Internal Report

Biomechanical Consequences of Foot and Ankle Injury and Deformity: Kinematics adn Muscle Function

Author Document Type Year Download File size
Ruoli Wang Licentiate thesis 2009 Download
ISSN 0348-467X


The overall aim of this thesis was to discuss kinematics and muscle function changes due to foot and ankle injury or deformity. The first study aims to characterize gait patterns of subjects with a common lower limb injury, ankle fractures. Using three-dimensional movement analysis with a modified multi-segment foot model, the inter-segment foot kinematics was determined during gait in 18 subjects one year after surgically treated ankle fractures. Gait data were compared to an age- and gender-matched control group and the correlations between functional ankle score and gait parameters were determined. It was observed that even with fairly good clinical results, restricted range of motion at and around the injured area, and less adducted forefoot were found in the injured limb. The second study aims to quantify the effect of subtalar inversion/eversion on the dynamic function of the main ankle dorsi/plantarflexors: gastrocnemius, soleus and tibialis anterior. Induced acceleration analysis was used to compute muscle-induced joint angular and body center of mass accelerations. A three-dimensional subject specific linkage model was configured by gait data and driven by 1 Newton of individual muscle force. The excessive subtalar inversion or eversion was modified by offsetting up to ±20? from the normal subtalar angle while other configurations remain unaltered. We confirmed that in the normal gait, muscles generally acted as their anatomical definitions and muscles can create motion in joints, even not spanned by the muscles. The plantarflexors play important roles in body support and forward progression. Excessive subtalar eversion had negative effect on ankle plantarflexion, which may induce a less plantarflexed ankle, less extended knee and more flexed hip after initial contact. This thesis focused on gait kinematics and muscle functions in the foot and ankle area employing both experimental gait and computational simulations. The findings can be regarded as references for evaluating of future patients and for dynamic muscle functions during gait.