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1. Introduction: Scaling and self-organization

Why scaling?

» Multi-scale fluctuations (Kolmogorov)
 Boundary layer (Prandtl)

Definitions:
+ Velocity Structure Functions: moments of velocity

differences across a distance |

+ Power law scaling: as | changes by a factor, the moment
is rescaled by a power of that factor.

Three grand mathematics principles:

+ Continuity (expansions, differentiation, etc)
* Invariance (equations, equalities, symmetry, etc)
+ Similarity (geometry, topology, etc.)
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1. Introduction: Scaling and self-organization

¢ Why is scaling important to us?

e Let us list the two research goals on turbulence:

— More accurate predictions in science and engineering
e Science: the study of mechanisms and structures
¢ Engineering: CFD predictions in industry

— Better philosophical understanding of the world around us
e In 70s, chaos and nonlinear science
¢ In 80s, coherent structures
¢ In 90s, intermittency

¢ Understanding of how turbulent fluctuations arise (or sustained, or self-
organized) may help to understand how the variety of other events are
self-organized! — Universality!
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1. Introduction: Scaling and self-organization

* A power law is a special kind of scaling law.

e Power laws appear in a wide variety of natural and man-made
phenomena. For example:

frequencies of words in most languages

frequencies of family names

sizes of craters on the moon and of solar flares
earthquakes,

the popularity of books and music, etc..

¢ What does a power law state? This is not very clear! My guess:

It reflects the presence of a set of self-organized hierarchical
structures, which is a necessity from a system perspective.

— Turbulent fluctuations may be one of the most obvious system
satisfying this principle of self-organization, compared to the
systems mentioned above.
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1. Introduction: Scaling and self-organization

¢ Scaling in homogeneous, isotropic turbulence:
— Only multi-scale (space and time) property is concerned
It is related to the dynamics of the energy cascade
It ends with a multi-fractal description
Multi-fractality is general in natural (and social) science

¢ A chapter in the study of multi-fractality of turbulence: She-Leveque
hierarchical scaling, its discovery and present status
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1. Introduction: Scaling and self-organization

¢ Why is scaling important to us?

e Let us list the two research goals on turbulence:
More accurate predictions in science and engineering
Better philosophical understanding of the world around us

¢ Unfortunately, the above two goals drive two separate trucks of
research (basic and applied). From an application perspective, scaling
may be everything one needs!

¢ Can we try to design a research strategy which will help us to achieve
the two goals simultaneously? This is what I would like to discuss
today. — Connect scaling analysis to the description of the structural
dynamics of complex, inhomogeneous flows!
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2. Scaling of intermittent fluctuation events

e Observations: nonlinear form for
scaling exponents, issue for (6v]) ~ e (€g) ~ €.
anomalous scaling

. . m=—3p+201-(3)?].
¢ Fluctuations models in energy

dissipation (or energy cascade
rate) & =p/9+21 - (3)"3)].

Log-normal model
Beta (mono-fractal) model @

Random beta model 1 1 1
D(h)=1+ci(h—3) —ca(h— §)In(h - 3),
P (bi-splitting) model () 1 3) ( 5) ’

Fhaie: 5 AH +Inln $ Hv 3
= -1}, ec= .
' In3 "3
e How can this be considered in
connection to fluid structures?
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2. Scaling of intermittent fluctuation events

¢ Hierarchical structure formulation:

— Finite amplitude of the most
intermittent event

— Discrete sequences
— Invariance among the infinite () _f ¢ =%/3 ~2/3
sequence of events € ~\% ~

Ao.ou ~ OE [t,.

ty ~ E1/302/3,

« Estimate for the amplitude epsilon- T»=—3p+2+0(p) (p— ).
infinity

 Geometrical interpretation for the =\
amplitude epsilon-infinity 7 A

e Scaling is connected to the geometry
of structures!

She et al., ZNE_.m_ 1990.
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2. Scaling of intermittent fluctuation events

e How does this formulation work for
turbulence?

— Since 1994, over 500 citations
in more than 100 journals (in
fact, #1 among PRL-published
turbulence papers of the last 45
years)

— Physicists are very enthusiastic
(astrophysics in particular), but ‘
fluid mechanical community is
not!

e Why? Homogeneous turbulence is _.
an exception in nature!
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2. Scaling of intermittent fluctuation events

A fluid mechanical picture of those extremely intermit-
tent events m?& is as follows. Associated with a strong fil-
amentary msdnﬂzqm are quasi-two-dimensional spiral mo-
tions around the filament axis with only a small velocity
component along the axis [19]. Such motions represent

This picture points out the nature of intermittency
growth. It is the tendency towards the formation of local
coherent structures that drives a strong deviation from
the mean fluctuation level. In regions of these coherent

Intermittency = Coherent motion S f 2
Hence, non-universality for . 4
anomalous scaling! More 26

intermittency near the wall where
coherence is stronger!

She et al., z&:_.m. 1990.
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2. Scaling of intermittent fluctuation events

Diftarant montants in MMD Turbulente

¢ The theory has predictive power

o

— MHD turbulence : _,.n§ ¥
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2. Scaling of intermittent fluctuation events

¢ Principle of self-organization:

Ensemble of fluctuations are H
organized around the mean or :
around the most intermittent "
events? -
e We are led to suggestions to open
minds to search for more relevant
theoretical questions!

The importance of the turbulence ensemble manifests in
ways to unambiguously evaluate statistical averages and
to establish dynamical balances (and new equations) for a
set of statistical variables.

She and Zhang, Acta Mecanica Sinica, 2009
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3. Scaling for wall-bounded turbulence

e We will survey for a few recent
theoretical work

— Goldenfeld, PRL, 2006

PHYSICAL REM

PRL 96, (44503 (2006}

log,, |
\

PRL 96, 044303 (2006} PHYSICAL REVIEW LETTERS

ina Turbulent Flow

Roughness-Induced Critical Ph

Critical Phenomena

Turbulence

Ferromagnet
Magnetization Mt h) Friction
Temperature M ~ H'?.t — 0 || Reynolds

External field M ~t# . H—0 Rough

Rough-pipe Flows
factor f(Re.[r/R])
number £ ~ [r/R]'"?.1/Re — 0
ness f~Re Y [F/R] =0

Widom scaling

Mt h) = 1P fu(h/t®)

Goldenfeld scaling

% = Re™ 1 R»ﬁ%%%u:\%@
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2. Scaling of intermittent fluctuation events

e Summary:
— Finite amplitude (rare) events are key to intermittency.

— Hierarchical symmetry represents a form of the self-
organization, which the turbulence ensemble and many other
nonlinearly driven multi-scale systems possess, in one way or
the other.

— The concept of ensemble is equivalent to that of self-
organization. Only then, RANS can make sense!

— After confident description about multi-scale property, one
needs to work on non-uniformity in space, which is everything
when turbulence production and dissipation balance in non-
trivial way.

e How should a study for scaling in inhomogeneous turbulence
proceed?

wirés, ﬂﬁMIwEB Eglﬁﬂﬂn
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3. Scaling for wall-bounded turbulence

¢ We will survey for a few recer

PHYSICAL REVIEW LETTERS

theoretical work

Induced Criti

in & Torbulent Flow

— Goldenfeld, PRL, 2006

Dhepartimert of Piyics, Unives
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7 Friction factor, one integral quantity!
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3. Scaling for wall-bounded turbulence

3. Scaling for wall-bounded turbulence

PRL 103, 264502 (2009 PHYSICAL REVIEW LETTERS

o We will survey for a few
recent theoretical work

— Tao, PRL, 2009

Critical Instability and Fric

Sware Ky Laborsary of enpore Exgiveering

= s s au au ap 2 (U 1 aU
= “ cf+<fuwﬂ+z\ﬁi+\;,v
o dx dr ax e\dr roadr :w
1 all 1 a(Vr
U Lo,
e ok dx r dr
e w;_v i H
! b = e ! with boundary conditions U(x, R) = V{x, R) = (.
— 2mh® -l
2 I
Ul r) .T - v
Three steps: ST R*
1)Determine approximate mean flow field Re dR[ & 8 2 47 44 N
with roughness; _ xJHTHm R GRE ﬂﬂg. @
2)Study its stability;
3)Determine critical Reynolds number aP 2 /320 190 . alr
and unstable modes. ||+|A 4+ - VHc 7(1)=0, -0
dx  Re\arr rar ar | ,—o
(3)

PHYSICAL REVIEW LETTERS 31 DEx

o We will survey for a few BRL 183, 264502 (2000)
recent theoretical work Critical Insta

— Tao, PRL, 2009

ity wnd Friction § ¢ of Fluid Flows through Pipes with Rough Inner Surfaces

il Armigsace Enpginevring.

e Roughness shape factor is
important!

e A new way to collapse!
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3. Scaling for wall-bounded turbulence

3. Scaling for wall-bounded turbulence

o We will survey for a few
recent theoretical work

— Tao, PRL, 2009

Neutral curves: i, o, p=RIF(r), iG(r), H(r), J(r)]elméter-—an (5)

[

PRI M), (153504 (H008)

SrTEr— TS Rprar—. ek owhm
PHYSICAL REVIEW LETTERS .A__.»z_.»x..m_x..

o We will survey for a few
recent theoretical work

— L'vov, Procaccia,

Universal Model of Finite Reynolds Number Turbulent Flow in Channels and Pipes

FE10, Tsrael

Rodenko, PRL, 2008

Kim, Moin & Moser (1987) :Ret=183
Hoyas & Jimenez (2006): Ret=2003

 pdr Oy

Sergio Hoyas and Javier Jiménez"

School of Aeronautics, Unive

PHYSICS OF FLUIDS 18, 011702 (2006)

Scaling of the velocity fluctuations in turbulent channels up to Re =2003

idad Politéenica de Madrid, 28040 Madrid, Spain

(Received 25 October 2005; accepted | December 2005: published online 11 January 2006)

Unstable modes wiey BRSHERFEAENESNEE

Simie Koy Labarsiory of Turbulesce snd Complex Sysiems

AefKF

¥

wiey BRSHERFEAENESNEE

Simie Koy Labarsiory of Turbulesce snd Complex Sysiems




3. Scaling for wall-bounded turbulence 3. Scaling for wall-bounded turbulence

25— T | Defect Law o We will survey for a few PRL 180, 051504 (2008) FHYSICAL REVIEW LETTERS T
” MMMMNM —\mnm—:_ﬂ H—JQO—\m.ﬁ_nm_ <<O—\_A Universal Model of Finite Reynolds Number Turbulent Flow in Channels and Pipes
204 s Re=650 Ue-U _ o[ %] =[] L'vov, Procaccia,
= Re=950 u D
© Re-2000 0 Rodenko, PRL, 2008
15 ; =yt We will call it LPR theory!
linear-law: U=y | Log Law or
log-law: U"=1/0.436In y +m ,_ 3 2
U 104 ower-law: 8.70(y )" | Fower Law 7 L IR A A : q
P Y /3 ) L R e — - L’vov et al (2008): “we argued
Ut =ZlnyT + B A g that the controversy between
51 K . Seps log law and power law is moot,
U™ =C[Re](y™)" [Re] 8 1 | stemming from a rough estimate
0 x mo+— B 4 1 | of the scaling function...”
£ i a
el |7 Law-of-Wall et 1
o.m._ o,; ." d_o S_o ._o_oo yu -~ _Imum ._”_JQO_J\ T_mm U_xovomma an
.<+ _ T + . .
¥ Ur=151=1v"] el | @StiMate for actual spatial
y <m1m=o:.
(Prandtl,1932; Barenblatt et a/,1993; Zagarola et a/,1997) )
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3. Scaling for wall-bounded turbulence

Zagarola et al (1997): “At
sufficient high Reynolds numbers,
the mean velocity profile in the
overlap region is found to be
better represented by a log law

PRL_I0M, (055504 { 5018 PHYSICAL REVIEW LETTERS

o We will survey for a few
recent theoretical work

L'vov, Procaccia, P
Rodenko, PRL, 2008

40 T
Re =35x1
Re = 10x10°. >

s Re=0.1x105%—,_#HA° Vizt) =« 'In(z?) + B, (1

Re = 1.0x10°—p (39 than a power law..

= B nmww%w%xlﬂ.o“ll.ﬂ .,.‘u...:t_a 63 \ : g ' l'/ke, L5 . VHizT) = C(Re, )z )R, (2)
5 el - 3T/<.| mmwm:v_mﬁ & Chorin (1998): “If this 0.1 3
SN || collection looks to you, dear reader, ol = strwt=1-¢7 /L 3
or | | like a single straight line, then we . . i
15} -| | have lost the argument...” . el T o s i
0 ST o wuw | STWT =eg: = KH32 [lkpti] (3)
10 100 1000 ” 1o¢ 108 10* | George (2007): “the idea of a . _ v — i
oum | universal log law for wall-bounded o s e e Tl W = (ST PR, ©)
FIG. 1. The Princston data exibit the splitting of the data sccording fo th flows is not supported by either the
Bl ks ud e o o e cuncs bore s cnclpe .94 theory or the data.” g NS et tont | ©* ~ 6O = RSEE )
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3. Scaling for wall-bounded turbulence

¢ We will survey for a few
recent theoretical work
— L'vov, Procaccia,
Rodenko, PRL, 2008
Ft StT+wt=1-¢, /L (3)

PRL 100, 054504 (2008)

W = (kST (©)

+ N ; ot /6
oW~k CEVETS, (e ummi ;v s

Z

oo

o _ Y1+ (1= OR&CT QR /ry (P2 = 1

"-"n

MMMS = PT \mxﬁ_w\ qﬁ_ +mm4

)

-

3. Scaling for wall-bounded turbulence

e More complex physics:
— Boundary layers
— Rough wall effects
— Buoyancy effects
— Compressibility effects
— Rotation effects
— MHD turbulence
- etc...

¢ How will a systematic scaling analysis look
like?

e How does the dynamics of structure play
in the analysis?

(8)
2Lkl (T /rw( )2
@ 1eird dey BRSRRROIANATEE @ ieird dey BRSRRROIANATEE
3. Scaling for wall-bounded turbulence
PHYSICAL REVIEW LETTERS o

PRL 1(H), 054504 {2008)

Universal Model of Finite Reynolds Number Turbulent Flow in Channels and Pipes

sit Rudenko

Department of .n.hp.zﬂ_.___z:.:__ Foln, fsrael
Stwt =g}, ef = K32/ [k tf] (5)
¢ Comments: feat
. o features:
— Progress: address properties )
of fluctuations! — Not scaling exponents, but

scaling functions (including
constants) are targets for
modeling!
— Analysis is not systematic; no
rule to follow! Extension to
more complex situations is
not obvious!

— Yet, artificial wall-function
and length function

— Good agreements with DNS
data!
mj{_

1/6
ryWT = ki VETST, Qﬁjmh:qﬁv .4
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2.Scaling for intermittent fluctuations

3.Scaling for wall-bounded turbulent flows
4.Structural Ensemble Dynamics (SED) approach
5.Application to channel and boundary layers
6.0pen questions
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5. Application of SED for channel and boundary layer flow

ST+WT =1-y.

e Mean momentum

equation :
? ST =dUT [dy™
T +
e Eddy viscosity Wt = —u'v
hypothesis: (Boussinesq, q
1877) pVT = W+ /st.
|

e Mixing length model:

(Prandt], 1932) Iy = WH/2/5T

« Von Karman log-law 18, = ky*

Classical modeling is a top-down
approach!

SED propose to determine them
closely from empirical data!

Ut =xtn(y*) + B,

Jez) s wics BRSHARGENNSLTRE
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4. Structure Ensemble Dynamics (SED) approach:

1. Existence of an ensemble Sub-ensemble decomposition,

. . !
2. Balance equations if necessary!
— mass, momentum, Essence of the
energy, etc. physics principles!
3. State _nc.:nﬁ_o:.m Solution of the closure
— main variables problem!

4. Order functions

— a combination of
correlation functions

dynamics of
fluctuation structures!

We will illustrate how LPR theory can be improved!

wiey BRSHERFEAENESNEE
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4. Structure Ensemble Dynamics (SED) approach:

m+” %A}mi... ﬁl. m+v HH.ﬂl.ﬁ.fmvfmi‘ﬁlzum._.ﬁlzu
e Length is important!
¢ Scaling analysis: Express

the energy dissipation in

terms of mean shear,

Reynolds stress and a

length scale. = W EH gHE -1 4 (-1)
e We find an expression for \ ' - ’

the length function,

depending on n.

wiey BRSHERFEAENESNEE
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4. Structure Ensemble Dynamics (SED) approach:

5. Application of SED for channel and boundary layer flow

Length Scales

Looking for the law governing the
variation of the length function.

106° o o n=z
o n=4, Dissipative length

= n=infty, Mixing length
=== xy, log-law

=
L
o e &

Dissipative Length (n=

Hﬁ+w

6 =[(—g5) /T4

S

Mixing Length (n=<<)

Iy = WHY2/8+,

Collapse in logarithm region,
an evidence for decoupling
of mean-field property from
fluctuation structures.

wirés, ﬁﬁﬂlﬁﬂﬁ B!Iﬁﬂﬁl
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¢ Now, we try to model
the dissipation length!

¢ Near-wall behavior: @ Re=400 \\
— a transition T 10— . Re-sdo PR
function 5 ol smwe
~ Its modeling calls % )
for an order 5 o6 A
function! S :

0.2+

e Discover non-trivial

0.4 4 m < o ~

Reynolds number 00 :
mﬁﬁmﬁﬂm_ 107 10" 10' 10° 10" 10° 10°
y
@ Je i) o —
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Application of SED for channel and boundary layer flow

4. Structure Ensemble Dynamics (SED) approach:

Now, we try to model
the dissipation length!

0.15

o

Re=400
Re=650
Re=940

0.107(1-2)

0.8

0.6 0.4 0.2 0.0
z

z=1-y is the distance to the center of the channel

Central behavior: 012
- 1-z7M
— A Re-dependence o 009
i
+r
: €
Geometrical S 0064
interpretation
underway! 0.03
0.00
10
mwn, m.
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e An order-function is defined 0y et
s

1
)r2 At
o It displays a few transition from
the wall to the center — rich

physics captured!

o Re=300

°  Re=400
Re=650

v Re=8940

SED Model|

Dissipation-shear ratio

Almost mncm_ to 1 in log-layer.

wirés, ﬂﬁMIwEB Eglﬁﬂﬂn
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5. Application of SED for channel and boundary layer flow

e An order-function is defined { ,M ~t

i~ srwr

1
v:|u R
o It displays a few transition from
the wall to the center — rich
physics captured!

Dissipation-shear ratio

~t

% ’ _o..o. w0 ' w w

@t -

a refined description for all Reynolds number! <<:<o

Jex) s eiey e ——
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5. Application of SED for channel and boundary layer flow

« A complete closure from SED, S +W7T = 1—y
with a specification of a length Q,PT = F
function and an order function Pt o— gt

¢ Maximum relative error:
0.5%, better than LPR.

n

+ Aﬁw._.w\%+w<mu.»

5EP = grey,

1. :

= Rendod

o R3O0 . Rpdtd)

o Fwd00
eSS0

. PyeS)
Fesitd

0 =000

—— SED Mo

Rw=650

+ Residd
Re=3000
SED Mextel

wrés, WRSRRTRR B!Iﬁﬁﬁl
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4. Structure Ensemble Dynamics (SED) approach:

wo

¢ Modeling transition
behavior for order .
functions in terms of a set _
of rational functions: ’ e

B(r)=c¢ T -+ Anlav@v:\ﬁ.

a

a: transition point »

p: sharpness of .
transition

n: transition scaling

Multiple transition points:

)= Mo Em¢n;;mé+@é%§.

JegXF wiey T —
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5. Application of SED for channel and boundary layer flow

I+ = yHdU* /dy*
BT = yT/UTdUT /dy™

¢ A sensitive comparison:

¢ Discrepancy near the

center in LPR model is & L L M
corrected! mﬁ : m
LPR Modeling o8
— SED Modeling
e This is because at the o

center, it is the turbulent
transport that balances

+

the energy dissipation. 2

The equality between the

mean-shear production 1

and the dissipation is

flawed there! T m | d y w e

wirés, ﬂﬁlemﬂw Eﬂlﬁﬂﬂn
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5. Application of SED for channel and boundary layer flow 5. Application of SED for channel and boundary layer flow

¢ A sensitive comparison: ¢ Prediction of the kinetic ene

(or rms velocity). b :
¢ Discrepancy of W near '3 ! ]
wall and S at the cente ] |
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5. Application of SED for channel and boundary layer flow

P Schlatter and Q Li, 2010
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5. Application of SED for channel and boundary layer flow

e X Chen and Q Li, 2010

The dissipation Length function:
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5. Application of SED for channel and boundary layer flow

e X Chen and Q Li, 2010
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5. Application of SED for channel and boundary layer flow

e X Chen and Q Li, 2010
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5. Application of SED for channel and boundary layer flow

e X Chen and Q Li, 2010

Eddy viscosity function
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5. Application of SED for channel and boundary layer flow

Bradshaw function
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5. Application of SED for channel and boundary layer flow

Shear-Dissipation ratio function
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5. Application of SED for channel and boundary layer flow

Schlatter and Li, 2010

Study the transition!
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5. Application of SED for channel and boundary layer flow

Good collapse at a fixed eta!
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5. Application of SED for channel and boundary layer flow

¢ X Chen and Q Li, 2010 This is an ensemble description!
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6. Summary and open questions References:

e SED is a new theoretical framework, designed to readdress the old
closure problem of turbulence [1] U. Frisch,

e Itis a platform to analyze DNS (and experimental) data.

¢ What I have shown is only the first part of SED, hamely, a systematic
revelation of spatial and parametric variations. The second part will
come to interpret the variations, which will emphasize physical
mechanisms and role of structures.

AL Smits, Log laws or power laws: The scaling in the overlap
region. Phy )
9] W.K. C

365,780

e Then, a connected study of structure-profile would become possible!

s, s there a universal log-law for turbulent wall-bounded flow? Phil. Trans. R. Soc. A

* More exciting things would come, when many complex flows
are analyzed, and laws behind the variations are revealed!
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6. Summary and open questions References:

¢ A word about controversy between log-law and power-law

J Structural Ensemble mu_.__m_:_:__:_..ﬁ.x based closure model for wall-bounded
turtulent flow. Acta. Mech. Sinica 25, T31-T36G (2009).
o It is a wrong question. Why? [11] G. Gicia. N. Gutte

it is all in the spectr

1 ,_._:_ P. Chakraborty, The turbulent mean-velocity profile:
tted (2009)

¢ There are more than one possible expansions at the limit of high in channels and pipes. Phys.Rev.Let. 100, 054504 (2008).
Reynolds numbers, and hence more than one possible leading [13] P. Bradshaw and D.H.

s, Caleulation of Boundary Layer Development Using the Turbulent
terms. Log-law or power-law can be both correct! m_\_::.é Evquation. 1.

B
¢ The real question is not the determination of the leading term, but (15 M. Ol

a consistent expansion for work out higher order terms. This is
what a beautiful applied mathematics theory should do. [16]

Flow, stion. 62, 111-135 (

, Uni

rsal sealing laws in fully developed turbulence. Phys.Rev. Lett. T2,

e SED is moving towards the direction, when underlying physical
constraint behind the algebraic structures of the order functions get
am:<ma
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