kth_logo.gif

Article

The effect of subtalar inversion/eversion on the dynamic function of the tibialis anterior, soleus, and gastrocnemius during the stance phase of gait

Authors: Wang, R.W., Gutierrez-Farewik, E.M.
Document Type: Article
Pubstate: Published
Journal: Gait & Posture
Volume: 34   29-35
Year: 2011

Abstract

The purpose of this study was to determine how gait deviation in one plane (i.e. excessive subtalar inversion/eversion) can affect the dynamic function of the tibialis anterior, gastrocnemius, and soleus to accelerate the subtalar, ankle, knee and hip joints, as well as the body center of mass. Induced acceleration analysis was performed based on a subject-specific three-dimensional linkage model configured by stance phase gait data and driven by one unit of muscle force. Eight healthy adult subjects were examined in gait analysis. The subtalar inversion/eversion was modeled by offsetting up to 20? from the normal subtalar angle while other configurations remained unaltered. This study showed that the gastrocnemius, soleus and tibialis anterior generally functioned as their anatomical definition in normal gait, but counterintuitive function was occasionally found in the bi-articular gastrocnemius. The plantarflexors play important roles in the body support and forward progression. Excessive subtalar eversion was found to enlarge the plantarflexors and tibialis anterior’s function. Induced acceleration analysis demonstrated its ability to isolate the contributions of individual muscle to a given factor, and as a means of studying effect of pathological gait on the dynamic muscle functions.