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Abstract

This thesis deals with numerical simulations of particulate turbulent channel flows.
Turbulent velocity field is simulated using large eddy simulation (LES). Individual
particles are tracked by integrating the particle equation of motion, i.e. Lagrangian
particle tracking (LPT).

Simulations are first performed with one-way coupling; namely that influence
of particles on fluid field is neglected. The methodology is assessed through com-
parisons between statistics computed for 70 pm copper particles and 50 pm glass
particles in a turbulent channel flow of air at Re, = 180 and earlier data computed
using similar methodology. Good agreement is found between these computational
results. Motion of 0.01 pgm - 10 pum graphite particles in a channel flow of air at
Re, = 180 is also simulated. The computed deposition velocity is found to be in
good agreement with the empirical relation. In both simulations above, the com-
puted statistics are used to study the importance of different forces acting on the
particle.

Subsequently, modulation of turbulence by the presence of 70 pm copper and
50 pm glass particles in a turbulent channel flow of air at Re, = 180 is studied
by simulations taking into account the force from particles to fluid, i.e. two-way
coupling.

Finally, influences of inter-particle collisions are investigated. Simulations of
70 pm particles in a channel flow of air at Re, = 644 are compared with the
experimental data by Kulick et al.! with which all earlier simulation have shown
poor agreement. Inter-particle collisions are found to have significant effects on the
particle statistics in whole channel even when the particle mass flow ratio is as low
as 2%. Agreement with the experimental data can significantly be improved by
taking into account inter-particle collisions and a mechanism which prohibits direct
re-entrainment of particles from the near-wall region to the bulk flow.

The thesis consists of a survey including required development time for the
flows, force balances in the particle phase, modulations in the carrier fluid turbu-
lence due to the presence of particles, particle deposition to walls, passive scalar
turbulence, inter-particle collisions, increase of drag coefficient and boundary con-
ditions, followed by seven papers describing specific results.

Descriptors: Turbulence; Two-phase flow; Particle; Channel flow; Large eddy
simulation; Lagrangian particle tracking; Deposition; Two-way coupling; Collision.

1KuLick, J. D., FESSLER, J. R. & EaToN, J. K., 1994. J. Fluid Mech. 277, 109-134.
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CHAPTER 1

Introduction

Since perhaps the first scientific observation on turbulence by da Vinci in 15th
century, turbulence has been an attractive research area. Numerous experiments
were carried out to understand the characteristics of turbulence and to model it
mathematically. The effort put on turbulence research has brought two monumental
achievements, i.e. the mixing length model (Prandtl, 1927) and the Kolmogorov
spectrum (Kolmogorov, 1941; Oboukhov, 1941).

Despite the enormous effort, turbulence has not fully been understood. Accord-
ing to Tennekes & Lumley (1972), turbulence can be characterized by e.g. irregu-
larity, diffusivity, large Reynolds number, three-dimensional vorticity fluctuations
and dissipation. Among others it is the irregularity that makes the deterministic
approach difficult. Diffusivity is known to cause rapid mixing of the containments
such as heat and particles. The diffusivity of the particles in a turbulent flow is of
great interest when a filtering, separating or mixing apparatus is designed.

After the invention of computers, many researchers examined to predict the sta-
tistics, such as the mean velocity, of turbulent flows by solving the averaged Navier-
Stokes equation. Since the Navier-Stokes equation involves a nonlinear advection
term, extra unknowns called Reynolds stresses appear in the averaged equation.
Therefore relevant closure models are needed to close the equation.

One of the most popular closure models is the k — € model (Jones & Launder,
1972), which is based on the Prandtl’s mixing-length theory (Prandtl, 1925). The
Reynolds stress is approximated to be the product of the turbulent viscosity and
the mean strain rate. The turbulent viscosity is assumed to be proportional to
k% /e, where k is the turbulent kinetic energy and ¢ is the dissipation rate which are
obtained by solving the transport equations for £ and . Although the k — & model
has some disadvantages such that it cannot predict a highly anisotropic flow or a
flow under rotation, it is widely used for industrial purposes owing to its simplicity
and numerical stability.

During the passed few decades, numerical simulations of turbulent flows with-
out high degree of modeling has been made possible due to the rapid development
of computational ability. Direct numerical simulation (DNS) uses very fine compu-
tational mesh such that the smallest eddies comparable to the Kolmogorov length
scale can be captured. In DNS, the Navier-Stokes equation is solved as it is and
there is no need for any closure models. Large eddy simulation (LES) uses also fine

1



2 1. INTRODUCTION

10
E LT di d
= isperse
= bubbly annular
2 flow flow
=]
=
01 B
-
0.01 ] ]
0.01 0.1 1 10 100

Gas flux [m/s]

FI1GURE 1.1. An example of flow regime map. In the case of gas-
liquid flow in a vertical pipe (Mishima & Ishii, 1984).

mesh, but coarser than that in DNS, such that relatively large energetic eddies can
be resolved according to a filtered version of Navier-Stokes equation. The relatively
large eddies in this context designate the same sizes or larger than those compa-
rable to the integral length scale in the flow. The smaller, subgrid scale (SGS)
eddies are considered to be independent of the geometry of the flow and isotropic.
Therefore they can be modeled using a SGS model. At the present time, although
restricted to relatively lower Reynolds numbers and simple geometries, both DNS
and LES are able to reproduce the time dependent turbulent velocity field with a
good accuracy.

The nature of turbulence mentioned above will be a hurdle also when the flow
consists of two, or more, different phases, i.e. in so called multiphase flows. Turbu-
lent two-phase flows, consisting of e.g. gas and liquid, gas and particle or liquid and
particle, can be found almost everywhere from the processes in the nature such as
the clouds in the sky, which have existed since long time before mankind appeared
on the earth, to the industrial processes such as in the pipes in nuclear reactors
which were realized by assembling modern technology.

In general, different phases in two-phase flows interact each other, change the
shape of their interface, and transit from one flow pattern to another. For this
reason, two-phase flows are usually divided into different flow regimes, which are
treated differently. A gas-liquid two-phase flows in a pipe, for instance, can be
classified depending on the gas flow rate and the liquid flow rate: bubbly, slug,
churn and dispersed annular flow regimes, as shown in Fig. 1.1. The term, dispersed
flows, means that one of the phases exists as a dispersed phase. Therefore a bubbly
flow is also a kind of dispersed flows.



1. INTRODUCTION 3

o

\\\\

particles

flow gas

FIGURE 1.2. An example of particulate flow.

In the present thesis, the simplest two-phase turbulent flow which can be stud-
ied on a solid basis, i.e. particulate turbulent flow, is chosen for the subject. The
particulate flow is a dispersed flow which consist of a fluid as the continuous phase
and solid particles as the dispersed phase, as shown in Fig. 1.2. Study of partic-
ulate turbulent flows can also be a good starting point for understanding of the
mechanisms of more general multiphase turbulent flows.

Difficulty in understanding of particulate turbulent flows arises due to compli-
cated motion of the particles linked to the underlying irregularity of carrier flow
turbulence. One exception is the case when the particles have infinitely large iner-
tia compared to the fluid and do not interact with the carrier fluid. In that case
particles can be treated similarly to the theory for gas molecules, see Sundaram &
Collins (1997). In most cases which are of interest, however, particles do not have
infinitely large inertia and do interact with the carrier fluid. Therefore, similarly
to the approach for single phase turbulent flow, statistical methods are to be relied
on.

There are mainly two different ways to deal with the behavior of particulate tur-
bulent flows: Eulerian-Eulerian approach and Eulerian-Lagrangian approach. The
Eulerian-Eulerian approach is often referred to as two-fluid model approach because
the particle phase is also treated as a continuum. In the Eulerian-Lagrangian ap-
proach, trajectories of individual particles are computed according to the particle
equation of motion in the Lagrangian frame, which will be introduced in Chapter
3. The Eulerian-Lagrangian approach is often simply referred to as Lagrangian
particle tracking (LPT). It is of course possible to consider Lagrangian-Lagrangian
approach. However, Lagrangian approach for the fluid (e.g. Koshizuka et al., 1995,
1998) is only on early stage of development and is not realistic to be used for the
computation of turbulent flows.

The simplest particulate turbulent flow is a homogeneous turbulence involving
particles. Shih & Lumley (1986) reported on second-order closure modeling of
particle dispersion in a decaying homogeneous turbulence. The simulation was
found to be in good agreement with the experimental data by Wells & Stock (1983).
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Lagrangian particle tracking coupled with DNS (LPT-DNS) of motion of particles
in a decaying homogeneous turbulence was performed by Elghobashi & Truesdell
(1992) and the important quantities such as Lagrangian velocity auto-correlations
and diffusivity of the particles were studied.

Shear flows and jet flows are the next simplest cases because solid boundaries
need not to be taken into account. Simonin et al. (1995) developed a second-
order closure of the two-fluid model for particulate turbulent shear flows. The time
evolution of the various correlations was found to be in good agreement with their
data computed using Lagrangian particle tracking coupled with LES (LPT-LES).
A turbulent particulate jet flow was simulated by Chen & Wood (1985) using a two-
fluid k — € model. Effect of the particle size and particle loading on the dispersion
was studied by comparing the simulation data with available experimental data by
e.g. Boguslawski & Popiel (1979), Wall et al. (1982) and Moderress et al. (1984).

For the practical applications, such as predictions of behaviors of particulate
flows appearing in industrial systems, it is necessary to understand the motion
of particles in geometries with rigid walls, i.e. wall-bounded flows. The simplest
examples with such geometries are straight pipes or channels bounded with two
parallel walls. Experimental work on particulate turbulent flows in such pipes or
channels has been carried out by many researchers. Laser Dopper anemometry is
the most popular technique to observe the motion of particles and was used by
e.g. Zisselmar & Molelus (1979), Maeda et al. (1980), Lee & Durst (1981), Tsuji
et al. (1984), Kulick et al. (1994) and Kaftori et al. (1995). A high-speed video
system was used by e.g. Rashidi et al. (1990) and Nifo & Garcia (1996). It
was observed in the experiments that the carrier fluid turbulence are suppressed
by suspension of small particles and enhanced by large particles. Hetsroni (1989)
and Gore & Crowe (1989) summarized the data from the available experiments,
and proposed criteria between the enhancement and the suppression of turbulence,
which were later validated theoretically by Yuan & Michaelides (1992). It was
also found (Fessler et al., 1994) that the particles with finite, small inertia tend to
concentrate in the regions with low shear in the streaky turbulent structure near
the wall.

Theoretical studies about these wall-bounded particulate flows using numerical
simulations have also been reported. The main research interest may be 1) to clarify
the phenomena of deposition and entrainment of particles near the wall and 2) to
provide statistical moments of particles.

LPT simulation is often used for the prediction of deposition of small particles
in a wall-bounded turbulent flow. Ounis et al. (1991) reported on the dispersion
and the deposition of very small particles using LPT-DNS. The Brownian motion
due to interaction between particles and fluid molecules was also taken into account.
The entrainment process was studied by Soltani & Ahmadi (1995) using the same
methodology. Deposition in a pipe flow was simulated by Wijttewaal & Oliemans



1. INTRODUCTION 5

(1996). Wang & Squires (1996a) used LPT-LES to study particle deposition in a
channel. Li & Ahmadi (1993) studied the deposition rate of particles in a channel
using a quasi-turbulent fluid velocity field proposed by Kraichnan (1970) as the
background turbulence. The same methodology was also applied to the prediction
of deposition rate in a complex geometry (Li, et al., 1993). For the cases with
very small particles, the simulations mentioned above could predict the statistics
such as deposition velocity in good accuracy as compared to the corresponding
experimental data (e.g. Liu & Agarwal, 1974) and empirical relation (e.g. Wood,
1981).

LPT simulations for relatively large particles in wall-bounded turbulent flows
have also been reported. Pedinotti et al. (1992) carried out a simulation of mo-
tion of polystyrene particles with diameters of 120 - 1100 pum in a horizontal water
channel using LPT-DNS. The simulation data was compared with the experimental
data by Rashidi et al. (1990). Large discrepancies were found. However, later, Pan
& Banerjee (1996) revisited the same problem by taking into account the back-
ward influence of particles on fluid, i.e. two-way coupling, and succeeded obtaining
statistics in a reasonable agreement with the experimental data by Rashidi et al.
(1990).

For the cases where particles have relatively high inertia, such as cases with
solid particles of order of 100 pm in wall-bounded air flows, there are still problems
remaining on the way for accurate prediction using LPT. Rouson & Eaton (1994)
and Wang & Squires (1996b) performed LPT-DNS and LPT-LES, respectively,
to simulate the experiments by Kulick et al. (1994) who studied the statistics
of 50 pm glass and 70 um particles in a vertical turbulent channel flow. Although
good agreement was found between these computational results, large discrepancies
were found as compared to the experimental data. For example, the simulations
predicted much lower fluctuation level of particle velocity in wall-normal direction.
Similar results were reported by several researchers, e.g. Tanaka et al. (1997).

Simulations using other approaches than LPT have also been reported. Swailes
& Reeks (1994) used a kinetic theory for particulate flows (Reeks, 1991) to simulate
deposition of particles in a turbulent channel flow and obtained reasonable depo-
sition velocity. Two-fluid models were used by Rizk & Elghobashi (1989), Bolio
& Sinclair (1995) and Cao & Ahmadi (1995) to study of turbulent channel flows
with relatively heavy and large particles. Bolio et al. (1995) also applied the same
model for a complex geometry with risers. Comparison between the model by Rizk
& Elghobashi and experiments by Maeda et al. (1980) and Tsuji et al. (1984), for
instance, shows that the model by Rizk & Elghobashi has predicted the behavior
of particles and fluid reasonably well in the bulk region of the channel, though, dis-
crepancies can be found near the wall. In the other examples simulating heavy and
large particles, too, similar agreement and disagreement with experimental data
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are reported. For more accurate prediction including the agreement near the wall,
further improvement of the existing models is likely to be needed.

To summarize the results of earlier pieces of work, numerical simulations can
predict the statistics with a reasonable accuracy when the flow is unbounded, the
inertia of particle is small, or both. When the flow is bounded and containing
particles with high inertia, the predictability of the simulations is still poor. The
poor predictability of both LPT simulation and two-fluid model simulation of wall-
bounded turbulent gas-particle flows seems to be due to, at least partly, the same
reason. That is a lack of information on what effects must be taken into account
and what can be neglected, especially near the walls.

The final goal of this work is to study the motion of particles near the wall,
the effect of presence of particles on the turbulent structure near the wall and to
make a simple, more accurate model to predict such flows. For these purposes,
a computational code to calculate the motion of particles in a turbulent channel
flow was developed based on the large eddy simulation code developed by Zahrai et
al. (1995). The code was prepared to account for the modulation of the turbulent
fluid velocity field due to the presence of particles. Various effects such as particle-
particle collisions, increase of drag coeflicient near the wall, lift force, Brownian
force, etc., are included to examine their importance. Statistics both of the fluid
and of the particles are calculated, which will provide the necessary data for the
modeling.

This thesis is organized in the following way. In Chapter 2, main ideas behind
the large eddy simulation are introduced. Basic concepts and theoretical models on
the particle motion follow in Chapter 3. Models for coupling between phases are
described in Chapter 4. In Chapter 5, numerical procedures are outlined. Overviews
of the papers are presented in Chapter 6. Ideas for the future work are presented
in Chapter 7. Finally, in Chapter 8, some general conclusions are drawn. Specific
topics are discussed in papers related to this work. The papers are attached to this
introductory note. Each paper is in a complete form and can be read also as an
independent article.



CHAPTER 2

The model for large eddy simulation

1. Basic concepts

1.1. Basic equations. The governing equation for the motion of an incom-
pressible fluid with a density p/ and a kinematic viscosity v, can be expressed with
the continuity equation,

GU{
=0 1
o2, (1)
and the Navier-Stokes equation,
dul 9 1
atz = 8—,’1;] (—ufu; - ;péij + 21/8,']') . (2)

where uf and p are the velocity and the pressure, respectively. The deformation
rate tensor, s;j, is defined as

1 au{ 5U;
%ij = 5 <6CL’] + 83:, ) (3)

1.2. Direct numerical simulation. A flow becomes turbulent in cases where

the nonlinear term in the Navier-Stokes equation, Eq. (2), is sufficiently larger than
the viscous term. Turbulence consists of eddies with wide range of length scales.
The largest scale is related to a characteristic length in the system, denoted as
£. The smallest scale, under which the kinetic energy of the eddies dissipates into
thermal energy, is called Kolmogorov length scale, denoted as £x. Between these
two length scales, £ and £k, a scale relation,

L _
& ~ Reyt (4)

holds. Here, Rer is the Reynolds number based on ¢, v and the characteristic

velocity of the most energetic eddies, u, i.e.
ul

Rer = - (5)

The most primitive and accurate way to compute a turbulent velocity field is to

take the size of the computational mesh smaller than £x and integrate the Navier-

Stokes equation directly. This methodology is called direct numerical simulation

(DNS). As can be noticed from the scale relation, Eq. (4), the number of mesh

7
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points needed for DNS increases in proportion to Re?}/ * in each direction. If a

typical duct flow of air is taken for example and £ = 107! m, v = 1 m/s and
v = 1075 m?/s are assumed, the number of mesh points in one direction can be
estimated as £/0x ~ RegT/ * ~ 10%. In a three dimensional space, one should use
10° mesh points by a rough estimate.

1.3. Large eddy simulation. There are interesting characteristics for the
eddies smaller than a certain scale, which corresponds to a wavenumber, ko, on
the inertial subrange of the Kolmogorov’s energy spectrum. Small scale eddies are
rather homogeneous and isotropic regardless of global constraints such as geomet-
rical factors, while the characteristics of the larger eddies are highly dependent
on the flow condition. The simulation methodology which utilizes such universal
characteristics of small scale eddies is called large eddy simulation (LES). In LES
the mesh size is chosen such that it can resolve the larger, geometry- and flow-
dependent eddies. The smaller, isotropic eddies are modeled by a subgrid scale
(SGS) model. By doing that, the number of computational cells can be reduced.
Such decomposition into grid scale field and subgrid scale field was first proposed by
Smagorinsky (1963) who studied a quasi-two-dimensional atmospheric turbulence.
Since the pioneering work by Deardorff (1970) who applied LES to a channel flow,
LES has become an essential tool to study higher Reynolds number turbulent flows
than what DNS can handle.

The process to separate the larger, grid scale eddies and smaller, SGS eddies is
called filtering. In general, the filtering process of a field, uzf (Z,t), can be expressed
with a filtering function, G(# — #'), i.e.

ul(7,1) = /u{(a?',t) G(Z—2)da , (6)

where u{ (Z,1) is the filtered, i.e. grid scale, field.

Among many forms of filtering function proposed in the past, the Gaussian
filter, the sharp cut-off filter and the box filter are those mostly used. As is named,
the shape of G of the Gaussian filter is a Gaussian function. The sharp cut-off filter
has such a form that the eddies with higher wavenumber than k¢ are completely
filtered out in the wavenumber space. The box filter works as the volume averaging
in the computational cells. Use of different filters leads to need of different SGS
models. If the Gaussian filter is used, the SGS model includes so-called Leonard
and cross stresses in addition to Reynolds-like stress. Use of the box filter results
in a subgrid model close to the classical eddy viscosity concept. The differences in
filtered quantities due to choice of filtering operator were studied by Piomelli et al.
(1988).

1.4. SGS viscosity. Applying the box filtering, for instance, to the Navier-
Stokes equation, Eq. (2), one can obtain an equation for the filtered field, written
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as

ouf 0 575 1 0 IO
A Y| . — —D0; i 2 Sij — ,
9~ oa; ( uy uj pp(SJ + l/sj) + oz, ( uj uj ) (7)

where the over-line expresses the quantity filtered by the box filter and the u{ !
denotes the SGS velocity. The last term is the Reynolds-like stress term and can
be modeled similarly to the Prandtl’s mixing length model (Prandtl, 1925) as

R;; = uf'uj 35 uf' = —2us5; . (8)

Here, vg is the SGS viscosity which has to be modeled using the variables on the
filtered scale.

2. SGS model

2.1. Smagorinsky model. The standard SGS model, called Smagorinsky
model, can be derived as the following. The transport equation for the SGS kinetic
energy, defined by

1—
eg = iuljsluljsl 5 (9)
can be written as
865 f6eg 0
22 —Pg— —Jg; —€c . 10
ot " Yiag; ST Bx; ST ES (10)

The first term on the right-hand-side is called production term,
Ps = uf'uf' 55 - (11)

Since the deformation tensor, s;;, is traceless because of the incompressibility, Eq.
(1), the production term can be rewritten using R;; as

PS - —R,‘j % - (12)
The second term in Eq. (10) is the transport term,
1
Jsj = 2 ';'uk uy + ppu — 2us} uf , (13)
and the last term is the viscous dissipation term,
dul’
£s = 2vs; 61; (14)

Assuming the production term and dissipation term have much larger magni-
tude than the transport term such that they balance each other, i.e.

Ps=¢s, (15)
the kinetic energy transport equation, Eq. (10), reduces to

—uf'uf's” =€g . (16)
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Using Eq. (8) and Eq. (16), one obtains an expression for the SGS viscosity as a
function of the dissipation rate and the filtered deformation rate, which reads

255>

Vs an

From a dimensional analysis, s can be estimated using |5;;| and the length
scale of SGS eddies, £g, as

Es ~ |$|3€.2S’ ) (18)
thus
vs ~ L2]55] - (19)

In the original Smagorinsky model, g is taken as the size of the cubic box, A.
When the computational cell is not a cube but a parallelopipedon, A is usually
(Miyake, 1992) taken as

A = (Az; AzgAzs)'/? (20)
where Az; is the size in i-direction of the cell. In that case, vs can be modeled as
vs = V2(CsA)?[535] - (21)

The constant, Cg, is called Smagorinsky constant.

Lilly (1967) found that Cs is equal to 0.085 under the condition where the
computational mesh is sufficiently fine and all the subgrid scale eddies are in the
universal range. In numerical simulations, C's is usually taken between 0.1 and 0.25
depending on the characteristics of the flow (Miyake, 1992).

In a channel flow, Cg is usually taken around 0.12, though, it is known that
the Smagorinsky model overestimates the subgrid scale velocity in the vicinity of
wall. This shortcoming is usually fixed by use of a damping function such as

vstr) = s (1-ew(-25)) 22

2.2. Dynamic SGS model. As an approach to avoid artificial adjustments
of SGS viscosity, such as use of a damping function, Germano et al. (1991) proposed
a dynamic SGS model. The main feature of the dynamic SGS model is use of two
different filters, i.e. a grid filter and a test filter with a larger size. The value of
Cs can then be dynamically computed using the relation between these different
filters.

The dynamic SGS model based on the Smagorinsky model can be derived as
the following. The size of the test filter is chosen as nA and the quantity filtered

by this is expressed as e.g. uf . The subgrid stress, expressed as

Tij = ul u; - ulfujf , (23)
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can be filtered by the test filter to read

—_—

o~

Tij = u] u; - u{uf . (24)

On the other hand, the combination of the grid filter and the test filter leads to
another subgrid stress, written as

Tl . (25)

The auxilary quantity,

Lij =ul uf - u{u; , (26)
can then be expressed as
Li; =T — Ty . (27)

This relation is called as Germano identity. Finally, by performing similar transfor-
mations to those done for the derivation of Smagorinsky model, one finds a relation
between the Smagorinsky constant, Cs, and the quantity, £;;, as

1
Lij = 3Lwk = 2C%M;; . (28)
Here M;; is defined as
Mj; = (nA)? |55 55 — A%[s55] 535 - (29)

As can be seen, this set of equations have too many independent variables for
the determination of one variable, C's. Such mathematical ill-posedness is usually
fixed by multiplying 5;; (Germano et al, 1991), or M;; (Lilly, 1992) on both hand
sides of Eq. (29).

In the present study, however, the dynamic SGS model is not adopted just
because the turbulent velocity field can be computed with a good accuracy using
the modified Smagorinsky model, introduced in the following, without use of any
damping function near the wall.

2.3. SGS model in the present study. In the present study, a highly
anisotropic computational mesh system is used for the efficiency and accuracy of
the computation of a turbulent channel flow. Therefore, a modified version of the
Smagorinsky model appropriate for such a mesh system (Zahrai et al., 1995) is
used.

Following Deardorff (1970), the local diffusivity in j direction, vg;, is assumed
to depend on the filtered dissipation, s and the cut-off length scale in j direction,
lsj, ie.

vg; = 5};/35223 . (30)
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The dissipation rate, g, is estimated using the geometric mean of the side-lengths
of the cell, Azy, Azs, Axs, as

es ~ [55 > (A1 Azy Azs) /3 (31)

The length scale in j-direction, £g;, is naturally estimated by the smallest resolved
scale in j-direction, Az;. Substituting these estimations into Eq. (30), vg; can be

modeled as
VSj = \/§C§(AJL’1AZ‘2A{E3)2/9 (AZL'])4/3|%| . (32)
The model constant proposed by Zahrai et al. (1995) is C' = 0.08.



CHAPTER 3

The model for Lagrangian particle tracking

1. Basic concepts

The basic concept of the Lagrangian particle tracking is to integrate the particle
equation of motion, described in the Lagrangian frame, for individual particles. The
equation of motion for a particle, labeled by (k), with a mass, m, can be expressed

as
k
dmf( ) uP®)
dt v
(33)
k
80w
dt v
where 7 *®) and u? ) are, respectively, the component of the location and the

velocity of the particle, in the i-direction. For convenience in notation, the particle
index, (k), will be dropped, otherwise explicitly specified. The force acting on a
particle, f;, is contributed from three parts:

1. surface forces from surrounding fluid, such as drag, fz.(dmg), and lift, fz.(“f 0.

fi(bOdy)

2. body forces, , such as gravitational force;

3. impulsive forces from wall, fi(wa”), and from other particles, fi(w”);
and can symbolically be expressed as
fz' Zfi(drag) +fz(llft) +fi(body) +fi(u)all) +fi(coll) +(0th€7‘ terms) ]
(34)

In the following sections, a general particle equation of motion valid for the
cases at low particle Reynolds number is first introduced. After that, various effects
specific to the particle with high inertia and the particle in wall-bounded flows are
considered.

2. Particle equation of motion

2.1. Stokes drag. It was C. G. Stokes in 19th century who expressed the
stream function of the flow around a spherical particle in the cases where the
nonlinear term in Navier-Stokes equation is negligibly small compared to the viscous

13
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term. Such case occurs when the particle Reynolds number,

il — P
Re, = M, (35)

v

where d is the particle diameter, is much less than unity. The drag force, fz.(dmg),
acting on a non-accelerating particle in a steady and uniform flow can then be

obtained using the Stokes stream function as
fi(drag) 1 ; )
2 = (u —uP). 36

The coefficient, 7,, is called Stokes relaxation time, defined as

d*Ss
T (37)
where S is the density ratio of particle to fluid, i.e.
_
S = o7 (38)

2.2. BBO equation. Basset (1888), Boussinesq (1903) and Oseen (1927) ex-
amined the motion of a sphere settling down in a fluid due to gravitational force.
The particle equation of motion developed by them is called Basset-Boussinesq-
Oseen (BBO) equation. Tchen (1947) extended the BBO equation such that it
could describe the particle motion in an unsteady flow. Extension was also exam-
ined for non-uniform flows, though, it had some inconsistency as pointed out by
Corrsin & Lumley (1956). Later, Buevich (1966) and Riley (1971) made a correc-
tion to Tchen’s expression.

Maxey & Riley (1983) presented a particle equation of motion for unsteady
nonuniform flow, which reads

d’l,l/f 1 f p 1 2v2 f
E = T—p{ul—ul-l-ﬁquz
+1Du{
S Dt
1 d f P 22, f
+2Sdt {uZ u; +40d Veu;
(39)
L@y - wr ) + L a2ved @)
+9_V tdtl dt! i i 24 1
ds J, {mv(t —t')}1/2
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where u? represents the instantaneous particle velocity, and u{ is the instantaneous
fluid velocity at the center of the particle if the particle were not present. The
operator, D/Dt, represents a derivative along the fluid path, while d/dt is that
along the particle trajectory.

The five terms on the right hand side of the equation are usually referred to as:

1. drag force;

fluid acceleration;
added mass;
history effect;

OUk LN

gravitational force.

This expression is relevant for the Stokes flow regime. Note that in the drag force,
the added mass and the history effect terms of Eq. (39), a correction term due to
the velocity curvature of the carrier fluid called Faxén correction (Faxén, 1924) is
included.

A turbulent flow in a channel whose half width is § is simulated in the present
study. Assuming that the characteristic acceleration of fluid can be evaluated by §
and the shear velocity, u,, as

Dif
Dt

dt

i
dt

2
uz
i

~ ~

(40)

the magnitude of the fluid acceleration term in Eq. (39) relative to the dominant
drag force can be estimated as

1 Dal
S Dt Pu,  (d\°
~ =(<] Re;, (41)
].81/ (ﬁf ﬁp) v (5 6
2S5

where Re; is the wall-shear Reynolds number, defined by

ur0
Re-,— = 7 . (42)

The magnitude of other terms in Eq. (39) and the Faxén correction relative to the
dominant drag force term can similarly be estimated as shown in Table 3.1. When
the diameter of the particle is much smaller than the channel width, as is in the
present study, the particle equation of motion can reduce to that consisting only of
the drag force and the gravitational force. Furthermore, when the particle is much
heavier than fluid as is such in gas-particle flow, the gravitational term can also
be simplified to g; only. Thus, the particle equation of motion for a low particle
Reynolds number gas-particle flow in an unbounded flow can be well approximated
by

= )+ g (43)
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3. Interaction between fluid molecules and small particles

3.1. Slip correction to drag force. When the particle diameter, d, is as
small as the mean free path of fluid molecules, A, the expression of Stokes drag,
Eq. (36) with Eq. (37), is no more appropriate due to the slip at the interface
between particle and fluid. In such case, the Stokes drag is corrected by the Stokes-
Cunningham correction factor, C¢, given as (Davies, 1945)

2
Co=1+ 7’\(1.257 + 0.4e114/22) (44)
The drag is then expressed by Eq. (36) with a corrected relaxation time,
d? S Cco
Tp = 1871/ . (45)

3.2. Brownian force. When small particles are dealt with, an additional
term accounting for the Brownian forces should be added to the particle equation
of motion. Assuming that the Brownian force in i-th direction is expressed as a

random function, f(ZTv™

; (t), the particle equation of motion can be written as a

form of Langevin equation, i.e.

duP 1 f.(Brown) (t)
i oy N 4
R (46)

Assuming also the time scale for the Brownian motion, 7p, i.e. time scale related to
f

u?, is much shorter than that for fluid motion, 7y, related to u; , it can be possible

to take a separation time scale, At, which satisfies
B << At << 7% . (47)

In such case, the time derivative of uzf has a negligibly small magnitude as compared

to that of u?. Therefore the Langevin equation above can be approximated using
f

. . R — p
the relative velocity, u;* = u; — u;, as

(48)

TABLE 3.1. Magnitude of each term in the particle equation of
motion relative to the drag force term.

Term Relative magnitude
Fluid acceleration ~ (d/8)?Re;
Added mass ~ (d/5)’Re,
History effect ~ (d/ 5)Rei/ 2
Faxén correction ~ (d/5)?
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Integration of this equation over a time, At, gives a general solution,
R R At (Brown)
u;(t + At) = u;*(t) exp - + u; (At) , (49)
2

where

t+At p(Brown)
ugBroum) (At) — / fz (t )dtl . (50)

t m

The distribution of summation of u{®™*™ () from ¢t = 0 to ¢ = oo should tend

to Maxwellian distribution. Therefore u{®™**™ (At) should have a distribution,

Plu{P "™ (At)], such as (Chandrasekhar, 1943)

(Brown) 1 |B,(At)|2m7'p
Plu At)] = _|Bi(At)["my
[ (A (4nkT AtJmr,)172 P ( AkT At
~ N (07 2kTAt) 7 (51)
mTp

where N(0,0p) is the normal distribution with a mean value of 0 and a standard
deviation of og. The Brownian force can then be modeled as

fi(Brown) 3 U_B

m  At’
where G; is a Gaussian random number with zero-mean unit-variance. Note that
the final expression, Eq. (52), is the same as that derived by Ounis et al. (1991),
who discussed on the spectral intensity of the Brownian force.

(52)

4. Higher particle Reynolds number

4.1. Drag force. The Stokes drag, Eq. (36), as well as the drag term that
in the particle equation of motion above, Eq. (43), is relevant only for the Stokes
regime, i.e. cases where the particle Reynolds number is less than unity. In general,
the drag force can be expressed as

fgdrag)

A = Buf — ) (53)

where 3 is the function of the particle Reynolds number.
For the particle Reynolds number slightly higher than the Stokes limit, an
expression called Oseen drag (Oseen, 1927), which is derived by linearizing the

Navier-Stokes equation,
1 3
B=—(1+-Rey)., (54

Tp

may be useful. The Oseen drag gives reasonable accuracy up to Re, ~ 5.
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For the cases of higher particle Reynolds number, the nonlinearity of the ad-
vection term makes analytical derivation of the drag coefficient difficult. For such
cases, an empirical drag coefficient proposed by Schiller & Naumann (1933),

1
B=—(1+0.15Re)%7) (55)
Tp
is widely used. The curve of drag coeflicient calculated using this formula have only
a few percents of deviation from the standard drag curve.

4.2. Lift force. While the drag force works in the same direction as the flow,
the lift force is a lateral force which a particle receives from the surrounding fluid.
There are two different mechanisms to produce lift force on a particle:

1. slip-spin lift;

2. slip-shear lift.

The spin-slip lift is due to rotation of the particle and sometime called Magnus lift
or Rubinow-Keller force (Rubinow & Keller, 1961). The slip-shear lift is caused by
shear of the surrounding fluid, which makes the pressure distribution around the
particle non-uniform. As noted by Bretherton (1962), the slip-shear lift force is not
produced when the flow is in the Stokes flow regime.

Saffman (1965, 1968) derived the magnitude of slip-shear lift force using inner-
and outer expansions of the Navier-Stokes equation. The expression by Saffman,

1/2
du{

It was also shown by Saffman that the slip-shear lift for a freely rotating spherical

called Saffman lift, can be written as

; d\ 2 du!

d.'Ez

particle is one order of magnitude larger than the spin-slip lift unless the particle
rotates extremely fast.

Li & Ahmadi (1994) extended the Saffman lift for a particle in a three-dimensional
shear flow by replacing the shear, du{ /dz2, by the deformation tensor, s;;. The lift
force in a three-dimensional shear is then expressed as

fi(lift) B 5.].91!1/281'1' uf
m o Sd(slkskl)1/4 Y

—u?). (57)

5. Effects of walls

5.1. Increase of drag coefficient. Drag coefficient is known to be modified
near solid walls. As Faxén (1923) derived analytically, using the method of reflec-
tions, the drag coefficient in the directions parallel to the wall, denoted here as z
and z directions, increases when a particle is located near a plane wall. When the
distance between a plane wall the center of a particle is y, as shown in Fig. 3.1, the
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Particle

FIGURE 3.1. A particle near a plane wall.

ratio of the actual drag coefficient and the drag coefficient in the case without the
wall, Cyy1 and Cy3, can be expressed as (Faxén, 1923)
45 L5 -t

1
= = 1— — B S — - 58
Cuwi Cus 16”"‘ 877 256” ].6 ( )

where 7 is the inverse of distance between the wall and the center of particle,
normalized by the particle radius, i.e.

_4d
n_2y'

O’Neill (1964) found an exact solution for the drag coefficient for a particle

(59)

moving near a solid wall moving parallel to it by using general bipolar coordinates.
The result was in good agreement with the formula by Faxén, Eq. (58), see e.g.
Power & Wrobel (1995) for review.

The drag coefficient in the direction normal to the wall is also known to increase
near the wall, and several expressions have been proposed. One of them is the
approximate solution by Wakiya (1960) derived using the method of reflections,

written as

9 1.,7"
Cur = [1=Gu+ 377 (60)

Brenner (1961) solved exactly the governing equations, using bipolar coordi-
nates, and found the wall-normal drag coefficient near a wall as

n(n +1)
CwQ = —Slnh’yz —%-i-?))x

2sinh(2n + 1)y + (2n + 1) sinh2y 1
4sinh?(n + Dy —(2n+1)2 sinh? v ’
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100

2y/d
FIGURE 3.2. Drag correction normal to the wall. ——, exact so-
lution by Brenner (1961); — —, approximate solution by Wakiya
(1960); - - - -, model in the present study.

where < is defined by

v = cosh™! (1) : (62)

n
Although the expression by Wakiya (1960) is as simple as the expression for Cy1
by Faxén (1923), it underestimates the correction factor in the vicinity of the wall,
say n~! < 2, as shown in Fig. 3.2. In the vicinity of the wall, the exact solution by

Brenner (1961) shows an exponential behavior when 7!

approaches 1.

In the present study, C\,1 and Cy3, are computed by the expression by Faxén
(1923), i.e. Eq. (58), while Cy2 is modeled by
-1

Cuz = [{1 ~ 2+ %773} {1—emet/m0} (63)

This is a combination of the simple expression by Wakiya (1960) and the exponential
behavior in the solution of Brenner (1961) and is proposed instead of computing
formula (61) directly, in order to save computing time. The constant, b, should be 1
in order to obtain the similar exponential behavior to the exact solution. However,
a value very close to but not equal to 1, i.e. b = 0.9999 may be used in the
simulations to avoid calculations of infinite numbers. The other constant, a, was
determined by a least-square fit using 2000 points between ! = 1 and ! = 3
from the exact solution, resulting in a = 2.686.

5.2. Wall surface potential. The wall-surface potential arises due to London-
van der Waals force, which is also responsible for surface tension of liquids. Accord-
ing to Chu (1967), the mechanism of generation of wall surface potential is as the
following: 1) instantaneous dipoles appear in an atom or a molecule resulting from
fluctuations in the electron clouds; 2) dipoles are induced in neighboring atoms or
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molecules; 3) global polarization occurs. From the quantum theory, the energy of
attraction between two volume elements, dvy, and dvs, is calculated as

_ Q d’l)l d1)2

dd = Tl

(64)

where () is a constant which has a dimension of energy.

When the center of a spherical particle with a diameter d is located at a distance
of y from a flat wall, similarly to the situation in the previous section, Eq. (64) is
integrated over all the volume and reads (e.g. Friedlander, 1977)

w2Q (1 1 £
&= - <E+1+€+21n1+€>, (65)
where
—d/2 _ _

=102 o 1y (66)

In the £ — 0 limit, Eq (65) reduces to read

m2Q

TYE (67)

In the present study, the wall surface potential is modeled as the boundary
condition for particle velocity, similarly to the treatment in Li & Ahmadi (1994),
because the effective length of the wall potential, ~ A, from the wall, is far shorter
than the fluid dynamical length scale, ~ pym. The wall-normal velocity of the

particle after the impact at the wall, u’z’(“f ter) g given as

uf ) = —sgn(uf) x ry/(uh)? V2, (68)

where 7 is the coefficient of restitution, u} is the particle velocity before the impact.
The critical velocity, V., is calculated from Eq. (67) as

29 (yo)

V=Tt (69)
where
2 Qd
B(10) = 55 (70)

The minimum separation length, g, can typically be taken as 4 A(Dahneke, 1972).
When the particle velocity is less than V,, the particle is treated to be deposited
on the wall.

The constant, 72 @, is known as Hamaker constant, A, (Hamaker, 1937). For
most of materials, A is of order of 10720J. The Hamaker constant between two
different materials, M1 and M2, can be calculated from the Hamaker constant for
these two materials, A1 and Ao, as (Boeheme et al.,1969),

A= /Ay1 Aprs - (71)



CHAPTER 4

The model for coupling

1. Forward coupling from fluid to particles

1.1. Filtered scale. The forward coupling is achieved without any special
care by computing the particle equation of motion, introduced in the previous
chapter. The fluid velocity appearing in the particle equation of motion is computed
by a interpolation from grids to particle location. Details about the interpolation
will be discussed in the next chapter.

1.2. Subgrid scale fluctuations. One possible model to take into account
the influence of SGS fluid velocity on the particle motion is to add an extra term,
similarly to the model for the Brownian force, see Eq. (52), such as

os

fgSGS)
O =G; = . 2
- Gi 5 (72)
Here, og is the increase of standard deviation of particle velocity due to SGS velocity

during time Aft.

Following the kinetic theory for particle dispersion in isotropic turbulence (Reeks,
1991), the increase of variance of particle velocity in time At can be written, for
example in x5 direction, as

1 At tl
0% = — < ud(0) ul(t) > exp (——) dt’
Tp Jo Tp
1 2At\ [A t'
+—exp <——) / < ud (0) ul (') > exp (—) at' (73)
Tp Tp 0 Tp

The term, < ug (0) ug (t') >, is the Lagrangian correlation along particle path and
can be modeled (Swailes and Reeks, 1994) as
<uf(0) Wf(¢) >= P exp (7). ()
Typ
where ' is the RMS velocity of the fluid, Ty, is the integral time scale of fluid
velocity along a particle trajectory.
For the present estimate, u’ and T, can be taken as the representative SGS
velocity, us, and its integral time scale along particle path, T'sy,. The increase of

22
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variance of particle velocity due to SGS velocity in time At can then be modeled
using Eq. (73) and Eq. (74) as

e 1Lt i P [ RS I O
where a and 3 are defined as
o — At
Tp ’
(76)
Tp
b7 Ty,

The representative SGS velocity, ug, in Eq. (75) can be estimated as the
following. The present SGS model (Zahrai et al., 1995), as well as the classical
SGS model, assumes a fully inertial Kolmogorov spectrum (Kolmogorov, 1941;
Oboukhov, 1941),

E(k) = Ko ??k=5/% | (77)

where Ko is the Kolmogorov constant, € is the dissipation rate and k is the
wavenumber. An estimate of the SGS kinetic energy, eg, in terms of dissipation
rate, €5, and a representative grid size, A, can be obtained by integrating E(k)
from k = 7/A to k = co. This results in

1
e’ = —esh, (78)

9 \3/2
Ce=T (3 Ko) . (79)

A standard value of the Kolmogorov constant (see e.g. Lesieur, 1997), Ko = 1.5,
yields ¢. = 0.96.
By assuming a relation between the SGS energy in cell, eg, and velocity, ug,

where ¢ is defined by

as

3
= iu% ’ (80)

and by estimating A as the geometric mean of the cell, see Eq. (20), ug can then

€s

be written as

2
ug = \/; 0;1/36}9/3(A$1A$2Aa:3)1/9 . (81)

With help of the relation between g, the length scale, £g;, and the SGS viscosity,
vsi, used in the derivation of SGS model, Eq. (30), and the relation between £g
and Az;, (see e.g. Canuto and Cheng, 1997),

toi= 8% (82)

Ce
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TABLE 4.1. Estimated influence of SGS fluid velocity for the cases
in Paper 3.

d [pm] 0.01 0.1 1 10

o} 3.62 x 102 317 158x 10" 5.33x 1075

Near the wall,

zi = 1.45, 4™ =0.105.

od 0.105 0.105 0.105 3.00 x 1072
Ratio: o /o 2.90 x 107% 3.31 x 1072 6.65 5.62 x 102

Buffer region,

z3 =12, utM =0.235.

ol 0.235 0.235 0.235 4.62 x 1072
Ratio: o /o 6.49 x 107* 7.41x 1072 14.9 8.67 x 107

Eq. (81) becomes

2 _13 Usi

2 _13( vsi ctl® 1/9
\/;Cs <(A$i)4/3 (Az1AzsAzs) (83)

2
\/; ceVsi(Azy Az Azs)' /2 (Axy)~4/3 .

Il

Finally by substituting vg;, see Eq. (32), into Eq. (83), an estimate of ug in terms
of the variables in the resolved scale,

ug = % Ce Cg(AazlegAmg)l/?’Wﬂ , (84)
can be obtained.

It is known from numerical simulations (e.g. Huang and Leonard, 1995) that
the Lagrangian integral time scale of an isotropic turbulence, T, is of the same
order of magnitude as the eddy-turnover time, Ty. For particles with relatively
small inertia, the Lagrangian integral time scale along the particle path, T;, may
also be the same magnitude as Tj. Therefore Tss, in Eq. (75) for such particles
can be estimated by the eddy-turnover time of the SGS eddies, T'sq, defined as

3n [
Tus a k™ E(k)dk 3 A
Tso = G5 == (85)

E(k)dk 10us
/A
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Substituting the estimate of ug, Eq (84) into Eq (85), T'sy, can be estimated as a
function of resolved deformation rate as

3v3 1

We O g (86)

Tspp ~Tso =

Estimated values for particles with very short relaxation time, 7+ < 10, con-
sidered in Paper 3, are shown in Table 4.1 According to that, the SGS fluid velocity
may have considerable influences on particle motion when Tp+ is of order of one. In
the cases where the Brownian force is more significant, i.e. for very small particles,
or when the particle inertia is large, say 7'; > 10, the influence of SGS fluid velocity
can be neglected. Note that a similar estimate is done in Paper 3, using a different

estimate of time scale, i.e.
Tgy = — (87)
S0 = —
@il

where wj; is the vorticity, and the same conclusion is drawn.

2. Backward coupling from particles to fluid

2.1. Filtered scale. Influence of presence of particles on the fluid motion has
not yet been fully understood. In some cases, e.g. bubble flow, the presence of par-
ticle may produce velocity fluctuations of the surrounding fluid whose wavelength
is smaller than the particle diameter (Esmaeeli & Tryggvason, 1998).

However, it was numerically shown by Pan & Banerjee (1996) that the particles
works as if they were extra burden to the fluid when the particles are small and have
much larger density than surrounding fluid, as is the case in the present study. In
such case, the momentum transfer from particles to fluid can successfully modeled
by adding the reaction force against the surface force acting on the particle to the
Navier-Stokes equation. This model is sometimes referred to as force coupling model
or particle-source-in-cell (PSI-CELL) model (Crowe et al., 1977) in contrast to the
velocity coupling model (Pan & Banerjee, 1996) in which the velocity disturbance
around the particle is considered.

2.2. Influence of particles on SGS model. When two-way coupling is
modeled by the force coupling model, as mentioned above, an extra term appears
in the transport equation of the subgrid energy of fluid, Eq. (10), i.e.

Oes u_f% =P —

a f/
W i 8a:j —JSj —e&s tuy f]:; ’ (88)

61}j

where f] is the fluctuation component of the force from particles to fluid.
The last term can be modeled as

ul' fi = SaP(B + ) (ul' vl — ul'ul') (89)



26 4. THE MODEL FOR COUPLING

where S = p?/p and o is the volume fraction in the cell occupied by the parti-
cles. When the particle Reynolds number is not much larger than unity and the
fluctuation of the drag coefficient can be negligibly small, Eq. (89) is simplified to
read

u,{'f,’c = SapB(u,J:'ui' - ui'ui') , (90)
where
B=@3~7 1. (91)
Although several formulae have been proposed for the approximation of ui'ui', the
model by Porahmadi & Humphrey (1983) and Gavin et al. (1983)

- 1 -1
ui’uil — 265 |:]. + B :| (92)
Te

is adopted here for simplicity. Here, 7. is the time scale of the energetic eddies
in the original model. In the subgrid scale model, 7. may be taken as the eddy-
turnover time, Tso, see Eq. (85). Using these models, Eq. (89) can be expressed,
after simple algebra, as

15u35
3BA + 10us )

Substituting Eq. (81) into us on the numerator and Eq. (84) into ug on the

~ul'fi = SaPB (93)
denominator, one finally obtains

10v/6 Sa?
9¢. 1+nB

—ul'fl = £s (94)

where np is the ratio of particle time scale to eddy-turnover time,

7 _ 20c C§ [55]
=2 = : 95

The subgrid scale viscosity, vsp, can then be estimated, following the derivation
of the SGS model by Zahrai et al. (1995), see Eq. (30), as

vsj = (es—ul f)V3 0
1/3
_ 1/3,4/3 10v/6 SaP
= egdly” |1+
J 9¢c. 1+1nB (96)

1/3
0 (1 10v/6 SOJ’)/

Vo _
S 9¢. 1+18

where l/gj is the subgrid scale viscosity in the case of the unladen flow. As can be
noticed, vg; is the function of the local mass fraction, Sa?, and the ratio of time
scales, np.
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TABLE 4.2. Estimated error in SGS model due to presence of par-
ticles. Around y* = 12 plane.

Case (Paper No.) 50 pum glass (5) 70 um copper (5) 70 um copper (7)
Re, 180 180 644

SaP 0.60 44 3.2 x 1072

nB 5.9 41 1.0 x 102
Error: (vs; —vg;)/ve;,  7.1x1072 8.5 x 1072 2.8 x 1074

The change of subgrid scale viscosity due to the presence of particles can be
estimated for the cases in the present study. The estimated values around y*+ = 12
for some cases are presented in Table 4.2. According to the table, the estimated
error in SGS model due to the presence of particles is 7-9% in the cases presented
in Paper 5, and negligibly small in the case in Paper 7.

The estimate above may not be accurate if the energy spectrum in the subgrid
scale is largely modified by the presence of particles such that the assumption of
the inertial energy cascade is no more valid or length scale, £s;, is largely changed.
However, an accurate estimation may only be achieved by an analysis of the data
computed from fully DNS which can resolve up to the smallest eddies around the
particle-fluid boundaries.

3. Inter-particle collisions

When the number density of the particle and the collision frequency are suffi-
ciently large, inter-particle collisions can be modeled as a stochastic model (Yone-
mura et al., 1993; Sommerfeld, 1999). The collisions are computed by probability,
in a way similar to direct simulation Monte Carlo (DSMC) method for simulations
of molecules.

On the other hand, when the number density of the particles is small, inter-
particle collisions can be computed directly by judging the occurrence of collisions
from particle trajectories and computing the velocity changes according the mo-
mentum and energy conservation laws (Tanaka & Tsuji, 1991). In the present
study, the latter one, i.e. the direct approach, is adopted.

The inter-particle collisions are computed according to the following proce-
dures. At first, provisional positions of the particles at time (¢ + At) are computed
without taking into account collisions, as represented by dotted circles in Fig. 4.1.
For the judgement whether collisions occur between two neighbouring particles, the
method described by Yamamoto et al. (1998) can be used. Namely, two particles,
labeled as Particle 1 and Particle 2 as shown in Fig 4.1, can be judged to collide if
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FIGURE 4.1. Inter-particle collision.

the equation about the distance between their trajectories,
|22 (1) + k(@7 (t + At) — 2R (1) = d? , (97)

has two real roots, k1 and k2 (k1 < ko), and the value of smaller real root, ki, is
between 0 and 1, i.e. 0 < k; < 1. Here, #%(t) is the position of Particle 1 relative

to Particle 2 at time ¢, i.e.

2Bty =2V (t) — 2P (1), (98)

(]

and #%* (t+ At) is the provisional position of Particle 1 relative to Particle 2 at time
(t + At). If these particles are judged to collide, the normal unit vector from the
center of Particle 2 to the center of Particle 1 at the contact, 7%, can be computed

as
nlt = S{af (1) + ka2 0+ A1) — aF (1)) (99)

By assumming here a perfectly elastic collision, the velocities of Particle 1 and
Particle 2 after the collision, u!" 7% and uEQ’ after) can be computed by

7
1
uf D (t) — uli(t) nfink

1, aft
P after) :

K3

(100)
wP@after) ) () 4 uB(t) nnk

R

;1(t) is the relative velocity,

ul'(t) = u (1) —u(1) . (101)

2

where u
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Finally, the correct positions of these particles at time (¢ + At) can be computed
by

D+ A) = D) kAt a1 - kA,

Ot + A1) = D) kA + PP T (1 k)AL (102)



CHAPTER 5

Numerical procedure

1. Overview

The filtered Navier-Stokes equation, Eq. (7), is integrated in the same way
as the SMAC method (Amsden & Harlow, 1970). A difference from the original
SMAC method is that the integration is done using a third order Adams-Bashforth

scheme, i.e.

—nt+l —mn 23 16 . _ S
A N L et I (103)

k3 2

where ¢; represents the right hand side of Eq. (7) and the superscripts, n + 1, n,
n — 1 and n — 2, denote the time steps. The Poisson equation for the pressure is
accordingly modified to satisfy the continuity equation, Eq. (1). The advection and
diffusion terms are discretized on a staggered mesh system using the second-order
central difference scheme.

After that instantaneous fluid velocities are computed on the staggered mesh,
they are interpolated to the particle locations for the integration of particle equation
of motion. Details on the interpolation schemes and their accuracy is discussed in
the next section.

The particle equation of motion, Eq. (39), is also integrated with the third
order Adams-Bashforth scheme for most of the cases. Exception is the case when
very small particles are considered (Paper 3). In that case, the particle equation of
motion is discretized using the implicit Euler method in order to avoid numerical
instabilities that can occur due to extremely small particle relaxation time, 7,.

The computational time step used in the integration is AtT = 0.18, in wall
unit, for the flow at Re, = 180 and AtT = 0.322 for Re, = 644. The same time
step is used for the integration of the particle equation of motion.

One computation for dilute flow with about 2000 particles, for instance, such
as the cases presented in the Paper 6 and Paper 7, takes about two CPU days from
the initial state to its convergence (about 20000 time steps) and one more CPU
day to accumulate statistics (about 10000 time steps) on DEC AlphaServer 4100
5/466. The computation time, of course, increases with the number of particles.
For the cases presented in Paper 3, with 360000 particles, it takes two CPU weeks

30
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for one case, from the initial state to the end of the simulation (about 20000 time
steps) on the same machine.

2. Accumulation of statistics

Various kinds of statistics such as first order and second order moments, i.e.
mean and RMS values, and probability density function (PDF) are computed, based
on both volume average and particle ensemble average. The statistics of interest
for each case are presented in the corresponding paper.

The statistics are often presented in wall units, denoted by a superscript, +.
For physical values of velocity u, length z, and time ¢, the nondimensional values
in wall units, uT, T and ¢, are defined, respectively, as

U
!u+ — —,
ur
Tu
¢t = —, (104)
2
= tu;
\ v ’

where u, is the shear velocity, v is the kinematic viscosity of the fluid. When the
superscript, +, is used for the particle number density in the present study, it means
the particle number density normalized with the initial particle number density.

In the presentation of statistics, the velocity components, u;, us and u3, and
are often denoted as u, v and w. Similarly, 21, 2 and z3 are expressed as z, y and
z.

In the simulations for Paper 4 - Paper 7, different terms in various balance
equations in Eulerian frame are examined using the computed statistics, similarly
to those presented in Paper 4. The balance of different terms is not presented in
Paper 5 - Paper 7, though, that is used to judge whether the flow is fully developed.

Here, for example, such balance in the case of one-way coupling simulation of
70 pm copper particles in a turbulent channel flow at Re, = 644, i.e. Case la
in Paper 6, is examined. Starting from the balance equations based on particle
ensemble average (Simonin, 1996), the balance equations for momentum, kinetic
stress tensor, mean kinetic energy and fluctuating kinetic energy can reduce for the
case of channel flow to read:

e Momentum balance

oUi [\ 4_-_ 9 . . .
<N ot _> 0= 5 (V <uui >) + Ng; + NF; , (105)
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FIGURE 5.1.

Various balances in one-way coupling simulation of

70 pm copper particles in a channel flow at Re, = 644 (Case 1a,

Paper 6). Corresponding to the balance equation for: a) Uj; b)
Us; ©) < uguy >; d) < ugua >;5 €) < ugus >; f) 3 < wiju; >; g)

LUU;.
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e Kinetic stress tensor balance

0 < uju; > 0
NZ =9 7 = —— (N oy
( ot ) 0 3;52( < sty >)

(<> 52 )
=N <uu; > —+< U2 >
8(112 6.’1)2 (106)

+N (< fiu]' >+ < fjui >) ,

e Mean kinetic energy balance

o(LUU;) 0 oU;

N—2— = = —5—N i>Ui)+ N i -

( 5 ) 0 6:172( <ugu; > U;) + N < ugu >8$2
+NUyg; + NUIF, , (107)

e Fluctuating kinetic energy balance

N2 2 = = — (=N iU - N i .

( BN ) 0 By (2 < uauiu >> < ugu; > B
+N < fiui > . (108)

Here, the superscripts representing particle variables, p, and wall unit, +, are
dropped for simplicity in notation. N represents the number density, U; is the
mean particle velocity, F; is the mean force from fluid per unit mass. The vari-
ables in lower case represent the fluctuating parts. Profiles of each term in these
equations are shown in Fig.5.1a-g.

It might be more interesting to show similar balances for the cases including
inter-particle collisions, e.g. cases in Paper 7. For the mean and fluctuating kinetic
energy balances, where the inter-particle collision term resulted in zero due to the
model of perfectly elastic collision, similar curves to Fig.5.1f-g are obtained. For
the other balances, however, smooth curves cannot be drawn due to insufficient

sample size.

3. Accuracy of different interpolation schemes

In order to integrate the particle equation of motion, different quantities of fluid
computed on the mesh have to be interpolated to the positions of the particles. A
linear interpolation is used in Paper 2, Paper 4 and Paper 5. In Paper 4, a nearest
grid point (NGP) interpolation and a sixth order Lagrangian interpolation are also
tested. In more recent papers, i.e. Paper 1, Paper 3, Paper 6 and Paper 7, a fourth
order Lagrangian interpolation is used. In all cases, a bisection method is used in
order to relate the locations of particles and mesh.
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FIGURE 5.2. Major terms in the y-direction particle momentum
balance equation, Eq. (19) in Paper 4, based on the statistics
70 pm copper particles of accumulated during 6 < ¢t u,/§ < 12. a)

d
turbulent transport term, _d—+N * < vtPyt? >P; b) mean drag
Y
force, Ff. —O—, NGP; - - -+- - -, linear, - - -O- - -, 6th-order
Lagrangian.

When the particle is located at (zP, y?, 2P) in a cell whose vertices are (zo, yo,
20) ... (21, y1, 21), the n-th order Lagrangian interpolation can be expressed as

o3
(VB
(VB

% P _
ul (P, yP, 2P) = H r o,
i=1-3j=1-2k=1-% | ;_1_»n Ti =
-T2
(I #1)
(109)
ﬁ Y- ﬁ F -z | g
Yi— T 2k — Ty ik
I=1-% l=1-%
#

where the subscripts i, j, k¥ and [ represent the cell indexes, different from those
used in the previous chapters. The linear interpolation corresponds to a second
order Lagrangian interpolation.

Evaluation of accuracy of interpolation schemes has been reported by several
researchers. Balachander & Maxey (1989) tested different interpolation schemes for
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FIGURE 5.3. Major terms in the z-direction particle momentum
balance equation, Eq. (19) in Paper 4, based on the statistics
70 pm copper particles of accumulated during 6 < t u,/d < 12.

a) gravitational force + turbulent transport, Ntgt — <

dy+
utPy*? >P; b) mean drag force, Ff. —O—, NGP; - - —+- - -,

linear, - - -O- - -, 6th-order Lagrangian.

homogeneous turbulence generated by spectral simulation, and found that the sta-
tistics of fluid were retained with a good accuracy when the Hermite interpolation,
the sixth order Lagrangian interpolation or the so-called TS13 scheme proposed
by Yeung & Pope (1988) were used; while the linear interpolation generated large
error as compared to statistics in the original field.

Accuracy of different interpolation schemes in a frozen turbulent channel flow
was studied by Wang & Squires (1996b). Similarly to the analysis by Balachander &
Maxey (1989), they found that the statistics of fluid were retained when the sixth-
order and the fourth-order Lagrangian interpolation schemes were used; while large
errors were found in the second order momentum when the linear interpolation was
used.

As an extension of the study by Wang & Squires (1996b), influences of the
different interpolation schemes on the statistics of particles with large inertia are
investigated. Different from the analysis by Wang & Squires, investigation is done
for the long term statistics of particles. The same systems as those presented in
Paper 4, i.e. 50 pm glass and 70 pm copper particles in a flow at Re, = 180, are
simulated with different interpolation schemes: 1) NGP, 2) linear, 3) sixth order
Lagrangian. It can be found that the particle statistics, which are the main output
of the simulations, such as mean and RMS values of particle velocity, shown in
Fig. 3 of Paper 4, and terms in the balance equation, Figs. 5.2 and 5.3, are not
largely influenced by the differences in interpolation scheme. This can be due to

60 80 100 120 140 160 180
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insensitivity of such particles with large inertia to the small scale turbulence which
is filtered out by lower order interpolation.

4. Validation of LES

Validation of the LES with an anisotropic subgrid model used in the present
study, has been done in the previous work by Zahrai et al. (1995). A turbulent
channel flow at Re, = 180, which is the same value as the direct numerical simula-
tion by Kim et al. (1987), was taken as a test case. The computational domain was
also set the same as that in Kim et al. (1987), i.e. 474, 26 and 270 in the stream-
wise (z), wall-normal (y) and the spanwise (z) directions, respectively. Zahrai et
al. (1995) performed several numerical experiments for a turbulent channel flow at
Re; = 180 using different number of mesh, N, x N, x N, corresponding to different
mesh sizes, Azt, Ayt and AzT, as shown in Table 5.1, and model constants, C,
of 0.08 and 0.12, and found reasonable agreement with DNS data up to third order
moments in Case 1 and Case 2 with C' = 0.08. The summary of their results are
shown in Table 5.2. The maximum value of RMS level of the streamwise velocity,
Max (u'), the position where Max (u') appears, Y ¥, the mean separation of streaks
near the wall, Y+, mean velocity, U,,, and the ratio of centerline velocity and mean
velocity, Ug, in Case 1 and Case 2 are again in good agreement with the DNS data
by Kim et al. (1987).

Validation for the case at a higher Reynolds number, Re, = 644, is presented in
Paper 7. A good agreement is found between the data computed using the present
LES with and experimental data by Kulick et al. (1994).

TABLE 5.1. Specification of mesh spacings (Zahrai et al., 1995).

Kimet al. Casel Case2 Case3 Case4 Caseb Caseb

N, 192 32 32 32 32 24 32
N, 129 42 42 42 32 32 32
N. 160 128 96 64 48 48 36
Azt 12 70.7 707 707 70.7 9425 707
Azt 7 8.8 11.8 177 236 236 314
Ayt 0.05 2.8 2.8 2.8 5.0 5.0 5.0

Ayt oo 4.4 189 189 189 209 209 209
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TABLE 5.2. Summary of the results of the large eddy simulations
(Zahrai et al., 1995).

Kimet al. Casel Case2 Case3 Case4 Caseb Caseb

Max (u) 2.7 2.85 2.90 2.92 3.04 3.1 3.1
Y+ 12 15.8 15.8 16.1 17.2 18.1 23.4
AT 100 114 120 122 124 124 160
Un 15.63 15.2 15.2 15.5 15.8 15.8 17.2

Uc/Up, 1.16 1.13 1.14 1.15 1.16 1.16 1.17




CHAPTER 6

Summary of papers

Paper 1

A passive scalar transport in a turbulent channel flow is simulated using LES.
Different Schmidt numbers equal to 1, 10 and 100 are used for the passive scalar.
The governing equation for fluid and that for passive scalar are discretized on
different mesh of different sizes, such that larger and geometry dependent structure
of each field can be captured. The velocity on the mesh for passive scalar field
was obtained by interpolating from the mesh for fluid velocity field, using the a
fourth-order Lagrangian interpolation.

The methodology is validated through comparisons with documented data from
earlier large eddy and direct numerical simulations. Moreover, influence of typical
boundary conditions appearing in electrochemical problem on the statistics is stud-
ied.

Paper 2
The methodology of Lagrangian particle tracking coupled with LES (LPT-LES) is
validated.

Similarly to the LPT-DNS by Rouson & Eaton (1994) and the LPT-LES by
Wang & Squires (1996b), turbulent channel flows of air at Re, = 180 with 50
pm glass particles (7,7 = 117) and 70 um copper particles (7,7 = 810) are simu-
lated. Drag force and the gravitational force are included in the particle equation
of motion. One-way coupling is assumed.

Excellent agreement is found between simulation data of the present study,
Rouson & Eaton (1994) and Wang & Squires (1996b) both in the mean particle
velocity profile and the velocity fluctuations. Development time of the flow and
sample size are also discussed on using the simulation data.

Paper 3

Turbulent channel flows of air at Re, = 180 with small graphite particles with
diameter of 0.01 - 10 pm (7,7 =9.79 x 107° — 4.51; Sc = 2.87 x 10% — 6.22 x 10°)
are simulated using LPT-LES. In addition to drag force and gravitational force,
Brownian force and Saffman lift force are taken into account in the particle equation

of motion. One-way coupling is assumed.

38
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Relation between the relaxation time, and the deposition velocity of small par-
ticles in a turbulent channel is studied, and a good agreement with an empirical
relation suggested by Wood (1981) and simulation results by Li & Ahmadi (1993)
are found. The relative importance and the correlations of different forces are
discussed using the statistics obtained in the simulations. The influences of the dy-
namics of turbulent structure near the wall is also investigated using a simple model.

Paper 4
As a continuation from Paper 2, statistics of 70 um copper particles and 50 ym
glass particles in a turbulent channel flow are computed using LPT-LES.

The statistics of particles are compared with the data presented in Paper 2
and in Wang & Squires (1996b) which used a shorter development time. Both in
the cases of 70 um copper particles and 50 pum glass particles, slight decrease of
the mean particle velocity and slight increase of the particle number density are
observed near the wall.

The statistics are used for a detail study of force balance in Eulerian frame.
Based on the investigations on the force balance, simplified versions of averaged
momentum equations for particle phase are presented.

(Erratum for paper 4)

The prefactor for the history term in Eq. (1) should read
v
75

Paper 5

Two-way coupling LPT-LES is performed for cases with the same parameters con-
sidered in Paper 4. The computed statistics are compared with those from the
one-way coupling simulations presented in Paper 4.

The presence of 50 um glass particles at mass flow rate of 0.4 is found to
suppress the transverse RMS velocity components and the Reynolds stress in the
whole channel. The streaky structure of near-wall turbulence is also found to be
modulated. For 70 um copper particles at mass flow rate of 3.0, the turbulent
structure is found to totally be destroyed.

A relation between the fluid stresses and the inter-phase stress are derived, and
are validated using the simulation data.

(Appendiz for Paper 5)
As pointed out by Liné!, there is some inconsistency in the values of friction velocity,

11iné, A., 1997. As a reviewer at the Licentiate seminar of the author, KTH, Stockholm,
Sweden, 6 June 1997.
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30 35 40 45 50

FIGURE 6.1. Momentum balance of particles. —+—, momentum
gain due to gravity, plus turbulent transport; - - -X- - -, momentum
transfer to fluid.

ur, computed using Eq. (16) in Paper 5,
s
u2:———+— Fldy . (110)
0

If the flow is fully developed, the total momentum from particles to fluid,
f(f Ffdy, should be balanced with the momentum which particles gains from the
gravitational force, as pointed out by Portela®. Since the pressure gradient is set
to be a constant in the simulation, such that
1dP W2, (111)
pfde &6
where u,¢ is the friction velocity of the undisturbed flow, Eq. (110) can be rewritten
as

u =ulq+65a°g . (112)

In the case of 50 um glass particles studied in the paper, the half channel width, §,
is 9.00 x 10~ m, the mass fraction, Sa’, is 0.300, the gravity, g, is 9.80 m?/s, and
uro = 0.300 m/s. Substituting these values into Eq. (112), one obtains u, = 0.341.
The Reynolds number is then computed as Re, = 205.

On the other hand, the values shown in Table 2 are ones calculated using the
computed statistics. Fig. 6.1 shows the magnitude of momentum transfer from
particles to fluid, F;F/, normalized by the friction velocity of the undisturbed flow

2Portela, L, 1998. Private communication at the 3rd Int. Conf. Multiphase Flow, Lyon,
France, 8-12 June 1998.
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and the bulk mass ratio. Using F}/, Eq. (110) reads

IS
S
Il

2 L Fld
Uzo + o /0 z @Y
(113)
st
= u2y + Salul FHdy*
0
The total momentum transfer in wall unit, f(f ’ F;fdyt, can be computed as 0.609.
The friction velocity can be calculated as u, = 0.326 and the Reynolds number is
Re, = 196.
Reason for the discrepancy may be that development of the flow was still in-
sufficient concerning to the balance of the streamwise momentum, as seen in Fig.
6.1.

Paper 6
In this paper, the influences of inter-particle collision and the drag correction factor
near the wall are investigated by performing LPT-LES with or without these effects.

Similarly to the experiment by Kulick et al. (1994), a turbulent channel flow
of air at Re, = 644 with 70 um copper particles (T;r = 2000) is considered. Mass
loading is set at 2%.

Inter-particle collisions are found to be of crucial importance even at 2% mass
loading, while the effect of two-way coupling on the statistics is too small to be
visible. The drag correction near the wall is found also to be important when the
inter-particle collisions are taken into account.

(Errata for paper 6)
The drag correction by Wakiya (1960), Eq. (5), should read

—1
9 (d*+ 1/dt\?
Cwy‘[l‘é(zyﬂ*i(zyﬁ)]

and also the model formula, Eq. (7), should read
9 (d*r 1/dv\* -
- _Z2 (4 (4 _ —a(2t _
Cuwy = l{l 8(2y+>+2(2y+) }{1 exp< a(k b))}]

Paper 7

As a continuation from Paper 6, a gas-particle turbulent channel flow at Re, = 644,
loaded with 70 um copper particles is simulated using LPT-LES. Inter-particle
collisions and the increase of drag coefficient near the wall are taken into account.
Different particle-wall boundary conditions are examined.
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The agreement with the experimental data by Kulick et al. (1994) is found to be
significantly improved when a particle-wall boundary condition, that can suppress
a direct re-entrainment of particles after an impact at the wall, is used.

Using the statistics computed with such a boundary condition, mechanism of
occurence of the bimodal streamwise velocity distribution and the high wall-normal
RMS velocity fluctuations observed in the experiment by Kulick et al. (1994)
is investigated, and causes for poor agreement between earlier simulations and

experiment are explained.



CHAPTER 7

Ideas for future work

1. Overview

The final results for the case of 70 ym particles in a channel flow at Re, = 644,
presented in the last paper, Paper 7, are in reasonably good agreement with the
experimental data by Kulick et al. (1994). For instance, the mean and wall-normal
RMS values of the particle velocity are in excellent agreement in most regions of the
channel. The location of the peak of RMS value and behavior of bimodal distribu-
tion of the streamwise particle velocity are correctly predicted. However, there are
two significant discrepancies between data from present numerical simulation and
those from experiment: 1) in mean velocity in the vicinity of the wall, say y* < 10;
2) in RMS streamwise velocity in the logarithmic region.

As discussed in the paper, different behaviors of particles in the vicinity of the
wall may result in totally different structures of the flow in the whole channel. Some
effects which would work near the wall and are neglected in the present study, may
be responsible for these discrepancies. In the following sections, discussion about
such considerable effects are made and some results from test computations are
presented.

2. Individual topics

2.1. Drag force near the wall. The exact solution by Brenner (1961), Eq.
(61), as well as the model formula proposed in the present study, Eq. (63), is based
on an assumption that the particle Reynolds number, Re,, is sufficiently smaller
than unity. Therefore, these expressions are not valid for the cases with higher Re,,.

Hallouin et al. (1998) experimentally studied the motion of a glass or steel
particle falling in a quiescent fluid down toward a horizontal plane wall. Different
sizes and densities of particle were tested. The results were presented as different
particle trajectories for different values of the initial particle Reynolds number,
Rey, i.e. Re, when the particle is moving in a region far from the wall at its
terminal velocity. According to those trajectories, increase of the drag near the wall
was found to follow the exact solution by Brenner (1961) when Re,o was smaller
than about 0.2, and the drag increase was not observed when Repo was larger than
about 4. For the intermediate particle Reynolds numbers, 0.2 < Repo < 4, the
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FIGURE 7.1. Values of ¥(Re,) extracted from the experimental
data by Hallouin et al (1998). +, Reyo = 0.2; X, Repo = 0.33; x,
Repo = 1.1; O, Repp = 2.5; — - —, curve fit, Eq. (116).

increase of the drag was found to exist but weaker than that can be predicted by
Brenner’s expression.

Unfortunately, Hallouin et al. (1998) did not present a formula of drag cor-
rection factor for the intermediate particle Reynolds number. One can, however,
attempt to propose a formula using their data, i.e. by extracting the relation be-
tween the drag force, the instantaneous Re, and the distance from the wall. Here,
for example, the form of correction factor near the wall, Cy2(Rep, €), is assumed as

sz(Re,,,E) =1+ lI!(Re,,)(ng - 1) s (114)

where Cy2 is the correction factor for the case of Re — 0, i.e. Eq. (61) or Eq.
(63). The unknown function, ¥(Re,), takes a value of 0 when Re, — oo and a
value 1 when Re, — 0. This form of function ensures the following asymptotical
behaviors,

Cuo for Re, =0,
Cw2(Rep, &) = (115)
1 for Re, =+ 0.

The values of ¥(Re,) extracted from the trajectories for Re,q equal to 0.2, 0.33, 1.1
and 2.5 (Hallouin et al. 1998) are shown in Fig. 7.1. Although large fluctuations
can be found in the plots, ¥(Re,) can be expressed, from a curve fitting, as

1
v = — 11
(Fep) 1+5 Re, (116)
The model formula can then be proposed as
Cu2—1
Cuz(Rep, §) =1+ —= (117)

1+5Re,’
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(y-dr2)/d

FIGURE 7.2. Trajectory of a particle normalized using terminal
velocity, Vp, and particle diameter, d . +, Repo = 0.2; X, Reyo =
0.33; x, Repo = 1.1; O, Repo = 2.5; experimental data by Hallouin
et al. (1998). Lines, the present simulations using Eq. (117).

Fig. 7.2 shows the trajectory of a particle computed using the proposed model for-
mula, Eq. (117), with the same parameters as those in the experiment by Hallouin
et al (1998). The computed trajectories are in reasonably good agreement with the

experimental ones.

2.2. Lift forces. In the simulations presented in Paper 7, lift forces are not
taken into account. For implementation of the lift forces in the future work, an
expression relevant for this case should be known.

Saffman’s expression (Saffman, 1965, 1968) was derived with the following re-
strictions:

e the particle Reynolds number, Re,, is much smaller than unity, i.e.
Re, <<1, (118)

e Re, is much smaller than the square root of the particle Reynolds number
based on shear, Reg, i.e.

Reg/ 2
€= >>1, (119)
Re,
where Reg is defined as
@ | duf
Reg = |- - (120)

and € is a parameter which expresses the relative importance of the shear on particle.
The expression of the Saffman lift, Eq. (56), is known to overestimate the lift force
as particle Reynolds number increases.
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McLaughlin (1991) relaxed the restriction, Eq. (119), and derived,

1/2
i 9 d 2 duf duf u
f2(l o _ ;pfyl/Q (5) (U{ - ull’) d—xz sgn (d—:zrz J*, (121)

where J* is a function of e. McLaughlin (1991) computed J* in analytical forms
for asymptotically small and large values of €, and proposed it as

=322l 1In(1/€%)  for || << 1,
Jt = (122)
2.255 —0.6463/e>  for |e|>>1,

while J* for intermediate € was given by a table.

To relax also the other restriction, Eq. (118), Mei (1992) proposed a correction
factor for Saffman lift by correlating Re, and Reg obtained from the numerical
simulations by Dandy & Dwyer (1990). Mei’s correction factor for the Saffman lift,
Chr, is written as

(1 - 0.3314ay/*)e~Rer/19 4 033140/ for Re, <40,
Cum =
0.0524(ag Re,)'/? for Re,>40, (123)
where ag is defined as

_lReG
" 2Re,

The correction factor by Mei, Cjs, may also be applied for the the tensorial

ag (124)

expression by Li & Ahmadi, Eq. (57). In this case, the shear Reynolds number
should be defined as

2
ReG = \/i(slkskl)lﬂd? - (125)

for consistency.

In wall-bounded flows, as is the case in the present study, the lift force induced
by the presence of a wall should also be considered. Vasseur & Cox (1977) derived,
using an Oseen approximation for the advection term in the Navier-Stokes equation,
an expression for the migration velocity, V;,,, due to the wall-induced lift. When
the particle center is located at a distance y from the wall and sedimenting with a
velocity at Vi, the migration velocity can be expressed as,

3vd
where I is defined as
[e’s) 27
1= [ [ exp(-s) - exp(-a)s ds g (127)
0 o 4—s

and

¢ =5 +iRecosg . (128)
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Here Re; is a Reynolds number defined by

Re; = yljfs . (129)

Note, in the limit of Re, — 1, this expression reach asymptotically the expression
by Cox & Hsu (1977),

3
~ 64
Cherukat & McLaughlin (1990) experimentally proved that the expression by Vasseur
& Cox (1977), Eq. (126) is relevant up to Re, = 3.

The wall-induced lift in the presence of shear and solid wall, as is the case of

Vin Re, V, . (130)

the present study, is more complicated. Cherukat & McLaughlin (1994) derived an
expression for the lift force near a wall in a linear shear flow field, as
(tift)
2

—(3.2397n~1 + 1.1450 + 2.0840n — 0.905972) A (131)

+(2.0069 + 1.05751 — 2.4007n2 + 1.3174n°)A? ,

where 7 is the nondimensional distance from the wall, see Eq. (59), and A =
dVs/(2G) is the nondimensional shear. Use of this expression is recommended
(Wang et al., 1997) in the region very close to the wall, say ¥ < 1. Outside of the
viscous sublayer, y* > 5, McLaughlin (1993) recommended that J* in Eq. (121)
should be replaced by J, expressed as
u 1.879

J=J"— 7(:1/"‘)5/3 . (132)

In the intermediate range, the expression by Vasseur & Cox (1977)

w2 /11 1
= | =yt == 1
1=T (5 -1) (133

or a tabulated values by McLaughlin (1993) may be appropriate. Similarly to
McLaughlin’s expression for the lift force in an unbounded flow, Eq. (121), the
expressions above are valid under the restriction, Eq. (119). Unfortunately, to the
best of author’s knowledge, it seems that a relevant expression for the wall-induced
lift valid for a particle at a higher Reynolds number has not been proposed yet.

3. Results from test computations

3.1. Re,-dependent drag correction near the wall. Similarly to the case
presented in Paper 7, a flow of air with 70 um copper particles in a turbulent
channel flow at Re, = 644 is considered. At the walls, particles are assumed to lose
the wall-normal component of their momentum. Wall surface potential is not taken
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FIGURE 7.3. Particle statistics. a) mean velocity; b) streamwise
RMS velocity; ¢) wall-normal RMS velocity; d) PDF of streamwise
velocity. —+—, with Cy2, Eq. (63) (Case 3 in Paper 7). - - x - -,
with Cya(Rep,&), Eq. (117); (1996); = , experiment by Kulick
et al. (1994), Z = 2%; ( , undisturbed fluid. )

into account. The simulation data obtained using the Reynolds number dependent
drag correction near the wall, Eq (117) are compared with those with the original
one, Eq (63), i.e. Case 3 in Paper 7.

Here, the mean and RMS values of particle velocities and PDF of particle
streamwise velocity are presented in Fig. 7.3a-d. A slight increase in the mean
velocity profile, can be observed in the case with the Re,-dependent drag correction.
This is because the high speed particles, whose particle Reynolds number is large,
became less influenced by the drag increase near the wall. It can be also observed
that the RMS streamwise velocity are flattened in the region y™ < 100. This can be
explained, as shown in the PDF of the streamwise velocity, by that the distribution
of the lower mode has shifted toward higher values. For the wall-normal RMS
velocity only slight change can be observed.

3.2. Lift forces. Test simulations are continued with the same parameters,
taking into account the lift force. Saffman lift with Mei’s correction is considered.



3. RESULTS FROM TEST COMPUTATIONS 49

a) b)
25 7 :
x-
6 - * oK, 4
% .
5 oK * o, i
* X.x‘
4+ by B
2 A X,
5 oo o * Tt %
3r 2 * 4 X i
J X,

p
rms
o
o

* % 3

x**** *, xx%*x**
HRHRE e et T o gy, /
N )&iﬁ*w x Koo || *
4+ /!

Lo

P(u)

1 10 100 0

FIGURE 7.4. Particle statistics. a) mean velocity; b) streamwise
RMS velocity; ¢) wall-normal RMS velocity; d) PDF of streamwise
velocity. —+ —, without lift force; - - x - -, with lift force; %
experiment by Kulick et al. (1994), Z = 2%; ( , undisturbed
fluid. )

The wall-induced lift is not taken into account because relevant expression for higher
particle Reynolds numbers is not found as noted above.

The mean and RMS values of particle velocities and PDF of particle streamwise
velocity are presented in Fig. 7.3a-d. Slight decrease of mean velocity profile can be
observed when the lift force is considered. From the PDF of streamwise velocity, it
can be noticed that the slip-shear lift force has an effect to separate the higher and
the lower modes. Due to that, higher streamwise RMS velocity can be observed.
The wall-normal RMS velocity was unchanged in most region of the channel, except
for increase near the wall.

The present results indicate again that the various force working only near the
wall may largely influence whole statistics. Therefore more careful treatment must
be done in order to predict such flows with a better accuracy as compared to that
presented in Paper 7. However, as mentioned above, there are many problems to
overcome, e.g. to find a relevant expression for wall-induced lift for higher particle
Reynolds numbers, a challenge which will be left for the future work.



CHAPTER 8

General conclusions

The subject of the present thesis, i.e. particulate turbulent flow, is an ancient
subject in the nature. Despite that, due to extreme difficulties appearing in exper-
imental and theoretical studies of such flows, even relatively simple flows are not
well understood.

In this thesis, the attention has been paid to theoretical investigation of dilute
particulate channel flows at relatively low Reynolds number. It was illustrated
that the methodology was successfully applied to the case of study and accurate
predictions could be made.

An important conclusion, in addition to those for the specific topics drawn in
the papers attached, is the clear illustration of the complexity of the problem. There
are a large number of physical phenomena interacting with each other. A complete
and accurate prediction of the flow requires detailed models for those phenomena
yet not fully available.

Also, one can notice a lack of experience on numerical simulation of such flows
in comparison with that of pure turbulent channel flow where a general agreement
on simulation parameters is establised between different researching groups. The
scientific society has still a long way to go before a complete understanding of
turbulent particulate flows with wall interactions can be achieved.
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