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Linné Flow Centre, KTHMechanics

Introduction
Traditionally numerical instability investigations of flows has
been restricted to standard geometries. With increasing com-
puter power and code development suitable to run on this new
generation of computers, the possibility of studying the stabil-
ity characteristics of complex flows has come to a new era. The
standard way of examining the stability of flow systems, both
experimentally and numerically, is to perturb the base flow ei-
ther by an initial condition or with a time dependent forcing and
monitor the time development of the disturbances. If the flow re-
laxes it is stable, if it does not it is unstable. The asymptotic
stability may be determined by eigenvalues of the differential
equation describing the flow. However since for many flow sys-
tems the breakdown to turbulence may be abrupt, in general one
needs to study also the short time evolution of the disturbances.
Formally this scenario may be determined by solving optimiza-
tion problems. Here we show a number of ways to characterize
the stability of complex flows, using both global eigenmodes and
Navier–Stokes time integration schemes, exploiting the increas-
ing computer capacities available.

Global modes of the Blasius flow
A flat plate with flow coming from left to right creates the
so called Blasius boundary layer flow developing down-
stream. This flow case has been studied extensively un-
der the locally parallel assumption. Here we study the
stability of this flow using two- and three-dimensional
global eigenmodes . Below the two-dimensional global
eigenmodes related to the Tollmien Schlichting instability
is shown.

The optimal initial condition is found as a sum of the com-
puted eigenmodes. Below contours of the streamwise ve-
locity is displayed at different times. One can observe that
the initial condition consists of structures leaning against
the shear, that through the Orr mechanism leads to the on-
set of a Tollmien Schlichting wavepacket.
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Below the streamwise component of the eigenfunctions
corresponding to low frequency eigenvalues for the span-
wise wavenumbers β = {0.2, 0.4, 0.6} are depicted.
The system is highly sensitive to low frequency three-
dimensional forcing structures leading to the formation of
streaks. These eigenmodes have the typical characteristics
of streaks.

Shallow Cavity Flow

Consider a shallow cavity mounted on a flat plate with
flow coming from left to right. The presence of the cavity
creates a shear layer and a separation bubble as seen from
the steady state stream function.

Due to the highly non-parallel nature of the flow instabil-
ity mechanisms has to resort to a global formulation of
the stability problem. Below the right and left eigenvec-
tors corresponding to a globally unstable eigenvalue are
depicted.

The optimal sum of global eigenmodes shows that there
is a global oscillating cycle. This mechanism may be visu-
alized in a spatio-temporal diagram of the pressure field.
A wavepacket is propagating across the shear layer creat-
ing a global pressure pulse that through receptivity at the
upstream cavity edge regenerates the disturbances.

Confined plane wakes

In some applications confined plane wakes are used to en-
hance mixing. Inviscid analysis predicts that the confined
wake is always the most globally unstable one. How-
ever, the viscous global modes with a wall boundary layer
growing in the streamwise direction show that the con-
fined wake might be more damped at least for some pa-
rameter values. Streamwise velocity for mean flow and
disturbance in both cases can be seen below - the distur-
bance structure and wavelength are different in the two
cases.
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The wake confined with walls is more stable than the in-
viscid wake with the same inlet profile, while the opposite
is true for the unconfined wake, which can be seen in the
growth rate curves below.
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Wind Turbine Tip Vortex Stability Study

In the design of large wind farms it is essential to know
the basic mechanism determening the length of the wake,
closely coupled to the stability of the tip vortex. Steady
simulations were performed to reach a basic steady flow
field. This forms the initial condition for the subse-
quent stability analysis that basically consists of a time-
dependent computations using large eddy simulation. To
simplify the analysis only flow cases with constant axial
inflowwere considered. The point of onset and the growth
of the instabilities were evaluated in detail. The presence
of the rotor is modelled through body forces, determined
from local flow and airfoil data. The aim is to study which
modes that exist and to which extent they grow in order to
quantify frequencies leading to vortex spiral break down.
The figure shows the structure of the vortex spiral. By dis-
turbing these vortex spirals one might trigger modes lead-
ing to instability growth and thereby vortex spiral break
down.
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By performing a Fourier transform on velocity field snap-
shots one can identify the response at different frequen-
cies. The result shows that the maximum growth is at 2

and 5 Hz. Investigations show that this corresponds to
spatial wavelength of 1.5 and 4.5 for each revolution.
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The figure shows an iso-surface of the real part of the re-
sponse from the perturbation with a frequency of 5 Hz.
This correspond to a varicose mode with 4.5 wavelengths
along the spiral in one revolution. One can identify the
linear growth area up to about z = 18.5, i.e. 5 rotor radii
behind the turbine.
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