kth_logo.gif

Artikel

Numerical investigation of wall heat transfer in turbulent reacting wall-jets

Författare: Pouransari, Z., Johansson, A.V.J.
Dokumenttyp: Konferens
Tillstånd: Publicerad
Tidskrift: Turbulence and Shear Flow Phenomena - 7
Volym:    1-6
År: 2011

Abstract

In the present investigation, three-dimensional direct numerical simulation is used to study a binary irreversible exothermic global reaction in a plane turbulent wall-jet. The flow is compressible and the chemical reaction is modeled by a single-step reaction with Arrhenius-type reaction rate, between oxidizer and fuel species. A constant coflow velocity is applied above the jet, with a temperature equal to that of the wall and a temperature dependent viscosity according to Sutherland's law is used. At the inlet, fuel and oxidizer enter the domain separately in a non-premixed manner. The inlet Reynolds and Mach numbers are the same in all simulation cases. Primarily, it is observed that heat release effects delay the transition and the growth rate of the turbulent wall-jet is influenced by the reaction through temperature-induced changes and density variations. The wall heat flux is increased, however the corresponding Nusselt numbers decrease with increase of heat release.