

Issues in Experiments - part2

Facilities and wall shear stress measurements

Material prepared by Jean-Daniel Rüedi and Alessandro Talamelli

Topics

- High Reynolds number experiments
- Issues with facilities
- Wall shear stress measurements

HIGH REYNOLDS NUMBER EXPERIMENTS

- High Reynolds number data required for fundamental turbulence research and flows of industrial interest
- Need for data with simultaneously
- High Reynolds number
- Resolution of all scales
- Well converged statistics

Minimum Reynolds number

Overlap region of the log law:

Approx: 300 < y+ < 0.15 R+

1 decade of y^+ in the Logarithmic region

- R+ > 20000

$$\frac{u}{u_\tau} = \frac{1}{\kappa} ln(y^+) + B$$

How to get high Re?

- High velocity (Limited by compressibility)
- Large size (Good resolution)
- High density (Pressurized facility)
- Low viscosity (Cryogenic facility)

High density experiments

- $D \approx 13$ cm
- L/D = 200
- High pressure (about 200 atm)
- Extremely large Re range : Re ≈ 5000 38 x 10⁶
- Very small viscous length scales

Zagarola and Smits, 1998

Cryogenic experiment

- axisymmetric jet and pipe geometries (HePipe, \mbox{R}^{\star} up to $3.10^{5}\mbox{)},$ very High Reynolds (up to $2*10^7$) in
- Very small viscous length scales

Large experiment

Long Pipe at CICLoPE, University of Bologna (in construction)

- Diameter: 0.9 m
- Length: 120 m
- Maximm R+: 50000
- Viscous length scale: > 12 µm
- Resolution of all scales
- Friction from pressure gradient
- Fully developed flow
- Mean velocity
- Higher moments

NORDITA

Outdoor experiments

- SLTEST Facility, UTAH salt flats
- Very high Reynolds number
- Resolution of all scales
- Large variability due to the nature of the flow

ISSUES WITH FACILITIES

Flow quality

- Flow homogenity
- Flow angularity
- Turbulence intensity Noise level
- Temperature stability
- Velocity stability
- Pressure gradient control

Close loop Wind tunnel

- Test section can work at ambient pressure (easy access with sensors)
- High flow quality
- Optimal flow control
- Need of cooling to keep temperature constant

Open loop Wind Tunnel

- Simpler and cheaper than close loop wind tunnel
- Limited control of the flow conditions
- Dust contamnination
- More power required for given speed
- Test section at ambient pressure (Blowing)
- Test section at low pressure (Suction)

TA OLO

Flat plate versus wall flow

- Clean flow developing on the flat plate
- Easy conditioning of the surface
- Surface temperature generally equal to flow temperature
- Blockage under the flat plate
- Flow developing on the wall
- Easy access trough the wall
- Lot of space for bulky elements outside of the tunnel
- Use of the full height of the test section for the flow

Flow control

- Fan regulation
- Stable flow conditions over long time period for good statistics
- Velocity control
- Temperature control
- Reference velocity and temperature measurements

Inlet flow conditions

Turbulence manipulators

- Perforated plate
- Homogenization of the mean velocity
- Honeycomb
- Elimination of large eddies, flow angularity
- Screens and settling chamber
- Small scale mixing to homogenize the flow
- Decay of the small eddies

Contraction

- The design has a large impact on the flow quality
- Flat velocity profile
- No flow separation for low turbulence level
- No improvement of the flow quality for contraction ratio greater than 9:1
- Zero curvature at inlet & outlet

MATCHED-CUBIC -- FIFTH-ORDER

- Gentle curvature after the inlet
- Concave curvature destabilize the flow
- Danger of flow separation -> high rms

C=9

CENTER & Û ZERO LEVEL

2 cm ---

- Stronger curvature near the outlet
- Convex curvature stabilize the flow

Boundary layer tripping.

Orlu 2009

- origin of the turbulent BL Fix the transition point and the virtual
- Ensure span-wise flow homogeneity
- different velocities Ensure constant tripping position at
- of the tripping effect (Chauhan et al The shape factor H is a good indicator
- Issue for DNS simulation of boundary layer flows

Pressure gradient control

- Mobile roof panels (stream-wise and span-wise)
- Constant free-stream velocity
- Zero pressure gradient
- **Measurements**
- Pressure taps
- Velocity traverse

- Target pressure gradient for ZPG experiments O(0.1%)
- A test performed in the NDF at IIT (Nagib et al 2009) showed triction velocity of about 4%. that a pressure gradient of 4% results in a change of the

Blockage

- Asymmetric blockage due to traversing system, support, etc generate circulation around the flat plate
- The circulation increase the angle of attack and can lead to leading edge separation
- Control of the circulation using a flap at the trailing edge of the flat plate

Diffuser

- Long diffuser
- Prone to large scale separation
- Separation affect the flow quality in the test section
- Turbulence generators may have to be installed near the flap to avoid flow separation in the diffuser
- Detached flow from models can also lead to diffuser separation
- Split diffuser
- Create little more pressure drop that long diffuser
- Compact
- Less sensitive to inlet flow conditions
- Separation, if any, is localized, hence has less influence on the flow quality

Noise level

- Noise source
- Fan noise
- Flow generated noise
- Noise reduction
- Sound absorbing material
- Acoustic mufflers
- Requirement for the MTL
- prms < 0.00015*q
- (84dB at 60 m/s)
- 1/10 of the minimum turbulent pressure fluctuation level

Tsuji et al. 2007

MTL at KTH, Stockholm 🚐

- Maximum velocity: 69 m/s (empty test section)
- Mean flow uniformity < 0.1%
- Turbulence intensity < 0.03%
- Temperature stability < ±0.1°C
- Honeycomb, 5 cleanable screens and 9:1 contraction
- Acoustic level 83 dB at 60 m/s
- Flat plate at mid-height
- Long diffuser

NDF at IIT, Chicago

- Test section $1 \times 1 \times 10$ m (H × W × L)
- Maximum velocity: 110 m/s
- Mean flow uniformity < 0.1%
- Turbulence intensity < 0.05%
- Motorized ceiling for pressure gradient control
- Honeycomb, screens and 9:1 contraction liagnostic Facility
- Flat plate at mid height
- 1:3 Split diffuser

HRNBLWT in Melbourne

- Test section: $1 \times 2 \times 27 \text{ m} (H \times W \times L)$
- Maximum velocity: > 30 m/s
- Ret: 20'000 @ 30 m/s
- Visocous length scale 15 µm @ 30 m/s

- No diffuser

Long pipe at CICLoPE, Bologna

- **Expected characteristics**
- Test section: $0.9 \times 115 \text{ m} (D \times L)$
- Maximum velocity: > 65 m/s (R+ > 65'000, Power: 340 kW)
- Viscous length scale 11 µm @ 38 m/s (R+=40'000)
- Resolution of all scales with hot-wires
- Fully developed flow (Mean velocity, higher moments)
- Friction from pressure gradient
- Temperature stability $O(\pm 0.1^{\circ}C)$
- Velocity stability O(±0.1%)
- Acoustic level < 87dB (69 m/s)
- Honeycomb, 5 cleanable screens and 4:1 contraction

WALL SHEAR STRESS

NORDITA

Direct techniques

- No hypothesis on the velocity profile
- Pressure drop in fully developed pipe (channel) flow
- Oil film interferometry
- Wall balances
- Momentum technique

NUA OLDE

Indirect techniques

- Hypothesis on the velocity profile
- Calibration with a reference shear flow
- Preston tube
- Clauser plot, profile fit

 $\frac{u}{u_{\tau}} = \frac{1}{\kappa} ln(\frac{y \ u_{\tau}}{\nu}) + B$

- Wall fence
- Wall hot-wire, pulsed wire
- Wall film, MEMS film
- Micro pillar, micro fence
- Liquid crystals
- · ETC...

Near wall measurements

- Rely on the existence of a linear viscous sub-layer bellow y+ = 5 (3.5)
- Measurement techniques

 $U^{+} = y^{+} - \frac{1}{4}\sigma y^{+}$

- Hot-wires
- Optical techniques
- · (μ)LDA
- · (μ)PIV

Fransson et al. 2009

The viscous sub-layer is very thin at high Reynolds number, hence making measurements in this region fairly complicated

MAOIOE

Mean wall shear stress

- Crucial for the scaling in inner variables

 Von Karman "k" is NOT constant, hence profile based techniques should only be used
- Direct techniques are the only solution as long as one don't have a clear understanding of the behavior of the Karman "k"

with great care if at all

Nagib and Chauhan 2008

Wall shear stress variability

Span-wise wall shear stress variation A proper setup allows very good span-wise homogeneity Very sensitive to experiment setup

Momentum integral method

- Does not require fully developed flow
- Difficult to use in practice
- Limited accuracy

$$\frac{\overline{\tau}}{\int_{0}^{2} \frac{d\theta}{U_{\infty}^{2}}} = \frac{d\theta}{dx} + (H+2)\frac{\theta}{U_{\infty}}\frac{dU_{\infty}}{dx}$$

Wall balances

- Flush mounted elements
- Sensitive to alignment, gap size, pressure gradient and vibrations
- Sensing element size
- Large to be sensitive
- Small to measure local skin friction
- New development in MEMS balances
- Favorable scaling of errors at micro scale

Pressure drop

Balance between wall friction and pressure drop

$$\overline{\tau} = \frac{\Delta P}{2} \frac{R}{L}$$

- Only applicable in fully developed flows
- Correction for channel
- Care must be taken with the tap design for the static pressure measurement

Oil film interferometry (OFI)

- Measurement of the thinning rate of an oil film
- Monochromatic light source
- Digital camera
- Glass surface
- Silicone oil
- Surface temperature sensor

$$\overline{\tau_w} \ k + \overline{\tau_w} \frac{h_0}{\Delta h} = \mu \ u_k \frac{2\sqrt{n^2 - \sin^2 \alpha}}{\lambda}$$

OFI - Measurement procedure

- temperature Independent calibration of the oil viscosity vs
- Spatial calibration with a target
- Acquisition of the images
- Analysis of the fringe spacing vs time

OFI - Oil viscosity calibration

- Thermo-regulated bath
- Capillary viscometer
- Optical barrier or stop watch
- Reference temperature sensor
- Accuracy ≈ 0.3%

225 230

±0.3%

OFI - Temperature measurements 👯

Evaluation of the surface temperature

$$\frac{\Delta T_{(oil-air)}}{\Delta T_{(oilfilm)}} \simeq O(10^3)$$

Thermistor	RTD (PT100)	Thermocouple	Туре
Resistor	Resistor	Junction voltage 1.0-2.2°C	Principle
0.1-0.3° <i>C</i>	0.03-0.3° <i>C</i>		Accuracy without calibration
Small	Large	Small	Size
Small Self heating	0.03-0.3°C Large (Self heating)		Size Danger

OFI Analysis method

- XT, Wavelength, Peak distance
- used correctly Very good agreement between the methods is obtained when
- formation of the oil film Initial transient due to the
- user-dependent and can lead to a fringes (XT method) is very The manual selection of the large scatter of the results

OFI - Time and spatial range

NORDITA

- due to the formation of the oil film Transient apparent decrease of the wall shear stress
- Potential surface tension effect at the edge of the

Fluctuating wall shear stress

- Characteristics of the signal
- Long tail PDF
- $S \approx 1, F \approx 4$

$$au'/\overline{ au} pprox 0.4$$

Calibration range

$$0.3-3 \overline{\tau}$$

Wall wire devices

- Calibration in a reference flow
- Measurement of the mean and fluctuations
- Problems:
- Height of the sensor limit its use
- Heat transfer at the wal

Wall film devices

- Calibration in a reference flow
- fluctuations Measurement of the mean and
- Problems:
- Heat transfer trough the surface
- Surface temperature

.15 mm (.006)

1.5 mm (.060) Dia

Micro pillar

- Institute of Aerodynamics, RWTH Aachen University
- pillars by the flow near the wal Principle: Optical measurement of the deformation of
- Static calibration in a reference flow
- Dynamic calibration using a magnetic field

MEMS surface fence

Principle: Deformation of an element by the flow Static calibration in a reference flow Micro-sensor and actuator technology center TUB, Berlin

Micro-Optical sensor

Commercially available from MSE Frequency proportional to the velocity gradient Micro-Optical Sublayer Shear Stress Sensor, MSE

Measurement height: 75 μ m and 135 μ m

References 1/2

- K. A. Chauhan, P. A. Monkewitzand and Hassan M Nagib, 2009: Criteria for assessing experiments in zero pressure gradient boundary layers. Fluid Dyn. Res. 41.
- H. H. Fernholz, G. Janke, M. Schober, P. M. Wagner and D. Warnack, 1996: New developments and
- Measurements with Hot Wires in High Reynolds Number Boundary Layers. 62nd Annual Meeting of the APS J.H.M. FRANSSON, N. HUTCHINS, R. OERLUE, M. CHONG and ICET TEAM, 2009: Turbulence applications of skin-friction measuring techniques. Meas. Sci. Technol. 7, 1396-1409
- J. Fluid Mech. 633. S. Grosse and W. Schroder 2009: Wall-shear stress patterns of coherent structures in turbulent duct flow

Division of Fluid Dynamics, Minneapolis.

- Wandreibungsfeldern in Luftstromungen. PhD thesis, Technische Universitat Berlin. 6. Janke, 1994: Uber die Grundlagen und einige Anwendungen der olfilm-interferometrie zur Messung von
- F. Jiang, Y. C. Tai, B. Gupta, R. Goodman, S. Tung, J. B. Huang and C. M. Ho. 1996: Surface-micromachined
- A.V. Johansson and P.H. Alfredsson, 1983: Effect of imperfect spatial resolution on measurements of wall-bounded turbulent shear flows. Journal of Fluid Mechanics 137, 409-421. shear stress imager. In IEEE Micro Electro Mechanical Systems Workshop.
- G. J. Kunkel and I. Marusic, 2006: Study of the near-wall-turbulent region of the high-Reynolds-number
- boundary layer using an atmospheric flow. J. Fluid Mech. 548.
- H. M. Nagib and K. A. Chauhan, 2008: Variations of von Kármán coefficient in canonical flows. Physics of L. Löfdahl, V. Chernoray, S. Haasl, G. Stemme, M. Sen 2003: Characteristics of a hot-wire microsensor for time-dependent wall shear stress measurements. Experiments in Fluids 35 240-251.
- H. Nagib, A. Smits, I. Marusic and P. H. Alfredsson and ICET Team, 2009: I CE T International Collaboration on Experiments in Turbulence: Coordinated Measurements in High Reynolds Number Turbulent Boundary Layers from Three Wind Tunnels. 62nd Annual Meeting of the APS Division of Fluid Dynamics,

References 2/2

- J. W. Naughton and M. Sheplak 2000: Modern Skin Friction Measurement Techniques: Description, Use and What to do With the Data. AIAA 2000-2521
- Aerospace Sciences 38, 515-570. J. W. Naughtona and M. Shelpak, 2002: Modern developments in shear-stress measurement. Progress in
- J. M. Österlund, 1999: Experimental studies of zero pressure-gradient turbulent boundary layer flow. Doctoral Thesis Stockholm.
- Society Division of Fluid Dynamics, Minneapolis. J.-D. Rüedi , R. Duncan , S. Imayama , K. Chauhan and the ICET team , 2009: Accurate and Independent Measurements of Wall-Shear Stress in Turbulent Flows. 62nd Annual Meeting of the American Physical
- experiments Fluid Dyn. Res. 41. R. Sreenivasan and P. A. Monkewitz, 2009: CICLOPE—a response to the need for high Reynolds number A. Talamelli1 , F. Persiani1 , J. H. M. Fransson, P. H. Alfredsson , A. V. Johansson, H. M. Nagib, J.-D. Rüedi, K.
- to the measurement of skin friction. Journal of Physics E: Scientific Instruments 9 L. H. Tanner and L. G. Blows, 1976: A study of the motion of oil films on surfaces in air flow with application
- C. Tropea, A. L. Yarin, J. F. Foss, 2007: Handbook of experimental fluid mechanics. Springer
- high-Reynolds-number turbulent Y. Tsuji, J. M. Fransson, P. H. Alfredsson and A. V. Johansson, 2007: Pressure statistics and their scaling in
- boundary layers J. Fluid Mech. 585, pp. 1-40.
- M. Zagarola and A. J. Smits, 1998: Mean-flow scaling of turbulent pipe flow J.FluidMech. 373.

