Markus	Mech	HAL/NT	05/2009		
Pettersson Robert	Mech	m AE/LGF/AN	09/2006	06/2009	
Pouransari Zeinab	Mech	${ m AJ/GB}^{'}$	04/2009	,	
Rasam Amin	Mech	${ m AJ/GB}$	03/2009		
Sakowitz Aleksander	Mech	$\mathrm{LF}^{'}$	12/2008		
Sarmast Sasan	Mech	DH	02/2010		
Schrader Lars-Uve	Mech	LB/DH	04/2006	11/2008	11/2010
Semerano Onofrio	Mech	$\overrightarrow{\mathrm{DH}}$	10/2008	,	,
Shahinfar Shahab	Mech	m JF/HAL	06/2008		
von Stillfried Florian	Mech	${ m AJ/SW}$	09/2007	12/2009	
Strömgren Tobias	Mech	GA/AJ	04/2005	03/2008	03/2010
Söder Martin	Scania	LF	11/2010	,	,
		· -	, - 010		

(cont.d)

Active graduate students at KTH Mechanics during 2010							
Name	Affiliation	Adv.	Start	TeknL	TeknD		
Tahir Abdul Malik	Mech	GA	08/2008				
Tammisola Outi	Mech	DS/FL	06/2006	03/2009			
Tempelmann David	Mech	DH/AH	03/2007	12/2009			
Tysell Lars	FOI	LF			02/2010		
Vallgren Andreas	Mech	EL	02/2007	06/2010	11/2010		
Wang Ruoli	Mech	LGF/AE	06/2007	10/2009			
Wang Yue	Mech	LF	02/2010	,			
van Wyk Stevin	Mech	LF/LPW	08/2009				
Zhang Feng	Mech	$\overrightarrow{\mathrm{AD}}$	02/2010				
Zhu Lailai	Mech	LB/GA/MDQ	09/2009				

3 Economy

The financial state of the department is summarized in the table and diagrams below. The seemingly extremely positive result for the year 2008 was to a large extent related to the moving of Prof. Laszlo Fuchs from Lund University to KTH.

KTH Mekanik, resultat						
RESULTATRÄKNING 2010 (kSEK)	GRU	FOFU	Totalt			
Gruanslag	20 283	0	20 283			
Fofuanslag	0	26 093	26 093			
Bidrag fr externa finansiärer	0	39 649	39 649			
Övriga intäkter	289	1 108	1 397			
Finansiella intäkter	13	50	63			
SUMMA INTÄKTER	20 585	66 900	87 485			
	0	0	0			
Personalkostnader	10 846	35 581	46 426			
Lokalkostnader	1 287	7 996	9 283			
Resor och traktamenten	10	1 843	1 853			
Drift och övrigt	1 003	4 607	5 610			
Gemensamma kostnader	7 341	9 582	16 922			
Avskrivningar	17	419	436			
Finansiella kostnader	0	0	0			
SUMMA KOSTNADER	20 503	60 028	80 531			
ÅRETS KAPITALFÖRÄNDRING	82	6 872	6 954			

RESULTATRÄKNING (kSEK)	2003	2004	2005	2006	2007	2008	2009	2010
Gruanslag	14 723	14 519	16 089	15 784	14 779	15 580	14 764	20 283
Fofuanslag	20 381	19 070	20 294	22 231	23 355	25 206	23 823	26 093
Externa intäkter	31 577	30 276	26 586	24 991	24 594	35 593	30 987	41 109
SUMMA INTÄKTER	66 681	63 865	62 969	63 006	62 728	76 379	69 574	87 485
SUMMA KOSTNADER	64 158	65 448	64 506	63 267	63 665	64 733	68 769	80 531
ÅRETS KAPITALFÖRÄNDRING	2 523	-1 582	-1 537	-261	-937	11 646	804	6 954

Omsättning

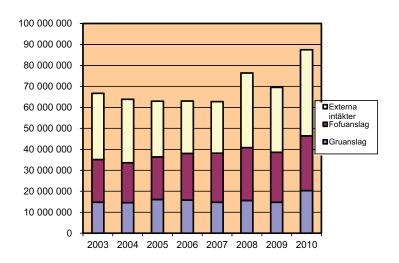


Figure 1: Turnaround in SEK during 2003-2010

Kapitalförändring

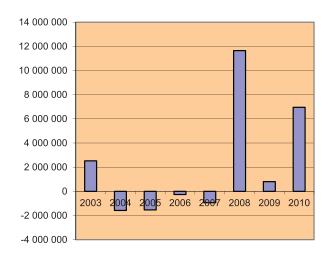


Figure 2: The surplus/deficit in SEK during 2003–2010

4 Teaching activities

4.1 Undergraduate courses

These data refer to the academic year 2009/2010.

Progr.: Year Code K, Bio : 1 SG1102 (a.0) Mechanics, Smaller course Lindborg OPEN: 1 SG1102 (a.0) Mechanics, Smaller course Lindborg OPEN: 1 SG1102 (a.0) Mechanics, Smaller course Nordmark MT: 1 SG1102 (a.0) Mechanics, Smaller course Maxe S: 2 SG1107 (7.5) Mechanics Thylwe ME: 1 SG1108 (7.5) Applied Physics, Mechanics Hsieh I: 1 SG1109 (a.0) Mechanics or I Essen F: 2 SG1130 (a.0) Mechanics I Apazidis F: 1 SG1130 (a.0) Mechanics I Apazidis CL: 2 SG1130 (a.0) Mechanics I Nyberg M: 1 SG1130 (a.0) Mechanics I Nyberg T: 1 SG1130 (a.0) Mechanics I Nyberg T: 1 SG1140 (a.0) Mechanics II Nyberg T: 2 SG1140 (a.0) Mechanics II Nyberg F: 2 SG1140 (a.0) Mechanics II Bark CL: 3 SG1120 (a.	Basic courses mechanics							
OPEN: 1 SG1102 6,0 Mechanics, Smaller course Lundell E: 2 SG1102 6,0 Mechanics, Smaller course Nordmark MT: 1 SG1102 6,0 Mechanics, Smaller course Maxe S: 2 SG1107 7,5 Mechanics Thylwe ME: 1 SG1108 7,5 Applied Physics, Mechanics Hsieh I: 1 SG1109 8,0 Mechanics I Apazidis F: 2 SG1113 6,0 Mechanics, Continuation course Apazidis F: 1 SG1130 9,0 Mechanics I Apazidis BD: 1 SG1130 9,0 Mechanics I Nyberg M: 1 SG1130 9,0 Mechanics I Nyberg F: 1 SG1130 9,0 Mechanics I Nyberg F: 1 SG1140 6,0 Mechanics II Nyberg F: 2 SG1140 6,0 Mechanics II Nyberg F: 2 SG1140 6,0 Mechanics II Nordmark <t< td=""><td>Progr.: Year</td><td>Code</td><td>Credit</td><td>Name</td><td>Responsible</td></t<>	Progr.: Year	Code	Credit	Name	Responsible			
E : 2 SG1102 6,0 Mechanics, Smaller course Maxe MT : 1 SG1102 6,0 Mechanics, Smaller course Maxe S : 2 SG1107 7,5 Mechanics Thylwe ME : 1 SG1108 7,5 Applied Physics, Mechanics Hsieh I : 1 SG1109 8,0 Mechanics for I Essén F : 2 SG1130 9,0 Mechanics I Apazidis CL : 2 SG1130 9,0 Mechanics I Apazidis BD : 1 SG1130 9,0 Mechanics I Nyberg M : 1 SG1130 9,0 Mechanics I Nyberg T : 1 SG1130 9,0 Mechanics I Nyberg T : 1 SG1130 9,0 Mechanics I Thylwe M : 2 SG1140 6,0 Mechanics II Thylwe T : 2 SG1140 6,0 Mechanics II Bark CL: 3 SG1140 6,0 Mechanics II Bark All: 4	K, Bio: 1	SG1102	6,0	Mechanics, Smaller course	Lindborg			
MT: 1 SG1102 6,0 Mechanics Maxe S: 2 SG1107 7,5 Mechanics Thylwe ME: 1 SG1108 7,5 Applied Physics, Mechanics Hsieh I: 1 SG1109 8,0 Mechanics for I Essén F: 2 SG1130 9,0 Mechanics I Apazidis F: 1 SG1130 9,0 Mechanics I Apazidis BD: 1 SG1130 9,0 Mechanics I Nyberg M: 1 SG1130 9,0 Mechanics I Nyberg M: 1 SG1130 9,0 Mechanics I Nyberg F: 1 SG1130 9,0 Mechanics I Thylwe M: 2 SG1140 6,0 Mechanics II Thylwe M: 2 SG1140 6,0 Mechanics II Bark CL: 3 SG140 6,0 Mechanics II Brark All: 4 SG2150 7,5 Nonlinear dynamics Nordmark All: 4 SG2150	OPEN:1	SG1102	6,0	Mechanics, Smaller course	Lundell			
S: 2 SG1107 7,5 Mechanics Thylwe ME: 1 SG1108 7,5 Applied Physics, Mechanics Hsieh I: 1 SG1109 8,0 Mechanics for I Essén F: 2 SG1113 6,0 Mechanics I Apazidis F: 1 SG1130 9,0 Mechanics I Apazidis BD: 1 SG1130 9,0 Mechanics I Nyberg M: 1 SG1130 9,0 Mechanics I Nyberg T: 1 SG1131 11,0 Mechanics I Nyberg T: 1 SG1130 9,0 Mechanics I Thylwe M: 2 SG1140 6,0 Mechanics II Nyberg P: 1 SG1130 6,0 Mechanics II Bark CL: 3 SG1140 6,0 Mechanics II Nyberg P: 2 SG1140 6,0 Mechanics II Bark CL: 3 SG1210 7,5 Nonlinear dynamics Nordmark All: 4 SG2127	E:2	SG1102	6,0	Mechanics, Smaller course	Nordmark			
ME: 1 SG1108 7,5 Applied Physics, Mechanics Hsieh I: 1 SG1109 8,0 Mechanics for I Essén F: 2 SG1113 6,0 Mechanics I Apazidis F: 1 SG1130 9,0 Mechanics I Apazidis CL: 2 SG1130 9,0 Mechanics I Nyberg BD: 1 SG1130 9,0 Mechanics I Nyberg T: 1 SG1131 11,0 Mechanics I Nyberg T: 1 SG1130 9,0 Mechanics I Thylwe M: 2 SG1140 6,0 Mechanics II Thylwe M: 2 SG1140 6,0 Mechanics II Bark CL: 3 SG1140 6,0 Mechanics II Bark CL: 3 SG1140 6,0 Mechanics II Bark CL: 3 SG1140 6,0 Mechanics II Brandefelt All: 4 SG2127 7,5 Nonlinear dynamics Nordmark All: 4 SG2150 <td>MT:1</td> <td>SG1102</td> <td>6,0</td> <td>Mechanics, Smaller course</td> <td>Maxe</td>	MT:1	SG1102	6,0	Mechanics, Smaller course	Maxe			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	S:2	SG1107	7,5	Mechanics	Thylwe			
	ME:1	SG1108	7,5	Applied Physics, Mechanics	Hsieh			
F: 1 SG1130 9,0 Mechanics I Apazidis CL: 2 SG1130 9,0 Mechanics I Apazidis BD: 1 SG1130 9,0 Mechanics I Nyberg M: 1 SG1130 9,0 Mechanics I Nyberg T: 1 SG1131 11,0 Mechanics I Thylwe M: 2 SG1140 6,0 Mechanics II Thylwe T: 2 SG1140 6,0 Mechanics II Nyberg P: 2 SG1140 6,0 Mechanics II Bark CL: 3 SG1140 6,0 Mechanics II Bark CL: 3 SG1140 6,0 Mechanics II Bark All: 4 SG2126 7,5 Nonlinear dynamics Nordmark All: 4 SG2127 3 Research methodology in mechanics Essén S: 3 SG1801 7,5 Structural mechanics Eriksson S: 4 SG2802 7,5 Membranes, plates and FEM Tibert S: 4	I:1	SG1109	8,0	Mechanics for I	Essén			
CL:2 SG1130 9,0 Mechanics I Apazidis BD:1 SG1130 9,0 Mechanics I Nyberg M:1 SG1130 9,0 Mechanics I Nyberg T:1 SG1131 11,0 Mechanics I Thylwe P:1 SG1130 9,0 Mechanics I Thylwe M:2 SG1140 6,0 Mechanics II Nyberg P:2 SG1140 6,0 Mechanics II Bark CL:3 SG1140 6,0 Mechanics II Bark CL:3 SG1140 6,0 Mechanics II Bark CL:3 SG1140 6,0 Mechanics II Bark All: 4 SG2126 7,5 Nonlinear dynamics Nordmark All: 4 SG2126 7,5 Nonlinear dynamics Erikson S G21250 7,5 Rigid body dynamics Erikson S S G1801 7,5 Structural mechanics Erikson S G2802	F:2	SG1113	6,0	Mechanics, Continuation course	Apazidis			
BD : 1	F:1	SG1130	9,0	Mechanics I	Apazidis			
M:1 SG1130 9,0 Mechanics I Nyberg T:1 SG1131 11,0 Mechanics I Nyberg P:1 SG1130 9,0 Mechanics I Thylwe M:2 SG1140 6,0 Mechanics II Nyberg P:2 SG1140 6,0 Mechanics II Bark CL:3 SG1140 6,0 Mechanics II Bark CL:3 SG1140 6,0 Mechanics II Bark CL:3 SG1140 6,0 Mechanics II Bark All:4 SG2126 7,5 Nonlinear dynamics Nordmark All:4 SG2126 7,5 Rigid body dynamics Brandefelt Essén *** Advanced courses *** Advanced courses Eriksson S:3 </td <td>CL:2</td> <td>SG1130</td> <td>9,0</td> <td>Mechanics I</td> <td>Apazidis</td>	CL:2	SG1130	9,0	Mechanics I	Apazidis			
T: 1 SG1131 11,0 Mechanics I Thylwe P: 1 SG1140 6,0 Mechanics II Thylwe M: 2 SG1140 6,0 Mechanics II Nyberg P: 2 SG1140 6,0 Mechanics II Bark CL: 3 SG1140 6,0 Mechanics II Bark CL: 3 SG1140 6,0 Mechanics II Bark Advanced courses *** Advanced courses** All: 4 SG2126 7,5 Nonlinear dynamics Nordmark All: 3 SG2150 7,5 Rigid body dynamics Essén *** Advanced courses ** Advanced courses	BD:1	SG1130	9,0	Mechanics I	Nyberg			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M:1	SG1130	9,0	Mechanics I				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	T:1	SG1131	11,0	Mechanics I				
T : 2 SG1140 6,0 Mechanics II Nyberg P : 2 SG1140 6,0 Mechanics II Bark CL: 3 SG1140 6,0 Mechanics II Bark All: 4 SG2126 7,5 Nonlinear dynamics Nordmark All: 4 SG2127 3 Research methodology in mechanics Brandefelt All: 3 SG2150 7,5 Rigid body dynamics Essén Advarced courses structural mechanics Essén Advarced courses structural mechanics Essén Sc32150 7,5 Structural mechanics Eriksson S 5 Structural mechanics Eriksson S 2802802 7,5 Membranes, plates and FEM Tibert S 2802802 7,5 Num. modelling and simulation Eriksson All: 4 SG2860 7,5 Finite element modelling Eriksson T 2 SG1216 6,0 Thermodynamics	P:1	SG1130	9,0	Mechanics I	Thylwe			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M:2	SG1140	6,0	Mechanics II	Thylwe			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T:2	SG1140	6,0	Mechanics II	Nyberg			
$ \begin{array}{ c c c c } \hline & & & & & & & & & & & & & & & & & & $	P:2	SG1140	6,0	Mechanics II				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CL: 3	SG1140	6,0	Mechanics II	Bark			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				Advanced courses				
Advanced courses structural mechanics S: 3 SG1801 7,5 Structural mechanics Eriksson S: 4 SG2802 7,5 Membranes, plates and FEM Tibert S: 4 SG2803 7,5 Num. modelling and simulation Eriksson All: 4 SG2860 7,5 Finite element modelling Eriksson Basic courses fluid mechanics Tibert Basic courses fluid mechanics Dahlkild T: 2 SG1216 6,0 Thermodynamics Dahlkild T: 2 SG1217 6,0 Fluid mechanics A. Karlsson M, P: 3 SG1220 6,0 Fluid mechanics for engineers Lundell Advanced courses fluid mechanics All: 4 SG2211 6,0 Vehicle aerodynamics Talamelli All: 4 SG2212 7,5 CFD Hanifi & Schlatter All: 4 SG2213 3,0 Appl. comp. fluid dynamics Wallin	All: 4	SG2126	7,5	Nonlinear dynamics	Nordmark			
All: 3SG2150 $7,5$ Rigid body dynamicsEssénAdvanced courses structural mechanicsS: 3SG1801 $7,5$ Structural mechanicsErikssonS: 4SG2802 $7,5$ Membranes, plates and FEMTibertS: 4SG2803 $7,5$ Num. modelling and simulationErikssonAll: 4SG2860 $7,5$ Finite element modellingErikssonBasic courses fluid mechanicsTibertT: 2SG1216 $6,0$ ThermodynamicsDahlkildT: 2SG1217 $6,0$ Fluid mechanicsA. KarlssonM, P: 3SG1220 $6,0$ Fluid mechanics for engineersLundellAll: 4SG2211 $6,0$ Vehicle aerodynamicsTalamelliAll: 4SG2212 $7,5$ CFDHanifi & SchlatterAll: 4SG2213 $3,0$ Appl. comp. fluid dynamicsWallinAll: 4SG2215 $7,5$ Compressible flowAlfredssonAll: 4SG2215 $7,5$ Compressible flowAlfredssonAll: 3SG2214 $7,5$ Fluid mechanics, General courseDahlkild	All: 4	SG2127		Research methodology in mechanics	Brandefelt			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	All: 3	SG2150	7,5		Essén			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Advanc	ed courses structural mechanics				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S:3	SG1801	7,5	Structural mechanics	Eriksson			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S:4	SG2802	7,5	Membranes, plates and FEM	Tibert			
	S:4	SG2803	7,5	Num. modelling and simulation	Eriksson			
	All:4	SG2860	7,5	Finite element modelling	Eriksson			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	All: 4	SG2870	7,5	Non-linear FEM	Tibert			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Basic courses fluid mechanics							
	T:2	SG1216	6,0	Thermodynamics	Dahlkild			
Advanced courses fluid mechanics All: 4 SG2211 6,0 Vehicle aerodynamics Talamelli All: 4 SG2212 7,5 CFD Hanifi & Schlatter All: 4 SG2213 3,0 Appl. comp. fluid dynamics Wallin All: 4 SG2215 7,5 Compressible flow Alfredsson All: 3 SG2214 7,5 Fluid mechanics, General course Dahlkild	T:2	SG1217	6,0		A. Karlsson			
All: 4SG22116,0Vehicle aerodynamicsTalamelliAll: 4SG22127,5CFDHanifi & SchlatterAll: 4SG22133,0Appl. comp. fluid dynamicsWallinAll: 4SG22157,5Compressible flowAlfredssonAll: 3SG22147,5Fluid mechanics, General courseDahlkild	M, P:3	SG1220		Fluid mechanics for engineers	Lundell			
All: 4SG22127,5CFDHanifi & SchlatterAll: 4SG22133,0Appl. comp. fluid dynamicsWallinAll: 4SG22157,5Compressible flowAlfredssonAll: 3SG22147,5Fluid mechanics, General courseDahlkild	Advanced courses fluid mechanics							
All: 4SG22133,0Appl. comp. fluid dynamicsWallinAll: 4SG22157,5Compressible flowAlfredssonAll: 3SG22147,5Fluid mechanics, General courseDahlkild	All: 4	SG2211	6,0	Vehicle aerodynamics	Talamelli			
All: 4SG22133,0Appl. comp. fluid dynamicsWallinAll: 4SG22157,5Compressible flowAlfredssonAll: 3SG22147,5Fluid mechanics, General courseDahlkild	All: 4	SG2212		The state of the s	Hanifi & Schlatter			
All: 4 SG2215 7,5 Compressible flow Alfredsson All: 3 SG2214 7,5 Fluid mechanics, General course Dahlkild				Appl. comp. fluid dynamics				
All: 3 SG2214 7,5 Fluid mechanics, General course Dahlkild				v	Alfredsson			
				-				
				· · · · · · · · · · · · · · · · · · ·	Alfredsson			

All: 4	SG2219	7,5	Advanced compressible flows	Alfredsson, Till- mark & Dahlkild
All: 4	SG2221	7,5	Wave motion and stability	Fransson & Brandt
F:3	SG2223	9,0	Fluid mechanics	Lindborg & Fransson
All: 4	KF2050	6,0	Paper process technology	Söderberg

The numbers of students based on hås/håp: 8*(hås+håp)/2 during the years 2003-2010 are summarized in the following table. Note that data refer to the academic year ending in the year given.

Number of students during 2002-2009								
Courses	2003	2004	2005	2006	2007	2008	2009	2010
Basic mechanics	1496	1504	1442	1371	1403	1232	1295	1518
Upper level mechanics courses	72	96	52	48	42	35	45	47
Fluid mechanics	408	352	514	425	363	367	439	431
Structural mechanics	317	262	183	146	133	179	159	136

4.2 Master's thesis projects

Master's theses during 2010						
Name	Title	Examiner				
Walldén, Benedikt	Normalmoder i kopplade dämpade system	H. Essén				
Bagheri, Faranggis	Numeriska simuleringar av polymer i turbulent kanalströmning	L. Brandt				
Yu, Zhang	Muscle driven forward dynamics simulation of human walking based on experimental data	L. Gutierrez-Farewik				
van den Herrewegen, Inge	Analysis of sit-stand-sit movements in adults with rheumatic arthritis	L. Gutierrez-Farewik				
Amaral Neto, Joao	Yield optimization based on wind resource	L. Brandt				
Farahanikia, Alireza	Forces on Lagrangian particles in turbulent wall-bounded flow	P. Schlatter				
Wang, Qiong	Numerical simulation of blood flow in bifurcating pipe	L. Brandt				
Ritterbusch, Rafael	Implementation of an agglomeration model into Ansys CFX 12.1 and CFD single phase cyclone simulations	A. Dahlkild				
Kékesi, Timea	CFD study of flow separation control using jets	A. Dahlkild				
Tavakkoli Avval, Pouria	Cross-bridge modelling of skeletal muscles	A. Eriksson				

Björkman, Magnus	Numerical simulations of the flow in a refiner	A. Dahlkild
Daurskikh, Anna	Design and deployment simulation of the inflatable moon house	G. Tibert
Shabbir, Saddaf	Modelling, analysis and optimization of a NES for the air intake system of a vehicle	A. Nordmark
de Boer, J.P.	Dynamics of a tidal estuary	H. Alfredsson
Eriksson, Daniel, Gasch, Tobias Finnström, Calle	Finite element modelling of reinforced concrete and verification of the concrete material models available in Abaqus Numerical investigation of secondary flows in a compressor cascade	G. Tibert D. Henningson
Xingyu, Xiang	Production evaluation of wind farms-too to improve production analysis method	L. Fuchs
Khoshparvar, Soheil	Stress analysis of Bepicolombo boom deployment system subjected to random vibrations	G. Tibert

4.3 Graduate courses

These data refer to the academic year 2009/2010. In addition several reading courses were also given.

- SG3105 Fluid mechanics for graduate students (Lindborg, Dahlkild, Söderholm)
- SG3112 Turbulence (Alfredsson)
- SG3113 Compressible flow for graduate students (Alfredsson)
- SG3114 Numerical methods in fluid mechanics (Hanifi, Schlatter)
- SG2221 Wave motions and hydrodynamic stability (Brandt, Fransson)
- \bullet SG3128 Vehicle aerodynamics (Talamelli)

5 Research activities

5.1 Doctoral theses defended

Shervin Bagheri

Thesis title: Analysis and control of transitional shear layers using global modes

Date: February 12, 2010

Faculty opponent: A. Bottaro, University of Genova

Evaluation committee: Professor Gunilla Kreiss, UU, Professor Lennart Löfdahl,

Chalmers, Docent Henrik Sandberg, KTH.

Main advisor: Professor Dan Henningson

Lars Tysell

Thesis title: Hybrid grid generation for viscous flow computations around com-

plex geometries

Date: February 19, 2010

Faculty opponent: Professor Nigel Weatherill, University of Birmingham

Evaluation committee: Docent Michel Cervantes, LTU, Docent Johan Revstedt,

LTH, Dr. Per Weinerfelt, SAAB Aerospace. *Main advisor:* Professor Laszlo Fuchs

Tobias Strömgren

Thesis title: Model predictions of turbulent gas-particle shear flows

Date: March 29, 2010

Faculty opponent: Professor Martin Sommerfeld, Martin-Luther-Universität Halle-

Wittenberg

Evaluation committee: Professor Lars Davidsson, Chalmers, Dr. Pavel Kudinov,

KTH, Docent Johan Revstedt, LTH Main advisor: Professor Gustav Amberg

Fredrik Hellström

Thesis title: Numerical computations of the unsteady flow in turbochargers

Date: May 26, 2010

Faculty opponent: Dr. Ricardo Martinez-Botas, Imperial College

Evaluation committee: Professor Lars-Erik Eriksson, Chalmers, Docent Per

Tunestål, LTH, Professor Hans-Erik Ångström, KTH

Main advisor: Professor Laszlo Fuchs

Thomas Kurian

Thesis title: An experimental investigation of disturbance growth in boundary

layer flows

Date: June 11, 2010

Faculty opponent: Professor Edward White, Texas A&M University

Evaluation committee: Dr. Simone Camarri, Universita di Pisa, Doctor Valery Cher-

noray, Chalmers, Dr. Per Elofsson, Scania Main advisor: Professor Henrik Alfredsson

Lars-Uve Schrader

Thesis title: Receptivity of boundary-layer flows over flat and curved walls

Date: November 12, 2010

Faculty opponent: Professor Gregoire Casalis, ONERA, Toulouse

Evaluation committee: Dr. Markus Kloker, Universität Stuttgart, Docent Jes-

per Oppelstrup, KTH, Dr. Per Weinerfelt, SAAB Aerospace

Main advisor: Docent Luca Brandt

Andreas Vallgren

Thesis title: Dynamic properties of two-dimensional and quasi-geostrophic tur-

bulence

Date: November 19, 2010

Faculty opponent: Professor Guido Boffetta, University of Turin

Evaluation committee: Professor Peter Ditlevsen, Niels Bohr Institute, Copenhagen, Professor Jonas Nycander, SU, Docent Anna-Karin Tornberg, KTH

Main advisor: Docent Erik Lindborg

5.2 Licentiate theses presented

Malte Kjellander

Thesis title: On dynamics and thermal radiation of imploding shock waves

Date: April 16, 2010

External examiner: Professor Gabi Ben-Dor, Ben-Gurion University of the

Negev

Main advisor: Docent Nicholas Apazidis

Tomas Muld

Thesis title: Analysis of flow structures in wake flows for train aerodynamics

Date: May 28, 2010

External examiner: Dr. Shia-Hui Peng, FOI

Main advisors: Dr. Gunilla Efraimsson/Professor Dan Henningson

Andreas Vallgren

Thesis title: Statistical characteristics of two-dimensional and quasigeostrophic

turbulence

Date: June 14, 2010

External examiner: Dr. Johan Nilsson, SU Main advisor: Docent Erik Lindborg

Emma Alenius

Thesis title: CFD of duct acoustics for turbocharger applications

Date: December 13, 2010

External examiner: Dr. Federico Piscaglia, Politecnico di Milano Main advisors: Professor Mats Åbom/Professor Laszlo Fuchs

Krishnagoud Manda

Thesis title: Finite element simulations of biphasic articular cartilages with

localized metal implants *Date:* December 16, 2010

External examiner: Dr. Ingrid Svensson, LTH Main advisor: Professor Anders Eriksson

Fredrik Laurantzon

Thesis title: Flow measuring techniques in steady and pulsating compressible

flows

Date: December 17, 2010

External examiner: Dr. Björn Lindgren, Scania CV

Main advisor: Professor Henrik Alfredsson

5.3 Publications

5.3.1 Publications in archival journals

- 1 Alfredsson P.H., Örlü R., 2010, The diagnostic plot a litmus test for wall bounded turbulence data, Eur. J. Fluid Mech. B/Fluids, 29, 403–406.
- 2 Belov S, Thylwe K.-E., Marletta M, Msezane A, Naboko S, 2010, On Regge pole trajectories for a rational function approximation of Thomas–Fermi potentials, *J. Phys. A: Math. Theor.*, **43**, 365301.
- 3 Carlson A.C., Do-Quang M., Amberg G., 2010, Droplet dynamics in a bifurcating channel, *Int. J. Multi-Phase Flow*, **36**, 397.
- 4 Carlsson A., Söderberg L.D., Lundell F., 2010, Fibre orientation measurements near a headbox wall, *Nordic Pulp and Paper Research J.*, **25**, 204–212.
- 5 Danielsson C., Dahlkild A. A., Velin A, Behm M, 2010, Modeling contiunous electropermutation with effects of water dissociation included, *AIChE J.*, **56**, 2455–2467.
- 6 Do-Quang M., Amberg G., 2010, Numerical simulation of the coupling problems of a solid sphere impacting on a liquid free surface, *Math. Com*put. Simul., 80, 1664.
- 7 Do-Quang M., Geyl L., Stemme G., van der Wijngaart W., Amberg G., 2010, Fluid dynamic behavior of dispensing small droplets through a thin liquid film, *Microfluidics and Nanofluidics*, **9**, 303.
- 8 DUGUET Y., WILLIS A.P., KERSWELL R.R., 2010, Slug genesis in cylindrical pipe flow, *J. Fluid Mechanics*, **663**, 180–208.
- 9 Duguet Y., Schlatter P., Henningson D.S., 2010, Formation of turbulent patterns near the onset of transition in plane Couette flow, *J. Fluid Mech.*, **650**, 119–129.
- 10 Duguet Y., Brandt L., Larsson R. L., 2010, Minimal perturbations in transitional plane Couette flow, *Phys. Rev. E*, **82**, 026316.
- 11 ENGSTRÖM P.E., GUTIERREZ-FAREWIK E.M., BARTONEK Å., TEDROFF K.T., OREFELT C.O., HAGLUND-ÅKERLIND Y., 2010, Does botulinum toxin A improve the walking pattern in children with idiopathic toe-walking?, J. Child. Orthop., 4, 301–308.
- 12 Eriksson A, Nordmark A., 2010, Temporal finite element formulation of optimal control in mechanisms, *Comput. Meth. Appl. Mech. Engrg.*, 199, 1783–1792.
- 13 ERIKSSON M., GUTIERREZ-FAREWIK E.M., WEIDENHIELM BROSTRÖM E., BARTONEK Å., 2010, Gait pattern in children with Arthrogryposis Multiplex Congenita, *J. Child. Orthop.*, 4, 21–31.
- 14 Essén H., Nordmark A., 2010, Static deformation of a heavy spring due to gravity and to centrifugal force, Eur. J. Phys., **31**, 603–609.

- 15 EVEGREN P., FUCHS L., REVSTEDT J., 2010, Wall shear stress variations in a 90-degree bifurcation in 3D pulsating flows, *Med. Engrg. Phys.*, **32**, 189–202.
- 16 Fransson J. H. M., 2010, Turbulent spot evolution in spatially invariant boundary layers, *Phys. Rev. E.*, **81**, 035301–1.
- 17 Henningson D.S., 2010, Description of complex flow behaviour using global dynamic modes, *J. Fluid Mech.*, **656**, 1–4.
- 18 ILAK M.I., BAGHERI S., BRANDT L., ROWLEY W, HENNINGSON D.S., 2010, Model reduction of the nonlinear complex Ginzburg-Landau equation, SIAM J. App. Dyn. Sys., 9, 1284–1302.
- 19 IVANELL S., MIKKELSEN R., SØRENSEN J.N., HENNINGSON D.S., 2010, Stability analysis of the tip vortices of a wind turbine, *Wind Energy*, 13, 705–715.
- 20 Jadoon A., Prahl Wittberg L., Revstedt J., 2010, Dynamic interaction of fixed dual spheres for several configurations and inflow conditions, *Eur. J. Mech. B/Fluids*, **29**, 43–52.
- 21 Kierkegaard A., Åkervik E., Efraimsson G., Henningson D.S., 2010, Flow field eigenmode decompositions in aeroacoustics, *Comput. Fluids*, **39**, 338–344.
- 22 KJELLANDER M. K., TILLMARK N., APAZIDIS N., 2010, Thermal radiation from a converging shock implosion, *Phys. Fluids*, **22**, 046102.
- 23 KJELLANDER M. K., TILLMARK N., APAZIDIS N., 2010, Shock dynamics of strong imploding cylindrical and spherical shock waves with real gas effects, *Phys. Fluids*, **22**, 116102.
- 24 KVICK M., HÅKANSSON K.H., LUNDELL F., SÖDERBERG D., PRAHL WITTBERG L., 2010, Streak formation and fibre orientation in near wall turbulent fibre suspension flow, *ERCOFTAC bulletin*, **84**, .
- 25 LAURANTZON F, ÖRLÜ R., SEGALINI A.S., ALFREDSSON P.H., 2010, Time-resolved measurements with a vortex flowmeter in a pulsating turbulent flow using wavelet analysis, *Meas. Sci. Technol.*, **21**, 123001.
- 26 Li Q., Schlatter P., Henningson D.S., 2010, Simulations of heat transfer of a boundary layer subject to free-stream turbulence, *J. Turbulence*, **45**.
- 27 LINDBORG E., VALLGREN, 2010, Testing Batchelor's similarity hypotheses for decaying two-dimensional turbulence, *Phys. Fluids*, **22**, 091704.
- 28 Lindborg E., Tung K.K., Nastrom G.D., N. Cho J.Y., Gage K.S., 2010, Comment on "reinterpreting aircraft measurement in anisotropic scaling turbulence" by Lovejoy et al. (2009), *Atm. Chem. Phys.*, **10**, 1401–1402.

- 29 LUNDELL F., CARLSSON A., 2010, Heavy ellipsoids in creeping shear flow: transitions of the particle rotation rate and orbit shape, *Phys. Rev. E Stat., Nonlin., Soft Matter Phys.*, **81**.
- 30 LÖGDBERG O., ANGELE K. P., ALFREDSSON P.H., 2010, On the robustness of separation control by streamwise vortices, *Eur. J. Mech. B/Fluids*, **29**, 9–17.
- 31 MONOKROUSOS A.M., LUNDELL F., BRANDT L., 2010, Feedback control of boundary layer bypass transition: comparison of a numerical study with experiments, AIAA J., 48, 1848–1851.
- 32 Monokrousos A.M., Äkervik E.Ä., Brandt L., Henningson D.S., 2010, Global three-dimensional optimal disturbances in the Blasius boundary-layer flow using time-steppers, *J. Fluid Mech.*, **650**, 181–214.
- 33 Neytcheva M., He X., Do-Quang M., 2010, Element-by-element Schur complement approximations for general nonsymmetric matrices of two-by-two block form, *Lecture Notes in Computer Science*, **5910**, 108.
- 34 NORDMARK A., Essén H., 2010, The comfortable roller coaster on the shape of tracks with a constant normal force, *Eur. J. Phys.*, **31**, 1307 1317.
- 35 Ohlsson J., Schlatter P., Fischer P.F., Henningson D. S., 2010, Direct numerical simulation of separated flow in a three-dimensional diffuser, *J. Fluid Mech.*, **650**, 307–318.
- 36 POURANSARI Z., SPEETJENS M.F.M., CLERCX H.J.H., 2010, Formation of coherent structures by fluid inertia in three-dimensional laminar flows, *J. Fluid Mech.*, **654**, 5–34.
- 37 Pralits J. O., Brandt L., Giannetti F., 2010, Instability and sensitivity of the flow around a rotating circular cylinder, *J. Fluid Mech.*, **650**, 513–536.
- 38 RASAM A., Brethouwer G., Schlatter P., Li Q., Johansson A.V., 2010, Effects of modelling, resolution and anisotropy of subgrid-scales on large eddy simulations of channel flow, *J. Turbulence*, **12**, 1–20.
- 39 SCHLATTER P., LI Q., BRETHOUWER G., JOHANSSON A.V., HENNINGSON D.S., 2010, Simulations of spatially evolving turbulent boundary layers up to $Re_{\theta} = 4300$, Int. J. Heat and Fluid Flow, **31**, 251–261.
- 40 Schlatter P., Örlü R., 2010, Quantifying the interaction between large and small scales in wall-bounded turbulent flows: A note of caution, *Phys. Fluids*, **22**, 051704.
- 41 SCHLATTER P., ÖRLÜ R., 2010, Assessment of direct numerical simulation data of turbulent boundary layers, *J. Fluid Mech.*, **659**, 116–126.
- 42 Schlatter P., Bagheri S., Henningson D.S., 2010, Self-sustained global oscillations in a jet in crossflow, *Theor. Comput. Fluid Dyn.*, 1–18.

- 43 Schrader L.-U., Amin S., Brandt L., 2010, Transition to turbulence in the boundary layer over a smooth and a rough swept plate exposed to free-stream turbulence, *J. Fluid Mech.*, **646**, 297–325.
- 44 SCHRADER L.-U., BRANDT L., MAVRIPLIS C., HENNINGSON D.S., 2010, Receptivity to free-stream vorticity of flow past a flat plate with elliptic leading edge, *J. Fluid Mech.*, **653**, 245–271.
- 45 Tammisola O., Lundell F., Hellström G., Lagerstedt T., 2010, Spin coating of Blu-ray disks: modeling, experiments, limitations, and manipulation, *J. Coat. Techn. Res.*, 7, 315–323.
- 46 Tedroff K.T., Löwing X., Haglund-Åkerlind Y., Gutierrez-Farewik E.M., Forssberg H., 2010, Botulinumtoxin: a treatment in toddlers with cerebral palsy, *Acta Paediatrica*, **99**, 1156–62.
- 47 TEMPELMANN D.T., HANIFI A., HENNINGSON D.S., 2010, Spatial optimal growth in three-dimensional boundary layers, *J. Fluid Mech.*, **646**, 5–37.
- 48 THYLWE K.-E., 2010, Dirac resonance energies for central potentials with different Lorentz-type potential couplings, *Physica Scripta*, **81**, 035007.
- 49 TSUKAHARA T, TILLMARK N., ALFREDSSON P.H., 2010, Flow regimes in a plane Couette flow with system rotation, *J. Fluid Mech.*, **648**, 5–33.
- 50 Vallgren A, Lindborg E., 2010, Charney isotropy and equipartition in quasi-geostrophic turbulence, *J. Fluid Mech.*, **656**, 448–458.
- 51 Vuorinen V., Hillamo H., Kaario O., Larmi M., Fuchs L., 2010, Large eddy simulation of droplet Stokes number effects on turbulent spray shape, *Atomization and Sprays*, **20**, 93–114.
- 52 Vuorinen V., Hillamo H., Kaario O., Nuutinen M., Larmi M., Fuchs L., 2010, Large eddy simulation of droplet Stokes number effects on mixture quality in fuel sprays, *Atomization and Sprays*, **20**, 435–451.
- 53 Vuorinen V.A., Hillamo H., Kaario O., Nuutinen M., Larmi M., Fuchs L., 2010, Effect of droplet size and atomization on spray formation: a priori study using large-eddy simulation, *Flow, Turbulence and Combustion*, **86**, 1–29.
- 54 Wang R.L., Thur C.K.T., Gutierrez-Farewik E.M., Wretenberg P.W., Weidenhielm Broström E., 2010, One year follow-up after operative ankle fractures: a prospective gait analysis study with multi-segment foot model, *Gait Posture*, **31**, 234–240.
- 55 Örlü R., Alfredsson P.H., 2010, The life of a vortex in an axisymmetric jet, *J. Visualiz.*, 1–2.
- 56 ÖRLÜ R., ALFREDSSON P.H., 2010, On spatial resolution issues related to time-averaged quantities using hot-wire anemometry, *Exp. Fluids*, **49**, 101–110.

57 Örlü R., Fransson J. H. M., Alfredsson P.H., 2010, On near wall measurements of wall bounded flows — the necessity of an accurate determination of the wall position, *Prog. Aerosp. Sci.*, **46**, 353–387.

5.3.2 Other publications

- 58 Alfredsson P.H., Orlü R., Schlatter P., 2010, The viscous sublayer revisited, Bulletin of the American Physical Society, 63rd Annual Meeting of the APS Division of Fluid Dynamics, November 21–23, Long Beach, California.
- 59 Angele K.P., Cehlin M., Högström C.M., Odemark Y., Henriksson M., Tinoco H., Lindqvist H., Hemström B., 2010, Flow mixing inside a control-rod guide tube part II: experimental tests and CFD-simulations, *Proceedings of the 18th International Conference on Nuclear Engineering, May 17–21, Xi'an.*
- 60 Dalilsafaei S.D., Eriksson A, Tibert G., 2010, Stiffness visualization for tensegrity structures, *Proceedings of NSCM-23: the 23rd Nordic Seminar on Computational Mechanics, October 21–22, Stockholm.*
- 61 Duguet Y., Schlatter P.,2010, Large-scale pattern formation in transitional Couette flow. *Advances in Turbulence XII. Springer, Berlin.*
- 62 Duguet Y., Schlatter P., Henningson D.S., 2010, Stripy patterns in low-Re turbulent plane Couette flow. Seventh IUTAM Symposium on Laminar-Turbulent Transition. Springer, Berlin.
- 63 Eriksson A., 2010, Activation dynamics in the temporal FEM optimization of targeted movements, *Proc. ECCM-2010, May 16–21, Paris, France.*
- 64 Fallenius B.E.G., Fransson J.H.M., 2010, Experimental investigation of the influence of inlet conditions to a bluff body wake, *Bulletin of the American Physical Society*, 63rd Annual Meeting of the APS Division of Fluid Dynamics, November 21–23, Long Beach, California.
- 65 Hanifi A., Amoignon O., Pralits J.O., Chevalier M., A Gradient-based Optimization Method for Natural Laminar Flow. *Proceedings of the Seventh IUTAM Symposium on Laminar-Turbulent Transition*, 2009, Stockholm.
- 66 Hein S., Schulein E., Hanifi A., Sousa J., Arnal D., Laminar Flow Control by Suction at Mach 2. *Proceedings of the Seventh IUTAM Symposium on Laminar-Turbulent Transition*, 2009, Stockholm.
- 67 HELLSTROM F., FUCHS L., 2010, Heat transfer effects on the performance of a radial turbine working under pulsatile flow conditions, 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition.
- 68 Hyensjö M., Dahlkild A., Vikström, T., 2010, Modelling the fibre anisotropy profile in shear layers leaving a planar contraction, *Paper Conference and Trade Show 2010, Paper Con 2010.*

- 69 IMAGAWA K., BELLANI G., TAMMISOLA O., LUNDELL F., HIGUCHI H., HAYASE T., 2010, Measurement-Integrated simulations and Kalman filter applied to a co-flowing jet, 5th Flow Control Conference.
- 70 Kalpakli A., Örlü R., Tillmark N., Alfredsson P.H., 2010, Experimental investigation on the effect of pulsations on turbulent flow through a 90 degrees pipe bend, 3rd Int. Conf. on Jets, Wakes and Separated Flows, September 27–30, Cincinnati, Ohio, USA.
- 71 Khoshparvar S., Bylander L., Ivchenko N., Tibert G., 2010, Random vibration stress analysis of the BepiColombo boom deployment system, *Proceedings of NSCM-23: the 23rd Nordic Seminar on Computational Mechanics, October 21–22, Stockholm.*
- 72 Kurian T., Fransson J.H.M., Alfredsson P.H., 2010, Evolution of traveling crossflow modes over a swept flat plate, *Proceedings of the Seventh IUTAM Symposium on Laminar-Turbulent Transition*, 2009, Stockholm.
- 73 KVICK M., HÅKANSSON K.H., LUNDELL F., SÖDERBERG D., PRAHL WITTBERG L., 2010, Fibre Streaks in Wall Bounded Turbulent Flow, 7th Int. Conf. on Multiphase Flow, May 30 June 4, Tampa, Florida, USA.
- 74 Manda K., 2010, Metal plugs for cartilage defects a finite element study, *Proceedings of NSCM-23: the 23rd Nordic Seminar on Computational Mechanics*, October 21–22, Stockholm.
- 75 Medici D., Dahlberg J.Å., Alfredsson P.H., 2010, Measurements of the flow upstream a rotating wind turbine model, *Proc. iTi Conference on Turbulence III*, Oct. 12–15, 2008, Bertinoro, Italy.
- 76 NEYTCHEVA M., Do-Quang M., Xin H., 2010, Element-by-element Schur complement approximations for general nonsymmetric matrices of two-by-two block form, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
- 77 ODEMARK Y., FRANSSON J.H.M., 2010, Optimization and control of wind farms: tip vortex breakdown and wake flow interaction, *Poster presentation*, *Vindkraftsforskning i fokus*, *November 24–25*, *Göteborg*.
- 78 Ohlsson J., Schlatter P., Fischer P.F., Henningson D.S., 2010, DNS of three-dimensional separation in turbulent diffuser flows. *Advances in Turbulence XII. Springer, Berlin.*
- 79 Ohlsson J., Schlatter P., Fischer P.F., Henningson D.S., 2010, Stabilization of the spectral-element method in turbulent flow simulations. *Proc. ICOSAHOM 09, 2009, Trondheim.*
- 80 Ohlsson J., Schlatter P., Mavriplis C., Henningson D.S., 2010, The spectral-element method and the pseudo-spectral method a comparative study. *Proc. ICOSAHOM 09, 2009, Trondheim.*

- 81 Pettersson R., Nordmark A., Eriksson A., 2010, Free-time optimization of targeted movements based on temporal FE approximation, *Proc. CST2010, September 14–17, Valencia, Spain.*
- 82 Prahl Wittberg L., Revstedt J., Lundell F., 2010, Hydrodynamic interaction among multiple spherical particles, 7th Int. Conf. on Multiphase Flow, May 30 June 4, Tampa, Florida, USA.
- 83 Rehill B., Walsh E.J., Schlatter P., Brandt L., Nolan K., Henningson D.S., McEligot D.M., 2010, Entropy generation rate in turbulent spots in a boundary layer subject to free stream turbulence. Seventh IUTAM Symposium on Laminar-Turbulent Transition. Springer, Berlin.
- 84 ROWLEY C.W., MEZI'C I., BAGHERI S., SCHLATTER P., HENNING-SON D.S., 2010, Reduced-order models for flow control: balanced models and Koopman modes. *Seventh IUTAM Symposium on Laminar-Turbulent Transition.* Springer, Berlin.
- 85 Ruedi J.D., Talamelli A., Nagib H.M., Alfredsson P.H., Monkewitz P.A., 2010, CICLoPE — a large pipe facility for detailed turbulence measurements at high Reynolds number, *Progress in Turbulence III*, *Proc. iTi Conference in Turbulence*, 2008.
- 86 SCHLATTER P., HENNINGSON D.S. (EDITORS), 2010, Seventh IUTAM symposium on laminar-turbulent transition. Springer, Berlin.
- 87 Schlatter P., Deusebio E., Brandt L., de Lange R., 2010, Interaction of noise disturbances and streamwise streaks. *Seventh IUTAM Symposium on Laminar-Turbulent Transition*. Springer, Berlin.
- 88 Schlatter P., Brandt L., de Lange R., Interaction of noise disturbances and streamwise streaks. *Advances in Turbulence XII*. Springer, Berlin.
- 89 SEGALINI A.S., ÖRLÜ R., TALAMELLI A., ALFREDSSON P.H., 2010, The effect of oblique waves on jet turbulence, *Progress in Turbulence III*, *Proc. iTi Conference in Turbulence*, 2008.
- 90 Segalini A.S., Örlü R., Alfredsson P.H., Talamelli A., 2010, Experimental study on the use of the wake instability as a passive control in coaxial jet flows, *Proceedings of the Seventh IUTAM Symposium on Laminar-Turbulent Transition*, 2009, Stockholm.
- 91 STRÖMGREN T., BRETHOUWER G., AMBERG G., JOHANSSON A.V., 2010, Developing particle-laden turbulent pipe-flow, 7th Int. Conf. on Multiphase Flow, May 30 June 4, Tampa, Florida, USA.
- 92 Talamelli A., Fransson J.H.M., 2010, High amplitude steady streaks in flat plate boundary layers, 40th AIAA Fluid Dynamics Conference.
- 93 Tempelmann D.T., Hanifi A., Henningson D.S, 2010, Optimal disturbances and receptivity in three-dimensional boundary layers, *Proceedings V European Conference on Computational Fluid Dynamics ECCO-MAS CFD 2010*.

- 94 Tempelmann D.T., Hanifi A., Henningson D.S, 2010, Spatial Optimal Disturbances in Three-Dimensional Boundary Layers. *Proc. Seventh IUTAM Symposium on Laminar-Turbulent Transition, Stockholm, Sweden, 2009.*
- 95 TSUKAHARA T, KAWAGUCHI Y, KAWAMURA H, TILLMARK N., AL-FREDSSON P.H., 2010, Turbulence stripe in transitional channel flow with/without system rotation, *Proceedings of the Seventh IUTAM Symposium on Laminar-Turbulent Transition*, 2009, Stockholm.
- 96 Vasile M., Cartmell M., Dejene F.Z., Drysdale T., Flores M.A., Gulzar M.Y., Ismail N., Khalid M.U., Li M., Maddock C., Mallol P., McRobb M., Öberg J., Purcell O., Reynolds P., Ritterbusch R., Sandqvist W., Summerer L., Tanweer M.U., Tibert G., Whyte G., Zafar W., Zhang J., 2010, The Suaineadh project: A stepping stone towards the deployment of large flexible structures in space, 61st International Astronautical Congress, September 27- October 1, Prague, Czech Republic. IAC-10-C3.4, Paper ID 7448.
- 97 VON STILLFRIED F., WALLIN S., JOHANSSON A.V., 2010, An improved passive vortex generator model for flow separation control, 5th AIAA Flow Control Conference, Chicago, USA, AIAA-2010-5091.
- 98 Wang R.L., Gutierrez-Farewik E.M., 2010, How a rigid foot-ground contact model could affect induced acceleration analysis: A parametric study, *Proceedings of 2010 IUTAM symposium on Analysis and simulation of human motion*.
- 99 Wang R.L., Gutierrez-Farewik E.M., 2010, Contributions of the tibialis anterior, soleus, and gastrocnemius to lower extremity joints in presence of the subtalar inversion and eversion during the stance phase, *Proceedings of the 2nd Joint Conference of ESMAC and GCMAS*.
- 100 Örlü R., Segalini A.S., Alfredsson P.H., Talamelli A., 2010, Turbulence enhancement in coaxial jet flows by means of vortex shedding, *Progress in Turbulence III, Proc. iTi Conference in Turbulence*, 2008.
- 101 Örlü R., Segalini A.S., Talamelli A., Alfredsson P.H., 2010, Effect of oblique waves on jet turbulence, *Proceedings of the Seventh IUTAM Symposium on Laminar-Turbulent Transition*, 2009, Stockholm.

5.3.3 Technical reports (TRITA)

Unfortunately, a book-keeping mistake has lead to an incorrect numbering, cf. below.

ISSN 0348-467X, ISRN number given below.

- 102 Bagheri S., 2010, Analysis and control of transitional shear layers using global modes, *Doctoral thesis*, KTH/MEK/TR-10/01-SE.
- 103 Eriksson A., Tibert G., 2010, Proceedings of NSCM-23: the 23rd Nordic Seminar on Computational Mechanics, KTH/MEK/TR-10/07-SE.

- 104 Hellström F., 2010, Numerical computations of the unsteady flow in turbochargers, *Doctoral thesis*, KTH/MEK/TR-10/03-SE.
- 105 KJELLANDER M.K., 2010, On dynamics and thermal radiation of imploding shock waves, *Licentiate thesis*, KTH/MEK/TR-10/03-SE.
- 106 Kurian T., 2010, An experimental investigation of disturbance growth in boundary layer flows, *Doctoral thesis*, KTH/MEK/TR–10/04–SE.
- 107 LAURANTSEN F., 2010, Flow measuring techniques in steady and pulsating compressible flows, *Licentiate thesis*, KTH/MEK/TR-10/09-SE.
- 108 Manda K., 2010, Finite element simulations of biphasic articular cartilages with localized metal implants, *Licentiate thesis*, KTH/MEK/TR–10/10–SE.
- 109 Muld T, 2010, Analysis of flow structures in wake flows for train aerodynamics, *Licentiate thesis*, KTH/MEK/TR-10/04-SE.
- 110 Schrader L.-U., 2010, Receptivity of boundary-layer flows over flat and curved walls, *Doctoral thesis*, KTH/MEK/TR-10/08-SE.
- 111 STRÖMGREN T., 2010, Model predictions of turbulent gas-particle shear flows, *Doctoral thesis*, KTH/MEK/TR–10/02–SE.
- 112 Tysell L., 2010, Hybrid grid generation for viscous flow computations around complex geometries, *Doctoral thesis*, KTH/MEK/TR-09/17-SE.
- 113 Vallgren A., 2010, Statistical characteristics of two-dimensional and quasigeostrophic turbulence, *Licentiate thesis*, KTH/MEK/TR-10/05-SE.
- 114 VALLGREN A., 2010, Dynamic properties of two-dimensional and quasigeostrophic turbulence, *Doctoral thesis*, KTH/MEK/TR–10/06–SE.

5.4 Seminars at KTH Mechanics

January 14 Minh Do-Quang, KTH Mechanics

Fluid dynamic behavior of dispensing small droplets through a thin liquid film.

January 28 Walter Villanueva, KTH Nuclear Power Safety Modeling and Simulation of Reactive Wetting with Intermetallic Formation.

February 4 Milos Ilak, KTH Mechanics

Model Reduction and Feedback Control of Transitional Channel Flow.

February 9 Rene Oliemans, Multiphase Flow B.V.

Best practice guidelines for computational fluid dynamics of dispersed multiphase flows.

February 11 Alessandro Bottaro, Universitá di Genova

The optimal and near optimal wavepacket in a boundary layer and its ensuing turbulent spot.

February 12 Shervin Bagheri, KTH Mechanics

Analysis and control of transitional shear flows using global modes.

February 18 Dhrubaditya Mitra, Nordita, Stockholm

Dissipation reduction by addition of polymers additives in direct numerical simulation of homogeneous, isotropic turbulence.

February 19 Lars Tysell, FOI, Stockholm

Hybrid grid generation for viscous flow computations around complex geometries.

February 25 Philipp Schlatter, KTH Mechanics

The structure of a turbulent boundary layer: Simulations at high Reynolds number.

March 4 Onofrio Semeraro, KTH Mechanics

Feedback control of three dimensional linear optimal disturbances.

March 11 Amin Rasam, KTH Mechanics

Large eddy simulations of high-Reynolds number channel flow.

March 25 Hans Kuerten, Eindhoven University of Technology DNS of particle motion in rotating pipe flow.

March 29 Tobias Strömgren, KTH Mechanics

Model predictions of turbulent gas-particle shear flows.

March 30 Martin Sommerfeld, Martin-Luther-University, Halle-Wittenberg Analysis of collision effects in particle-laden flows using the discrete particle method.

April 15 Gabi Ben-Dor, Ben-Gurion University of the Negev Hysteresis phenomena in the interaction of shock waves in steady flows.

April 16 Malte Kjellander, KTH Mechanics

On dynamics and thermal radiation of imploding shock waves.

April 16 Javier Jimenez, Universita Politecnica, Madrid Simulation results on wall-bounded turbulence.

April 23 Hassan Nagib, KTH Mechanics

High Reynolds number wall-bounded turbulence: approach to asymptotic state, universality and ICET.

May 3 Lawrence Cheung, Imperial College, London

The behavior of nonlinear instability waves in free shear flows.

May 20 Victor Yakhot, Boston University

Small parameter in turbulence theory. Mixing and skin friction in wall flows.

May 24 Hugh Blackburn, Monash University, city

Floquet instabilities of wakes and related systems.

May 26 Fredrik Hellström, KTH Mechanics

Numerical computations of the unsteady flow in turbochargers.

June 9 Simone Camarri, University of Pisa

An adjoint-based analysis of the secondary instability in the wake of a circular cylinder.

June 10 Edward White, Texas A&M University

Transient Growth: Receptivity, Realizability and Realistic Roughness.

June 11 Thomas Kurian, KTH Mechanics

An experimental investigation of disturbance growth in boundary layer flows.

June 14 Andreas Vallgren, KTH Mechanics

Statistical characteristics of two-dimensional and quasigeostrophic turbulence.

 $August\ 31$ Junichiro Shiomi, University of Tokyo

Heat conduction in carbon nanotube system.

 $September\ 16$ Magnus Björkman, KTH Mechanics

Numerical simulations of flow in a refiner.

September 30 Oscar Flores, University of Washington, Seattle

Analysis of stratification effects in the atmospheric surface layer using DNS.

October 7 Ramis Örlü and Philipp Schlatter, KTH Mechanics (joint seminar) Turbulent boundary layers: experiment and simulation at KTH.

October 13 Wim-Paul van Breugem, Delft University of Technology

A combined soft-sphere/immersed boundary method for resolved simulations of particulate flows.

October 14 Cyrus Aidun, Georgia Institute of Technology, Atlanta

DNS of noncolloidal particles, deformable capsules and fibres suspended in liquid.

October 15 S.J. Garrett, University of Leicester

Distinct transition mechanisms on slender vs broad cones.

October 21 Larry Mahrt, Oregon State University

Stratified atmospheric boundary layers.

October 28 Robert F. Mikkelsen, DTU, Copenhagen

Distributed momentum sources in CFD applied to rotor aerodynamic flows.

November 4 Michiel Kreutzer, Delft University of Technology

Instabilities in segmented flows - bubble formation and partial wetting.

November 11 Gregoire Casalis, ONERA, Toulouse

Investigations on the receptivity induced by micron-sized roughness elements placed on a swept cylinder in a uniform flow.

November 12 Lars-Uve Schrader, KTH Mechanics

Receptivity of boundary-layer flows over flat and curved walls.

November 18 Peter Ditlevsen, Niels Bohr Institute, Copenhagen

The Dansgaard-Oechger events, could they be predicted?.

November 19 Andreas Vallgren, KTH Mechanics

Dynamic properties of two-dimensional and quasi-geostrophic turbulence.

November 25 Mireia Altimira, KTH Mechanics

Analysis of atomization systems through mathematical modeling and experimentation: application to industrial fan-spray atomizers.

December 9 Fabrizio Ponti, University of Bologna

Crankshaft torsional models for ICE Torque management and combustion positioning control.

December 9 Eri Tatsumi, Kyoto University

Gas flow through a curved micro channel: application of kinetic gas theory.

December 16 Krishnagoud Manda, KTH Mechanics

Finite element simulations of biphasic articular cartilages with localized metal implants.

December 17 Fredrik Laurantzon, KTH Mechanics

Flow measuring techniques in steady and pulsating compressible flows.

December 20 Calle Finnström, KTH Mechanics

Numerical investigation of secondary flows in a compressor cascade.