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1 – GENERAL CHARACTERISTICS OF FLUIDS AND OF THEIR MOTION

Classical fluid dynamics is based on the assumption that the behaviour of fluids may be
described by considering them as continuous media, i.e. without taking the motion of their
single molecules into account. This implies that when we define the value of a physical
quantity (like density, velocity etc.) at a certain point P in space, we are actually referring to
the average value of that quantity within a small volume v, whose center of gravity is P. This
volume must be sufficiently small to be considered infinitesimal with respect to the spatial
variations of the macroscopic quantities; on the other side, it must be large enough to contain
a number of molecules that is sufficiently high to allow the average value of each quantity,
calculated considering all the molecules of the volume, to be statistically stationary. In
practice, all these conditions are easily verified even with very small dimensions of v. For
instance, in normal temperature and pressure conditions, a volume of air of 10-9 mm3 contains
approximately 2.7x107 molecules. From the macroscopic point of view, the volume v may
then be considered as infinitesimal, and treated as a material point, which is referred to as a
“fluid particle”.

The physical properties that characterize fluids (and distinguish them from solids) are the
lack of a definite shape and the possibility of finite deformation even under the action of
infinitesimal forces, provided the latter are properly applied. More precisely, a fluid may be
defined as a substance that deforms continuously under the action of tangential stresses.
Conversely, when no motion is present, i.e. in conditions of static equilibrium, a fluid particle
is subjected only to normal stresses (which are called pressure stresses), and not to tangential
stresses (at variance with what may happen for solids).

Fluids comprise both liquids and gases, but this distinction is much less fundamental from
the dynamical point of view. The main difference between them lies in their elasticity, or
compressibility. Indeed, gases may be compressed much more easily than liquids, so that any
motion that implies significant variations in pressure produces much larger variations in
density for gases than for liquids. Usually, liquids may be considered with sufficient
approximation as incompressible, so that, if  is the density, their “equation of state” may
simply be written as  = constant. Conversely, the equation of state of gases is more complex,
and links the variation of density to those of the pressure, p, and absolute temperature, T,
(considered as thermodynamical state functions). In most cases of practical interest, air may
be considered as a “perfect gas”, governed by the following well-known equation of state:

p = RT (1.1)

where R is the characteristic constant of the gas (for dry air R = 287 m2/(s2°K).
However, it is important to point out that the variations in density of a gas in motion with

velocity V become significant only if V is comparable with the “speed of sound”, a, which is
the velocity of propagation of small perturbations in the fluid. It may be shown that for a
perfect gas the speed of sound is a function of temperature only, through the following
relation:
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a = RT (1.2)

where  is the ratio between the specific heats at constant pressure and volume of the gas (for
air  = 1.4). For air at the pressure of one atmosphere and T = 15°C (standard conditions), we
have a ≅ 340 m/s.

The parameter characterizing the effects of compressibility is then the Mach number:

M = V/a (1.3)

It may be shown that the relative variations of density are of the order of 1/2M2, so that
when M is sufficiently below unity (e.g. M ≤ 0.3) a gas behaves, with good approximation, as
if it were incompressible, and this implies a significant simplification of the equations of
motion. Therefore, considering that we are interested here in the evaluation of the
aerodynamic loads induced by the wind on civil structures, in the following the fluid will
always be assumed to be incompressible.

As already pointed out, a fluid particle in static conditions is subjected only to normal
stresses. However, when in motion, a fluid particle is in general also subjected to tangential
stresses, which are linked to its tendency to resist deformation, and in particular distortion.
This property of the fluid, which is called viscosity, is connected to a physical mechanism
acting at the molecular level. More precisely, when two adjacent gas particles move with
different velocities, the molecules contained in them may migrate from one to the other due to
their random thermal motion (which is superposed on their average velocity), thus producing
a continuous transport of momentum between the particles.

Due to its motion, the particle is thus subjected to a viscous stress tensor, which acts in
addition to the thermodynamic pressure normal stress, and which has both tangential and
normal components; the effects of the latter may often be neglected in comparison with those
of the pressure stresses. The so-called Newtonian fluids are those for which the viscous stress
tensor is assumed to be linearly proportional to the velocity of deformation tensor. In
mathematical terms, if ik are the components of the stress tensor, and ui the components of
the velocity vector, one has for an incompressible fluid:

ik =
ui

xk
+

uk

xi

 
 
  

 
 (1.4)

where  is the viscosity coefficient, which is a function of the type of fluid and, in general, of
the temperature.

If the fluid may be considered incompressible, i.e. if it is in motion at low Mach numbers,
it can be shown that the temperature variations due to the motion are extremely small, so that
the viscosity coefficient (which depends approximately on the square root of the absolute
temperature) may be considered to be constant. This fact gives rise to a considerable
simplification in the equations of motion.
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2 – THE EQUATIONS OF FLUID MOTION

The equations of fluid dynamics may be obtained by expressing in mathematical terms the
three fundamental balances of the mechanics of continua, viz.

- The conservation of mass (or continuity equation);

- The momentum balance (or fundamental Newton law);

- The balance of energy (or first principle of thermodynamics).

All these balances must obviously be specialized to the particular fluid in exam by
appropriate constitutive equations (equations of state, equations for the stress tensor as a
function of the velocity components, equations for heat flux as a function of the temperature).
Furthermore, they must be referred to a volume of fluid composed always of the same
particles (“material volume”), which changes position and shape during the motion. However,
they may easily be expressed also by considering a fixed control volume.

The equations may be written both in integral form and in differential form. Although for
the solution of particular problems the integral form may be more appropriate, the equations
of motion are normally used in differential form. The complete set of equations thus obtained
is known as Navier-Stokes equations , although this term should more precisely refer only to
the momentum equations.

As the momentum balance gives rise to a vector equation, a total of five scalar equations
may thus be derived. For an incompressible fluid the fundamental unknowns in the equations
are the pressure p, the three components of the velocity vector   

r 
V  (which in the following will

be called u, v, and w, respectively in the x, y and z directions), and the temperature T.
However, it is easy to see that if the viscosity coefficient is assumed to be constant (which, as
already pointed out, is consistent with the assumption of incompressibility) the temperature is
no longer present in the balances of mass and momentum, which then become four equations
for the four unknown quantities p, u, v, and w. Once these are obtained for each point in the
flow, the components of the stress tensor may be derived from relations (1.4), and the forces
acting on any surface (as for instance the surface of a body immersed in the fluid) may be
easily obtained by integration of p and ik. The equation of energy becomes then an equation
for the (slightly variable) temperature field, to be solved after the remaining unknowns are
obtained. This is the reason why in the application of the dynamics of incompressible fluids to
the derivation of the loads acting on bodies the energy equation is almost never used, and this
will also be the case in the following1.

                                                
1 However, it should be pointed out that the balance of energy cannot be neglected in the study of the large-

scale motions of the atmosphere, as well as in all cases in which the presence in the flow domain of significant

temperature gradients plays a fundamental role in the production of motion.
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Equation of continuity

With the assumption of incompressibility it may be shown that the conservation of mass
for a fluid particle is expressed by the following linear differential equation

  
div

r 
V =

u

x
+

v

y
+

w

z
= 0 (2.1)

The physical meaning of (2.1) becomes clear by recalling that   div
r 
V  corresponds to the

relative variation of volume of a fluid particle in unit time.

Momentum balance

The equation for the balance of momentum of an incompressible fluid, in vector notation,
is the following:

  

r 
V 
t

+
r 
V ⋅∇

r 
V =

r 
f − 1 ∇p + ∇2 r 

V (2.2)

where   
r 
f  is the volume force per unit mass acting on the particle,   is the so-called

kinematic viscosity of the fluid, and ∇2 is Laplace’s operator.
Equation (2.2) is an expression of Newton’s law written in the form   

r 
a =

r 
F / m . Indeed, the

two terms in the left-hand side may be shown to express the variation in time of the velocity
of a fluid particle, i.e. its acceleration; the first one is the so-called unsteady term (which
vanishes for steady conditions, in which the various quantities do not depend explicitly on
time), while the second is the convective term, giving the variation of velocity of a particle
due to its transport by the velocity field through a gradient of velocity. In the right-hand side,
all terms are forces per unit mass acting on the particle: the first corresponds to volume forces
(like gravity), and the remaining ones to the resultant of the surface forces, divided in two
terms corresponding one to pressure and the other to the viscous stresses.

For the component of eq. (2.2) in the xi direction one has:

  

ui
t

+
r 
V ⋅∇ ui = fi − 1 p

x i
+ ∇2ui (2.3)

The problem is completed by the initial conditions for unsteady flow and by the boundary
conditions. The former prescribe that at the initial time the values of all the unknowns must be
given in the whole field. As for the boundary condition on solid walls, the relative velocity
between wall and fluid must be zero (no-slip condition); thus the fluid velocity vanishes if the
wall is at rest. This condition describes with excellent approximation the behaviour of viscous
fluids, and is one of the main mechanisms influencing the pattern of the whole flow field, but
is also the source of many of the difficulties in the solution of the Navier-Stokes equations.
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Indeed, with the exception of very particular cases, these equations may not be solved in
closed form due to their non-linearity, deriving from the convective term.

However, if the bodies immersed in the fluid have certain geometrical characteristics and
move (or are immersed in a freestream) with adequate orientations, then it may be possible to
devise physical schemes of the problem leading to a simplified mathematical formulation,
which still takes the essential physics into account. As will be made clear in the following,
this is what happens for the so-called aerodynamic bodies (like the wings of an airplane).
However, this is normally not the case for most civil structures immersed in the wind, which
fall in the category of bluff bodies, and for which resort must be made either to experiments or
to the numerical solution of the equations of motion. Due to the rapid increase in computer
power, the latter is a strongly developing research field; however, for the moment it is not
possible to solve the complete set of equations for the flow conditions of most practical
applications without using some sort of modelling of the problem; the available codes must
thus be used with caution in the design of structures. Consequently, for these cases
experiments are still the most important source of information.

3. VORTICITY AND THE SIMPLIFICATION OF THE EQUATIONS OF MOTION

In order to better clarify the importance of the geometrical shape on the possibility of
carrying out a theoretical approach, it is appropriate to further analyse some physical and
mathematical aspects of the problem. To this end, it is useful to introduce the vorticity vector:

  
r 

= curl
r 

V = ∇ ×
r 
V (3.1)

From the definition, it may be seen that in quite general conditions the velocity field may
directly be derived from the knowledge of the vorticity field. It is also easy to show that the
value of the vorticity in a point is equal to twice the angular velocity of the fluid particle
occupying that point. More importantly, it is not necessary that this quantity be present in the
whole field, and its distribution and dynamical behaviour determines the values of the forces
acting on bodies immersed in the fluid. Finally, by introducing vorticity, the equations of
motion may be given a form that may be very useful to understand the role of the various
terms and to devise solution procedures.

Indeed, if V is the modulus of the velocity vector, the following vector relations apply:

  
r 

V ⋅ ∇
r 
V =

r 
×

r 
V + ∇(V2 /2) (3.2)

  ∇
2 r 
V = ∇(div

r 
V ) − curl

r 
(3.3)

If we now take eq. (2.1) into account, and assume the volume forces to be conservative, i.e.
that they may be derived from a potential so that   

r 
f = −∇Ω, by introducing the above relations

into eq. (2.2) we obtain immediately the following fundamental equation:
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r 
V 
t

+
r 

×
r 
V = −∇ p / + V2 / 2+ Ω( ) − curl

r 
(3.4)

This form of the equation of motion is particularly important, because it allows the
conditions of validity of widely-used relations to be highlighted.

First of all, it may be seen that if the motion is irrotational, i.e. with zero vorticity, or even
if   curl

r 
= 0, then the last term in the equation, connected with viscosity, vanishes. It should

be pointed out that this does not mean that the viscous stresses are zero, but that their resultant
force per unit volume acting on a particle is zero. The consequence is that the equation of the
irrotational motion of a viscous incompressible fluid coincides with the equation of motion of
an inviscid fluid, i.e. a fluid in which the viscous stress tensor is zero and only pressure forces
act on the fluid particles.

If the motion, besides being irrotational, is also steady, then the first term in (3.4) also
vanishes, and Bernoulli equation holds in the field:

p / + V 2 /2 + Ω = constant (3.5)

Furthermore, it follows immediately from definition (3.1) that the condition of
irrotationality implies that

  
r 

V = ∇ (3.6)

where the scalar function   is the velocity potential.
By introducing relation (3.6) into the equation of continuity (2.1), one obtains the

following linear equation for the velocity potential

∇2 = 0 (3.7)

Therefore, the problem is now reduced to solving eq. (3.7) for the velocity potential,
deriving the velocity field from (3.6), and then obtaining the pressure field from Bernoulli
equation (in which the variation of Ω may also often be neglected).

This extremely simplified procedure applies, as already pointed out, when the motion is
irrotational. However, it is easy to show that the completely irrotational flow of a viscous fluid
around a solid body is impossible due to the no-slip boundary condition. Indeed, the latter
may be satisfied only through a continuous production of vorticity from the solid boundaries.

Conversely, if the fluid is considered to be inviscid, then it may be seen that the resulting
equation (obtained by deleting the last term in eq. (2.2)) requires a boundary condition only
for one velocity component; the condition at a solid boundary becomes then that the normal
velocity component be zero, while a tangential velocity is allowed. Furthermore, it is easy to
show that if the initial condition is irrotational (as for a motion starting from rest) then in a
non-viscous incompressible fluid there are no physical mechanisms producing vorticity, so
that the irrotational motion is the normal rule.
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The assumption of non-viscous fluid (or more precisely, of neglecting the last term in eq.
(2.2)), has been the basis of much theoretical work in the 19th century, not only because it
leads to a simplified mathematical treatment, but also because it has an apparently strongly
logical background even from the physical point of view. Indeed, it may be shown that the
ratio between the inertia terms in eq. (2.2) (i.e. those appearing in the left-hand side) and the
viscous term is of the order of the Reynolds number

Re =
UL

= UL (3.8)

where U and L are, respectively, a characteristic velocity and a characteristic length of the
problem.

Now a rapid evaluation shows that most problems of practical interest (and in particular the
evaluation of the aerodynamic forces induced on civil structures by the wind) are
characterized by Reynolds numbers of the order of 106 to 108. Thus the assumption of
inviscid fluid seems to be a quite reasonable one. However, if one now follows the above
described simplified procedure and solve eq. (3.7) with the condition of tangential velocity at
a solid boundary, a solution exists for the velocity field but corresponds to a pressure
distribution which, once integrated around the surface of a body immersed in the flow, gives
zero resultant force. This is the well-known d’Alembert’s Paradox, which is in obvious
contrast with practical experience, and has been the source of a long-lasting disagreement
between applied mathematicians and engineers. Its origin is obviously in the fact that, even
for very high Reynolds numbers, a viscous fluid always satisfies the no-slip boundary
condition at a solid wall, and, as already pointed out, this is the source of vorticity and of the
fundamental differences between the flow of inviscid and viscous fluids.

4. BOUNDARY LAYERS

The above described theoretical impasse was overcome by Prandtl, who introduced in 1904
the concept of a “boundary layer”, i.e. of a thin region close to the solid surfaces where the
effects of viscosity are felt, and the velocity passes from zero at the wall to the value
corresponding to irrotational flow (see Fig. 1). From what has already been pointed out
regarding the formulation of the equations of motion, the boundary layer corresponds to the
region where vorticity is present near the wall. The extent of this region may be shown to be
of the order of Re–1/2, so that for sufficiently high Reynolds numbers the thickness of the
boundary layer remains small, and the equations of motion may be simplified by using order
of magnitude considerations. The fundamental result obtained by Prandtl with this procedure
is that the variation of pressure across the boundary layer is negligible, which means that the
pressure acting on a certain point of a solid wall is approximately the same as that present at
the upper border of the boundary layer over the same point.

It is then possible to devise an iterative calculation procedure. At the first step the
boundary layer is assumed to be of infinitesimal thickness (or, in other terms, to be squeezed
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on the surface), so that equation (3.7) is solved with the non-viscous tangential velocity
condition at the wall. The resulting pressure distribution is then used as an input to solve the
boundary layer equations; this step is not as straightforward as solving the linear Laplace
equation, but procedures of different complexity and approximation are available (particularly
for the two-dimensional case) and may easily be implemented in relatively-inexpensive
numerical codes. Outputs of this step are the tangential stresses acting at the wall and the
evolution of the boundary layer thickness over the surface. The former may be integrated to
obtain a first evaluation of the friction drag acting on the body, while the latter is used as
input for the second potential-flow calculation. In practice, the thickness of the boundary
layer is superposed on the original body surface2, and equation (3.7) is solved for the flow
around the modified body. A second pressure distribution is thus obtained, which may be
shown to give rise, when integrated over the body surface, to a non-zero force in the direction
of the freestream (drag force), thus overcoming d’Alembert’s Paradox. Furthermore, the
procedure may then be iterated, and the new pressure distribution used as an input to another
boundary layer calculation; the process is ended when two successive results (in terms of the
quantity of interest) are sufficiently close.

This procedure may be used in all cases in which the above described physical scheme is
valid, i.e. when a thin vorticity-containing boundary layer contours the whole body surface
and joins downstream to form a thin wake. This comprises, for instance, most configurations
of interest for aeronautical engineering. However, it is unfortunately not the general case, and
when the body shape is such that the perturbation it produces on the flow gives rise to
accelerations followed by sufficiently strong decelerations, a phenomenon known as
“boundary layer separation” occurs (Figs. 2 and 3). Indeed, when the velocity outside the
boundary layer decreases, the pressure consequently increases, as follows from Bernoullli
equation. As the pressure is constant across the boundary layer thickness, all particles within
it are subjected to the same pressure gradient force. Consequently, the lower-momentum
particles near the solid surface undergo a relatively larger deceleration, the boundary layer
velocity profile changes its shape with the appearance in it of an inflexion point, and, finally,
a limit condition is reached beyond which the flow changes direction near the wall, moving
upstream. This is the separation point, characterized in two-dimensional conditions by the
vanishing of the derivative of the tangential velocity component in the direction normal to the
surface. Beyond this point, the irrotational flow moves far away from the wall, and the region
where vorticity is present is no longer thin and close to the body surface. Conversely, vorticity
fills up all the downstream separated region, forming a wake characterized, in general, by
significant velocity fluctuations, i.e. by unsteady flow conditions. It is obvious that the
boundary layer approximations and results cannot be applied beyond separation (and actually
even slightly before it), and the whole physical scheme leading to the previously-described
simplified solution procedure for the equations of motion is no longer valid.

It must be recalled at this point that boundary layers may also undergo another
fundamental phenomenon, viz. transition to the turbulent state. Indeed, when the Reynolds

                                                
2 Actually, the so-called displacement thickness is used, which corresponds to the distance through which the

outer irrotational flow is displaced by the retardation of fluid inside the boundary layer.
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number based on the distance from the front stagnation point on a body (which may be
considered as the starting point for the boundary layer development) is sufficiently low, then
the flow is in the laminar condition, in which the fluid particles move one over the other in
steady layers. However, when the Reynolds number exceeds a certain critical value, then the
laminar flow becomes unstable to perturbations, and, after a transition region, a new condition
is developed in which the fluid particles have random fluctuations superimposed on their
mean velocity. A visualization of a turbulent boundary layer is shown in Fig. 4. The critical
Reynolds number value may be of the order of 105, but this value strongly depends on various
parameters, like the wall surface roughness, the presence of fluctuations or turbulence in the
incoming stream, the value and sign of the pressure gradient along the surface.

As a result of the larger mixing between the various layers of fluid that is produced by the
macroscopic migration of fluid particles (at variance with what happens for the viscous
momentum transport, which occurs at the microscopic level), turbulent boundary layers are
thicker than the laminar ones, and are characterized by an increased value of the tangential
stresses at the surface; therefore, turbulent boundary layers give rise to higher friction forces
on the bodies. However, the larger energy content inside turbulent boundary layers has also
the consequence that they are much more resistant to separation than laminar boundary layers,
i.e. they are capable of remaining attached to the surface for larger adverse pressure gradients
or for a greater surface extension for the same value of the pressure gradient (see Fig. 5).
Nevertheless, it must be pointed out that all types of boundary layers, laminar or turbulent,
separate at sharp edges, so that the difference in behaviour with respect to separation between
the laminar and the turbulent conditions may be observed only for bodies with curved
surfaces, i.e. without sharp corners. Finally, it must be noted that the basic boundary layer
assumptions and results (and in particular the constancy of pressure across the thickness) still
apply also for turbulent boundary layers.

We may now proceed to a classification of bodies with respect to the features of the flow
field they produce when they are immersed in a cross-stream (or are moving through still
fluid). We will call “aerodynamic bodies” those characterized by thin boundary layers
completely attached over their whole surface, which leave behind them thin and generally
steady wakes containing vorticity. The aerodynamic forces acting on these bodies may be
evaluated through the previously described simplified potential flow - boundary layer
procedure. Conversely, “bluff bodies” are characterized by a more or less precocious
separation of the boundary layer from their surface, and by wakes having significant lateral
dimensions and normally unsteady velocity fields. As already pointed out, for these bodies no
simplified mathematical treatment is usually possible, and the forces acting on them may be
evaluated either from the solution of the complete Navier-Stokes equations or from the results
of ad hoc experiments.

As is apparent from Fig. 6, the type of flow occurring is defined not only by the shape of
the body but also by its orientation to the flow, and any aerodynamic body may become a
bluff body for certain free-stream directions.

Obviously the above classification is a crude one, particularly as regards bluff bodies.
Actually, one might further distinguish between bodies having different “degrees of
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bluffness”, for instance by referring to the ratio between the cross-flow dimensions of the
separated wake and of the body, or to the extent of the body surface immersed in the
separated wake. Indeed, these distinctions may have sense, particularly as regards their
bearing on the consequent forces acting on the body. Nevertheless, as will be explained in the
following, it is again the type of flow the bodies produce in their wakes, particularly as
regards the amount and level of organization of the vorticity field, that has the greatest
importance both from the aerodynamical and from the design points of view.

5. AERODYNAMIC LOADS ON BODIES

5.1. General considerations

The loads acting on a body immersed in a flowstream are produced by the normal and
tangential stresses over its surface. When integrated, these stresses give rise to the resultant
load components, which are usually expressed in non-dimensional form by means of force
and moment coefficients, defined as follows:

CFi
=

Fi

1 / 2 U 2S
 ;      CMi

=
Mi

1 / 2 U2Sl
(5.1)

where Fi and Mi are the components in the xi direction of the resultant force and moment
acting on the body, U is the undisturbed upstream flow velocity, S is a reference surface and l
a reference length. In the case of two-dimensional bodies (which approximately represent
sufficiently long structural elements), the load coefficients are defined by using the load per
unit distance along the span of the body in the numerator, and a reference length in the
denominator (which is normally either the cross-flow or the along-flow dimension of the body
cross-shape).

It is often useful to refer also to the pressure p acting at a certain point of the body surface,
by using a pressure coefficient defined as

Cp =
p − p∞

1 / 2 U2 (5.2)

where p  is the pressure in the undisturbed upstream flow.
The above mentioned loads have, in general, mean and time-varying components (which

may be characterized, e.g., by their r.m.s. values and by their frequency spectra). The
fluctuating loads may be significant not only when the upstream flow is time-dependent (for
instance due to the presence of turbulence), but also when the wake produced by the body
itself has more or less regular fluctuations. In general one may say that, for steady upstream
flow, aerodynamic bodies are characterized by steady wakes and loads, whereas for bluff
bodies the opposite is true.
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5.2 Two-dimensional bodies

One of the most important force components is the drag, i.e. the component of the
aerodynamic force in the upstream flow direction (or in the direction of motion of the body if
this is moving in still fluid). One striking difference between aerodynamic and bluff bodies is
that the former have drag coefficients that are at least one order of magnitude smaller than the
latter. This is due to the remarkable increase in pressure drag deriving from the boundary
layer separation.

Indeed, the flow field around aerodynamic bodies is not very different from that
corresponding to non-viscous potential flow, apart from the displacement effect of the
boundary layer. Therefore, the pressure distribution is also only slightly different from the
ideal one which, as already pointed out, integrates to a zero value (d’Alembert’s paradox);
consequently, the pressure in the aft part of the body returns to values not very far from those
acting on the front part, and the resulting pressure drag is thus rather small. Apart from
particular cases, the main contribution to the drag of an aerodynamic body derives then from
the integration of the tangential viscous stresses (friction drag).

The situation is completely different for a bluff body, because separation prevents the
occurring of the recompression in the rear part of the body, so that the values of the pressures
in this region are considerably smaller than those acting in the front part (and correspond
normally to negative pressure coefficients). This gives rise to a significant value of the
pressure drag, which is normally much higher than the friction drag, such that the latter
(which remains of the same order as that of an aerodynamic body) may often be neglected.

More in detail, the pressure drag may be divided in two contributions, respectively given
by the forebody, i.e. the front part of the body with attached boundary layer, and by the so
called afterbody or base region, i.e. the portion of the body surface lying inside the separated
wake. Depending on the shape of the forebody, the first contribution may be large or small, as
can be seen by comparing the qualitative pressure distributions around a flat plate and a
circular cylinder (see Fig. 7). The second contribution, on the other hand, is determined by the
value of the suctions3 acting on the base, which are primarily connected with the velocity
outside the boundary layer at the separation point, Vs. Indeed, particularly in the case of
afterbodies with limited longitudinal extent, the pressures on the base are almost constant, and
equal to the pressure in the outer flow at the separation point. In terms of pressure coefficient,
by using Bernoulli’s equation one has

Cps =1 − Vs
2 / U2 (5.3)

Therefore, the higher is the velocity outside the boundary layer at the separation points, the
lower is the base pressure, and the higher the base drag.

Particularly important is the dependence of the drag coefficient of a bluff body on the
Reynolds number. As can be seen from Fig. 8, while for bodies with sharp corners this
dependence is negligible, it becomes more and more significant with the rounding of the
                                                

3 Obviously, pressures act always towards the body surface, but the term suction is often used when the

difference (p-p ) is negative.
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body, with the appearance of a sudden decrease of the drag coefficient. This behaviour is
connected with the phenomenon of transition of the boundary layer to the turbulent state,
which, as already pointed out, is more resistant to separation than the laminar one. Therefore,
for bluff bodies without sharp corners, a critical value of the Reynolds number exists which
corresponds to transition taking place before the laminar separation, so that the separation
points move downstream, a narrower wake forms, a higher pressure recompression before
separation takes place, and a consequent significant decrease of the drag coefficient is
observed. Obviously, all parameters that may influence the boundary layer transition (as the
incoming turbulence level and the surface roughness of the body) have a significant influence
on the CD-Re curve, and produce a variation of the critical Reynolds number. This implies, for
instance, that for motions in certain ranges of Reynolds numbers, a rough surface may be
advantageous to reduce the drag of the body.

The drag force acting on a body may also be given an interpretation in energetic terms.
Indeed, the work done in a certain time interval by the drag force is equivalent to the variation
in the total energy (i.e. the sum of the internal and kinetic energies) of the whole fluid field in
the same time interval. This variation may be seen to be to be strictly connected with the
amount of perturbation energy present in a section of the wake downstream of the body. Thus
the different values in drag of different bodies may be related to differences in the energy
content in their wakes. This type of reasoning, although obvious to a certain extent, is actually
extremely fruitful not only to justify different values of drag, but also to give a rationale for
any design action aimed at obtaining a drag reduction of a body.

Figure 9 shows the different dimensions of an airfoil (an aerodynamic body) and of a
circular cylinder (a bluff body) which experience the same drag force when immersed in a
freestream at the same velocity. The striking difference in size between the two bodies is due
to the fact that value of the drag coefficient of the first one is 15 to 20 times smaller than that
of the second. The reason for this is immediately clear when one compares the different flow
fields connected with the two bodies (Fig. 10). Indeed, the airfoil leaves behind it an
extremely thin wake deriving from the joining of the upper and lower boundary layers over its
surface(and comprising the momentum defect due to the flow retardation caused by the
viscous no-slip boundary condition). Consequently, this flow configuration gives rise to a
very small perturbation energy. The opposite is true for the circular cylinder, which shows a
highly-energetic wake, characterized by the presence of a double row of alternate
concentrated vortices (known as Karman vortex street). This vortex shedding phenomenon is
typical of all two-dimensional bluff bodies, and has a great practical importance. Indeed, it is
the source of oscillating cross-flow forces that may induce significant oscillations of a
structure if their frequency coincides with one of the natural frequencies of the structure. A
detailed review on the phenomenon of vortex shedding, on the consequent induced forces,
and on the effects of the variation of geometry and of various fluid dynamical parameters may
be found in Buresti (1998).

The main point that will be made here is that a strict connection exists between the amount
of perturbation energy and the organization of the vorticity present in the wake. Indeed, the
drag of a bluff body is an increasing function of the degree of concentration in space of the
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vorticity shed in its wake, and of the distance between the regions where the positive and
negative vorticities are contained. The reason for this fact may be understood from Fig. 11, in
which the velocity fields corresponding to two rigidly-rotating vorticity cores, having the
same global value of vorticity but different radius, are compared. By recalling that the
vorticity in each point of the core is equal to twice its angular velocity of rotation, it can be
derived that the maximum velocity induced by this ideal type of vortex is inversely
proportional to the radius of its core. The fact that actually vorticity is not exactly constant
inside a real vortex core does not change the qualitative conclusion drawn from this example.
It is also easy to see that, if one considers two vortices of different sign, the global kinetic
energy connected with the associated velocity field increases with the distance between the
two vortices.

The same results are obtained also by considering the general theory of Wu (1981), which
connects the aerodynamic drag experienced by a body with the variation of the axial moment
of vorticity that it produces. Incidentally, a further important result of this theory is that, if a
body moves in steady rectilinear motion in an incompressible viscous fluid, the total amount
of vorticity present around the body surface and within the fluid is always constant, i.e. it is
zero if the motion started from rest. This implies that the instantaneous total amounts of
positive and negative vorticity are equal.

By applying the above considerations to two-dimensional bluff-bodies, one understands
why their drag increases with the width of their wakes (due to the larger distance between
oppositely-signed vorticity) and is connected with the presence of regularly-shed concentrated
vortices. However, a further consequence is that one may reduce the perturbation energy (and
thus the drag) of a bluff body (without significantly changing the width of its wake) by
preventing the vorticity from concentrating in restricted cores. This may be obtained by
interfering with the vortex-shedding process, for instance by avoiding the occurrence of the
separation of the boundary layer along a straight line (which may be seen to be a necessary
condition for regular vortex shedding to take place). To this end, various types of
protuberances may be positioned along the span of the body (Fig. 12), or, if possible, more
drastic variations of the body contour may be used (Fig. 13). By these means drag reductions
as high as 50% may be obtained. Obviously, the inhibition of vortex shedding has also the
positive effect of avoiding the consequent fluctuating cross-flow forces and the related
oscillatory phenomena. Further details on drag reduction may be found in Buresti (1998).

Bluff bodies are obviously also subjected to forces in the across-wind direction and to
moments around the various axes due to non-symmetries of the pressure distribution on their
surface. Therefore, these loads depend fundamentally both of the body shape and on the
orientation of the incoming freestream. Particularly in the two-dimensional case, the force
component in the across-wind direction is often called lift force, in analogy to the
corresponding force acting on an aeronautical wing section (airfoil). It is interesting to recall
briefly the physical origin of lift on a wing, which is due to the downward deflection that the
airfoil induces on the flow when moving at relatively small values of the angle of attack (the
angle between the freestream direction and the direction of symmetrical flow). This effect is
strictly connected with the shape of the airfoil (which, as already seen, in our definition is an
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aerodynamic body), and in particular with the fact that it is characterized by a sharp trailing
edge. If we imagine starting the airfoil impulsively from rest, it can be seen that, due to the
nonsymmetrical flow configuration of the potential flow field that is initially induced by the
motion, streamlines tend to round the trailing edge. However, due to the presence of the sharp
corner, the boundary layer separates there, and a starting vortex, containing vorticity of only
one sign, is left in the flow. During the initial stages of motion the starting vortex is rapidly
carried away from the airfoil, so that its effects are no longer felt, and the flow around the
airfoil becomes the already described one, typical of an aerodynamic body, with attached
boundary layers all over its surface. However, a surplus of vorticity of sign opposite to that of
the starting vortex, but having the same absolute value, remains around the airfoil, and causes
the flow passing over its upper surface to accelerate and the flow passing over its lower
surface to decelerate. This velocity difference produces a pressure difference (with lower
relative pressures on the upper side and higher relative pressures on the lower side), and a
resultant upward force. Thus the mechanism producing lift is seen to depend in an essential
manner on viscosity, and on the separation of the boundary layer at the sharp trailing edge
during the initial stages of the motion.

Coming back to bluff bodies, the above described mechanism does not apply in all its
details, particularly because the boundary layer cannot remain attached to their surface even
after the end of the initial transient. However, if the body is sufficiently elongated (like an
ellipse), a starting vortex is shed anyway (even if not as strong as that of an airfoil), and the
asymmetry of the final flow configuration for non-symmetrical wind orientations may be
sufficient for producing significant lateral forces. On the other hand, bodies with an upstream
flat face normal to the wind direction and bounded by sharp corners (like those having square
or non-elongated rectangular cross-sections) are characterized by complex asymmetrical
flows, and for certain wind orientations they may be subjected to mean cross-flow forces
which are in the opposite direction than those acting on elongated bodies. This may produce
the oscillatory phenomenon of gallopping, which may also interfere in a complex way with
the oscillations induced by the shedding of vortices. Incidentally, the cross-flow fluctuating
forces induced by vortex shedding may be seen as the result of the continuous production of
asymmetrical flow around the body during the shedding of each vortex.

5.2. Three-dimensional bodies

In the design of structures immersed in the wind, three-dimensional conditions are most
usual, due to the shape of the considered bodies, to the possible non-uniformity of the
incoming freestream, or to the occurrence of both these conditions.

The complexity of the flow around a body that might schematically represent a building is
shown in Fig. 14. As can be seen, due to the incoming wind boundary layer, in this case flow
separations are in general present even upstream of the body, with the consequent formation
of “horseshoe vortices”, which strongly interact with the lower part of the body. Similarly to
what happens in the two-dimensional case, the mean and time-varying forces are
fundamentally dependent on the behaviour of the vorticity introduced in the wake.
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Due to the complexity and great variety of the possible flow configurations, and the high
number of influencing parameters, the present level of knowledge does not allow reliable load
predictions to be made for generic cases. Therefore, it is necessary to rely upon experimental
data bases relating to common shapes, which permit to cope with various interesting design
conditions, but which refer mostly to the mean forces (and often only to drag coefficients).

The first general point that must be made is that, in general, an isolated, low-aspect-ratio
three-dimensional body is characterized by lower aerodynamic loads than those acting on a
two-dimensional body of analogous cross-shape (Fig. 15). This is, in a sense, reasonable,
since the disturbance caused by a three-dimensional body is lower due to the possibility of
flow in an additional direction; however, actually the behaviour of the forces is mainly linked
to the modifications of the flow structures and of the vorticity field in the separated wake.

For instance, if we consider a finite-length cylinder as in Fig. 16, it is apparent that the low
pressure existing in the wake region causes a flow around the free-ends of the body, which
penetrates inside the wake, widens it, and moves downstream the rolling up of the vortices
detaching from the lateral sides. As a consequence, at variance with what happens in the two-
dimensional case, the widening of the wake and the consequent reduction of the vortex
shedding frequency occur in this case with a reduction of drag, caused by the increase of the
base pressure due to the flow entering the wake, and by the lower value of the perturbation
energy induced by the lower-intensity shed vortices.

Figure 16 also shows the appearance of another fundamental structure typical of many
finite-length bodies, viz. the two intense longitudinal vortices produced by the confluence of
the lateral flow with the flow passing over the free-end. These vortices may produce high
local suctions on the structure, so that the local drag may be high at the free-end even if the
global one may be much lower, with obvious consequences on the position of the resultant
and on the overturning moment of a structure resting vertically on a plane. Further
information on the effects of the finite-length of a body, or of the variation of the cross-shape
and of the incoming flow, may be found in Buresti (1998), with particular reference to the
modifications induced on the vortex shedding mechanism.

To have a further example of the possible complexity of three-dimensional flows, it may be
interesting to describe the case shown in Fig. 17, even if probably not of paramount
importance as regards civil structures placed in the wind. As can be seen, an axisymmetrical
body having an inclined base and placed in a freestream along its axis, shows an unexpected
trend of the drag as a function of the angle   between the base and the wind. Indeed, by
increasing   the drag coefficient first increases almost linearly, and then shows a sudden
decrease, after which it remain almost constant up to  = 90°. The critical value of  is also
seen to be difficult to predict, and sensitive to small variations in flow conditions, as apparent
from the two different curves shown in Fig. 17, which were obtained in two different wind
tunnels (Bearman, 1980).

The same figure schematically shows that this behaviour derives from the existence of two
completely different flow regimes. For values of  below the critical one, the vorticity
introduced in the wake concentrates in two narrow cores, whose intensity increases with
increasing . However, when the inclination of the base becomes excessive, this configuration
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can no longer exist, the vorticity introduced in the wake does not show any organization, and,
conversely, is completely and irregularly diffused in the wake. From what has already been
repeatedly pointed out, the latter flow configuration corresponds to a much lower perturbation
energy than the former, and the drag shows a consequent drastic decrease. This is clear also
from Fig. 18 a), in which the high and localized suctions induced on the base by the vortices
is apparent, as well as the lower and almost uniform suctions typical of the diffused-wake
configuration.

The interest of this example is first of all in the recognition that bluff-body flows may be
characterized by sudden discontinuities when one parameter controlling the configuration is
varied, and this makes the extrapolation of experimental data extremely dangerous. But, even
more importantly, the understanding of the physical mechanisms causing a certain behaviour
of the forces gives the possibility of devising means for the modification, in a favourable way,
of the flow configuration. Indeed, the limited stability of the above-described longitudinal
vortical structures suggests that, by interfering with their production, it is possible to force the
establishment of the diffused-vorticity configuration. As can be seen in Fig. 18 b), this is
indeed what may be obtained by introducing in the base region small lateral or transversal
plates.

Conical vortical structures similar to those now described are typical of delta wings of
supersonic airplanes in low-velocity flight, but also of the upper surface of buildings
immersed in a wind having certain orientations (Fig. 19). It is then obvious that also in this
case small modifications of the contour of the upper end of the building might avoid their
appearance, and the consequent (and potentially dangerous) high local suctions.

6. INTERFERENCE EFFECTS

The complexity of the possible flow configurations that may characterize isolated bluff
bodies immediately suggests that even more complicated conditions may be found when
several bodies are placed close enough for interference effects to become significant.

Considering its relevance to design, the first important point to make is that in many of
these situations the asymmetries that may originate in the flow due to interference may
produce mean cross-wind forces and different moments of considerable magnitude, even for
bodies that do not experience these types of load when isolated, due to their symmetrical
geometries. Also the fluctuating forces may be considerably altered by interference, and new
coupled instabilities may derive from proximity effects.

Obviously, the opposite may also be true, i.e. certain flow configurations leading to
fluctuating loads and high drag, like vortex shedding, may be changed and even suppressed
by interference effects. Examples of this are the works of Igarashi (1997) and Prasad &
Williamson (1997), who respectively used a small rod placed in front of a square cylinder and
a small flat plate placed in front of a circular cylinder to modify the flow field of the
downstream body (Figs. 20 and 21). Their results show that the drag of the system of two
bodies may be much lower than the drag experienced by the single downstream body when
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isolated, and optimal geometrical configurations (in terms of relative distance and ratio
between the sizes of the two bodies) may be found producing drag reductions as high as 60%.

Further information on interference effects, particularly as regards two-dimensional bluff
bodies, may be found in Buresti (1998). One of the main points arising from the available
literature data is that, once again, sudden complete changes in the flow may occur even for
small variations of the governing geometrical parameters. Furthermore, bistable flow patterns
may exist, i.e. conditions having two possible equilibrium states with different flow
configurations (and consequently different aerodynamic loads); the occurrence of any of the
two patterns may be triggered by external perturbations, which may then lead to dangerous
self-excited oscillations of a flexible body.

Therefore, for bluff bodies in possible interference, the extrapolation of available data is
even more dangerous than for isolated bodies; care must then be taken when applying
experimental information to cases even slightly different from the tested ones. Nevertheless, it
is clear that previous experience and fluid dynamic knowledge may be used to guess the
possible influence of the variation of certain parameters (like Reynolds number, freestream
turbulence or surface roughness), according to geometry and flow conditions. To this end, it
would be essential that experimental campaigns be carried out not only to obtain the loads
acting on particular complex geometrical configurations, but also to gather a sufficient data
base regarding the interference between commonly-used types of bodies. On this respect, the
present situation is not yet satisfactory, and this may also be due to the high number of tests
that should be carried out, and to the consequent high cost of such systematic analyses.

The predictive potential given by the availability of good experimental data and by a
sufficient competence on the physical mechanisms playing a role in bluff-body aerodynamics
may be appreciated from the following example, which will conclude the present notes.

An experimental campaign (Buresti et al. 1986) was carried out to determine the wind-
induced loads on a tension leg oil platform, whose upper part is schematically shown in
Fig 22. A 1:250 model of the structure was tested in an aeronautical wind tunnel in which the
variable incoming wind profile had been reproduced. The model could be rotated around the
vertical axis and the six components of load were measured for wind directions   from 0° to
360°. The complex trends of the force and moment coefficients obtained as a function of 
are shown in Fig. 23. A detailed analysis shows that several components, and in particular the
vertical and lateral forces and the moment around the vertical axis, are significantly higher
than could have been predicted without taking interference effects into account.

Particularly important from the design point of view is the variation of the vertical moment
Mz as a function of the wind direction, because a tension leg platform is moored to the seabed
by a system of pre-tensioned tethers, which gives it a reduced torsional stiffness around the
vertical axis. Considering the reference system of Fig. 22, great importance has the derivative
of the coefficient CMz with respect to the wind orientation, because in the ranges of 
characterized by a negative value of this derivative the platform tends to be unstable to
rotations around the vertical axis. Therefore, an attempt was made to analyse the possibility of
predicting the experimentally-found trend of the vertical moment by adding the four
contributions that seemed to be predominating, and in particular:
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a) the moment acting on the main deck considered as a low-rise square prismatic body;
b) the moment due to the particular shape of two sides of the same main deck, in which a
sharp-edge indentation is present;
c) the moment produced by the lateral forces (due to interference effects) acting on the
cylindrical columns supporting the main deck;
d) the moment due to the drag forces acting on the various bodies placed non-symmetrically
above the deck.

The first contribution was estimated by extrapolating the data of E.S.D.U. 1971, for the
lateral forces on square-section blocks, and assuming an application point for these forces at
1/3 of the longitudinal dimension. Fig. 24 shows the variation with wind orientation of the
resulting contribution to CMz.

The second contribution was assessed by assuming plausible values for the pressure
coefficients acting on the lateral sides of the deck indentations, and is given in Fig. 25.

To evaluate the interference effects between the supporting columns, the two-dimensional
data given in E.S.D.U. 1984 and Price & Paidoussis 1984 were used, and the variation of the
flow velocity due to the incoming wind profile was taken into account. Figure 26 shows the
result of this assessment.

Finally, for the last contribution, the drag of the non-symmetrically placed bodies on the
deck was evaluated from the same previous experimental results, as difference between the
drag force measured on the complete model and that obtained when each of these bodies was
removed. Figure 27 shows the obtained behaviour of this component, which, incidentally,
would represent the whole predicted contribution to the vertical moment if only the drag
forces had been taken into account (as is sometimes done in certain unadvisable design
procedures).

The comparison between the experimental trend of the vertical moment coefficient and the
one obtained by adding up the four above described contributions is shown in Fig. 28. As can
be appreciated, the agreement is quite good from a qualitative and even from a quantitative
point of view. The latter result may be somewhat surprising, considering all the
approximation made in the evaluation procedure, and may even be the consequence of
compensation effects between opposite inaccuracies. Nevertheless, the fact that the extremely
complex trend of the variation of the vertical moment with wind orientation has been closely
reproduced, at least as regards the signs of the derivative of the coefficient, suggests that the
main contributions to this load component have been taken into account, and that their
dependence on  has been correctly predicted.

The main indication deriving from this example is that, if even approximate data on the
forces acting on single bodies of typical shape and on the interference effects between them
are available, then satisfactory qualitative and even quantitative predictions of the
aerodynamic loads acting on complex structures may be obtained. Unfortunately, as already
pointed out, the present information on interference effects, particularly for three-dimensional
bodies, is still far from satisfactory, so that, in general, one cannot avoid the recourse to
dedicated experimental investigations.
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Fig. 1 – Boundary layer profile over a flat plate (from Van Dyke 1982).

            

Fig. 2 – Boundary layer separation

Fig. 3 – Example of flow separation from a curved wall (from Van Dyke 1982).
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Fig. 4 – Example of turbulent boundary layer visualization (from Van Dyke 1982).

Fig. 5 – Example of laminar (upper photo) and turbulent (lower photo) separation over a
curved surface (from Van Dyke 1982).

            
a) Aerodynamic body

b) Bluff bodies
Fig. 6 – Examples of aerodynamic and bluff bodies
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Fig. 7 – Comparison between the pressure distributions of a flat plate (CD = 2)
and of a circular cylinder for Re < 105 (CD = 1.2)

Fig. 8 – Drag coefficients of various cylindrical shapes as a function of Re.
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Fig. 9 – Comparison between an airfoil and a circular cylinder having the same total drag
(from Batchelor 1967).

a)

b)

Fig 10 – Flow fields around an airfoil and a circular cylinder (from Van Dyke 1982).
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Fig. 11 – Velocity and vorticity fields of two ideal vortices having
the same global vorticity but different radius.

  

Fig. 12 – Influence of separation line on wake structure for a circular cylinder
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Fig. 13 – Modification of wake structure by serrated contour.

      

Fig. 14 – Schematic flow field around three-dimensional bluff body.
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Fig. 15 – Drag coefficients ot two-dimensional and three-dimensional bodies

Fig. 16 – Flow around a finite-length cylinder
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Fig. 17 – Drag coefficient of an axisymmetrical body as a function of base inclination
(from Bearman 1980).

  

Fig. 18 – Pressure distributions measured along a horizontal line passing through the base
center. a) Variation with base angle. b) Effect of disturbing devices for  = 50°:

x –plain; o – with device (from Bearman 1980).
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Fig. 19 – Flow patterns and local pressure coefficients on a buiding shape

Fig. 20 – Modifications of the mean (left) and instantaneous (right) flow patterns around a
square cylinder by a small rod placed upstream in different positions (from Igarashi 1997).



  G. Buresti Bluff-Body Aerodynamics

29

Fig. 21 – Variation of the system drag with size ratio between plate and cylinder (a), and
optimal geometrical configuration (b) (from Prasad & Williamson 1997).

Fig. 22 – Scheme of the model of a tension leg platform (from Buresti et al. 1986).
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Fig. 23 – Load coefficients obtained in the wind tunnel tests of the model of Fig. 22
(from Buresti et al. 1986).

Fig. 24 – Contribution to CMz from the deck, considerd as a prismatic body.

Fig. 25 – Contribution to CMz from the deck indentation.



  G. Buresti Bluff-Body Aerodynamics

31

Fig. 26 - Contribution to CMz from the lateral forces on the columns.

Fig. 27 - Contribution to CMz from the drag on the bodies over the deck.

Fig. 28 – Comparison between the predicted and the experimental values of CMz
for the complete model (from Buresti et al. 1986).


