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Abstract

Traditional research on laminar-turbulent transition has focused on scenarios
that are caused by the exponential growth of eigensolutions to the linearized
disturbance equations, e.g. two-dimensional Tollmien-Schlichting waves. Recent
research has reveled the existence of other non-modal growth mechanisms, for
example associated with the transient growth of streamwise streaks.

Oblique waves may trigger transition in which the new mechanisms is an
important ingredient. We have investigated the role of oblique waves in boundary
layer transition, using an e�cient spectral code for direct numerical simulations.

In the initial stage of this transition scenario oblique waves have been found
to interact nonlinearly and force streamwise vortices, which in turn force growing
streamwise streaks. If the streak amplitude reaches a threshold value, transition
from laminar to turbulent ow will take place.

In the late transition stage, large velocity uctuations are found at ow
positions associated with steep spanwise gradients between the streaks. At those
positions we have also found �-vortices, structures that are also characteristic
for traditional secondary instability transition. The �-vortices are shown to be
due to the interaction of oblique waves and streaks that seem to play a more
important role in the late stage of transition than previously appreciated.

The numerical results are compared in detail with experimental results on
oblique transition and good agreement is found.

A new nonlinear receptivity mechanism is found that can trigger boundary
layer transition from oblique waves in the free-stream. The mechanism contin-
uously interact with the boundary layer and the resulting transition scenario is
characterized by the growth of streamwise streaks. The same structures that are
observed in experiments on transition caused by free-stream turbulence. A lin-
ear receptivity mechanism that interact with the boundary layer downstream of
the leading edge is also identi�ed. It is related to linear receptivity mechanisms
previously studied at the leading edge. The nonlinear and linear mechanisms are
of comparable strength for moderate free-stream disturbance levels.

Two strategies for control of oblique transition are investigated, both based
on spanwise ow oscillations. The longest transition delay was found when the
ow oscillations were generated by a body force. When the control was applied
to a transition scenario initiated by a random disturbance it was more successful
and transition was prevented.

Descriptors: laminar-turbulent transition, boundary layer ow, oblique waves,
streamwise streaks, �-vortex, transient growth, receptivity, free-stream turbu-
lence, nonlinear mechanism, neutral stability, non-parallel e�ect, DNS, spectral
method, transition control.





Preface

This thesis on boundary layer transition is structured according to the
present tradition at KTH and the faculty of engineering physics. It contains
a collection of articles and reports of research results. They have been published
in or submitted to scienti�c journals and are written accordingly. The �rst part
is a summary of the results presented in the papers, where the work is put into
a historic perspective and related to the work of other researchers. However, the
summary it is not intended to be a general review of transition research. The
ambition has instead been to make the material in the summary accessible to a
wider audience than those daily confronted with uid dynamics and transition
to turbulence.
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CHAPTER 1

Introduction

Figure 1.1 Heron's \gas-turbine"

Our climate and weather are governed by the uid dynamics of the atmo-
sphere and since there often is a strong interest in tomorrows forecast, meteo-
rology is a popular application of uid dynamics. Knowledge in uid dynamics
has been used and been of great interest throughout history. Early civilizations
used complicated irrigation systems and the �rst \designers" of oating vessels
certainly wanted to optimize for speed or load. Heron of Alexandria was an early
observer of uid phenomena and �gure 1.1 contains a sketch of his \gas-turbine".
Water is heated to produce steam, which is directed such that the sphere on the
top of the device rotates. Heron probably did not �nd much use of his apparatus
at the time. Today, however, design of turbines, for both propulsion and power
generation, are as important applications of uid dynamics as is the construction
of vehicles.

It is easy to observe that a uid sometimes moves in an ordered, predictable
fashion, like when you pour co�ee out of an old fashioned pot. However, when
the co�ee comes in the cup the motion is suddenly swirly and chaotic. We
distinguish these states as laminar or turbulent ow. Why, when and how the
transition between the two takes place is of great practical interest. A laminar
ow over the surface of a vehicle is often desired since the drag force on the
vehicle is much lower than had the ow been turbulent. Enormous amounts of
fuel could be saved if we could control the characteristics of turbulence to reduce
drag or even prevent its occurrence. At other instances turbulence is desired,
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2 1. INTRODUCTION

δ
U1

Figure 1.2 Plate creates boundary layer with thickness � in oncom-
ing uniform ow U1.

for example to mix sugar in the co�ee or improve the mixing of fuel and air in
a combustion engine.

We simplify the study of the laminar-turbulent transition process by con-
sidering a very simple geometry (�gure 1.2), a at plate with a leading edge in
the direction of a uniform oncoming ow. The uid on the surface of the plate
is slowed down by the friction. A boundary layer is formed, in which the uid
velocity changes form the speed of the free stream to be zero at the plate surface.
The boundary layer is caused by viscosity (internal friction) and its thickness
grows as the ow evolve downstream. It is well know that this ow, at some
position downstream, will become turbulent and by studying this simple case we
can hope to gain enough insight into the physics of laminar turbulent transition
to be able to predict and understand more complicated situations.

The transition process of the boundary layer can be further divided into two
stages. First a disturbance from the free-stream or a roughness on the plate has
to cause a ow disturbance in the boundary layer. A process normally denoted
receptivity. Secondly the disturbance will either grow or decay depending on
its characteristics. Research on the second topic, the stability problem, has
been more intense and the major interest has been on two-dimensional so called
Tollmien-Schlichting waves.

However, recent �ndings has clearly indicated that other types of distur-
bances, can also be very potent causes of transition. A pair of oblique waves is
such an example and this thesis is focused on the mechanisms by which oblique
waves cause transition. The very same month as this work begun, the journal
\Theoretical and Computational Fluid Dynamics" received an article by Joslin,
Streett & Chang (1993). They had calculated transition caused by two oblique
waves primarily to verify two numerical codes, and they write \ : : : no adequate
formal theory is available to explain the breakdown process : : : ". You will hope-
fully �nd that this thesis give a valuable contribution to the understanding of
oblique transition.



CHAPTER 2

Basic concepts and notation

Streamwise,  X
Wall normal, Y

Spanwise, Z

u

vw

Leading edge

Boundary
layer thickness

U1

Figure 2.1 Boundary layer ow with free-stream velocity U1. The
velocity has components u v and w in the coordinate system x, y and

z.

2.1. Coordinate system and ow decomposition

We start by de�ning the basic terminology and the coordinate system, with
the help of �gure 2.1. The main ow is uniform and not a�ected by the plate,
which causes the formation of the boundary layer. It is directed in the stream-
wise, x, direction and denoted U1 or free-stream. A natural point to de�ne as
the origin, x = 0, is the point where the ow meet the plate, the leading edge.
But our computations will not start at that position and we therefore often de-
�ne x = 0 to be at the starting point of our calculations. The direction normal
to the plate will be denoted y, with y = 0 at the plate surface. The direction
parallel to the leading edge, the spanwise direction, is called z. We consider the
plate to be in�nite in that direction and de�ne z = 0 as the center of the domain
we are considering.

The ow may be in any direction but we will always divide its total velocity
into three parts, each following one of the coordinate directions. The velocity
components in the x, y and z directions will be denoted U , V andW respectively.
We often study disturbances that are small compared to the total velocity and
to aid the analysis we decompose the ow in the following way:

U = U + u; V = V + v; W =W + w; P = P + p: (1)

3



4 2. BASIC CONCEPTS AND NOTATION

U , V and W are the base ow that we would have if no disturbance was
present and u, v and w are the disturbance velocities, P and p are the corre-
sponding pressures. In the following the spanwise base ow component W will
always be zero.

A disturbance may either be constant over time or uctuating. The constant
part is separated by calculating time averages of the disturbance, which we
denote �u �v and �w. What remains is then the uctuating part: ~u ~v and ~w.
The uctuating part can also be studied by computing the root mean square of
the disturbance, denoted urms, vrms and wrms.

Vorticity in the three coordinate directions are de�ned as,

!x =
@w

@y
�
@v

@z
; !y =

@u

@z
�
@w

@x
; !z =

@v

@x
�
@u

@y
: (2)

These can be decomposed in the same way as the velocity components. A
vortex in the x direction is a swirling motion around an axis parallel to the x
axis and is associated with vorticity !x. However, it is important to note that
vorticity itself does not imply the presence of a vortex.

2.2. Wave disturbances

Disturbances are often wave-like, which suggests a decomposition of the total
disturbance into a sum of waves. We frequently perform the decomposition with
the aid of Fourier transforms. Figure 2.2 displays a wall parallel plane of a ow
with a wave propagating at an angle to the mean ow direction, with the lines
representing positions of constant phase. We can then de�ne wavelengths �x
and �z in the streamwise and spanwise directions respectively. A stationary
observer will register a frequency !, with which he repeatedly makes the same
observation. A velocity component, for example v, of a single wave disturbance
depending on all coordinates and time t, may now be represented as,

v(x; y; z; t) = v̂(y)ei(k�x+l�y�m!t); � =
2�

�x
; � =

2�

�z
; (3)

X

Z

flow
mean

�z

�x

Figure 2.2 Wave propagating at an angle to the meanow U , with
streamwise wavelength �x and spanwise wavelength �z.
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X

Z
(1,0)

(2,0)

(0,1)

(0,2)

(1,1)

(1,1) (1,-1)

two-dimensional streak oblique flow
mean

Figure 2.3 Examples of the notation for wave disturbances

where � and � are the streamwise and spanwise wavenumbers, respectively.
Note that the frequency ! is closely related to � by the speed with which the
disturbance travels downstream. �, � and ! are chosen to represent the primary
wave disturbance that we like to study. The integers (or integer fractions) k, l and
m can then be used to represent all other disturbances in the wave decomposition
and relate them to the primary one. If we consider the ow at a speci�c time
t, a disturbance will be denoted as a mode (k; l), meaning a disturbance with
streamwise wavenumber k � � and spanwise wavenumber l � �. If we instead
consider speci�c downstream position x we will have modes (m; l), representing
frequency m � ! and spanwise wavenumber l � �. They however represent the
same type of disturbance in the ow. Some examples are displayed in �gure 2.3.

2.3. Navier-Stokes equations and stability concepts

The development and interaction in space and time of the ow and the dis-
turbance wave modes studied in this thesis, are governed by the Navier-Stokes
equations and a continuity equation saying that uid is not created and cannot
disappear. The viscosity, which is a measure of the uids internal friction or \re-
sistance to ow" is considered constant (Newtonian uid) as well as the density
of the uid (incompressible uid).

If only the linear part of the Navier-Stokes equations is considered each mode
will develop individually and the total ow will be the sum of all involved modes.
In the full nonlinear case the modes will exchange energy within triplets. An
interacting triplet is formed by three modes, where two may be identical, (a; b),
(c; d) and (e; f) and energy is exchanged if a + c + e = 0 and b + d + f = 0
and at least two of the modes have non-zero energy. If a mode will gain or lose
energy depends on the relation between them at the considered instant. When
the energy in one mode is increased we frequently say that it is generated by the
nonlinear interaction with two others for example (1;�1) and (1; 1) generates
(0; 2).



6 2. BASIC CONCEPTS AND NOTATION

Except when comparisons has been made with experiments, the velocities
and lengths used in this thesis are non-dimensional. All the information spe-
ci�c for a particular ow is gathered in the non-dimensional Reynolds number
R = U1�

�=�, which also appears in the Navier-Stokes equations. The Reynolds
number can be de�ned in several ways, but we have chosen to base it on the
kinematic viscosity �, the displacement thickness �� and the free-stream velocity
U1, which thus become the quantities used to scale the lengths and velocities,
respectively. The displacement thickness is a measure of the boundary layer
thickness and for a Blasius boundary layer it takes the form �� = 1:72

p
�x=U1.

The point of using non-dimensional quantities is that we in di�erent ows or
uids will observe the same physical phenomena as long as the Reynolds number
is equal, and the results will therefore become more general.

When the Navier-Stokes equations equations are analyzed for possible dis-
turbance growth in boundary layer ows the decomposition (1) is used in most
cases together with two simpli�cations. The nonlinear terms are neglected and
the base ow is assumed to have only one non-zero component U(y), which only
depend on the wall normal y direction. That leads to what we call the distur-
bance equations, which are initial value problems. The further assumption of
exponential time dependence (complex) leads to the Orr-Sommerfeld and Squire
equations, which constitutes eigenvalue problems. There is a disturbance that
can grow exponentially if an unstable eigenvalue is found, and we talk about
exponential instability. If the base ow is unstable and deformed by the growth
of a �rst disturbance the stability of the deformed ow may be analyzed. If
that is found unstable, it is regarded as a secondary instability and transition to
turbulence usually follows.

2.4. Numerical solution procedures

The results in this thesis are, however, not from theoretical analysis of linear
stability equations but from computer solutions of the complete Navier-Stokes
equations so called direct numerical simulations (DNS). Both a temporal and a
spatial solution procedure has been used. In the temporal method, a localized
disturbance or wave is followed in time as it travels downstream. The thickness
of the surrounding boundary layer does not vary in the streamwise direction
but it grows slowly in time to approximate the real downstream growth. The
extent of the computational domain is small as only one wave length of the largest
disturbance is included in the streamwise and spanwise directions. A much larger
streamwise region is included in the spatial method, which makes it considerably
more computer demanding. The boundary layer growth and pressure gradients
are, however, correctly accounted for and the ow develops downstream as in
experiments, with which spatial results can be directly compared.

We are fortunate to know the equations that are believed to model the
studied ow. Our numerical solver, which excludes the leading edge, is very
accurate, e�cient and well suited for the parallel super computers that have been
used. Even so, only a small region of the very simple geometry could be solved
at low ow velocities. This demonstrates the need for more understanding, in
order to develop simple models applicable to complex ows, for which computers
will be too slow to solve the Navier-Stokes equations for a long time yet.



CHAPTER 3

Theoretical background and previous �ndings

3.1. Stability

3.1.1. Inviscid ows. Traditional stability analysis of boundary layer ow
has dealt with three questions: under what circumstances can a small distur-
bance grow such that it at any later time is larger than it was at time t = 0,
which disturbances are that and which disturbance grows the most. The �rst
results were obtained by dropping the nonlinear terms in the disturbance equa-
tions and neglecting viscosity. Rayleigh found the necessary condition that the
base ow pro�le had to have an inection point. Fj�rtoft improved the condition
by including that @U=@y should have a maximum at the inection point. The
�rst high frequency oscillations observed in transition to turbulence are often
found in connection with inection points.

3.1.2. Stability of Tollmien-Schlichting waves. Later viscosity was in-
cluded and the disturbance equations analyzed in the form of the Orr-Sommerfeld
equation for exponentially growing disturbances. The �rst solutions for two-
dimensional eigenfunctions of the Orr-Sommerfeld equation were presented by
Tollmien (1929) and Schlichting (1933). If such Tollmien-Schlichting waves or
TS-waves existed were debated until they were identi�ed in experiments by
Schubauer & Skramstad (1947). Thereafter the focus of transition research
were set on TS-waves. The neutral stability curve was calculated. It de�nes
the domain of disturbance frequencies and Reynolds numbers for which a TS-
wave may grow. The theory assumes that the boundary layer has a constant
thickness whereas it actually grows downstream and experimental results did
not completely agree with the theory. Several corrections for non-parallel e�ects
to the original theory were suggested. Spatial simulations by Fasel & Konzel-
mann (1990) gave insight to how discrepancies between theory and experiments
were caused by di�erences in the evaluation of the growth rate. Klingmann et

al. (1993) pointed at experimental errors caused by the leading edge geometry
and pressure gradients. Bertolotti, Herbert & Spalart (1992) found non-parallel
e�ects to be larger for oblique waves and non-linearity to be destabilizing. They
also computed the neutral stability curve for a growing Blasius boundary calcu-
lated by parabolic stability equations (PSE). DNS calculations of the non-parallel
neutral stability curve is presented in paper 1.

Since turbulence is three-dimensional, an important issue is to understand
how the ow becomes three-dimensional from the growing two-dimensional TS-
waves. Two basic scenarios were identi�ed by experimental investigators. Each
has a characteristic three-dimensional \non-linear stage", after the linear growth

7



8 3. THEORETICAL BACKGROUND AND PREVIOUS FINDINGS

of the TS-wave, but before the ow is fully turbulent. Klebano�, Tidstrom &
Sargent (1962) observed what today is called K-type transition after Klebano� or
fundamental breakdown. In its non-linear stage rows, aligned with the stream
direction, of \�-shaped" vortices appears in the ow (see �gure 6.7(c)). The
other scenario was �rst observed by Kachanov, Kozlov & Levchenko (1977) and
is called subharmonic or H-type transition after the theoretical work by Herbert
(1983, 1983). In the three-dimensional stage of that scenario �-vortices are found
to create a staggered pattern (see �gure 6.7(b)). Kachanov (1994) calls the latter
scenario N-type transition, after \New" or \Novosibirsk", in his review over the
physical mechanisms involved in transition. Theoreticians have explained the
three-dimensional stage as wave resonance Craik (1971) or secondary instability
and a review over the theoretical e�orts concerning the secondary instabilities
has been written by Herbert (1988). Kleiser & Zang (1991) has reviewed the
numerical work in the area, which up to that date mostly used a temporal ap-
proach. Since then e.g. Rist & Fasel (1995) have presented a spatial simulation
of K-type transition in boundary layer ow.

3.1.3. Transient growth and sensitivity to forcing. Before the 1940's
experimental investigators were unable to identify TS-waves and the following
secondary instability in both boundary layers and channel ows. Transition was
instead often caused by other disturbances and other growth mechanisms. These
are obviously as likely now as they were then. Morkovin (1969) stated \We can
bypass the TS-mechanism altogether", and transition caused by growth mech-
anisms other than exponential instabilities are often named bypass-transition.
Oblique transition is an example of bypass-transition.

An important observation is that the nonlinear terms of Naiver-Stokes equa-
tions conserve energy. The instantaneous growth mechanisms behind bypass
transition can therefore be found by examining the linearized disturbance equa-
tions. The existence of growth mechanisms other than those associated with
exponential growth were known already to Orr (1907) and Kelvin (1887). Those
mechanisms can cause disturbances growth for a limited time, but the distur-
bances will eventually decay in the linear viscous approximation. The Navier-
Stokes equations are however nonlinear and if the transient growth creates a
disturbance large enough, transition to turbulence will occur. The investigations
by for example Gustavsson (1991), Butler & Farell (1992), Reddy & Henning-
son (1993), Trefethen et al. (1993) showed the possible magnitude of transient
growth and clearly indicated the potential of non-modal mechanisms for causing
transition.

The physical mechanism behind this growth is the lift-up mechanism, weak
streamwise counter rotating vortices in the boundary layer lift up uid with low
streamwise velocity from the wall and bring high speed uid down towards the
wall. As this process continues at constant spanwise position, large amplitude
streaks in the streamwise velocity component will be created. In the inviscid case
the corresponding perturbation amplitude grows linearly with time, something
recognized by Ellingsen & Palm (1975).
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Mathematically, transient growth can be explained by the fact that the eigen-
functions of the linearized disturbance equation has non-orthogonal eigenfunc-
tions. This mathematical property has another consequence, the linear system
may show a large response to forcing. This means that a small energy input
through an outer source of the ow or through the nonlinear terms may cause
large disturbance growth.

In most of the theoretical work on transient growth and the sensitivity to
forcing (both non-modal mechanisms), a temporal formulation has been used.
The disturbances are then thought to grow in time, which simpli�es analysis
and calculations. In a physical experiment or a spatial simulation, disturbances
grow in space. Recently transient growth in boundary layers, or maybe bet-
ter non-modal growth, has been considered in spatial formulations by Luchini
(1996, 1997) and Andersson, Berggren & Henningson (1997). They found that
the maximum possible energy growth scales linearly with the distance from the
leading edge.

Growing TS-waves causes disturbances that vary periodically in the stream-
wise direction and are elongated in the spanwise. The non-modal mechanisms
causes disturbances that vary periodically in the spanwise direction and are elon-
gated in the streamwise. Nonlinear mechanisms are needed for development of
more complicated ow structures and the occurrence of transition to turbulence.
The development of theories concerning this process associated with streaks have
just started and Reddy et al. (1997) have for channel ows found that streak
breakdown is caused by an inectional secondary instability, normally in the
spanwise direction but for some cases in the wall-normal direction.

The possibilities of strong non-modal growth discussed above explains that
transition do occur even when no exponential instabilities exist. In cases where
exponential instabilities are present, there will be a competition or combina-
tion between the di�erent mechanisms depending on the disturbances present.
And obviously the nonlinear coupling between di�erent disturbances will play
an important role.

3.2. Receptivity mechanisms

3.2.1. TS-wave receptivity. To understand and predict boundary layer
transition, knowledge in how the disturbances can enter or interact with the
boundary layer is necessary. Receptivity researchers have therefore investigated
how TS-waves can be generated in the boundary layer by outer disturbances.
The disturbances are often characterized as either acoustic disturbances or vor-
tical disturbances convected by the free-stream. Both types of disturbances has
been theoretically investigated by asymptotic methods and a summary of the re-
sults can be found in the reviews by Goldstein & Hultgren (1989) and Kerschen
(1990). They �nd that the receptivity to both disturbance types are of the same
order and is found in the leading edge region, associated with rapid geometry
changes or local roughness. The experimental �ndings on TS-wave receptivity
has been reviewed by Nishioka & Morkovin (1986) and generally compare well
with the theoretical ones. The e�ect of free-stream sound has also been investi-
gated numerically by Lin, Reed & Saric (1992). They found receptivity at their
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elliptical leading edge and that a sharper leading edge gave less receptivity and
that the sudden pressure gradients appearing at the junction of the leading edge
and the at plate was an important receptivity source. Buter & Reed (1994)
investigated the e�ect of vortical disturbances at the leading edge numerically
and found the same sources of receptivity as Lin, Reed & Saric (1992).

3.2.2. Receptivity to free-stream turbulence. Experiments of laminar
boundary layers developing in a turbulent free-stream are characterized by dis-
turbances very di�erent from TS-waves, namely streamwise elongated streaks.
These were �rst observed as low-frequency oscillations in hot-wire signals, caused
by slow spanwise oscillations of the streaks. They are commonly referred to
as Klebano�-modes after Klebano�'s (1971) mainly unpublished experimental
�ndings (Kendall 1985). After comparing data from several experiments Westin
(1994) et al. drew the conclusion that there is no general correlation between the
level of free-stream turbulence, the uctuation level in the boundary layer and
the transitional Reynolds number. They compared results for the streamwise
velocity component, which is what is normally reported from the experimental
investigations. Yang & Voke's (1993) numerical experiment however, indicated
that the wall normal velocity component of the free-stream turbulence is more
important for the response in the boundary layer. Experimental �ndings con-
cerning scaling relations and e�ects of the leading edge are inconclusive.

Choudhari (1996) used asymptotic methods to study the receptivity of oblique
disturbances and found the receptivity by the leading edge and local humps to
increase with increased obliqueness of vortical disturbances. He also noted that
the wall normal distribution response to the oblique disturbances was similar to
the Klebano� mode. Bertolotti (1997) assumed free-stream modes, periodic in
all directions, of which he calculated the boundary layer receptivity in a \linear
region" excluding the the leading edge. He found receptivity to modes with zero
streamwise wavenumber. These modes are used as forcing in PSE calculations of
the downstream disturbance development and the results agree fairly well with
experimental results. Bertolotti (1997) found it most likely that the growth of
streaks is related to non-modal growth. Andersson, Berggren & Henningson
(1998) and Luchini (1997) used an optimization technique to determine what
disturbance present at the leading edge will give the largest disturbance in the
boundary layer. They also found streamwise vortices causing growth of streaks
and both the wall normal disturbance shape and growth rates agreed with the
�ndings of Bertolotti (1997) and was also close to the experimental results. There
are, however, some discrepancies between calculations and experiments concern-
ing the growth rate and the slightly downstream increasing spanwise scale of the
streaks in the experiment.

The importance of TS-waves for transition caused by free-stream turbulence
is not clear. Generally, uctuations with a frequency close to the most unstable
TS-waves are found at the boundary layer edge and have a mode shape di�erent
from the unstable eigenmode. At high turbulence levels TS-waves are di�cult
to identify, but for low free-stream turbulence levels Kendall (1990) did identify
wave packets traveling with the same phase speed as TS-waves. Boiko et al.
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(1994) introduced additional TS-waves in an experiment of free-stream turbu-
lence and found their ampli�cation rate to be smaller than in the undisturbed
boundary layer.

3.3. Oblique transition

Oblique transition is a transition scenario initiated by two oblique waves
with opposite wave angle and in which non-modal growth plays an important
role. Lu & Henningson (1990) �rst noted the potential of oblique disturbances
in incompressible ows in their study of subcritical transition in Poiseuille ow.
Schmid & Henningson (1992) then calculated oblique transition in channel ow
using a temporal DNS code. They showed, for plane Poiseuille ow, that initial
forcing and subsequent transient growth caused the rapid growth of the (0; 2)
mode. They calculated the relation between the energy transfered to the (0; 2)
mode by the nonlinear terms and the energy growth by transient linear mecha-
nisms and found the latter to be the signi�cant part. Joslin, Streett and Chang
(1992,1993) calculated oblique transition in an incompressible boundary layer
using both parabolized stability equations (PSE) and spatial DNS. They chose
two di�erent amplitudes of the oblique waves. In the low amplitude case the
(0; 2) mode grew rapidly and then decayed whereas they noted both the rapid
growth of the (0; 2) mode and a subsequent growth of other modes in the high
amplitude case.

That was the state when the present work begun, but the interest in oblique
transition and streak breakdown is increasing and several investigators have been
active with parallel work. Reddy et al. (1997) found that the energy needed in
channel ow to initiate oblique transition is substantially lower than that needed
in the transition scenarios caused by the two-dimensional TS-wave. Similar re-
sults have also been found in boundary layer ow by Schmid, Reddy & Henning-
son (1996). Experimentally oblique transition has been investigated in Poiseuille
ow by Elofsson (1995) and those results were compared with calculations by
Elofsson & Lundbladh (1994). In boundary layers experimental investigations
has been made by Wiegel (1996) and Elofsson (1997)

Oblique transition has also been studied in compressible ows, where Fasel
& Thumm (1991) noted that it is a "powerful process". Using nonlinear PSE
Chang & Malik (1992, 1994) studied this scenario in a supersonic boundary
layer and found oblique-wave breakdown to be a more viable route to transition
and that it could be initiated by lower amplitude disturbance, compared to
traditional secondary instability. Using DNS Fasel, Thumm & Bestek (1993)
and Sandham, Adams & Kleiser (1994) studied oblique transition in compressible
boundary layers and all investigators observed, �rst the nonlinear interaction of
the oblique waves generating the streamwise vortex mode (0; 2) and then its
rapid growth. The fact that the rapid growth of the (0; 2) mode was caused by
non-modal growth and the non-normality of the linear operator was shown by
Hani�, Schmid & Henningson (1996).
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3.4. Transition control

Delaying laminar-to-turbulent transition has many obvious advantages and
the simplest method is perhaps to shape the surface on which the boundary layer
develop such that a suitable pressure distribution is obtained. Common means
for ow control such as combinations of blowing, suction, heating, cooling and
magneto-hydrodynamic (MHD) forces have been used to obtain transition delay.
The e�orts has been reviewed by Gad-el-Hak (1989). The control has either
aimed for a more stable mean ow pro�le or for cancellation of growing Tollmien-
Schlichting (TS) waves or waves associated with the secondary instability caused
by TS-waves, see for example Thomas (1983), Kleiser & Laurien (1985), and
Danabasoglu, Biringen & Streett (1991).

Reports on transition control of oblique transition or transition caused by
free-stream turbulence that are both characterized by streaks and streamwise
vortices are not found. However, smaller scale streamwise vortices in the near-
wall region of turbulent boundary layers have in recent studies (Choi, Moin &
Kim 1993) been shown responsible for high skin-friction drag. Successful control
strategies have been found to reduce their strength. A simple control strategy
that by Akhavan, Jung & Mangiavacchi (1993) was shown to reduce turbulence
and skin-friction was the generation of a spanwise oscillatory ow.



CHAPTER 4

Numerical method

The direct numerical simulations presented in this thesis have all been per-
formed with the spectral algorithm described in detail in paper 6. In spectral
methods the solution is approximated by an expansion of smooth functions. The
mathematical theories concerning the functions we have used, dates back to the
nineteenth century and the works by Fourier and Tjebysjov. The idea of using
them for numerical solutions of ordinary di�erential equations is attributed to
Lancos (1938). The earliest applications to partial di�erential equations were
developed by Kreiss & Oliger (1972) and Orzag (1972), who termed the method
pseudo-spectral. The reason was that the multiplications of the nonlinear terms
were calculated in physical space to avoid the evaluation of convolution sums.
The transformation between physical and spectral space can be e�ciently done
by Fast Fourier Transform (FFT) algorithms that became generally known in
the 1960's (Cooley & Turkey 1965).

The fast convergence rate of spectral approximations of a function, results
in very high accuracy per included spectral mode compared to the accuracy
produced by �nite-element or �nite di�erence discretizations with corresponding
number of grid points. E�cient implementations of pseudo-spectral methods can
be made thanks to the low costs of performing FFTs. Moreover, the data struc-
ture makes the algorithms suitable for both vectorization and parallelization,
which obviously stretches the applicability. The high density of points close to
boundaries in the physical domain naturally obtained by Chebyshev series is also
pro�table for wall bounded ows. The spectral approximation and the associated
boundary conditions limts the applications to simple geometries. A disadvantage
is also that the method is \global", which means that poor resolution in one part
of the computational domain corrupts the whole calculation.

Pseudo-spectral methods became widely used for a variety of ows during
the 1980's. Early boundary layer results for transitional ow were presented by
Orszag & Patera (1983). They used a temporal formulation and the �rst spatial
boundary layer computations were presented by Bertolotti, Herbert & Spalart
(1992).

The numerical code used for the calculations presented in this thesis is a
development of the channel code by Lundbladh, Henningson & Johansson (1992)
and solves the full three-dimensional incompressible Navier-Stokes equations.
It handles pressure gradients and can be used for both temporal and spatial
simulations.

The algorithm is similar to that for channel geometry of Kim, Moin &
Moser (1987), using Fourier series expansion in the wall parallel directions and

13
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Chebyshev series in the normal direction and pseudo-spectral treatment of the
non-linear terms. The time advancement used is a four-step low storage third-
order Runge-Kutta method for the nonlinear terms and a second-order Crank-
Nicholson method for the linear terms. Aliasing errors from the evaluation of
the nonlinear terms are removed by the 3

2 -rule when the horizontal FFTs were
calculated. In order to set the free-stream boundary condition closer to the
wall, a generalization of the boundary condition used by Malik, Zang & Hussaini
(1985) was implemented. It is an asymptotic condition applied in Fourier space
with di�erent coe�cients for each wavenumber that exactly represents a poten-
tial ow solution decaying away from the wall. To enable spatial simulations
with a downstream growing boundary layer and retain periodic boundary con-
ditions in the streamwise direction a \fringe region", similar to that described
by Bertolotti, Herbert & Spalart (1992) has been implemented. In this region,
at the downstream end of the computational box, the function �(x) in equation
(4) is smoothly raised from zero and the ow is forced to a desired solution v in
the following manner,

@u

@t
= NS(u) + �(x)(v � u) + g (4)

r � u = 0 (5)

where u is the solution vector and NS(u) the right hand side of the (unforced)
momentum equations. Both g, which is a disturbance forcing, and v may de-
pend on the three spatial coordinates and time. v is smoothly changed from
the laminar boundary layer pro�le at the beginning of the fringe region to the
prescribed inow velocity vector, which in our case is a Blasius boundary layer
ow. This method damps disturbances owing out of the physical region and
smoothly transforms the ow to the desired inow state in the fringe, with a
minimal upstream inuence. Figure 4.1 illustrates the variation of the boundary
layer thickness and the meanow pro�le in the computational box for a laminar
case.

Disturbances to the laminar ow can be introduced by three methods: They
could be included in the ow �led v and forced in the fringe region, a body force
g can be applied at any position of the box or a blowing and suction boundary
condition at the wall can be used.

The code has been thoroughly checked and used in several investigations by
a number of users on a variety of workstations and supercomputers.
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Figure 4.1 The boundary layer thickness � (dashed) of a laminar
mean ow grows downstream in the physical domain and is reduced
in the fringe region by the forcing. The ow pro�le is returned to the
desired inow pro�le in the fringe region, where the fringe function
�(x) is nonzero.



CHAPTER 5

The neutral stability curve for non-parallel

boundary layer ow

The aim of the present part of the thesis has been to determine the complete
neutral stability curves and critical Reynolds numbers by DNS, for growth in
both the wall normal as well as the streamwise velocity components, in zero-
pressure gradient, incompressible, non-parallel boundary layer ow. Results that
have not been presented before and they are compared with results from PSE
calculations.

We have put great e�ort into reducing disturbances caused by the generation
of the waves and numerical issues in our DNS calculations. Such disturbances can
inuence the determination of the neutral points, something noted by previous
investigators who at some occasions were forced to use smoothing to suppress
oscillations.

When a TS-wave develops downstream, not only does its amplitude change
but also the wall normal mode shape. Following a wall normal maxima down-
stream gives a result that cannot be misleading and is well suited for comparison
with both theory and experiments. We have followed the lower/inner maxima
of u and the single maxima of v, when evaluating the growth and neutral points
in our calculations.

The results are presented in �gure 5.1 in a diagram with the Reynolds num-
ber on the horizontal axis and on the vertical axis the non-dimensional frequency
F = 2�f�=U1 � 106, where f is the dimensional frequency, U1 the free-stream
velocity and � the kinematic viscosity. The dashed grey curves in the �gure
represent the DNS results. The curve enclosing a larger region represents the
neutral curve for v, whereas the neutral curve for u encloses a smaller unstable
region. The two solid lines in �gure 5.1 represents the neutral curves of u and v
found by the PSE method. The agreement between PSE and DNS is excellent.
Based on both methods we determined the critical Reynolds number to 456 for
v and 518 for u, with a uncertainty of respectively, �2 and �1.

Figure 5.1 also contains neutral stability points presented by Fasel & Konzel-
mann (1990) and we �nd good agreement between those results and our calcula-
tions. The circles represent experimental data obtained by Klingmann et al. The
experimental ow is more unstable at higher frequencies than the calculations
predict, but is considerably closer to the calculations than previous experimen-
tal results. The di�culty of obtaining experimental results that agree well with
calculations for this very simple ow, is ominous of more complicated ows or
disturbances.

16



5. NEUTRAL STABILITY CURVE 17

400 600 800 1000
50

100

150

200

250

300
parallel
DNS
PSE
experiment
Fasel u
Fasel v

Reynolds number

F

Figure 5.1 Neutral stability curves for non-parallel boundary layer,
grey dashed curve: DNS, solid: PSE. The outer curves represent
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Konzelmann (1990) are represented by squares, grey: maximum of u
and black maximum of u. Experimental data are represented by
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CHAPTER 6

Oblique transition

Figure 6.1 Oblique waves at the inow (left) are seen to cause streak
growth. Low streamwise velocity is represented by dark blue it in-
creases over green and yellow to red representing the highest velocity.

Two oblique waves, with opposite wave angle, present in a laminar boundary
layer may cause oblique transition. The streamwise disturbance velocity from a
simulation of oblique transition is displayed in �gure 6.1, where the ow is from
left to right and low velocities are represented by dark blue. The velocity then
increases over green and yellow to red representing the highest velocity. The
checked standing wave pattern produced by the oblique waves can be observed
in the left inow region. Note that there are two spanwise wave lengths included
in the �gure. As the oblique waves slowly decay in the background, streamwise
streaks can be seen to grow and become the dominant ow structure at the
outow. There we clearly see four streaks, which means that the wavenumber is
twice that at the inow. This change of scale can only be caused by nonlinear
interaction of the involved disturbance modes.

Oblique waves are found to nonlinearly generate streamwise vortices in the
boundary layer and the streamwise vortices force the growth of the streaks by the
lift-up e�ect. This is a powerful process, which cause large amplitude streaks even
if the vortices are generally week and decay after the �rst nonlinear generation.
As the vortices are stationary we can study them by observing the mean values
of the disturbance velocities. The vectors in �gure 6.2 shows the direction and
the amplitude of the disturbance velocities in a plane perpendicular to the ow.
Four centers of rotation belonging to two pairs of counter rotating vortices can
be identi�ed. In the center of the �gure, vectors are pointing up and uid with
low streamwise velocity is lifted upwards causing a negative streamwise velocity
disturbance. That is indicated by the dark shading and the brighter patches
indicate an increased streamwise velocity where the vectors are pointing down.

Whether or not transition from laminar to turbulent ow occurs depends
on the �nal strength of the streaks. Due to the non-linearity their amplitude
scale quadratically with the initial amplitude of the oblique waves. A doubled

18
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Figure 6.2 The vectors shows the direction and amplitude of the
mean disturbance ow in a plane perpendicular to the ow direction.
Dark shading represent negative streamwise velocity disturbance and
white shading positive.

amplitude of the oblique waves means four times stronger vortices and forcing
of the streaks. It is when the streaks reach a threshold amplitude that other
disturbances start to grow and the ow breaks down to a turbulent state. Decay
of the streaks will otherwise be observed after they reach a maximum, and the
ow will remain laminar.

In �gure 6.3 the energy of the most important disturbance modes are shown
during the process of oblique transition. The energy has in the �gure been
normalized by the initial energy of the oblique waves (1; 1), which therefore is 1
at the inow where they are the only present disturbance. The initial energy of
the oblique waves have in this simulation been chosen to just push the streaks
over the threshold amplitude for transition to occur. The streak mode (0; 2) is
generated and grows rapidly to x = 100 and when it reaches its maximum at
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Figure 6.3 Energy in Fourier components with frequency and span-
wise wavenumber (!=!0; �=�0) as shown. The curves are normalized
such that the energy of the (1,1) mode at inow is set to unity.
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x = 200 the modes with lower energy suddenly starts to grow. Those modes were
also generated nonlinearly but did not have the same potential of initial growth
as the (0; 2) mode. Recall that the non-modal theory predicts large sensitivity
to forcing of modes with zero streamwise wavenumber. The results in �gure
6.3 are obtained from a simulation that was fully turbulent at x = 400 (see
paper 2) and was computed for a very low Reynolds number, R = 400 at the
inow. A subcritical Reynolds number at which no exponentially growing mode
exists. The total disturbance growth seen in this simulation is due to non-modal
growth e�ects, which cause growth at much lower Reynolds numbers than the
TS-mechanism.

The �rst experimental results of oblique transition in boundary layer ow
was presented by Wiegel (1996) and a comparison is obviously interesting. Even
a carefully built experiment will di�er from the mathematical precision of a
numerical simulation. The mean ow in a windtunnel will contain disturbances
at some level, pressure variations at the leading edge will e�ect the ow and
the generation of the desired disturbances may not be ideal. All these e�ects
inuence the transition scenario and are normally unknown to the numerical
investigator. After verifying that the qualitative aspects of the oblique transition
scenario was the same in the simulations and the experiment by Wiegel (1996),
we investigated how the transition scenario was e�ected by changes in the oblique
wave generation and streamwise pressure gradient. Imposing an adverse pressure
gradient (increasing pressure with downstream distance) was found to shift all
stages of the transition scenario upstream and changes in the generation method
for oblique waves primarily altered the amplitude and phase relation between
the individual modes of the generated disturbance. When a blowing and suction
technique, closely modeling the device used in the experiment by Wiegel (1996),
was used in the simulation it was shown that not only were oblique waves (1;�1)
generated but also higher spanwise harmonics like (1;�5).

The experimental disturbance generator was closely modeled in a simula-
tion and a pressure variation added to give the same initial growth of the
oblique waves as in the experiment. This led to good agreement for urms to
x = 320 (mm) and for the streak amplitude to x = 340 (mm), which is displayed
in �gure 6.4. Further downstream the pressure gradient cause earlier transition
in the simulation. A comparison of the late stages of the transition process was,
however, possible by choosing downstream positions with equal urms maxima
and the agreement was then still found to be good, thanks to the close modeling
of the disturbance generator. Figure 6.5 shows the spanwise variation of both
the streamwise mean velocity and the streamwise uctuations from such a com-
parison. Note that the peaks of urms are found at the spanwise position where
�u has its steepest spanwise gradient.
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Figure 6.4 (a) streak amplitude (b) urms of experiment (solid) and
simulation (dashed) with closely modeled generation mechanism and
pressure gradient to match initial urms development.
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Figure 6.5 Spanwise variation of �u (left) and urms (right) of sim-
ulation closely modeled generation device (solid) and experiment
(dashed). Because of the earlier transition in simulation, downstream
positions were chosen to get equal maximum of urms. The down-
stream positions were x = 391 in the simulation and x = 514 in the
experiment.
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Before the ow reaches a fully turbulent state �-shaped structures consisting
of pairs of streamwise counter rotating vortices are formed. The front parts of the
vortices are lifted towards the free-stream and their tips are drawn towards each
other. These �-vortices are much stronger than the mean vortices causing the
streak growth and one is displayed in �gure 6.6, where blue and yellow surfaces
represent constant negative and positive streamwise vorticity, respectively. On
the outside of the vorticity surfaces the disturbance ow is directed downward,
whereas there is a upward motion between them. The lift-up of slow streamwise
velocity between the vortices causes strong gradients in the streamwise velocity,
which is shown as a green surface of constant @u=@y in the �gure. �-vortices
are closely associated with the �nal breakdown. Inectional velocity pro�les are
found in the �-vortices and the �rst large velocity uctuations and high urms

values are �rst detected in their vicinity. This is the same region where the
strongest spanwise shear is located, which is consistent with what is observed in
�gure 6.5

The structures found in the late stage of oblique transition are very similar
to those of the nonlinear stages in the transition scenarios initiated by TS-waves.
We mentioned in x3.1.2 that they were characterized by di�erent patterns of �-
vortices. The secondary instability, which leads to three-dimensionality in the
TS transition scenarios, generates both oblique waves and streamwise vortices,
which we have shown to be the important components in oblique transition,
and the similarities are therefore not very surprising. Flow visualizations of the
three scenarios are shown in �gure 6.7 and both streakyness and the dark blue
�-patches can be seen in for all cases, with varying relation between the two
disturbance types. TS-waves are not observed, which is in agreement with the
results in literature showing that the energy in the oblique waves and streamwise
streaks are larger than the TS-wave at late TS transition stages. Non-modal ef-
fects may also be involved in the strong streak growth observed in TS transition.
The similarities between TS-breakdown and oblique breakdown are many but
a very important di�erence is that no TS-wave is needed or present in oblique
transition. Oblique waves are however needed in TS secondary instability tran-
sition.
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Figure 6.6 Positive (yellow) and negative (blue) isosurfaces of
streamwise vorticity in a �-vortex together with the associated high
streamwise shear-layer (green). The black arrow at the wall marks
the direction of the mean ow.

Figure 6.7 PIV pictures from three transition scenarios, from left
to right: oblique transition, H-type transition and K-type transition.
The ow direction is from the bottom to top of the �gures. Both
�-shapes and streaks can be observed in all three scenarios.





CHAPTER 7

Receptivity to oblique waves
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Figure 7.1 Contours of velocity from spatial simulation with oblique
waves in the free-stream. Top: v at z = 0, spacing 0.005, Second: v
at y = 9, spacing 0.005, Third: u at z = 0, spacing 0.0075, Bottom:
u at y = 2, spacing 0.025.

Oblique waves was found to cause rapid transition and it is interesting to in-
vestigate their role in the receptivity process. In addition, the growth of stream-
wise streaks has been found to be the dominant feature of both oblique transition
and transition caused by free-stream turbulence. Oblique waves were therefore
generated in the free-stream above the boundary layer in a spatial simulation and
the downstream development is shown in �gure 7.1. The two top �gures contain
contours of the wall normal disturbance velocity v in planes perpendicular and
parallel to the wall. The second frame from the top contains a wall parallel plane
selected at y = 9:0. It shows the typical chequered disturbance pattern produced
by two oblique waves and that the wave amplitude decreases downstream. The
downstream decay is also seen in the perpendicular symmetry plane z = 0, from
which it is clear that the main part of the oblique disturbances remain in the
free-stream. Contours of the streamwise disturbance velocity u is displayed in
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Figure 7.2 Logarithmic contours of energy starting at 1 � 10�12,
where two contours represent an increase with a factor of 10. Top: v
in the (1; 1) mode. Solid represents the linear part and dashed the cu-
bicly generated part, Second: u in the (1; 1) mode. Solid represents
the linear part and dashed the cubicly generated part,Third: v in
the quadratically generated (0; 2) mode, Bottom: u in the quadrati-
cally generated (0; 2) mode. Note how the (0; 2) mode is nonlinearly
generated in the hole domain and itself generates growing streaks.

the two bottom frames of �gure 7.1. The perpendicular plane is z = 0 and we
can again see the downstream decay in the free-stream, but also disturbance
growth inside the boundary layer. A wall parallel plane inside the boundary
layer at y = 2 reveals growing streamwise streaks with half the spanwise wave-
length of the initially generated oblique waves. These streaks are forced through
a nonlinear mechanism and their growth is due to linear non-modal mechanisms.

Temporal simulations were used in a thorough investigation of the the nonlin-
ear mechanism and how it is inuenced by changes in disturbance characteristics.

By studying the energy in the velocity components as function of both time
and the wall normal coordinate the new non-linear mechanism can be under-
stood. The �rst and the second frame from the top in �gure 7.2 shows the
energy in v and u respectively, for an oblique wave. We have separated the
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parts of (1; 1) that have a linear (solid) and cubic (dashed) dependence on the
energy in the initial disturbance. Quadratic dependence on the initial distur-
bance is found for the main nonlinearly generated mode (0; 2) and higher order
terms are negligible at the low amplitudes we have used. The linear part of the
oblique waves, both u and v, di�uses slowly and decays rapidly with time. The
cubicly generated part is seen to be more spread out vertically. In the second
frame from the bottom we display the v component of the (0; 2) mode, which is
rapidly generated by the non-linearities in a large wall-normal domain. It is not
damped and only slightly a�ected by the boundary layer and the wall. The v
component is associated with vortices that immediately interact with the shear
in the boundary layer to form streaks. This is observed as growing energy in the
u component inside the boundary layer in the bottom frame.

The same study of the initial receptivity was also done for two other types
of free-stream disturbances. No strong growth was found when the initial dis-
turbance was a two-dimensional wave. When streamwise vortices (0; 1) were ini-
tiated in the free-stream the nonlinear mechanism worked as for oblique waves
and the (0; 2) mode grew in the boundary layer. In addition the (0; 1) vortices
slowly di�used into the boundary layer and also caused strong streak growth.

In �gure 7.3 we compare the continued development of the oblique waves and
the streamwise vortices, and the corresponding non-linearly generated modes
(curves with additional markers). The oblique waves (solid) decay. The vor-
tex/streak (0; 2) mode (solid with markers), nonlinearly generated by the oblique
waves, grows substantially until its maximum is reached shortly before
t = 1000. The disturbance development caused by the initial generation of
the vortex/streak mode (0; 1) (dashed) shows a signi�cant di�erence from the
initiated oblique waves after t = 200. At that time the initially generated vor-
tices have di�used deep enough into the boundary layer to cause streak growth.
The (0; 2) mode, non-linearly generated by the initiated (0; 1), also grows and is
up to t = 450 actually slightly larger than the (0; 1) mode for this initial energy,
which corresponds to a vrms of about 1%.
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Figure 7.3 Long behavior of the energy for two disturbance types,
initiated with the same energy in the free-stream. Solid: oblique
waves, dashed: streamwise vortices. Curves representing non-linearly
generated modes are marked with dots.



28 7. RECEPTIVITY TO OBLIQUE WAVES

0 0.2 0.4 0.6 0.8
0

1

2

3

y

u=umax

Figure 7.4 Wall normal mode shape in the u-component of growing
streaks. Solid with marker: (0; 2) mode generated by oblique free-
stream waves, dashed: (0; 1) initiated in the free-stream, dashed with
marker: (0; 2) mode generated by streamwise vortices in the free-
stream and diamonds: urms distribution from experiment by Westin
et al. (1994) R = 890.

The wall normal mode shape in the u component of the three growing streak
modes previously discussed are plotted �gure 7.4. The shape of what is com-
monly referred to as a Klebano� mode is found for all three cases, with the linear
mode reaching slightly further into the free-stream. The original Klebano� mode
is the wall normal variation of urms in experiments with free-stream turbulence
and we have included experimental data from Westin et al. (1994) in the �gure.
The uctuations found in the experiment are caused by the random oscillations
of the dominant streaks and the agreement in mode shape between the streak
modes and urms is therefore natural. A consequence of the free-stream turbu-
lence in the experiments are that urms does not go to zero in the free-stream
and whether the experimental mode is associated with the linear or the nonlinear
mode shape or both can not be determined.

The growth of the quadratically generated streaks depends on the initial
disturbance characteristics and we have investigated both the dependence on the
wavenumbers � and � and the wall normal disturbance distribution. Changes
of � had the smallest e�ect on the growth and the optimal � was close to zero.
The best � for the free-stream disturbance depends on � and lies in the interval
0:2 < � < 0:35 and the selectivity for a speci�c � within that interval was not
found to be very strong. Note that the nonlinear generation results in streaks
with � between 0:4 and 0:7. The wall normal velocity component was found
to be important and redistribution of disturbance energy from the streamwise
velocity component to the wall normal increased the streak growth, under the
condition that the spanwise and wall normal size of the generated streamwise
vortex were comparable.

The importance of the wall normal velocity component in the receptivity
process was also shown in the numerical experiments by Yang & Voke (1993).
Westin et al. (1994) examined experimental data on the streamwise velocity
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component reported in literature and could not �nd a correlation between tur-
bulence level, streak amplitude and transitional Reynolds number. There is un-
fortunately a great lack of experimental information concerning the wall normal
velocity component, such data could explain observation and improve transition
prediction models.

An important feature of the new nonlinear receptivity mechanism is that
it can cause streak growth from both oblique disturbances and streamwise vor-
tices. We have studied receptivity mechanism that continuously interact with the
boundary layer, whereas many previous investigators considers the receptivity
to take place at the leading edge. A continuous forcing of streaks could explain
the discrepancy in the growth rate between those calculations and experimental
�ndings. It could also, from a spectra of scales in the free-stream contribute to
the downstream increase of the spanwise streak scale found in experiments.



CHAPTER 8

Control of oblique transition

The mechanisms behind oblique transition and the associated streak break-
down are now known and also that they are a potential cause of rapid transition.
A natural next step is to investigate the possibilities of controlling oblique tran-
sition.

We used two methods to generate a oscillating spanwise ow in order to
delay oblique transition. The �rst was the use of a oscillating spanwise body
force that decayed exponentially away from the boundary layer wall. Gailitis &
Lielausis (1961) showed that periodically distributed magnetic �elds and electric
currents can generated such a force (Tsinober 1989) and we assume that the
force is given by

Fz = f0e
�y=c cos(!t); (6)

where f0 is an amplitude, ! the oscillation frequency and c a parameter con-
trolling the wall normal decay. We will use the triplet (f0; c; !) to refer to these
force parameters. The force itself is not signi�cant for the control but rather the
spanwise ow that it causes, which has the form

w(y; c; !) = A
q
e�2y + e�2y=c � 2 cos(y)e�(+1=c)y (7)

where

A =

s
(f0R)2c4

1 + (!R)2c4
;  =

r
!R

2
(8)

The expressions (8) reveal that a change of the oscillation frequency or the
decay parameter c will e�ect both amplitude and wall normal distribution of the
spanwise ow. To study the e�ects of changes in the spanwise ow pro�le several
parameters often have to be adjusted at the same time.

The other method of generating a spanwise oscillating ow was to oscillate
the wall. The expression for w is then

w = Ce�y cos(y); (9)

where  is given above and C is the amplitude.
For both control strategies we found that the achieved transition delay in-

creased with spanwise ow amplitude to an optimal value of 50-60% of the
streamwise free stream velocity. The transition delay was less if the spanwise ow
amplitude was raised above that value. The body force was more successful in
delaying transition and the maximum delay found for our case was 35%, whereas
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Figure 8.1 Left: coe�cient of friction Right: oscillating
spanwise ow pro�les, for force parameters (0:43; 0:05; 0:09)
(solid), (0:086; 0:22; 0:09) (doted), (0:060; 0:38; 0:09) (dashed) and
(0:046; 0:7; 0:09) (dash-doted). The thick curve in the left �gure rep-
resents the uncontrolled case.

the oscillating wall could only delay transition with 15%. The explanation for
this can be found by studying the wall normal pro�le of the control ow. The
transition time was taken as the instant when the wall friction reached 1:7 times
the laminar value.

In the left frame of �gure 8.1 the friction coe�cient is plotted as a function
of time for four control cases together with a thicker curve representing the case
without control. The body force was in the controlled cases adjusted to produce
di�erent wall normal pro�les of the spanwise oscillating ow. The pro�les are
found in the right frame of �gure 8.1. The two middle ow pro�les perform best.
The transition delay is less if the spanwise ow is concentrated close to the wall
or a too large wall normal proportion of the boundary layer is oscillating. The
purpose of the control is to break the ow structures causing transition, and one
may interpret these results in the following manner. If the whole structure is
moved (the highest ow pro�le) or if the relevant structures not a�ected (the
lowest pro�le), they will not be destroyed by the spanwise ow oscillations and
therefor the resulting transition delay will be less. It is natural that the oscillating
wall achieves less transition delay, as its pro�le has its maximum at the wall.

The optimal oscillation frequency of the oscillations was found to be in the
range 0:09 < ! < 0:17 for the body force and slightly lower for the moving wall.

For comparison the discussed control strategies were also applied to a case
where the energy of the initial disturbance causing transition was randomly
distributed. The total energy was then twice that of the oblique waves in order
to cause transition at approximately the same time.

The observed transition scenario was also found to be characterized by
streaky structures, but of smaller spanwise scale. That scenario was consid-
erably easier to e�ect by the ow oscillations and both the body force and the
oscillating wall could prevent transition. The optimal oscillation frequency and
also the best wall normal pro�les for the spanwise ow were the same as for
oblique transition. This indicates that our results my be generally true for tran-
sition dominated by streamwise streaks and not only applicable to the particular
case of oblique transition we have concentrated our study on.
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THE NEUTRAL STABILITY CURVE FOR NON-PARALLEL
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Abstract. The complete neutral stability curve for non-parallel boundary
layer ow is presented. The results are produced by both carefully per-
formed DNS and PSE calculations, that are in excellent agreement. Agree-
ment is also found with the few points on the neutral stability curve that
have been reported previously and with the latest experiments. Based
on the displacement thickness and the free-stream velocity the critical
Reynolds number for growth of u and v in non-parallel boundary layer
ow is determined to Rcrit�u = 518 and Rcrit�v = 456, respectively.

Traditional stability theory for Blasius boundary layers are based on the as-
sumption of a locally wall parallel ow. Large discrepancies in the points of neu-
tral stability determined in experiments, to the theoretical predictions, has often
been considered as non-parallel e�ects. Several investigators has proposed theo-
ries that include non-parallel e�ects. Fasel & Konzelmann (1990) examined the
non-parallel theories and compared them to both experiments and spatial direct
numerical simulations (DNS). They simulated Tollmien-Schlichting (TS) waves
with four di�erent frequencies and found Gaster's (1974) theory to agree well
with their calculations and the non-parallel e�ects to be comparatively small.
They concluded that the large discrepancies in experiments were not caused
by non-parallel e�ects. The same was found by Bertolotti, Herbert & Spalart
(1992), who simulated two frequencies with DNS and calculated the neutral sta-
bility curve for non-parallel ow with parabolized stability equations (PSE). By
carefully designing the leading edge to avoid pressure gradients and controlling
the pressure gradient along their experimental boundary layer, Klingmann et al.

(1993) obtained neutral points that agreed well with theory and calculations.
The aim of the present investigation has been to determine the complete

neutral stability curves and the critical Reynolds numbers based on both the
wall normal as well as the streamwise velocity components, in zero-pressure
gradient, incompressible, non-parallel boundary layer ow. To our knowledge,
such results based on DNS calculations has not been presented before. We also
compare them with our PSE results and results of previous investigators.

The DNS program (1992, 1994) uses Fourier-Chebyshev spectral methods,
similar to those of Kim, Moin & Moser (1987). To combine a spatially growing
boundary layer, with periodic boundary condition in the streamwise direction,
a \fringe region", similar to that described by Bertolotti, Herbert & Spalart
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(1992) is used. In the fringe region, a forcing term is added to the Navier-Stokes
equations, that eliminates disturbances owing out of the box and returns the
ow to its laminar inow state. The studied TS-waves were generated by a body
force applied in the boundary layer a short distance from the inow.

The nonlocal stability calculations (based on PSE methodic) are performed
using the NOLOT code, for description see Hani� et al. (1994). The normal
derivatives are approximated by a fourth-order compact di�erence scheme. The
stability equations are integrated in the streamwise direction using a �rst-order
backward Euler scheme. The stability calculations are started far upstream of
the �rst branch of the neutral curve using the eigenvalues and eigenvectors from
local theory as the initial conditions.

An instantaneous ow �eld from the DNS will register the maximum ampli-
tude of the downstream traveling TS-wave at only a few locations separated by
a half TS-wavelength. By Fourier transforming several consecutive ow �elds in
time, the amplitude variation in both the streamwise and wall normal direction
can be found. In �gure 1 both the streamwise u and the wall normal veloc-
ity v of a TS-wave is plotted as function of Reynolds number and wall normal
position. The non-dimensional frequency of the TS-wave is F = 220, where
F = 2�f�=U2

1
� 106, f the dimensional frequency, U1 the free-stream velocity

and � the kinematic viscosity. The Reynolds number is de�ned as R = U1��=�,
where �� is the displacement thickness. We have used the displacement thickness
at R = 300 to non-dimensionalize the wall normal coordinate in �gure 1. The
amplitude in both velocity components are seen to �rst decay as R increases and
then grow as the wave reaches the unstable Reynolds number region, to �nally
decay again when that region ends.
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Figure 1. Contours of the amplitude in a TS-wave with non-
dimensional frequency F=220. Top: u component �rst contour value
1:5 � 10�5 and spacing 9 � 10�6; Bottom: v component, �rst contour
value 5 � 10�6 and spacing 5 � 10�6
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When a TS-wave develops downstream, not only does its amplitude change,
but also the wall normal mode shape. u has two maxima in the wall normal
direction and v one and they are not found at a constant wall normal position,
even if the wall normal coordinate is scaled with displacement thickness, as in
�gure 1. The growth rate and the neutral points with zero growth depends on
what ow quantity is studied and how that quantity is followed downstream,
something clearly demonstrated by Fasel & Konzelmann (1990). Following a
wall normal maxima downstream gives a result that cannot be misleading and is
well suited for comparison with both theory and experiments. We have followed
the lower/inner maxima of u and the single maxima of v, when evaluating the
growth and neutral points in our calculations.

The disturbance generation in the DNS will not only generate a TS-wave but
also other modes at low amplitude. That can be seen in �gure 1 as slight oscilla-
tions in some of the contours. We have minimized the level of other disturbance
modes by careful modeling of the disturbance generation and did not, as Fasel
& Konzelmann (1990) did, have to use any smoothing in the evaluations of the
DNS results. Oscillations in the growth rate was also noted by Bertolotti et

al. (1992) when they perturbed the initial eigenmode in their PSE calculations.
The oscillations inuenced the results further downstream for higher frequency
eigenmodes.

A better view of the wall normal amplitude variation of the TS-waves u-
component is given in �gure 2. It displays normalized values measured by Kling-
mann et al. (1993) for F = 250 and R = 574 and the corresponding curves from
DNS and PSE. The calculations are in perfect agreement and the experimental
points follow the calculations well up to the outer maxima. As the amplitude of
the inner maxima is three times larger than the outer and the mean ow compo-
nent is lower close to the wall, the inner maxima should be easier to determine
experimentally. Thus, the growth of the inner maximum is an appropriate choice
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Figure 2. Amplitude (left) and phase (right) of TS-wave with F =
250 at R = 574, grey dashes: DNS, solid: PSE, circles: experiment.
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for comparisons. It is probably also less e�ected by outer disturbances in the
experimental environment. If we express the streamwise velocity signal of the
TS-wave at a �xed downstream position by u(y; t) = ~u(y) sin(!t + �(y)) that
de�nes the phase �(y), which is plotted in �gure 2. There is a perfect agreement
between PSE and DNS also in the phase and minor di�erences to the experi-
mental results. Klingmann et al. (1993) found di�erences between their phase
pro�les and those of linear parallel theory. Those were, however, arti�cial and
caused by a sign di�erence in the de�nition of �(y) (1997). We have not included
results of the linear parallel theory in �gure 2 as they are very close to the DNS
and PSE results, which can be seen in Fasel & Konzelmann (1990).

To produce neutral stability curves, DNS were performed for frequencies in
the range 140 < F < 300 with an interval of 10. Additional simulations were
made close to tip of the unstable regions displayed in �gure 3. The dashed
grey curves in the �gure represent the DNS results and cubic splines has been
used to obtain plot data between the calculated points. The curve enclosing a
larger region represents the neutral curve for v, whereas the neutral curve for
u encloses a smaller unstable region. In the DNS calculations, the Reynolds
number resolution was 1.2 and a cubic spline interpolation was used to �nd the
neutral points. The two solid lines in �gure 3 represents the neutral curves of
u and v found by the PSE method. The low cost of PSE calculations allowed
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Figure 3. Neutral stability curves for non-parallel boundary layer,
grey dashed curve: DNS, solid: PSE. The outer curves represent
maximum of v and the inner maximum of u. DNS results by Fasel &
Konzelmann (1990) are represented by squares, grey: maximum of u
and black maximum of u. Experimental data are represented by

circles.
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calculations to a frequency as low as F = 30 and also high resolution in F . The
resolution in F was 1 in the region 200 < F < 300 and 5 below F = 200. Here,
the step size in the streamwise direction was �R = 4:3 and a cubic interpolation
was used to �nd the neutral points. The agreement between PSE and DNS is
excellent but a small di�erence can be found at branch I for v at the highest
frequencies. Based on the results obtained using both methods, we determined
the critical Reynolds number to 456 for v and 518 for u, with a uncertainty of
respectively, �2 and �1.

Figure 3 also contains neutral stability points that we have read from the
�gures presented by Fasel & Konzelmann1990 and the agreement between those
results and our calculations is good. The circles represent experimental data
obtained by Klingmann et al. 1993 and for lower frequencies they actually agree
better with parallel theory than with the non-parallel results. The experimental
ow is more unstable at higher frequencies than the calculations predict, but is
considerably closer to the calculations than previous experimental results. The
accuracy of the experimental points is not estimated by Klingmann et al. 1993,
but it must be a di�cult task to �nd the points of zero derivative on a very at
experimental curve with some scatter and we question if better agreement can
be anticipated with present measurement techniques.

To produce neutral stability curves for non-parallel boundary layer ow with
highest possible accuracy, we have put great e�ort into reducing disturbances
caused by wave generation and numerical issues in our DNS calculations. The
results agree well with experiments, previous DNS calculations and present PSE
calculations. From the neutral stability curves calculated by both DNS and PSE
we have found the critical Reynolds numbers for growth of the streamwise u and
wall normal v velocity components to be 518 and 456, respectively.

We are grateful to Mr. P. Andersson for his aid with the PSE calculations and
Dr. J. Westin for making the experimental data available to us. This work has
been supported by TFR (Swedish Research Council for Engineering Sciences).
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Abstract. Simulations of oblique transition in the spatial domain are pre-
sented, covering the complete transition process into the turbulent regime.
It is conjectured that the three stages identi�ed here and elsewhere are uni-
versal for oblique transition in all shear ows: �rst a non-linear generation
of a streamwise vortex by the oblique waves, second a transient growth of

streaks from the vortex by the lift-up e�ect, and third a breakdown of the
streaks due to secondary instability.

We will present an investigation of bypass transition, i.e. transition emanat-
ing from linear growth mechanisms other than exponential instabilities. This
de�nition is in line with the original idea of Morkovin (1969), but is formulated
in view of results on nonmodal transient growth (Hultgren &Gustavsson 1981,
Gustavsson 1991 Butler & Farrell 1992, Reddy &Henningson 1993 Trefethen
et al. 1993). In these investigations it was shown that signi�cant growth of
the disturbance energy is possible for certain two- (2-D) and three-dimensional
(3-D) disturbances in shear ows at subcritical Reynolds numbers, where the
largest growth was obtained for the 3-D perturbations. Physically, the growth is
due to the Orr (1907) and lift-up mechanisms (Landahl 1975). Mathematically
it can be explained by the fact that the linearized Navier-Stokes operator has
non-orthogonal eigenfunctions, a necessary condition for subcritical transition to
occur (Henningson & Reddy 1994).

In the investigation of Henningson, Lundbladh & Johansson (1993) the lift-up
mechanism was found to play an important role in the growth of both in�nites-
imal and �nite amplitude disturbances. In the study by Schmid & Henningson
(1992) temporal simulations starting from a pair of oblique �nite amplitude waves
were performed. It was found that non-linearity rapidly excited components with
zero streamwise wavenumber, i.e. streamwise vortices. By the lift-up e�ect the
vortices generated large amplitude low and high-speed streaks. The breakdown
to turbulence, which has recently been found to result from a secondary insta-
bility of the streaks (Kreiss, Lundbladh & Henningson 1994, Lundbladh, Hen-
ningson &Reddy 1994), occurs more rapidly than traditional transition initiated
by the growth of 2-D waves.

Oblique transition has also been found in compressible ows. Fasel & Thumm
(1991) and Chang & Malik (1994) found a similar scenario for a compressible
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boundary layer on a at plate. In the latter investigation the \streamwise vortex
mode" also played an important role and the initial amplitude necessary to
trigger transition was found to be lower than for comparable secondary instability
scenarios. The oblique transition scenario has also been found for ow in a
compressible con�ned shear layer (Gathmann, Si-Ameur & Mathey 1993). In
their study the oblique waves appeared naturally from noise introduced at the
inow boundary.

In the present study the oblique transition scenario has been simulated spa-
tially for a zero-pressure gradient incompressible boundary layer. Joslin, Streett
& Chang (1993), in a study aimed at validating the PSE approach, considered a
similar case but ended their calculations before transition occurred. We will use
a numerical simulation program solving the full three-dimensional incompress-
ible Navier-Stokes equations developed by Lundbladh, Henningson & Johansson
(1992). The program uses Fourier-Chebyshev spectral methods, similar to those
of Kim, Moin & Moser (1987). The simulation program has recently been mod-
i�ed to handle spatial development of disturbances in channel and boundary
layer ows. In a fringe region a forcing term was added to the Navier-Stokes
equations. It was implemented such that the disturbances owing out of the
box were eliminated and the ow returned to its laminar state. In the fringe
region wave disturbances can also be generated, simulating a vibrating ribbon
1993. This technique, which allows the streamwise expansion in Fourier modes
to be retained while prescribing inow and outow conditions, is similar to that
of Bertolotti, Herbert & Spalart (1992).

The inow conditions for the present simulation consists of the Blasius mean
ow plus a pair of oblique waves, each with an amplitude A (based on the
maximum RMS of the streamwise velocity) of 0.01. They are taken as the
least damped Orr-Sommerfeld mode for !0 = 0:08 (F0 = !0=R = 200 � 10�6)
and �0 = 0:192, excluding the associated normal vorticity. Here !0 and ��0
are the angular frequency and spanwise wavenumbers of the generated waves.
The Reynolds number at the inow (R = U1��

0
=�) is 400, based on the inow

displacement thickness (��
0
) and free-stream velocity (U1), which in the following

are used to non-dimensionalize all quantities. The inow position will in the
following be denoted x0.

Two calculations of the same scenario were performed. The �rst used 480�
97� 80 modes in the streamwise, normal and spanwise directions, respectively,
and the second used 720 � 121 � 120 modes. (Note that spanwise symmetry
was assumed and that dealiasing, using the 3/2 rule, was also applied in the
horizontal directions.) As a test of the convergence, four maxima in the stream-
wise shear in the outer part of the boundary layer were compared [x � x0 �
200; 250; 300; 350; y � 5 in Figure 2(b)]. The di�erences in the values were below
1% in the four maxima, although the position of the last maximum has changed
slightly. The higher resolution corresponds to a grid step of 14 wall units in the
streamwise direction, 6 for the spanwise and 4 for the largest step in the wall
normal direction, based on the wall friction in the turbulent region.

Figure 1 shows the development of the coe�cient of friction (cf = 2�w=�U
2

1
,

�w is the time and spanwise averaged wall shear stress) for the simulation. It
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Figure 1. Coe�cient of friction cf = 2�w=�U
2

1
, �w is the averaged

wall shear stress. Rx = xU1=� where x is the distance from the
leading edge. Lower dashed line shows the value for a laminar Blasius

boundary layer (0:664R
�1=2
x ) and the upper curve is the turbulent

friction 0:370(logRx)
�2:584 by Shultz-Grunow (see Schlichting 1933

p. 643)

is evident that the simulation captures the complete transition process, all the
way into the turbulent regime.

Figure 2 shows the breakdown to turbulence of the two oblique waves gener-
ated at the inow boundary. In �gure 2a, which shows the streamwise velocity in
a wall-parallel plane, the appearance of streamwise streaks is observed at about
x � x0 = 50. The streaks subsequently grow to a large amplitude and become

 0.  100.  200.  300.  400.

-20.
 0.

 20.

x-x0

z

 0.  100.  200.  300.  400.
 0.

 5.

 10.

x-x0

y

Figure 2. Instantaneous velocity �elds. (a) Streamwise velocity at
y = 2:93. Values range from red at 0.34 to blue at 1.08. (b) Stream-
wise shear at z = 0. Values range from blue at -0.18 to red at 1.9.
Note the fringe region starts at x�x0 = 408, at the right part of the
computational box.
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Figure 3. Energy in Fourier components with frequency and span-
wise wavenumber (!=!0; �=�0) as shown. The curves are normalized
such that the energy of the (1,1) mode at inow is set to unity.

unstable to a non-stationary disturbances, resulting in a breakdown to turbu-
lence at about x�x0 = 350. Figure 2b shows the streamwise shear in a side view
of the boundary layer. Shear layers are seen to intensify and become unstable
prior to the breakdown.

Figure 3 shows the energy in some of the excited Fourier components during
the transition process. At the inow only the (1;�1) components are excited.
They show a rapid initial growth similar to that in the simulations by Schmid &
Henningson (1992), who also set the initial normal vorticity to zero. The (0; 0)
(0;�2) (2; 0) (2;�2) components subsequently increase due to nonlinear e�ects,
since they are directly generated by the (1;�1) modes through the quadratic
nonlinearity. The (0;�2) components grow more rapidly than the other modes
and continues to grow to grow until about x � x0 = 100. The latter part of
this growth was found by Schmid & Henningson to be due to a linear forcing
of the streak (u component) from the vortex (v; w components) for the same
wavenumber. A second phase of rapid growth starts for modes with nonzero !,
eventually completing the transition process. This growth can best be described
as a secondary instability on the base ow with a spanwise variation given by
the (0;�2) streaks. A similar rapid growth of oblique modes from a state of
streamwise streaks was found for transition in plane Couette ow by Kreiss,
Lundbladh & Henningson (1994).

In order to put the present simulation in perspective, data from a number of
recent spatial simulations have been compiled in table 1. The transition process
in the present simulation occupies about the same streamwise domain as in the
simulations of secondary instability induced breakdown by Kloker & Fasel (1993),
in spite of the exponential growth of the 2-D mode and higher input amplitude
in the latter case. This is accentuated by the results of Spalart & Yang (1987)
who simulated an even larger domain by following a streamwise periodic box,
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Ref. R Rx0 RxE A2D A3D !0 �0 Trans.

Present 400 54000 220000 | 0.01 0.080 0.192 yes
JSC 733 182000 447000 0.0048 0.0000145 0.091 0.242 no
JSC 900 238000 489000 | 0.01 0.0774 0.2 no
KF 679 155000 304000 0.03 0.002 0.075 0.29 yes
SY 1260 532000 1390000 0.01 noise 0.095 | no

Table 1. Comparison of recent spatial simulations of instability and
transition. JSC refers to Joslin, Streett & Chang (1993), KF to
Kloker & Fasel (1993) and SY to Spalart & Yang (1987). The last
column indicates whether the simulation included the complete tran-
sition region. x0 is the position of the disturbance generator and xE
is the end of the simulated region.

accounting for the streamwise growth of the boundary layer and disturbance in
an approximate manner. In spite of covering a larger Reynolds number range
their simulations did not reach the turbulent state.

In the present investigation the wave amplitude at the inow is low, result-
ing in a long growth region before breakdown. This initial amplitude represents
the lowest amplitude disturbance of the chosen form, giving transition in this
computational box. In a simulation with A = 0:0086 the secondary instability
was not strong enough, and thus no transition occurred. For the same initial
amplitude Joslin, Streett & Chang (1993)) did not �nd that the growth was suf-
�ciently rapid to cause transition within their computational box, although the
domain was longer and the inow at a higher Reynolds number than the present
study. The reason may be their use of complete eigenmodes as inow condition
(i.e. including the normal vorticity part of the eigenmode), which implies that
they do not have the rapid transient growth of the oblique (1;�1) modes seen
in the present case.

The oblique transition scenario in the boundary layer is quite similar to that
seen in channel ow (Schmid & Henningson 1992). In addition the streaks seem
to break down due to the same a secondary instability mechanism (Kreiss, Lund-
bladh &Henningson 1994, Lundbladh, Henningson & Reddy 1994). In light of
these �ndings, and those of other investigations discussed here, we conjecture
that the following three stages occurs during oblique transition in shear ows:

� Initial non-linear generation of a streamwise vortex by the two oblique
waves.

� Generation of streaks from the interaction of the streamwise vortex with
the mean shear by the lift-up e�ect.

� Breakdown of the ow due to a secondary instability of the streaks, when
these exceed a threshold amplitude.

Note that if the amplitude of the inow disturbance is large enough the break-
down may be so rapid that the second and the third stage overlap.
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Abstract. A transition scenario initiated by two oblique waves is stud-
ied in an incompressible boundary layer. Hot-wire measurements and ow
visualizations of this scenario are reported for the �rst time. The experi-
mental results are compared with spatial direct numerical simulations and a
good qualitative agreement is found. Also quantitative agreement is found
when the experimental device for disturbance generation is closely mod-
eled and pressure gradient e�ects taken into account. The oblique waves
are found to interact nonlinearly to produce streamwise streaks growing
downstream, related to non-modal linear growth mechanisms. The same
has previously been observed in channel ows and calculations of both
compressible and incompressible boundary layers. The ow structures of
oblique transition have many similarities to K- and H-type transition, for
which two-dimensional Tollmien-Schlichting waves are the starting point.
However, two-dimensional Tollmien-Schlichting waves are usually not ini-
tiated or observed in oblique transition and consequently the similarities
are due to the oblique waves and streamwise streaks appearing in all three
scenarios.

1. Introduction

1.1. Tollmien-Schlichting waves. Transition from laminar to turbulent ow
in viscous boundary layers is of great practical interest and is far from under-
stood. One possible route to transition that has been observed in low noise
environments is the \Tollmien-Schlichting (TS) secondary instability scenario".
A majority of the research e�orts on laminar-turbulent transition has been fo-
cused on this scenario. Its �rst stage, or primary instability, is the growth of
two-dimensional TS-waves and can be predicted by solving the Orr-Sommerfeld
equation for exponential instabilities. The two-dimensional state has been found
to develop into one of two basic three-dimensional stages, then to turbulence.
Herbert (1983a, 1983b) found that the two three-dimensional stages were caused
by secondary instabilities of the two-dimensional state. These occurs if the am-
plitude of the two-dimensional TS-wave is above a given threshold. One of the
three-dimensional stages was observed experimentally by Klebano�, Tidstrom
& Sargent (1962) and is called K-type or fundamental breakdown. The other
was �rst observed by Kachanov, Kozlov & Levchenko (1977) and goes under
the names H-type or subharmonic breakdown. Kachanov (1994) calls it N-type
transition in his review over the physical mechanisms involved in transition. A
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review over the theoretical e�orts concerning the secondary instabilities has been
written by Herbert (1988). Kleiser & Zang (1991) has reviewed the numerical
work in the area. Details of these scenarios are presented in section 4, where
the results on oblique transition presented here are discussed in light of previous
�ndings.

1.2. Transient Growth. Before the 1940's experimental investigators were un-
able to identify TS-waves and the following secondary instability in both bound-
ary layers and channel ows. Transition was instead caused by other disturbances
and other growth mechanisms. These are obviously as likely now as they were
then. Morkovin (1969) stated \We can bypass the TS-mechanism altogether",
and transition caused by growth mechanisms other than exponential instabili-
ties are often named bypass-transition. The growth mechanisms behind bypass
transition can be found by examining the linearized Navier-Stokes equations.
Since the nonlinear terms are conservative in the Naiver-Stokes equations they
cannot by themselves be responsible for production of disturbance energy. In
fact, considering the evolution equation for the total disturbance energy, the so
called Reynolds-Orr equation, all of the nonlinear terms drop out, implying that
the instantaneous growth rate is independent of the disturbance energy (see e.g.
Joseph 1976, Henningson 1996).

The existence of growth mechanisms other than those associated with expo-
nential growth were known already to Orr (1907) and Kelvin (1887), but the in-
vestigations by Gustavsson (1991), Butler & Farell (1992), Reddy & Henningson
(1993), Trefethen et al. (1993) showing the possible magnitude of the transient
growth, clearly indicated their potential for causing transition.

In order to briey discuss the concept of transient growth and relate it to
the mathematical characteristics of the governing equations we will consider the
horizontally Fourier transformed linear disturbance equations. We have

dû

dt
= Lû(t); û(0) = û0(1)

where L is the linearized Navier-Stokes operator around a parallel mean ow.
The solution can be written û(t) = exp(tL)û0 and the maximum growth expe-
rienced at time t as

max
û0

kû(t)k

kû0k
=k exp(tL) k(2)

The norm is here taken as the disturbance energy integrated over the wall-normal
direction

k û(t) k=

�Z
jû(y; t)j2dy

�1=2

:(3)

It is possible to obtain a bound on the maximum growth of the following form

exp(Ref�maxg) � k exp(tL)k � � exp(Ref�maxg)(4)

The constant � can be thought of as the condition number of the \matrix of eigen-
values", which can be generalized to in�nite dimensional operators (Trefethen
1997). If L were a normal operator or equivalently if all of its eigenfunctions
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were orthogonal, this condition number would be unity, i.e. � = 1. For stream-
wise independent disturbances or streaks, which experience the largest transient
growth, it can be shown that � = O(R), where R is the Reynolds number based
on a suitable boundary layer thickness. The physical mechanism behind this
growth is the lift-up e�ect (Landahl 1975). Weak streamwise counter rotating
vortices in the shear layer can lift up uid with low streamwise velocity from the
wall and bring high speed uid down towards the wall. This will create streaks
of large amplitude in the streamwise velocity component. In the inviscid case
the corresponding perturbation amplitude grows linearly with time, something
recognized by Ellingsen & Palm (1975).

Another consequence of a non-normal operator is that the corresponding linear
system may show a large response to forcing, although the forcing is not at a
resonance condition. Let us consider the linear problem above, driven by a real
frequency !

dû

dt
= Lû(t) + ei!tv̂(x; y; z);(5)

the time asymptotic response is given by

û(t) = ei!t(i!I �L)�1v̂(6)

The response is given by the resolvent (i!I � L)�1, which can be given the
following bound,

1

j�� i!j
� k(i!I �L)�1k �

�

j�� i!j
;(7)

where j� � i!j represents the closest distance between i! and the spectrum of
L. For streamwise independent disturbances the distance between ! and the
closest eigenvalue to L is O(1=R), which together with the size of the condition
number � implies that the response is bounded by O(R2). A summary of results
on optimal transient growth and optimal forcing, from several shear ows, is
found in table 1. In most of the theoretical work on transient growth and the
sensitivity to forcing (non-modal growth), a temporal formulation has been used.
The disturbances are then thought to grow in time, which simpli�es analysis
and calculations. In a physical experiment or a spatial simulation, however,
disturbances grow in space. Recently transient growth in boundary layers, or
maybe better non-modal growth, has been considered in spatial formulations
by Luchini (1996, 1997) and Andersson, Berggren & Henningson (1997). They
found that the maximum possible energy growth scales linearly with the distance
from the leading edge.

The possibilities of strong growth discussed above explains that transition do
occur even when no exponential instabilities exist. In cases where exponential
instabilities are present, there will be a competition or combination between the
di�erent mechanisms depending on the disturbances present. And obviously the
nonlinear coupling between di�erent disturbances will play an important role.
The non-modal growth of streamwise streaks is just the �rst step of transition.
The possibility of a subsequent secondary instability of streaks and growth of
three-dimensional disturbances has been investigated by Reddy et al. (1997) for
channel ows. They found that streak breakdown is caused by an inectional
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Flow Quantity Value � �
Couette max resonance sup!2R k(!I �L)�1k (R=8:12)2 0 1:18

max growth supt<0
kexp(�itL)k R=29:1 35:7=R 1:60

Poiseuille max resonance sup!2R k(!I �L)�1k (R=17:4)2 0 1:62
max growth supt<0

kexp(�itL)k R=71:5 0 2:04
Blasius max resonance sup!2R k(!I �L)�1k (R=1:83)2 0 0:21

max growth supt<0
kexp(�itL)k R=25:7 0 0:65

Table 1. Maximum resonance and transient growth for selected
shear ows and the corresponding streamwise � and spanwise �
wavenumber. For Couette and Poiseuille ow the half channel width
and the centerline velocity are used to make the quantities non-
dimensional and for Blasius the displacement thickness and the free-
stream velocity have that role. The values are taken from Trefethen et

al. (1993), Butler & Farrell (1992) and Schmid (private communica-

tion).

secondary instability, normally in the spanwise direction but for some cases in
the wall-normal direction.

1.3. Oblique Transition. Oblique transition is a transition scenario initiated
by two oblique waves with opposite wave angle. We call these the (1;�1) modes,
where the �rst 1 stands for the generated fundamental frequency in the spatial
cases and for the fundamental streamwise wavenumber in the temporal cases.
The second 1 stands for the fundamental spanwise wavenumber. Lu & Henning-
son (1990) �rst noted the potential of oblique disturbances in incompressible
ows in their study of localized disturbances in Poiseuille ow. Schmid & Hen-
ningson (1992) calculated oblique transition in channel ow using a temporal
direct numerical simulation (DNS) code. They showed, for plane Poiseuille ow,
that initial forcing and subsequent transient growth caused the rapid growth of
the (0; 2) mode. They calculated the relation between the energy transfered to
the (0; 2) mode by the nonlinear terms and the energy growth by transient linear
mechanisms and found the latter to be the signi�cant part. Joslin, Streett and
Chang (1992,1993) calculated oblique transition in an incompressible boundary
layer using both parabolized stability equations (PSE) and spatial DNS. They
chose two di�erent amplitudes of the oblique waves. In the low amplitude case
the (0; 2) mode grew rapidly and then decayed whereas they noted both the
rapid growth of the (0; 2) mode and a subsequent growth of other modes in the
high amplitude case. Berlin, Lundbladh & Henningson (1994) chose the param-
eters of the oblique waves to avoid any exponential instability in their spatial
DNS calculation. They pointed out that the rapid transient growth of the (0; 2)
mode was associated with high- and low speed streaks in the streamwise veloc-
ity component and conjectured that the onset of the growth of time-dependent
modes was caused by secondary instability of the streaks when these reached a
threshold value. For channel ow Reddy et al. (1997) found that the energy
needed to initiate oblique transition is substantially lower than that needed in
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the transition scenarios caused by the two-dimensional TS-wave. Similar results
have also been found in boundary layer ow by Schmid, Reddy & Henningson
(1996).

Oblique transition has also been studied in compressible ows, where Fasel
& Thumm (1991) noted that it is a"powerful process". Using nonlinear PSE
Chang & Malik (1992, 1994) studied this scenario in a supersonic boundary
layer and found oblique-wave breakdown to be a more viable route to transition
and that it could be initiated by lower amplitude disturbance, compared to
traditional secondary instability. Using DNS Fasel, Thumm & Bestek (1993)
and Sandham, Adams & Kleiser (1994) studied oblique transition in compressible
boundary layers and all investigators observed, �rst the nonlinear interaction of
the oblique waves generating the streamwise vortex mode (0; 2) and then its
rapid growth. The fact that the rapid growth of the (0; 2) mode was caused by
transient growth and the non-normality of the linear operator discussed above
was shown by Hani�, Schmid & Henningson (1996).

Experimentally oblique transition has been investigated in Poiseuille ow by
Elofsson (1995) and by Wiegel (1997) and Elofsson (1997) in zero-pressure gra-
dient boundary layers. In the present investigation of oblique transition further
details has been studied using both experiments and numerical simulations. A
similar comparison between experiment and simulation has been done for plane
Poiseuille ow by Elofsson & Lundbladh (1994).

The tools used in the physical and numerical experiments are covered in x2.
x2.1 contains a description of the experimental set-up and the measurement
techniques adopted for the present experiment and x2.2 the numerical method.
Results from experiments and simulations are compared in x3 to explain the
di�erent stages of oblique transition. In x4 the oblique transition is compared
to K- and H-type transition and the reason for the similarities of the structures
observed at the late transition state are discussed. Concluding remarks are given
in x5.

2. Investigational Tools

2.1. Experimental method.

2.1.1. Experimental set-up and measurement technique. The experimental in-
vestigation was performed in the low turbulence wind tunnel (TUG) at DLR
G�ottingen. It is an open windtunnel with the fan at the inlet. A honeycomb
and turbulence damping screens damp the turbulence level together with a plane
16:1 contraction to 0.065 % for the used windspeed of U1 = 12 m/s.

The measurements were performed on a at Plexiglas plate 1500 mm wide,
1175 mm long and 40 mm thick, which was mounted vertically in the test section.
The plate had an elliptic leading edge and a ap at the trailing edge. The device
used to generate controlled three-dimensional disturbances is displayed in �gure
1. It was situated 206 mm downstream of the leading edge and consisted of
40 slots, 10 mm wide and 0.3 mm in the streamwise direction, placed beneath
each other with a spacing of 0.5 mm in the spanwise direction. Each slot led
to a pressure chamber inside the plate, in which pressure uctuations from a
loudspeaker were introduced through a plastic tube. We make use of the e�ect
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Figure 1. Device fore disturbance generation. Note that the dis-
tance to the virtual leading edge is 20 mm less than the distance to
the actual leading edge given in the �gure.

that small periodic pressure oscillations produced by the loudspeakers cause
small periodic velocity uctuations which can be used for a well de�ned excitation
of the boundary layer. A signal generator with 20 channels followed by ampli�ers
supplied the excitation signals for the loudspeakers. It was possible to address
each loudspeaker separately, nevertheless all channels were phase-locked. By
prescribing the phase shift between the channels one or two oblique waves could
be generated. More details of the set-up and the excitation device can be found
in Wiegel (1997).

Detailed measurements were then made by both hot-wire anemometry and
particle image velocimetry (PIV). Flow visualizations gave a good overview of
the transition scenario and were useful to choose suitable spanwise wavelength,
frequency and amplitude for the oblique waves. For PIV measurements and ow
visualizations a laser system created a light sheet, which was aligned parallel
to the surface of the plate and could be manually scanned through the bound-
ary layer. The light sheet was 0.6 mm thick and illuminated tracer particles
in the observation area stroboscopicly with a repetition-rate of 10 Hz. Each
illumination actually consisted of two lightpulses with a duration of 20 ns. The
time-delay between the two pulses could be varied in a wide range but for our
set-up it was chosen to 100 �s. The mean diameter of the tracer particles in
the ow was approximately 1 �m and the seeding-rake was located upstream of
the turbulence damping screens. The pictures could be recorded with a CCD
camera or with a standard 35 mm camera. The recorded area was of the order
of 0.2 m by 0.1 m. The signal of the CCD camera was digitized by means of a
frame grabber. The frame grabber, or the shutter release of the 35 mm camera,
and the laser light-pulses as well were triggered by the signal generator for the
excitation, so that a �xed phase relation between excitation and recorded picture
was guaranteed. It was also possible to set an additional phase shift to acquire
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pictures at various phases over one period. The inaccuracy of the velocity read-
ings produced by the utilized evaluation procedure is, averaged over the entire
PIV recording, less than 1 % of the mean ow velocity.

A three-axis traversing system were used for single hot-wire sensors. The
traversing mechanisms were driven by computer-controlled stepper motors with
a wall-normal resolution of 0.001 mm and a spanwise resolution of 0.01 mm.
Velocity, temperature, and dynamic pressure data were directly digitized through
a 12-bit A/D converter. The uctuating velocities at the desired frequency was
�ltered in a 1 Hz band pass by computing the autospectral density function using
an FFT. The cross spectrum between the hot-wire signal and the forcing signal
of the signal generator provided phase information.

2.1.2. Flow quality and wave parameters. The ap at the trailing edge of the
plate was adjusted to achieve as close to zero pressure gradient boundary layer in
the measurement region as possible. The measured pressure gradient is presented
in �gure 2 and the scatter of order 0.001 in the experimental data around the
�t is probably due to low frequency velocity uctuations. For comparison the
predicted pressure gradient from a boundary layer calculation is presented. The
boundary layer program (Rotta 1971) accounts for the shape of the leading
edge but not the walls of the windtunnel and the ap. It takes the pressure
distribution form a potential ow solution as indata. As the boundary layer
develops under a pressure gradient around the leading edge the boundary layer
thickness at a certain downstream coordinate will di�er form that of a theoretical
Blasius boundary layer. Therefore a virtual leading edge is calculated from the
actual displacement thickness in the measurement region to �t a theoretical
leading edge. This is situated 20 mm downstream of the real leading edge and we
will from now on refer all downstream distances to the virtual leading edge both
in the experimental and numerical results presented. All wall-normal coordinates
y will either be normalized by the Blasius reference length �r = (�x=U1)

1=2

at the local x or given in millimeters. Figure 3 displays the velocity pro�les
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Figure 2. Pressure gradient in streamwise direction without excita-
tion, z = 0
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Figure 3. (a) Mean velocity pro�le, (b) Variation of the integral ow
parameters , �1 and �2, without excitation

achieved in the measurement section as well as the downstream development
of the displacement thickness. This �gure also shows that we can assume a
Blasius boundary layer downstream of the excitation. The spanwise spectra of
the undisturbed meanow of both free-stream and boundary layer were checked
to make sure that there were no peaks at the spanwise wavelengths excited later
in the experiment.

The excitation device introduces locally a wall-normal velocity but the goal
is to have controlled oblique eigenmodes moving downstream. Therefore the
calibration of the excitation is based on measuring the disturbance level in-
side the boundary layer downstream of the excitation. Setting the same phase
of the excitation signal for all 40 slots a two-dimensional wave was generated,
which made it possible to check that the amplitude was evenly distributed in
the spanwise direction. The frequency of the generated oblique waves was 90
Hz corresponding to a non-dimensional frequency in the current setting of F=59
(F = 2�f�=(U2

1 � 10�6)) and setting the phase shift between adjacent slots to
�60 degrees a spanwise wavelength of 63 mm was obtained. The modeshape of
the generated waves were compared to that calculated by linear theory and good
agreement was found as shown in �gure 4, where also the mean velocity pro�les
are displayed.

Setting frequency and spanwise wavelength the waveangle was from ow visu-
alizations found to be 35�3 degrees well in accordance with the theoretical value
of 38 degrees. The fact that the generation device was directly forcing the desired
eigenmode was established by showing that the amplitude of the oblique waves
was a linear response of the excitation amplitude A. This is shown in �gure 5 (b),
where A is linearly related to the loudspeaker input. A bandpass �lter selected
the frequency of the oblique waves for the urms displayed in the �gure and as
the measurements were done close (x=217 mm) to the disturbance generation
device higher harmonics had very low amplitude. Figure 5 (a) demonstrates that
the modeshape was independent of the forcing amplitude.
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amplitude versus excitation level.

2.2. Numerical method.

2.2.1. Numerical scheme. The simulation code (see Lundbladh, Henningson &
Johansson 1992 and Lundbladh et al. 1994) used for the present computations
uses spectral methods to solve the three-dimensional, time dependent, incom-
pressible Navier-Stokes equations. The algorithm is similar to that of Kim, Moin
& Moser (1987), i.e. Fourier representation in the streamwise (x) and spanwise
(z) directions and Chebyshev polynomials in the wall-normal (y) direction and
pseudo-spectral treatment of the nonlinear terms. The time advancement used
was a four-step low storage third-order Runge-Kutta method for the nonlinear
terms and a second-order Crank-Nicholson method for the linear terms. Aliasing
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errors from the evaluation of the nonlinear terms were removed by the 3

2
-rule

when the horizontal FFTs were calculated.
To correctly account for the downstream boundary layer growth and pressure

gradient e�ects a spatial technique is necessary. That requirement was combined
with the periodic boundary condition in the streamwise direction by the imple-
mentation of a \fringe region", similar to that described by Bertolotti, Herbert
& Spalart (1992). In this region, at the downstream end of the computational
box, the function �(x) in equation (8) is smoothly raised from zero and the ow
is forced to a desired solution v in the following manner,

@u

@t
= NS(u) + �(x)(v � u) + g(8)

r � u = 0(9)

where u is the solution vector and NS(u) the right hand side of the (unforced)
momentum equations. Both g, which is a disturbance forcing, and v may de-
pend on the three spatial coordinates and time. v is smoothly changed from
the laminar boundary layer pro�le at the beginning of the fringe region to the
prescribed inow velocity vector. This is normally a boundary layer pro�le of
a chosen Falkner-Skan ow, but can also contain a disturbance. This method
damps disturbances owing out of the physical region and smoothly transforms
the ow to the desired inow state, with a minimal upstream inuence.

In order to set the free-stream boundary condition closer to the wall, a gener-
alization of the boundary condition used by Malik, Zang & Hussaini (1985) was
implemented. Since it is applied in Fourier space with di�erent coe�cients for
each wavenumber, it is nonlocal in physical space and takes the following from,

@û

@y
+ jkjû =

@v̂

@y
+ jkjv̂:(10)

Here k is the absolute value of the horizontal wavenumber vector and û is the
Fourier transforms of u. The Fourier transform v̂ of v is usually the local solution
to a Falkner-Skan ow, with the streamwise free-stream velocity varying as

U = U0x
m:(11)

v can also be chosen arbitrarily in order to simulate other pressure variations
than those found in Falkner-Skan ow. On the wall the boundary condition is
either no slip or a time dependent wall-normal velocity.

2.2.2. Disturbance generation and box dimensions. The presented numerical im-
plementation provides several possibilities for disturbances generation. Oblique
waves with a frequency !0 = 90 Hz and a spanwise wavenumber of �0 = 99:73
m�1 has in this investigation been generated with �ve di�erent methods. In the
presentation of results we will transform the non-dimensional variables used in
the simulation code to dimensional ones, using the kinematic viscosity for air and
free-stream velocity U1 = 12 m/s. We will also refer the downstream coordinate
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x to the virtual leading edge of the experiment. We have given the �ve di�erent
generation methods of oblique waves the following abbreviations:

FRIN : Generation in the fringe region by adding the least damped Orr-
Sommerfeld mode for the chosen parameters to the forcing vector v in
equation 8. The computational box was in this case designed such that the
inow was at x = 186 mm.

BODY : Generation by a body force. g was in the volume 184 � x � 187
mm, 0 � y � 1:55 mm assigned to: gx = Acos(�0z)cos(!0t)=(2!0), gy =
Acos(�0z)sin(!0t), gz = �Asin(�0z)sin(!0t)=(2�0), where the amplitude
A was smoothly reduced to be zero at the top boundary of the forcing
volume.

BLOW : Generation by blowing and suction. The wall-normal velocity com-
ponent (v) was on the wall in the interval 184 � x � 187 mm speci�ed to
v = Acos(�0z)sin(!0t).

STEP : Generation by stepwise blowing and suction. The wall-normal ve-
locity component was on the wall in the interval 184 � x � 187 mm set
to vary as v = Astep(z)sin(!0t), where the \step" function for each span-
wise wavelength has six levels: 1, 0.5, -0.5, -1, -0.5, 0.5. The change-over
between the levels were smooth.

DAMP : Generation by blowing and damped suction. The wall-normal ve-
locity component was on the wall in the interval 184 � x � 187 mm set to
vary as
v = max(Acos(�0z)sin(!0t); A d cos(�0z)sin(!0t)), where 0 � d � 1 is a
damping factor reducing negative values of the wall-normal velocity at the
wall.

The DNS code for the boundary layer geometry is a development of the chan-
nel code by Lundbladh, Henningson and Johansson (1992), which has been exten-
sively tested and used. To verify the spatial boundary layer version comparisons
has been made with the results reported by Fasel and Konzelmann (1990). It
was also possible to compare with linear parallel theory by adding a body force:

g = �
1

R

@2U(x; y)

@y2
;(12)

which produces a parallel mean ow in the whole computational domain.
The box sizes and resolutions used for the simulations presented in this paper

are displayed in table 2. The displacement thickness at the position where the
oblique waves were generated was 0.83 mm and this was 30 mm downstream of
the inow boundary in all but the FRIN case. The width of the box was set to
�t one spanwise wave length of the oblique waves. Since an initial symmetry is
preserved by the Navier-Stokes equations we could save computational costs by
only calculating one half of each wall parallel (x; z) plane. Box1 was used for the
calculations presented in x 3.1.1 and x 3.1.2. The lower forcing amplitude was
used to prolong the transition development and clarify the initial part. The ow
visualization presented in x 3.1.1 was also made with a lower forcing amplitude.
The transition stages and development observed were the same as for the other
cases. Box2 was used for the simulations in x 3.1.3 and x 3.2. The ow in Box1



68 OBLIQUE TRANSITION EXPERIMENTALLY AND NUMERICALLY

xl � yl � zl nx � ny � nz forcing
(mm) (resolution) urms%

Box1 775� 63� 11.6 1200 � 65 � 96 1.4
Box2 397� 63� 11.6 512 � 65 � 80 2.3
Box3 310� 63� 11.6 512 � 65 � 120 2.3
Box4 310� 63� 11.6 720 � 97 � 192 2.3

Table 2. Resolution and box dimensions for the simulations pre-
sented. The box dimensions includes the fringe region, which took
up 62 mm at the downstream end of the box in all cases. The forcing
is given as the urms of the oblique waves at x = 217 mm

and Box2 did not reach as far in the transition process as in the other two boxes
and the calculations were therefore over resolved. Box3 and Box4 were used for
the results in x 3.3 and x 3.4. The amplitudes of the disturbances and the ow
observed in these cases were the same, but the resolution of Box3 was marginal
whereas that of Box4 was su�cient.
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3. Results

In order to better demonstrate the coherence of experiment and simulations,
we do sometimes present data from both investigations in the same �gure. In
general, we want to give a good description of oblique transition and therefore
alternate experimental and DNS results depending on what is most suitable
for describing a certain property. The presentation of results is in x3.1 show
the basic mechanisms of oblique transition and establish that we observe the
same qualitative development in both experiment and calculations. In x3.2 we
present a numerical investigation of how the di�erent disturbance generation
techniques and changes in the pressure gradient e�ect the transition scenario.
Those results are in x3.3 used to closely model the experiment using the DNS.
Finally a combination of numerical and DNS results are used in x3.4 to give a
good picture of the late stages of oblique transition.

3.1. Basic Features.

3.1.1. The emergence of large amplitude streaks. The dominating feature ob-
served in a ow visualization of oblique transition, is the spanwise periodic
streamwise streaks, growing inside the boundary layer (�gure 6 a). These are
associated with regions of low and high speed streamwise velocity and a snap-
shot of this velocity component from the simulation displays a similar picture
(�gure 6 b). The initially generated oblique waves are noticed as a checkboard
pattern of dark and light patches in the left upstream part of both �gures. The
development of the oblique waves are, however, easier studied when the mean
streamwise velocity U is subtracted from the ow �eld.

(a)

(b)

Figure 6. (a) Photo from ow visualization of oblique transition. (b)
Instantaneous streamwise velocity from numerical simulation, plane
parallel to the wall, ow from left to right
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In �gure 7 (a), where only the uctuating part of the streamwise veloc-
ity ~u = ~u(t; x; y; z) remains, the oblique waves are seen to decay slowly after
the generation point. Further downstream the pattern changes as disturbances
with higher spanwise wavenumber reach an amplitude comparable to that of the
oblique waves. Since the alternating maxima and minima of the oblique waves
are aligned in the streamwise direction, the �gure of root mean square of the
streamwise velocity (urms) will also show structures aligned in the streamwise
direction (�gure 7 b).

The nonlinear interaction of the oblique waves generates counter rotating
streamwise vortices. The time averaged mean of the streamwise vorticity is
shown in �gure 8 (a,d) together with the mean of the wall-normal and spanwise
velocity components (�gure 8 b,c). The spanwise wavelength of the vortex pat-
tern is half that of the oblique waves. The vortices decay downstream, but in
spite of that they generate the growing high and low speed streaks by the lift-up
mechanism described in the introduction. By subtracting the spanwise mean
from the mean streamwise velocity in both experiment and simulation and plot-
ting in a plane perpendicular to the ow, comparable �gures of the streamwise
velocity perturbation are shown in �gure 9 (a,b). The small arrows symbolize
the rotation direction of the associated vortices.

If the amplitude of the initiating oblique waves are to low, the streak amplitude
will grow and thereafter decay. For larger amplitudes transition to turbulence
will be observed. Figure 10 shows wall-normal pro�les of streak amplitude for
several downstream positions in the experimental set-up. The shape is the same
as the so called Klebano� mode (Klebano� 1971, Kendall 1985), which consists of
low frequency oscillations observed in boundary layers subjected to free-stream
turbulence. The maximum of the pro�les are found at a constant y=�r. The
streak amplitude decreases after x = 467 when the disturbance level in the ow

-30. -20. -10.  0.  10.  20.  30.
 0.
 1.
 2.
 3.
 4.
 5.
 6.

z (mm)

y=�r

z (mm)

y=�r

Figure 9. Contours of mean streamwise velocity disturbance (a)
Experiment (b) Simulation, solid lines represent positive values and
dashed negative values.
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Figure 10. (a) Variation of the streak amplitude in the wall-normal
direction at several downstream positions. (b) Development of the
streak amplitude in the streamwise direction.

reaches high values (�gure 10 b) and the maximum of the wall-normal pro�le
moves away form the wall (�gure 10 a).

3.1.2. Development of Fourier components. We transform the velocity �elds in
time and in the spanwise direction to Fourier space and use the notation (!; �),
where ! and � are the frequency and spanwise wavenumber respectively, each
normalized with the corresponding fundamental frequency/wavenumber. Thus
the oblique waves are represented by (1; 1) and (1;�1) and the streaks by (0; 2).
In �gure 11 the slow decay of (1; 1) after the peak at the generation point x = 186
is clear as well as the upstream inuence of the generation. As the ow is sym-
metric and (!; �) equal to (!;��), we only show modes with positive �. The �rst
generation of nonlinearly excited modes (2; 0), (2; 2) and (0; 2) are represented
by dashed lines and the the second generation modes (3; 1), (3; 3) and (1; 3) are
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Figure 11. Energy in the initially generated Fourier mode (1; 1),
solid. The modes exited after the �rst generation of nonlinear inter-
action (0; 2), (2; 2) and (2; 0), dashed. Modes exited after the second
step of nonlinear interactions are dotted, (1; 3), (3; 3) and (3; 1). Dash
dotted are (0; 4)
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dotted. According to the results on transient growth, disturbances with zero or
low frequency should have the greatest growth potential, which is precisely what
we �nd. The (0; 2) and (1; 3) modes gains approximately two orders of magni-
tude more energy than the other modes of their respective nonlinear generation.
This is also true for the (0; 4) mode which is the only mode of higher nonlinear
generation displayed in �gure 11. After x = 350 the curves representing the
(1; 1) and (1; 3) modes approach each other, which is also evident in �gure 7 (a)
were the uctuating velocity �eld is gradually complicated by shorter spanwise
wavelengths.

3.1.3. Quadratic dependence of streak amplitude. In �gure 12 the development
of the energy in the (1; 1) and (0; 2) modes are compared using simulations with
three di�erent initial wave amplitudes. If the amplitudes are scaled with the
maximum of (1; 1) for each run (�gure 12 a), the (1; 1) curves collapses showing
the linear relation between the forcing and the downstream amplitude. The
energy in (0; 2) for the case with the strongest initial forcing reaches a level
where nonlinear saturation occurs at approximately x=400 mm. Scaling with
the maximum of (1; 1) squared instead, as in 12 (b), the (0; 2) curves collapses
up to the downstream position of saturation, showing the quadratic nonlinear
generation of (0; 2) from (1;�1).

The same observations can be made in the experiment. It was shown in �gure
5 (b) that the oblique waves scales linearly with the forcing amplitude of the
loudspeakers. That the streak amplitude depends quadratically on the forcing
amplitude in the experimental investigation is shown in �gure 13, where the
streak amplitude at a �xed downstream position is plotted against the square of
the forcing amplitude. The experimental curve follows the straight line until the
forcing is strong enough to cause nonlinear saturation of the streaks.

In the next section we will discuss how the ow reacts to changes of input
parameters and how to understand discrepancies between experiment and simu-
lation.
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Figure 12. Energy in (1; 1) and (0; 2) components from simulations
with increasing initial wave amplitude, dotted curves correspond to
the lowest amplitude and solid to the highest. (a) curves scaled with
max(1; 1) (b) curves scaled with max(1; 1)2
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Figure 14 shows the downstream development of the rms amplitude in the
streamwise velocity component (urms) for the �ve di�erent generation methods
as well as for the experiment. The strength of the generation in the simulations
was set such that the maximum urms at x = 217 was equal to the experimentally
measured value at that position. The signal in both the experiment and the
simulation was �ltered to select the generation frequency, and in the following
the curves of urms will only contain that frequency. The di�erence between the
total urms and the �ltered urms in the simulations presented in this section never
exceed 14% and that occurs when the ow is almost turbulent.

The overall downstream development of urms is similar for all �ve cases, de-
spite the fact that the initial development strongly depends on the type of forcing
and that matching was done at a single downstream position. The curve for the
FRIN case lies slightly below the others and urms grows signi�cantly more after
x=400 mm in the DAMP case. The damping factor of suction in the DAMP
simulation presented in this section was d = 0:4.

Rms modes and their phase
In frequency-wavenumber space the modes contributing to the �ltered urms will
be (1; �), where � is any integer. Note that as the ow is symmetric the modes
(!; �) and (!;��) have the same amplitude and in the following the we will
denote the sum of these modes by (1;��). We �nd that the dominating modes
are (1;�1), (1;�3) and (1;�5). Figure 15 shows urms and the rms of the men-
tioned modes of the BLOW case together with the phase di�erence between the
(1; 1) and the (1; 3) modes. The generated (1;�1) mode decays downstream but
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0.04 total

(1,3)
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Figure 15. (a) Filtered urms and rms of the (1; 1), (1; 3) and (1; 5)
modes for a case with oblique waves generated by blowing and suc-
tion, BLOW. (b) Phase di�erence between the (1; 1) and (1; 3) modes.
Note the correspondence between zero and ��=2 phase shift and the
local extrema in the urms curve.
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Figure 16. urms for various modes (a) (1;�1) mode (b) (1;�3)
mode (c) (1;�5) mode and di�erent generation methods FRIN, thin;
BODY, dashed; BLOW, doted; STEP, dash doted; DAMP, thick.

the (1;�3) and (1;�5) modes grows and after x = 380 (1;�3) dominates. The
phase relation explains the local extrema appearing in the urms curve, where a
minimum appears when the phase shift is ��

2
and a maximum when it is 0. The

extremum is sometimes slightly o� the location with ��
2
or 0 phase shift, which

is caused by the fact that (1; 1) mode is decaying and the (1; 3) increasing.
To further study the di�erences between the generation methods, the domi-

nating frequency-wavenumber modes are compared in �gure 16. It is clear that
the downstream di�erences in the �ltered urms are accounted for by the higher
modes (1;�3) and (1;�5). Particularly the strong growth in the DAMP case is
associated with the (1;�5) modes. The BODY and DAMP cases initially gen-
erates more of the (1;�3) modes and there is a signi�cant generation of (1;�5)
initially in the STEP case. Comparing with the experimental results one �nds
that generation with a stepwise amplitude variation in the spanwise direction is
necessary to get close agreement. This is illustrated in �gure 17 where the span-
wise variation of both urms and the phase is plotted. The urms curve for both the
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Figure 17. Spanwise variation of urms (a) and phase (b) form STEP
(solid), experiment (dashed) and BLOW (dotted).
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experiment and the STEP simulation show a typical bottle shape, caused by the
(1; 5) mode. Results from a simulation with a sinusoidal spanwise blowing and
suction has been included in the �gure as reference and this has a square-wave
like phase curve, to compare with the curves including sharp peaks correspond-
ing to the stepwise results.

Streak dependence

The di�erences in generation of the oblique waves and the growth of the rms-
modes will obviously inuence the growth of the streaks amplitude, which we
de�ne at each downstream position as maxy(maxz( �U)�minz( �U)). As we con-
sider the meanow, the modes in frequency-wavenumber space that are associ-
ated with the streak amplitude will be (0; �), � being any integer. In �gure 18
(a-d) the downstream development of the streak amplitude and the three most
important streak modes (0; 2), (0; 4) and (0; 6) are plotted for the �ve di�erent
generation methods. The (0; 2) mode is dominating but in the DAMP case the
growth of the streak amplitude increases suddenly at x = 440 and this rise is
caused by the growth of (0; 4) and (0; 6). The (0; 2) mode for this generation
method does not grow after x = 350 and it is generated initially. The initial
generation of (0; 2) is a clear di�erence from the other methods, but is in bet-
ter agreement with the experiment, which also has a higher amplitude at the
generation point apart from growing more rapidly downstream. Generation by
stepwise blowing and suction generated the (1; 5) mode and the nonlinear inter-
action of (1; 5) and (1; 1) transfers energy to the (0; 6) mode, which is observed
to have an amplitude from the generation point in �gure 18 (d). This accounts
for the di�erence in amplitude between the streak and the (0; 2) mode initially.
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Figure 18. (a) Streak amplitude, (b) (0; 2) mode, (c) (0; 4) mode
and (d) (0; 6) mode for di�erent generation methods. FRIN, thin;
BODY, dashed; BLOW, doted; STEP, dash doted; DAMP, thick;
experiment, star.
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Figure 19. (a) urms (b) (1; 1) mode (c) (1; 3) mode for simulations
with di�erent pressure gradient and experiment. Zero pressure gra-
dient, thick; increasing adverse pressure gradient from dash, dash-
dotted to dotted; experiment, star.

3.2.2. E�ects of pressure gradient. The investigation of disturbance generation
did not explain the discrepancy in the streak growth observed in �gure 18(a),
something that could be caused by a slight mean pressure gradient in the experi-
ment. We observed that the (1;�1) modes decayed faster in the simulations than
in the experiment (�gure 14) and therefore chose a positive pressure gradient.
That will decrease the damping of the oblique waves and thereby increase the
forcing of the streaks. Three simulations with Falkner-Scan ow were performed,
where the exponent m in equation 11 was set to �5:525� 10�3;�1:370� 10�2

and �1:907� 10�2. The oblique waves were generated by blowing and suction
with a sinusoidal spanwise distribution. Figure 19 (a) shows the the �ltered urms

as function of downstream position for the zero pressure gradient case and the
experiment, together with the three cases with pressure gradient. An increased
adverse pressure gradient indeed decreases the damping of the (1; 1) mode as-
sociated with the urms curve and increases the growth of the higher modes
dominating after x = 350 (�gure 19 b-c). The increased growth of higher modes
is caused both by the stronger forcing from the less damped oblique waves and
the change of pressure gradient and this is also noted in �gure 20 (a-c) displaying
the streak amplitude and the associated modes. Although a faster downstream
development is caused by a positive pressure gradient, the qualitative character-
istics of the transition scenario is not altered by the pressure gradient. We note
that the experimental data for urms up to x = 350 agrees better with the sim-
ulation, having higher positive pressure gradient, and the corresponding curve
of streak amplitude also gives the closest agreement, although it is still under
predicted.
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Figure 20. (a) streak amplitude (b) (0; 2) mode (c) (0; 4) and (d)
(0; 6) mode for simulations with di�erent pressure gradient and ex-
periment. Zero pressure gradient, thick; increasing adverse pressure
gradient from dash, dash-dotted to dotted; experiment, star.

3.3. Detailed Modeling. The results on how the generation method and a
pressure gradient inuence the studied transition scenario, will in this section be
used to model the experiment closely. Using blowing and suction is obvious since
that was used in the experiment. The good agreement in the urms between the
simulations and the experiment given by the STEP method was shown already
in �gure 17. Moreover, in �gure 20 (a) one observes that the streak amplitude
in the experiment starts at a higher level than the curves from the simulations.
An increase in initial streak amplitude was observed when the DAMP method
was used in �gure 18 (a,b) and consequently a damping factor for suction of
0:7 was used for the results presented in this section. A pressure gradient was
speci�ed to get good agreement between experiment and simulation results for
the growth of the (1;�1) modes the �rst 150 millimeters. Only a very small
pressure gradient was observed in the experiment but other ow characteristics
could explain the larger growth rates observed in the experiment. Klingmann
et al. (1993) for example concluded in their investigation of the stability of
Tollmien-Schlichting waves that an unsuitable leading edge often explained high
growth rates observed in experiments.

Figure 21 displays the downstream variation of urms and the streak amplitude
for both the experiment and a simulation using the above stated parameters.
The agreement is excellent to x = 320 for urms and to x = 340 for the streak
amplitude. Further downstream the pressure gradient cause earlier transition
in the simulation. Therefore the later stages of the breakdown process occur
at earlier streamwise positions than in the experiment. Thus a comparison of
features from a particular stage in the transition process will have to occur at
di�erent streamwise positions in experiment and simulation. In �gure 22 the
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Figure 21. (a) streak amplitude (b) urms of experiment (dashed)
and simulation (solid) with closely modeled generation mechanism
and pressure gradient to match initial urms development.
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Figure 22. Spanwise variation of (a) �U and (b) urms of experi-
ment (dashed) and simulation (solid) with closely modeled generation
mechanism and pressure gradient to match initial urms development.
Because of the earlier transition in simulation, downstream positions
were chosen to get equal maximum of urms. The downstream posi-
tions were x = 391 in the simulation and x = 514 in the experiment.

spanwise variation of urms and �U are compared at downstream positions where
the transition process has reached the same stage, i.e. where the maximum
of urms are the same in both simulation and experiment. The mean and rms
values at x = 391 in the simulation are compared with the corresponding values
at x = 514 in the experiment. The agreement shown requires that amplitude
and phase of all involved modes have the correct relations and is achieved thanks
to the close modeling of the generation device for oblique waves. The di�erence
in streak amplitude in �gure 22(a) is smaller than that observed in �gure 20(a).
The reason for this is that the streak amplitude in the experiment decays after
x = 467 (�gure 10b).

3.4. Final Breakdown.

3.4.1. The onset of high frequency uctuations. The last �gures (�gure 22 a,b) of
the previous subsection shows that the peaks of urms appears where the spanwise
gradient of �U has its maximum. This is di�erent from the early stages of oblique
transition where urms is dominated by the oblique waves and therefore lies in
the middle of the low speed streaks (cf. �gure 7). The meandering streaks
displayed in the ow visualization (�gure 6) indicates that large urms values
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�

�
Breakdown

Figure 23. Late transition state from ow visualization of oblique
transition. Observe that turbulent high frequency oscillations are
�rst formed at the spanwise edge of the streaks.

are produced, as the boundary between high and low speed uid oscillates in
the spanwise direction. A close up of the streaks in the ow visualization also
displays the �rst turbulent high frequency oscillations just where the color of the
smoke pattern changes from black to white (�gure 23).

The distribution of urms in a plane perpendicular to the ow is presented in
color scale for both simulation and experiment in �gures 24 (a,b). The exper-
imental data are taken from x = 566 and the simulation results at x = 410, a
di�erence that again is attributed to the earlier transition in the simulation. A

(a) (b)

y=�r

(mm)

y=�r

(mm)

z (mm) z (mm)

Figure 24. urms represented by colors in a scale from blue-minimum
to red-maximum in a plane perpendicular to the ow. White contours
represent �U � meanz(�u) solid contours positive values and dashed
contours negative values. Simulation data are from x = 410 and the
experimental data from x = 566, as transition is earlier in the simu-

lation.



82 OBLIQUE TRANSITION EXPERIMENTALLY AND NUMERICALLY

Figure 25. Timesignal at z= -2.5 mm, xv=566 mm, y=�r= 1.55
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Figure 26. Instationary phase averaged mean velocity pro�les,
xv=566 mm, z=-2.5.

characteristic symmetric structure with two legs, each containing a maxima of
urms, joined at their upper half is identi�ed in both �gures. The �gures also
include contours of �U �meanz( �U) and the shear is found to be high in regions
where the maxima of urms are situated. It is important to note that it is not
only the spanwise shear that is high, which was clear already in �gure 22, but
also the wall-normal shear. The wall-normal and spanwise positions, where the
peaks of urms are found, are the same as those where the �rst appearance of
high frequency oscillations were detected by a hotwire. A timetrace from the
experiment at such a position is presented in �gure 25, where each fundamen-
tal cycle contains high frequency oscillations. A spectral analysis reveals both
high amplitude of several subharmonics and range of ampli�ed frequencies at
approximately 800 Hz. In the phase averaged streamwise velocity pro�les col-
lected at di�erent phases during a fundamental time period in the experimental
investigation (�gure 26), we �nd inectional pro�les. The position of inectional
pro�les coincide with the positions where we found the peaks of urms and the
high frequency oscillations. The inectional pro�les were only present during a
part of a time period, the same was true for the high frequency oscillations.

3.4.2. Flow structures. It is interesting to relate the statistical quantities and
the instantaneous observations discussed above, to structures appearing in the
ow during transition. In �gure 27 positive and negative isosurfaces of instan-
taneous streamwise vorticity are displayed in yellow and green respectively. At
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Figure 27. Isosurfaces of positive and negative instantaneous
streamwise vorticity are colored yellow and green respectively. Note
the formation of a �-vortex at the downstream part of the box. A
pair of counter rotating vortices are displayed as red and blue sur-
faces representing positive and negative mean of streamwise vorticity,
respectively.

x = 200 a spanwise row of small surfaces reveal where the wave generator is situ-
ated. The oblique waves are then seen as streamwise rows of alternating positive
and negative vorticity. When the ow evolves downstream the patches of vortic-
ity are gradually divided (x=360 mm). Groups of three surfaces overlapping each
other, are separated alternately to the left and to the right. Two such groups,
of three surfaces, from neighboring rows form new groups, in which we can iden-
tify the middle pair of surfaces as counter rotating vortices forming a �-shaped
structure. The two pairs of surfaces above and below does not represent vortices
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Figure 28. Isosurfaces of positive and negative instantaneous
streamwise vorticity are colored yellow and green respectively. In (a)
the red and blue surfaces represents constant positive and negative
value of the wall-normal disturbance velocity respectively. In (b) and
(c) The red and blue surfaces represent constant positive and neg-
ative values respectively of the wall-normal shear of the streamwise
disturbance velocity, isolines are constant urms.
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but regions of high wall-normal shear, @w=@y. Observe that there is no spanwise
vortex connecting the legs of the �-vortex, which is natural since the legs has
developed independently and thereafter been drawn towards each other. The red
and blue surfaces in �gure 27 represent positive and negative mean streamwise
vorticity. It is that motion that creates the low and high speed streaks in the
streamwise velocity and it is also responsible for the observed splitting of the
instantaneous vorticity patches. In the �rst portion of the box the red and blue
structures are mainly what we previously have called (0; 2) mode and the yellow
and green structures correspond to the (1;�1) mode. In the downstream region
of the box the mean streamwise vorticity surfaces instead tend to be a trace of
the instantaneous vorticity structures.

In �gures 28 the structure inside the smaller red box in �gure 27 are studied.
The green and yellow surfaces are the same in the �gures 27{28 and in �gure
28 (a) the red and blue surfaces represents positive and negative wall-normal
disturbance velocity respectively. With disturbance velocity we mean that the
laminar velocity has been subtracted. The original checkboard pattern of positive
and negative wall-normal velocity disturbances has here been deformed by the
�-vortex. It has strengthened the upwash in the middle of the structure, which
creates the strong shear-layer observed in �gure 28 (b). In that �gure the red
surfaces represent the wall-normal shear of the streamwise disturbance velocity.
One observes both a high shear-layer riding on top of the �-vortex and strong
shear-layers underneath the �-vortex. The lower shear-layers start at the wall
and follow the �-vortex upwards. They are caused by uid with high streamwise
velocity brought down by the negative wall-normal velocity (blue surfaces in
�gure 28 a). In �gure 28 (c) the �-vortex has been cut and inside it, surfaces of
minimal wall-normal shear of the streamwise velocity are displayed. That @u=@y
has a local minimum means that there is a inectional velocity pro�le at that
position. The isocurves at the face of the box in �gure 28 (c) represents constant
urms in that plane. The results are consistent with the experimental results
showing the highest urms values in the region where we �nd the inectional
pro�les.

4. Discussion

The structures that we have identi�ed in the late state of oblique transition
have many similarities with those previous investigators have found in K- and
H-type transition. We �nd for example �-vortices with the strong shear-layers
on top, streamwise vortices deforming the mean ow and inectional pro�les.
Structures are easier to extract from numerical simulations and comparisons can
be made with the spatial simulation of K-type transition by Rist & Fasel (1995)
or the temporal simulations of both K- and H-type transition by Laurien &
Kleiser (1989). Detailed ow structures of both K-type and H-type transition
are also reported for channel ow by Krist & Zang (1986), Zang & Krist (1989)
and others. Experimental investigators reporting details of the ow structures
before breakdown are for example Williams, Fasel & Hama (1984) for K-type
and Corke & Mangano (1989) for H-type transition.
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Figure 29. Graphs displaying the relation between the most impor-
tant modes in (a,b) K-type, (c) H-type and (d) oblique transition.
Modes marked with black dots are initiated with main amount of
energy. Grey dots symbolize modes initiated with a small amount of
energy and squares represent modes that are generated nonlinearly
and are vital in the transition process or for what is observed at the
late stages of transition.

There are di�erences between the three transition scenarios. The most impor-
tant di�erence lies in the initial condition. Oblique transition does not need any
two-dimensional TS-wave nor does such a mode grow during transition. The
factor that causes the similarity between the di�erent transition scenarios are
the interaction of the oblique waves with counter rotating streamwise vortices.

The initial conditions of the important modes for the three transition scenarios
are indicated in diagrams 29 (a-d). Black dots marks the modes where the
largest initial energy is introduced in the ow. Grey dots mark modes that are
initiated with a smaller amount of energy and �nally squares represent vital
modes that are generated nonlinearly from the initially exited modes. Figures
29 (a, b) represent the K-type scenarios with the main initial energy in the
(1; 0) mode. In 29 (a) the oblique modes (1;�1) are also initiated as it is done
in many numerical simulations. The counter rotating vortices with associated
streaks (0;�1) that causes the spanwise modulation of the ow are in this case
generated nonlinearly. In experiments it is usual to initiate the vortices/streaks
and the TS-wave and let the oblique modes be generated nonlinearly, which is
illustrated in �gure 29 (b). The (1;�1) modes in �gures 29 (a, b) also generate
the (0;�2) modes, but with a small amplitude compared to the interaction of
(1; 0), (1;�1) and (0; 1). Even so the (0;�2) modes can grow to a amplitude
comparable to that of the (0;�1), as it does at the late stages in the computations
by Laurien & Kleiser (1989). The initial conditions for H-type transition are
described in �gure 29 (c), with the main initial energy still in the (1; 0) mode
and with a small amount in the subharmonic (1=2;�1) modes. The vortex-
streak modes of importance now are (0;�2), which are nonlinearly generated by
the subharmonic modes. Finally oblique transition is described in �gure 29 (d).
The two-dimensional TS-mode (1; 0) is excluded and the initial energy is instead
only introduced in the oblique waves (1=2;�1). The vortex-streak modes (0;�2)
are generated nonlinearly exactly as in H-type transition, but the energy in the
oblique waves are higher and consequently the forcing of the vortex-streak mode
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Figure 30. Relation between oblique waves, �-vortices and stream-
wise vortices for (a) K-type transition (b) H-type transition and
oblique transition. The wall-normal velocity component of the
oblique waves are represented by the grey scale pattern, where dark
means positive and bright negative velocity. The arrows on the cir-
cles indicate the rotation direction of counter rotating streamwise
vortices. Solid and dashed lines are contours of the wall-normal ve-
locity associated with the vortices. Positions where �-vortices appear
are marked by the black � symbols.

stronger. Therefore the streaks are captured in a ow visualization rather than
the �-vortices as for H-type transition. The naming of modes is of course just a
matter of normalization and in an attempt to simplify the comparison, oblique
transition in this discussion involve modes (0;�2) and (1=2;�1), whereas we
previously have called these modes (0;�2) and (1;�1).

With the sketches in �gure 30 we illustrate the late stages of the three tran-
sition scenarios. The ow is from left to right and the gray shading represents
the wall-normal velocity of oblique waves, dark for positive and bright for neg-
ative. The circles with arrows symbolize streamwise elongated counter rotating
vortices, with the rotation direction indicated by the arrows. Contours of the
wall-normal velocity associated with the vortices are also included in the �gures.
Solid contours indicate positive and dashed negative wall-normal velocity. The
wall-normal motion will create streaks with low and high streamwise velocity,
appearing where the solid and dashed contours are respectively. In 30 (a) the
streamwise and spanwise scale of the oblique waves are the same and the span-
wise wavelength of the vortex pattern is the same as that of the oblique waves.
These conditions correspond to K-type transition also shown in �gure 29 (a, b).
�-vortices will appear at positions where the oblique waves produce a maximal
wall-normal velocity and the the vortices produce positive wall-normal velocity.
Aligned black lambdas mark where these conditions are met. The conditions
shown in 30 correspond to oblique and H-type transition, with twice the stream-
wise scale of K-type transition and the spanwise wavelength of the vortices halved
(cf. �gure 29 c, d). The staggered �-vortices are marked using the same criteria
as in �gure 30 (a).
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Figure 31. PIV pictures from three transition scenarios, from left
to right: oblique transition, H-type transition and K-type transition.
The ow direction is from the bottom to top of the �gures. Both
�-shapes and streaks can be observed in all three scenarios.

PIV measurements from the three transition scenarios are compared in �gure
31. Both streaks and �-shapes can be observed in all three �gures but the
amplitude relation between them di�er.

5. Conclusions

We have performed both physical experiments and numerical simulations of
oblique transition, a transition scenario initiated by two oblique waves only. In
this �rst experiment of oblique transition in an incompressible boundary layer,
blowing and suction was used to generate the oblique waves. Hot-wire measure-
ments as well as ow visualizations with a laser technique were used to analyze
the physical ow. The experiment veri�ed earlier computational and theoretical
results. The oblique waves interacted nonlinearly and a spanwise variation of
the meanow was observed with alternating high and low streamwise velocity
streaks. The streaks grew downstream in a manner consistent with the theories
on non-modal growth. E�orts were made to closely model the experiment in the
numerical code and �ve di�erent methods for disturbance generation were com-
pared. They all produced qualitatively similar transition scenarios but important
di�erences were also found. The closest agreement with the disturbance gener-
ated by the experimental device was found when we used a blowing and suction
technique, where the amplitude of the wall-normal velocity changed stepwise in
the spanwise direction and the suction amplitude was 70% of the blowing ampli-
tude. The e�ect of a positive pressure gradient was also investigated numerically
and was found to move all stages of the transition scenario upstream. Imposing
a positive pressure gradient in the simulation decreased the initial damping of
oblique waves to better correspond to the experimental development. This re-
sulted in a faster growth of the streak amplitude, which was also in agreement
with the experiment, but the computed ow was in this case found to reach a
turbulent stage upstream of the corresponding stage in the experiment. Mean
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streamwise vortices generated by the oblique waves and causing the growth of the
streamwise streaks were found in an examination of the ow structures. This ex-
amination also identi�ed high shearlayers riding on top of �-shaped vortex pairs
at a late transition stage. Inectional ow pro�les were found in both exper-
iments and simulations and their position coincided with the �-shaped vortex
pairs. This was also the region where the peak of urms was found and high
frequency oscillations in the experimental time traces. The identi�ed structures
were similar to those reported by both numerical and experimental investigators
of K- and H-type transition. These similarities are explained by the common
feature of all three transition scenarios, namely oblique waves and streamwise
vortices.

The authors greatly acknowledge the contributions of all colleagues inspiring
this work with discussions, especially Peter Schmid for calculating the maximum
resonance for Blasuis boundary layers. We also wish to thank the technical sta�
at DLR for the assistance during the experiments. This work has been supported
by TFR (Swedish Research Council for Engineering Sciences).
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Abstract. Numerical experiments on the interaction of simple vortical
free-stream disturbances with a laminar boundary layer are presented. Both
spatial and temporal direct numerical simulations (DNS) have been per-
formed for three types of free-stream disturbances. A linear and a new
nonlinear receptivity mechanism were identi�ed. The nonlinear mechanism
was found to force streaks inside the boundary layer similar to those found
in experiments on free-stream turbulence and it performed equally well for
disturbances elongated in the streamwise direction as for and oblique free-
stream disturbances. The boundary layer response caused by the nonlinear
mechanism was, depending on the initial disturbance energy, comparable
to that of the linear mechanism, which was only e�cient for free-stream
streamwise vortices. The receptivity to two-dimensional disturbances was
very low for both mechanisms. A parameter study revealed that the wall
normal velocity component of the free-stream disturbances is more impor-
tant for the investigated receptivity mechanisms than the streamwise com-
ponent. The new boundary layer receptivity mechanism, in which three-
dimensional disturbances in the free-stream continuously force streaks in-
side the boundary layer, may explain discrepancies between experimental
results and previously suggested theories for the origin of streaks in bound-
ary layers subjected to free-stream turbulence.

1. Introduction

1.1. Transition scenarios.

1.1.1. TS-wave breakdown. The main research e�orts on boundary layer tran-
sition has traditionally concerned how a disturbance present in the boundary
layer may grow or cause transition to turbulence. The Orr-Sommerfeld and
Squire equations has been derived and analyzed and the �rst solutions for two-
dimensional eigenfunctions were obtained by Tollmien 1929 and Schlichting 1933.
After these Tollmien-Schlichting waves or TS-waves had been observed in experi-
ments, research focused on how they and their subsequent secondary instabilities
cause transition. Reviews on this subject can be found by for example Her-
bert 1988, Kachanov 1994 and Kleiser & Zang 1991. Terms like \TS-wave" or
\TS-frequency" are however often used for disturbances that may be neither two-
dimensional nor have a TS-like wall normal distribution. It is not clear that such
disturbances cause transition by the same mechanism as the original TS-waves.
That transition may be caused by other mechanisms is evident and Morkovin
1969 called these mechanisms, that at the time were unknown, bypass-transition.
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1.1.2. Non-modal breakdown. Reexamination of the Orr-Sommerfeld and Squire
equations (Gustavsson 1991, Butler & Farell 1992, Reddy & Henningson 1993
and Trefethen et al. 1993) has led to the �nding that the eigenfunctions are non-
orthogonal, which means that disturbances other than exponentially unstable
eigenfunctions can grow in the boundary layer. The physical mechanism behind
this linear mechanism is streamwise vortices that interact with the boundary
layer shear and create streaks in the streamwise velocity component (lift-up).
Reddy et al. 1997 has shown that the modi�cation of the mean ow by the
streaks may cause secondary instabilities in a similar manner to those caused by
TS-waves.

Another transition scenario that is also based on these non-modal mechanisms,
in combination with nonlinear mechanisms, is oblique transition. It is initiated by
two oblique waves at equal and opposite angles and does not need a TS-wave to
cause transition nor does it necessarily generate a TS-wave during the transition
process. It was �rst investigated numerically by Schmid & Henningson 1992 in
plane Poiseuille ow and can be exited even at subcritical Reynolds numbers. It
has since been investigated also in laminar boundary layers both experimentally
and numerically (Berlin, Lundbladh & Henningson 1994, Wiegel 1997, Elofsson
1997 and Berlin, Wiegel & Henningson 1998) and an important ingredient is
found to be the growth of streamwise streaks.

1.2. Receptivity mechanisms.

1.2.1. TS-wave receptivity. To understand and predict transition, knowledge
about the manner in which disturbances can enter or interact with the bound-
ary layer is necessary. Receptivity researchers has therefore investigated how
TS-waves can be generated in the boundary layer by outer disturbances. The
disturbances are often characterized as either acoustic or vortical disturbances
convected by the free-stream. Both types of disturbances has been thoroughly
investigated by asymptotic methods and a summary of the results can be found
in the reviews by Goldstein & Hultgren 1989 and Kerschen 1990. They �nd
that to overcome the di�erence in length scale between acoustic disturbances
and unstable TS-waves, local length scales of the order of TS-waves are needed.
Receptivity for acoustic disturbances can therefore be found in the leading edge
region, by rapid geometry changes or local roughness. Kerschen 1985 �nds the
receptivity for convected gusts (vortical disturbances), interacting with short
scale mean ow gradients created by for example a local surface hump or in the
vicinity of the leading edge, to be comparable to that of acoustic disturbances.
The experimental �ndings on TS-wave receptivity has been reviewed by Nish-
ioka & Morkovin 1986 and generally agree with the theoretical investigations.
The e�ect of free-stream sound has also been investigated numerically by Lin,
Reed & Saric 1992. They found receptivity at the nose of their elliptical leading
edge and that a sharper leading edge gave less receptivity. The sudden pressure
gradients appearing at the junction of their leading edge and the at plate was
found to be an important receptivity source. Buter & Reed 1994 investigated
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the e�ect of vortical disturbances at the leading edge numerically and found the
same sources of receptivity as Lin, Reed & Saric 1992.

1.2.2. Experiments with free-stream turbulence. Experiments of boundary lay-
ers subjected to free-stream turbulence are characterized by disturbances very
di�erent from TS-waves, namely streamwise elongated streaks. These were �rst
observed as low-frequency oscillations in hot-wire signals caused by slow spanwise
oscillations of the streaks. They are commonly referred to as Klebano�-modes
after Klebano�'s 1971 mainly unpublished experimental �ndings (Kendall 1985).
After comparing data from several experiments Westin 1994 et al. drew the con-
clusion that there is no general correlation between the level of free-stream tur-
bulence, the uctuation level in the boundary layer and the transitional Reynolds
number. They compared results for the streamwise velocity component, which is
what is normally reported from the experimental investigations. Yang & Voke's
1993 numerical experiment however, indicated that the wall normal velocity com-
ponent of the free-stream turbulence is more important for the response in the
boundary layer. Kendall 1990 states that in experiments with week free-stream
turbulence, the streak response scaled linearly with the turbulence level in the
streamwise velocity component and that Klebano� found the spanwise scale of
the streaks to correlate with the free-stream turbulence scales. Westin 1994 et al.
found that the transition point moved substantially when the stagnation point
on their leading edge was altered. If that was due to changes of the streak growth
or caused by increased receptivity to other disturbances was not reported.

1.2.3. Theory and computations of free-stream turbulence. Choudhari 1996 used
asymptotic methods to study the receptivity of oblique disturbances and found
the receptivity by the leading edge and local humps to increase with increased
obliqueness of the vortical disturbances. He also noted that the wall normal
distribution of the response to the oblique disturbances was similar to the Kle-
bano� mode. Bertolotti 1997 assumes free-stream modes, periodic in all direc-
tions, of which he calculates the boundary layer receptivity in a \linear region"
excluding the the leading edge. He �nds receptivity to modes with zero stream-
wise wavenumber. These modes are used as forcing in PSE calculations of the
downstream disturbance development and the results agree fairly well with ex-
perimental results. Bertolotti 1997 �nds it most likely that the growth of streaks
is related to non-modal growth.

Traditionally the non-modal theory has been developed from a temporal point
of view but Luchini 1996 studied the same type of growth in space, which is more
appropriate for a spatially developing boundary layer. He �nds a \Reynolds
number independent instability" causing the growth of streamwise streaks. It
is vortical disturbances at the leading edge that create disturbance growth in
the streamwise velocity component. Andersson, Berggren & Henningson 1998
and Luchini 1997 used an optimization technique to determine what disturbance
present at the leading edge will give the largest disturbance in the boundary layer.
They also found streamwise vortices causing growth of streaks. Note that the
disturbances present at the leading edge were outside the boundary layer and the
calculated response inside the boundary layer, i.e. a receptivity process. The
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results of the calculations on spatially growing streaks well predict a number
of the features seen in experiments. There are, however, some discrepancies
concerning the growth rate and the slightly increasing spanwise scale of the
streaks as they develop downstream.

The importance of TS-waves for transition caused by free-stream turbulence,
is not clear. Generally uctuations with a frequency close to the most unstable
TS-waves are found at the boundary layer edge and have a mode shape di�erent
from the unstable eigenmode. At high turbulence levels TS-waves are di�cult to
identify and do not cause transition 1992. For low free-stream turbulence levels
Kendall 1990 can identify wave packets traveling with the same phase speed as
TS-waves with amplitudes scaling nonlinearly with the turbulence level. Boiko
et al. 1994 introduced additional TS-waves in an experiment with a boundary
layer subjected to free-stream turbulence and found their ampli�cation rate to be
smaller than in the undisturbed boundary layer. Bertolotti 1997 concludes that
a mechanism for TS-wave generation by free-stream turbulence is still unknown.

In our numerical experiments, we exclude the leading edge and study how
simple vortical free-stream disturbances interact with a laminar boundary layer.
The goal is to investigate if there is a mechanism for receptivity that does not
include the leading edge. Such a mechanism would continuously force distur-
bances in the boundary layer and could provide an explanation to the present
discrepancies between calculations and experiments on free-stream turbulence.
One simple free-stream disturbance type that will get much attention consists
of two oblique free-stream waves. Oblique waves inside the boundary layer has,
as previously stated, been found to generate streaks in the boundary layer and
it is therefore interesting to observe if they can do the same when present in
the free-stream. We �rst present (x2) the two numerical formulations used in
the investigation and the parameters de�ning the shape of the introduced free-
stream disturbances. In x3 results from spatial simulations is presented and in
x4 we start with a comparison between these results and the results of temporal
calculations. We continue by identifying both a nonlinear and linear mecha-
nism that cause growth of streamwise streaks in the boundary layer. Finally a
study of how the receptivity depends on the characteristics of our free-stream
disturbances is presented. We also relate our numerical results to the optimal
disturbances calculated by linear theory.

2. Numerical method

The simulation code (see Lundbladh, Henningson & Johansson 1992 and
Lundbladh et al. 1994) used for the present computations uses spectral methods
to solve the three-dimensional, time dependent, incompressible Navier-Stokes
equations. The algorithm is similar to that of Kim, Moin & Moser 1987, i.e.
Fourier representation in the streamwise and spanwise directions and Cheby-
shev polynomials in the wall-normal direction and pseudo-spectral treatment of
the nonlinear terms. The time advancement used was a four-step low storage
third-order Runge-Kutta method for the nonlinear terms and a second-order
Crank-Nicholson method for the linear terms. Aliasing errors from the evalu-
ation of the nonlinear terms were removed by the 3

2 -rule when the horizontal
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FFTs were calculated. In order to set the free-stream boundary condition closer
to the wall, a generalization of the boundary condition used by Malik, Zang &
Hussaini 1985 was implemented. It is an asymptotic condition applied in Fourier
space with di�erent coe�cients for each wavenumber that exactly represents a
potential ow solution decaying away from the wall. This method, that does
not include the leading edge, has been implemented in a spatial and a temporal
formulation.

2.1. Temporal method. The basis of the temporal simulation technique is the
thought of a localized disturbance or wave traveling downstream, surrounded by
a boundary layer of constant thickness which grows slowly in time. The extent
of the computational domain is small as only one wave length of the largest
disturbance is included in the streamwise and spanwise directions. Moreover,
the approximation that the boundary layer thickness is constant at each instant
of time is made, which enables us to use periodic boundary conditions in the
wall parallel directions. This approximation necessitates a correction to the
equations. Let us de�ne the streamwise, wall normal and spanwise directions
as x, y and z respectively with velocity disturbance components u, v and w
that are all made dimensionless with the displacement thickness ��0 at t = 0
and the free-stream velocity U1. With velocity disturbance we mean that the
base ow (Blasius) has been subtracted from the total ow. We follow the ideas
of Spalart & Yang 1987 and introduce a reference point xr = x0 + ct where c
is a reference speed. We now assume that the undisturbed boundary layer in
the vicinity of the disturbance has the velocity distribution U(y; t) = U(xr; y),
V (y; t) = 0 (no x dependence). Whereas the full Blasius velocity U(x; y) (with
the corresponding V given by continuity) is a good approximate solution to the
Navier-Stokes equations, that is not true for fU(y; t); V (y; t)g. Thus to ensure
the correct development of the boundary layer pro�le over extended periods of
time a (weak) forcing is added to the streamwise momentum equation,

Fx =
@U(y; t)

@t
� 1

R

@2U(y; t)

@y2

= c
@U(x; y)

@x
� 1

R

@2U(x; y)

@y2
(1)

where the right hand side should be evaluated at the reference coordinate xr.
The reference speed c should be chosen as the propagation speed of the studied
disturbance for best agreement with a spatially developing ow, a di�culty if
disturbances present in the computational domain travel at very di�erent speeds.

The disturbance that we intend to study is added as an initial condition to
the ow �eld from which we start the simulation. We want to control its size and
wall normal position and it should ful�ll continuity. The velocity components of
the chosen disturbance are,
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u = �A� sin(�x) cos(�z)f 0(y)=k2(2)

v = A cos(�x) cos(�z)f(y)(3)

w = �A� cos(�x) sin(�z)f 0(y)=k2;(4)

where � and � are the streamwise and spanwise wavenumbers and

k2 = �2 + �2(5)

f(y) = S

�
y � l

�

�
� S

�
y � (l + 2�)

�
+ 1

�
:(6)

S(x) is a smooth step function rising from zero for negative x to one for
x � 1. We have used the following form for S, which has the advantage of
having continuous derivatives of all orders,

S(x) =

8<
:

0 x � 0
1=[1 + exp( 1

x�1 +
1
x
)] 0 < x < 1

1 x � 1

Selecting � 6= 0 and � 6= 0, two oblique waves with equal and opposite angels
will be initiated, and � = 0 or � = 0 gives a two-dimensional wave or streamwise
vortices, respectively. The parameters l and � gives the wall normal distance
to the lowest point with non-zero amplitude and the disturbance half width,
respectively. f(y) is illustrated with l = 5 and � = 2 in �gure 1.

0 0.5 1
0

5

10

15

l

2�

f(y)

y

Figure 1. Illustration of wall normal amplitude function f(y) for
the parameters l = 5 and � = 2

All temporal simulations has been performed for an initial Reynolds number
R = ���0=U1 = 400 and 16� 97� 16 spectral modes has been used in the x, y
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and z directions, respectively, which was su�cient as the disturbance amplitudes
were low. The box hight was 15 initial displacement thicknesses (��0), except for
a few cases when the disturbances were moved very far into the free-stream
and the hight was increased to 20 displacement thicknesses. The streamwise
and spanwise box sizes were adjusted to �t one fundamental wavelength in each
simulation.

2.2. Spatial method. In an experimental investigation disturbances develop
downstream in a slowly thickening boundary layer and the best numerical model
of this is a spatial formulation. At each time instant the simulation then contains
the complete ow �eld of the streamwise region of interest and the boundary
layer growth is modeled correctly. To combine this requirement with periodic
boundary condition in the streamwise direction a \fringe region", similar to that
described by Bertolotti, Herbert & Spalart 1992 has been implemented. In this
region, at the downstream end of the computational box, the function �(x) in
equation (7) is smoothly raised from zero and the ow is forced to a desired
solution v in the following manner,

@u

@t
= NS(u) + �(x)(v � u) + g(7)

r � u = 0(8)

where u is the solution vector and NS(u) the right hand side of the (un-
forced) momentum equations. Both g, which is a disturbance forcing, and v

may depend on the three spatial coordinates and time. v is smoothly changed
from the laminar boundary layer pro�le at the beginning of the fringe region to
the prescribed inow velocity vector, which in our case is a Blasius boundary
layer ow. This method damps disturbances owing out of the physical region
and smoothly transforms the ow to the desired inow state, with a minimal
upstream inuence.

In the spatial formulation we continuously generate disturbances in the up-
stream region of the computational domain. This is done by applying a body
force in the ow. The force distribution of the initiated disturbance was taken
from equations (2)-(4), but u, v and w was exchanged for the force gx, gy and
gz of equation (7). In addition the streamwise wavenumber � in equations (2)-
(5) was exchanged for a frequency ! and the S-function was used to con�ne the
forcing also in the streamwise direction. It was limited to the region 10 < x < 26.

The Reynolds number at the inow of the spatial simulations was alsoR = 400
and in the larger simulation presented �rst, the box had the non-dimensional
size 600 � 20 � 17:95 in the streamwise, wall normal and spanwise directions,
respectively. That was well resolved with 300� 97� 32 spectral modes. For the
scaling and parameter studies a smaller box was used with dimensions 300�15�
32:79 and with resolution 128� 97� 16, which also was well resolved.
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Figure 2. Contours of velocity from spatial simulation with oblique
waves in the free-stream. Top: v at z = 0, spacing 0.005, Second: v
at y = 9, spacing 0.005, Third: u at z = 0, spacing 0.0075, Bottom:
u at y = 2, spacing 0.025.

3. Spatial results

The presentation of results is divided into two sections according to the nu-
merical method used to produce the results. In this section we present the spatial
simulations that model the real physics closer. The purpose is to show that the
qualitative features of the new mechanism are the same as those identi�ed by
the temporal formulation (section 4), used in the subsequent parameter studies.

3.1. Generation of streamwise streaks. In a �rst spatial simulation, two
oblique waves were forced with ! = 0:1916, � = 0:1916, l = 7 and � = 2. The
downstream development is shown in �gure 2. The two top �gures contains
contours of the wall normal disturbance velocity v in planes perpendicular and
parallel to the wall. With disturbance velocity we mean that a Blasius ow has
been subtracted from the complete velocity �eld. The second frame from the top
contains a wall parallel plane selected at y = 9:0. It shows the typical chequered
disturbance pattern produced by two oblique waves and that the wave amplitude
decreases downstream. The downstream decay is also seen in the perpendicular
symmetry plane z = 0, from which it is clear that the main part of the oblique
disturbances remain in the free-stream. Contours of the streamwise disturbance
velocity u is displayed in the two bottom frames of �gure 2. The perpendicular
plane is z = 0 and we can again see the downstream decay in the free-stream,
but also disturbance growth inside the boundary layer. A wall parallel plane
inside the boundary layer at y = 2 reveals growing streamwise streaks with half
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Figure 3. Downstream development of the energy in selected
Fourier modes. The (1; 1) is forced in the free-stream between x = 10
and x = 26, it then decays downstream. Strong growth is observed
in the vortex/streak mode (0; 2) after the initial quadratic generation
that also generates (2; 2).

the spanwise wavelength of the initially generated oblique waves. These streaks
are forced through a nonlinear mechanism and their growth is due to linear non-
modal mechanisms. In order to show this we will Fourier transform the velocity
�eld in time and in the spanwise direction.

3.2. Results in Fourier space. In Fourier space we normalize the frequency
and spanwise wavenumber of the disturbances with the fundamental frequency
and spanwise wavenumber of the generated oblique waves (!0 = 0:1916, �0 =
0:1916). The oblique waves are then denoted as the (1;�1) modes and the
streamwise streaks becomes the (0; 2) mode, as their frequency is zero and span-
wise wavenumber twice that of the oblique waves. The nonlinear interactions
will spread energy in Fourier space. With the present generation of symmetric
(1;�1) modes however, only modes for which the sum of the normalized fre-
quency and wavenumber add to an even number can be exited. The symmetry
will be preserved by the Navier-Stokes equations and consequently all modes
(!; �) will equal the corresponding (!;��) modes, and we will therefore only
show the modes with positive �. Figure 3 shows the slow downstream decay of
the energy in the Fourier mode (1; 1) representing a forced oblique wave. It also
shows the nonlinear excitation of some of the modes involved. The growth of the
(0; 2) mode is signi�cant and we also observe a beginning growth of the (0; 4)
mode. The main energy in these modes reside in the boundary layer. The main
energy of the other modes remain in the free-stream. This is demonstrated for
the (1; 1) and (0; 2) modes in �gure 4, showing contours of the energy distribution
in a vertical plane for the two modes.

To investigate the relation between the body force and the response in the
dominant modes, we performed four simulation with varying energy input by
the body force. In �gure 5 the energy in the (1; 1) and (0; 2) modes from these
simulations are plotted using two di�erent scalings. In the top �gure, each curve
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Figure 4. Total energy distribution in the wall normal direction (y)
as function of x in the (1; 1) mode (top) and (0; 2) mode (bottom).
The energy in the oblique wave stays in the free-stream whereas the
streak grows inside the boundary layer.
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Figure 5. Downstream development of the energy in the (1; 1) and
(0; 2) mode from four simulations with di�erent initial energy input,
Ein. The results from each simulation are scaled with Ein of that
particular simulation (top) and with E2

in (bottom). The collapse of
the (1; 1) modes (top) and the (0; 2) (bottom) demonstrates the linear
and quadratic scaling, respectively.

has been scaled with the energy input of the oblique waves for that simulation and
in the bottom �gure by the same quantity squared. The (1; 1) curves collapse in
the top �gure, con�rming the linear dependence on the excitation of body force.
In the bottom �gure the (0; 2) curves collapse, demonstrating that the streaks
depend quadratically on the forcing and has been generated nonlinearly.
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Figure 6. Contours of the time averaged wall normal disturbance
velocity of the streamwise vortices in the (0; 2) mode. When the
initial disturbance (1; 1) was forced in the boundary layer one layer
of (0; 2) vortices were generated (top). When the forcing was moved
to the free-stream (l = 3) two layers of vortices were generated (bot-

tom).

3.3. Two nonlinear modes. The nonlinear generation of streamwise vortices
inside the boundary layer by oblique waves is active regardless of the distance
from the wall to the point were the oblique waves are generated. Naturally it
is most e�cient when the oblique waves are forced close to the wall (l = 0).
As the forcing of the oblique waves is moved away from the wall a maxima in
the boundary layer response can be found for a speci�c wall normal distance
of the forcing. We will discuss this further in x4.3 together with the temporal
parameter study. We restrict the presentation of the spatial results to show that
the nonlinear mechanism can excite two di�erent vortex modes, depending on
the wall normal distance of the initial disturbance. In �gure 6 contours of the
time averaged normal velocity disturbance �v for these di�erent modes are plotted
in a plane perpendicular to the ow. The top �gure displays the mode exited
when the forcing is applied close to the wall. This disturbance mode consist
of streamwise elongated counter rotating vortices. The bottom �gure displays
the situation when the forcing is applied at an optimal free-stream location,
which for the current parameter combination is l = 3. This disturbance consist
of two layers of counter rotating vortices on top of each other. We observe
that the maximum of the lower disturbance layer is positioned at the same wall
normal distance as the maximum of the disturbances in the top �gure. The mode
with two layers of counter rotating vortices remains when the forcing is moved
further away from the wall. At intermediate forcing positions these two modes
are counter acting each other and the boundary layer response to the oblique
waves is decreased. Note that the outer vortices are well outside the boundary
layer, and would be hidden in free-stream turbulence.
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4. Temporal Results

4.1. Comparison with spatial results.

4.1.1. General consideration. Direct comparison of temporal and spatial results
is di�cult for several reasons. In the temporal formulation the velocity �eld
itself is speci�ed as an initial condition, an approach that could have been used
also in the spatial case but the disturbance would then be convected out of the
considered domain. We instead chose to continuously force the disturbance in the
upstream part of the computational domain. As the same algebraic expression
is used to specify both the force distribution in the spatial formulation and the
amplitude of the initial condition we cannot expect to obtain identical velocity
disturbances. A further complication is that in the spatial case we generate a
frequency and the streamwise wavelength is then given by the phase speed of the
disturbance, which di�ers depending on the wall normal position of forcing. In
the temporal formulation we specify the streamwise wavenumber itself. However,
the temporal formulation has been widely used and it also models the basic
physical mechanism of interest here, which we intend to show in this subsection.
For this we have used the same parameter settings as in the spatial simulations
with �0 = 0:1916, � = 2 and !0 = 0:1916 exchanged for �0 = 0:1916, implying
a phase speed of 1 as in the free-stream.

4.1.2. Scaling and nonlinear modes. We will start by demonstrating the linear
and quadratic scaling of the (1;�1) and (0; 2) modes respectively. Observe that
we now are discussing streamwise wavenumbers instead of frequency and (1;�1)
means that � = 1 � �0 and � = �1 � �0. Figure 7 shows the energy in the (1; 1)
and (0; 2) modes from four simulations where the initial energy had four di�erent
values. The same two scalings as in �gure 5 was used for the two frames. In
the top frame, each curve has been scaled with the energy input of a oblique
wave for that simulation and in the bottom �gure by the same squared. Again
the linear scaling of the oblique waves (1; 1) and the quadratic generation of
the streaks (0; 2) is evident. The (1; 1) and (0; 2) curves collapse in the top and
bottom frame respectively. The logarithmic scale on the vertical axis has been
chosen to match that of �gure 5, but the horizontal scale is now time instead
of downstream distance. The low cost of temporal simulations let us follow the
disturbance development much longer and we observe the decay of the streaks
after t = 1400. The spatial simulation only covered a time corresponding to
t = 225 for a disturbance traveling with the free-stream.

Recall that two di�erent nonlinearly excited vortex modes were observed in
the spatial simulations, depending on the wall normal distance of the distur-
bance. These two modes were also identi�ed using the temporal formulation and
they are displayed in �gure 8 for the same parameter settings that was used for
the spatial case. In that case we presented a time average of the v component
collected during one fundamental period. This was to extract the streak mode
that have zero frequency. For the temporal case we have selected the zero stream-
wise wavenumber part of the v component to present a corresponding quantity.
The temporal and spatial modes are very close considering the di�erences in
disturbance generation and calculation method.
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Figure 8. Contours of the v component of the streamwise vortices
in the (0; 2) mode. When the initial disturbance (1; 1) was forced in
the boundary layer one layer of (0; 2) vortices were generated (top).
When the forcing was moved to the free-stream (l = 3) two layers of
vortices were generated (bottom).

4.1.3. E�ects of boundary layer growth. In the presentation of the numerical
method we mentioned that it is possible to specify a temporal growth of the
boundary layer thickness by the reference speed c. Correct reference speed for
disturbances convected by the free-stream is obviously c = 1. For disturbances
in the boundary layer an other value may be better suited. The phase speed of
zero frequency disturbances nonlinearly forced form the free-stream is di�cult to
determine. Figure 9 present results from two simulations where c = 1 and c = 0
was used to produce the results plotted with solid and dashed lines, respectively.
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Figure 9. Time development of the (1; 1) and (0; 2) mode for two
simulations with c = 1 (solid) and c = 0 (dashed).

The initial disturbance was generated in the free-stream with � = 5 and the other
parameters were the same as previously used in this subsection. The decay of
the oblique waves is found to be faster in the growing boundary layer, whereas
the response in the streaks are larger. We will use the convection speed for free-
stream disturbances in this paper if nothing else is stated. Many of the results
have actually been calculated for both c = 1 and c = 0 and we have found the
parameter dependence to be qualitatively similar. The streaks usually has a
lower amplitude and their maximum occurs slightly later for the boundary layer
with constant thickness.

4.2. Receptivity mechanisms. The oblique waves in the free-stream generate
growing streamwise streaks in the boundary layer by a nonlinear process in
both the spatial and the temporal numerical simulations. We will now study
this receptivity mechanism closer and also compare it with two slightly di�erent
disturbance types. The �rst is two-dimensional waves and the second streamwise
vortices, both initiated in the free-stream. The parameter settings for the three
disturbance types were l = 5 and � = 2, with streamwise wavenumber � = 0:1916
for both oblique and two dimensional waves and spanwise wavenumber � = 0:35
for oblique waves and streamwise vortices. The study of the streamwise vortices
will also lead to a discussion of a linear receptivity mechanism.

4.2.1. Nonlinear receptivity mechanism. Better understanding of how the non-
linear mechanism act can be gained by studying the energy in the velocity com-
ponents as a function of both time and the wall normal coordinate. We will here
only consider three types of primary modes (1; 1), (1; 0) and (0; 1) and the main
modes they force nonlinearly (0; 2) and (2; 0). We have also separated the parts
in each mode that have a linear, quadratic and cubic dependence on the energy
in the initial disturbance. The linear and cubic terms will only contribute to the
primary modes (1; 1), (1; 0) and (0; 1). The main nonlinearly generated modes
(0; 2) and (2; 0) will only contain quadratic terms, since the fourth order terms
that they also could contain are negligible at the low amplitudes we have used.
To do the separation we �rst calculate the development of the same disturbance
initiated with several di�erent initial amplitudes Ai, (i = 1; : : : ; n). We then
assume that the results can be expanded,

Ri = c1Ai + c2A
2
i + c3A

3
i + � � �+ ckA

k
i + � � � :(9)



S. BERLIN AND D. S. HENNINGSON 109

 2.

 6.

 10.

 14.

 2.

 6.

 10.

 14.

 2.

 6.

 10.

 14.

 0.  20.  40.  60.  80.

 2.

 6.

 10.

 14.

t

y

y

y

y

u

v

u

v

(0; 2)

(0; 2)

(1; 1)

(1; 1)

Figure 10. Logarithmic contours of energy starting at 1 � 10�12,
where two contours represent an increase with a factor of 10. Top:
v in the (1; 1) mode. Solid represents the linear part and dashed the
cubicly generated part, Second: u in the (1; 1) mode. Solid represents
the linear part and dashed the cubicly generated part, Third: v in
the quadratically generated (0; 2) mode, Bottom: u in the quadrati-
cally generated (0; 2) mode. Note how the (0; 2) mode is nonlinearly
generated in the hole domain and itself generates growing streaks.

With n di�erent amplitudes Ai we get a system of equations that we can solve
for the coe�cients ci, (i = 1; : : : ; n) of the form

ci = i1R1 + i2R2 + i3R3 + � � �+ inRn;(10)

where the 's are functions of Ai, (i = 1; : : : ; n). Note that the result signi�ed
by Ri may be a single velocity component a single mode or a complete velocity
�eld. The �rst and the second frame from the top in �gure 10 shows the energy
in v and u respectively for an oblique wave, both the linear part (solid contours)
and the cubic part (dashed contours). The linear part of the oblique waves, both
u and v, di�uses slowly and decays rapidly with time. The cubicly generated
part is seen to be more spread out vertically. The most interesting quadratically
generated mode is (0; 2), and in the second frame from the bottom we display
its v component, which is rapidly generated by the non-linearities in a large wall
normal domain. It is not damped and only slightly a�ected by the boundary
layer and the wall. The v component is associated with streamwise vortices that
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Figure 11. Logarithmic contours of energy starting at 1 � 10�12,
where two contours represent an increase with a factor of 10. Top:
v in the (1; 0) mode. Second: u in the (1; 0) mode. Third: v in the
quadratically generated (2; 0) mode, Bottom: u in the quadratically
generated (2; 0) mode. Note that the nonlinearly generated (2; 0)
mode is damped in the boundary layer.

immediately interact with the shear in the boundary layer to form streaks. This
is observed as growing energy in the u component inside the boundary layer in
the bottom frame.

In �gure 11 the spanwise wavenumber of the initial disturbance was set to
zero and we are studying a two-dimensional wave. Since it is the (1; 0) mode
which has been initiated, the nonlinearities cannot generate a streamwise vortex
mode, but only a two-dimensional (2; 0) mode. Both the v and u components
of the linear (1; 0) mode displayed in the two top frames di�uses slowly as they
decay. The cubicly generated (1; 0) is con�ned to the same wall normal region as
the linear part and is therefore not displayed. The energy in both components of
the quadratic (2; 0) mode is distributed over a larger wall normal domain, which
is shown in the two bottom frames. The two-dimensional (2; 0) mode, however,
is damped by the wall and the boundary layer. Growth is not observed in the
boundary layer and the main energy of both velocity components reside in the
free-stream.
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Figure 12. Logarithmic contours of energy starting at 1 � 10�12,
where two contours represent an increase with a factor of 10. Top:
v in the (0; 1) mode. Solid represents the linear part and dashed the
cubicly generated part, Second: u in the (0; 1) mode. Solid represents
the linear part and dashed the cubicly generated part, Third: v in
the quadratically generated (0; 2) mode, Bottom: u in the quadrati-
cally generated (0; 2) mode. Note how the (0; 2) mode is nonlinearly
generated in the hole domain and generates growing streaks. The
cubic (0; 1) also generates streaks in the same way.

If the streamwise wavenumber is set to zero the initiated disturbance consists
of streamwise vortices, the (0; 1) mode. We then have three possible mechanisms
for interaction of streamwise vortices with the boundary layer shear. The ini-
tiated (0; 1) vortices may di�use into the boundary layer, the non-linearity will
quadratically generate (0; 2) mode vortices, and we may have a cubic generation
of (0; 1) vortices. In �gure 12 the development of the three possibilities are fol-
lowed during the �rst 100 time units. The v component of the (0; 1) mode is
displayed in the top �gure. The linear part decays and di�uses in the same way
as we noted for the other two disturbance types, whereas the cubic generation
has spread energy over a larger wall normal region. The interaction of these two
parts of (0; 1) with the boundary layer shear results in growing streaks, which
are observed in the second frame displaying the u component of (0; 1). Energy of
cubicly dependent streaks are growing in the boundary layer, but the di�usion
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of the linear v component has just reached the boundary layer edge and only a
small linear u disturbance appears in the upper shear region. The two bottom
frames shows the quadraticly generated (0; 2) mode. It is generated over the
hole wall normal domain as for the oblique free-stream disturbances and the v
component is again essentially una�ected by the boundary layer. Strong streak
growth is observed in the streamwise velocity disturbance in the bottom frame.

4.2.2. Long term comparison and linear mechanism. The three disturbance types
chosen and their initial interaction with the boundary layer were studied in the
last subsection and we will now compare their continued development. Figure
13 shows the energy as function of time in the initially generated modes and the
corresponding dominant quadratic modes (curves with additional markers). The
oblique waves (solid) and the initiated two-dimensional wave (dash-dotted) both
decay at comparable rate. However, their nonlinearly generated modes develops
very di�erently. The two-dimensional (2; 0) wave (dash-dotted with additional
markers) grows for a short time due to the non-linear generation, but then decays
like the linear (1; 1) and (1; 0) modes. The vortex/streak (0; 2) mode (solid with
markers), nonlinearly generated by the oblique waves, grows substantially until
its maximum is reached shortly before t = 1000. The disturbance development
caused by the initial generation of the vortex/streak mode (0; 1) (dashed) shows
a signi�cant di�erence from the other initiated modes after t = 200. At that
time the initially generated vortices has di�used deep enough into the boundary
layer to cause streak growth together with the cubic (0; 1) part. The (0; 2) mode,
non-linearly generated by the initiated (0; 1), also grows and is up to t = 450
slightly larger than the (0; 1) mode for this initial energy, which corresponds to
a vrms of about 1%.
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Figure 13. Long behavior of the energy for three disturbance types,
initiated with the same energy in the free-stream. Solid: oblique
waves, dashed: streamwise vortices, dash-dotted: two-dimensional
wave. Curves representing non-linearly generated modes are marked
with dots.



S. BERLIN AND D. S. HENNINGSON 113

0 0.2 0.4 0.6 0.8
0

1

2

3

y

u=umax

Figure 14. Wall normal mode shape in the u-component of growing
streaks. Solid with marker: (0; 2) mode generated by oblique free-
stream waves; dashed: (0; 1) initiated in the free-stream; dashed with
marker: (0; 2) mode generated by streamwise vortices in the free-
stream; dash-dotted: results by Anderson, Berggren & Henningson
1998 and diamonds: urms distribution from experiment by Westin
et al. 1994 R = 890. Note that the Reynolds number based on the
displacement thickness at the instant (t = 600) is R = 930.

The wall normal mode shape in the u component of the three growing modes
previously discussed are plotted �gure 14. The shape of what is commonly
referred to as a Klebano� mode is found for all three cases, with the linear mode
reaching slightly further into the free-stream. The original Klebano� mode is the
wall normal variation of urms in experiments with free-stream turbulence and
we have included experimental data from Westin et al. 1994 in the �gure. The
uctuations found in the experiment is caused by the random oscillations of the
dominant streaks and the agreement in mode shape between the streak modes
and urms is therefore natural. A consequence of the free-stream turbulence in
the experiments are that urms does not go to zero in the free-stream and whether
the experimental mode is associated with the linear or the nonlinear mode shape
or both can not be determined.

The linear mechanism is caused by the di�usion of a free-stream vortex into
the boundary layer and has been studied by Anderson, Berggren & Henning-
son 1998 and Luchini 1996, 1997, who assumed the presence a of vortex at the
leading edge. Bertolotti 1997 used a di�erent method to calculate the initial
vortices but also studied the linear mechanism of streak growth. All these in-
vestigators found the Klebano� mode shape and we have included the results of
Anderson, Berggren & Henningson 1998 in �gure 14 (dash-dotted curve). The
close agreement in wall normal mode shape between experiments and the di�er-
ent theoretical investigations is remarkable considering that methods and initial
conditions vary signi�cantly. We mentioned in the introduction that also Choud-
hari 1996 found a mode shape similar to the Klebano� mode in his asymptotic
investigation of receptivity to vortical free-stream disturbances. Luchini 1997
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argued that the reason for this agreement is that the Klebano� mode shape, or
what he also calls a Stewartson 1957 mode of the Libby and Fox 1964 sequence,
\is a strong attractor to drive near to itself the velocity pro�le under most initial
conditions".

4.3. Parameter study. In this subsection we will present further results on
how the growth of the quadratically generated streaks depend on the initial
disturbance characteristics. First the inuence of changes in wavenumber is
presented and then how the wall normal shape and position e�ects the growth.
To avoid transition, low energy is used in the initial disturbances and the energy
in the streak mode will then decay after reaching a maximum at some time T .
T will be one of the parameters used to quantify the boundary layer response.
The other is the energy reached at T , normalized with the initial disturbance
energy squared. This normalization creates a measure independent of the initial
energy (cf. �gures 5, 7).

4.3.1. Dependence on wavenumber. In the study of the wavenumber dependence
of the growth we have initiated the disturbances in the free-stream with l = 5
and � = 2. The top frame in �gure 15 displays the growth as function of
the streamwise wavenumber (�) for constant � = 0:35. The largest growth
is found for waves with close to zero � and the response then decreases as the
wave angle to the mean ow direction increases. The time of maximum is almost
independent of the streamwise wavenumber, which is shown in the bottom frame.

In �gure 16 the spanwise wavenumber is varied along the horizontal axis and
two sets of curves are displayed. The solid curves displays the energy response
and the peak time for simulations with � = 0:1916 and the dashed ones are
results for � = 0. In both cases a preferred spanwise wavelength is found, with
the optimum for � = 0 being lower. The variations in the displayed � range are
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Figure 15. Streak response and time of maximum response T as
function of streamwise wavenumber, with � = 0:25.
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Figure 16. Streak response and time of maximum response T as
function of spanwise wavenumber. Solid curves represent � = 0:1916
and dashed � = 0.

however rather small. When the spanwise wavenumber is increased the maximum
response is reached earlier.

4.3.2. Dependence on wall normal position. The dependence on the disturbance
distribution in the wall normal direction is more complicated than the depen-
dence on the wavenumber. We start by discussing changes in the wall normal
position, while keeping � = 2. The spanwise wavenumber is kept at � = 0:35
and we again present results for two streamwise wavenumbers � = 0:1916 (solid)
and � = 0 (dashed). The wall normal distance of the lowest disturbance part l is
now varied from 0 to 7 in integer steps. Figure 17 displays both the magnitude
of the maximum response and the time when it occurs. For l � 3 the response
decreases and T increases as the disturbance is moved away from the wall, for
both values of �. The behavior l < 3 is more complicated since there is a change
in the non-linearly generated vortex pattern. Recall that when the initial distur-
bance was in the free-stream we found that two layers of vortices were generated
whereas only one layer was found when the initial disturbance was close to the
wall. The two-layer mode has its maximum earlier than the one-layer mode and
the sudden decrease in T for larger values of l, indicates that the two-layer modes
dominates. Note that oblique waves give much larger response than streamwise
vortices when the disturbance is initiated in the boundary layer, something that
has been noted earlier by Schmid, Reddy & Henningson 1996.

4.3.3. Importance of wall normal velocity. To investigate the relative impor-
tance of the wall normal velocity and the wall normal disturbance size we keep
the integrated energy of the disturbance and its lower point (l = 5) constant and
vary �. � = 0:1916 and � = 0:35 are also kept constant. An increase of � means
that the wall normal disturbance scale is increased and that disturbance energy
is moved further away from the boundary layer. Moreover, as a consequence
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Figure 17. Streak growth (top) and time of maximum growth T
(bottom) as function of lowest wall normal disturbance initiation
point l. � = 0:35, � = 0:1916 (solid) and � = 0 (dashed).

of the chosen disturbance shape, increasing wall normal size means increased v
uctuations and decreased u and w uctuations, which has large inuence on
the boundary layer response.

The initial energy in the oblique waves is 1e-6 and in the top frame of �gure 18
the part of that associated with the v component is plotted versus time. The solid
curve represents the smallest wall normal size with � = 1. � then increases in unit
steps up the graphs to the �nal thick line with � = 5. The change of disturbance
proportion and redistribution of energy into the v-component also reduced the
damping of the total energy. The energy response in the u component of the (0; 2)
mode are plotted in the middle frame for the �ve cases. The maximum in the
response is later for a large wall normal disturbance and the largest response is
found for � = 4. The amount of nonlinearly generated v velocity associated with
the streamwise vortices are shown in the lowest frame. It is the interaction of this
component and the boundary layer shear that generates the large u disturbance
displayed in the middle frame. The correlation between the v/vortex component
and the u/streak component is obvious. This demonstrates the large importance
of the wall normal velocity component in spite that its energy is several orders
of magnitude than that in u .

4.4. Optimal perturbations.

4.4.1. Linear growth. In theoretical work on non-modal and transient growth
the focus is often set on perturbations causing the largest possible energy growth.
In this section we compare the growth of the disturbances we are using with
those optimal perturbations. Butler & Farrell 1992 found the optimal bound-
ary layer perturbation to have spanwise wavenumber � = 0:65 and streamwise
wavenumber � = 0. The amplitude of the initial disturbance was found to have a
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Figure 18. Results from simulations with � varying between 1 (thin)
and 5 (thick) and l = 5 constant. Top: energy in initiated v com-
ponent, middle: energy in u of quadraticly generated (0; 2) mode,
bottom: energy in v of quadraticly generated (0; 2) mode. Note the
di�erent normalization of the linear and the nonlinear modes.

maximum at approximately y = 2 and the disturbance reached to approximately
y = 5. For Reynolds number 400, that we have used for our simulations, the
optimal would at t = 310 be ampli�ed 240 times. The theory is linear and with
the assumption that the boundary layer is parallel. The simulations were hence
performed with a constant boundary layer thickness and the comparisons are
made with the initiated (0; 1) mode. Using l = 0 and � = 2:5 we found an initial
disturbance close to the one which gave the theoretical maximum, and by setting
the initial energy to 1� 10�9 we removed the nonlinear e�ects. With � = 0 we
found � = 0:66 to give a maximal ampli�cation of 179 times at t = 344. Varia-
tions of the spanwise wavenumber in the range 0:60 < � < 0:70 did not lower the
ampli�cation below 176 times but making the wall normal shape slightly asym-
metric increased the ampli�cation to 201 times. These values are fairly close to
the optimal ones presented by Butler & Farrell 1992.
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Figure 19. Top: ampli�cation A as function of initial amplitude.
Bottom: ampli�cation as function of � for two di�erent �. Vortices
are initiated in the boundary layer with l = 0 and � = 2:5 (solid) or
� = 1:0 (dashed).

4.4.2. Nonlinear e�ects. Nonlinear interactions drain energy from the initiated
(0; 1) mode. To investigate how that e�ected our optimal perturbation we kept
the disturbance shape (l = 0 and � = 2:5) and used � = 0:65 and varied
the initial amplitude. The ampli�cation decreases as nonlinear e�ects becomes
stronger, which is shown in the top frame of �gure 19. The maximum is reached
earlier when the nonlinear energy exchange increases and the growth of the
nonlinearly generated (0; 2) is obviously increased several orders of magnitude.
We also checked if the nonlinear interactions a�ected the optimal � and for that
we picked the initial amplitude 2� 10�5. In the bottom frame of �gure 19 the
maximum ampli�cation A of the initiated (0; 1) mode is plotted versus � for
two sets of simulations. The solid line corresponds to simulations where the wall
normal disturbance shape was the same as we used in the linear investigation,
with � = 2:5 and l = 0. The maximal ampli�cation was reduced to be 73 times
by the nonlinear e�ects and that maximum was reached already at t = 243 for
spanwise wavenumber � = 0:61. A smaller wall normal disturbance size with
� = 1, is represented by the dashed lines and gave also a smaller spanwise scale.
The optimal � was then found to be 1:30 and was ampli�ed 38 times at t = 88.
As both ampli�cation curves are very at around the peak, one can not expect
ampli�cation di�erences to be very selective for spanwise wavenumbers.

The relation between the wall normal and spanwise size of the initiated vortex
is important and the ampli�cation is more selective to the wall normal size than
to changes of �. We therefore investigated the optimal wall normal size for
some spanwise wavenumbers. The optimal � was found to vary around 2.5. For
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small � it increased to 3.0 and for large it decreased to 2 such that the spanwise
and wall normal scales of the initial vortices were kept approximately equal.
Note that the wall normal scale of the vortex is larger than the boundary layer
thickness. When � is 2.5 the center of the vortices are at y = 2:5 and that is
were the v component has its wall normal maximum. This is position is close
to the boundary layer edge, �99 being 2.8. We also found that the maximum
disturbance amplitude was reached earlier when � was increased, which is what
the theoretical �ndings predict.

Still initiating the (0; 1) mode inside the boundary layer, we investigated what
parameter combination gave the largest response in the nonlinearly generated
(0; 2) mode. The same wall normal scale, � = 2:5, as when we optimized for
growth of (0; 1) was again found to give the largest response. The spanwise
wavenumber of the initial vortices giving the largest response in (0; 2) was � =
0:30, which gives a spanwise wavenumber of � = 0:60 in the (0; 2) mode. That
is again close to optimal found when we optimized for growth in (0; 1).

5. Conclusions and Discussion

Our numerical experiments on how simple wave-like disturbances e�ect a lam-
inar boundary layer has identi�ed two mechanisms. A new nonlinear mechanism
and a linear mechanism that is related to the investigations by Luchini 1997,
Bertolotti 1997 and Andersson, Berggren & Henningson 1998. Both mechanisms
result in growing streamwise streaks and they are therefore most relevant to
experiments with free-stream turbulence, where streaks are the dominant ow
characteristics. The nonlinear mechanism however, is also able to create oblique
and two-dimensional disturbances at low level in the boundary layer (�gures 10,
11), which in some cases might be a relevant source of background noise in the
transition process.

Previous investigators have considered the receptivity of streamwise vortices
present in the free-stream turbulence. The most important feature of the new
nonlinear mechanism is that it can cause streak growth from oblique disturbances
in the free-stream. We have also shown that for moderate disturbance levels
(�gure 13) the growth caused by the nonlinear mechanism is comparable to that
caused by the linear mechanism. At low disturbance levels the linear mechanism
may dominate, with the nonlinear mechanism setting in at higher disturbance
levels. Experiments do not give the answer to that at present. Kendall 1990
found the streak amplitude to depend linearly on the free-stream turbulence
level, which was very low in his experiments. Westin et al. 1994, as previously
stated, could not �nd a correlation between turbulence level, streak amplitude
and transitional Reynolds number in the experiments reported in literature.

Normally experimental investigators only report the turbulence level in the
streamwise velocity component. We have shown the great importance of the wall
normal velocity component, which also found by Yang & Voke 1993. To �nd
correlations or good transition prediction models the wall normal turbulence
level should be observed instead. The fact that calculations based on initial
conditions without streamwise velocity perturbations give good results, is an
other indication of that.
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Bertolotti's 1997 theory predicts a most ampli�ed spanwise wavelength and
he uses experimental results by Klebano� (reported by Herbert and Lin ) and
Westin et al. 1994 to suggest that there is a selectivity for that wavelength
in the experiments. In his comparison with the results of Westin et al. 1994,
Bertolotti 1997 unfortunately has missed the fact that Westin et al. 1994 bases
their Reynolds number on the displacement thickness. A correct scaling of the
data obtained by Westin et al. 1994, however, shows that the spanwise scale of
their streaks are very di�erent to results reported by Klebano� and Bertolotti's
1997 most ampli�ed spanwise wavelength. Andersson, Berggren & Henningson
1998 speculates in a universality of their optimization results, which implies also
a universality of spanwise scales. Our investigation indicates that the selectivity
for spanwise wavenumber is small and the wavelength found in an experiments
would depend on the free-stream scales, which was Klebano� 1990 found.

The growth rates in the calculations by Andersson, Berggren & Henning-
son 1998 and Bertolotti 1997 decreases after some downstream position in a
manner that does not agree with experiments. The simple vortical free-stream
disturbances in this investigation shows that free-stream turbulence have the
possibility to continuously force streaks in the boundary layer, even downstream
of the leading edge. This additional forcing may be what is missing in the other
calculations to prevent the decreased streak growth.

The spanwise spacing of the streaks are increasing downstream in the exper-
imental investigations. The optimization procedure by Andersson, Berggren &
Henningson 1998 o�ers the explanation the the optimal spanwise wavelength
changes downstream. Their optimization results predicts the best agreement
with the experiment by Westin et al. 1994 and a downstream growth of the
spanwise scale proportional to

p
x, which is signi�cantly faster than what is

found in the experiment. A continuous forcing from the free-stream could also
result in downstream changing scales as the optimal streak changes with bound-
ary layer thickness.

To give us the �nal answer, these speculations need to be investigated by
large spatial computation with more realistic free-stream disturbances, more
experiments and improved theoretical models for calculations.

Acknowledgment

We thank Dr. J. Westin and Mr. P. Andersson for making their data available
and Mr. P Anderson for interesting discussions. This work has been supported
by TFR (Swedish Research Council for Engineering Sciences).

References

Andersson, P., Berggren, M. & Henningson, D. 1998. Optimal disturbances and bypass
transition in boundary layers. Phys. Fluids. . (Submitted).

Berlin, S., Lundbladh, A. & Henningson, D. S. 1994. Spatial simulations of oblique transi-
tion. Phys. Fluids. 6, 1949{1951.

Berlin, S.,Wiegel, M. & Henningson, D. S. 1998. Numerical and experimental investigation
of oblique boundary layer transition. Submitted to jfm.

Bertolotti, F. P. 1997. Response of the blasius boundary layer to free-stream vorticity. Phys.
Fluids. 9 (8), 2286{2299.



S. BERLIN AND D. S. HENNINGSON 121

Bertolotti, F. P., Herbert, T. & Spalart, P. R. 1992. Linear and nonlinear stability of
the Blasius boundary layer. J. Fluid Mech. 242, 441{474.

Blair, M. F. 1992. Boundary-layer transition in accelerating ows with intense freestream
turbulence: Part 1 disturbances upstream of transition onset. Journal of Fluid Engineering.
114, 313{321.

Boiko, A. V.,Westin, K. J. A., Klingmann, B. G. B., Kozlov, V. V. & Alfredsson, P. H.

1994. Experiments in a boundary layer subject to free-stream turbulence. Part II: The role
of TS-waves in the transition process. J. Fluid Mech. 281, 219{245.

Buter, T. A. & Reed, H. L. 1994. Boundary layer receptivity to free-stream vorticity. Phys.
Fluids. 6, 3368{3379.

Butler, K. M. & Farrell, B. F. 1992. Three-dimensional optimal perturbations in viscous
shear ow. Phys. Fluids A. 4, 1637{1650.

Choundhari, M., 1996. Boundary-layer receptivity to three-dimensional unsteady vortical
disturbances in free stream. AIAA Paper 96-0181.

Elofsson, P. A. & Alfredsson, P. H. 1997. An experimental investigation of oblique tran-
sition in a Blasius boundary layer. In EUROMECH Colloquium 359.

Goldstein, M. E. & Hultgren, L. S. 1989. Boundary-layer receptivity to long-wave free-
stream disturbances. Ann. Rev. Fluid Mech. 21, 137{166.

Gustavsson, L. H. 1991. Energy growth of three-dimensional disturbances in plane Poiseuille
ow. J. Fluid Mech. 224, 241{260.

Herbert, T. 1988. Secondary instability of boundary layers. Ann. Rev. Fluid Mech. 20, 487{
526.

Kachanov, Y. S. 1994. Physical mechanisms of laminar-boundary-layer transition. Ann. Rev.
Fluid Mech. 26, 411{482.

Kendall, J. M., 1985. Experimental study of disturbances produced in a pre-transitional
laminar boundary layer by weak freestream turbulence. AIAA Paper 85-1695.

Kendall, J. M., 1990. Boundary layer receptivity to freestream turbulence. AIAA Paper 90-
1504.

Kerschen, E. J., 1985. Experimental study of disturbances produced in a pre-transitional
laminar boundary layer by weak freestream turbulence. AIAA Paper 85-1695.

Kerschen, E. J. 1990. Boundary layer receptivity theory. Appl Mech Rev. 43 (5, Part 2),
S152{157.

Kim, J., Moin, P. & Moser, R. 1987. Turbulence statistics in fully developed channel ow. J.
Fluid Mech. 177, 133{166.

Klebanoff, P. S. 1971. E�ect of freestream turbulence on the laminar boundary layer. Bull.
Am. Phys. Soc. 10, 1323.

Kleiser, L. & Zang, T. A. 1991. Numerical simulation of transition in wall-bounded shear
ows. Ann. Rev. Fluid Mech. 23, 495{537.

Libby, P. A. & Fox, H. 1964. Some perturbation solutions in laminar boundary-layer theory.
J. Fluid Mech. 17, 433{449.

Lin, N., Reed, H. L. & Saric, W. S. 1992. E�ect of leading-edge geometry on boundary-

layer receptivity to freestream sound. In Instability, Transition and Turbulence (Hussaini,
M. Y., Kumar, A. & Streett, C. L., editors), pp. 356{366. Springer-Verlag.

Luchini, P. 1996. Reynolds number independent instability of the Blasius boundary layer over
a at surface. J. Fluid Mech. 327, 101{115.

Luchini, P. 1997. Reynolds number independent instability of the Blasius boundary layer over
a at surface. part 2: optimal pertubations. Submitted to jfm.

Lundbladh, A., Henningson, D. S. & Johansson, A. V., 1992. An e�cient spectral integra-
tion method for the solution of the Navier-Stokes equations. FFA-TN 1992-28, Aeronautical
Research Institute of Sweden, Bromma.

Lundbladh, A., Schmid, P. J., Berlin, S. & Henningson, D. S., 1994. Simulation of bypass
transition in spatially evolving ows. Proceedings of the AGARD Symposium on Applica-
tion of Direct and Large Eddy Simulation to Transition and Turbulence, AGARD-CP-551.

Malik, M. R., Zang, T. A. & Hussaini, M. Y. 1985. A spectral collocation method for the
Navier-Stokes equations. J. Comp. Phys. 61, 64{88.



122 NEW MECHANISM FOR RECEPTIVITY

Morkovin, M. V. 1969. The many faces of transition. In Viscous Drag Reduction (Wells,

C. S., editor). Plenum Press.
Nishioka, M. & V., M. M. 1986. Boundary-layer receptivity to unsteady pressure gradients:

experiment and overview. J. Fluid Mech. 171, 219{261.
Reddy, S. C. & Henningson, D. S. 1993. Energy growth in viscous channel ows. J. Fluid

Mech. 252, 209{238.
Reddy, S. C., Schmid, P. J., Bagget, J. S. & Henningson, D. S., 1997. On stability of

streamwise streaks and transition thresholds in plane channel ow. submitted to jfm.
Schlichting, H., 1933. Zur Entstehung der Turbulenz bei der Plattenstr�omung. Nachr. Ges.

Wiss. G�ottingen, 181{208.
Schmid, P. J. & Henningson, D. S. 1992. A new mechanism for rapid transition involving a

pair of oblique waves. Phys. Fluids A. 4, 1986{1989.
Schmid, P. J., Reddy, S. C. & Henningson, D. S. 1996. Transition thresholds in boundary

layer and channel ow. In Advances in Turbulence VI (Gavrilakis, S., Machiels, L. &
Monkewitz, P. A., editors), pp. 381{384. Kluwer Academic Publishers.

Spalart, P. R. & Yang, K. 1987. Numerical study of ribbon induced transition in blasius
ow. J. Fluid Mech. 178, 345{365.

Stewartson, K. 1957. On asymptotic expansion in the theory of boundary layer. J. Math.

Phys. 36, 137.
Tollmien, W., 1929. �Uber die Entstehung der Turbulenz. Nachr. Ges. Wiss. G�ottingen, 21{44.

(English translation NACA TM 609, 1931).
Trefethen, L. N., Trefethen, A. E., Reddy, S. C. & Driscoll, T. A. 1993. Hydrodynamic

stability without eigenvalues. Science. 261, 578{584.
Westin, K. J. A., Boiko, A. V., Klingmann, B. G. B., Kozlov, V. V. & Alfredsson, P. H.

1994. Experiments in a boundary layer subject to free-stream turbulence. Part I: Boundary
layer structure and receptivity. J. Fluid Mech. 281, 193{218.

Wiegel, M. 1997. Experimentelle Untersuchung von kontrolliert angeregten dreidimension-

alen Wellen in einer Blasius-Grenzschicht., volume 312 of VDI Fortschritt-Bericht Reihe
7. VDI-Verlag, D�usseldorf (Germany). Dissertation zum Dr.-Ing. an der TH Hannover,
Dezember 1996.

Yang, Z. Y. & Voke, P. R. 1993. Large-eddy simulation of transition under turbulence.
Technical Report ME-FD/93.12, University of Surrey, Dept. Mech. Eng.



Paper 5

123





CONTROL OF OBLIQUE TRANSITION BY FLOW

OSCILLATIONS

S. Berlin

Dept. of Mech., KTH, S-100 44 Stockholm, Sweden

J. Kim

MAE Dept., UCLA, CA 90095-1597 Los Angeles, USA

D. S. Henningson

FFA, Box 11021, S-16111 Bromma, Sweden

Abstract. Transition delay caused by spanwise ow oscillations of a Bla-
sius boundary layer is studied. The oscillations is driven either by a moving
wall or a body force that is exponentially decaying away from the wall. The
latter can be realized by a Lorenz force that can be generated from an array
of magnets and electrodes on a wall. The control strategies are found to
delay oblique transition and prevent transition caused by a random distur-
bance. The the ow caused by the body force reached further out from
the wall compared to that set up by the moving wall, which made it more
e�cient for transition delay.

1. Introduction

Delaying laminar-to-turbulent transition has many obvious advantages and
the simplest method is perhaps to shape the surface on which the boundary
layer develop such that a suitable pressure distribution is obtained. Other ap-
proaches aiming for a more stable mean ow pro�le include application of heat-
ing/cooling, suction and magneto-hydrodynamic (MHD) forces and has been
reviewed by Gad-el-Hak (1989). The later control tools has also been used for
active wave cancellation. The purpose has then been to cancel growing Tollmien-
Schlichting (TS) waves or waves associated with the secondary instability caused
by TS-waves, see for example Thomas (1983), Kleiser & Laurien (1985), and
Danabasoglu, Biringen & Streett (1991). The bypass transition scenarios in the
present study are, however, characterized by streamwise streaks and vortices
rather than two-dimensional waves.

Recent studies (Choi, Moin & Kim 1993) have shown that near-wall stream-
wise vortices are responsible for high skin-friction drag in turbulent boundary
layers and successful control strategies are found to reduce their strength. Even
if those vortices are found closer to the wall and of smaller wall normal scale than
those observed in transition, it is well worth investigating if the same type of con-
trol used for drag reduction can be applied on transition caused by streamwise
vortices.

Akhavan, Jung & Mangiavacchi (1993) showed that a spanwise oscillatory
motion of a wall or an oscillatory spanwise crossow reduced turbulence and
skin-friction. The oscillating spanwise ow was in that case driven by a pressure
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gradient, while our idea have been to instead use a body force. In their experi-
ment Nosenchuck & Brown (1993) achieved viscous drag reduction by letting a
wall normal directed Lorenz force interact with the turbulent structures. Gaili-
tis & Lielausis (?) considered spanwise periodically distributed magnetic �elds
and electric currents generated from the boundary layer wall and showed that
it gave a streamwise force exponentially decaying in the wall normal direction
(Tsinober 1989). Their aim was to stabilize boundary layer pro�les in sea water
or use the force for propulsion. Kim et al. (1995, 1996) considered the same de-
vice as Gailitis & Lielausis turned 90 degrees and an oscillating electric current
to produced an oscillating spanwise force. They reported that the oscillating
Lorenz force prevented the interaction of streamwise vortices with the wall and
that skin friction was reduced in turbulent channel ow. Berlin et al. (1996)
used the same approach to delay boundary layer transition.

In the present investigation we have studied the possibility of transition de-
lay by spanwise ow oscillations generated by either a body force exponentially
decaying in the wall normal direction or a moving wall. After the presentation
of the numerical method x2 we briey describe the two transition scenarios con-
sidered x3 and the ow generated by the control devices x4 before the results are
presented in x5.

2. Numerical method

The simulation code (Lundbladh, Schmid, Berlin & Henningson 1994) used for
the present computations uses spectral methods to solve the three-dimensional,
time dependent, incompressible Navier-Stokes equations. The algorithm uses
Fourier representation in the streamwise and spanwise directions and Chebyshev
polynomials in the wall-normal direction and pseudo-spectral treatment of the
nonlinear terms. The time advancement used was a four-step low storage third-
order Runge-Kutta method for the nonlinear terms and a second-order Crank-
Nicholson method for the linear terms. Aliasing errors from the evaluation of
the nonlinear terms were removed by the 3

2 -rule when the horizontal FFTs were
calculated. In order to set the free-stream boundary condition closer to the
wall, a generalization of the boundary condition used by Malik, Zang & Hussaini
(1985) was implemented. It is an asymptotic condition applied in Fourier space
with di�erent coe�cients for each wavenumber that exactly represents a potential
ow solution decaying away from the wall. A temporal approximation has been
used for all the presented simulation results.

The basis of the temporal simulation technique is the thought of a localized
disturbance or wave traveling downstream, surrounded by a boundary layer of
constant thickness which grows slowly in time. The extent of the computational
domain is small as only one wave length of the largest disturbance is included in
the streamwise and spanwise directions. Moreover, the approximation that the
boundary layer thickness is constant at each instant of time is made, which en-
ables us to use periodic boundary conditions in the wall parallel directions. The
parallel approximation requires that a (weak) forcing is added to the streamwise
momentum equation in order to ensure the correct development of the boundary
layer pro�le over extended periods of time. The boundary layer thickness has
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in this investigation been set to grow with the same rate as an observer follow-
ing the outer ow would experience. Compared to a simulation with constant
boundary layer thickness transition occurs faster with the current setting. The
basic physical mechanisms we have studied are, however, the same regardless of
pace of boundary layer growth.

The simulations presented below were started at Reynolds number R = 664,
where R = U1��0=�, � the kinematic viscosity, U1 the free stream velocity
and ��0 the displacement thickness at time t = 0. The two later quantities has
been used to non-dimensionalize all variables. The computational box had the
dimensions 52:84� 15� 75:93 in the streamwise x, wall normal y and spanwise
z directions, respectively and the resolution was at least 32 � 97 � 32 spectral
modes. Some simulations with up to 96� 145� 216 modes were performed and
the transition point was then delayed approximately 50 time units but that was
consistent for all cases both with and without control. The relation between the
transition times for di�erent control parameters that we present is therefore not
e�ected by the resolution issue. To give exact numbers that can be compared
with experimental results, spatial simulations must be performed that correctly
accounts for the boundary layer growth.

3. Controlled transition scenarios

3.1. Oblique transition. Two transition scenarios has been studied. The fo-
cus has been on oblique transition, which is a bypass transition scenario initi-
ated by two oblique waves with opposite wave angle. It has been studied in
boundary layer ow both numerically and experimentally (Berlin, Lundbladh &
Henningson 1994, Wiegel 1997, Elofsson & Alfredsson 1997 and Berlin, Wiegel
& Henningson 1998) and found to be a powerful mechanism that is active also
at subcritical Reynolds numbers. The nonlinear interaction of the oblique waves
generates counter rotating streamwise vortices that are causing growth of stream-
wise velocity streaks in the boundary layer. The growth mechanism is explained
by the theories on non-modal growth (Gustavsson 1991, Butler & Farell 1992,
Reddy & Henningson 1993 and Trefethen et al. 1993) and is physically due to
what has been called the lift-up e�ect. The counter rotating vortices interacts
with the wall normal shear in the boundary layer and lifts up low velocity uid
elements from the wall towards the free-stream and vice versa.

The streamwise and spanwise wavenumbers of the oblique waves were in the
current investigation chosen to �0 = 0:1189 and �0 = 8:274 � 10�2, respectively.
These parameters are similar to those used in the investigation of Berlin, Wiegel
& Henningson (1998), as is the Reynolds number. That investigation was spatial
and a complete agreement can therefore not be expected.

The streamwise velocity in a wall parallel plane inside the boundary layer at
four time instances during the transition process are displayed in �gure 1. The
ow is from left to right and red represents low speed increasing over yellow and
green to high speed blue. The top left �gure shows the pattern of the initial
oblique waves. At t = 300 meandering streaks has been formed and they grow
to become more irregular at t = 500. The ow is fully turbulent at t = 800 and
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t = 0 t = 300 t = 500 t = 800

Figure 1. Streamwise velocity in wall parallel planes at y = 1:2
during oblique transition. Flow is from left to right and the velocity
increases from red to blue over yellow and green.

at that stage not fully resolved but our interest is in the onset of transition and
not in the turbulent ow.

We transform the velocity �eld to Fourier space and use the notation (�; �),
where � and � are the streamwise and spanwise wavenumber respectively, each
normalized with the corresponding wavenumber of the oblique waves. Thus the
oblique waves are represented by (1; 1) and (1;�1) and the streaks by (0; 2). As
the ow is symmetric and (�; �) equal to (�;��), we only display modes with
positive � in �gure 2. At t = 0 only the (1; 1) mode is non-zero and it only
increases slightly as t increases. The nonlinearly generated vortex/streak mode
(0; 2) is seen to grow rapidly and along with it the (1; 3) mode. After t = 400
other modes are also growing and at the turbulent �nal stage the energy in all
modes are of the same order.
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Figure 2. Time evolution of the energy in the most energetic Fourier
modes during oblique transition.
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t = 0 t = 300 t = 500 t = 800

Figure 3. Streamwise velocity in wall parallel planes at y = 1:2
during transition initiated by random disturbances. ow is from left
to right and velocity increases from red to blue over yellow and green.

3.2. Transition caused by random disturbances. For comparison we have
also studied a transition scenario were the initial disturbance energy was ran-
domly distributed in the 8, 16 and 13 lowest spectral modes in the x, y and z
directions, respectively. The total disturbance energy was twice that used in the
initiated oblique waves in order to get approximately the same transition time.

The streamwise velocity inside the boundary layer are displayed in �gure 3 at
the same time and wall normal position as for the oblique waves. The random
distribution at t = 0 is displayed in the left square. The pattern observed at
t = 300 is again streaky and the strength has also increases at t = 500 as for
oblique transition. The streakyness may indicate the the same basic mechanism
is causing transition as in the oblique case. At t = 800 the ow is turbulent
but a streamwise elongated characteristic is still present. That is explained by
the observation that the (0; 1) streak mode contains more energy than the other
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Figure 4. Time evolution of the energy in some Fourier modes dur-
ing transition initiated by random disturbances. Solid represents the
(0; 1) mode.
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modes at large times in �gure 4. Apart from that we note that it is after t = 400
that all modes grow and that the energy curves level o� at a lower level in this
case than it did after oblique transition.

4. Control strategy

The two applied control strategies caused spanwise oscillation of the ow in
the boundary layer. In the �rst we applied a spanwise oscillating body force of
the form

Fz = f0e
�y=c cos(!t);(1)

where f0 is an amplitude, ! the oscillation frequency and c a parameter con-
trolling the wall normal decay. We will use the triplet (f0; c; !) to refer to these
force parameters. The force itself is not signi�cant for the control but rather the
spanwise ow that it causes. If the wall normal velocity component of the mean
ow is neglected, which it is in the temporal approximation, the ow caused by
the force has the form

w(y; c; !) = A
q
e�2y + e�2y=c � 2 cos(y)e�(+1=c)y(2)

where

A =

s
(f0R)2c4

1 + (!R)2c4
;  =

r
!R

2
(3)

The expressions (3) reveals that a change of the oscillation frequency will also
a�ect both amplitude and wall normal distribution of the spanwise ow. That
is also true for changes of the decay parameter c. It is therefore not possible to
solely change either frequency or wall normal distribution of the spanwise ow.
By adjusting all parameters it is, however, possible to come fairly close to such
changes and we will present the actual spanwise ow pro�les used below. An
example of force and ow pro�le is found in the left plot of �gure 5.
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Figure 5. Left: spanwise oscillating ow pro�le (solid) caused by the
spanwise oscillating body force (dashed). Right: spanwise oscillating
ow pro�le caused by a spanwise oscillating wall.
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The right plot contains the ow pro�le set up by an spanwise oscillating wall,
which was the second type of control applied in the present investigation. The
expression for w is then

w = Ce�y cos(y);(4)

where  is given above and C is the amplitude.

5. Results

5.1. Control of oblique transition.

5.1.1. Control by body force. The transition delay achieved by our control strate-
gies depend on a number of parameters and we will �rst present the results asso-
ciated with the body force applied to oblique transition. Selecting ! = 0:09 and
c = 0:22 we found that an increased spanwise ow amplitude generally led to
further transition delay. However, an optimum was found after which increased
ow amplitude actually reduced the transition delay. This is illustrated in the
left frame of �gure 6, where the friction coe�cient is plotted as function of time
for four controlled ows. The latest transition is found for the second highest
spanwise ow amplitude corresponding to the dashed curve. The spanwise ow
pro�les for the three cases are plotted in the right frame. In the plot of fric-
tion coe�cient we have also included a thicker curve corresponding to the case
without control.

The e�ect of changes in the spanwise oscillating ow pro�le is shown in �g-
ure 7. The two middle ow pro�les performs best. The transition delay is less
if the spanwise ow is concentrated close to the wall or if a large wall normal
proportion of the boundary layer is oscillating. The purpose of the control is to
break the ow structures causing transition, and one may interpret these results
in the following manner. If the whole structure is moved (the highest ow pro�le)
or if the relevant structures are not a�ected (the lowest pro�le), they will not
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Figure 6. Left: coe�cient of friction Right: oscillating spanwise
ow pro�les, for f0 = 0:043 (solid), f0 = 0:086 (doted), f0 = 0:129
(dashed), f0 = 0:172 (dash-doted), c = 0:22 and ! = 0:09. The thick
curve in the left �gure represents the uncontrolled case.
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Figure 7. Left: coe�cient of friction Right: oscillating
spanwise ow pro�les, for force parameters (0:43; 0:05; 0:09)
(solid), (0:086; 0:22; 0:09) (doted), (0:060; 0:38; 0:09) (dashed) and
(0:046; 0:7; 0:09) (dash-doted). The thick curve in the left �gure rep-
resents the uncontrolled case.

be broken by the spanwise ow oscillations and therefor the resulting transition
delay will be less.

When the dependence of the transition time on the forcing frequency was
investigated, all the control parameters has to be adjusted in order to keep the
ow pro�le as constant as possible. The frequency was varied from 0:039 to 0:4
and the ow pro�les used all fell within the region enclosed by the three pro�les
displayed in the left frame of �gure 8. The dash-dotted curve corresponds to the
highest frequency and it was not possible to avoid the movement of the pro�le
peak towards the wall for the high frequencies without extending the pro�le
further in the wall normal direction, which reduced the achieved transition delay
considerably, as noted in �gure 7. The transition time dependence on forcing
frequency is displayed in the middle frame of �gure 8, where the transition time is

0 0.5
0

0.5

1

600 700 800

0.1

0.2

0.3

600 700 800
175

180

185

190

195

y

w

!

transition time

tstart

transition time

Figure 8. Left: Flow pro�les used for frequencies: 0.0782 (solid),
0.13 (dash), 0.156 (dash-dot) and 0.40 (dot). Middle: frequency
dependence of transition time. Right: Transition time dependence
on start time of forcing.
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de�ned as the instant when the friction coe�cient exceeds 1:7 times the laminar
value. The vertical dotted line marks the transition time for the no-control case
and for low frequency forcing the transition time curve is almost on that line.
The transition delay decreases for frequencies higher than 0.24.

The odd behavior in the frequency range 0:1 < ! < 0:2 is caused by di�erences
in the ow resulting from the turn on of the forcing. The right frame displays the
transition time for di�erent start time of the forcing for ! = 0:117. Start time
175 and 200 gave the same transition delay whereas a start time in between gave
earlier transition. The forcing amplitude was smoothly ramped up to its �nal
value during the �rst 30 time units and the phase of the forcing was the same in
all cases, which means that the forcing at t = 230 was identical for all cases. The
periodicity found in the curve corresponds to half the time period of the forcing
which is much shorter than the period of the oblique waves. This implies that
the setup of the initial spanwise ow is of great importance for the transition
delay in the frequency range 0:1 < ! < 0:2. This behavior was not observed
for higher frequencies. Disregarding this periodic behavior, transition was not
delayed further by initiating the control earlier than t = 200 but later initiation
gave less transition delay. Note that control during a speci�c time period in
the temporal approximation corresponds to forcing over a limited downstream
extent in an experiment.

5.1.2. Control by wall oscillations. The transition delay of oblique transition
observed when the boundary layer wall was oscillated in the spanwise direction,
was less than that achieved with the body force. This could be expected consid-
ering that the transition delay was reduced when the spanwise ow caused by
the body force was concentrated close to wall. The ow caused by the oscillating
wall is obviously closer to the wall. The ow also becomes more concentrated
to the wall region for higher oscillation frequencies, which we in �gure 9 �nd to
give less transition delay. In the investigation of how the transition time depend
on the frequency we used a maximum wall speed of 0:35. The transition delay
was for ! = 0:09 found to increases with wall speed up to 0:6 and thereafter is
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Figure 9. Transition time dependence on the frequency of the span-
wise oscillating wall (left) and the maximum wall speed (right).
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Figure 10. Left: transition time dependence on maximum spanwise
ow for ! = 0:09 and c = 0:22. Middle: transition time dependence
on the wall normal distribution of the spanwise ow. Right: spanwise
ow. The markers in the two rightmost �gures connect the transition
times with the corresponding spanwise ow.

slowly decreases, a behavior similar to that found for the spanwise ow caused
by the body force.

5.2. Control of transition caused by random disturbances.

5.2.1. Control by body force. The transition scenario initiated by the random
disturbances was easier controlled than oblique transition and both our strategies
could actually prevent transition. For a body force with ! = 0:09 and c =
0:22 a forcing amplitude of 0:043 was found su�cient to prevent transition. It
corresponds to a maximum spanwise ow amplitude of 0:18 and is only one
third of what gave optimal performance on the oblique waves. The transition
time for di�erent amplitudes are displayed in �gure 10, where a curve reaching
the right edge of the �gure represents complete prevention of transition. The
same spanwise ow amplitude was used for the study of how the wall normal ow
distribution inuence transition which is presented in the two rightmost frames of
�gure 10. The markers in the middle frame connect transition times and c-values
with the ow pro�les in the right frame. The same ow distributions that gave
the longest transition delay of oblique transition was found to prevent transition
caused by the random disturbance. Referring to the left frame it is possible
to conclude that an increased forcing amplitude would prevent transition for a
wider range of ow distributions.

The frequency range of the forcing which in �gure 11 is found to prevent
transition is slightly lower than that giving the longest transition delay of oblique
transition, but they do overlap. The ow distributions used were the same as
for oblique transition, displayed in �gure 8. Variation of the transition time due
to the precise turn on time of forcing was also noted for this transition scenario
but the variation was not as regular as for oblique transition (cf. �gure 8).

5.2.2. Control by wall oscillations. Oscillating the boundary layer wall was
found to delay transition less than the oscillating spanwise force in a similar
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Figure 11. Left: transition time dependence on forcing frequency.
Right: variation of transition delay due to changes of start instant.

manner as for transition caused by the oblique waves. However, as random dis-
turbance transition was easier to control, it could be prevented by the oscillating
wall if the wall speed was high enough. In �gure 12 this is achieved for max-
imum wall speed 1:0, which is above the optimal wall speed of 0:6 found for
oblique transition. The longest transition delay was found for ! just above 0:1
(middle frame), which is within the optimal frequency range observed for the
body force. For oblique transition the optimal range of the wall oscillations was
shifted towards lower frequencies, were the results were still rather poor. The
large inuence of the control turn on process that we found for the body force
cases was large in this case and the transition time dependence on start instant
is displayed in the left frames of �gure 12. The jump in transition time is now
found at a di�erent time than it was for the body force, indicating that this e�ect
is related to the control ow rather than to a suddenly appearing ow structure.
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Figure 12. Transition time dependence on: maximum spanwise
speed of the wall oscillating with ! = 0:09 (left), oscillation fre-
quency with wmax = 0:35 (middle) and oscillation start time (right),
with wmax = 0:35 and ! = 0:117.
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6. Discussion and summary

We have shown that spanwise oscillations of a boundary layer ow may delay
or even prevent transition caused by oblique waves or a random disturbance.
Oblique transition was for the studied cases more di�cult to delay, possibly
because it contains larger more coherent structures that were less e�ected by
the applied control. The oscillating ow caused by a body force exponentially
decaying from the wall could delay transition further than a ow caused by a
oscillating wall. The reason for this was that the oscillating ow caused by
the body force reached further away from the wall where, essential structures
could be a�ected. The optimal oscillation frequency observed was in the range
0:1 < ! < 0:2 for all the studied cases, with the exception that the oscillating wall
gave comparable transition delay for lower frequencies when applied to oblique
transition. That delay was however small. It is worth pointing out that results
not presented here show that the body force was also more dangerous in the
sense that unsuitably set control parameters could cause earlier transition.

The physical mechanisms causing the transition delay are uncertain. Large
e�orts were made to identify structures, wave, ow or vorticity components that
correlated with transition time and the applied control, but no general pattern
was found. Typically we �nd several cases were the transition delay correlate well
with the reduction of the streak amplitude in oblique transition but also a few
cases were transition is delayed and the streak amplitude enhanced. The same
was true for other relations and our conclusion is that several components of
the complicated nonlinear transition stage inuence the transition time. Tran-
sition delay can be achieved by reducing one or two of them even if an other
becomes stronger. An approach similar to that of Zang & Hussaini (1985) may
be bene�cial in rating the importance of di�erent components. They arti�cially
suppressed di�erent wave components in calculations of transition caused by
secondary instability of TS-waves.

In order to obtain results that could be compared to an experimental situ-
ation, spatial simulations are required and this study may be valuable for the
initial parameter choices and interpretations of such calculations that are con-
siderably more expensive. Moreover, spatial calculations will provide necessary
information for the estimate of the e�ciency of the suggested control.

We are grateful to Mr. Jaisig Choi for fruitful discussions and his interest in our
study. This work has been supported by TFR (Swedish Research Council for
Engineering Sciences).
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Abstract. An e�cient spectral integration technique for the solution of
the Navier-Stokes equations for incompressible ow over a at plate is de-
scribed. The algorithm can either be used for temporal or spatial sim-
ulation. In the latter case, a fringe region technique is used to allow a
streamwise inow and outow of the computational domain. At a con-
stant distance from the at plate an arti�cial boundary is introduced and
a free-stream boundary condition applied. The horizontal directions are
discretized using Fourier series and the normal direction using Chebyshev
series. Time integration is performed using second order Adams-Bashforth
or third order Runge-Kutta method for the advective and forcing terms
and Crank-Nicholson for the viscous terms.

1. Introduction

This is the �rst part of a complete report on the boundary layer code bla

(Lundbladh, Berlin, Skote, Hildings, Choi, Kim & Henningson 1998). The full
report contains detailed descriptions of implementation issues and an evaluation
of the fringe method, in addition to the generic numerical method described here.

Solution of the Navier-Stokes equations for the simulation of transition and
turbulence requires high numerical accuracy for a large span of length scales.
This has prompted a development of accurate spectral methods. Unfortunately
even with these methods computations require an immense amount of computer
time and memory. In the present report we use spectral integration methods
to derive an accurate algorithm of the at plate boundary ow geometry. The
basic numerical method is similar to the Fourier-Chebyshev method used by
Kim, Moin & Moser (1987).

The original algorithm (Lundbladh, Henningson & Johanson 1992) solved the
incompressible ow equations in a channel ow geometry. To allow simulations
of the ow over a at plate a free-stream boundary condition is required, and
for spatial simulations a fringe region technique similar to that of Bertolotti,
Herbert & Spalart (1992) is described.

For further details about spectral discretizations and additional references see
Canuto, Hussaini, Quarteroni & Zang (1988).
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142 SPECTRAL METHOD FOR FLAT PLATE SIMULATION

The original channel code and the implementation of the present numerical
method has been used in a number of investigations.
In channel ow:

Henningson, Johansson & Lundbladh (1990), Lu & Henningson (1990), Lund-
bladh & Johansson (1991), Schmid & Henningson (1992), Lundbladh (1993),
Henningson, Lundbladh & Johansson (1993), Lundbladh & Henningson (1993),
Schmid & Henningson (1993), Elofsson & Lundbladh (1994), Kreiss, Lundbladh
& Henningson (1994), Lundbladh, Henningson & Reddy (1994), Schmid, Lund-
bladh & Henningson (1994), Henningson (1995), Reddy, Schmid, Baggett &
Henningson (1998).
In boundary layer ow:

Lundbladh, Johansson & Henningson (1992), Berlin, Lundbladh & Henning-
son (1994), Henningson & Lundbladh (1994), Lundbladh, Schmid, Berlin &
Henningson (1994), Lundbladh & Henningson (1995), H�ogberg & Henningson
(1998), Schmid, Reddy & Henningson (1996), Nordstr�om, Nordin & Henningson
(1997), Hildings (1997), Berlin & Henningson (1998), Berlin, Hani� & Henning-
son (1998), Berlin, Wiegel & Henningson (1998), Berlin, Kim & Henningson
(1998), Bech, Henningson & Henkes (1998).

2. The numerical method

2.1. Derivation of the velocity-vorticity formulation. The starting point
is the non-dimensionalized incompressible Navier-Stokes equations in a rotating
reference frame, here written in tensor notation,

@ui
@t

= � @p

@xi
+ �ijkuj(!k + 2
k)� @

@xi
(
1

2
ujuj) +

1

R
r2ui + Fi;(1)

@ui
@xi

= 0;(2)

with boundary conditions at the at plate and at the free-stream boundary,
which are discussed in the next subsections.

The �rst equation represents conservation of momentum and the second equa-
tion incompressibility of the uid. Here (x1; x2; x3) = (x; y; z) are the streamwise,
normal and spanwise coordinates, (u1; u2; u3) = (u; v; w) are the respective ve-
locities, (!1; !2; !3) = (�; !; #) are the corresponding vorticities, and p is the
pressure. The streamwise and spanwise directions will alternatively be termed
horizontal directions. 
k is the angular velocity of the coordinate frame around
axis k. In practise the most often used case is rotation around the spanwise
axis, thus let 
 = 
3 be the rotation number. Fi is a body force which is
used for numerical purposes that will be further discussed below. It can also be
used to introduce disturbances in the ow. The Reynolds number is de�ned as
R = U1�

�=�, where U1 is the undisturbed streamwise free-stream velocity at
x = 0 and t = 0, �� is the displacement thickness of the undisturbed streamwise
velocity at x = 0 and t = 0, and � is the kinematic viscosity. The size of the
solution domain in physical space is xL, yL and zl in the streamwise, normal and
spanwise directions, respectively.
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A Poisson equation for the pressure can be obtained by taking the divergence
of the momentum equation,

r2p =
@Hi

@xi
�r2(

1

2
ujuj)(3)

where Hi = �ijkuj(!k + 2
k) + Fi. Application of the Laplace operator to
the momentum equation for the normal velocity yields an equation for that
component through the use of Eqs. (3) and (2). One �nds

@r2v

@t
=

�
@2

@x2
+

@2

@z2

�
H2 � @

@y
(
H1

@x
+
@H3

@z
) +

1

R
r4v:(4)

This equation can, for numerical purposes, be written as a system of two
second order equations:

@�

@t
= hv +

1

R
r2�

r2v = �;(5)

where

hv =

�
@2

@x2
+

@2

@z2

�
H2 � @

@y

�
@H1

@x
+
@H3

@z

�
:(6)

An equation for the normal vorticity can be found by taking the curl of the
momentum equation. The second component of that equation read

@!

@t
= h! +

1

R
r2!;(7)

where

h! =
@H1

@z
� @H3

@x
:(8)

Note that the equations for �, v and ! have similar form, and can thus be
solved using the same numerical routine. Once the the normal velocity v and
the normal vorticity ! have been calculated the other velocity components can
be found form the incompressibility constraint and the de�nition of the normal
vorticity.

2.2. Boundary condition. The boundary conditions in the horizontal direc-
tions are periodic but we need to specify boundary conditions at the plate and
in the free-stream, to solve equations (5) and (7). The natural no-slip boundary
conditions read

v(y = 0) = 0;
@v(y = 0)

@y
= 0; !(y = 0) = 0:(9)
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For disturbance generation and control by blowing and suction through the
plate an arbitrary time dependent velocity distribution

v(y = 0) = vBS(x; z; t)(10)

can be used.
The ow is assumed to extend to an in�nite distance perpendicularly to the

at plate. However, the discretization discussed below can only handle a �nite
domain. Therefore, the ow domain is truncated and an arti�cial boundary
condition is applied in the free-stream.

The simplest possible is a Dirichlet condition i.e.,

ui(y = yL) = Ui(y = yL)(11)

Where Ui(x; y; z; t) is a base ow that is normally chosen as a Falkner-Skan-
Cook ow. An arbitrary pressure gradient, to for instance create a separation
bubble, can be imposed by choosing Ui accordingly.

The desired ow solution generally contains a disturbance and that will be
forced to zero by the Dirichlet condition. This introduces an error compared to
the exact solution for which the boundary condition is applied at an in�nite dis-
tance from the wall. The error may result in increased damping for disturbances
in the boundary layer.

Some improvement can be achieved by using a Neumann condition,

@ui
@y

jy=yL =
@Ui
@y

jy=yL :(12)

This condition can be shown to be stable if there is outow at the boundary
or the inow is weaker than O(1=R). This restriction is ful�lled if the base ow
is away from the wall and the boundary is placed on a su�ciently large distance
from the wall, so that the disturbance velocity is small.

A generalization of the boundary condition used by Malik, Zang & Hussaini
(1985) allows the boundary to be placed closer to the wall. It is an asymptotic
condition that decreases the error further and it reads

�
@ûi
@y

+ jkjûi
�
y=yL

=

"
@Ûi
@y

+ jkjÛi
#
y=yL

(13)

where^denotes the horizontal Fourier transform with respect to the horizontal
coordinates, k2 = �2 + �2 and � and � are the horizontal wavenumbers (see
equation 28). Thus this condition is most easily applied in Fourier space. The
boundary condition exactly represents a potential ow solution decaying away
from the wall. It is essentially equivalent to requiring that the vorticity is zero
at the boundary. Thus it can be applied immediately outside the vortical part
of the ow.



A. LUNDBLADH, S. BERLIN AND D. S. HENNINGSON 145

2.3. Forcing for temporal simulation. A localized disturbance or wave of
relatively short wavelength which travels downstream in a slowly growing bound-
ary layer is surrounded by a boundary layer of almost constant thickness which
grows slowly in time. This forms the basis of the temporal simulation technique.

Following the ideas of Spalart & Yang (1987) we assume that the boundary
layer streamwise velocity is U(x; y) and introduce a reference point xr = x0 + ct
where c is a reference speed. We now assume that the undisturbed boundary
layer in the vicinity of the disturbance has the velocity distribution U(y; t) =
U(xr; y) , V (y; t) = 0. Since the boundary layer is now parallel (as there is
no dependence on x), it is possible to apply periodic boundary conditions in
the horizontal directions. However, whereas U(x; y) (with the corresponding
V given by continuity) is a solution to Navier-Stokes or at least the boundary
layer equations, this is not true for fU(y; t); V (y; t)g. Thus to ensure the correct
development of the boundary layer pro�le over extended periods of time it is
necessary to add a (weak) forcing to balance the streamwise momentum equation,

F1 =
@U(y; t)

@t
� 1

R

@2U(y; t)

@y2
= c

@U(x; y)

@x
� 1

R

@2U(x; y)

@y2
(14)

where the right hand side should be evaluated at the reference coordinate
xr. The reference speed should be chosen as the group speed of the wave or
the propagation speed of the localized disturbance for best agreement with a
spatially developing ow. To fully justify the periodic boundary conditions in
the case of a wave train, the wave itself should be slowly developing.

2.4. Forcing for spatial simulation. The best numerical model of a phys-
ical boundary layer, which is usually developing in the downstream direction
rather than in time, is a spatial formulation. To retain periodic boundary condi-
tions, which is necessary for the Fourier discretization described below, a fringe
region is added downstream of the physical domain, similar to that described
by Bertolotti, Herbert & Spalart (1992). In the fringe region disturbances are
damped and the ow returned to the desired inow condition. This is accom-
plished by the addition of a volume force which only increases the execution time
of the algorithm by a few percent.

The form of the forcing is :

Fi = �(x)(Ui � ui)(15)

where �(x) is a non-negative fringe function which is signi�cantly non-zero
only within the fringe region. Ui is the same ow �eld used for the boundary
conditions, which also contains the desired ow solution in the fringe. The
streamwise velocity component is calculated as,

Ux(x; y) = U(x; y) + [U(x+ xL; y)� U(x; y)]S

�
x� xmix
�mix

�
;(16)

where U(x; y) is normally a solution to the boundary layer equations. Here
xmix and �mix are chosen so that the prescribed ow, within the fringe region,
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smoothly changes from the outow velocity of the physical domain to the de-
sired inow velocity. S is given below. The wall normal component Uy is then
calculated from the equation of continuity, and the spanwise velocity Uz is set to
zero for simulations where the mean ow is two dimensional. For three dimen-
sional boundary layers Uz is computed from a boundary layer solution in fashion
analogous to that for Ux. This choice of U ensures that for the undisturbed
laminar boundary layer the decrease in thickness is completely con�ned to the
fringe region, thus minimizing the upstream inuence. A forced disturbance to
the laminar ow can be given as inow condition if that disturbance is included
in Ui.

A convenient form of the fringe function � is as follows

�(x) = �max[S(
x� xstart
�rise

)� S(
x� xend
�fall

+ 1)]

Here �max is the maximum strength of the damping, xstart to xend the spatial
extent of the region where the damping function is nonzero and �rise and �fall

the rise and fall distance of the damping function. S(x) is a smooth step function
rising from zero for negative x to one for x � 1. We have used the following form
for S, which has the advantage of having continuous derivatives of all orders.

S(x) =

8<
:

0 x � 0
1=[1 + exp( 1

x�1 +
1
x
)] 0 < x < 1

1 x � 1

To achieve maximum damping both the total length of the fringe and �max
has to be tuned. The actual shape of �(x) is less important for the damping but
it should have its maximum closer to xend than to xstart. The damping is also
strongly e�ected by the resolution of the disturbance that should be damped.
An investigation of how the fringe parameters e�ect the disturbance in the fringe
can be found in Hildings (1997).

For maximum computational e�ciency the simulated ow has to be considered
when the fringe parameters are tuned. Assuming that the achieved damping is
su�cient, a short fringe reduces the box length and therefor the required CPU
time per iteration. However, if the ow gradients introduced in the fringe region
are larger than those in the physical domain that may decrease the time step
and consequently the necessary number of iterations. Note that the boundary
layer growth causes outow through the free-steam boundary. The streamwise
periodicity requires that all that uid enters in the fringe region.

Analysis of Navier-Stokes equations with a fringe forcing term yields that there
is an additional part of the disturbance associated with the pressure whose decay
is not dependent on �. For a boundary layer, this solution decays appreciably
over a downstream distance equal to the boundary layer thickness, and thus the
fringe region must be some factor (say 10 to 30) times this thickness to get a
large decay factor, see Nordstr�om, Nordin & Henningson 1997.

2.5. Temporal discretization. The time advancement is carried out by one
of four semi-implicit schemes. We illustrate them on the equation



A. LUNDBLADH, S. BERLIN AND D. S. HENNINGSON 147

an=�t
n bn=�t

n cn=�t
n

Euler 1 0 0
AB2 1 +�tn=2�tn�1 ��tn=2�tn�1 1/2
RK3 8/15 0 0
3-stage 5/12 -17/60 8/15

3/4 -5/12 2/3
RK3 8/17 0 0
4-stage 17/60 -15/68 8/17

5/12 -17/60 8/15
3/4 -5/12 2/3

Table 1. Time-stepping coe�cients.

@ 

@t
= G+ L ;(17)

which is on the same form as equation (5) and (7).  represents � or !, G
contains the (nonlinear) advective, rotation and forcing terms and depends on
all velocity and vorticity components, L is the (linear) di�usion operator. L
is discretized implicitly using the second order accurate Crank-Nicholson (CN)
scheme and G explicitly by either the second order Adams-Bashforth (AB2) or
a low storage third order three or four stage Runge-Kutta (RK3) scheme. These
time discretizations may be written in the following manner : (G and L are
assumed to have no explicit dependence on time)

 n+1 =  n + anG
n + bnG

n�1 + (an + bn)

�
L n+1 + L n

2

�
;(18)

where the constants an and bn are chosen according to the explicit scheme
used. Four possibilities are shown in the Table 1. The �rst is forward Euler which
is used as a start up for the Adams-Bashforth scheme, the second is the AB2
scheme (allowing for variable time steps) and the third and fourth are the RK3
schemes. Note that the RK3 schemes have three or four stages which implies
that a full physical time step is only achieved every three or four iterations. The
time used for the intermediate stages are given by t = t+ cn, where cn is given
in table 1.

To obtain some insight into the properties of these they will be applied to
the two dimensional linearized Burgers' equation with a system rotation. The
eigenvalue analysis yields a necessary condition for stability which must be aug-
mented by an experimental veri�cation. Putting the equation into the form of
Eq. (17) yields :
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 =

�
u
w

�

G =

�
u0@=@x+ w0@=@z 2


�2
 u0@=@x+ w0@=@z

� �
u
w

�

L =
1

R

�
@2=@x2 + @2=@z2 0

0 @2=@x2 + @2=@z2

�
(19)

It can be seen as an approximation to Eq. (1). The dependence of  on both
the streamwise and spanwise coordinate directions have been included in order
to indicate how multiple dimensions enter into the stability considerations.

We will for simplicity use Fourier discretization in the spatial directions. The
Chebyshev method acts locally as a transformed Fourier method and thus the
stability properties derived here can be applied with the local space step. An
exception to this occurs at the endpoints where the transformation is singular.
It can be shown that the Chebyshev method is more stable there. A numerical
study of a 1-dimensional advection equation using the Chebyshev discretization
yields that the upper limit of its spectrum along the imaginary axis is about 16
times lower than the simple application of the results from the Fourier method.
This allows a corresponding increase of the time-step when the stability is limited
by the wall normal velocity at the free-stream boundary.

Fourier transforming in x and z yields:

 ̂t =

�
i�u0 + i�w0 2


�2
 i�u0 + i�w0

�
 ̂ � �2 + �2

R
 ̂;(20)

where � and � are the wavenumbers in the x and z directions, respectively.
This equation can be diagonalized to yield the equation,

ût = i(�u0 + �w0 � 2
)û+
�2 + �2

R
û(21)

We assume that the absolute stability limit will �rst be reached for the largest
wavenumbers of the discretization �max and �max, which corresponds to a wave-
length of 2 ��x and �z, respectively. �x �z are the discretization step lengths
in physical space. The following parameters are useful for our analysis,

� = �t[2j
kj+ (�maxju0j+ �maxjw0j)]
= �t

�
2j
kj+ �

� ju0j
�x

+
jw0j
�z

��
;(22)

� =
1

R
�t(�2max + �2max)

=
1

R
�2�t

�
1

�x2
+

1

�z2

�
:(23)

The parameter � is usually called the spectral CFL number, in analogy with
the stability theory for �nite di�erence equations. Henceforth it will be termed
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Figure 1. Contours of constant ampli�cation factor for a) the AB2-
CN method, and b) the RK3-CN method. Contour spacing is 0.05
with dashed lines indicating that the ampli�cation factor is below

unity.

simply the CFL number. Using the AB2-CN with a constant time-step we have
the following time discretization for the model equation (21),

ûn+1 = ûn + i�

�
3

2
ûn � 1

2
ûn�1

�
� �

2
(ûn+1 + ûn)(24)

and using the RK3-CN time discretization we have the following three stages
in each time step

ûn+1 = ûn + i�a1û
n � �

2
a1(û

n+1 + ûn);

ûn+2 = ûn+1 + i�(a2û
n+1 + b2û

n)� �

2
(a2 + b2)(û

n+2 + ûn+1);(25)

ûn+3 = ûn+2 + i�(a3û
n+2 + b3û

n+1)� �

2
(a3 + b3)(û

n+3 + ûn+2):

The absolute stability regions, i.e. the regions where all solutions to the above
di�erence equations are bounded in the � { � plane, can now be found by calculat-
ing the roots of the associated characteristic polynomials. Contours of constant
absolute values of the roots are given in �gure 1. Figure 1a shows the curves
for the AB2-CN method whereas �gure 1b shows the curves for the RK3-CN
method. Note that higher values of � (lower Reynolds number) stabilizes the
method, i.e. increases the CFL number (�) that is allowed for an absolutely sta-
ble solution. In the limit of in�nite Reynolds number the AB2-CN method is not
absolutely stable for any CFL number, whereas the RK3-CN method approaches
the limit

p
3, a result which also can be arrived at through the standard analysis

of the RK3 scheme alone. The analysis for the four stage method is analogous
and the stability limit is

p
8.

If the time advancement scheme (18) is applied to Eqs. (5) and (7) we �nd
(for the moment disregarding the boundary conditions),
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(1� an + bn
2R

r2)�n+1 = (1 +
an + bn
2R

r2)�n + anh
n
v + bnh

n�1
v

r2vn+1 = �n+1(26)

and

(1� an + bn
2R

r2)!n+1 = (1 +
an + bn
2R

r2)!n + anh
n
! + bnh

n�1
!(27)

2.6. Horizontal discretization { Fourier expansions. The discretization
in the horizontal directions uses a Fourier series expansions which assumes that
the solution is periodic.

The streamwise and spanwise dependence of each variable can then be written

u(x; z) =

Nx
2 �1X

l=�(Nx2 �1)

Nz
2 �1X

m=�(Nz2 �1)

û(�; �) exp[i(�lx+ �mz)](28)

where �l = 2�l=xL and �m = 2�m=zL, and Nx and Nz are the number of
Fourier modes included in the respective directions. Note that the indices on the
discrete wavenumbers � and � are sometimes left out for notational convenience
and that k2 = �2 + �2.

2.6.1. Normal velocity and normal vorticity equations. Expanding the depen-
dent variables of Eq. (26) in Fourier series gives

�
1� an + bn

2R
(D2 � k2)

�
�̂n+1 =

�
1 +

an + bn
2R

(D2 � k2)

�
�̂n + anĥ

n
v + bnĥ

n�1
v

(D2 � k2)v̂n+1 = �̂n+1(29)

where D signi�es a derivative in the normal direction. Note that the above
equations are two linear constant coe�cient second order ordinary di�erential
equations in y. A similar equation can also be derived from Eq. (27) . These
three equations can be written as follows

(D2 � �2)�̂n+1 = f̂nv(30)

(D2 � k2)v̂n+1 = �̂n+1(31)

(D2 � �2)!̂n+1 = f̂n!(32)

where

�2 = k2 + 2R=(an + bn)(33)

f̂nv = p̂nv �
2Ran
an + bn

ĥnv(34)

f̂n! = p̂n! �
2Ran
an + bn

ĥn!(35)

and
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p̂nv = �
�
D2 � �2 +

4R

an + bn

�
�̂n � 2Rbn

an + bn
ĥn�1v

= �f̂n�1v � 4R

an + bn
�̂n � 2Rbn

an + bn
ĥn�1v ;(36)

p̂n! = �
�
D2 � �2 +

4R

an + bn

�
!̂n � 2Rbn

an + bn
ĥn�1!

= �f̂n�1! � 4R

an + bn
!̂n � 2Rbn

an + bn
ĥn�1! ;(37)

We will denote the quantities p̂n! and p̂nv the partial right hand sides of the
equations.

2.6.2. Horizontal velocities and wavenumber zero. Having obtained v̂ and !̂
we can �nd û and ŵ using Eq. (2) and the de�nition of the normal vorticity
component, both transformed to Fourier space. We �nd

û =
i

k2
(�Dv̂ � �!̂);(38)

ŵ =
i

k2
(�!̂ + �Dv̂):(39)

Similarly, we can �nd the streamwise and spanwise component of vorticity in

terms of !̂ and �̂,

�̂ =
i

k2
(�D!̂ + ��̂);(40)

#̂ =
�i
k2

(��̂ + �D!̂):(41)

These relations give the streamwise and spanwise components of velocity and
vorticity for all wavenumber combinations, except when both � and � are equal

to zero. In that case we have to use some other method to �nd û0, ŵ0, �̂0 and #̂0
(the zero subscript indicates that k = 0). The appropriate equations are found
by taking the horizontal average of the �rst and the third component of Eq. (1).
Due to the periodic BC all horizontal space derivatives cancel out, i.e.,

@u0
@t

= H1 +
1

R

@2u0
@y2

;(42)

@w0

@t
= H3 +

1

R

@2w0

@y2
(43)

After a time discretization we �nd,

(D2 � �2)ûn+10 = f̂n01(44)

(D2 � �2)ŵn+10 = f̂n03(45)

where
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f̂n0i = p̂n0i �
2Ran
an + bn

Ĥn
0i;(46)

and

p̂n0i = �
�
D2 � �2 +

4R

an + bn

�
ûn0i �

2Rbn
an + bn

Ĥn�1
0i ;

= �f̂n�10i ( 0)� 4R

an + bn
ûn0i �

2Rbn
an + bn

Ĥn�1
0i :(47)

Here the 0 index in Ĥ0i refers to the zero wavenumber in both horizontal
directions. Note that the above system contains the same type of equations as
the system (31), and can thus be solved using the same numerical algorithm.
Once û0 and ŵ0 are calculated, the streamwise and spanwise components of
vorticity for k = 0 can be found as follows

�̂0 = Dŵ0; #̂0 = �Dû0:(48)

2.6.3. Solution procedure with boundary conditions. A problem with the above
equations is that the boundary conditions do not apply to the quantities for
which we have di�erential equations. To remedy this, each of the equations can
be solved for a particular solution with homogeneous boundary conditions. Then
a number of homogeneous solutions with non-homogeneous boundary conditions
are found for the same equations. Finally the boundary conditions are ful�lled by
a suitable linear combination of particular and homogeneous solution. Explicitly
we proceed as follows:

For all k =
p
�2 + �2 6= 0 and each of the two symmetries (symmetric and

antisymmetric with respect to reections around y = yL=2) we solve :

(D2 � �2)�̂n+1p = f̂n+1v �̂n+1p (yL) = 0(49)

(D2 � k2)v̂n+1p = �̂n+1p v̂n+1p (yL) =

�
vBS
2 symetric

�vBS
2 antisymetric

(50)

(D2 � �2)�̂n+1h = 0 �̂n+1h (yL) = 1(51)

(D2 � k2)v̂n+1ha = �̂n+1h v̂n+1ha (yL) = 0(52)

(D2 � k2)v̂n+1hb = 0 v̂n+1hb (yL) = 1(53)

(D2 � �2)!̂n+1p = f̂n+1! !̂n+1(yL) = 0(54)

(D2 � �2)!̂n+1h = 0 !̂n+1(yL) = 1(55)

where the subscripts p, h, ha and hb indicate the particular and the homo-
geneous parts. vBS is only nonzero for cases with blowing and suction through
the plate. Note that only one boundary condition is needed for each second
order equation since the assumption of symmetry (or antisymmetry) takes care
of the other. v̂n+1p (yL) = 0 when the symmetric and antisymmetric solutions
are added and all the other solutions are zero at y = 0. Equations (51) and
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(55) have zero right hand sides and the same boundary conditions. The solution
coe�cients are therefore identical and so are their symmetric and antisymmetric
coe�cients. Thus, four calls of the the equation solver can be reduced to one.

To ful�ll the the remaining boundary conditions we �rst construct v̂p1, v̂h1
and v̂h2,

v̂n+1p1 = v̂n+1p + Cp1v̂
n+1
ha v̂n+1p1 (yL) = 0 v̂n+1p1 (0) = vBS=2(56)

v̂n+1h1 = v̂n+1ha =
@v̂ha
@y

(y = yL) v̂n+1h1 (yL) = 0 v̂n+1h1 (0) = 0(57)

v̂n+1h2 = v̂n+1hb + Ch2v̂
n+1
ha v̂n+1h2 (yL) = 1 v̂n+1h2 (0) = 0(58)

where Cp1 and Ch2 are chosen to ful�ll the boundary condition @v=@y = 0 at the
lower wall for each of the two symmetries of v̂p1 and v̂h2. As the symmetric and
antisymmetric parts of @v̂h1=@y cancel at the lower wall their sum vh1 ful�lls
@vh1=@y = 0.

Now the solutions (vp1; !p), (vh1; ! = 0), (vh2; ! = 0) and (v = 0; !h) ful�ll
all the physical boundary conditions at the lower wall. The total normal velocity
and vorticity is then given by

v̂n+1 = v̂n+1p1 + Cv1v̂
n+1
h1 + Cv2v̂

n+1
h2(59)

!̂n+1 = !̂n+1p + C!!̂
n+1
h(60)

where Cv1,Cv2 and C! are chosen such that the boundary conditions at the
upper boundary are ful�lled. The u and w velocities are found from the de�nition
of the normal vorticity and the incompressibility constraint.

In general we have to �nd u and w �rst to evaluate the boundary conditions.
Thus with the C's unknown we �nd :

ûn+1 = ûn+1p1 + Cv1û
n+1
h1 + Cv2û

n+1
h2 + C!û

n+1
h(61)

ŵn+1 = ŵn+1p1 + Cv1ŵ
n+1
h1 + Cv2ŵ

n+1
h2 + C!ŵ

n+1
h(62)

Where (up1; wp1), (uh1; wh1), (uh2; wh2) and (uh; wh) are found from (vp1; !p),
(vh1; ! = 0), (vh2; ! = 0) and (v = 0; !h) using equation (38) and (39).

Assuming the boundary conditions are linear we can write them as :

Li(û; v̂; ŵ) = D̂i; i = 1; 2; 3(63)

Here Li is the linear operator for the ith boundary condition. This can include
derivatives in the wall normal direction. The operator may also depend on the
wave number (for example when the boundary condition contains horizontal
derivatives). Note that the expression for evaluation Li may include !̂ as this

is equivalent to horizontal derivatives. D̂i is the data for the boundary condi-
tion, the most common form of which is is either zero (homogeneous boundary
conditions) or the operator Li applied to a base ow.
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Finally inserting the expressions (59), (61), (62) into equation (63) and moving
all terms containing the particular solution to the right hand side, we get a three
by three linear system of equations which is easily solved to �nd the C's.
For k = 0 we solve

(D2 � �2)ûn+1p0 = f̂n01 ûn+1p0 (0) = ulow; û
n+1
p0 (yL) = uupp(64)

(D2 � �2)ŵn+1p0 = f̂n03 ŵn+1p0 (0) = wlow; ŵ
n+1
p0 (yL) = wupp(65)

(D2 � �2)ûn+1h0 = 0 ûn+1h0 (0) = 0; ûn+1h0 (yL) = 2(66)

(D2 � �2)ŵn+1h0 = 0 ŵn+1h0 (0) = 0; ŵn+1h0 (yL) = 2(67)

where ulow, uupp,wlow and wupp denote the lower and upper wall velocities.
Computations in a moving reference frame can increase the time step. If the
boundary condition at the upper wall is in the form is of Dirichlet type (speci�ed
velocity) then

û0 = ûp0(68)

ŵ0 = ŵp0(69)

For other types of upper wall boundary conditions we �nd the complete solu-
tion from :

û0 = ûp0 + Cuûh0(70)

ŵ0 = ŵp0 + Cwŵh0(71)

where Cu and Cw are chosen so that û0 and ŵ0 ful�ll the boundary conditions.
The above equations are all in Fourier space, where the non-linear terms

hv , h!, H1 and H3 become convolution sums. These sums can be e�ciently
calculated by transforming the velocities and vorticities using FFTs to physical
space, where they are evaluated using pointwise products.

2.7. Normal discretization { Chebyshev expansion. The typical equation
derived above is a second order constant coe�cient ODE of the form

(D2 � �) ̂ = f̂  ̂(0) = �1;  ̂(yL) = 1;(72)

First map the interval [0; yl] to [�1; 1] by setting y0 = 2y=yL � 1. Then

(D
02 � �) ̂ = f̂  ̂(�1) = �1;  ̂(1) = 1;(73)

Where � = �y2L=4. In the following we have for simplicity dropped the prime.

This equation can be solved accurately if the dependent variable  ̂, its second

derivatives, the right hand side f̂ and the boundary conditions are expanded in
Chebyshev series, i.e.,
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 ̂(y) =

NyX
j=0

~ jTj(y);(74)

D2 ̂(y) =

NyX
j=0

~ 
(2)
j Tj(y);(75)

f̂(y) =

NyX
j=0

~fjTj(y);(76)

 ̂(1) =

NyX
j=0

~ j = 1(77)

 ̂(�1) =

NyX
j=0

~ j(�1)j = �1;(78)

where Tj are the Chebyshev polynomial of order j and Ny the highest or-
der of polynomial included in the expansion. If the Chebyshev expansions are
used in Eq. (73), together with the orthogonality properties of the Chebyshev
polynomials, we �nd the following relation between the coe�cients

~ 
(2)
j � � ~ j = ~fj : j = 0; :::Ny(79)

By writing the Chebyshev functions as cosines and using well known trigono-

metric identities, one �nds relations between the Chebyshev coe�cients of  ̂ and
those of its derivative that can be used for di�erentiation and integration (see
Canuto et al. 1988)

~ 
(p)
j =

NyX
m=j+1

m+j odd

m ~ (p�1)
m j = 1; :::Ny;(80)

~ 
(p�1)
j =

1

2j
(cj�1 ~ 

(p)
j�1 � ~ 

(p)
j+1) j = 1; :::Ny;(81)

where the superscript p indicates the order of the derivative and cj = 2 for
j = 0 and cj = 1 for j > 0. In the �rst di�erentiation relation one observes that

an error in the highest order coe�cients of ~ (p�1) inuences all coe�cients of its
derivative ~ (p). This problem is what is supposed to be avoided by the Chebyshev
integration method discussed below. In the second relation we assume that
~ 
(p)
j = 0 for j > Ny and note that ~ 

(p�1)
0 is an integration constant needed when

the function  ̂(p�1) is found by integrating  ̂(p). Note also that the integration
procedure introduces a truncation error, since an integration of a Chebyshev
polynomial would result in a polynomial of one degree higher. The coe�cient
~ 
(p�1)
Ny+1

which would have multiplied TNy+1 is in the present truncation set to
zero.
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If the relations (81) is used together with relation (79) a systems of equations

can be derived for either coe�cients ~ j or ~ 
(2)
j . The second approach, called the

Chebyshev integration method (CIM), was proposed by Greengaard (1991) to
avoid the ill conditioned process of numerical di�erentiation in Chebyshev space.
It was implemented in the original channel code by Lundbladh, Henningson &
Johanson (1992) and is also included in the present implementation. However, we
have found that using this method subtle numerical instabilities occurs in some
cases and we therefore recommend to solve for the coe�cients of the function
itself, ~ j . Such a Chebyshev tau method (CTM), almost identical to that used
by Kim, Moin & Moser, is also implemented and is so far found to be stable.
We �rst present the CTM, then the CIM and �nally we discuss the instabilities
observed in computations with the CIM. Note that the instabilities has occurred
only a few times and that the results otherwise are the same for the two methods.

2.7.1. Chebyshev tau method-CTM. If the recursion relation (81) is used to ex-

press equations (79) in the coe�cients ~ j , one arrives at the system of equations
(82 below). A more detailed derivation can be found in Canuto et al. (1988),
but observe the sign errors therein. We have

� cj�2�

4j(j � 1)
~ j�2 +

�
1 +

�

2(j2 � 1)

�
~ j +

�

4j(j + 1)
~ j+2 =

cj�2
4j(j � 1)

~fj�2 � �j
2(j2 � 1)

~f +
�j+2

4j(j + 1)
~fj+2; j = 2; : : : ; Ny(82)

where

�n =

�
1 0 � j � Ny � 2
0 n > Ny � 2

(83)

Note that the even and odd coe�cients are uncoupled. Since a Chebyshev
polynomial with an odd index is an odd function, and vice versa, the decoupling
of the systems of equations is just a result of the odd and even decoupling of
equation (73) itself. The same can be achieved for the boundary conditions (77)
and (78) if they are added and subtracted,

NyX
j=0

j even

~ j =
 + �

2
;

NyX
j=1

j odd

~ j =
 � �

2
(84)

These boundary condition together with the equations (82) constitutes a

linear system of Ny + 1 equations that can be solved for the coe�cients ~ j
(j = 0; : : : ; Ny). The structure of the equations involving the even coe�cients
forms a tridiagonal system and so does the equation for the odd coe�cients.
The boundary conditions �lls the top row of both systems and makes the only
quasi-tridiagonal but it only takes 16Ny operations to solve both systems.

The system (82) has in fact been truncated to only contains Ny� 1 equations
and two equations has been replaced by boundary conditions. That truncation
introduces what is usually called the tau error. In solution algorithms that
solve for the three velocity components of the Navier-Stokes equations and the
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pressure, the coupling between the equations for the velocities and that for the
pressure requires corrections of the tau error (Kleiser & Schumann, Werne 1995).
We have chosen to eliminate the pressure in the Navier-Stokes equations and
solve for the normal velocity and the normal vorticity and as those equations do
not couple in the same way we do not have to correct the tau error.

2.7.2. Chebyshev integration method-CIM. Instead of solving for the coe�cients
~ j , the CIM solves for the coe�cients of the Chebyshev series for the second

derivative, ~ 
(2)
j . The major advantage is supposed to comes in the calculation

of derivatives of the solution  ̂. Derivatives are needed in the calculation of the
remaining velocities and vorticities using equations (38)-(41). In the CIM the
second derivative is already calculated and the �rst derivative and the function
itself can be found by the numerically well conditioned process of integration.

If the relations (81) are used to write (79) in terms of ~ 
(2)
j the result is the

following system of equations,

j = 0 : ~ 
(2)
0 � � ~ 0 = ~f0

j = 1 : ~ 
(2)
1 � �( ~ 

(1)
0 � 1

8
~ 
(2)
1 + 1

8
~ 
(2)
3 = ~f1

2 � j � Ny � 2 : ~ 
(2)
j � � 1

4j

�
cj�2 ~ 

(2)
j�2

j�1 � ~ 
(2)
j

�
1
j�1 +

1
j+1

�
+

~ 
(2)
j+2

j+1

�
= ~fj(85)

j = Ny � 1 : ~ 
(2)
Ny�1

� � 1
4(Ny�1)

�
~ 
(2)
Ny�3

Ny�2
� ~ 

(2)
Ny�1

�
1

Ny�2
+ 1

Ny

��
= ~fNy�1

j = Ny : ~ 
(2)
Ny

� � 1
4Ny(Ny�1)

( ~ 
(2)
Ny�2

� ~ 
(2)
Ny
) = ~fNy

The equations for odd and even coe�cients decouple and so do the boundary
conditions on the form (84). However, we now need to rewrite them with the

aid of (79) to contain the coe�cients of ~ (2) that we are now solving for. We
�nd that the �rst sum in (84) takes the form

~ 0 + ~ 
(1)
0 + 1

4
~ 
(2)
0 � 1

12
~ 
(2)
1 � 7

48
~ 
(2)
2 +

PNy�2
j=3

3 ~ 
(2)
j

(j�2)(j�1)(j+1)(j+2)

� (Ny�6) ~ 
(2)
Ny�1

4(Ny�3)(Ny�2)Ny
�

~ 
(2)
Ny

2(Ny�2)(Ny�1)Ny
= 1(86)

Thus, the solution of Eq. (73) is found by solving the system of equations for

the second derivative of ~ together with the boundary conditions (86) and the
corresponding one at y = �1. We now have two more equations than for the tau
method and the solution to the full system is a set of Ny + 1 coe�cients of the

second derivative and the two integration constants ~ 
(1)
0 and ~ 

(2)
0 representing

the zeroth order Chebyshev coe�cient of D ̂ and  ̂ itself, respectively. The

function  ̂ is then found by two integrations, which in Chebyshev space can
easily be constructed using the relations (81). The same quasi-tridiagonal form
of the equation systems for the odd and even coe�cients appears as for the CTM
and the same solution routine can be used.
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2.7.3. Integration correction. When the solution for  ̂(2) is found by the CIM

and integrated to obtain  ̂(1) and  ̂ the same truncation is used both the deriva-

tives  ̂ itself. They are all represented with Ny + 1 non-zero Chebyshev coef-
�cients. This means that the truncation of the two are not compatible, since
the derivative of a function represented as a �nite Chebyshev series should have
one coe�cient less than the function itself. For example, if the coe�cients ~ j
are used to construct those for the derivative, using the recurrence relation (80),

the result will not be the same as the coe�cients ~ 
(1)
j . There will be a slight

di�erence in half of the coe�cients for the derivative, the size depending on the
magnitude of the coe�cient ~ Ny . The expression for the di�erence can be derived

as follows. We write  ̂ explicitly using the coe�cients ~ 
(1)
j and the relation (81)

 ̂ = ~ 0T0 +

Ny�1X
j=1

1

2j
(cj�1 ~ 

(1)
j�1 � ~ 

(1)
j+1)Tj +

1

2Ny
~ 
(1)
Ny�1

TNy(87)

Now (80) is applied to the Chebyshev coe�cients in (87) to calculate the

derivativeD ̂. Let ~ Dj be its new coe�cients. We �nd that these new coe�cients

will not equal ~ 
(1)
j and the following relation between them is found

~ Dj = 2
cj

PNy
q=j+1
q+j odd

(cq�1 ~ 
(1)
q�1 � ~ 

(1)
q+1)+

1

cj
~ 
(1)
Ny�1

= ~ 
(1)
j q +Ny odd(88)

and
~ Dj = 2

cj

PNy
q=j+1
q+j odd

(cq�1 ~ 
(1)
q�1 � ~ 

(1)
q+1)

= ~ 
(1)
j � 1

cj
~ 
(1)
Ny

q +Ny even(89)

Thus we have a method of correcting the coe�cients ~ 
(1)
j so that they repre-

sent D ̂ with the same truncation as ~ j represent  ̂. A similar correction can

be derived for the coe�cients ~ 
(2)
j of the second derivative. After some algebra

we �nd

~ D
2

j = ~ 
(2)
j � 1

cj

�
1 +

(Ny�1)
2
�j2

4Ny

�
~ 
(2)
Ny�1

j +Ny odd(90)

~ D
2

j = ~ 
(2)
j � 1

cj
~ 
(2)
Ny

j +Ny even(91)

where ~ D
2

j are the corrected Chebyshev coe�cients for D2 ̂.
When the horizontal components of velocity and vorticity are found using

the relations (38) to (41), we need �̂, Dv̂ and D!̂. The above corrections are
therefore needed in order for the velocity and vorticity �elds to exactly satisfy
the incompressibility constraint (2). Note that an error in the highest Chebyshev
coe�cients will by the above correction scheme a�ect all other coe�cients of the
�rst and second derivative. Exactly what was supposed to be avoided by the
integration method.
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The CTM and CIM methods are equally e�cient and give the same results
with the exception of a few very rare cases. We have found that numerical
instabilities may occur when the wall normal resolution is very low and the
velocity and vorticity �elds are not divergence free. We have also found that
it in those cases is enough to make the vorticity divergence free to stabilize the
calculations. With integration correction or the CTM method, both velocity and
vorticity are completely divergence free. However, for one channel ow case so
far, and more frequently in the boundary layer, a numerical instability occurs
with the integration correction but not without.

Fortunately the instability cause the calculation to blow up in a few time-
steps and before that the results are the same as for a stable version of the code.
With su�cient wall normal resolution (which is required anyhow) and without
the integration correction the boundary layer code has been found completly
reliable. The CTM method is, however, to prefer.
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