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Control and estimation of wall bounded flow systems

Jérôme Hœpffner 2004
KTH Mechanics
SE-100 44 Stockholm, Sweden.
Abstract
This thesis focuses on the application of linear feedback control and estimation
to channel flow. Both the initial stage of the transition and the low Reynolds
number turbulent cases are studied. From sensors at the wall, the state of the
flow is estimated, using a stochastic description of the flow disturbances. The
estimated state is in turn fed back to the flow system in order to achieve a
control objective. This model based scheme uses the linearised Navier–Stokes
equations as a dynamic model for the flow evolution. The emphasis is here
put on the estimation procedure, that was so far the limiting factor for the
overall control performance. We show that the estimation performance rely on
a correct description of the flow disturbances. We apply model reduction on the
controller, and show that we can maintain the control performance even with a
highly truncated system. We then introduce a representation of the feedback by
means of transfer functions, and discuss the implication of the transfer function
for the interpretation of the feedback, and for possible implementation of the
control loop.

Descriptors: Control, estimation, transient growth, optimisation, feedback,
transition to turbulence, model reduction.



Preface

This thesis considers the application of linear feedback control to wall bounded
flow systems. The first part is a summary of the research presented in the
second part.

Paper 1. Hœpffner, J., Chevalier, M., Bewley, T., & Henningson,

D. S. 2003 State estimation in wall-bounded flow systems. Part I : laminar
flow. Submitted to Journal of Fluid Mechanics (with minor modifications).

Paper 2. Chevalier, M., Hœpffner, J., Bewley, T., & Henningson,

D. S. 2004 State estimation in wall-bounded flow systems. Part II : turbulent
flow. To be submitted .

Paper 3. Hœpffner, J., & Henningson, D. S. 2004 Model reduction ap-
plied to control of wall-bounded flow systems. Internal report .

Paper 4. Hœpffner, J., & Henningson, D. S. 2004 Coupling sensors to
actuator in flow control. Internal report .
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CHAPTER 1

Introduction

1.1. Background

As the traditional field of transition in fluid mechanics aims at understanding
and model the evolution of flow systems, flow control aims at using this knowl-
edge to affect the evolution of a flow. For example postpone the transition to
turbulence on an aeroplane wing to reduce the friction drag, prevent the sepa-
ration in an air intake to increase the flux, or trigger turbulence to increase the
mixing in a chemical reaction. In this work we focus on hindering the growth
or sustainment of flow fluctuations.

The field of control became prominent in engineering applications as fast
computers became available and efficient theory were developed. Most of the
effort in control theory converged to the formulation of the LQG feedback
control, also known as H2 control. It embraces and unites the apparently dis-
connected fields of dynamical systems, filtering, control, and optimisation. The
name LQG stands for Linear, Quadratic, Gaussian, meaning that the dynamic
model is a linear system, that the disturbances to the state are Gaussian, and
that the control objective is quadratic. Gaussian disturbances can be com-
pletely described by their mean and covariance, so that the disturbance model
will be formulated in terms of covariance, and energy is a typical objective that
takes the form of a quadratic function of the state. The feedback law is then
optimised to accommodate flow disturbances and sensor noise on one hand,
and control objective and control cost1 on the other hand.

It is common practice in the fields of transition and turbulence to decom-
pose the flow into mean and fluctuating parts. In transition typically, the
stability of the laminar mean flow will affect the potential for growth of small
fluctuations. Minute external disturbances are thus fed from the kinetic en-
ergy stored in the mean flow profile. For instance, a boundary layer with an
inflection point can be unstable to a range of waves that will grow and possibly
disrupt the mean profile. In a turbulent flow the picture is different. The mean
profile is not a solution to the Navier–Stokes equations, and cannot be sustained
without the mixing effect of large amplitude fluctuations. Linear growth and
nonlinear recycling of the energy is operated through the interaction of the
fluctuating and mean components of the flow.

1The cost of the control is the energy spent for the actuation, it should be low compared to
the energy gained when the control is applied.
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1.2. FLOW CONTROL USING FEEDBACK 3

There are two basic strategies for flow control. The first one is to act on
the mean flow. For instance the wall suction in the asymptotic suction bound-
ary layer affects the shape factor that further stabilises the flow. This goal
can as well be sought by fluctuating devices as periodic blowing and suction.
Another strategy is to affect the dynamics of the perturbations themselves by
use of a reactive, or feedback control scheme. In a transitional flow case, If
we can hinder the growth of small perturbations, we can prevent them from
disrupting the mean flow. In a turbulent flow, the opposition to the energy
feeding mechanism by action on the perturbation to the mean flow can also
lead to mean flow changes (relaminarisation for instance).

This work aims at a control effect orders of magnitudes greater than the
control effort. In the case of transition from a laminar flow, we thus target
the fluctuations and disturbances at the early stages of growth, just when they
emerge from the background noise. If the flow is already turbulent, we aim to
target the energy feeding and sustaining mechanisms. We thus use a feedback
scheme.

By the word disturbances we mean all the processes that affects the evolu-
tion of the system once modelled. It includes the initial condition, the volume
forcing due to external sources, and volume forcing due to model error. Indeed
the initial condition is assumed to be unknown, also there may be incoming
waves from out of the system, and the modeling (use of linear equations, etc
...) induces an error in the dynamics that can be seen as a forcing to the state.

The method of investigation and experimentation is the numerical tool.
Many fundamental issues about modeling and formulation should be under-
stood before it become meaningful or even feasible to test this type of control
in a wind tunnel.

In §1.2 we present the previous research that lead to the present thesis.
In §1.3 and §1.4 we briefly recall the main ideas of transition to turbulence
in shear flows and the control technique. In chapter two, we see how we can
use the knowledge from the physical system in the framework of the optimal
control.

1.2. Flow control using feedback

The first steps towards feedback control schemes using the knowledge from
control theory in flow control were made by Hu & Bau (1994), Joshi et al.
(1995) and Joslin et al. (1997). In these works the eigenvalues of the closed loop
transition problem are stabilised in a closed loop framework. The technique
used were a proportional controller, where the measurement is directly fed back
to the actuation through a gain, as well as proportional-integral controller ( i.e.
a controller with both proportional and integral term) and also LQG. Joshi
et al. (1995) already apply model reduction by truncating the problem to the
nine least stable modes. Bewley & Liu (1998) studied separately the control
and estimation in a H2 and H∞ (robust) procedure, and introduced transfer
functions to assess the performance of the controller for isolated Fourier modes.
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A review of the challenges of feedback control can be found in Bewley (2001).
A formal treatment of the distributed nature of the present problem is given
in Bamieh (1997).

The control was then applied to larger problem through direct numerical
simulation (DNS), in Högberg et al. (2003) where threshold for transition are
examined with control and estimation. It was applied to relaminarisation of a
turbulent channel flow by Högberg et al. (2003a) using full state information.
It was as well extended to non-parallel flow in Högberg & Henningson (2002) by
a spatial windowing method, leveraging the spatial localisation of the feedback
law. A further application to non-parallel flow can be found in Cathalifaud &
Bewley (2004a) and Cathalifaud & Bewley (2004b) where a non-causal frame-
work is used in the spatial direction (instead of the temporal) with use of the
Parabolized stability equations (PSE). At the same time, further effort were
made towards the reduction of skin friction in turbulent channel flow. A review
of such efforts can be found in Kim (2003).

Much useful understanding was gathered in numerical simulations where
full state information is assumed to be known. The estimation part on the other
hand remains the limiting factor of the overall closed loop performance. This
may be a consequence of the underlying stochastic framework, not familiar to
the fluid mechanics community.

1.3. Knowledge from fluid mechanics

Understanding of the mechanisms of transition and turbulence is central to
tune the controller to its applications. This is done through the choice of
the dynamic model, the design of the disturbance model and the choice of
the objective function. The knowledge of the flow is also useful to assess a
performance measure for the controller. For further details, see e.g Schmid &
Henningson (2001).

The transition process in shear flows begins with the receptivity stage in
which external disturbances interact with the system. Depending on the type
of disturbances present in the environment, and the way they are filtered when
penetrating the system, the actual disturbance that will further evolve can be
of a variety of types. Then follow different routes, depending on the type of
instability triggered by the disturbances. Typical external disturbances in a
shear flow can be acoustic waves, free stream turbulence or wall roughness.

In the case of wall-bounded flows (boundary layer, channel flow, etc...), if
the system is linearly unstable, exponentially growing waves may appear. This
is the modal instability mechanism, and appear for Reynolds numbers above the
critical value, or flows with inflectional profile as separated and nearly separated
boundary layers, or Falkner–Skan–Cooke boundary layers. In the case of shear
flows, initial disturbances in the shape of streamwise elongated vortices may lift
up low momentum fluid from the wall, thus generating streamwise elongated
streaks that grow algebraically. This is the nonmodal mechanism, related to
the nonnormal nature of the governing operator, and is of importance in flows
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Figure 1.1. The plant P and the closed loop controller K,
with measurement y and control u.

subjected to high amplitude disturbances as in the boundary layers subject to
free-stream turbulence.

When the disturbances reach an amplitude of the order of magnitude of
the free stream velocity, nonlinear interactions occur and harmonics of the
growing waves are generated. This may lead to a new saturated state, that is
a more complex, but still laminar flow. Eventually, instability of the new flow,
will trigger the growth of high frequency waves evolving to turbulent spots,
merging further to turbulence.

Turbulence is then sustained by extraction of energy from the mean profile
in the near wall region. Coherent structures in the form of streamwise elongated
streaks and their instabilities play a central role in this process.

1.4. Optimal feedback control

In this section, we discuss the main features of the feedback method, introduc-
ing the plant and the estimator.

There is only a limited amount of information one can extract from the
system (or the plant), this is the measurement vector y. If q(t) is the state, and
C is the measurement operator, then y = Cq. Similarly, one is restricted in
the action on the system. The control signal u is input in the system through
the input operator B2.

The plant can be written in state space form{
q̇ = Aq + B1f + B2u, q(0) = q0,

y = Cq + g.
(1.1)

The state q follows the dynamics due to the linear operator A, and is forced by
external disturbance f through B1 and can be regulated by a control u through
B2. The measurement y is extracted from the state by the measurement oper-
ator C, and affected by the sensor noise g. The disturbances q0, f and g are
assumed to be stochastic quantities and can be described by their covariance

cov(q0) = S0, cov(f) = R, cov(g) = G.

1.4.1. Linear response

We seek a controller, that by use of all the available information (the measure-
ment history), will give the best control towards an objective. See figure 1.1
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for the diagram of the closed loop. The control is linear in the sense that the
control signal is a linear mapping of the measurement history. Such a linear
operator can be represented in state space{

˙̂q = M1q̂ + M2y,

u = M3q̂,
(1.2)

where q̂ is the state of the controller and Mj are operators to be constructed.
Such a linear mapping can equivalently be represented as a transfer function
(see e.g. Kailath (1980))

u(t) =
∫ ∞

0

M3e
M1τM2︸ ︷︷ ︸

G(τ)

y(t − τ)dτ. (1.3)

Note that in (1.3), u(t) is explicitly dependent on all the measurement history,
whereas this dependence is implicit in (1.2).

1.4.2. Control and estimation

The general optimisation problem formulated as above is complicated and has
many local minima. An easier path is to consider it as the union of a filtering
problem and a control problem. If the system is subject to state disturbances
and sensor noise, how can we optimally estimate the state? This estimation
problem, solved in Kalman & Bucy (1960) is the celebrated Kalman filter. We
build an estimator system analogous to the plant (1.1)


˙̂q = Aq̂ + B2u − v, q̂0 = 0,

ŷ = Cq̂,

v = L(y − ŷ).

(1.4)

The estimator state q̂ follow the same dynamics A as the flow state q and is
forced by a feedback v of the measurement error ỹ = y − ŷ. The measurement
error is better known as the innovation process. The modeled dynamics of the
system is used as a filter for the measurement noise. Since the estimator should
deal with uncertainty, it is a stochastic problem and the optimisation is done
in the stochastic framework. The second problem is a deterministic one: how
can we apply control in order to minimise a chosen performance index, using
full state information. The control u is obtained by feedback of the flow state

u = Kq̂, (1.5)

through the control feedback gain K. The controller that assumes the state
to be known is called full information controller, or LQR for Linear Quadratic
Regulator. If only the measurement is known, the state has to be estimated,
this is the measurement feedback controller, also known as compensator. In
the following, we use the measurement feedback controller.

The separation principle (Green & Limebeer (1995)) formally proves that
the optimal measurement feedback controller is the optimal full information
controller that uses the state estimate from the Kalman filter.
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1.4.3. Optimality

The optimal estimation problem without sensor noise is ill posed. If an exact
measurement is available, and if all the eigenmodes of the system are detectable
from the measurement (the system is observable) then the estimator can con-
verge arbitrarily fast, with corresponding arbitrary high amplitude estimation
gains. The optimality comes from the balance of sensor signal and sensor noise.
This ratio defines the quality of the signal, and a useful signal (relatively low
sensor noise) will lead to high gain and rapid convergence due to the confidence
in the provided information. Similarly the control problem without introduc-
tion of a control cost is ill-posed. Indeed, if all the eigenmodes of the system
can be affected by the actuation (the system is controllable) then the objective
can be reached arbitrarily fast, with control gains of arbitrarily high amplitude.
But the optimisation seeks to minimise a weighted sum of the objective and
the cost. The relative weighting of objective and cost will thus determine the
allowed amplitude range for the control signal.



CHAPTER 2

From the mathematical framework to the physical
system

The mathematical formulation of the LQG controller leaves many degrees of
freedom for the application to a specific physical problem. We will see in
this chapter how fluid mechanics knowledge can be input to the optimisation
problem.

2.1. Linear dynamics

The dynamic model is the Navier–Stokes equations, Fourier transformed in
the two homogeneous directions. We lump both the nonlinear terms and
the external disturbance into an external forcing function, thereby restrict-
ing the flow model to the linear terms. The dynamic model is thus the Orr–
Sommerfeld/Squire equation for each wave number pair (kx, kz), where kx stand
for the streamwise wave number and kz for the spanwise wave number.

If the amplitude of the disturbances is small, nonlinear effects can be ne-
glected altogether. For higher amplitude, the nonlinear effects redistribute the
energy in Fourier space (introducing a coupling between Fourier modes). For
intermediate amplitudes of the disturbances, we can consider this effect to be
slower than the reaction of the controller, thus accounting for the nonlinear
effect as a stochastic forcing can be justified. When new instabilities appear
due to the deformation of the mean flow, we cannot claim that the stochastic
term captures the effect of the nonlinearity. In this case, encountered in the
estimation of turbulent flow and of the late stages of transition, our hope relies
on the linearity of the driving energy processes, with the main role of the non-
linearity seen as the recycling of a linearly generated energy (for a discussion
on this topic, see Waleffe (1995), Henningson (1996) and references therein).

2.2. Sensing and actuation

We measure at the wall the two components of the skin friction and the pres-
sure. The streamwise component of the skin friction will be a good measure-
ment for flow cases associated with the transient growth. Indeed, streamwise
elongated vortices generate strong streamwise elongated streaks on the stream-
wise velocity component by interaction with the mean shear. Those structures
have a clear wall footprint of streamwise skin friction. Equivalently, the span-
wise component of the skin friction gives information on spanwise elongated

8
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structures. There is no central mechanism involving such structures, so that
this measurement will play a minor role in the control performance. The pres-
sure measurement gives information on fluctuations further away from the walls
(Bewley & Protas (2003)). It is seen that an initial disturbance that is located
in the centre of the channel will be detected early at the wall from pressure
fluctuations.

The actuation is done by zero-net flux blowing and suction at the wall. The
wall normal velocity can interact with the mean shear to have a large effect on
the flow. For example in a context of streaks generated by streamwise vortices,
the wall normal component of the velocity can directly counteract the vortices.

We assume here that we have a continuous distribution of sensors and
actuators, to be able to decouple the problem in Fourier space.

2.3. Model reduction

Computational time and closed loop complexity depend on the number of de-
grees of freedom in the controller. In order to lighten this burden, one can chose
to reduce the order (size of the matrices) of the dynamic model. The optimal
feedback gains should be computed using the full dynamic operator since an
optimisation carried on this operator with a small reduction error could lead
to a large error in the gains themselves. Nevertheless, we can use a reduced
version of the dynamic operator for the estimation.

The model reduction method used here is based on truncation of eigen-
modes of the flow model, i.e. modal truncation. An eigenmode that does
not appear at the measurement is said to be unobservable. Equivalently, an
eigenmode that is not accessible to the actuation is said to be uncontrollable.
Those eigenmodes will be immaterial to the closed loop performance. Poorly
observable and controllable eigenmodes can be progressively discarded with
progressive degradation of the closed loop performance.

We apply here a simple model reduction technique on the controller once
computed, i.e. we do not take the closed loop performance into account when
reducing. Method for controller reduction are being developed (see e.g. Obi-
nata & Anderson (2001)), that explicitely account for the complete closed loop
system. Such method seek to maintain closed loop performance, and can pro-
vide guarantees on closed loop stability.

2.4. Quadratic objective

In the present work we seek to minimise the energy density of the disturbance
to the mean flow. For the optimisation problem to be well posed, and to have
a knob on the desired amplitude range of the feedback, we add to the objective
function a term accounting for the cost of the control.

Postponing the transition to turbulence is a common control objective.
Such a general objective is however out of the scope of a linear controller.
Indeed a disturbance with higher energy may be potentially less destructive
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than another disturbance, so that the quadratic function described above fails
to seek the optimal controller. Insight into transition in specific flow cases
should be used in the future to design quadratic objective that target the central
destabilisation mechanisms. Even though the destabilisation mechanism itself
may be nonlinear, there is possibility for correctly targeted linear controller to
prevent transition, beyond the short-sighted goal of keeping the disturbances
low.

2.5. Gaussian disturbances

Both transitional and turbulent flows are composed of a mean and fluctuating
part. The energy of the fluctuations that we want to estimate originates from
initial condition and forcing from external sources. We account for both of them
as disturbances. The better the knowledge about those sources, the better we
can follow the evolution of the resulting flow.

We represent the disturbances by their covariance, and assume a zero mean.
The model for the disturbances used in previous work reflected little of the real
flow processes that trigger the instability mechanisms. Previously used model
assumed zero correlation in space and time for the disturbances. By introducing
a finite correlation length scale, we had a model that would converge upon grid
refinement. Furthermore, the zero correlation in space introduced singularities
in the optimisation so that the wall measurements using derivatives of the flow
states would not lead to well resolved gains.

The forcing on two points in the flow will be as uncorrelated as they are
far from each other. We still assume that the disturbances are uncorrelated
in time. Introducing a correlation in time can be done by a noise colouring
method (see e.g. Lewis & Syrmos (1995)), but we did not find this necessary.
We deal with each wavenumber pair separately, so that the forcing on two
different wave number pairs is uncorrelated by construction. We then distribute
the disturbance energy in the Fourier plane. This way, we can specify the
type of flow disturbances by locating energy peaks in the power spectra of the
disturbances.

Introduction of the covariance for the initial conditions implies that the
flow statistics evolve in time before reaching a steady state where the flow is
exclusively driven by the disturbances. Thus, the optimal estimation gains are
time-varying and eventually reach a steady state.

In the case of estimation of a turbulent flow, the main disturbance on the
modeled system comes from the neglection of the nonlinear dynamic effects.
In this case too, we can build a covariance model. We run a DNS of the full
Navier–Stokes equations and store statistics of the spatial covariance of the
nonlinear term for each wave number pair, and use it for R in the computation
of the estimator.

The more specific the real flow disturbances and initial conditions are, the
better the estimation performance if those disturbances are accounted for in
the covariance model. For instance one may expect Tollmien–Schlichting waves
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to arise from linear instability of the boundary layer over an aeroplane wing.
The shape of those disturbance is known, only their phase and amplitude has
to be recovered by the estimator. The covariance model is a way to target
flow cases, and the specificity of the central flow mechanism is thus a great
advantage for the estimation.

2.6. Optimisation

Once the stochastic input to the system are defined, one can derive the equa-
tion for the covariance of the resulting flow. This is the Lyapunov equation.
Equivalently, one can write a Lyapunov equation for the estimation error with
an arbitrary estimation gain. A Lagrange multiplier technique is then used to
find the gain that minimises this error. The result of this optimisation can
be extracted from the solution of a Riccati equation. Similarly, one can use
a Lagrange multiplier technique to derive the control gain that minimises the
objective function for arbitrary disturbances. Once again, the optimal control
gain is to be extracted from the solution of a Riccati equation.



CHAPTER 3

Summary of the papers

Paper 1
This paper is devoted to the estimation problem. We introduce the covariance
model for both initial conditions and volume forcing due to external sources.
We compute time varying estimation kernels for the estimation of localised
perturbations in channel flow. It is shown that by using a spatially correlated
covariance model for the disturbance, we can compute well resolved estimation
kernels for all the desired wall measurement, i.e. the streamwise and span-
wise skin friction and the pressure. We show that a proper description of the
disturbance can help to improve the estimator’s performance.

Paper 2
We apply here the ideas from paper 1 to a low Reynolds number turbulent
channel flow. The covariance model for the volume forcing is obtained through
a DNS of a turbulent flow. This covariance data is in turn used for the compu-
tation of the optimal linear estimator. We show here that the performance of
the estimation can be improved when using the proper covariance model. The
turbulent flow is well estimated close to the walls.

Paper 3
In this paper we investigate the performance of a reduced order controller in
a laminar channel flow. The reduction technique is modal truncation. The
adjoint of the controller’s dynamic operator is used for the projection of the
controller on the basis of its eigenmodes, in which states are truncated. It is
shown that a controller with moderate strength can be highly truncated with
retained performance.

Paper 4
The state space formulation of the controller used in the previous papers do not
show explicitly the relation between sensors and actuators in the closed loop
setting. We introduce a transfer function representation, mapping the sensor
signal history over the walls and the actuation over the walls.

12



CHAPTER 4

Conclusion and outlook

In the discussion of the thesis of Markus Högberg (Högberg (2001)), it is said
“If the flow near the wall can be estimated with faster convergence, the com-
pensator performance could be improved. Also further development by in-
corporation of more measurements and knowledge about flow properties could
improve the present results”. The first result of the present thesis was to obtain
estimation feedback kernels for additional measurements: the two components
of skin friction and pressure. This was possible by introducing a spatially cor-
related stochastic model for the external disturbances. We showed that this
model is the place where to input the “knowledge about flow properties”. We
developed this idea in a laminar flow case, and applied it in a low Reynolds
turbulent flow.

The idea of knowledge about flow properties should be applied in a system-
atic study on objective functions as well. The model for the external disturban-
ces accounts for flow behaviours that cannot be incorporated in a dynamical
description of the system. For instance, incoming acoustic waves cannot be
included in the dynamic model, since we would need a larger computational
domain to account for their generation and propagation, wall roughness would
induce complex boundary conditions, nonlinear effects would require a nonlin-
ear optimisation, a spatially developing base flow would increase the dimension
of the system, rendering the control problem intractable in the present formu-
lation etc... Similarly, the exact mechanisms of transition to turbulence cannot
be accounted for in a quadratic norm and decoupled in Fourier space. We thus
have to use the field of knowledge from stability, transition, and turbulence
to design proper objectives for a linear controller. That way, it is possible to
think the controller design as a well defined linear “brick” in the design of a
controller for complex systems.

A large amount of data has to be treated while controlling the flow in the
present formulation. This is a result of the large number of degree of freedom
of the flow systems at hand. Firstly, we use all the wall information, using
dense arrays of sensor and actuators. Secondly, estimating requires a linear flow
simulation on the side of the flow system during the control. The assumption of
linearity of the dynamics may be thought as a strong limitation for this control
method. The amount of data to be treated prevents even more strongly from a
real implementation in wind tunnel and further industrial applications. On the
other hand, many complex flows exhibit low-dimensionality, and the typical

13
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mechanisms do not necessarily involve all the degrees of freedom of the system.
This means that we do not necessarily need sensors everywhere to detect the
waves that may trigger the transition. This comment holds as well for the
actuation, and we showed in paper 3 an equivalent result for the dynamic
model. Our understanding from the idealised setting in this thesis should help
us to achieve this reduction, being thus able to reduce a most general controller
(sensing, actuation and feedback computation) to specific cases of application,
making use of the specificity (low dimensionality) of the involved processes.
The controller once fit to a particular case could be broken down to a simple
feedback scheme without significant loss of performance.
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Högberg, M. & Henningson, D. S. 2002 Linear optimal control applied to insta-
bilities in spatially developing boundary layers. J. Fluid Mech. 470, 151–179.

Joshi, S. S., Speyer, J. L. & Kim, J. 1995 Modeling and control of two dimensional
poiseuille flow. 34th IEEE Conf on Decision and Control pp. 921–927.

Joslin, R. D., Gunzburger, M. D., Nicolaides, R. A., Erlebacher, G. &

16



BIBLIOGRAPHY 17

Hussaini, M. Y. 1997 A Self-contained, Automated Methodology for Optimal
Flow Control Validated for Transition Delay. AIAA Journal 35 (5), 816–824.

Kailath, T. 1980 Linear systems. Prentice hall.

Kalman, R. & Bucy, R. 1960 New results in linear filtering and prediction theory.
ASME Transactions, Series D: Journal of basic Engineering 83, 95–108.

Kim, J. 2003 Control of turbulent boundary layers. Physics of fluids 15 (5).

Lewis, F. L. & Syrmos, V. L. 1995 Optimal control . Wiley-Interscience.

Obinata, G. & Anderson, B. D. 2001 Model reduction for control system design.
Springer.

Schmid, P. J. & Henningson, D. S. 2001 Stability and transition in shear flows.
Springer.

Waleffe, F. 1995 Transition in shear flows. nonlinear normality versus nonnormal
linearity. Phys. Fluids 7 (12), 3060.



18 BIBLIOGRAPHY



Part 2

Papers





Paper 1

1





State estimation in wall-bounded flow systems.
Part I : laminar flow

By J. Hœpffner1, M. Chevalier1,2, T. R. Bewley3 and D. S.
Henningson1,2

1Department of Mechanics, Royal Institute of Technology (KTH), S-100 44
Stockholm, Sweden

2The Swedish Defense Research Agency (FOI), SE-172 90, Stockholm, Sweden
3Flow Control Lab, Department of MAE, UC San Diego, La Jolla, CA 92093-0411,

USA

In applications involving the model-based control of transitional wall-bounded
flow systems, one often desires to estimate the interior flow state based on
a history of noisy measurements from an array of flush-mounted sensors on
the wall. This paper considers this estimation problem, using a Kalman fil-
ter based on the linearised Navier–Stokes equations and appropriate stochastic
models for the relevant statistics of the initial conditions, sensor noise, and
external disturbances acting on the system. We show that a physically rel-
evant parameterisation of these statistics is key to obtaining effective, well
resolved feedback kernels with appropriate spatial extent. The consideration of
time-varying feedback kernels is shown to be particularly advantageous to ac-
celerate the convergence of the estimator from unknown initial conditions. The
resulting Kalman filter is tested on the problem of reconstruction of localized
disturbances in a laminar channel flow.

1. Introduction

The feedback control of fluid flow systems is a problem that has received grow-
ing attention in recent years and has been approached in a number of different
manners. One approach is to design controls based on physical insight of domi-
nant flow mechanisms, as by the wave superposition principle (see, e.g., Thomas
(1990)). Another approach is to use adaptive or genetic techniques to attempt
to learn an effective control strategy by trial and error (see, e.g., Lee et al.
(1997)). It is also possible to leverage linear control theory, basing the control
algorithm on the linearised Navier–Stokes equations governing small perturba-
tions to the flow system, a mathematical statement of the control objective,
and a mathematical model of the relevant statistical properties of the unknown
initial conditions, sensor noise, and external disturbances acting on the system.
The present paper follows this latter approach. Recent reviews of related flow
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control efforts can be found in, for instance, Bewley (2001), Gunzberger (1996),
Kim (2003), and the introduction of Högberg, Bewley & Henningson (2003).

The classical problem of linear model-based feedback control based on noisy
measurements can be decomposed into two independent subproblems: first,
the state-feedback (a.k.a. full-information) control problem, in which full state
information is used to determine effective control feedback, and, second, the
state estimation problem, in which measurements are continuously used to
“nudge” a real-time calculation of the flow system in an appropriate manner
such that the calculated flow state eventually approximates the actual flow
state.

Once both subproblems are solved, one can synthesize them to control a
flow based on limited noisy measurements of the flow system. The overall
performance of the resulting linear feedback control scheme is limited by the
individual performance of the two subproblems upon which it is based. For the
application of linear control theory to wall-bounded flows, though encouraging
results have been obtained previously on the state-feedback control problem
(see, for example, Bewley & Liu (1998) and Högberg et al. (2003)), the devel-
opment of effective state estimation strategies remains largely an open problem.
In the present paper, we therefore focus on the state estimation problem ex-
clusively.

One of the primary challenges of the state estimation problem is that its
framing is based centrally on quantities which are challenging to model, namely,
the expected statistics of the initial conditions, the sensor noise, and the ex-
ternal disturbances acting on the system. The state estimation problem may
actually be thought of as a filtering problem; that is, the estimator uses the
governing equation itself as a filter to extract, from the noisy measurements of
a small portion of the dynamic system, that component of the measurements
which is most consistent with the dynamic equation itself. In other words, the
estimator uses the governing equation to extract the signal from the noise, and
in the process builds up an estimate of the entire state of the system. The
purpose of the estimator at time t is to filter the measurements gathered prior
to time t to estimate the instantaneous state of the flow field. The purpose
of the state-feedback controller at time t, on the other hand, is to apply forc-
ing to the flow such that the subsequent evolution of the flow, after time t,
exhibits favourable characteristics. Thus, the controller is based on a metric
defining these favourable characteristics (the objective function), whereas the
estimator is based on a model describing, to the extent that they are known,
the statistical properties of the unknown quantities affecting the system.

Some attention has been paid in the literature to the creative choice of
objective functions for the control problem. Kim & Lim (2000), for exam-
ple, performed an numerical experiment which applied body forcing via linear
feedback everywhere on the interior of a turbulent channel flow. This linear
feedback was constructed to exactly cancel the linear coupling term [C in (2)]



Laminar flow estimation 25

in the nonlinear simulation, with the result that the turbulent flow relaminar-
ized. This result lends credibility to the idea of using a more sophisticated
objective function which targets this linear coupling (that is, one which targets
the non-normality of the system eigenvectors) rather than using an objective
function which simply targets the disturbance energy directly. The appropriate
selection of the objective function is thus seen to be not a trivial problem, and
is closely linked to our understanding of the relevant flow physics. The prob-
lem of disturbance modeling for the state estimation problem, which is also
inherently linked to our understanding of the relevant flow physics, is perhaps
even more subtle.

The importance of this issue was understood by Jovanovic̀ & Bamieh
(2001), where a stochastic disturbance model is sought, that recreates second
order satististics of a turbulent chanel flow through the linearized Navier–Stokes
equations. Nevertheless, little has been accomplished in terms of application
of an appropriate disturbance models for flow estimation and control in the
published literature. Bewley & Liu (1998), Joshi, Speyer & Kim (1999), and
Högberg et al. (2003) modeled the covariance of the external disturbances at
a single wavenumber pair by a simple identity matrix, implying a constant
variance of disturbances distributed in the wall-normal direction and zero cor-
relation of the disturbances at different heights above the wall. This model
restricted the effectiveness of the resulting estimators in our previous work,
and also led to realization problems that required us to limit the types of wall
measurements that we could consider while still obtaining convergence of the
feedback kernels upon refinement of the numerical grid. In the present paper,
we propose an improved stochastic model for the external disturbances (that
is, random volume forcing on the interior of the flow domain) that may be used
to account for wall roughness, acoustic waves, and neglected dynamics, as well
as appropriate stochastic models for the unknown initial conditions and sensor
noise.

In previous studies, only time-constant feedback kernels have been con-
sidered in the estimator. By introducing time-varying feedback kernels into
the estimator, the present paper incorporates plausible models of the statis-
tics of the unknown initial conditions on the flow in order to maximize the
speed of convergence of the estimator from unknown initial conditions. As a
consequence, the initial transients in the estimator are shown to be greatly
diminished.

In the present paper, we will design and test an estimator for 3D plane
channel flow. After describing the system of interest, we propose a stochastic
model for the flow’s initial conditions, external disturbances, and sensor noise
in §2.4. An appropriate Kalman filter is designed in §2.5 in order to determine
suitable estimator feedback. After a discussion of the numerical methods em-
ployed, we test the estimator in numerical simulations at isolated wavenumber
pairs in §3. We then inverse Fourier transform the estimator feedback rules de-
termined on a large array of wavenumber pairs to obtain well resolved feedback
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convolution kernels in physical space for all of the measured quantities on the
wall, as discussed in §4.2. The resulting estimator for the entire 3D channel is
tested in numerical simulations in §4.3.

2. Formulation

2.1. Flow configuration and governing equations

This paper considers the 3D flow between two infinite flat plates (at y = ±1)
driven by a pressure gradient in the streamwise (x) direction. Scaling the time
variable appropriately, the mean velocity profile is given by U(y) = 1− y2. For
computational efficiency, we model the flow as being periodic in the horizontal
directions x and z, using a computational domain of sufficient extent in these
directions that this nonphysical assumption does not significantly affect the
statistics of the flow. This approach allows all variables with spatial variation
to be expanded in Fourier series. Thus, the state vector describing the wall-
normal velocity vmn(y, t) and wall-normal vorticity ηmn(y, t) on the interior of
the domain at each wavenumber pair {kx, kz}mn may be denoted by

qmn(y, t) =
(

vmn(y, t)
ηmn(y, t)

)
.

The evolution of the flow can then be written with the linear terms, M and
L, on the left-hand side and the nonlinear terms, N , on the right-hand side,
in addition to an external forcing term emn to account for unmodeled effects.
This yields

d
dt

Mqmn + Lqmn︸ ︷︷ ︸
Linear dynamics

=
∑

k+i=m
l+j=n

N(qkl, qij)

︸ ︷︷ ︸
Nonlinear coupling

+ emn(y, t)︸ ︷︷ ︸
External forcing

, (1)

where

M =
( −∆ 0

0 I

)
and L =

( L 0
C S

)
. (2)

The operators L, S, and C relate to the Orr–Sommerfeld/Squire equations and
are defined as 


L = −ikxU∆ + ikxU ′′ + ∆2/Re,

S = ikxU − ∆/Re,

C = ikzU
′.

The Laplacian operator is denoted ∆ = D2 − k2, where D and D2 represent
first- and second-order differentiation operators in the wall-normal direction,
and k2 = k2

x +k2
z . The Reynolds number Re is based on the centreline velocity

and channel half-width. The double convolution sum in (1) represents the
nonlinear “triad” interactions. For an explicit form of the nonlinear operator,
see, e.g., Henningson & Schmid (1992). The boundary conditions on v and η
correspond to no-slip solid walls

v = Dv = η = 0 at y = ±1.
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In the following, the right hand side of (1) will be lumped into a forcing
function fmn(y, t), thereby restricting the flow model to the linear terms, ac-
counting for both the nonlinear terms and the external disturbances with a
stochastic model. Suppressing the {}mn subscript for clarity, the resulting flow
model can be written as

d
dt

Mq + Lq = Tf(y, t), (3)

where the operator

T =
(

ikxD k2 ikzD
ikz 0 −ikx

)
,

transforms the forcing f = (f1, f2, f3)T on the evolution equation for the ve-
locity vector (u, v, w)T into an equivalent forcing on the (v, η)T system (see
Jovanovic̀ & Bamieh (2001) for a carefull derivation of this transformation).

2.2. Measurements

The choice of the measurements to be taken in order to obtain the state estimate
(without knowledge of the initial conditions of the flow) is ultimately a matter
of practicality. In the present work, we will consider an idealised problem in
which the continuous distributions of streamwise and spanwise skin friction and
pressure on the wall are available as measurements in order to estimate the state
of the flow away from the wall. This information is mathematically complete in
the following sense: if this information is uncorrupted by noise and the external
forcing on the system is known exactly, the entire state of the flow (even in the
fully turbulent regime, and at any Reynolds number) is uniquely determined by
these measurements at the wall in an arbitrarily small neighbourhood of time t
(without knowledge of the initial conditions), as discussed in Bewley & Protas
(2003). However, in any practical problem, the measurements are corrupted
by noise, the modeling of the system is not precise, and there are external
disturbances on the system which are not accounted for. Thus, in the practical
setting, it is essential to filter the measurements appropriately to reconcile the
noisy measurements of the system with the approximate dynamic model of
the system. The Kalman filter used in the present paper is a mathematically-
rigorous tool to achieve this reconciliation.

In our previous formulations of the estimator problem, as discussed in
Högberg et al. (2003), only the feedback gains using the measurement ηy, the
first wall-normal derivative of η, were used. In §2.4, we develop an improved
formulation based on a more realistic model of the statistics of the external
disturbances such that we may now compute well-behaved feedback kernels
that converge upon grid refinement for any measurement constructed as a linear
combination of the state variables and their derivatives. In particular, the
three available measurements at the wall, the streamwise and spanwise wall
skin friction and the wall pressure, are related to the quantities v and η in the
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state model as follows


τx = τxy|wall = µ
∂u

∂y

∣∣∣∣
wall

=
iµ

k2
(kxD2v − kzDη)|wall ,

τz = τzy|wall = µ
∂w

∂y

∣∣∣∣
wall

=
iµ

k2
(kzD

2v + kxDη)|wall ,

p = p|wall =
µ

k2
D3v|wall .

In the formulation shown in the remainder of §2, for clarity, we focus on the
feedback rules related to measurements made at the lower wall only. The
extension of this formulation to the case in which measurements are taken at
both walls of the channel, as considered in the simulations reported in §3 and
§4, is straightforward.

2.3. Stochastic setting

As described earlier, the modeling of the statistical properties of the stochastic
forcing function f in (3), which accounts for the effects of both the nonlinear
terms and the external forcing, is one of the key steps in the framing of the
present estimation problem.

In the present stochastic framework, the mean of any quantity of interest
may be obtained using the expectation operator E[·], defined as the average
over all possible realizations of the stochastic inputs. In particular, the mean
of f is modeled as zero, that is, E[f ] = 0.

In the present formulation, it is the covariance of f that needs to be mod-
eled carefully. Since f is a continuous function of the spatial coordinate y, the
appropriate definition of the covariance in this problem is somewhat abstract,
as discussed in detail Balakrishnan (1976). As shown in Balakrishnan (1976),
once this abstraction is made, the resulting Kalman filter equations in this
spatially-continuous formulation are found to be analogous to their counter-
parts in the classical finite-dimensional setting. In order to proceed with the
modeling of the statistics of f , it is necessary to have a clear understanding of
what the covariance means.

In the spatially-discrete setting, if u and v are two zero-mean, random
vectors of length n1 and n2 respectively, their covariance Ruv is defined as a
matrix of size n1 × n2 such that Ruv = E[uv∗]. The covariance of a zero-mean
random vector u is defined as Ruu = E[uu∗].

To extrapolate this definition to the spatially-continuous setting (see, e.g.,
Balakrishnan 1976, p. 267), we make use of inner products with arbitrary test
functions chosen from the same Hilbert spaces as the random functions we are
considering. That is, if ξ and η are two zero-mean random functions in the
Hilbert spaces H1 and H2, then their covariance Rξη is defined such that

∀(x, y) ∈ H1 × H2 , 〈x,Rξηy〉1 = E[〈x, ξ〉1〈y, η〉∗2], (4)

where 〈·, ·〉1 and 〈·, ·〉2 denote appropriate inner products in the Hilbert spaces
H1 and H2 respectively. Thus, the covariance Rξη is seen to be a linear operator
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from H2 to H1; this is analogous to the spatially-discrete setting, in which the
covariance is a matrix which when multiplied by a rank n2 vector results in a
rank n1 vector. Further, if ξ and η are taken to be simple vectors u and v in the
above expression, the inner products reduce to the simple form 〈x , y〉 = x∗y ,
and the spatially-continuous definition of the covariance reduces immediately
to the definition given in the spatially-discrete setting.

We will subsequently need to express the covariance of a linear transfor-
mation of a random process of known covariance. Letting g = Hf where H is
a linear differential operator and f a random variable, the following relation
can easily be deduced from (4)

Rgg = HRffH∗, (5)

where H∗ denotes the adjoint operator of H; note that the adjoint of a linear
operator H : H1 → H2 with inner products 〈·, ·〉1 and 〈·, ·〉2 on H1 and H2

respectively is defined by the equality

∀(x, y) ∈ H1 × H2 , 〈y,Hx〉2 = 〈H∗y, x〉1.
A significant feature of the definition of the covariance is its relation to

the expected value of the energy. Taking the trace of (4) with η = ξ and
simplifying, choosing the inner product related to the energy, it follows that
the expected value of the mean energy E[E(ξ)] = Tr(Rξξ).

2.4. Models for the stochastic inputs

The flow disturbances that we desire to estimate are affected by the unknown
initial conditions and the external disturbances acting to disrupt the system.
Since the estimator is intended to converge effectively over a large number of
different realizations, a statistical description (mean and covariance) of these
unknown quantities, in addition to a statistical description of the sensor noise
corrupting the measurements, may be used to tune the feedback in the esti-
mator design. The estimator which we will design, also known as a Kalman
filter, will be optimal in the sense of obtaining the most accurate estimate pos-
sible over a large set of realizations of the system in which the initial conditions,
external disturbances, and sensor noise have the assumed statistical properties.

2.4.1. Modeling of the initial conditions

For the purpose of the present work, we will model the mean of the unknown
initial condition as zero (that is, we assume there is no preferred phase in the
initial flow structures) and its covariance as S0. Since the initial condition
in the estimator is always zero, S0 also represents the covariance of the state
estimation error at t = 0.

We want to design an estimator that performs well over a large range of
possible initial conditions. It is natural to assume that the initial conditions are
completely “random”, however, we know from our understanding of the flow
physics that there is a tendency for some specific types of flow disturbances to
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be present in any given flow. For example, Tollmien–Schlichting (TS) waves
are likely to be present if the environment is characterised by acoustic waves,
streaks are likely to be present if the environment is characterised by high levels
of free-stream turbulence, and streamwise vortices are likely to be present if the
environment is characterised by wall roughness. The specific initial conditions
which we expect to see at each wavenumber pair in a particular problem (though
at an unknown phase and amplitude), and for which we would like to tune the
estimator to be particularly efficient at capturing, will be denoted here by
s = smn(y).

We will model the initial conditions q0 at each wavenumber pair as a lin-
ear combination of a component qs of a specified profile s (but with random
magnitude and phase) and a component qr constructed by a random linear
combination of the first p eigenmodes ξj = ξj

mn(y), normalised to unit energy,
of the system matrix M−1L in (3) such that

qs = θ0 s , qr =
1
p

p∑
j=1

θjξ
j ,

where the coefficients θj , j ∈ {0, . . . , p} are uncorrelated complex scalar random
variables with zero mean and unit variance. The initial condition q0 is then
modeled as a linear combination of these two components such that

q0 = λ1 (λ2qs + (1 − λ2)qr) .

The design parameter λ1 > 0 is used to specify the expected amplitude of
the initial conditions at this wavenumber pair, and the design parameter λ2 ∈
[0, 1] is used to specify the relative importance of the components qs and qr

in the initial conditions. The corresponding covariance of the unknown inital
conditions is given by

S0 = Rq0q0 = λ1


λ2Rss + (1 − λ2)

p∑
j=1

Rξjξj


 . (6)

Note that we expect the energy of the initial conditions at both large wavenum-
ber pairs and small wavenumber pairs to be small. We may account for this
in the present model of the initial conditions by allowing λ1 to vary in a
wavenumber-dependent fashion. In the present work, we will model this de-
pendence with the function

λ1(kx, kz) = vλk e−sλk2/2,

where the design parameter sλ specifies the exponential decay rate of the ex-
pected energy of the initial condition with the amplitude of the wavenumber
pair, and the design parameter vλ scales the overall amplitude of the initial con-
ditions. Other forms for λ1(kx, kz) are also possible, and may be experimented
with in future work.



Laminar flow estimation 31

2.4.2. Modeling of the external disturbances

We will assume the external disturbance forcing f in (3) to be a stationary white
Gaussian process (a signal that is uncorrelated in time), with autocorrelation

E[fj(x, y, z, t)fk(x + rx, y′, z + rz, t
′)] = δ(t − t′)︸ ︷︷ ︸

Temporal

Qfjfk
(y, y′, rx, rz)︸ ︷︷ ︸
Spatial

,

where δ(·) is the Dirac δ-function. The assumption of zero time correlation
eases the derivation of the equations for the covariance of the state, and is
appropriate when the characteristic time scales of the external disturbances
are short as compared with the characteristic time scales of the flow system.
When this is not the case, the approach developed herein is easily extended to
incorporate an additional filter in order to “colour” the external disturbances
with appropriate self-correlation time scales (see, e.g., Lewis & Syrmos (1995)).
We will assume a zero mean disturbance forcing

E[fj(x, y, z, t)] = 0.

The remaining property to be described is the spatial extent of the two-point,
one-time, auto-correlation of f over the whole domain

Qfjfk
(y, y′, rx, rz) = E[fj(x, y, z, t)fk(x + rx, y′, z + rz, t)].

The corresponding quantity in Fourier space is a covariance operator of the form
discussed in §2.3, obtained for any wavenumber pair {kx, kz} via the following
integration over the homogeneous directions

Rfjfk
(y, y′) =

∫ ∫
Qfjfk

(y, y′, rx, rz)e−i(kxrx+kzrz)drx drz.

Our model for the autocorrelation of f assumes that the disturbance has a
localised structure, i.e., the two-point correlation of the disturbance decays with
distance, and that the correlations between forcing terms on different velocity
components are zero. These arguments lead to a model of the following form:

Qfjfk
(y, y′, rx, rz) = vf δjk Mx(rx)Mz(rz)My(y, y′), (7)

where 


Mx(rx) =
1

(2πsx)1/2
e−r2

x/2sx ,

Mz(rz) =
1

(2πsz)1/2
e−r2

z/2sz ,

My(y, y′) =
1

(2πsy)1/2
e−(y−y′)2/2sy .

(8)

The design parameters sx and sz in this model for the statistics of f govern the
width of the two-point correlation of the disturbance forcing in the horizontal
directions, thus characterising the localised nature of the structure of the dist-
urbances. The corresponding design parameter in the wall normal direction is
sy. The design parameter vf scales the overall amplitude of the forcing.
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In Fourier space, the covariance Rfjfk
at any wavenumber pair {kx, kz} in

this model may be written as

Rfjfk
(y, y′) = vf δjk FMx(kx)FMz(kz)My(y, y′),

where {FMx(kx) = e−sxk2
x/2,

FMz(kz) = e−szk2
z/2

are the Fourier transform of Mx and Mz. We will denote R = Rff =
diag(Rf1f1 , Rf2f2 , Rf3f3) in the sections that follow.

2.4.3. Modeling of the sensor noise

Each of the three measurements is assumed to be corrupted by sensor noise,
modeled as independent white random processes the amplitude of which is
determined by the assumed quality of the sensors. The covariance of the sensor
noise vector g can thus be described in Fourier space by a diagonal 3×3 matrix
G whose diagonal elements α2

ι are the variances of the sensor noise assumed to
be associated with each individual sensor

Rgι(t),gκ(t′) = δικδ(t − t′)α2
ι ,

where δικ is the Kronecker delta. Thus, in the present work, we assume that
the sensor noise is uncorrelated in both space and time.

When the signal-to-noise ratio is low, the measured signal must be fed
back only gently into the estimator, lest the sensor noise disrupt the estimator.
When the signal-to-noise ratio is high, the measured signal may be fed back
more aggressively into the estimator, as the fidelity of the measurements can
be better trusted. For a given covariance of the initial conditions and external
disturbances, the tuning of the assumed overall magnitude of the sensor noise
in the Kalman filter design thus provides a natural “knob” to regulate the mag-
nitude of the feedback into the estimator. Note that an intermediate amount
of feedback is desired in the estimator design: if the feedback is too weak, the
estimator will not converge very quickly or very accurately, and if the feedback
is too strong, it may knock the estimated flow out of the small perturbation
neighbourhood assumed in the linear model used in its design.

2.5. The Kalman filter

The forced linear equation (3) can be put in the standard state-space form since
the inversion of the Laplacian is facilitated by enforcement of the homogeneous
boundary conditions on Dv. Thus,

q̇ = −M−1L︸ ︷︷ ︸
A

q + M−1T︸ ︷︷ ︸
B

f.

The general state-space formulation of the flow system may thus be written{
q̇ = Aq + Bf, q(0) = q0,

y = Cq + g.
(9)
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The measurement vector y is constructed using the measurement matrix C,
defined as

C =
µ

k2


 ikxD2|wall −ikzD|wall

ikzD
2|wall ikxD|wall

D3|wall 0


 .

This matrix extracts the two components of wall skin friction and the wall
pressure from q.

We now build an estimator of the analogous form{
˙̂q = Aq̂ − v, q̂(0) = 0,

ŷ = Cq̂,
(10)

with feedback
v = Lỹ = L(y − ŷ). (11)

Kalman filter theory, combined with the models outlined in §2.4 for the rele-
vant statistics of the unknown initial conditions q0, the unknown sensor noise g,
and the unknown external forcing f , provides a convenient and mathematically-
rigorous tool for computing the feedback operator L in the estimator described
above such that q̂ converges to an accurate approximation of q. Note that the
volume forcing v used to apply corrections to the estimator is proportional to
the “innovation process” ỹ = y − ŷ, that is, the difference between the mea-
surements of the actual system and the corresponding quantity in the estimator
model.

The solution of the Kalman filter problem in the classical, finite-dimensional
setting is well known (for a succinct presentation, see, e.g., Lewis & Syrmos
(1995) p. 463-470). The corresponding operator equations, though more in-
volved to derive, are completely analogous (see Balakrishnan 1976). Thus, we
will not rederive these equations here. The main results, in both the finite-
dimensional and infinite-dimensional settings, are:

1. the covariance S(t) = Rqq of the flow state q is governed by the Lya-
punov equation

Ṡ(t) = AS(t) + S(t)A∗ + BRB∗, S(0) = S0, (12)

2. for a given L, the covariance P (t) = Rq̃q̃ of the state estimation error
q̃ = q − q̂ is governed by the Lyapunov equation

Ṗ (t) = A0P (t) + P (t)A∗
0 + BRB∗ + LGL∗, P (0) = S0, (13)

where A0 = A + LC, and
3. the value of L which minimizes the expected energy of the state estima-

tion error (that is, which minimizes the trace of P (t)) is given by the
solution of the differential Riccati equation (DRE)

Ṗ (t) = AP (t) + P (t)A∗ + BRB∗ − P (t)C∗G−1CP (t), P (0) = S0, (14a)

L(t) = −P (t)C∗G−1. (14b)
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Note that, for a linear, time-invariant (LTI) system (that is, for A,B,C,R,G
independent of time), the covariance of the estimation error, P (t), and the cor-
responding feedback which minimizes its trace, L(t), follow a transient due to
the effect of the initial condition S0, eventually reaching a steady state in which
Ṗ (t) = 0 and L̇(t) = 0. In order to minimize the magnitude of the transient
of the trace of P (t), it is necessary to solve the differential Riccati equation
given above. If one is only interested in minimizing the trace of P (t) at steady
state, it is sufficient to compute time-independent feedback L by solving the
algebraic Riccati equation (ARE) formed by setting Ṗ (t) = 0 in (14a).

2.6. Numerical issues

2.6.1. Spatial discretization

In order to actually compute the feedback in this problem, it is necessary to
discretize the control equations given in (14a)-(14b) and solve them in the finite-
dimensional setting. Thus, we first need to build the discrete counterparts of
the system operators A, B, C, and their respective adjoints as well as the
disturbance covariances R, G, and S0. The discrete operators are obtained
through enforcement of the Orr–Sommerfeld/Squire equations at each point of
the Gauss–Lobatto grid, using a Chebyshev collocation scheme

fi = f(yi), yi = cos
iπ

N
, i = 1, . . . , N,

where N is the number of gridpoints in the wall-normal direction. The dis-
crete operators and differentiation matrices are determined using the spectral
Matlab Differentiation Matrix Suite of Weideman & Reddy (2000). In par-
ticular, this suite provides fourth-order differentiation matrices invoking the
clamped boundary conditions (f(±1) = f ′(±1) = 0) suggested by Huang &
Sloan (1993) to give an Orr–Sommerfeld matrix with satisfactory numerical
properties, avoiding unstable or lightly-damped spurious eigenmodes. The
spectral differentiation matrices D1, D2, and D3 are combined according to
the equations given previously to compute the discrete matrices A, B, and C in
a straightforward fashion. The calculations reported in this paper used, where
needed, the discrete definition for the adjoint of a matrix, that is, its conjugate
transpose.

The integration weights W (yj) for the Chebyshev grid with the Gauss–
Lobatto collocation points are computed using the algorithm from Hanifi,
Schmid & Henningson (1996). These weights provide spectral accuracy in the
numerical integration used to assemble the energy measure matrix Q.

2.6.2. Solution of the DRE

The calculation of the differential Riccati equation (DRE) is accomplished in
this work using the Chandrasekhar algorithm developed by Kailath (1973).
This elegant algorithm solves a factored form of the DRE at the heart of the
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Kalman filter as given by the spatial discretization of the operators in (14a)-
(14b). It is particularly efficient when these factors are of low rank, which
happens to be the case in the present study.

The main idea in the Chandrasekhar algorithm is to solve an evolution
equation for a factored form of the time derivative of the estimation error
covariance matrix, Ṗ(t). Since it is symmetric, Ṗ(t) can be factored as

Ṗ = L1L
∗
1 − L2L

∗
2 = YHY ∗, Y =

(
L1 L2

)
, H =

(
I 0
0 −I

)
, (15)

where the rank of L1L
∗
1 is the number of positive eigenvalues of Ṗ and the rank

of L2L
∗
2 is the number of negative eigenvalues of Ṗ.

By differentiation of both sides of (14a) and substitution of this factorisa-
tion, it is straightforward to verify that (14a)-(14b) is equivalent to the solution
of the following system:{

L̇(t) = Y (t)HY ∗(t)C∗G−1 , L(0) = −P0C
∗G−1 ,

Ẏ (t) = (A + LC )Y (t) , Y (0)HY ∗(0) = Ṗ(0),
(16)

where Ṗ(0) is easily determined from (13) evaluated at t = 0.
The key to the efficiency of this scheme is to exploit the possibility for an

accurate low-rank approximation of Y . After an eigenvalue decomposition of
Ṗ(0) to determine L1 and L2, we can perform a singular value decomposition
of the matrices L1L

∗
1 and L2L

∗
2 and discard the singular vectors associated with

small singular values, constructing an approximation of Y with the remaining
singular vectors. In this paper, singular values less than 0.01% of the initial
Ṗ matrix norm were discarded, resulting in a reduction of the rank of Y by
approximately 75%.

In the present work, time integration is performed using a standard ex-
plicit fourth-order Runge–Kutta scheme. When only the steady state gain is
needed, we can either march the DRE to steady state using the Chandrasekhar
algorithm or solve directly the ARE via standard techniques based on Schur
factorization (Laub (1991)).

2.6.3. Computation of the expected energy

In the discretized setting, the expected energy of the state q can be extracted
from the discrete covariance matrix S by use of the energy measure matrix
Q such that E[E(q(t))] = Tr(QS(t)), where E(q(t)) denotes the instantaneous
energy of the state q at time t. The expected energy of the state estimation
error q̃ can be found in a similar manner, E[E(q̃(t))] = Tr(QP(t)).

The time evolution of the expected energy may be computed using the
Chandrasekhar method. For example, the time derivative of the expected en-
ergy of the state q can be integrated forward in time from E[E(q(0))] = Tr(QS0),
its value at t = 0, via computation of Tr(QṠ(t)), where Ṡ = YHY ∗, and where
the evolution equation for Y (t) is simply Ẏ (t) = AY (t), with Y (0) determined
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by the factorization Y (0)HY ∗(0) = Ṡ(0) and Ṡ(0) determined by evaluation
of (12) at t = 0. The time derivative of the expected energy of the state esti-
mation error q̃ can be found in a similar manner with, for a given value of L,
Y (t) evolving according to Ẏ (t) = (A+LC )Y (t) and Y (0) determined from the
factorization of Ṗ(0), which itself is determined by evaluation of (13) at t = 0.

3. Single-mode estimation results

In this section we will investigate the performance of the estimator at iso-
lated wavenumber pairs. Unless stated otherwise, the results are computed for
R = 3000, a subcritical Reynolds number characterized by transient growth
phenomena. The design parameters for the stochastic model for the initial
conditions (see §2.4.1) are chosen to be λ2 = 0.5, vλ = 1, and sλ = 0.3. The
design parameters for the stochastic model for the external disturbances (see
§2.4.2) are chosen to be vf = 0.1, sx = sz = 0.2, and sy = 0.1. The design
parameters for the stochastic model for the sensor noise (see §2.4.3) are chosen
to be α1 = α2 = 0.5 (for the shear-stress measurements) and α3 = 0.05 (for
the pressure measurements).

The initial conditions used for the tests at isolated wavenumber pairs are
the “worst-case” initial conditions at these wavenumber pairs, i.e., the initial
conditions that, leveraging the non-normality of the dynamic operator A to the
maximum extent possible, lead to the largest possible transient energy growth.
Such initial conditions are of particular concern in a flow transition scenario.
Its description can be found in, e.g., Schmid & Henningson (2001).

The plots in this section show the evolution of the expected value of the
energy of both the flow state and the state estimation error for initial condi-
tions, sensor noise, and external disturbances distributed as described in the
stochastic models presented in §2.4. Thus, these plots can be interpreted as
an average over a large number of realizations of these stochastic inputs. They
illustrate the effectiveness of the estimator feedback in the presence of the types
of disturbances for which the estimator feedback was designed, namely, uncor-
related, zero-mean, random Gaussian distributions of the same covariance as
specified in the estimator design.

3.1. Evolution of the expected energy of the flow state and the state estimation
error

Figure 1 shows the evolution of both the expected energy of the flow state and
the expected energy of the state estimation error using time-varying feedback
gains for three cases, each of one includes the effect of sensor noise:
1)Nonzero initial conditions with zero external disturbances (dash-dotted curves):
the expected energy of the state estimation error follows an initial transient,
eventually tending exponentially to zero at the decay rate of the least-stable
eigenmode of A + LC since there is no additional excitation. In all flows con-
sidered, the expected energy of the state estimation error is rapidly reduced to
over two orders of magnitude below the expected energy of the flow state.
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Figure 1. Evolution of the expected energy versus time for
three flows of interest at three representative wavenumber
pairs: (top) (0,2), (center) (1,1), and (bottom) (1,0). The
stochastic inputs driving each simulation are: (solid) initial
conditions plus external disturbances, (dashed) external dist-
urbances only, (dash-dot) initial conditions only. Thick lines
represent the expected energy of the flow disturbance and thin
lines represent the expected energy of the estimation error.

2)Nonzero external disturbances with zero initial conditions (dashed curves):
the expected energy of the estimation error monotonically increases towards a
statistical steady state. In the flow considered at wavenumber pair (0,2), the
expected energy of the state estimation error rapidly approaches a value close to
two orders of magnitude below the expected energy of the flow state, indicating
effective estimator convergence. In the flows considered at wavenumber pairs
(1,1) and (1,0), however, the expected energy of the state estimation error is
nearly as large as the expected energy of the flow state itself, indicating poor
convergence of the estimator in these particular flows.
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Figure 2. Maximum (thick lines) and steady state expected
energy (thin lines) for the flow (solid) and the estimation error
(dash) over a range of wavenumber pairs. (a) for kx = 0 and
varying kz. (b) for kz = 1 and varying kx.

3)Both nonzero initial conditions and nonzero external disturbances (solid
curves): as expected, due to the linearity of the system and the additive effects
of the stochastic inputs on the expected energy of the system, this case is given
precisely by the sum of cases (a) and (b).

It is also worth noting that the transient in the expected energy of the
state estimation error is not only of lower amplitude, but is typically much
faster than the transient in the expected energy of the flow state.

Figure 2 shows how the peak and statistical steady state of the expected
energy of the flow state and state estimation error depend on the wavenumber
pair, quantifying the effects seen in Figure 1 for a range of different wavenum-
bers.

3.2. The difficulty of detecting structures in the centre of the channel with
wall sensors

The reason the estimator discussed in the previous section fails to converge
effectively in the flows at wavenumber pairs (1, 1) and (1, 0) when external
disturbances are present is interesting. Bewley & Liu (1998), hereafter referred
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to as BL98, studied extensively the Kalman filter problem in the present flow
system for the following two cases:

case (i): Re = 10000, (kx, kz) = (1, 0),
case (ii): Re = 5000, (kx, kz) = (0, 2).

As shown in Figure 1b of BL98, the leading eigenvectors of A in the (1, 0)
case include several “center” modes with nearly zero support near the wall1.
These modes, which are absent in the (0, 2) case, would be continously excited
by the external disturbances, and are nearly impossible to detect with wall
measurements even if the sensor noise is very low. To quanitfy this notion, the
corresponding “modal observation residuals” gκ are tabulated for both cases in
Tables 1 and 2 of BL98.

Because of the presense of these nearly-unobservable center modes, the
estimation problem is inherently difficult at certain wavenumber pairs when
both external disturbances and sensor noise are present. Thus, the failure of
the Kalman filter developed here to converge accurately for the externally-
disturbed flows in the (1, 0) case and the (1, 1) case, which is characterized by
similar unobservable center modes, is a reflection of the fundamental difficulty
of this estimation problem when only wall measurements are employed, and is
not a shortcoming of the estimation strategy applied in the present work.

To investigate the excitation of the center modes by the external distur-
bance, we may augment the definition of My in (8), which models the wall-
normal distribution of the covariance of the external disturbances f , as

My
augmented = C(p)y2p My.

The parameter p may be chosen to tune the profile of the external disturbances,
with uniform intensity in y if p = 0 or with intensity increasing near the walls
if p > 0, as shown in Figure 3. The constant C(p) is selected such that all
distributions yield of flow with expected energy of 1000 for the various values
of p considered.

The effect of the location of the external disturbances may be seen in Figure
4. For the three wavenumber pairs we show the wall normal distribution of the
expected energy for the flow and the estimation error at the steady state. The
flow is forced both with the external disturbance with p = 0 (solid lines) and
p = 5 (dashed lines). For (0,2) the location of the external disturbance has
nearly no effect. Most of the energy is located in the region of high shear, as
explained by the lift-up effect. For (1,0) though, the absence of forcing in the
center of the domain has a strong influence on where the expected energy is
located. When the excitation is present in the center, it can be seen that the
flow energy as well as the estimation error energy is strongly located close to
y = 0, far from the sensors. This leads to a low estimator performance. For
the p = 5 case, the flow structures related to the center modes are not being
excited , the estimation performance is thus good, as can be seen by the thin

1Note that the shapes of these modes are only weak functions of Reynolds number, so the
same general comments hold true for the Re = 3000 case studied here.
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Figure 3. The wall normal distribution for variance of the
external disturbances. Four cases are shown, corresponding to
p = 0, 1, 3, 5.

(kx, kz) (0,2) (1,1) (0,1)
p = 0 29.9 290.8 549.0
p = 1 26.2 112.9 178.9
p = 3 16.7 38.8 44.1
p = 5 11.9 18.3 16.9

Table 1. The expected value of the steady state estimation
error for three wavenumber pairs and four wall normal dis-
tributions of the amplitude of the external disturbances. For
each case, the magnitude of the external disturbance is scaled
so that the flow expected energy is 1000.

dashed curve. The (1,1) case is an intermediate case, showing the features of
both the two previous cases.

Those results are further illustrated in Table 1, where the expected energy
of the estimation error is shown for p =0, 1, 3, and 5. When the external
disturbance is equally distributed (case p = 0) the estimation performance is
lower for (1,0) than for (0,2) as was allready seen in Figure 1. As the excitation
is closer to the wall, that is, as p increases, the performance increases for each
of the shown wavenumber pairs, until they reach approximately the same value
for p = 5. Clearly, when structure in the center of the channel are not excited,
the estimator has equally good performance for all of those wavenumber pairs.

In any event, the flow structures that typically play the dominant role
in the transition process (and, thus, the flow structures which we are most
interested in estimating accurately) are elongated in the streamwise direction.
That is, the modes of maximum interest have small kx and large kz, without the
problematical center modes. It is also significant to point out that, to model the
effects of wall roughness, it is relevant to tune the external disturbance model
to have increased intensity near the wall, as done in the above discussion.
For turbulent flow, however, the present results imply difficulties in estimation
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Figure 4. The steady state expected energy distribution
along the wall normal direction for the the flow (thick lines)
and the estimation error (thin lines) for three wavenumber
pairs: (top) (0,2), (center) (1,1), and (bottom) (1,0). and
for two wall normal distribution of the external perturbation:
p = 0 (solid) and p = 5 (dash).

possibilities away from the walls. This has been reported by Bewley & Protas
(2003) and Chevalier et al. (2003).

3.3. The utility of time-varying gains in the estimator

The feedback gains L determined by the Kalman filter, computed according
to (14a)-(14b), are inherently a function of time. Thus, as stated previously,
in order to minimize the trace of P (t) during the transient which ensues after
the estimator is turned on, it is necessary to use time-varying feedback gains.
However, for large times, P (t) and L(t) eventually approach statistical steady
state. Thus, if one is not interested in minimizing this transient, one can simply
apply constant feedback gains designed to minimize the expected energy of the
state estimation error at statistical steady state.

It is interesting to compare the possible utility of time-varying gains for
the control and estimation problems. Consider first the problems of optimal
control and optimal estimation over the finite time horizon [0, T ]. As already
seen, the optimal estimation (Kalman filter) problem is solved by a DRE that
marches forward in time from t = 0 to t = T . On the other hand, the optimal
control problem is solved by a (closely-related) DRE that marches backward in
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Figure 5. Comparison of estimation error expected energy
using the time varying gain (thick lines) and steady state gain
(thin lines) for three wavenumber pairs: (0,2) solid, (1,1) dash-
dot and (1,0) dash.

time, from t = T to t = 0. For time invariant systems over a long time horizon
(that is, for large T ), the resulting feedback gains for the estimation problem
exhibit a transient near t = 0 and approach a constant for the remainder
of the march towards t = T , whereas the resulting feedback gains for the
control problem exhibit a transient near t = T and approach a constant for
the remainder of the march towards t = 0. In the limit that T → ∞, the
transient in the gains in the control problem becomes unimportant; however,
the transient in the gains in the estimation problem is still significant, especially
if one is concerned with how rapidly the estimator converges after the control
is turned on. Failure to appreciate this point can lead to the implementation of
constant-gain estimators which do not converge as rapidly as one might desire.

In our previous research on dynamic compensation (Högberg et al. (2003)),
steady state feedback gains for both the control and estimation problems were
used, taking no account of the transient due to the initial condition. The
full-state feedback control problem was found to be solved successfully with
this approach for a large number of relevant flow cases. However, the state
estimation problem was not found to be solved effectively by this approach,
and was left as an important open problem.

It is now clear that we cannot expect good estimation performance during
the initial transient using the steady state estimation gain if the initial condition
has strong effect on the flow. This can be seen in Figure 5 where the expected
energy evolution of the estimation error is plotted for the steady state gain
(thin lines) and the time varying one (thick lines). Both the steady state and
the time varying gain give small errors in the steady state regime, but the error
peak that is seen for short times when using the steady state gain is reduced
when the time varying one is applied. By taking the covariance of the initial
condition into account, we have a direct means to input knowledge about the
flow case of interest. The amplitudes and the shape of the gains vary in time
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Figure 6. Expected energy of estimation error for individual
measurements for three wavenumber pairs: (a) (0,2), (b) (1,1),
and (c) (1,0). Solid thick line is flow expected energy, solid thin
is estimation error expected energy using all measurements.
Estimation error with only pressure (dot), only τx (dash) ,
only τz (dash-dot).

since the flow disturbance originates from an initial condition that is different
from the external disturbance. Thus the gains differ for small and large times.

3.4. Study of the individual measurement

The improvement due to the new description of the external disturbance in
§2.4.2 allowed us to use several measurements. We show here that this flexi-
bility is necessary for good performance to be obtained over a wide range of
wavenumber pairs.

Figure 6 shows the impact of the measurements on the estimation for our
three wavenumber pairs. The measurement τx is responsible for most of the
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Figure 7. Time evolution of the gain amplitudes and mea-
surement signal variance for the wavenumber pair (0,2). (a)
Gain maximum absolute value for the three measurements:
τx (dash-dot), τz (dash) and pressure (dot). (b) variance of
measurement signal (thick) and measurement error (thin) with
same line convention than for the gains.

estimation performance for low kx wavenumber pairs, i.e., for elongated struc-
tures in the streamwise direction. Physically, the estimator can utilize the
strong skin friction footprint associated with the streamwise streaks created be
the lift-up of low momentum fluid by low amplitude streamwise vortices. On
the other hand the pressure measurement is responsible for the convergence of
the two wavenumber pairs with nonzero kx.

The evolution of the gain amplitudes can be seen in Figure 7 as well as the
time evolution of the variance of the measurement signals for the wavenumber
pair (0, 2), i.e. the expected value of the measurement signal squared. Clearly
the growth of the streaks affects the streamwise skin friction measurement. The
variance of the pressure measurement is constant during the process. Note that
both the measurement signals and the measurement error reach a steady state,
and that the measurement error is of lower amplitude.

3.5. The application of frozen time varying gains

Use of the full time history of the gain requires a large amount of computer
memory and computational time. Here we show the performance of frozen
gains picked from the time varying sequence, in order to give an insight into
how a small selection of the full time history of the gain can be used in the
estimation process.

In Figure 8 the expected energy of the estimation error is shown. It can be
seen that when gains from the early time evolution are used, they lead to good
estimation at the beginning of the transient, but yield increased error when the
effect of the initial condition vanishes. As the gain is picked from later times,
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Figure 8. Estimation error expected energy for gains selected
from the time varying scheme and applied constantly, here for
the wavenumber pair (0,2). Tested gains are from times 20, 40,
60, and 80 (solid lines) increasing time shown by the arrow,
compared to the steady state gain (◦) and the time varying
gain (+).

the reduction of the transient error is degraded, but the steady state error is
closer to the optimal. The estimation using the steady state gain itself shows a
high initial transient but converges as expected to the performance of the time
varying gain for later times. This shows that depending on the time interval for
which the estimation is crucial, different gains from the time varying sequence
are preferred.

These results will be used in the next section as a guide when only a few
of the gains from the time dependent sequence are used in the estimation of
the time evolution of a full 3D localised disturbance.

4. Estimation of localised disturbances

The estimator was tested on single wavenumber pair cases. We will now apply
it to a realistic flow case and see how the gains are combined into the kernels,
and assess the overall performance of the estimator.

4.1. Description of the initial condition

The localised disturbances studied by Henningson, Lundbladh & Johansson
(1993) will be used in the tests of the estimation. We will here estimate the
evolution of a low amplitude localised disturbance so that nonlinear effects can
be neglected.
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Figure 9. The Energy content in Fourier space of the initial condition.

The disturbance chosen consists of two counter-rotating vortices of the
form 


ψ =

1
2
εf(y)r2e−(r/l)2 ,

f(y) = (1 + y)2(1 − y)2,

(u, v, w) = (− x

r2
ψy,

1
r
ψr,− z

r2
ψy)e(r/l)2 .

(17)

Here (x, y, z) are the streamwise, normal, and spanwise coordinates respec-
tively, r2 = x2 + z2, and (u, v, w) are the corresponding velocity components.
The horizontal scaling was adjusted through the parameter l which is equal to
1 for the presented simulations so that the maximum energy in Fourier space is
for the wavenumber pairs showing the greatest transient energy growth. The
amplitude ε is 0.001.

4.2. Kernels

The optimisation for a single wavenumber pair produces an estimation feedback
gain which is a function of the wall normal direction. By solving this problem on
a large array of wavenumber pairs and performing an inverse Fourier transform
in the two homogeneous directions we obtain a physical space description of
the three-dimensional estimation kernel to be used in the estimation of the
localised disturbance.

It was shown that the estimation gains are dependent on the expected noise
and initial conditions. First we comment on the global features of both time
varying and steady state kernels and illustrate how the spatial extent of the
steady state kernels is affected by the size of the expected perturbating struc-
tures and the advection speed of the disturbances. For a detailed discussion
of the general features of the estimation kernels, also relevant for the present
results, see Högberg et al. (2003).
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4.2.1. Time varying kernels

The time evolution of the kernel for the streamwise skin friction measurement
is shown in Figure 10. The shape of the kernels varies rapidly for initial times,
since originally all the wavenumber pairs are excited. Also their extent for
short time is similar in streamwise and spanwise directions. Later, the gains
for rapidly decaying wavenumber pairs decay to their steady state values, so
that the ones for slowly evolving wavenumber pairs contribute the most to
the kernel evolution. In addition it was shown in Figure 2 that the external
disturbance excites the flow energy in the wavenumber pairs with low kx the
most. The kernels are thus eventually mostly composed of the gains for those
wavenumber pairs and their streamwise extent increase as the flow evolves to
its steady state.

4.2.2. Steady state kernels

The time varying kernels eventually converge to the steady state kernels. Figure
11 shows their shape for each measurement, and forcing on v and η. It can be
seen how the isosurfaces for the τx measurement steady state kernel resembles
the corresponding ones of Figure 10, for later times.

There is a physical argument for the localisation of the estimation kernels
already discussed for the control problem in Högberg et al. (2003). Measure-
ment taken at the wall are related to corresponding disturbances in the interior
of the domain, and are reconstructed by a volume forcing in the estimator.
Those wall footprints necessarily have to be correlated with disturbances close
to the measurement, implying that the forcing in the estimator will decay with
the distance from the measurement point. This decay distance is related to
the correlation scale of the disturbance structure. The parameters sx, sy, and
sz modeling this length scale in §2.4.2 will thus affect the spatial extent of the
computed kernels. Figure 12 shows for three different values of sz the extent
for the pressure kernel forcing the streamwise velocity component, integrated
in the streamwise and wall-normal directions. It is clear that a disturbance
which is spread out in the spanwise direction, i.e., a disturbance with greater
two-point correlation length scale in the spanwise direction, has a more spread
out kernel. We can also see how a more wide kernel has a lower amplitude,
since the forcing is more distributed.

The streamwise extent of the kernel is less sensitive to the streamwise
length scale of the disturbances, but is instead dependent on the Reynolds
number. In a flow with higher Reynolds number the effect of flow advection is
dominant over the diffusion effect so that information from wall sensors can be
related to structures further upstream. This effect can be clearly seen in Figure
12(b) which shows the same kernel as in 12(a) but integrated in spanwise and
cross-flow directions for three different Reynolds numbers.
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Figure 10. The time varying kernel for time 0, 15, 30, 45,
and 60 relating the streamwise component of the shear stress
measurement error at the point {x = 0, y = −1, z = 0} on
the wall to the estimator forcing terms on wall normal velocity
(left) and wall normal vorticity (right) inside the estimator flow
domain. Visualised are positive (dark) and negative (light)
isosurfaces with isovalue ±5% of the maximum amplitude of
the kernels during the shown time interval.
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Figure 11. The steady state kernels relating the τx (left), τz

(centre), and p (right) measurement at the wall to the forcing in
the estimator domain for v (top) and η (bottom). Visualised are
positive (dark) and negative (light) isosurfaces with isovalue
±5% of the maximum amplitude for each kernel.
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Figure 12. Decay of pressure kernel forcing u. (a) integrated
in streamwise and wall normal direction, for sx = sz = 0.2 (–
), 0.7 (dash), 1.3 (dash-dot). (b) integrated in spanwise and
wall-normal directions for three Reynolds number, Re = 3000
(solid), 2000 (dash), 1000 (dash-dot).

4.3. Flow evolution

We will now test the estimator performance in a specific flow case. Note that
here we perform a deterministic simulation of the evolution of a particular
initial condition, not the stochastic simulation of the mean over an infinite
number of initial conditions and process noise, as was presented for the single
wavenumber pairs in the previous section.
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We will test different models for the covariance of the initial conditions by
varying the parameter λ2 describing how good our knowledge of the statistical
properties of the initial condition is. It is varied from 0 (only noise) to 1 (only
the deterministic initial condition). For these simulations we use the initial
condition in (17) as the “specific” component of S0 in the computation of the
kernels.

We do not use in this section the full time history of the time varying kernel.
Instead we proceed to a gain scheduling, making use of the result from §3.5.
The selection of only one kernel cannot efficiently address the estimation of all
wavenumber pairs since many time scales are present in the energy evolution:
the flow at (kx, kz) = (0, 2) evolves much slower than wavenumber pairs with
kz = 0 for instance. We do a selection of three kernels as follow: the kernel
from time zero is applied to the estimation on the time interval t ∈ [0, 5] to
contribute to the estimation of rapidly decaying wavenumber pairs. This kernel
will barely affect slower wavenumber pairs. The kernel from time 20 is applied
to the estimation on t ∈ [5, 60] to deal with the transient of the estimation
error, and the kernel from time 60 is used for t ≥ 60, to further deal with the
transient as well as the decaying tail of the flow evolution.

Recall that the actual initial condition in the estimator simulation q̃0 is
systematically set to zero, and that only the covariance property of the initial
condition is input to the optimisation. This imply that λ2 = 1 corresponds to
the case where the shape of the initial condition in the wall normal direction is
known but neither the amplitude nor the phase are known. This corresponds
to a flow case where the perturbating source is identified but none of its instan-
taneous properties are known. The case with λ2 = 0 would then correspond to
a situation where any type of disturbance is likely to enter the domain. Models
with λ2 = 0, 0.25, 0.5, 0.75, 1 are applied to the estimation of the same initial
condition in order to illustrate how knowledge of the initial condition affects
the estimator’s performance.

We can see on Figure 13 that the variation of λ2 between 1 and 0.25 barely
affects the performance, when compared to the flow energy or the estimation
with steady state kernel, but clearly the curve for λ2 = 0 shows that when
no information is available on the initial condition, it is preferable to use the
steady state kernel.

Figure 14 illustrates the evolution of the initial condition during the tran-
sient of the estimation error. Isosurfaces for the flow (left) show how the initial
condition spreads in the flow domain and is advected by the mean flow. It is
also clearly seen how the structures become elongated in the streamwise direc-
tion as the energy for wavenumbers with kx = 0 become prominent due to their
large transient growth. One can see in parallel on the right the evolution of the
estimated flow using the kernels with λ2 = 0.5. Initiated with no disturbance,
structures of the flow appear progressively, the measurements at the wall being
fed back through the kernels. Eventually most of the features of the flow are
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Figure 13. The deterministic simulation, with axisymetric
localised initial condition. Flow energy (solid thick), estima-
tion error energy using the steady state kernels (thick dash).
Thin lines are the estimation error energy using a selection of
three kernels from the time varying procedure with λ2 being
respectively 0, 0.25, 0.5, 0.75, and 1. The energy of the initial
flow is normalized to one in this plot.

reconstructed at time 60. Recall from Figure 13 that the disturbance is at an
early stage of its evolution at time 60.

5. Conclusion

We have studied the estimation by measurement feedback of a fluid flow subject
to initial condition and external disturbance, i.e.,disturbance such as acoustic
waves or wall roughness. The limited performance of the estimation in earlier
studies as compared to the performance of the control motivated us to study
the estimation by itself. We found that physical modeling for the external dis-
turbance, as well as a model for the initial condition of the flow to be estimated,
was key to the performance of the estimator.

The use of a physically relevant model for the external disturbance devel-
oped in this paper allowed us to get well resolved estimation kernels for basic
wall quantities as pressure fluctuations and wall shear stresses. We showed how
the model affects the physical properties of the kernels. The spanwise extent of
the external disturbances are related to the spanwise extent of the kernels and
we saw how the streamwise extent of the kernel was dependent on the Reynolds
number. A more specific study on the model for the external disturbance re-
lated to the estimation of a turbulent channel flow is being carried in Chevalier
et al. (2003).

The model for the initial condition was tested on the evolution of a lo-
calised disturbance, and we demonstrated that taking into account transient
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Figure 14. Evolution of a localised disturbance to the state
(left) and the corresponding state estimate (right) at time t = 0
(top), t = 20 (middle), and t = 60 (bottom), with λ2 = 0.5.
Visualised are positive (light) and negative (dark) isosurfaces
of the streamwise component of the velocity. The isovalues are
±10% of the maximum streamwise velocity of the flow during
the shown time interval.
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effects by the use of time varying kernels lead to a clear improvement of the
estimation performance when compared to the estimation method previously
used in transitional problems. In addition we show that this improvement is
dependent on the assumed stochastic disturbances. Indeed in a case where
nothing is know about the flow to be estimated, steady state kernels perform
better.

When the estimation procedure is applied to transitional problems a 3D
model is necessary for both initial condition and external disturbance, intro-
ducing number of design parameters. In addition the time varying procedure
is computationally more demanding since the full time history of the kernel
evolution has to be resolved. Those problem have been tackled by the intro-
duction of generic design parameters which can be related to physical insight on
the flow to be estimated and the adaptation of the Chandrasekhar method for
solving the Riccati equation on flow applications. The problem allows efficient
parallelisation since it is decoupled in Fourier space. Further it was shown that
a good performance of the estimator can be obtained by selecting a few kernels
from the time varying procedure, illustrating that it is the idea of taking into
account the stochastic properties of the initial condition that is central, and
not necessarily the complete treatment of the time evolution.

The estimation gains computed have been tested on flows associated with
individual wavenumber components as well as for the development of localised
disturbances. The estimation performs well for all cases except when stochastic
external noise is present in the centre of the channel for wavenumbers pairs with
nonzero streamwise component.

It is possible to introduce in the objective function of the control problem
an extra penalisation of the final state. The resulting control kernels will then
also be time dependent. This is the subject for future systematic studies on
objective functions. The time varying estimation and control can then be
put together to a dynamic compensator and the applied to linear as well as
nonlinear flow cases.



54 J. Hœpffner, M. Chevalier, T. R. Bewley & D. S. Henningson

References

Balakrishnan, A. V. 1976 Applied functional analysis. Springer.

Bewley, T. R. 2001 Flow control: new challenges for a new renaissance. Progress in
Aerospace Sciences 37, 21–58.

Bewley, T. R. & Liu, S. 1998 Optimal and robust control and estimation of linear
paths to transition. J. Fluid Mech. 365, 305–349.

Bewley, T. R. & Protas, B. 2003 Skin friction and pressure: the “footprints” of
turbulence. Physica D In press.

Chevalier, M., Hœpffner, J., Bewley, T. R. & Henningson, D. S. 2003 State
estimation in wall-bounded flow systems. part II : turbulent flow. To be submitted
.

Gunzberger, M. D. 1996 Perspectives in flow control and optimization. SIAM .

Hanifi, A., Schmid, P. J. & Henningson, D. S. 1996 Transient growth in com-
pressible boundary layer flow. Phys. Fluids 8, 826–836.

Henningson, D. S., Lundbladh, A. & Johansson, A. V. 1993 A mechanism
for bypass transition from localized disturbances in wall-bounded shear flow. J.
Fluid Mech. 250, 169–207.

Henningson, D. S. & Schmid, P. J. 1992 Vector eigenfunction expansions for plane
channel flows. Stud. Appl. Maths 87, 15–43.

Huang, W. & Sloan, D. M. 1993 The pseudo-spectral method for solving differential
eigenvalue problems. J. Comp. Phys. 111, 399–409.
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State estimation in wall-bounded flow systems.
Part II : turbulent flow
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This work aims at estimating a turbulent channel flow at Reτ = 100 based
on a time history of noisy wall measurements of the flow. We do this by
applying plain and extended Kalman filters based on the linearised Navier–
Stokes equations together with a stochastic model based on statistics gathered
from a direct numerical simulations (DNS) of the same turbulent flow we aim
to estimate. By using relevant statistical information when constructing the
stochastic model we obtain well resolved estimation gains for all measurements
and an improved estimation performance compared with simpler choices of
stochastic models. The performance of the Kalman and extended Kalman filter
is quantified through DNS of turbulent channel flow using the incompressible
Navier–Stokes equations.

1. Introduction

Flow control has received much interest in recent years due to the possible
benefits. By, for example, extending the laminar flow region over a wing large
savings in terms of fuel consumption could be made. In other applications
a turbulent flow state is desirable, for example, when one wants to achieve
enhanced mixing in combustion chambers.

Many different strategies to control and reduce the drag in turbulent flows
have been proposed and attempted. Over the years the approaches have gone
from more intuition based toward more systematic and automated approaches.
In order to systemize the control, recent advances in modern control theory
have been introduced and applied to fluid mechanical systems. Reviews of
recent efforts in flow control with model-based feedback control as well as other
strategies can be found in, for example, Bewley (2001), Kim (2003), Gunzberger
(1996), Gad-el-Hak (1996), and also in Högberg, Bewley & Henningson (2003).
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Linear model-based feedback control based on noisy measurements can be
divided in two independent sub problems: the control problem and the estima-
tion problem. The control problem requires full state information to determine
an effective feedback control. Full state information however is not accessible
in real applications. One can solve instead the estimation problem where time
resolved measurements of the flow state with wall sensors are used in an on-line
simulation where the flow state is reconstructed. The combined problem of flow
control and state estimation is often referred to as a compensator. The effec-
tiveness of the compensator depend on the performance of both sub problems.
Even though promising results have been obtained with compensators, as for
example in Bewley & Liu (1998) and Högberg et al. (2003), much remains to
be done on the efficiency of the estimator problem.

An important aspect of the linear optimal estimation problem is how to
describe the covariance data that represents the parts of the flow not included
in the dynamical model. This is as important as the choice of objective function
in the corresponding control problem.

The importance of proper disturbance modeling was understood by Jo-
vanovic̀ & Bamieh (2001), where the aim was to construct a stochastic dis-
turbance model for the linearised Navier–Stokes equations such that it created
second order statistics that matched the statistics of a turbulent channel flow.
Nevertheless, little has been accomplished in terms of application of appro-
priate disturbance models for flow estimation and control in the published
literature. In Bewley & Liu (1998), Joshi, Speyer & Kim (1999), and Högberg
et al. (2003) the covariance of the external disturbances was modeled at sin-
gle wavenumber pairs by assuming a zero spatial correlation. In a study by
Hœpffner et al. (2003) another stochastic model for the external disturbances
acting on the flow system was proposed. They introduced a spatially corre-
lated model for the external disturbances (models used in previous studies the
stochastic model assumed constant variance in the wall-normal direction for
the disturbances and zero correlation at different positions between the chan-
nel walls). By introducing the new stochastic model, more wall measurements
could be computed. This was performed for a transitional channel flow.

In order to further study the impact of the choice of stochastic model we
choose to study a turbulent channel flow. In the present paper, we base the
stochastic model of the external disturbances on turbulent DNS statistics. By
so doing, the stochastic model accounts for nonlinear and turbulent mean flow
effects otherwise missing in the linearised Navier–Stokes equations.

1.1. Outline

The present work is essentially divided in three parts. In the first part we collect
statistical data from direct numerical simulations of turbulent Poiseuille flow.
That data is used in the second part of the study, where we compute the optimal
estimation gains. The gains are applied to the estimation of a turbulent flow
in the last part of this investigation.
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In §2, the theory related to the estimation problem is presented. Section
3 contains the description of the computations of the statistics, and in §4, the
numerical simulations are presented and discussed. Finally in §5 the results
are summarised and some concluding remarks are made.

2. Estimation theory

A general state-space system can be written on the form
q̇ = Aq + Bf, q(0) = q0,

y = Cq + g,
(1)

where q is the state, A is the linear operator representing the dynamics of the
system. The external disturbances f force the state through B, and q0 is the
initial condition. Operator C extracts the measurements from the state and
g adds a stochastic measurement noise with given statistical properties, which
leaves the actual measured quantity in y. Once we have the physical model on
this form, we can apply the linear estimation theory, see for example Lewis &
Syrmos (1995).

The aim with this study is to construct the covariance R of the random
forcing f , such that it in a statistical sense, represents as much as possible
of the physics neglected in the linearised model and subsequently to quantify
what impact it will have on the estimation process.

Throughout this work we have chosen to study the incompressible plane
channel flow. In order to fit the Navier–Stokes equations into the dynamical
model we linearise about the turbulent mean flow profile at a Reynolds number,
Reτ = 100.

2.1. System dynamics

In order to construct the operator A, we assume a periodic flow in the stream-
wise and spanwise directions. This allow a Fourier decomposition into wavenum-
ber pairs (kx, kz). This, together with the linearisation of the Navier–Stokes
equations and reformulation to the (v, η) form where v is the wall normal ve-
locity and η is the wall normal vorticity, yield the Orr–Sommerfeld/Squire
equations (

∆ ˙̂v
˙̂η

)
=

( LOS 0
LC LSQ

) (
v̂
η̂

)
, (2)

where
LOS = −ikxU∆ + ikxU ′′ + ∆2/Re,

LSQ = −ikxU + ∆/Re,

LC = −ikzU
′.

(3)

Here Re is the Reynolds number based on the centreline velocity and the chan-
nel half-width. In terms of equation (1) the state q is defined as

q =
(

v̂
η̂

)
, (4)
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The operator A is constructed as

A =
(

∆ 0
0 I

)−1 ( LOS 0
LC LSQ

)
. (5)

Above, hats accents (̂ ) indicate Fourier transformed quantities but will be left
out in the rest of the paper. The Laplacian operator is denoted ∆ = D2 − k2,
where D is the wall-normal derivative and k2 = k2

x + k2
z . For details on this

derivation see, for example, Schmid & Henningson (2001).

2.2. Stochastic forcing

A simple assumption is to let f be a zero-mean white noise Gaussian process
that is uncorrelated in space. But by computing the statistical properties of
the turbulent flow, we can improve the dynamical stochastic system to better
match the Navier–Stokes equations.

By linearising the incomprehensible Navier–Stokes equations about a tur-
bulent mean flow velocity profile U and decomposing the flow in two parts
as

u = ũ + U,

where ũ, ṽ, w̃, and p̃ are the fluctuating parts of the flow, we get the following
nonlinear equations

∂ũ

∂t
+U

∂ũ

∂x
+ ṽ

∂U

∂y
= −∂p̃

∂x
+

1
Re

∆ũ + f1,

∂ṽ

∂t
+U

∂ṽ

∂x
= −∂p̃

∂y
+

1
Re

∆ṽ + f2,

∂w̃

∂t
+U

∂w̃

∂x
= −∂p̃

∂z
+

1
Re

∆w̃ + f3,

(6)

where the vector f = (f1, f2, f3)T constitutes a volume forcing including the
terms left out in the linearised equations. This yields the following definition
of f ,

f1 = −ũ
∂ũ

∂x
− ṽ

∂ũ

∂y
− w̃

∂ũ

∂z
− ∂P

∂x
+

1
Re

∂2U

∂y2
,

f2 = −ũ
∂ṽ

∂x
− ṽ

∂ṽ

∂y
− w̃

∂ṽ

∂z
,

f3 = −ũ
∂w̃

∂x
− ṽ

∂w̃

∂y
− w̃

∂w̃

∂z
.

(7)

Note that since we linearise about a turbulent mean flow profile and not the
laminar flow profile we get the additional last two terms in f1. To transform
(6) to v, η form we take the divergence of each equation and add them together
which yield an expression for the Laplacian of the pressure perturbation

∇2p̃ = −2
∂U

∂y

∂ṽ

∂x
+ ∇ · f. (8)
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By taking the wall-normal derivative of (8) and applying ∆ on equation (6) we
eliminate the disturbance pressure and get an equation in v only. We can thus
identify the forcing term fv and fη as

fv = − ∂

∂y
(∇ · f) + ∆f2 = − ∂2f1

∂y∂x
+

∂2f2

∂x2
+

∂2f2

∂z2
− ∂2f3

∂y∂z
,

fη =
∂f1

∂z
− ∂f3

∂x
,

(9)

Note that the evolution model is the same independently of what profile we
linearise about as long as U = U(y) and P = P (x) since

∂2

∂y∂x

(
−∂P

∂x
+

1
Re

∂2U

∂y2

)
= 0. (10)

This derivation yields the final form for operator B in the state-space system
(1) as

B =
(

∆ 0
0 I

)−1 (
ikxD k2 ikzD
ikz 0 −ikx.

)
. (11)

2.3. Measurements

We want to extract as much information as possible about the flow from the
measurements. The actual measured quantities can be chosen in many different
ways but in this study we have chosen to look at the wall-normal derivative
of the wall-normal vorticity ηy, the second wall-normal derivative of the wall-
normal velocity vyy, and the pressure in the linearised system. This particular
choice was convenient since we work with the wall-normal velocity and wall-
normal vorticity when we compute the estimation gains. The current choice of
measurements gives the following measurement matrix

C =
1

Re


 0 D

D2 0
D3/k2 0


 . (12)

Each measurement is assumed to be affected by a zero-mean stationary
white noise process. The parameters are collected in the 3 × 3 matrix G,
defined as

G =


 αη 0 0

0 αv 0
0 0 αp


 , (13)

where αη, αv, and αp represent the α-value for the measurements ηy, vyy,
and p respectively. The α-values reflect the balance between the magnitude of
measurement noise and the magnitude of the model disturbances. A relatively
low α-value indicates that the signal-to-noise ratio is high and that we trust
the measurement. This in turn will render a strong gain.

If the measured quantity and the model describing the physics were free
from modeling error and noise, we could set α close too zero. However, in a
DNS, a too strong volume forcing would require shorter time steps.



64 M. Chevalier1,2, J. Hœpffner2, T. R. Bewley3 and D. S. Henningson1,2

2.4. Estimation error

We build an estimator analogous to the stochastic dynamical system (1) as

˙̂q = Aq̂ − v, q̂(0) = q̂0,

ŷ = Cq̂,
(14)

where q̂ is the estimated state and ŷ is the measurement of the estimated flow.
The volume forcing v, defined as

v = L(y − ŷ) = Lỹ, (15)

is the feedback of the measurement error ỹ through the estimation feedback
gain L. As the error between the plant and the estimator approaches zero the
volume forcing also tends to zero. The choice of L is crucial for fast convergence
of the estimated system toward the real system. In this study we use an optimal
L based on Kalman filter theory and the resulting estimator is known as a
Kalman filter (Kalman & Bucy (1960)).

To derive the optimal estimator gain L we first need to define the estimation
error system

˙̃q = (A + LC)q̃ + Bf + Lg, q̃(0) = q0 − q̂0, (16)

where q̃ = q− q̂ is the state estimation error. Thus the error is governed by the
dynamics A, the feedback LC and both the process and measurement noise f
and g. By taking the mean of equation (16) we get a deterministic system

E[ ˙̂q] = A0E[q̃] + BE[f ] + LE[g], E[q̃0] = 0, (17)

where the noise terms disappear since we assume that they have zero mean.
The corresponding equation for the second-order moment of the estimation
error, P (t) = E[q̃q̃∗], is the following Lyapunov equation

Ṗ (t) = A0P (t) + P (t)A∗
0 + cov(Bf + Lg), P (0) = P0, (18)

where P0 is the covariance of the initial state estimation error. For details on
the derivation see, for example, Balakrishnan (1976).

Better gains will make the expected covariance come closer to zero. To
render the computational problem more tractable, we are solving for the sta-
tionary infinite time horizon solution which makes the time derivative in the
Lyapunov equation (18) disappear. To find the gain L we minimise the ex-
pected variance of the estimation error, which can be expressed as the trace of
P . This is done for all wavenumber pairs separately.

The error covariance P , with the optimal gain L applied, can be computed
by solving an operator Riccati equation

AP + PA∗ + BRB∗ − PC∗G−1CP = 0, (19)

and once it is solved we can compute the optimal gain L as follows

L = −PC∗G−1. (20)
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Note that we are going to extract the covariance of f , denoted R, in equation
(19) to render a more efficient L, see §3.1 for details.

Estimation gains for single wavenumber pairs for the Orr–Sommerfeld/Squire
operator pairs were considered in, for example, Bewley & Liu (1998) and
Hœpffner et al. (2003). For details on discretization of the operators and im-
plementation issues see, for example, Högberg et al. (2003).

3. Statistics

The performance of the estimator can be improved by computing statistical
properties of the forcing term f instead of assuming the stochastic model be
spatially uncorrelated. A step in that direction is to compute the second order
moments of f in a DNS and use that information when solving the estimation
problem. To fit the moments into the standard state-space system (1), we
model f as a stationary white noise process. Furthermore we assume that we
have zero-mean forcing,

E[fi(x, y, z, t)] = 0, i = 1, 2, 3.

These assumptions are only a first attempt to evaluate the importance of a
better statistical modeling. Extending the state-space model to incorporate
both statistics of the dominant frequencies as well as non zero-mean forcing is
possible but in this study we have chosen to focus on the spatial behaviour.

The mean quantities that we are interested in are obtained from the ex-
pectation operator E[·] defined as the average over all possible realizations of
f .

3.1. Two-point correlation

In physical space, the covariance of f is defined as

cov(fi, fj) = E[fi(x, y, z, t)fj(x + rx, y′, z + rz, t
′)] = δ(t − t′)Rij(rx, y, y′, rz),

where δ(·) is Dirac’s δ-function and where

Rij(rx, y, y′, rz) = E[fi(x, y, z)fj(x + rx, y′, z + rz)]. (21)

Indices i = 1, 2, 3 and j = 1, 2, 3 represent the covariance components be-
tween the corresponding components of f . Note that we treat the individual
wavenumber pairs as uncorrelated from each other.

It is more convenient to compute and use the Fourier transform of the two-
point correlation Rij rather than using Rij itself since the estimation problem
is formulated and implemented in Fourier space. The computation of the co-
variance is also simpler since the convolution sum over x and z becomes a
multiplication over kx and kz.

After a Fourier transform of Rij we obtain the two-point spectral density
function Θij defined as

Θij(kx, y, y′, kz) =
1
4π

∫ ∫
e−ikxrx−ikzrzRij(rx, y, y′, rz) drxdrz, (22)
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and
Θij(kx, y, y′, kz) = E[f̂i(kx, y, kz)f̂∗

j (kx, y′, kz)], (23)

where again hat accents (̂ ) denote Fourier transformed quantities left out in
the rest of the paper. Since Rij is a real-valued function, Θij will be Hermitian,

Θij(kx, y, y′, kz) = Θ∗
ij(−kx, y, y′,−kz). (24)

By definition of the two-point spectral density we also have the following sym-
metry

Θij(kx, y, y′, kz) = Θ∗
ji(kx, y′, y, kz). (25)

In addition we also have the following two symmetries due to the Navier–Stokes
equations and the boundary conditions for channel flow

Θij(kx, y, y′, kz) = ±Θ∗
ij(kx,−y,−y′, kz) (26a)

Θij(kx, y, y′, kz) = ±Θ∗
ij(kx, y, y′,−kz) (26b)

where the minus sign is used for i = 2 or j = 2 but not both in equation (26a)
and for i = 3 or j = 3 but not both in equation (26b). See, for example, Moin
& Moser (1989) for similar computations. Finally, for later use, Θ is defined as

Θ =


 Θ11 Θ12 Θ13

Θ21 Θ22 Θ23

Θ31 Θ32 Θ33


 ,

for each wavenumber pair.

4. Numerical results

As described in the previous section the work is divided in three parts. The first
part is to gather statistics of the unmodeled physics in the linearised Navier–
Stokes equations through the forcing term f . That data is used in the next
part when the optimal estimation gains are computed. In the last part the
gains are applied when we estimate a fully turbulent flow with both plain and
extended Kalman filters. An extended filter differs from the plain filter in that
the estimator simulation is governed by the nonlinear Navier–Stokes equations
and forced by the estimator forcing v derived from the linearised model of the
complete system.

In both the first and third part of this work, direct numerical simulations
have been performed of turbulent channel flow at Reτ = 100. For all DNS
calculations the code of Bewley, Moin & Temam (2001) was used. It is a pseu-
dospectral code with 3/2 dealiasing in the streamwise and spanwise directions.
In the wall-normal direction, an energy-conserving second-order finite differ-
ence technique is applied. The marching in time is performed with a hybrid
second-order Crank–Nicolson and third order Runge–Kutta method developed
by Aksevoll & Moin (1995). In this scheme, the wall-normal derivatives are
treated implicitly to improve the stability properties of the code when using
blowing and suction boundary conditions at the walls. The pressure is updated
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Figure 1. The covariance data is taken for wavenumber pair
(kx = 1.5, kz = 6.0). The nine “squares” correspond to the
correlation between the different components of the forcing
vector. From top to bottom the components are f1, f2, and f3

on each axis. The side of each square represents the channel
flow width. The variance is plotted along the diagonal of each
square.

through a fractional step method which also ensures the incompressibility con-
dition.

All simulations are performed for constant mass-flux flow in a computa-
tional box of size 4π × 2 × 4π/3 in x × y × z respectively. The resolution is
42 × 64 × 42 Fourier, finite difference, Fourier modes.

4.1. Steady state statistics of the forcing term

The covariance of the forcing term f = (f1, f2, f3)T is sampled during a DNS
calculation long enough to obtain converged second-order statistics. In the
simulation, the full covariance matrices are computed and all symmetries men-
tioned in §3.1 are used only in a post processing step to increase the convergence
of the data.

In Figure 1 the real (left) and imaginary part (right) of the covariance of f
for wavenumber (kx = 1.5, kz = 6.0) is plotted. The variance (the diagonal of
each square) of the forcing terms is stronger toward the walls as expected due
to the stronger shear in that region and the covariance quickly decreases as the
wall-normal distance between points increases. Note also that there is a pro-
nounced cross-correlation between f1 and f2 but that other cross-correlations
between different forcing components are close to zero. This data is qualita-
tively representative for all wavenumber pairs even though the intensity levels
and relative amplitudes differ.

The size of the covariance data is Nx ×Nz ×N2
y for each correlation com-

ponent of the forcing vector without exploiting any symmetries, where Nx, Ny,
and Nz denote the resolution in the corresponding directions.
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Case αη αv αp R J1/2

1 0.1200 – – I 52
2 0.0037 – – Θ11 52
3 0.0030 0.0030 0.0075 Θ 53

Table 1. The estimation simulations. For the cases when
using one measurement, only the corresponding α is relevant
since the other measurements are excluded from the C-matrix.

4.2. Estimation kernels

As described in section 2.3, in the present formulation there is one parameter
to tune for each measurement. This parameter will affect both the strength
and the shape of the gain. In order to make a fair comparison between the
different stochastic models we construct the following measure

J =
∫ 1

−1

∫ Lx

0

∫ Lz

0

L2
ηy

dx dy dz,

where Lηy
, the gain corresponding to the ηy measurement, is integrated in

all three spatial directions. In case 2 and 3 the αη parameter is tuned so
that the integrated strength J is approximately the same and in case 3 all
three α parameters are tuned together to render the same strength of J (each
α value affects all the gains), see table 1. The reason for only matching the
strength of the ηy gain, even in case 3 where we have three gains, is to make the
comparison as fair as possible. Each measurement captures different physics in
the flow field and we want to see what additional information we get when the
two new measurements are added rather than investigating how the strength
is distributed over estimator gains and how this affects the estimation process.

In case 3 the total strength of the two other measurements is about 20%
stronger than the ηy measurement alone. Note also that αp is higher than
αη and αv which means that the pressure gains are relatively weakened. The
reason being that, for the same α-value, the pressure measurements are stronger
and feeding them back with too strong gains will cause problems in the DNS
calculation.

The resulting strength of the gains require no adjustment of the time step in
the extended Kalman filter DNS to run properly. For the estimation simulations
discussed in section 4.3 we have used gains based on the parameters listed in
table 1.

4.3. Extended Kalman filter simulations

Two simulations are run in parallel, one representing the “real” flow and the
other the estimated flow. The real flow is initiated by a fully turbulent flow
field and the estimated flow is initiated by a turbulent mean flow field with
no disturbances. In the estimator, the volume forcing v computed from the
measurements from both the real and estimated flow and the optimal gains, is
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added, and it forces the estimated flow to converge toward the real flow. For
both systems the nonlinear Navier–Stokes equations are solved. An estimator
that is based on linearized equations and then applied to the full nonlinear
system is called an extended Kalman filter.

To evaluate the performance of the estimator we have computed the cor-
relation between the real flow and the estimated flow throughout the domain
at each instant of time,

corry(q, q̂) =

∫ Lx

0

∫ Lz

0
qq̂ dxdz(∫ Lx

0

∫ Lz

0
q2 dxdz

)1/2 (∫ Lx

0

∫ Lz

0
q̂2 dxdz

)1/2
, (27)

where q and q̂ represent either u, v, w, or p from the real and estimated
flow, respectively. This quantity is averaged in time where the short initial
transient in the correlation is omitted. The transient, as can be seen for the
streamwise velocity u in Figure 5, is quickly passed and the correlation levels
out and stabilises with small fluctuations around some value depending on how
far from the walls we look.

Another useful quantity to study is the error between the real and estimated
flow, also here computed for each flow variable separately,

errny(q, q̂) =

(∫ Lx

0

∫ Lz

0
(q̂ − q)2 dxdz

)1/2

(∫ Lx

0

∫ Lz

0
q2 dxdz

)1/2
. (28)

In another study (Bewley & Protas (2003)), a turbulent channel flow at
Reτ = 180 is estimated from limited measurements with two different meth-
ods. The first method uses Taylor series expansions of the measurements and
it is shown that the flow state can be uniquely determined from the wall mea-
surements if no noise is present. However, this requires that one can compute
higher and higher derivatives of the measurements without loss of accuracy to
converge toward the proper flow from these generally noisy measurements. The
other method is an adjoint approach where one tries to find the initial condition
for the flow that at a certain time gives the best match for all wall measure-
ments during all time. The adjoint method is computationally demanding but
should instead give a very good estimate of the flow at a certain time. Since
the present results are computed for a lower Reynolds number we can compare
the performance only qualitatively, but the general behaviour is the similar.

4.3.1. One measurement - ηy with old and new covariance data

The old covariance data refers to previous studies where the covariance R was
chosen as the identity matrix R = I, as for example in Högberg et al. (2003)
and new covariance data refers to using Θ in (22) for the statistics of f . From
Figure 2 and Figure 3 one can see that only a marginal improvement in terms of
correlation and error is achieved. However, the important result is that we are
now able to compute well resolved estimation gains for all three measurements
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Figure 2. From left to right, the figure shows the correlation,
defined as in equation (27), along the y-axis for the primitive
quantities u, v, w, and pressure. The solid line denotes estima-
tion performed with all three measurements and gains based
on turbulence statistics. The dashed line denotes the estimator
performance using only the ηy measurement with gains based
on the same statistics. The dash-dotted line is the correlation
when using the identity matrix as stochastic model instead.
The thick lines represent the extended Kalman filter correla-
tion, whereas the thin lines represent the plain Kalman filter
correlation.

which was not the case before. The correlation for the u-velocity component
is close to one (perfect correlation) while the other components show only
weak correlation. This is due to the fact that the streamwise disturbance
velocity holds more energy than the other components and that with only the
ηy measurement we are missing a lot of information about what happens in the
flow.

For both cases and all primitive variables the correlation drops off once we
get beyond y+ ≈ 10.

4.3.2. Three measurements

With the new stochastic model it is now possible to compute well resolved gains
for all three measurements which was not possible before with the numerical
scheme that we have used. For details on how that scheme has been applied to
our estimation problem see, for example, Högberg et al. (2003).

In Figure 2 we can clearly see that the correlation between the real and
estimated flow for v, w, and p is greatly improved when the additional mea-
surements are included. Also the correlation for u is improved. However, the
strongest improvement in terms of correlation appears for the pressure which
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Figure 3. The same setup as in Figure 2 but here the relative
estimation error, defined as in equation (28), is plotted instead
of the correlation.

is clearly due to the additional pressure measurement. For the v and w cor-
relation we get smaller improvements but they contain less energy and since
we minimise the expected energy of the estimation error their importance is
relatively lower.

4.4. Plain Kalman filter simulations

The procedure for the plain Kalman filter is the same as for the extended
Kalman filter simulations as described in section 4.3. Here, however we en-
force the turbulent mean flow profile that we linearised about in the estimator
initially and allow no nonlinear interactions to take place. The plain Kalman
filter results are shown in Figure 2 and Figure 3 with thin lines. For the u and
w correlation there is a clear difference between the linear and nonlinear filter
which is expected, but surprisingly the pressure correlation in the plain filter
is even better than the correlation from the nonlinear filter. This might have
to do with the fact that in the plain filter, we actually apply the filter to the
system of equations it is actually constructed for.

In Figure 4, an instantaneous plot of the v velocity component is shown
at y+ = 10 for the flow field and the two different filters, all based on three
measurements. Similar main structures are present in all three flows. At some
instants of time the plain Kalman filter even has a better match compared
to the extended Kalman filter with the real flow but Figure 4 represents the
general picture. The plain Kalman filter performance also drops more quickly
as the wall normal distance is increased.
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Figure 4. Wall normal velocity component v plotted at y+ =
10. In the top figure the flow is plotted. The middle plot shows
the velocity field reproduced by the extended Kalman filter
and the bottom plot shows the velocity field reproduced by
the plain Kalman filter. The contour levels range from −1 to
1 where black and white represent the lower and upper bound
respectively.
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Figure 5. The transient of the for the streamwise velocity u
at y+ = 1.5, y+ = 5.5, y+ = 9.7, y+ = 19.8, y+ = 31.5, and
along the channel centreline for case 3 in table 1.

5. Conclusions

We have shown that by using the available statistical information about the
full nonlinear system, and including that information into the estimation gain
computation, we can compute gains for other measurements than just ηy and
get a better correlation between the real and estimated flow, both measured
in maximum correlation as well as how far into the channel the correlation
reaches compared to using a spatially uncorrelated stochastic model. Also, the
estimation gains can be transformed to physical space to form localised kernels.

In another study, Hœpffner et al. (2003), estimation of a transitional flow is
investigated and it is shown that a spatial Gaussian distribution model for the
covariance is enough to get well-resolved estimation gains. That fact together
with the result from the present study indicates that the choice of the distur-
bance model is important but that a detailed modeling may be less important.

The plain Kalman filter compared to the extended Kalman filter is per-
forming surprisingly well. The estimated state from the plain filter degrades
faster with the wall-normal distance but the main structures are captured close
to the wall even though the strength of the structures in general is weaker. The
extended Kalman filter manages to capture the structures further into the do-
main and also with a more correct strength.

To further improve the covariance modeling of the forcing f , we can take
into account dominant frequencies of the “shape” functions that we can extract
from the covariance data for each wavenumber pair and by so doing incorpo-
rate also temporal information about the turbulent flow. One other limiting
assumption in the present work is that we assume that the forcing term f has
zero mean. In theory, it is straightforward to extend the model to include both
these effects.
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Many complex flows exhibit low-dimensionality. The central dynamical mech-
anisms can thus be targeted in a low-dimensional model. Linear system theory
provides us with numerous techniques to achieve the reduction of dynamic
models. We investigate in this paper the control of small disturbances in the
plane channel flow, and apply modal truncation to the high-order controller
designed using optimal control theory. It is found that a controller with mod-
erate strength can be highly truncated with little degradation of the control
performance.

1. Introduction

The apparent low-dimensionality of many commonly studied flows can be seen
by proper orthogonal decomposition (POD) i.e. by extracting the most ener-
getic coherent structures of the flow. Most of the energy content of the flow is
typically contained in a small number of the extracted modes. In addition, it is
sometimes not necessary to know the evolution of the complete flow state. For
instance, small scales of the motion are not resolved in turbulence modeling.
An other example is the dynamical system whose input-output response only
plays a role. In this case, states immaterial to the system response can be
removed with little deterioration.

Need for low-order models is widespread. A simple model exhibit the
fundamental mechanism of the system studied and enlighten the underlying
physics. The need also comes from engineering, and in particular in the domain
of control. Recent advances of control theory lead to controllers with size of
the same order than the model for the system or even higher. This limits
drastically the implementability since the on-line computation required by the
controller have to be fast enough to catch up with the evolution of the real
systems.

Flow control is recently subject of much research effort. All types of control
objectives can be considered as for instance preventing the growth of small dist-
urbances to a basic flow, avoiding separation, relaminarizing turbulent flows, or
even locking instationnary processes. Particularly, flow feedback control based
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on linear control theory has been studied in many aspects (see e.g. Bewley
(2001)). Such systems are typically of large order and with physical processes
relatively rapid. Real implementation would greatly benefit from an efficient
model reduction.

Control theory provides well developed tools for controller reduction for
linear systems. Extensive description can be found in Obinata & Anderson
(2001). To obtain a low order controller, one can either design directly a low
order controller for a high order system (direct method). Such method are of-
ten computationally chalenging and do not rely on standard controller design
method as LQG, or H∞. One can alternatively design a low order controller
by a standard method, either by first reducing the order of the system to be
controlled, and then designing the controller, or by designing a high order con-
troller and reduce it afterward. Techniques for the later are becoming available,
that not only take the controller into account, but also the system that is con-
trolled. That way, one can seek to maintain the closed loop performance or
retain stability through the reduction. Note that it is more attractive to first
design a high order controller using the high order model of the system and then
reduce it, since one wants to introduce the reduction error as late as possible.
This should be done only if the cost for the controller computation precludes
from designing it using the full order system.

Nevertheless, this paper is a preliminary study. We apply here a simple
model reduction technique, i.e. we apply model reduction to the controller
instead of controller reduction. That way, we have no formal guarantee for
maintained closed loop performance. The most widely used procedures for
model reduction rely on projection of the system on a reduced linear subspace,
assuming then the states discarded in the projection to be zero as in the trunca-
tion method, or fixing them to their steady state as in the singular perturbation
method. For those method, the critical step is the determination of a subspace
within which most of the dynamics takes place. This can as a first choice be
done by selection of a subset of eigenmodes of the system, since they carry
a physical meaning. For example highly damped modes may contribute little
to the dynamics. In a numerical setting, spurious modes originating from the
discretization of an infinite dimensional system may be removed.

The selection of this subspace can also be justified from an input-output
point of view, for example, the system to be reduced can be a controller: its
input is the measurements from the flow system (for instance the wall shear
stress), and its output is the control to be performed in the flow (for instance
blowing and suction at the walls). Its states that are not affected by the input
i.e uncontrollable, and are not detectable at the output i.e. unobservable, play
no role in the performance of the closed loop system. They may thus be dis-
carded. That way, states that are little controllable or little observable can be
progressively removed. A measure of the individual controllability and observ-
ability of the states is provided by the modal residuals as will be exemplified
in this paper.
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In the present paper, we investigate the model reduction for the control
of small disturbances in the plane channel flow. The technique used is the
modal truncation, i.e. truncation of states in the basis of the eigenmodes.
After introducing two useful result of linear filtering in §1, we describe the flow
system and the standard LQG control procedure in §2, introducing as well the
stochastic model for the incoming stochastic disturbances and the definition of
the measurement and actuation. The full order controller will then be reduced
in section §3 and applied to the full order flow system in section §4.

2. Two useful results from linear filtering

The flow system studied here is subject to stochastic disturbances. These
disturbance will excite the state of the system. The state and quantities ex-
tracted from the state (e.g. the measurement or the energy) will thus be sto-
chastic quantities that we can describe by their mean and covariance. We
introduce here two useful results of linear filtering. More details can be found
in Söderström (2002).

For a linear dynamic system forced by a stochastic process f with covari-
ance Rff and uncorrelated in time

ẋ = Ax + Bf,

the covariance Rxx of the state x is the solution of a Lyapunov equation

ARxx + RxxA+ + Rff = 0. (1)

Where the superscript+ stands for the associated adjoint operator (hermitian
transpose for discrete operators). The diagonal elements of the covariance
operator are the variances of the associated state variables, and the total flow
energy can be extracted from these diagonal elements. We will use this equation
for example to compute the flow energy due to a chosen external disturbances,
and assess the control performance.

With B a linear operator, the covariance Rll of l = Bf is

Rll = BRffB+. (2)

We will use this relation for instance to compute the variance of the sensor
signal in the flow to be controlled, knowing the covariance of the flow state
from (1).

3. Flow and control formulation

Here we briefly recall the flow configuration and the control formulation that we
later use for the reduction. For more details on the flow, the numerical method,
and the estimation part, see Hœpffner et al. (2003). For the formulation of the
controller, including the lifting technique, see Högberg et al. (2003). For more
on the control see e.g. Green & Limebeer (1995).
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3.1. Flow configuration

We consider here the 3D flow between two infinite flat plates (at y = ±1) driven
by a pressure gradient in the streamwise (x) direction. we model the flow as
being periodic in the streamwise and spanwise directions x and z, using a com-
putational domain of sufficient extent in these directions. This approach allows
all variables with spatial variation to be expanded in Fourier series. We assume
low amplitude perturbations, so that nonlinear effects can be disregarded. We
thus use the linearised Navier–Stokes equations, Fourier transformed in x and z,
i.e. the Orr–Sommerfeld/Squire equations. We can write the dynamic system
in state space form

q̇ = Ahq + B1f

with flow state q, dynamic operator Ah, and forcing due to external sources f .

3.1.1. Sensors

We assume that we can measure the continuous distribution of streamwise and
spanwise skin friction, and pressure on the wall. We will use this information
to estimate the instantaneous flow state. Each of the three measurements is
assumed to be corrupted by sensor noise, modeled as independent white random
processes, the amplitude of which is determined by the assumed quality of the
sensors. To decide the sensor noise variance, we first compute the covariance of
the flow state when excited by the external disturbance, using (1). From this
covariance we can obtain the variance of the individual sensor signals with use
of (2). We thus set the variance of the individual sensor noises as a proportion
of the signal variance. That way we specify the individual sensor quality by its
signal to noise ratio.

3.1.2. External disturbances

We will assume the external disturbance forcing f to be a stationary white
Gaussian process with zero mean. Our model for the covariance of f assumes
that the disturbance has a localised structure, i.e., the two-point correlation
of the disturbance decays exponentially with distance, and the correlations
between forcing terms on different velocity components are zero. Furthermore,
we assume stronger disturbances close to the wall, where wall roughness is
likely to disturb the velocity field. We thus have the (two point) covariance for
the disturbance

Rfifj
(y, y′) = a r(y)δije

− (y−y′)2
2sy (3)

where f1, f2 and f3 are the external forcing on the streamwise, wall-normal,
and spanwise velocity component u, v, and w. The amplitude factor a is used
to scale the forcing to have a unit flow expected energy. The function r specifies
the variation of the forcing variance with the wall normal coordinate. In this
study, we use r(y) = y10 to have a relatively stronger forcing in the near-wall
region. The parameter sy determines the extent of the two point correlation
between the walls. We use sy = 0.1 throughout this paper.
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3.1.3. Actuation

The actuation is blowing and suction at the wall (wall transpiration) The forc-
ing thus introduced in the system by the boundary condition φ on the wall-
normal velocity is lifted from the wall to a volume forcing by a splitting of the
state q(t) into homogeneous q(t)h and inhomogeneous parts φ(t)qp such that
q = qh + φqp. We then follow the evolution of the system through the homoge-
neous part and force it with the blowing and suction by mean of the function
qp . The inhomogeneous part qp satisfies the non-zero boundary condition on
the wall normal velocity. The dynamic equation thus reads

q̇h = Ahqh + φAhqp − φ̇qp.

It appears that we force the dynamics of the homogeneous part of the state
with the time derivative of the blowing and suction φ̇. Note that we have blow-
ing and actuation at both walls, so that φ is a vector with two components.
Similarly, qp is composed of a function satisfying the non homogeneous bound-
ary conditions at the top wall, and a function satisfying the non homogeneous
boundary condition at the bottom wall qp =

(
qt
p, q

b
p

)
. The augmented state

x = (qh, φ)T obeys the forcing problem:

ẋ = Ax + B1f + B2u (4)

where

A =
(

Ah Ahqp

0 0

)
, B2 =

( −qp

I

)
, u = φ̇. (5)

The function qp may then as well be chosen to satisfy a numerically convenient
equation on the interior of the domain. In the present case we define the lifting
with the proper boundary conditions via the equation Ahqp = 0 so that qp is a
stationary solution of the forced problem with unit blowing at the walls.

3.1.4. Control objective

Our control objective is to minimise the kinetic energy of the fluctuation about
the laminar mean profile. Hindering the growth of small perturbation thus pre-
vent secondary instabilities and further transition to turbulence. This objective
can be expressed in a quadratic norm

J (q, u) = E[||q|| + 
2||u||2] (6)

where E[·] is the expectation operator and ||q|| denotes the instantaneous flow
energy. Note that the control signal is the time derivative of the blowing and
suction, so that we both penalise the blowing and suction amplitude through
the flow energy term, and the time derivative of the blowing and suction,
enforcing thus a smooth actuation.
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3.2. Control formulation

We recall the LQG control formulation, see e.g. Green & Limebeer (1995).
The systems can be written in state space form{

q̇ = Aq + B1f + B2u

y = Cq + g.
(7)

{
˙̂q = Aq̂ + B2u − v

ŷ = Cq̂.
(8)

v = Lỹ = L(y − ŷ), u = Kq̂. (9)
In (7), the flow state q follow the evolution due to the linear dynamic operator
A, and is affected by disturbances on the form of a stochastic forcing f through
B1, and can be controlled by the actuation u through B2. The measurement
vector y is extracted from the state, using the measurement matrix C, and
corrupted by the sensor noise g. The estimator is build with analogous form in
(8). The estimator state q̂ follow the same dynamics as the flow states q and
is forced by a feedback v of the measurement through the estimation gain L in
(9). The flow and estimator states q and q̂ are in turn forced as a feedback u of
the estimated state through the control gain K. The optimal feedback gains L
and K can be computed independently for each wave number pair by solving
two Riccati equations, see e.g. Glover et al. (1989).

The operators for the augmented state are decomposed into homogeneous
part (subscript h) and inhomogeneous part (subscript φ).

B2u =
(

Bh

I

)
u, B1f =

(
Bh1

0

)
f,

y = Cx =
(

Ch, Cφ

) (
q
φ

)
, u =

(
Kh,Kφ

) (
q̂
φ

)
Combining the estimator and the controller, and introducing the feedback laws
L and K, we obtain a state space formulation for the complete closed loop
system
 q̇

φ̇
˙̂q


 =


 Ah BhKφ BhKh

0 Kφ Kh

−LhCh BhKφ Ah + BhKh + LhCh





 q

φ
q̂


+


 Bh1f

0
−Lhg


 .

We can rewrite this system in a more compact form(
ẋ
˙̂q

)
=

(
A BsC0

B0Cs A0

)(
x
q̂

)
+

(
fs

f0

)
with

A0 = Ah + BhKh + LhCh,

B0 =
( −Lh,Bh

)
, C0 = Kh, f0 = −Lhg

Bs =
(

Bh

I

)
, Cs =

(
Ch 0
0 Kφ

)
, fs =

(
Bh1f

0

)
.
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In this form, we can identify the system to be controlled{
ẋ = Aqh + Bsu + fs

y = Csx
(10)

and the controller {
˙̂qh = A0q̂h + B0y + f0

u = C0q̂h

(11)

Note that the measurement is the output from the system to be controlled, and
is the input of the controller. Similarly, the control signal is the output of the
controller, but is the input of the system to be controlled. The connection of
those two system is the closed loop control system.

3.3. Numerics

To compute the feedback in this problem, we discretize the control equations
and solve them in the finite-dimensional setting. The discrete operators are
obtained through enforcement of the Orr–Sommerfeld/Squire equations at each
point of the Gauss–Lobatto grid, using a Chebyshev collocation scheme (see
e.g. Weideman & Reddy (2000)). For all presented cases, the system was
discretized using 152 Chebychev polynomials in the wall normal direction.

4. Reduction of the controller

The controller system has as input the measurement from the flow and as
output the optimal control signal. We can discard from the dynamics of the
controller the states that contributes little to its input-output response. We
will first project a state space representation of the controller in the basis of
its eigenmodes, and then truncate eigenmodes that are little controllable, little
observable and highly damped, i.e. that are little affected by the input, and
that affect little the output. The reduction will be performed on the controller
system in (11).

4.1. Projection

The projection can be performed by means of a set of vector biorthonormal
to the basis of the eigenvector of the controller dynamics A0. A good choice
are the eigenvector of the adjoint of the controller dynamics, A+

0 . The adjoint
is defined through the choice of an inner-product. We chose here the energy
inner-product. given arbitrary test functions q1 and q2 in the proper space we
define

< A0q1, q2 >=< q1, A
+
0 q2 > +boundary terms

and the boundary terms here vanish since the controller state on which A0

operates, is homogeneous. We have the biorthonormality relation

< qi, q
+
j >= δij

if qi and q+
j are the properly scaled eigenvectors of respectively A0 and its

adjoint.
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In the case of the reduction of the controller, there is no available ana-
lytical expression of the adjoint (on the contrary to the adjoint of the Orr–
Sommerfeld/Squire equation for instance) since the feedback is optimised nu-
merically. We thus use the discrete controller dynamics A0 and its discrete
adjoint A+

0

A+
0 = Q−1AH

0 Q

where the superscript H stands for the hermitian transpose, and where Q is the
energy measure matrix. We can now define the discrete energy inner-product

< q1, q2 >= qH
2 Qq1.

Note that Q is positive definite, so that its inverse is well behaved.
It is now straightforward to project the controller state q, the dynamics

A0, and the input and output operators B0 and C0{
k̇ = AM

0 k + BM
0 y

u = CM
0 k

with
ki =< q, q+

i >, AM
0 (i, j) =< A0, q

+
i > qj ,

BM
0 (i) =< B0, q

+
i >, CM

0 (j) = C0qj

where the superscript M stands for “modal”, i.e. expanded in the basis of the
eigenmodes. Naturally, AM

0 is the diagonal matrix of the eigenvalues λi of A0

and ki are the expantion coeficient of the state on the basis of the eigenvectors.
Recall that we have 6 measurement (two components of the skin friction and
pressure at both walls) and 2 actuation variables (wall normal velocity at both
walls) so that B0 and C0 are matrices. The projected system thus writes





k̇1

k̇2

...
k̇N


 =




λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λN







k1

k2

...
kN


 +




< B0, q
+
1 >

< B0, q
+
2 >

...
< B0, q

+
N >





 y1

...
y6




(
u1

u2

)
=

(
C0q1, C0q2, . . . , C0qN

)



k1

k2

...
kN




(12)

4.2. Modal residuals and truncation

The dynamical system is now expressed in a convenient basis for truncation,
since the states are decoupled from each other. We can now proceed to the
truncation. We will introduce the modal residuals as a truncation criterion.

The measurement vector y will affect the eigenmode i through the input
fi = || < B0, q

+
i > ||∞. We call this coefficient the control modal residual.

Similarly gi = ||C0qi||∞ is the observability modal residual for eigenmode i. It
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is clear from 12 that a zero fi will forbid any input to excite the associated
ki as well as a zero gi would make the evolution of the corresponding mode
ki undetectable at the output. The exponential decay rate of a single mode
affects as well its role in the system response. A highly damped mode can be
discarded. The truncation criterion thus writes

ci =
figi

−�(λi)
.

It was found in Hœpffner & Henningson (2004) that the controller system A0

can be unstable, even though the full order controller by construction stabilises
the flow. The possibly unstable eigenmodes were retained in this study.

5. Results on modal truncation

In this section, we will show the performance of the controller, and see how this
performance is affected by the reduction. We test the controller on three iso-
lated wavenumber pairs (kx, kz) =(0,2), (1,1), and (1,0). Those three wavenum-
ber pair present typical behaviour in flow transition. (0,2) correspond to
streamwise elongated structures. This is where there is highest potential for
initial transient energy growth (see e.g. Schmid & Henningson (2001)). The
Fourier mode (1,1) correspond to oblique waves. There is less potential for
transient growth, but oblique Fourier components are essential in transition to
turbulence, i.e. where secondary instability processes take place. The Fourier
mode (1,0) correspond to two dimensional waves, propagating in the direction
of the flow. This is the region of Fourier space where the first linear instability
appears when the Reynolds number is increased.

5.1. Test case

Each of those wavenumber pairs is forced with the same stochastic volume
forcing, normalised such that the resulting flow has unit expected energy. The
forcing is chosen to be stronger close to the walls. It was noted in Hœpffner
et al. (2003) that oblique and 2D modes have eigenmodes that are difficult to
detect, because they have no support at the wall. We thus restrict the flow case
to a forcing that would not excite those centre modes. We assume moderate
quality sensors, for which the ratio of the signal variance to the noise variance
is 2. We will then play with the control penalty, allowing stronger or weaker
control, and we will see how this affect the performance of the controller, and
the performance degradation with truncation.

We found that the stronger the controller is, the best the performance, but
also the faster the performance drops when it is truncated. If the controller
is excessively truncated, it may even destabilise the flow. On the other hand,
a milder controller will have lesser performance, but can be highly truncated
with little performance loss. In the result shown here, we chose the control
penalty and measurement noise to obtain little performance degradation with
truncation and still maintain a good full order performance.
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Figure 1. Variance of the individual components of the ve-
locity for the wavenumber pair (0,2), for no control (solid)
and full order control (dashed). One clearly sees that most
of the flow energy is located in the streamwise component of
the velocity (left). The actuation at both walls is visible by
the nonzero variance of the wall normal velocity component at
both walls (centre). One also sees on the spanwise component
of the velocity (right) that some energy is input to the system
by the actuation.

5.1.1. Amplitude of the forcing

The energy of the controlled flow is not zero at the walls, due to the blowing
and suction. This effect can be clearly seen when plotting the variance of
each velocity component separately, as figure 1, since the wall normal velocity
contributes less to the total energy but is directly affected by the actuation.
It is known that streamwise elongated vortices of the order 1/Re can generate
streamwise streaks of order one by interaction with the mean flow. It is clearly
the case here, for the wavenumber pair (0,2). The actuation with an energy
of low magnitude (O(10−4)) act directly on the streamwise vortices, and have
thus an effect of order one on the flow energy.
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Figure 2. Expected energy of the flow perturbation when ex-
cited by a stochastic forcing, as a function of the wall normal
coordinate for three wavenumber pairs (0,2) (top), (1,1) (mid-
dle) and (1,0) (bottom). The flow (◦) is normalised to unit
energy. The energy of the flow controlled with full order con-
troller (solid) can be compared to the energy resulting from
the reduced controller truncated to 10 modes (dash-dotted),
and 5 modes (dashed).

5.2. Description of the results

See figure 2 for the variation with the wall normal coordinate of the expected
energy for the flow and controlled flow. We use the full order controller as a
reference, and show the performance for the controller truncated to 10 and 5
eigenmodes. The flow and controlled flow expected energy is located close to
the wall, due to the stronger forcing there, and due to the strong shear.
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Figure 3. The truncation criterion plotted over the spectra
of the controller in complex plane. The criterion takes into
account observability, controllability and decay rate of the in-
dividual eigenmodes. Eigenmodes with a low criterion are dis-
carded first.

5.2.1. The modal residuals

The selection of eigenmodes of the controller is done using the modal residuals
as a criterion. If only a small number of modes are jointly observable and
controllable, the controller can be efficiently truncated. Figure 3 presents the
truncation criterion for the wavenumber (1,1) plotted over its spectra in the
complex plane. We could not observe clear difference between the truncation
criterion for strong and mild controller.

6. Conclusion

Recent research effort shows that many complex flows can be described by low-
dimensional representations. Linear system theory provides powerful tools to
achieve reduction of linear models. We applied in this paper a modal trunca-
tion method on a controller for a channel flow with small disturbances. The
controller uses wall shear stress and pressure measurement to estimate the flow
state and wall transpiration to affect the growth of the disturbances. To reduce
the full order controller, we projected the controller system on the basis of its
eigenvectors. This projection could be achieved by use of the biorthogonality
between the eigenvectors and adjoint eigenvectors. We then discarded the states
corresponding to eigenmodes that are highly damped, poorly controllable and
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poorly observable. The performance of the reduction was then assessed against
the performance of the full order controller for spatially correlated stochastic
forcing, on three individual wavenumber pairs.

The performance of the reduced controller was found to be little affected
by the truncation if the controller has moderate strength. Truncating a con-
troller designed with a low control penalty and a low measurement noise lead
to rapid loss of performance when truncating, and may even render the system
unstable. Indeed there is no guarantee of maintained stability for this controller
reduction technique. Nevertheless, if the controller is properly designed, with
an efficient actuation and sensing, as well as proper disturbance model and
objective function, good performance can be achieved with a mild controller.
This controller can in turn be efficiently reduced.

It should be noted that the system that is to be controlled is infinite dimen-
sional. There are thus two successive model reduction techniques performed
in this paper. The first one is the projection of the linearised Navier–Stokes
equation on Fourier modes and Chebyshev polynomials, and truncation to an
affordable computational resolution. The controller optimisation is performed
on this discretised version of the system. The second reduction is then the
projection of the controller on the basis of its eigenmodes and then truncation.
We decided in this work to build an accurate discretised version of the system
(where most of the important physical mechanism are included) that we then
highly truncate after the optimisation.

This work is a preliminary study of model reduction applied to controller
in flow control. A simple truncation criterion and projection basis was used.
Numerous techniques are available to perform controller and model reduction
in a more systematic way, that should be tried on similar flow cases. It would
be interesting to obtain controllers for more general flow cases, for instance flow
with curvature, finite amount of sensors and actuators properly located, sec-
ondary instability, etc... Appropriate dynamic models for such flow cases may
generate unwieldy computational tasks. Properly performed model reduction
can thus open a rich domain of application for the standard control technique
used in this paper.
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Coupling sensors to actuators in flow control

By J. Hœpffner1 & D. S. Henningson1,2

1Department of Mechanics, Royal Institute of Technology, S-100 44, Stockholm,
Sweden

2The Swedish Defense Research Agency (FOI), SE-172 90, Stockholm, Sweden

Feedback control uses the signals from the sensors to decide the proper reaction
toward a control objective. We show that a transfer function representation is
a relevant tool for analysis and implementation of the controller for physical
systems with spatially distributed sensing and actuating. We found that the
transfer function may be unstable even though the closed loop system is stable
by construction. We identified the cause of this instability as the dependence
of the transfer function input on its output when the control loop is closed.
We redefined the input of the transfer function to include this dependence, and
studied the properties of the controller through the transfer function represen-
tation. The method is exemplified on control of wave packets in a laminar
Poiseuille flow.

1. Introduction

In many applications like aeroplane wings, pipes, turbine blades, etc ... growth
of small perturbations can lead to transition to turbulence and thus to increase
of friction drag. It appears crucial to affect the flow for the engineering applica-
tion at hand. Control is being increasingly applied to fluid flow as the theories
and devices are being developed. A powerful theory for linear feedback control
is available and can be applied to flow control, assuming a linear dynamics for
the flow (small amplitude disturbances), with a quadratic objective function,
and a Gaussian distribution for the disturbances. This method known as LQG
or L2 control (Green & Limebeer (1995)) is used in this paper.

The optimal linear feedback design can be decomposed into two sub-problems.
First the flow state is to be estimated from sensor information. This is a sto-
chastic problem where the disturbances affecting the system are described by
their covariance over the flow domain. The second part is to apply control in
the flow using the state information gathered in the estimation. The separa-
tion principle (see e.g. Green & Limebeer (1995)) formally prove that those two
problems are decoupled. This leads to great conceptual simplifications when it
comes to understand and tune separately the two steps of the controller design.
However this decomposition may be an obstacle for a physical understanding of
the complete feedback process. Feedback is about the relation between sensors
and actuators.

93
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We have a tool to represent this relation between sensors and actuators.
The transfer function is a natural representation, and is of common use for
linear system, see e.g. Kailath (1980). It can also be used for example to rep-
resent the energy response of the systems to excitations (Jovanovic̀ & Bamieh
(2001)) or the controller performance (Bewley & Liu (1998)). In the case of the
control of a channel flow, a transfer function can tie information from the wall
to actuation at the wall, thus reducing the space in which to study the feed-
back. Furthermore, this transfer function will have spatial properties that are
of physical relevance: localisation of the feedback (which sensors are actually
used by a specific actuator), how the convection speed of flow structures affects
the relation between sensors and actuators, time scales and spatial scales of
this relation.

A common formulation for stability studies in shear flows is the temporal
formulation. Assuming a periodic domain in streamwise and spanwise direc-
tion, one can look at the temporal evolution of isolated Fourier modes. The
control problem is then decoupled in Fourier space. The control nevertheless
retains a spatial structure after inverse Fourier transform, as does the flow,
which is of significance in transition control. The transfer function give explicit
information on the spatio-temporal structure of the controller, which provides
a useful tool for analysis.

2. Control and estimation

We recall the LQG control formulation, see e.g. Green & Limebeer (1995).
The systems can be written in state space{

q̇ = Aq + B1f + B2u

y = Cq + g.
(1)

{
˙̂q = Aq̂ + B2u − v

ŷ = Cq̂.
(2)

v = Lỹ = L(y − ŷ), u = Kq̂. (3)
In (1), the flow state q follow the evolution due to the linear dynamic operator
A, and is affected by disturbances on the form of a stochastic forcing f through
the input B1, and can be controlled by the actuation u through B2. The mea-
surement vector y is extracted from the state, using the measurement matrix
C, and corrupted by the sensor noise g. The estimator is built with analogous
form in (2). The estimator state q̂ follow the same dynamics as the flow state q
and is forced by a feedback v of the measurement through the estimation gain
L in (3). The flow and estimator states q and q̂ are in turn forced as a feedback
u of the estimated state through the control gain K. The optimal feedback
gains L and K can be computed independently for each wave number pair by
solving two Riccati equations, see e.g. Glover et al. (1989).

For the dynamic operator A, we use the linearised Navier–Stokes equations
transformed to Fourier space, i.e. the Orr-Sommerfeld/Squire equations.
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When dealing with transitional cases, one possible objective is to minimise
the kinetic energy of the fluctuation about a laminar mean profile. Hindering
the growth of small perturbation thus prevent secondary instabilities and fur-
ther transition to turbulence. This objective can be expressed in a quadratic
norm (Högberg et al. (2003)). The second central input to the optimisation
concerns the estimation problem, and is the description of the external dist-
urbances to the flow. Indeed the best the knowledge about what can possibly
disrupt the system, the more specific the estimator can be, and specificity
means good performance (Hœpffner et al. (2003)).

The information from the flow is measured at the wall, typical quantities
are the two components of the skin friction, and the pressure. They give in-
dependent information and each relate to a particular type of flow structure
(Bewley & Protas (2003)). The actuation is done by wall transpiration i.e. low
amplitude zero-net mass flux blowing and suction through the walls. A small
component of wall normal velocity can linearly interact with the mean flow and
introduce large energy changes, thus leading to an inexpensive control effort.
The purpose of this paper is to introduce a transfer function representation
of the feedback in order to be able to analyse how the measurements and the
actuation are optimally related.

The introduction of the control and estimation feedbacks (3) in (2) gives
the state space compensator{

˙̂q = A0q̂ − Ly , A0 = A + LC + B2K

u = Kq̂.
(4)

which maps the measurement signal y and the actuation signal u.

3. Transfer functions

The inverse Fourier transform of the gains L and K will give convolution ker-
nels in physical space, and those kernels have usually been used as representing
the properties of the control process (Högberg & Bewley (2001)). Their lo-
calisation is an important physical property. This property was found to be
retained despite the decomposition in Fourier modes and the independent op-
timisation, when the objective function and the noise model are of physical
relevance (Bamieh (1997)). But the kernels fail in providing with a global
understanding of the action of the controller, that is intrinsically the relation
between sensors and actuator at the wall. Furthermore those kernels do not
provide information about the time properties of the control, since the time
dependency is implicitly handled by the estimator dynamics in (4). In order to
describe this we can introduce the transfer function, i.e. the mapping between
the sensor signal y and the actuator signal u,

u(t) =
∫ ∞

0

−KeA0τL︸ ︷︷ ︸
G(τ)

y(t − τ)dτ. (5)
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Figure 1. Definition of the input of the transfer function

The actuation at time t thus depends on the history of past measurement
y(t − τ) for time lags τ ranging from zero to infinity. The transfer function
convolution kernel G is a function of the time lag τ and is composed of the
operator A0 originating from the estimator dynamics, as well as the estimation
and control gains L and K. After inverse Fourier transform, this transfer
function can be interpreted in two ways. First as a convolution operator (or
Green’s function) that weights the input from the measurement history for all
positive time lags τ and all wall location (x, z) to give the actuation at time
t for a single actuator at the wall location (0,0). It can also be seen as the
response of the actuators on the entire wall to an impulse at the single sensor
location (0,0) at initial time.

The closed loop system is stable by construction, but it appears that the
controller itself, with dynamics A + B2K + LC is not guaranteed to be stable.
This tells us that y in the controller transfer function is not an arbitrary signal,
but is dependent on the control. We can thus split the measurement in two
parts, one from the disturbance y1(f, q0) and one from the effect of the control
y2(u). The transfer function from y1 to u is stable by construction and rep-
resent how the controller reacts to an arbitrary disturbance. See figure 1 and
equation (6) how the plant P is split into P1, whose state q1 is the uncontrolled
disturbance, and P2 whose state q2 is the flow created by the control. Let




(
q̇1

q̇2

)
=

(
A 0
0 A

) (
q1

q2

)
+

(
B1f
B2u

)
(

y1

y2

)
=

(
C 0
0 C

)(
q1

q2

)
+

(
g
0

) (6)

{
˙̂q = A0q̂ − L(y1 + y2)
u = Kq̂.

(7)

By linearity q = q1 + q2 and y = y1 + y2. The transfer function output u is the
optimal control for the given disturbances. The relation between u and y1 can
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be written in state space form, by including the dynamics of q2 in the controller


(
q̇2

˙̂q

)
=

(
A B2K

−LC A0

)
︸ ︷︷ ︸

A0

(
q2

q̂

)
−

(
0
L

)
︸ ︷︷ ︸

L

y1

u =
(

0,K
)︸ ︷︷ ︸

K

(
q2

q̂

) (8)

The new transfer function that maps y1 and u can thus be written

u(t) =
∫ ∞

0

−KeA0τL︸ ︷︷ ︸
G(τ)

y1(t − τ)dτ. (9)

All the following analysis and plots relate to this modified definition of the
input to the transfer function.

4. Controller behaviour and performance

The control procedure described above is now applied to the control of a wave
packet. The initial disturbance is taken from Henningson et al. (1993) where
a series of test is made on the transient growth of localised disturbances. The
chosen disturbance would correspond to experimentally induced perturbations
caused by the motion of a membrane at the wall. Low amplitude are used here
so that nonlinear effect can be disregarded.

See figure 2 for the representation of the transfer function between the
streamwise skin friction and the blowing and suction at the lower wall for three
time lags τ =1, 20 and 40. For the short time lag, the weighting is mainly
on measurement signal closely upstream of the actuator, whereas it is further
upstream for longer time lag. Relevant wall information is measured further
upstream as the time lag increases, since the disturbances are travelling with
the mean flow. For each time lag, the controller uses measurements from only
a localised region at the wall.

Figure 3 shows contours of the transfer functions for individuals measure-
ments integrated in the spanwise z (rigth column) and streamwise x (left col-
umn) directions. There is a relatively strong weighting of the measurement for
short time lag. These measurements are important for the controller. Then,
for increasing time lag, measurements upstream are increasingly weighted. The
flow structures are convected downstream with the mean flow, so that the con-
troller will use further upstream information for the flow structure as the sensor
information is older. In addition, the transfer functions are more elongated in
the streamwise direction than in the spanwise direction. Since structures trav-
elling in the cross-flow direction are not prevalent, a sensor do not provide
relevant information for an actuator remote in the spanwise direction.

The different measurements give information about different types of flow
structures. Mainly the streamwise skin friction tells about streamwise elon-
gated structures. Streamwise elongated vortices create streaks of streamwise
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Figure 2. Contour for three time lags τ =1 (top), 20 (mid-
dle), and 40 (bottom) of the transfer function relating the
streamwise skin friction measurement to the actuation at the
bottom wall. The contour are logarithmically spaced, for pos-
itive (solid) and negative (dashed) values of the transfer func-
tion.

velocity, elongated in the streamwise direction, that have a strong footprint of
streamwise skin friction at the wall. Those structures are omnipresent, and are
an effect of the nonnormality of the dynamic operator. Similarly, the span-
wise skin friction measurement tells about structures elongated in the spanwise
direction. Such structures are less prevalent in shear flows, so that this measure-
ment do not contribute as much to the controller performance. The pressure
measurement do not favour elongated structure, instead is a footprint of struc-
tures away from the wall. Indeed, even disturbances with velocity component
in the centre of the channel will affect the pressure field close to the walls.

The transfer function for the streamwise skin friction measurement has the
particularity that even for short time lag, the actuator uses information from



From sensors to actuators 99

sensors far upstream, whereas for the two other measurements, the controller
uses for short time lags sensor information rather centered around the actuator.
We can understand this by the streamwise elongation of the flow structures
that this measurement detects. The streamwise skin friction measurement is
mostly affected by structures elongated in the streamwise direction. The strong
coherence of such structure is prominent over the convection with the mean
flow.

On the other hand, the convection effect is prominent for the structures
detected by the spanwise skin friction and pressure, that are not necessarily
elongated in the streamwise direction (mostly present at wavenumber pairs
with nonzero kx).

Nevertheless, you can see that for the type of disturbances studied, the
optimal controller uses sensor information close to the actuator itself (strong
weighting of the sensor signal for short time lags and small x). This means
that in an optimal setting, the sensors should be located close to the actuators.

Figure 4 shows the control applied to a single initial disturbance. The flow
energy initially grows and eventually decays exponentially towards rest. Two
curves depict the evolution of the flow when the controller is turned on at initial
time and time 20.

The structure of the weighting in space and time of the transfer function
can lead to simplification of the final implementation of the controller. For each
time lag, the weighting is localised in space, so that only a limited number of
sensors are relevant to provide the needed information. As time lag increases,
this localised forcing function travels upstream of the actuator so that sensors
further upstream should be used. This procedure has a natural extension to
spatially developing flows where disturbances are typically generated upstream
and convect downstream with the mean flow. The controller designed upon
local flow parameters should be applied locally. This localisation is explicitly
enforced through the localisation of the weighting function.

5. Conclusion

In this paper, we discussed a transfer function representation for feedback con-
trol in a system with spatially distributed sensing and actuation. This formu-
lation recast the reactive control in a global framework where the two steps
of control and estimation are re-unified. The transfer function from an arbi-
trary wall measurement to the actuation was found to be possibly unstable
even though the overall closed loop system is stable by construction. The
transfer function could still be studied by incorporating the dependency of the
measurement on the actuation when the control loop is closed, thus changing
the definition for its input. We commented the localisation properties of the
transfer function, and how the controller uses wall information from further up-
stream for increasing time lag, thus naturally accounting for the downstream
propagation of disturbances.
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Figure 3. The transfer function in time, integrated in the
streamwise direction (left column) and spanwise direction
(right column) for the three measurement, streamwise skin
friction (top), spanwise skin friction (middle) and pressure
(bottom).

Further study should be carried in order to enforce the stability of the
controller system. The transfer function, once stable, could be used for imple-
mentation of the controller in a flow experiment, where the actuation would be
obtained as a convolution of the measurement history for a limited number of
sensors and actuators.
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Figure 4. Energy evolution of the localised initial condition,
without control (solid) and with the controller turned on at
initial time (dashed) and time 20 (dash-dotted).
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