

KTH Mechanics

in wall bounded turbulence Stability and transition

Royal Institute of Technology P. Henrik Alfredsson Linné FLOW Centre,

Literature

NORDITA 2010

Lin (1955)
The theory of hydrodynamic stability

Chandrasekhar (1961) Hydrodynamic and hydromagnetic stability

Betchov & Criminale (1967) Stability of parallel flows

Drazin & Reid (1981) Hydrodynamic stability

Schmid & Henningson (2001)

Drazin (2002)
Introduction to hydrodynamic stability

Criminale (2003)

Theory and computation in hydrodynamic

Peter J. Schmid Dan S. Henningson

Applied Mathematical Sciences

Stability and Transition in Shear Flows

Lecture 1

- 1. Introduction to flow instability
- 2. Linear stability theory for boundary layer flows
- Rayleigh stability theory (inviscid)
- Orr-Sommerfeld theory (viscous)
- 3. Wind tunnels for transition research
- Transition prediction
- ပ္ပာ Transient growth
- 6. Free stream turbulence

Water jet from kitchen tap

turbulent

laminar

Water jet from kitchen tap

Always unstable to axi-symmetric disturbances with a wavelength larger than the jet circumference, but growth rate $\sim r^{-3/2}$ dripping

laminar

Osborne Reynolds (1842-1912)

Thermal instability – Bénard convection

Reynolds experiment (1883)

Reynolds experiment (1883)

(a) Laminar flow Re<Retransitional

<u></u>

- (b)Transition to turbulence Re>Retransitional
- (c) Same as (b) but "short time exposure"

Reynolds experiment (1983)

1883 transitional Re =13000

increased in amplitude disturbances has Lower Re today due to traffic, i.e. external

Canonical wall bounded flows

Transitional Reynolds numbers for the canonical cases

Flow case	Re	Re_{tr}
Blasius	$U_\infty \delta^*/v$	490
Channel	$U_{CL}b/v$	1000
Pipe	$U_{CL}R/\nu$	1760
Couette	$\rm U_w b/\nu$	360

Lecture

- Introduction to flow instability
- Linear stability theory for boundary layer flows
- Rayleigh stability theory (inviscid)
- Orr-Sommerfeld theory (viscous)
- 3. Wind tunnels for transition research
- 4. Transition prediction
- 5. Transient growth
- 6. Free stream turbulence

Hydrodynamic stability theory

flow situation whether it grows or decays (in time or space) for the given Idea: Introduce a controlled disturbance and investigate

situation some other non-dimensional variable depending on the flow Control parameter: Typically a Reynolds number (and possible

$$\frac{\text{inertia}}{\text{viscous damping}} \sim \frac{\rho u \cdot \nabla u}{\mu \nabla^2 u} \sim \frac{\rho U^2/L}{\mu U/L^2} = \frac{\rho UL}{\mu} = Re$$

Other variables: Amplitude, wave number and frequency of

Linear theory: independent of amplitude => modal analysis

(from Schmid & Henningson 2001) Stability definitions

Region:

Global stability Monotonic stability

III: Conditional stability

IV: Possible instability

 $Re_E Re_G$

360	8	125	20.7	Couette
1000	5772	-	49.6	Channel
1760	8	ı	81.5	Pipe
Retr	Recr	Re_{G}	Ree	Flow case

Some landmarks of classical stability theory

Rayleigh (1880) - Inviscid theory

Reynolds (1883) - Pipe flow experiments - the importance of the Reynolds number

Heisenberg (1924) First eigenvalues found (Dr-thesis) Orr (1907), Sommerfeld (1908) Formulation of viscous disturbance eq.

Tollmien (1928), **Schlichting** (1933) Solutions to OS-eq

Schubauer & Skramstad (1948) First exp. Verification of TS-waves Klebanoff et al. (1962) Exp. on TS-wave breakdown

Orzag (1970) Numerical solution for OS-eq. in channel flow

Fasel & Konzelmann (1990) Numerical work on OS-eq. in Blasius boundary layer flow

Klingmann et al. (1993) New experimental results on TS-waves in Blasius boundary layer flow

Equations of motions

Continuity equation (incompressible flow)

$$\nabla \cdot \overline{u} = 0$$

Navier-Stokes equations

$$\rho \left[\frac{\partial \overline{u}}{\partial t} + \overline{u} \cdot \nabla \overline{u} \right] = -\nabla p + \mu \nabla^2 \overline{u}$$

In non-dimensional form

where

 $Re = \rho U L / \mu$

n-dimensional form
$$\nabla \cdot \overline{u} = 0 \qquad \text{and} \qquad \frac{\partial \overline{u}}{\partial t} + \overline{u} \cdot \nabla \overline{u} = -\nabla p + Re^{-1} \nabla^2 \overline{u}$$

Equations of motions (contd)

 $\Rightarrow \overline{u} = (u, v) = u(x, y)\overline{e_x} + v(x, y)\overline{e_y}$ Assume that the base flow is 2D and that disturbances are 2D

multiplication with $\overline{e_x}$ and $\overline{e_y}$ Momentum eqs. in x and y-directions are obtained through scalar

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = -\frac{\partial p}{\partial x} + Re^{-1} \nabla^2 u \tag{1}$$

$$\frac{\partial v}{\partial t} + u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} = -\frac{\partial p}{\partial y} + Re^{-1} \nabla^2 v \tag{2}$$

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \tag{3}$$

Disturbance decomposition

prime fluctuations around the mean) Assume linear disturbances (capital letters are mean values and

$$u = U + u'$$

$$v = V + v'$$

u',v',p' are small disturbances \Rightarrow quadratic terms may be ne-

We now assume parallel flow, i.e. V=0. Exact for channel flows, good approximation for many boundary layer flows!

Disturbance decomposition (contd.)

$$\frac{\partial (U+u')}{\partial t} + (U+u')\frac{\partial (U+u')}{\partial x} + v'\frac{\partial (U+u')}{\partial y} =$$

$$-\frac{\partial (P+p')}{\partial x} + Re^{-1}\nabla^2(U+u')$$

that the mean flow is independent of time $\mbox{\bf quadratic in the disturbance}$ Write out all the different terms in the equation above, noting

$$\frac{\partial u'}{\partial t} + U \frac{\partial U}{\partial x} + U \frac{\partial u'}{\partial x} + u' \frac{\partial U}{\partial x} + u' \frac{\partial u}{\partial x} + v' \frac{\partial U}{\partial y} + v' \frac{\partial u'}{\partial y} =$$

$$- \frac{\partial P}{\partial x} - \frac{\partial P'}{\partial x} + Re^{-1} \nabla^2 U + Re^{-1} \nabla^2 u' \qquad (4)$$

Assume that all disturbances are zero! $U\frac{\partial U}{\partial x}=-\frac{\partial P}{\partial x}+Re^{-1}\nabla^2 U$

$$U\frac{\partial U}{\partial x} = -\frac{\partial P}{\partial x} + Re^{-1}\nabla^2 U$$

(contd.)

Subtract that from equation $(4) \Rightarrow$

$$\frac{\partial u'}{\partial t} + U \frac{\partial u'}{\partial x} + u' \frac{\partial U}{\partial x} + v' \frac{\partial U}{\partial y} = -\frac{\partial p'}{\partial x} + Re^{-1} \nabla^2 u'$$
 (5)

Same operation for eqs. (2) and (3) \Rightarrow

$$\frac{\partial v'}{\partial t} + U \frac{\partial v'}{\partial x} = -\frac{\partial p'}{\partial y} + Re^{-1} \nabla^2 v'$$
 (6)

$$\frac{\partial u'}{\partial x} + \frac{\partial v'}{\partial y} = 0 \tag{7}$$

v -disturbance equation

3 equations (5), (6) and (7), 3 unknowns $u^\prime, v^\prime, p^\prime$!

Eliminate p' by taking $\frac{\partial}{\partial y}$ (5) - $\frac{\partial}{\partial x}$ (6)

 v^\prime unknown By eliminating u^\prime using eq. (7) we obtain an equation with only

$$\left(\frac{\partial}{\partial t} + U \frac{\partial}{\partial x}\right) \nabla^2 v' - U'' \frac{\partial v}{\partial x} = Re^{-1} \nabla^4 v$$
 (8)

4 BCs needed. Equation (8) needs boundary conditions, 4th order equation \Rightarrow

Boundary conditions for channel flow

At y = 0 and y = h we get

(impermeable wall)

u'=0 $(\text{no slip}) \Rightarrow \frac{\partial v'}{\partial y} = 0$

The latter is given from

$$\frac{\partial u'}{\partial x} + \frac{\partial v'}{\partial y} = 0$$

and since u'=0 at the wall $\Rightarrow \partial u'/\partial x=0$ at the wall as well.

Normal mode analysis

Analyze eq. (8) in terms of normal modes

$$v' = \hat{v}(y)e^{i(\alpha x - \omega t)}$$

where $\it i$ is the imaginary number and

 $\widehat{v}(y)$ is a complex amplitude function

 α is the wave number (= $2\pi/\lambda$ where λ is the wave length)

 ω is the angular frequency

We can also define the phase speed of the wave as $c = \omega/\alpha$

Normal mode analysis - spatial growth

growing in space (x) or time (t). Chose spatial or temporal approach, i.e. a disturbance that is

Spatial growth
$$\Rightarrow$$
 $\alpha = \alpha_r + i\alpha_i$?

$$\alpha = \alpha_r + i\alpha_i$$
 and ω is real

Temporal growth
$$\Rightarrow$$

 $c = c_r + ic_i$

$$\omega = \omega_r + i\omega_i$$
 and α is real

$$e^{i(\alpha x - \omega t)} = e^{i[(\alpha_r + i\alpha_i)x - \omega t]} = e^{i(\alpha_r - \omega t)}e^{-\alpha_i x}$$

$$\alpha_i < 0$$

 \Downarrow

$$\alpha_i > 0$$
 exponen

Normal mode analysis - temporal growth

For the temporal approach, i.e. a disturbance that is growing

$$e^{i(\alpha x - \omega t)} = e^{i\alpha(x - ct)} = e^{i\alpha(x - c_r t)} e^{\alpha c_i t}$$

$$c_i > 0$$

 \Downarrow

exponentially growing disturbance

$$c_{i} < 0$$

exponentially decaying disturbance

The Orr-Sommerfeld equation

Put the normal mode assumption $[e^{i\alpha(x-ct)}]$ into eq. (8)

$$\frac{\partial}{\partial t} \rightarrow -i\alpha c$$

$$\frac{\partial}{\partial x} \rightarrow i\alpha$$

$$\frac{\partial}{\partial y} \qquad \to \quad \frac{d}{dy} = D$$

for instance
$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = -\alpha^2 + D^2$$

This gives us the so called Orr-Sommerfeld (OS) equation

$$(U-c)(D^2-\alpha^2)\hat{v}-U''\hat{v}=\frac{1}{i\alpha Re}(D^2-\alpha^2)^2\hat{v}$$

The Rayleigh equation

Let us investigate the OS-eq. when $Re \to \infty \implies$ Rayleigh eq.

$$(U-c)(D^2-\alpha^2)\hat{v}-U''\hat{v}=0$$

BC ? Only two BCs can be retained! $\hat{v}(0) = \hat{v}(h) = 0$

Rewrite :

$$(D^{2} - \alpha^{2})\hat{v} - \frac{U''}{(U - c)}\hat{v} = 0$$

Multiply with $\hat{v}^*,$ the complex conjugate of \hat{v} and integrate the eq. from y=0 to y=h

$$\int_0^h \left[\hat{v}^* (D^2 \hat{v} - \alpha^2 \hat{v}) - \frac{U''}{(U - c)} \hat{v} \hat{v}^* \right] dy = 0$$

The Rayleigh equation (contd)

By using partial integration we get

$$\int_{0}^{h} \hat{v}^{*} D^{2} \hat{v} dy = \underbrace{\left\{\hat{v}^{*} D \hat{v}\right\}_{0}^{h} - \int_{0}^{h} (D \hat{v}^{*}) D \hat{v} dy = -\int_{0}^{h} |D \hat{v}|^{2} dy}_{=0}$$

Using $c = c_r + ic_i$

$$\frac{1}{U-c} = \frac{1}{U-c_r - ic_i} = \frac{U-c_r + ic_i}{(U-c_r - ic_i)(U-c_r + ic_i)} = \frac{U-c_r + ic_i}{(U-c_r)^2 + c_i^2}$$

we then can write

$$\int_0^h \left[|D\hat{v}|^2 + \alpha^2 |\hat{v}|^2 + \frac{U''(U - c_r + ic_i)}{(U - c_r)^2 + c_i^2} |\hat{v}|^2 \right] dy = 0$$

The Rayleigh equation (contd.)

Taking the imaginary part of the equation

$$\int_0^h \left[\frac{U''c_i}{(U - c_r)^2 + c_i^2} |\hat{v}|^2 \right] dy = 0$$

$$c_i \int_0^h \left[\frac{U''}{(U - c_r)^2 + c_i^2} |\hat{v}|^2 \right] dy = 0$$

Q

This means that U'' must change sign in the interval if $c_i \neq 0$, i.e. U has to have an inflection point in the interval. This is Rayleighs inflection point criterion!

Fjørtofts criterion says that for the inflection point to be unstable, the shear, i.e. U' has to have a maximum at the inflections point! (see Schmid & Henningson, page 21).

Inflectional instability of jet flows

Rayleighs stability criterion (1880) explains why jets and wakes are very unstable, they have inflectional mean velocity profiles!

Inflectional instability of jet

QuickTime™ and a decompressor are needed to see this picture.

How to solve the OS-equation?

The solution to the OS-equation can be seen as an eigenvalue problem.

Input data: Mean velocity profile, BC, Reynolds

number, α (ω). Output: Eigenfunction $\widehat{\mathbf{v}}(\mathbf{y})$, eigenvalue ω (α). Solution method: Shooting method

Example: channel flow

Boundary conditions at both channel walls: v = 0 Dv = 0

 \Rightarrow Trivial solution $\widehat{\mathbf{v}} = \mathbf{0}$

Other boundary conditions needed!

symmetric mode => D

ode =>
$$\widehat{Dv} = \widehat{D^3v} = 0$$
 on CL

anti-symmetric mode =>
$$\widehat{v}$$
 = $\widehat{D^2v}$ = 0 on CL

Example: channel flow - symmetric mode

How do we verify the theory?

Introduce a single frequency 2D wave with a vibrating ribbon (old method) or through a thin, long spanwise slit connected to a loudspeaker (current method).

Measure the development of the wave amplitude in the downstream direction. Check also the eigenfunction (phase and amplitude)!

(P. Elofsson, PhD thesis 1998, KTH) Here two oblique vibrating ribbons. Only red part is vibrating. Metallic ribbons are fed with AC-current and are located in the magnetic field of permanent magnets

Amplitude functions – channel flow Re=1600, ω=0.40

Amplitude and phase development (Re=1600, ω=0.42)

Lecture 1

- 1. Introduction to flow instability
- 2. Linear stability theory for boundary layer flows
- Rayleigh stability theory (inviscid)
- Orr-Sommerfeld theory (viscous)
- Wind tunnels for transition research
- Transition prediction
- Transient growth
- 6. Free stream turbulence

MTL wind tunnel for stability and transition research

- Low turbulence (<0.03%) and sound noise level
- Low vibration level
- Velocity and temperature stability at low velocities

Boundary conditions for the Blasius boundary layer

Boundary conditions at the wall

the wall
$$v' = 0 \text{ at } y = 0 \text{ y}$$

$$\frac{\partial v'}{\partial y} = 0 \text{ at } y = 0 \text{ x}$$

$$U(y)$$

and boundary conditions in the free stream

$$v' \to 0$$
 as $y \to \infty$ $\frac{\partial v'}{\partial u} \to 0$ as $y \to \infty$

Stability diagram for Blasius b.l.

Example of disturbance profiles

x: exp amplitude, - - - theory

o: exp phase, — theory

Behaviour of disturbance profiles as y->~

$$(U-c)(D^2-\alpha^2)\hat{v}-U''\hat{v}=\frac{1}{i\alpha Re}(D^2-\alpha^2)^2\hat{v}$$

Solve the OS-equation in the free stream where U=1 (i.e. U_{∞}) \Rightarrow U''=0

This gives the following form of the OS-equation:

$$\{D^2 - [\alpha^2 + i\alpha Re(1-c)]\}(D^2 - \alpha^2)\hat{v} = 0$$

Solution:

$$=\underbrace{Ae^{\alpha y}}_{y\to\infty\to A=0} + Be^{-\alpha y} + C\underbrace{e^{\sqrt{\alpha^2 + i\alpha Re(1-c)}y}}_{y\to\infty\to C=0} + \underbrace{De^{-\sqrt{\alpha^2 + i\alpha Re(1-c)}y}}_{\text{small if Re is large}}$$

As $y \to \infty$ $\hat{v} \sim e^{-\alpha y}$ and $D\hat{v} \sim -\alpha e^{-\alpha y}$ which gives $|\hat{u}| = |\hat{v}| \sim e^{-\alpha y}$

Neutral stability curve for Blasius b.l. with experimental points from MTL

Growth and phase development

(Klingmann et al. Eur. J. Mech/Fluids 1993)

The influence of non-parallel effects (V≠0) are small! Local analysis sufficient for Blasius b.l.

Neutral stability curve for flat plate b.l. for various pressure gradients

traversing mechanism and probe support Setup for laminar separation bubble **experiment** (C. Häggmark, Ph.D. thesis 2000, KTH) continuous suction separation bubble contoured wall source disturbance

 U_e/U_0

 $\delta_1(0), \delta_2(*)H_{12}(-)$

x (mm)

800

1000

400

600

800

1000

Boundary layer development

Experimental setup - laminar separation bubble

Flow visualization of forced instability

Lecture 1

- 1. Introduction to flow instability
- 2. Linear stability theory for boundary layer flows
- Rayleigh stability theory (inviscid)
- Orr-Sommerfeld theory (viscous)
- 3. Wind tunnels for transition research
- 4. Transition prediction
- 5. Transient growth
- 6. Free stream turbulence

Transition in boundary layer flows

Set-up for flow visualization

Smoke visualization of TS-waves and K - breakdown

QuickTime™ and a DV - PAL decompress re needed to see this pic

Transition prediction with the e^N-method

Idea: Assume that transition occurs where the linear eigenmodes (waves) have reached a certain amplification from the start of amplification. Describe this amplification as e^N.

Experiment shows that, in low disturbance environments, the onset and end of transition are about amplifications (N) of 8 and 11, respectively.

Transition is often said to be at N=9.

Illustration of the e^N-method

By pass transition with Tu = 2.2 % (Matsubara & Alfredsson, 2001)

Transition prediction at high turbulence levels

Observation: At high turbulence levels (Tu) transition occurs earlier corresponding to a smaller N-factor.

Idea: Correlate the N-factor with Tu!

Experiments show that:

N=8.4 - 2.4 Tu

But of course it has nothing to do with the physics!

Lecture 1

- 1. Introduction to flow instability
- 2. Linear stability theory for boundary layer flows
- Rayleigh stability theory (inviscid)
- Orr-Sommerfeld theory (viscous)
- 3. Wind tunnels for transition research
- 4. Transition prediction
- 5. Transient growth
- 6. Free stream turbulence

Failure of modal wave theory to predict the transitional Re

Flow case	Re	Re_{cr}	Re_{tr}
Blasius	$U_\infty \delta^*/_V$	≈500	490
Channel	$U_{CL}b/\nu$	5772	1000
Pipe	$U_{CL}R/\nu$	8	1760
Couette	$U_w b/v$	8	360

Three different disturbances

(Grek, Kozlov & Ramazanov, 1984)

TS-waves

low amplitude disturbance

streaks

medium amplitude

disturbance

spot

high amplitude disturbance

Two different instability mechanisms

Modal growth

- Tollmien-Schlichting waves
- Exponential growth ~ e^x
- Amplitude ≈ 1- 2 %
- · 3D deformation
- (staggered or aligned) \cdot Formation of Λ -structures
- Breakdown

Non-modal growth

- Streaky structures
- Algebraic growth $\sim x^s$
- Amplitude ≈ 10 %
- wave packet Localized high frequency
- (turbulent spot) Local breakdown to

Two different instability mechanisms

Modal growth

- Rayleigh (1880) Theory - inviscid
- Fasel & Konzelmann (1990) Tollmien (1928) Schlichting (1933) Orzag (1970) Sommerfeld (1908) Orr (1907) Theory - viscous
- Experiments
- Schubauer & Skramstad (1948) Klebanoff et al. (1962) Klingmann et al. (1993)

Non-modal growth

- Landahl (1980) Ellingsen & Palm (1975) Theory - inviscid
- Gustavsson (1991) Schmid & Henningson (1992) Butler & Farell (1992) Luchini (1996, 2000) Theory - viscous
- Experiments
- Elofsson et al. (1998) Klingmann (1991) Grek, Kozlov & Ramazanov (1984) Breuer & Haritonidis (1990)

Growth of decaying waves ?!

Main results from theoretical work on transient, algebraic or optimal growth

- 1. Elongated streaks most amplified (α = 0)
- 2. Disturbance energy grows proportional to x
- 3. Amplitude maximum in centre of boundary layer (compare TS-waves)
- Spanwise scale close to boundary layer thickness

Principle of oblique transition

Deacy of oblique wave o : exp.

---: theory

Oblique transition in BBL (experiment)

Oblique transition in BBL (DNS)

(S. Berlin, PhD thesis 1998, KTH)

Lecture 1

- 1. Introduction to flow instability
- 2. Linear stability theory for boundary layer flows
- Rayleigh stability theory (inviscid)
- Orr-Sommerfeld theory (viscous)
- 3. Wind tunnels for transition research
- 4. Transition prediction
- 5. Transient growth
- 6. Free stream turbulence

Set-up for flow visualization of FST induced by-pass transition

By pass transition - the linear wave mode scenario is by-passed

Streaky structures and turbulent spots (Matsubara & Alfredsson, JFM 2001)

Streamwise velocity for varying y

FST induced transitionvarious stages

- Receptivity
 Streak formation and algebraic growth
- Secondary instability
- Turbulent spot formation
- turbulent boundary layer Spot growth, merging and formation of a

FST induced transition

Turbulent spot production

 $U_{\infty} = 3 \text{ m/s}$ Tu = 2.2%

FST induced transition

Secondary instability

 $U_{\infty} = 3 \text{ m/s}$ Tu = 2.2%

FST induced transition

Tu = 5.3 %

 $_{\infty}$ = 2 m/s

u_{rms}/u_{rmsmax} Amplitude development - experiments and spatial non-modal growth theory Disturbance amplitude 2 y/8* x=600 mmx= 300 mm x=200 mmx=700 mmx=500 mmx=400 mmLuchini (2000) 4 S $(u_{rmsmax})^2$ ×10⁻³ Disturbance energy growth 0.5 <u>1</u>0 E~Rex Re_X 0000 1.5

800

(b)

0.05

0.1

0.15

 u_x (m/s)

 $\Delta z_{\rm min}/\delta^{\star}$

10

100

Streamwise development of energy y=1.48* 0.025 Increasing Tu 0.005 Rex 1.0 1.5x106

Transition prediction

(Andersson, Berggren & Henningson, Phys Fluids 1999)

Disturbances in boundary layer are assumed to be proportional to input (i.e. linear receptivity) and grow as

$$A(x) = C \cdot \mathsf{Tu} \cdot \mathsf{Re}_x^{1/2}$$

Assume that transition occurs at a certain amplitude (when secondary instability grows exponentially)

$$A_{tr} = C \cdot \mathsf{Tu} \cdot \mathsf{Re_{tr}}^{1/2}$$

Solve for Re_{tr}

$$Re_{tr} = (A_{tr}/C)^2 \cdot Tu^{-2}$$

Transition Reynolds Number

Passive control with roughness elements

Observation: TS-waves grow slower in FST affected boundary layer !?!

Use of streaks to control TS-waves?

Decrease of TS-wave growth

Conclusion and questions

- Transition in boundary layers can follow different routes an we have a fairly good understanding of the routes but still not the transitional Reynolds number!
- We do not know how the transition route affect the turbulent boundary layer?

This is important for both experiments and simulations of boundary layer flows!

Re