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Cars are bluff bodies ? 
All cars are bluff bodies…but not all with the same bluffness! 
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Flow around a car 

• Car=relatively bluff body 
(cD=0.25-0.45) 

• Two types of separation    
1) Quasi 2D wakes    
2) Longitudinal vortices  

• Underbody flow  
• Wheels 
• Interactions  
• Ground effect 
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Drag and Lift 

• Drag and lift normally related (lift generates drag) 
• Wing theory: Drag = profile drag (form drag + 

friction drag) + induced drag (induced drag from 
wingtip vortices) 

 

• Cars: low aspect ratio (Λ≈0.4). Too low to allows the 
use o a wing theory 

• Strong interaction between tip vortices and the 
central flow 

cDi = k
cL2
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Approaches to analyse drag I 

• Calculate or measure pressure and wall-shear 
stress everywhere 

• Drag obtained from surface integral 

• Both pressure and wall shear-stress 
contribute 

• Lot of experimental data needed (unrealistic) 
• It is possible to find the local origins of drag 
 

D = psin! dS + " w cos! dS##

Global Surface analysis 
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Approaches to analyse lift 

• Calculate or measure pressure and wall-shear 
stress everywhere 

• Lift obtained from surface integral 

• In this case only pressure contributes !!!!! 
• Lot of experimental data needed (unrealistic) 
• It is possible to analyse the different 

contributions to lift 
 

∫ ∫+= dSdSpL w ϕτϕ sincos
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• Find the local 
contribution of each 
part of the car 

• Usually possible for 
simple bodies (see 
figure) 

• Problem: in real cars 
different components 
interact! 

 

Approaches to analyse drag II 
Contribution analysis 
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Wake analysis 

• Control volume approach + momentum 
theorem 

• Energy assessment 
 !! Stationary wall: must subtract contribution 

from wall boundary layer 

• Extensive measurements needed (costly) 
• Need of traversing mechanism 
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Approaches to analyse drag III 
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Local origins of drag - Front end I 
• Local separation  
less pronounced 
suction peak - 
increased drag 

• Small edge radius 
enough to reduce 
local drag 
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Local origins of drag - Front end II 
A real case 
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• Optimization of the 
front of Golf I 

• Small radii can give 
significant drag 
reduction 

Local origins of drag - Front end II 
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• Drag reduction due to 
hood angle (α)saturates   
 BUT: Combination effect 
of hood angle & front 
radius! 

• Increased angle of wind 
shield (δ) can reduce drag 

• δ≥60° => visibility and 
temperature problems 

•  indirect influence on drag:  
–  Influence flow around A-

pillar 
–  Smaller suction peak at the 

junction to the roof 

Local origins of drag - Angle of hood and 
wind shield I 
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• 3D-separation 
(vortex) 

• Wind noise 
• Water and dirt 

deposition 

Local origins of drag - A-pillar 
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• Mainly friction drag (flow 
is generally attached) 

• Increased camber give 
larger radii =>reduced 
suction peaks 

• Negative angle of roof => 
reduced wake  

• Problems: large front area 
and/or smaller internal 
space 

Local origins of drag – Roof and Sides 
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Local origins of drag - Rear End 
Boat tailing 

Mair: axisymmetric body 

Mercedes 190  
Angle ca 10° 

• Increase base pressure 
• Reduce base area 
• Minor improvements by 

further extension of 
the body (x/d > 5) 

• Squareback vehicles: 
lower the roof 

• Flow devices (Air 
intakes, wings) 

KTH, May 2011 16 

Boat-tailed underbody 
Local origins of drag - Rear End II 

• Requires smooth 
underbody 

• Decreased drag for 
moderate diffuser 
angles 

• Reduction in lift 
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Fastback/squareback 
•  Basic experiments =>understanding of rear end flow 
•  Drag due to strong side vortices 
•  Vortex break-up above critical slant angle 

Morel (1976) Bearman (1979) 

Local origins of drag - Rear End III 
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•  Prismatic body near ground (qualitatively similar results) 
•  Critical slant angle ca 30° 
•  Drag minimum at ϕ≈15º (coupé) 

Bearman (1982) 

Morel (1976) 

Fastback/squareback 
Local origins of drag - Rear End IV 
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• Bi-stable separation 
around critical angle 
(ϕ≈30º) 

• ϕ>30º: reduced drag and 
flow conditions similar to 
a square back 

• ϕ>30º: Vortices are 
weaker and with opposite 
rotational direction than 
ϕ<30º:  

A real case:  
development of Golf I:  
In-fluence of slant angle (ϕ) 

 

Local origins of drag - Rear End V 
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Form vs. vortical drag 
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Drag Sensitivity to side wind 

• Wake-analysis behind a 
notchback (Cogotti 1986) 

• Total-pressure distribution show 
strong influence of small yaw 
angles (β=0, 0.5° & 1°) 

• Overall no strong changes on cars 
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Local origins of drag  
 Underbody flows 

• Complex flow 
• Flow angles important 
• Avoid obstacles 

(stagnation) 
• Return of cooling air can 

influence 

• Large improvement by rear 
panels 

• Also effect on lift 
Ahmed (1999) 
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Aspects of underbody diffuser 
•  Rear end underbody diffuser brings up the 

velocity below the car (normally reduces lift) 
•  Higher velocity below the car changes flow 

angles around the wheels  
•  Reduced drag due to the wheels 
•  Requires a smooth underbody to avoid drag from 

obstacles 
•  Underbody diffuser reduces the base area of 

the vehicle (can reduce drag) 
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Underbody shaped for downforce I 
 Ferrari 360 Modena 

• “Venturi-tunnel” for 
max downforce 

• Smooth underbody 
• No spoilers 
• 5400 hours in wind-

tunnel (source: 
Teknikens Värld 
11/99) 
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Mechanism of a 2D-diffuser 

• Pressure increases as long 
as flow not separated 

• Max diffuser length 
longer for small diffuser 
angles 

• Is the analogy with a 2D 
diffuser really correct? 

•  (Can explain reduced 
drag, but not reduced 
lift) 

2θ	
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Underbody shaped for downforce I 
1994! 1999!

F355!
360 Modena!
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Underbody shaped for downforce II 
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Wheels 

• Up to 50% of the drag of a 
streamlined car 

• Wheels are not streamlined 
–  3 vortex pairs 
–  Influenced by ground and 

rotation 
• Local flow is yawed (≈15°) 

–  Separation on the outer side 
–  Water drops sucked out 
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Wheels II 
• Force on a rotating wheel 

changes sign when contact 
with ground 

• Lift force due to wheel 
rotation for a free-standing 
wheel 
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Wheels III 

• How does the flow in the 
wheel-housings look like? 

• Wheel-housings   
–  Smaller=better 
–  Both lift and drag reduced 
–  Largest effect on lift (see 

e.g. Cogotti 1983)  
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Audi A3 

• 30-35% of drag due to wheels + wheel 
arches 

• Ca 25% only due to wheels 
From Pfadenhauer, 
Wickern & Zwicker (1996) 

Wheels IV 
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Spoilers 
Front spoiler 

Hucho (1998) 

• Reduced drag 
• Reduced front axle lift 

• Improved cooling air flow  

• Reduced flow rate under 
the car 

• Low pressure region 
behind the spoiler 

• Optimization needed 
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•  Reduced drag 

(sometimes) 
•  Reduce rear axle lift 
•  Higher cP in front of 

the spoiler 
•  Increased spoiler 

height increases the 
lift, but also drag 

Spoilers 
Rear spoiler 

KTH, May 2011 34 

Do not exagerate !!! 
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Miscellaneous 

• Cooling air flow: 
∆cD≈0.02-0.06  

• Side mirrors: ∆cD≈0.01 
• Antenna: ∆cD≈0.001 
• Roof racks: up to 

30-40% increase in cD 

• Ski box: Why are they 
shaped in this way?? 

KTH, May 2011 36 

Potential fields for drag reduction 

•  More focus on underbody and wheels 
•  Active reduction of the dead-water 

region 
•  Base bleed 

•  Separation control 
•  Boundary layer suction? 
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Optimization 

•  NOT AN EASY  
 TASK !!! 
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Discrepancies in cD 

 Different cD depending on equipment 
• Tire width 
• Engine type (cooling air flow) 
• Ground clearance (load dependent) 
• Angle of attack (load dependent) 
• Additional spoilers etc. 

  Official cD values “corrected” 
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Interference effects 
  Bluff bodies in tandem 
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Interference effects 
  Aerodynamic bodies in tandem 
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Interference effects 

  Slip streaming 
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Interference effects 

  Overtaking 


