
Dr. Jean M. Favre

Scientific Computing Research Group

16-12-2010

 Visualization Support

 then,...

 now,...

In this talk,

 Summarize 15 years of experience as Visualization

Scientist

 Give examples of “Development”

 Offer some fundamental principles

 Present some parallel visualization challenges

and,

 Present current activities (in-situ visualization)

 Offer some thoughts about the future.

Education / Tutorials

 Data formatting (HDF5, NetCDF)

 ParaView (in and outside of Switzerland)

 VisIt (proposal for ISC’2011)

 AVS/Express (with CINECA)

 Molekel (real-time movie capture)

What I have pushed very hard

 Standard data formats (HDF5 and others)

 No double copies, i.e. native interface.

– The Visualization software ingests the data as-is.

 Parallel Reading is a necessary and obligatory first

step in the parallel visualization pipeline.

 Repeatable visualization (script-based with history)

 The customer is king:

– Data interpretation is the scientist’s raison d’être

– My role is [only] to provide all possible ways to interpret the

data and do “scientific discovery”

Data Interpretation is the scientist’s

raison d’être

How can the visualization scientist promote this?

 Learn the basics of the application field

 Confirm the analysis with quantitative data

 Minimize the risks of mis-interpretation (visual)

 Provide intuitive tools, designed especially for the

data on hand

Confirm visual analysis with quantitative data

Supersonic turbulence in shock-bound slabs by

Doris Folini and Rolf Walder, ENS-Lyon

Confirm visual analysis with quantitative data

“average upstream density is 14 particles per cm3…

average compression from "upstream" to "within the

slab" is about 20…

average particle density within the slab of 2x1014

= 280 particles per cm3…

One particle corresponds to about 1.6e-24 gram in our

simulations…

average density within the slab of 1.6e-24 x 280 =

4.48e-22 gram per cm3

Multiplying this average density with the total

volume of the slab at the last time (3.5e49 cm3),

I get 3.5e49 * 4.48e-22 = 1.57e28 grams

Minimize the risks of mis-interpretation

 In 15 years at CSCS, I have never put music on a

scientific video

 No ColorfulFluidDynamics (with one exception)

 Provide spatial and temporal coherence

 Explain to the scientist what the visual

representation “really” means.

 Examples:

Transparency is not a trivial to implement…

With Depth Peeling

Images by Ugo Varetto, CSCS

Issues with Camera Animation

 Difficult to follow an

object at varying speed

 How much time has

elapsed?

 How far have we

travelled?

 Motion with respect to a

fixed point of reference

 Motion of the particles

with respect to each

other

Provide intuitive tools, akin to the data

Molekel, a success story at CSCS

 Over 100K downloads in the past 4 years,

 Over 150 citations in Google Scholar in 2010

http://molekel.cscs.ch/wiki/pmwiki.php/Main/Presentations
http://molekel.cscs.ch/wiki/pmwiki.php/Main/Presentations

Issues with multi-billion cell DNS grids

Users of DNS simulations

want to see

“the data at full resolution”

Yes,

but implemented with care

Contribution of 1 cell in the X direction ?

How much data was read, isosurfaced, and never displayed in this picture?

How can we see the details of the flow?

Three options:

1. Image Wall ($$$$)

2. Zoom in (wasted I/O)

3. Read less

display only (1÷40) of the

data volume

Implement multi-resolution

or data streaming

ftp://ftp.cscs.ch/out/jfavre/Kleiser/DNS.Zoom.v1.07.avi

../Kleiser/turbulenceZ.v1.0.avi

Accept to trade-off speed for data quality

Implementation:

Very fast I/O

reading

Symptoms:

Visual artifacts

are caused by a

non-physical

boundary

Solution:

Slow I/O but

partitions with

reconstructed

ghost-cells

The biggest data we tried was still “interactive”

 409,387,412 hexahedra

and 447,294,209 nodes

on 32 GPUs

 but, we now have too

much data on the screen

and it is not very easy to

see…

Challenge:

 Can we increase realism?

Increase realism with Ambient Light Occlusion

Images by Ugo Varetto, CSCS

Parallel support for spherical grids in geo-physics

Implemented in

ParaView a

spherical to

Cartesian

mapping

and access to the

PROJ.4

cartographic

projections

Parallel support for spherical grids in geo-physics

The best

partitioning and

I/O

implementation

is of course

one which

preserves data

continuity and

is scalable

The best

partitioning and

I/O

implementation

should of

course be

scalable,…

Parallel support for spherical grids in geo-physics

But must also,

preserve data continuity,

and avoid redundancy.

Parallel support for astrophysics

Implementation of general

mappings of grids to better

support star geometries and

the associated hyperbolic

(and others) data spaces

Pause…

And a shift of paradigm

One action item in our HP2C efforts

The HP2C platform aims at developing applications

to run at scale and make efficient use of the next

generation of supercomputers. Presently this will be

the generation of computing technologies available

in 2013 timeframe.

http://www.hp2c.ch/

Replace post-processing by in-situ

 Parallel simulations are now ubiquitous

 The mesh size and number of time steps are of

unprecedented size

 The traditional post-processing model “compute-

store-analyze” does not scale because I/O to disks

is the slowest component

Consequences:

 Datasets are often under-sampled on disks

 Many time steps are never archived

 It takes a supercomputer to re-load and visualize

supercomputer data

Increase Data Locality!

• Many cores (22000 here)

• Fast I/O

• Software rendering

• Fast switch

But,

• Little memory per core

in-situ (parallel) visualization

Could I instrument parallel simulations to communicate

to a subsidiary visualization application/driver?

 Eliminate I/O to and from disks

 Use all my grid data with ghost-cells

 Have access to all time steps, all variables

 Use my parallel compute nodes

 Don’t invest into building a GUI, or a new

visualization package

We are currently prototyping two methods

• Parallel Data transfer to Distributed Shared

Memory

• Computation and visualization physically separated

• developed by JB/JS, publicly available on HPCforge

• Co-processing

• Computation and visualization on the same nodes

in-situ (parallel) visualization

https://hpcforge.org/projects/h5fddsm/

First Method: ParaView

 Wire the supercomputer to the visualization cluster

 See some published work by my colleagues John

Biddiscombe and Jerome Soumagne

ParaView

client

MPI or sockets

Cluster 0

Simulation

processes

N-1

…

0

Cluster 1

ParaView

servers

M-1

…

0

Fast switch
(Infiniband)

Second Method: VisIt

Desktop Machine Parallel Supercomputer

node220

node221

node222

node223

simulation

code VisIt

library
VisIt GUI

and Viewer

simulation

code

simulation

code

simulation

code

commands

images

M
P

I
M

P
I

M
P

I

VisIt

library

VisIt

library

VisIt

library

Link simulation with

visualization library and drive it

from a GUI

A short reminder about ghost-cells

Ghost- or halo-cells are

usually not saved in solution

files because the overhead

can be quite high, and we

need to be independent of

the # of processors

When we couple simulation

and visualization in-situ, the

ghost cells are available, for

free!

VisIt https://wci.llnl.gov/codes/visit

Users select simulations to

open as if they were files

The Simulation’s

window shows

meta-data about

the running code

Control commands

exposed by the code

are available here

All of VisIt’s existing

functionality is accessible

L
in

u
x
 d

e
s
k
to

p
 m

a
c
h

in
e

SimCode0

SimCode1

SimCode2

SimCode3

B
P

M

lo
g
in

 n
o
d

e

b
p
m

2
1

b
p
m

2
2

b
p
m

2
3

b
p
m

2
0

BPM Home

Directory

PSUB/SRUN

data

data

data

data

Launch Simulation on Big Parallel Machine

Remote VisIt process connects to

Simulation

L
in

u
x
 d

e
s
k
to

p
 m

a
c
h

in
e

SimCode0

SimCode1

SimCode2

SimCode3

B
P

M

lo
g
in

 n
o
d

e

b
p
m

2
1

b
p
m

2
2

b
p
m

2
3

b
p
m

2
0

BPM Home

Directory

~/.visit/simulations

jet00 bpm33 6666 May1

jet01 bpm20 2345 May1

VisIt GUI

and Viewer

listening

data

data

data

data

VisIt Launcher

Simulation becomes engine,

connects to Viewer
L

in
u

x
 d

e
s
k
to

p
 m

a
c
h

in
e

SimCode0

SimCode1

SimCode2

SimCode3

VisIt Engine

VisIt Engine

VisIt Engine

VisIt Engine

B
P

M

lo
g
in

 n
o
d

e

b
p
m

2
1

b
p
m

2
2

b
p
m

2
3

b
p
m

2
0

BPM Home

Directory

~/.visit/simulations

jet00 bpm33 6666 May1

jet01 bpm20 2345 May1

VisIt GUI

and Viewer

listening

data

data

data

data

VisIt Launcher

VisIt requests pull Data from Simulation
L

in
u

x
 d

e
s
k
to

p
 m

a
c
h

in
e

SimCode0

SimCode1

SimCode2

SimCode3

B
P

M

lo
g
in

 n
o
d

e

b
p
m

2
1

b
p
m

2
2

b
p
m

2
3

b
p
m

2
0

BPM Home

Directory

~/.visit/simulations

jet00 bpm33 6666 May1

jet01 bpm20 2345 May1

VisIt Engine

VisIt Engine

VisIt Engine

VisIt Engine

VisIt GUI

and Viewer
data

data

data

data

data interface

data interface

data interface

data interface

listening

VisIt Launcher

Some details on the API

 The C and Fortran interfaces for using SimV2 are

identical, apart from calling different function names

 The VisIt Simulation API has just a few functions

– set up the environment

– open a socket and start listening

– process a VisIt command

– set the control callback routines

 The VisIt Data API has just a few callbacks

– GetMetaData()

– GetMesh()

– GetScalar(), etc

Callbacks are added to advertize the data

visitcommandcallback()

visitgetmetadata ()

 Mesh name

 Mesh type

 Topological and spatial dimensions

 Units, labels

 Variable names and location (cell-based, node-based)

 Variable size (scalar, vector, tensor)

 Commands which will be understood (next(), halt(), run(), …)

visitsimgetmesh()

How much impact in the source code?

The best suited simulations are those allocating large

(contiguous) memory arrays to store mesh

connectivity, and variables

Memory pointers are used, and the simulation (or the

visualization) can be assigned the responsibility to

de-allocate the memory when done.

How much impact in the source code?

The least suited are those emphasizing the Object Oriented

principles to a maximum

Data points spread across objects require a new memory

allocation to gather the data before passing it to the Vis

Engine

:

TYPE Element

 REAL(r8) :: x(3)

 REAL(r8) :: y(3)

 REAL(r8) :: h

 REAL(r8) :: u

 REAL(r8) :: zb(3)

END TYPE Element

1

0

2

The VisIt in-situ library provides many features

 Access to scalar, vector, tensor arrays, and label

 CSG meshes

 AMR meshes

 Polyhedra

 Material species

 Ability to save images directly from the simulation

 Interleaved XY, XYZ coordinate arrays

 See a short introductory article to be published next

week at EPF-L

inSituVisualization.pdf

Advantages compared to saving files

 The greatest bottleneck (disk I/O) is eliminated

 Not restricted by limitations of any file format

 No need to reconstruct ghost-cells from archived data

 All time steps are potentially accessible

 All problem variables can be visualized

 Internal data arrays can be exposed or used

 Parallel compute nodes are already allocated

 The simulation can watch for a particular event and trigger

the update of the VisIt plots

Summary

In the past, we focused on raw data => images

4000 time-steps with fluid-

structure interaction

 <DataArray type="UInt8" Name="types"

format="appended" RangeMin=""

RangeMax="" offset="5948" />

 </Cells>

 </Piece>

 </UnstructuredGrid>

 <AppendedData encoding="base64">

_AQAAPAAAAFwAAAA==eJwVzzEoRHE

Ax/H/YDAYbjAYDDcYDIYbDAbluQwGww

0Gg+EGg8Fwg8FgeEm6JF2SLkkvSZekS

9J1SS9Jl6RL0iXpjUaj0Uf9PvOvbwgfxRA+

+SIjngohREZMQkpGmA4hR54CESXKVIip

UqNOQoMmLVI6dOmR8c0PvwT/ffQzQI5

BhhgmzwijjFFgnAkmiZhhljlKzLPAImWWW

GaFCqussf7fzgabbFFlmx12qbHHPgfUOe

SIYxJOOOWMBudccEmTK665oUWbW+5

IueeBRzo88cwLXV55451e8Q8G5lcqAQA

AAACAAABABQAAgQIAAA

We are now adding a new interaction paradigm

Solve Next
Step

Check for
convergence or

end-of-loop

Serve a
Visualization

Request?

mega-,

giga-,

peta-,

exa-scale

simulations

can now be

coupled with

visualization

now focus on source code => live images

REAL, DIMENSION(:), ALLOCATABLE :: cx

ALLOCATE(cx(numNodes) , stat=ierr)

DO iElem = 1, numElems+numHalos

 DO i = 1, 3

 cx(ElementList(iElem)%lclNodeIDs(i))

= ElementList(iElem)%x(i)

 END DO

END DO

err = visitvardatasetf(x,

VISIT_OWNER_COPY, 1, numNodes, cx)

Conclusion

We have seen a few examples of carefully crafted

visualizations

Parallel visualization is mature, but is very limited by I/O

In-situ visualization is an attractive strategy to mitigate this

problem, but will require an even stronger collaboration

between the application scientists and the visualization

scientist

