kth_logo.gif

Licentiate seminar

Numerical computations of the unsteady flow in a radial turbine


Defendant Main Advisor Extra Advisor Date
Fredrik Hellström Laszlo Fuchs 2008-03-28

Opponent
Jonas Bredberg,

Evaluation committee

Abstract

Non-pulsatile and pulsatile flow in bent pipes and radial turbine has been assessed with numerical simulations. The flow field in a single bent pipe has been computed with different turbulence modelling approaches. A comparison with measured data shows that Implicit Large Eddy Simulation (ILES) gives the best agreement in terms of mean flow quantities. All computations with the different turbulence models qualitatively capture the so called Dean vortices. The Dean vortices are a pair of counter-rotating vortices that are created in the bend, due to inertial effects in combination with a radial pressure gradient. The pulsatile flow in a double bent pipe has also been considered. In the first bend, the Dean vortices are formed and in the second bend a swirling motion is created, which will together with the Dean vortices create a complex flow field downstream of the second bend. The strength of these structures will vary with the amplitude of the axial flow. For pulsatile flow, a phase shift between the velocity and the pressure occurs and the phase shift is not constant during the pulse depending on the balance between the different terms in the Navier- Stokes equations. The performance of a radial turbocharger turbine working under both non-pulsatile and pulsatile flow conditions has also been investigated by using ILES. To assess the effect of pulsatile inflow conditions on the turbine performance, three different cases have been considered with different frequencies and amplitude of the mass flow pulse and different rotational speeds of the turbine wheel. The results show that the turbine cannot be treated as being quasi-stationary; for example, the shaft power varies with varying frequency of the pulses for the same amplitude of mass flow. The pulsatile flow also implies that the incidence angle of the flow into the turbine wheel varies during the pulse. For the worst case, the relative incidence angle varies from approximately −80° to +60°. A phase shift between the pressure and the mass flow at the inlet and the shaft torque also occurs. This phase shift increases with increasing frequency, which affects the accuracy of the results from 1-D models based on turbine maps measured under non-pulsatile conditions. For a turbocharger working under internal combustion engine conditions, the flow into the turbine is pulsatile and there are also unsteady secondary flow components, depending on the geometry of the exhaust manifold situated upstream of the turbine. Therefore, the effects of different perturbations at the inflow conditions on the turbine performance have been assessed. For the different cases both turbulent fluctuations and different secondary flow structures are added to the inlet velocity. The results show that a non-disturbed inlet flow gives the best performance, while an inflow condition with a certain large scale eddy in combination with turbulence has the largest negative effect on the shaft power output.
[Download (3.2 Mb)]