kth_logo.gif

Article

Modeling of the adsorption kinetics and the convection of surfactants in a weld pool.

Authors: Do-Quang, M., Amberg, G.A.
Document Type: Article
Pubstate: Published
Journal: Journal of Heat Transfer
Volume: 130   092102
Year: 2008

Abstract

This paper presents a comprehensive three-dimensional, time-dependent model for simulating the adsorption kinetics and the redistribution of surfactants at the surface and in the bulk of a weld pool. A physicochemical approach that was included in this paper allows the surfactant concentration at the surface and in the bulk to depart from its thermodynamical equilibrium. The Langmuir equilibrium adsorption ratio was based on the k_seg coefficient of Sahoo et al. (1988, “Surface-Tension of Binary Metal—Surface-Active Solute Systems Under Conditions Relevant to Welding Metallurgy,” Metall. Trans. B, 19B, pp. 483–491) and was finally used for calculating fluid flow and heat transfer in gas tungsten arc welding of a super duplex stainless steel, SAF 2507. In this study, the authors applied the multicomponent surfactant mass transfer model to investigate the effect of the influence of sulfur and oxygen redistribution in welding of a super duplex stainless steel.