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Lecture 1
1. Introduction to flow instability
2. Linear stability theory for boundary layer flows
- Rayleigh stability theory (inviscid)
- Orr-Sommerfeld theory (viscous)
3. Wind tunnels for transition research
4. Transition prediction
5. Transient growth
6. Free stream turbulence
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Water jet from kitchen tap

Always unstable to axi-symmetric disturbances with n Jm\m_\\m?:%&
larger than the jet circumference, but growth rate ™~ 7

laminar dripping

Osborne Reynolds (1842-1912)

Thermal instability - Bénard convection




Reynolds experiment (1883)
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(a) Laminar flow Re<Re; . psitional.

(b)Transition to turbulence Re>Re, . psitional

(c) Same as (b) but "short time exposure”

Canonical wall bounded flows
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Blasius b.l. Plane Poiseuille

m mu Ucp : S ﬁq\

2R

Pipe Poiseuille Plane Couette

Reynolds experiment (1983)

Same apparatus today!

1883 transitional Re
=13000

Lower Re foday due to
traffic, i.e. external
disturbances has
increased in amplitude

Transitional Reynolds numbers for the
canonical cases

Flow case Re Re,,.

Blasius U 5%/v 490

Channel U b/v 1000

Pipe U RV 1760

Couette U, b/v 360
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Introduction to flow instability

2. Linear stability theory for boundary layer flows
- Rayleigh stability theory (inviscid)

- Orr-Sommerfeld theory (viscous)

Wind tunnels for transition research

Transition prediction

Transient growth

oo bk w

Free stream turbulence

Stability definitions
(from Schmid & Henningson 2001)

E
Region:

I:  Monotonic stability
IT: Global stability

ITI: Conditional stability 1
IV: Possible instability

Rer Re; Re, Re
Flow case Reg | Re; | Re, | Re,
Pipe 815 | - o | 1760
Channel 496 | - | 5772 | 1000
Couette 207 | 125 | oo 360

Hydrodynamic stability theory

Idea: Introduce a controlled disturbance and investigate
whether it grows or decays (in time or space) for the given
flow situation

Control parameter: Typically a Reynolds number (and possible
some other non-dimensional variable depending on the flow
situation

inertia

pu-Vu  pU?/L  pUL

= = Re
uNVeiu - pU/L? i ‘

Other variables: Amplitude, wave number and frequency of
the disturbance

viscous damping

Linear theory: independent of amplitude => modal analysis

Some landmarks of classical stability theory

Rayleigh (1880) - Inviscid theory

Reynolds (1883) - Pipe flow experiments - the importance of the
Reynolds number

Orr (1907), Sommerfeld (1908) Formulation of viscous disturbance eq.

Heisenberg (1924) First eigenvalues found (Dr-thesis)

Tollmien (1928), Schlichting (1933) Solutions o OS-eq.

Schubauer & Skramstad (1948) First exp. Verification of TS-waves

Klebanoff et al. (1962) Exp. on TS-wave breakdown

Orzag (1970) Numerical solution for OS-eq. in channel flow

Fasel & Konzelmann (1990) Numerical work on OS-eq. in Blasius
boundary layer flow

Klingmann et al. (1993) New experimental results on TS-waves in
Blasius boundary layer flow




Equations of motions

Continuity equation (incompressible flow)
V.-u=0

Navier-Stokes equations

o
Plow

+u-Vul = -Vp+ uVu

In non-dimensional form

Ju
at

V-u=0 and 4+u-Va=-Vp+ Re V%

where Re= pUL/u

Disturbance decomposition

Assume linear disturbances (capital letters are mean values and
prime fluctuations around the mean)

w=U4+u
v=V 4+
p=P+yp

u', 0! p’ are small disturbances = quadratic terms may be ne-
glected.

We now assume parallel flow, i.e. V = 0. Exact for channel
flows, good approximation for many boundary layer flows!

Equations of motions (contd)

Assume that the base flow is 2D and that disturbances are 2D.
= u = (u,v) = u(z,y)er + vz, y)ey

Momentum eqs. in @ and y-directions are obtained through scalar
multiplication with ex and ¢y

ou o Q: dp 12
ot - QPJFM? Vi AHV

f _ﬁc Lm
. “I b:\/l..h
ot T or Ty = gy THE VY (2)

My =0 3)

Disturbance decomposition (contd.)

4 !
o +u) | +5a? +3 W)
ot dy
ELw?,LdM? +uh)
ox

Write out all the different terms in the equation above, noting
that the mean flow is independent of time
quadratic in the disturbance

Q|ﬁ n ﬁ ou + U wwﬁ + s ,0U
ot dx

arP Qt

Oz ox

+ Re V20U 4+ Re 1V 2/ 4)




Assume that all disturbances are zerol
U aP
gt o 4 Re V20U

U = -
dr oz

Subtract that from equation () =

ol ad  ,8U U oy
~_' ot ! [ mulHﬂM, !
or TV TV Ty T Ton T “

Same operation for egs. (2) and (3) =

fava } [ P2y
O Ly Z W peig2y
dt dx My

oy g

dx Ay

(contd.)

()

(6)

(7)

Boundary conditions for channel flow

y=h
At y =0 and y = h we get
y=0
=0 (impermeable wall)
@,._.
W'=0  (noslip)= — =0
dy

The latter is given from

Mg
dx Ay

M

and since ' = 0 at the wall = du//dz = 0 at the wall as well.

v -disturbance equation

3 equations (5), (6) and (7), 3 unknowns u’, v/, p’ !

Eliminate p’ by taking $ (5) - 2 (6)

By eliminating u’ using eq. (7) we obtain an equation with only

v’ unknown

= Re V%

Am + U a v v — \_::.m.:

ot dx dx

@®)

Equation (8) needs boundary conditions, 4th order equation =

4 BCs needed.

Normal mode analysis

Analyze eq. (8) in terms of normal modes

o = .mﬂucvm,mﬁ«...al?.ﬁu

where i is the imaginary number and

o(y) is a complex amplitude function

« is the wave number (= 27/A where XA is the wave length)

w is the angular frequency

We can also define the phase speed of the wave as ¢ = w/a




Normal mode analysis - spatial growth

Chose spatial or temporal approach, i.e. a disturbance that is
growing in space (x) or time (t).

Spatial growth = a = ar +ic; and w is real
Temporal growth =- w = wyp +iw; and « is real
or c=cr+ig
Why?
ng?r.,_\fs.: — mh._T.:,._.Sw.u_.h\_la__._ — .Lg?:iehuml....h_\m_
= a; <0 exponentially growing disturbance
a; >0 exponentially decaying disturbance

The Orr-Sommerfeld equation

Put the normal mode assumption T_.z;_.h\_i_,‘: into eq, (8)

J _
— —ic
at
a .
e Ty
Ox
a d
— — =0
Ay dy
for instance V2 = &5 4+ 0% — 424 p2
dx dy

This gives us the so called Orr-Sommerfeld (OS) equation

1

D2 — 02)25
w.DmmA a”)7D

(U —c)(D?2— a5 - U"5 =

Normal mode analysis - temporal growth

For the temporal approach, i.e. a disturbance that is growing
time (1).

muum?\m.l?_hu — m@Q?m,InD — mﬁ.,.?m,lci_.umcﬁ__

= ¢ >0 exponentially growing disturbance

¢; <0 exponentially decaying disturbance

The Rayleigh equation

Let us investigate the OS-eq. when Re — oc = Rayleigh eq.
(U—-e)(D?—a)s-U"s=0

BC 7 Only two BCs can be retained! ©#(0) = @(h) =0

Rewrite :

T
(D? — a?)b — U s-0

(U —¢)

Multiply with #*, the complex conjugate of ¢ and integrate the
eq. fromy=0toy=~h

\_:. )*Abw} M}v u” oo¥| d 0
U U — av) — ———vU =
Jo (U -0 Y




The Rayleigh equation (contd)

By using partial integration we get

h h e h
*D28dy = {o* Dol — Y Didy = — 5|2
\o o*D%dy = {v* Do}, [ (D7) Dody \o | D5 [2dy
=0

using ¢ = ¢p + ic;

1 1 U—cp +ig _ U —c¢r+ic;

U—c¢  U-=c¢ —ig - (U = ¢er —ie)) (U — ¢p + i)~ (U —e)2+ nw

we then can write

h ~ ~ U"(U = e +ic;)
D12 4+ o252 4 Y —er )
JA T o oo+ S

_mi dy =0

The stability of various
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profiles

No inflection
point => stable

—

No inflection
point => stable

wb?mooaos point

min U’'=> stable

—

Inflection point
w v max U’=> unstable

U

The Rayleigh equation (contd.)

Taking the imaginary part of the equation

h U'e; o
_ ¥ dy =10
\o Tq — )2 +aw_: v

or
h U X
! e 2llf|dy=20
A__,\Q —HAM.\._.|Q__.VM+OW_~_ H_ dy

This means that U” must change sign in the interval if ¢; # 0,
i.e. U has to have an inflection point in the interval. This is
Rayleighs inflection point criterion !

Fj@rtofts criterion says that for the inflection point to be unsta-
ble, the shear, i.e. U’ has to have a maximum at the inflections
point! (see Schmid & Henningson, page 21).

Inflectional instability of jet flows

Rayleighs stability criterion (1880) explains why
jets and wakes are very unstable, they have inflectional

mean velocity profiles!

Inflection points
with max shear




QuickTime™ and a
decompressor
are needed to see this picture.

Example: channel flow

Boundary conditions at both channel walls:
v=0 Dv=0

=Trivial solution V=0
Other boundary conditions needed!
symmetric mode =>Dv=D3¥=00onCL

anti-symmetric mode => v= D= 0on CL

How to solve the OS-equation ?

The solution o the OS-equation can be seen
as an eigenvalue problem.
Input data: Mean velocity profile, BC, Reynolds
number, a ().
Output: Eigenfunction v{y), eigenvalue o (o).
Solution method: Shooting method

Spectral method

Example: channel flow - symmetric mode

Critical Reynolds Neutral curve, a; =0
=2 7t f/Ug¢, number

03 F \
02 b

ranch IT stable

unstable
0.1 = stable
branch I
0 | |
103 104 10° Re
Re = 5772

What happens at high Re ?




How do we verify the theory ?

Introduce a single frequency 2D wave with a
vibrating ribbon (old method) or through a
thin, long spanwise slit connected to a
loudspeaker (current method).

Measure the development of the wave amplitude
in the downstream direction. Check also the
eigenfunction (phase and amplitude)!

Amplitude functions - channel flow
Re=1600, »=0.40

0.8

0.6

0.4

abs(u)/umax, abs(v)/umax

0.2

0.0
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 04 0.6 0.8 1.0

y/b

Experimental channel set-up
(P. Elofsson, PhD thesis 1998, KTH)

~ 1 Here two oblique vibrating ribbons.
s— = = Only red part is vibrating.
Metallic ribbons are fed with
AC-current and are located in the
magnetic field of permanent magnets

Amplitude function for channel flow
(Re=1600, ©=0.42, x/b=40)

>\>30X o.ml. - ¢

0.0 1T—T—TT—TT
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aaaaaa

180 =
phase

80 —
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Amplitude and phase development
(Re=1600, ©=0.42)

MTL wind tunnel for stability and
transition research

honeycomb+

el T 20043 (theor il
Ma H_.o.. (a) . i A v\v el -
E 1.5 T Q._HOOA.W ANX_UV
20 T
o] s c=0.35 (theory)
N S c=0.33 (exp) . Low turbulence (<0.03%) and sound noise level
oo e - Low vibration level
el - Velocity and temperature stability at low velocities
B, . N
Lecture 1 MTL ._.mm_..w mmﬁ._o: looking upstream

1. Introduction to flow instability

2. Linear stability theory for boundary layer flows
- Rayleigh stability theory (inviscid)

- Orr-Sommerfeld theory (viscous)

Wind tunnels for transition research

Transition prediction

Transient growth

ook w

Free stream turbulence
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Traversinyg slit

Experimental set-up
(J. Fransson Ph.D. Thesis 2003, KTH)

Traversing

mechanism

&= 1850

x =205

Hot-wires

Disturbance
source slots

Ceiling

Pressure coefficient and velocity
profiles near leading edge

na
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.

0 ft 2 B e I

1] Ei 20 120 160 300
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g edge 9 Y Experimental boundary layer profiles
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Boundary conditions for the
Blasius boundary layer

Boundary conditions at the wall

U(y)
v =0 aty=0 v\a
o'
— =0 aty=0 X
dy

and boundary conditions in the free stream
v -0 as y— oo

an'
dy

—0 as y—

Example of disturbance profiles

x: exp amplitude, - - - theory
o: exp phase, theory

Stability diagram for Blasius b.l.

Neutral
curve T

250 ¢

200 |
m.

_uu8<\C8N 100 =

100 |

50 b

0 s L . L i t i
0 200 400 600 800 1000 12000 1400 1600

branch I  branch IT

Behaviour of disturbance profiles as y—><

1

iaRe

(U - e)(D? - a?)o - U"s = (D? - a?)?%5

Solve the OS-equation in the free stream where U = 1 (i.e. Ux)
= U"=0

This gives the following form of the OS-equation:
{D? — [a® 4+ iaRe(1 — )]}(D? - a?)i =0

Solution:
——

0= mmﬁ.@_ 4+ Be W4 Ce Vol tiaRe(1—c)y |_|bml(..b.ﬁwn_u.___binﬁ“_.I«..v.,c
y—oo =(C'=0 small if Re is large

y—noo =A=0

Asy — o0 ~ e~ and Do ~ —ae~ which gives || = [§] ~ e~®Y
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Growth

and phase development

Neutral stability curve for Blasius b.I.

with experimental points from MTL
(Klingmann et al. Eur. J. Mech/Fluids 1993)

parallel theory
non-parallel theory
MTL-experiments

0 . _ ’ . : _ . . y . .
500 1000 1500

R
The influence of non-parallel effects (Vz0) are small !
Local analysis sufficient for Blasius b.l.

oo (Saric & Nayfeh, 1975)

600 800 1000

Neutral stability curve for flat plate b.l.
for various pressure gradients

¢ —— Adverse pressure gradient
1 ——  Blasius boundary layer

0.4 Favourable pressure grad.

03 T

0.2 7

0.1

0 % %
102 103 104

Hﬂmm*




— _
traversing mechanism and probe support \

Setup for laminar separation bubble

experiment
(C. Haggmark, Ph.D. thesis 2000, KTH)

Q contoured wall
]
iy

—— 1 —
.,..,..,....W.H.HH Iol o o

/

continuous suction y
i u

{—
disturbance
— ——_ source

separation bubble 4

Experimental setup - laminar separation
bubble

u
separation bubble
Ro— 5
o —
% - 8ED xz 710 flat plate
............... I T
Aot e e P e e e e S e e e A i)
wind tunne wall
_I_H.._.__:n
anemometer |
Computer [— - \
with &/ D Leoudspeakiers | W Pressusize
and O/ i Amplificr | smaoke tank
boards _
Smoke
generator

Boundary layer development

L]

tn

81,8 (Y Hyp () f%

[
|

200

400 Gl B0 1 2 400 00 H00 1004

X (mm)

Flow visualization of forced instability
waves




Disturbance velocity profiles

15 _ T T q0.03
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Lecture 1
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Introduction to flow instability

2. Linear stability theory for boundary layer flows
- Rayleigh stability theory (inviscid)

- Orr-Sommerfeld theory (viscous)

Wind tunnels for transition research

Transition prediction

Transient growth

o0 bk w

Free stream turbulence

X X

r

1075 ks : ; =
600 700 800 900 1000

X (mm)

Figure 9. Amplification curve of forced two-dimensional instability wave in
the separation bubble with f* = 83.3 Hz.

Transition in boundary layer flows

2D 3D Turbulent Fully
TS-waves breakdown spots turbulent flow

3

Re

cr




Set-up for flow visualization

Smoke slot Leading edge

\

T ;..7%.44/.////?//////’/////4!

Blower
Smoke
generator :
Pressure
chamber

Transition prediction with the eN-method

Idea: Assume that transition occurs where the
linear eigenmodes (waves) have reached a certain
amplification from the start of amplification.

Describe this amplification as eN.

Experiment shows that, in low disturbance
environments, the onset and end of transition are
about amplifications (N) of 8 and 11, respectively.

Transition is often said to be at N=9.

Smoke visualization of TS-waves
and K - breakdown

F=168
U =75m/s
o0

Illustration of the eN-method

In(A/A)

10

m |

6 envelop 30

/
4 40
60
2 \Q
F=100
0 / |
0 500 1000 1500 2000

R=(Ux/v)!/2




By pass transition with Tu = 2.2 % 1
(Matsubara & Alfredsson, 2001) Lecture

—

Introduction to flow instability

2. Linear stability theory for boundary layer flows
- Rayleigh stability theory (inviscid)
- Orr-Sommerfeld theory (viscous)

3. Wind tunnels for transition research
4. Transition prediction
5. Transient growth
S — f#arm.ril 6. Free stream turbulence
——p Flow direction
Transition prediction at Failure .&" modal wave theory to
high turbulence levels predict the transitional Re
O_Umm?o:o? At high E%Em:g levels (Tu) transition Flow case Re Re - bm?
occurs earlier corresponding to a smaller N-factor.
Idea: Correlate the N-factor with Tu ! Blasius U_8*/v %500 490

oo}

Experiments show that: | N=8.4-2.4 Tu Channel Uerb/v 3772 1000

Pipe U RV oo 1760

But of course it has nothing to do with the physics !
Couette U, b/v o0 360




Three different disturbances
(Grek, Kozlov & Ramazanov, 1984)

TS-waves streaks spot
low amplitude medium amplitude Z%: oam_:caw
disturbance disturbance isturbance

Two different instability mechanisms

Modal growth Non-modal growth

* Theory - inviscid
Ellingsen & Palm (1975)
Landahl (1980)

+ Theory - inviscid
Rayleigh (1880)

+ Theory - viscous

Orr (1907)

Sommerfeld (1908)
Tollmien (1928)
Schlichting (1933)

Orzag (1970)

Fasel & Konzelmann (1990)

+ Theory - viscous
Gustavsson (1991)

Schmid & Henningson (1992)
Butler & Farell (1992)
Luchini (1996, 2000)

- Experiments

Grek, Kozlov & Ramazanov (1984)
Breuer & Haritonidis (1990)
Klingmann (1991)

Elofsson et al. (1998)

- Experiments

Schubauer & Skramstad (1948)
Klebanoff et al. (1962)
Klingmann et al. (1993)

Two different instability mechanisms

Modal growth Non-modal growth

(staggered or aligned)
* Breakdown

Tollmien-Schlichting waves |  * Streaky structures

Exponential growth ~ e* - Algebraic growth ~ x5
Amplitude # 1- 2 %  Amplitude 10 %
3D deformation * Localized high frequency

) wave packet
Formation of A-structures P

« Local breakdown to
(turbulent spot)

t=t =2t =3t t=4t,

Racss

4wty

transiently
growing

exponentially
decaying




Main results from theoretical work on
transient, algebraic or optimal growth

1. Elongated streaks most amplified (o = 0)
2. Disturbance energy grows proportional to x

3. Amplitude maximum in centre of boundary
layer (compare TS-waves)

4. Spanwise scale close to boundary layer
thickness

Experimental set-up
(P. Elofsson, PhD hesis 1998, KTH)

o Camera

) screen
hot-wire -

flap

tank ] shut-off valve
&

blower

smoke-
generator

loudspeakers

A-A flat plate
smoke slit . slit : ; /
| — (R
a Tn | I |
- Y

Principle of oblique transition

A

NS
Pa

-1

BN

Wave| ~ exp[i(ax + Bz - ot)]

Wave, ~ exp[i(ax - Bz - ot)]

Eigenfunctions for one oblique wave -
theory and experiments

8

Uss2mssl o x=210mm 270mm 510 mm |

F=106

2

Q\@ I3 H :,.: __.: H: .‘_.:

i i p
0.0 1.0 20 30
D2




Deacy of oblique wave
0 :exp.
—— theory

00 400 500 610

Oblique transition in BBL (DNS)
(S. Berlin, PhD thesis 1998, KTH)

o0k w

Lecture 1

Introduction to flow instability

. Linear stability theory for boundary layer flows

- Rayleigh stability theory (inviscid)
- Orr-Sommerfeld theory (viscous)
Wind tunnels for transition research
Transition prediction

Transient growth

Free stream turbulence




Set-up for flow visualization of
FST induced by-pass transition

Smoke slot | eading edge

\

| 185mm| ~1600mm | \

Flow
-

B e S

Smoke

generator Turbulence grid

Pressure
chamber

By pass transition - the linear wave mode scenario

is by-passed

u (mds)

Streamwise velocity for varying y

y/ 8 *=17.8 (Free stream)
12 AN\ P AW A e AN MMy o, ™ oAy
178

10 [

0 50 100 150 200

Streaky structures and turbulent spots
(Matsubara & Alfredsson, JFM 2001)

FST induced transition-
various stages

* Receptivity

* Streak formation and algebraic growth

+ Secondary instability

* Turbulent spot formation

» Spot growth, merging and formation of a
turbulent boundary layer




FST induced transition FST induced transition

Turbulent spot production

Tu=53%

U =2m/s
Q

FST induced transition
Secondary instability

Mean and fluctuating velocity development

Mean velocity Velocity fluctuations




Amplitude development

experiments

and spatial non-modal growth theory

Disturbance amplitude

Disturbance energy growth

Intermittency detection scheme
(Fransson et al, JFM 2004)

Intermittent velocity
signal

1.0 _ T x10° . . . _
x o\ Detectionsignaland )y "M
[e] — . N
MO.mn _m_ - AMM o 1 10 detector ._HCBO.:OS ¢ M 400 600 B0 1000
x= 500 mm S {ish
m A x=600 mm \WA
0.6 _ - o
s | A x=700 mm =] 10 i
/S Luchini (2000) m . _
£0.4r [ ) {1 € Method to determine ||
[ O o o b = w«f
> nr,.n_. c ol = 5 - threshold value s .
0.2 o 2l .
f/./
-0 1 2 3 4 5 8 T TR
<\m* s

100

10

AZ;,/ &

Maximum growth in algebraic
growth theory (e.g. Luchini JFM 200!

o\

0.0 0.2 0.4 0.6 0.8

Re,

1.0x10¢8

Energy growth and intermittency

Energy growth
0021 A ﬁ a)
0.015
0.01 ﬂﬁu
0.005
b :
10 125 15
x10°

Intermittency function

0.8

0.6

0.4

0.2

1.5

W&x \Wmh. =0.5
Transition location
where y=0.5




Streamwise development of energy

y=1.4¢%"

Transition prediction
(Andersson, Berggren & Henningson, Phys Fluids 1999)

Disturbances in boundary layer are assumed to be

0.025 T
Increasing Tu proportional to input (i.e. linear receptivity) and grow as
7§ 0020 ) A(x)= C - Tu - Re, /2
2 "y . .
€ 0.015 - Assume that transition occurs at a certain amplitude (when
2 / : \ secondary instability grows exponentially)
w il A// AN 1/2
o.00sHlllr /7 i Solve for Rey,.
| Rey, = (A;/C)% - Tu™®
0980 0.5 1.0 15x10°
. . NNX .OX
Transition Reynolds Number
. Passive control with roughness elements
1.0x10 _ _ _ _ _ _
O Active grid
0.8f ® mq__”a A T
0 ona® Observation: TS-waves grow slower
g 08 in FST affected boundary layer 12!
em -
g 04
0.2k Use of streaks to control
TS-waves ?
0.0




Streak generation with roughness
(Fransson et al. Phys Fluids 2004)

-1/2 0

streamwise
vortices low speed streak

,,/ \\\\

igh speed

boundary layer

55 mm

70mm ¢

S500mm x=200mm x=100mm x

X

Flow visualization of streak control
(Fransson et al. 2006, Phys Rev Lett.)
without dist. with dist.

No streaks

>

Streaks flow direction

Streaks

No streaks

1.5 ——
® No roughness
_ | .
T 05
Sy
=~ 0
S
L S
g
<057
.mc ot Increasing
roughness height
-1.5 ¢
-2 :

200 300 400 500 600 700 800
Re

Conclusion and questions

* Transition in boundary layers can follow different
routes an we have a fairly good understanding of the
routes but still not the transitional Reynolds number !

*+ We do not know how the transition route affect the
turbulent boundary layer ?

This is important for both experiments and simulations
of boundary layer flows !




