kth_logo.gif

Projekt

Extending Navier-Stokes to Smaller Length Scales and Nonlinear Acoustics

Forskningsområde: Teoretisk och beräkningsmekanik
Projektmedlemmar:
Söderholm,  L. H. S.
Finansiär:

Projektbeskrivning

The Navier-Stokes equations apply for length scales larger than 20 times the mean free path in a gas. They are to first order in the mean free path. For smaller length scales, second order terms have to be included. The resulting Burnett equations have however an unphysical instability. Two different methods of stabilizing the Burnett equations are proposed. The first one is a set of thirteen first order equations for the 5 fluid dynamic variables and 8 kinetic variables. These equations have been applied to the evolution of a very high frequence nonlinear sound wave. In the second method, a set of 5 equations for only the fluid dynamic variables is derived.

Publikationer relaterade till projektet

ÅrTitel
2007Hybrid Burnett Equations. A New Method of Stabilizing
Transport Theory and Statistical Physics 36 495-512 (Publicerad)
2005Nonlinear Acoustics to Second Order in Knudsen Number Without Unphysical Instabilities
Rarefied Gas Dynamics 24 54-59 (Publicerad)
1993Nonliear propagation through a fluid of waves originating from a biharmonic sound source.
J. of the acoustical society of America  29 (Publicerad)

Interna rapporter relaterade till projektet

ÅrTitelDokumenttyp