
Matlab Course
Hands-on workshop

The computer is a tool at the heart of science: writing articles, analyzing and
visualizing data, but also creating data by simulating accurate models of our physical
systems. Creating data is typically done by intensive computations, by solving partial
differential equations with a large number of degrees of freedom. This is done using
compiled languages: the restriction is simulation time, these codes are large,
complex, of long development time and hopefully long lifetime. Modern experimental
measurement techniques as well produce large fields of data: Particle Image
Velocimetry for full velocity fields, the large number of pixels of high speed
cameras...

The data obtained this way is heavy and complex, and stored in the memory of
computers. It is clear that special programming skills are needed to manipulate
this data; on one hand to visualize it (data must be seen), and on the other hand to
extract the relevant information: statistics, automatic identification of special events...

This use of the computer goes beyond post-processing: to understand our physical
systems we need to compare them to simple models, often ordinary differential
equations; light systems of equations which must be themselves solved or simulated.

The goal of this course is to set-up a standard of programing using Matlab to give
you the tool you need for all that. These codes are typically simple, of rapid
development time and often of short lifetime: the qualities of interactivity.

Jérôme Hoepffner/ Université Pierre et Marie Curie, Paris.
http://www.lmm.jussieu.fr/~hoepffner/gallery.php

The shell is a shape of logarithmic spiral? This
we can check. We can do more in quantifying its
properties.

Organisation
Four consecutive mornings, each one structured as: presentation of the general
ideas, examples coded "live" and discussed, hands-on where you apply the
techniques on various types of physical systems, put your results (graphics) together
in a report. We keep the physics in mind at all times.

1) Compiled versus interpreted languages. Basic syntax: loops, tests, arrays,
logicals, graphics. Using the documentation. Manipulation of arrays.

2) Graphics: overview of the possibilities. Set/get commands to affect all properties of
the graphics through programing. Animations.

3) Making complex operation with short commands: manipulation of arrays,
vectorization, use of arrays of logicals. Avoiding the mistakes which make a slow
code, learning the basic ideas towards concision.

4) Linking heavy/efficient code to light/quick analyses: inputs and outputs, interfaces.
Computations in parallel. Simulating systems and models.

Wake of a wing: modeling
with point vortices.

Atomization of a liquid jet: hydrodynamic stability,
simulation of the Navier-Stokes equations.

