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Abstract
This thesis deals with Large Eddy Simulation (LES) of impinging air jets.
The impinging jet configuration features heated circular jets impinging onto a
flat plate. The problem addressed here is of generic nature, with applications
in many engineering devices, such as cooling of components in gas turbines,
in cars and electronic devices. The flow is inherently unsteady and contains
relatively slowly varying coherent structures. Therefore, LES is the method of
choice when the Reynolds number is large enough to exclude Direct Numerical
Simulations (DNS).

The present LES model is a basic model without explicit Sub-Grid-Scale
(SGS) modeling and without explicit filtering. Instead, the numerical scheme
is used to account for the necessary amount of dissipation. By using the com-
putational grid as a filter the cutoff wavenumber depends explicitly on the
grid spacing. The underlying computational grid is staggered and constructed
in a Cartesian coordinate system. Heat transfer is modeled by the transport
equation for a passive scalar. This is possible due to the negligible influence
of buoyancy which implies constant density throughout the flow field. The
present method provides accurate results for simple geometries in an efficient
manner.

A great variety of inlet conditions have been considered in order to elucidate
how the dynamics of the flow and heat transfer are affected. The considered
studies include top-hat and mollified mean velocity profiles subjected to random
and sinusoidal perturbations and top-hat profiles superimposed with solid body
rotation. It has been found that the shape of the mean inlet velocity profile has
a decisive influence on the development of the flow and scalar fields, whereas the
characteristics of the imposed artificial disturbances (under consideration) have
somewhat weaker effect. In order to obtain results unequivocally comparable to
experimental data on turbulent impinging jets both space and time correlations
of the inflow data must be considered, so also the spectral content. This is
particularly important if the region of interest is close to the velocity inlet, i.e.
for small nozzle-to-plate spacings. Within this work mainly small nozzle-to-
plate spacings are considered (within the range of 0.25 and 4 nozzle diameters),
which emphasizes the importance of the inflow conditions. Thus, additional to
the basic methods also turbulent inflow conditions, acquired from a precursor
pipe simulation, have been examined. Both for swirling and non-swirling flows.
This method emulates fully developed turbulent pipe flow conditions and is the
best in the sense of being well defined, but it demands a great deal of computing
power and is also rather inflexibility. In case of the basic randomly perturbed



methods the top-hat approach has been found to produce results in closest
agreement with those originating from turbulent inlet conditions.

In the present simulations the growth of individual instability modes is
clearly detected. The character of the instability is strongly influenced by the
imposed boundary conditions. Due to the lack of correlation random superim-
posed fluctuations have only a weak influence on the developing flow field. The
shape of the mean profile, on the other hand, influences both the growth rate
and the frequency of the dominant modes. The top-hat profile yields a higher
natural frequency than the mollified. Furthermore, for the top-hat profile coa-
lescence of pairs of vortices takes place within the shear-layer of the axial jet,
whereas for the mollified profile (for the considered degree of mollification) it
takes place within the wall jet. This indicates that the transition process is
delayed for smoother profiles.

The amount of wall heat transfer is directly influenced by the character
of the convective vortical structures. For the mollified cases wall heat transfer
originates predominantly from the dynamics of discrete coherent structures.
The influence from eddy structures is low and hence Reynolds analogy is ap-
plicable, at least in regions of attached flow. The top-hat and the turbulent
inflow conditions yield a higher rate of incoherent small scale structures. This
strongly affects the character of wall heat transfer. Also the applied level of
swirl at the velocity inlet has significant influence on the rate of heat transfer.
The turbulence level increases with swirl, which is positive for heat transfer,
and so also the spreading of the jet. The latter effect has a negative influence
on wall heat transfer, particularly in the center most regions. This however
depends also on the details of the inflow data.

Descriptors: Impinging jet, large eddy simulation, heat transfer, vortex for-
mation, circular jet, forcing, inflow conditions, implicit modeling.

iv



Contents

Abstract iii

Part I. Overview and summary

Chapter 1. Introduction 1

Chapter 2. Impinging jets 4
2.1. The free jet 7
2.2. The wall jet 13
2.3. Dynamical features of the impinging jet 14
2.4. Heat and mass transfer of the impinging jet 17
2.5. Swirling impinging jets 19

Chapter 3. Theory and governing equations 22
3.1. Basic equations 22
3.2. Turbulence 24
3.3. Basics of heat and mass transfer 29

Chapter 4. Turbulence modeling 32
4.1. Introduction 32
4.2. Large eddy simulation 33
4.3. Near-wall treatment 41
4.4. Modeling of scalar transport 42

Chapter 5. Numerical aspects 43
5.1. Partial differential equations 43
5.2. Spatial discretization 44
5.3. Temporal discretization and solution procedures 47
5.4. Boundary conditions 48
5.5. Computational grid 52

v



Chapter 6. Computational accuracy 53
6.1. Modeling errors 53
6.2. Numerical errors 54
6.3. Sampling errors 55

Chapter 7. Results 56
7.1. Flow field characteristics of the impinging jet 56
7.2. Heat transfer characteristics of the impinging jet 58
7.3. The effect from inflow conditions 59
7.4. Effects of swirl 62

Chapter 8. Industrial significance 66

Chapter 9. Conclusions 67

Chapter 10. Papers and authors contributions 69

Acknowledgements 71

References 72

Part II. Papers

Paper 1. Numerical study of impinging jets. Flow field
characteristics 85

Paper 2. Numerical study of impinging jets. Heat transfer
characteristics 115

Paper 3. Numerical study of swirling impinging jets with heat
transfer 139

Paper 4. Numerical study of swirling and non-swirling
annular impinging jets with heat transfer 161

Paper 5. Characteristics of forced circular impinging jets 181

Paper 6. Large eddy simulation of impinging jets with emphasis
on the inflow conditions 231

vi



Part I

Overview and summary





CHAPTER 1

Introduction

Within the truck manufacturing industry there is continuous development of
the vehicle performance. The consequence of this is, among other things, en-
gines with higher and higher output power. During the last 20 years there
has been a monotone increase of the engine power. In the early eighties the
most powerful truck engines had about 400 bhp. Today they have almost 700
bhp. This progress is dictated by the market and it is anticipated that it will
continue in a similar manner also in the future. One of the consequences of
this progress, combined with the need for compactness, is tougher demands on
the cooling performance. To reach these demands one may consider larger and
optimized radiators, higher fan speed, aerodynamic optimization of the engine
compartment and of the front grill. On a truck these modifications are costly
and challenging to implement.

Parallel to the progress of increasing engine power is the decrease of free
space in the engine compartment. This originates from, among other things,
lower cab floor and bulky noise and heat insulation. There is also an increasing
number of components mounted on the engine or within the engine compart-
ment, such as electronic and mechanical devices. These components are often
sensitive to heat and require additional heat insulation. They may also repre-
sent additional heat generating sources, such as EGR (Exhaust Gas Recircula-
tion) and retarders (hydrodynamic breaking system) that make the cooling of
the engine, and surrounding components, even more challenging.

The two above described trends drastically increase the demands for effi-
cient cooling. As the limitations are severe all possible improvements contribute
to a step in the right direction. The work presented in this thesis represents
a phase in a project aimed at improving the engine cooling capacity of Scania
heavy trucks. This is performed by studying a basic impinging jet geometry
with sophisticated analyzing and modeling methods. In this way the origin of
heat transfer can be isolated and described. The present study is not directly
applicable to real engine installations but does, on the other hand, involve a
wide range of fundamental flow features. With knowledge of these heat transfer
mechanisms in practical installations are better understood and can thus be
more efficiently improved.
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Figure 1.1. Illustration of a circular impinging jet. The flow
emanates from a circular pipe and impinges onto a circular
plate.

The impinging jet is an efficient tool in enhancing wall heat transfer (also
mass transfer) and is therefore widely used in engineering applications. A typ-
ical impinging jet configuration is depicted in figure 1.1. The figure shows fluid
flow that emanates from the nozzle of a pipe and impinges onto a circular flat
plate. The flow at the nozzle outlet represents the inflow to the computation.
The transparent surface represents an isosurface of the absolute velocity at low
magnitude and the vectors in the cross sections depict a typical mean velocity
field. The origin of the Cartesian coordinate system is located at the stagna-
tion point. Common application areas of impinging jets are cooling of electrical
components and gas turbine components, such as the combustion chamber and
the turbine blades. It is also used in processing of metal and glass. In order
to improve the process under consideration it is important to be familiar with
its basic features. The heat transfer between the impingement wall and the
ambient fluid depends on a large number of parameters. For instance, the ratio
between the characteristic height and diameter of the jet is crucial for the de-
velopment of the flow and has strong influence on the wall heat transfer. The
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character of the incoming jet flow is also of great importance. Thus, the mean
velocity profile, the fluctuating velocity field and the distribution of heat at the
nozzle outlet (equivalently velocity inlet) are all essential for the behavior of
the impinging jet. This is particularly so for cases where the nozzle is close to
the target plate (less than 2 − 3 diameters).

The main goal of this work has been to study and grasp the controlling
factors and mechanisms related to the flow and heat transfer characteristics of
impinging jets. Different geometries and flow configurations have been consid-
ered. For this Large Eddy Simulation (LES) featuring implicit filtering and
implicit modeling has been used. The Sub-Grid-Scale effects are handled by
an upwind-biased numerical scheme. The nozzle outlet has been supplied with
different variants of inflow velocity profiles, ranging from top-hat profiles with
superimposed random perturbations to fully developed pipe flow. The im-
pingement surface is flat and orthogonal to the jet axis. As low temperature
variations are considered the transport equation for a passive scalar has been
used, neglecting effects of density variations.

The principal contributions of the present work are fourfold. Firstly, the
dynamics of non-swirling and swirling impinging jets have been studied in some
detail. These studies enhance the understanding of the coherent structures in
the jet. These structures are important for entrainment and large-scale mixing.
Secondly, the significance of inflow boundary conditions for the development of
the flow and scalar fields has been elucidated for both free and confined jets.
These studies have been performed for different inlet velocity profiles, super-
imposed with either random or periodic excitations, and for turbulent inflow
conditions. Thirdly, the underlying mechanisms of impinging jet heat trans-
fer have been identified, discussed and visualized. Fourthly, the implicit LES
approach has proven to provide accurate results in an efficient manner. The
simulation method is not problem dependent and is an alternative to conven-
tional LES.



CHAPTER 2

Impinging jets

Even though the impinging jet constitutes a simple geometry it features ex-
tremely complex flow physics. This is partly so since the impinging jet involves
three different flow regions: (a) free jet flow, (b) stagnation flow and (c) wall
jet flow. These three flow regions are visualized in figure 2.1. The figure also
depicts the normalized geometrical parameters D, H and W . Note that in
the xy-plane at z = 0 (evaluation plane), x represents the radial direction,
r, and z the azimuthal direction (cf. the orientation of the Cartesian coordi-
nate system). The instantaneous velocity field in x = (x, y, z) is denoted by
u = (u, v, w) and the mean velocity field is denoted by U = (U, V,W ). The
fluctuating velocity field is given by u′ = u−U. The flow and scalar fields at the
inlet are defined by the normalized velocity Vin, the energy of the fluctuations
kin and the normalized concentration of temperature Cin. The concentration
can, similar to the velocity, be decomposed as c′ = c − C. For the normal-
ization of the above parameters and of the computational results, appropriate
combinations of the velocity-scale V0 (mean inlet velocity), the length-scale D0

(nozzle diameter) and concentration C0 (mean inlet concentration) have been
used. The Reynolds number (Re) is defined from the characteristic velocity-
and length-scales. The vectors in the figure show a hypothetical velocity field.
A true instantaneous velocity field of an impinging jet is not this structured
but highly unsteady and features several demanding flow phenomena, such as
e.g. instability, nonlinear vortex interactions, transition, vortex breakdown and
separation. The computational process for an impinging jet is complex since
the numerical code can, due to the multiple flow directions, not be optimized
as efficiently as in case of free jets (see e.g. Danaila & Boersma 2000) and
boundary layers.

Flow characteristics and wall heat transfer of conventional impinging jets
depend strongly on a number of aspects, such as confinement, nozzle-to-plate
spacing (H/D), nozzle geometry and flow conditions at the nozzle outlet (inflow
conditions). This explains the significant amount of work devoted worldwide to
this area of research. The fundamental aspect is the geometry of the problem,
primarily with respect to the confinement plate. For a confined impinging jet
the flow character and particularly the wall heat transfer change noticeably if
H/D is smaller than, approximately, 0.5 (see e.g. Behnia et al. 1999). Also,

4
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Figure 2.1. Geometry of the impinging jet, represented by
the complete xy-plane at z = 0.

as shown in the work by Ashforth-Frost et al. (1997), confinement results in
lower turbulence level within the axial jet and the potential core becomes, due
to less entrainment and spreading of the jet, longer.

The most significant geometrical parameter is H/D since it is crucial for
the flow character within, both, the axial jet and the wall jet. H/D is often
put in relation to the length of the potential core as, for instance, the wall heat
transfer, i.e. Nu, experiences (on average) two maximums if the impingement
wall is located within the potential core. (This is however not always the
case since the inflow conditions do also affect the character of the wall heat
transfer.) Furthermore, as shown by Cornaro et al. (1999), for H/D less than
two no discrete vortical structures are formed within the jet shear-layer. Instead
the shedding of vortices occurs within the wall jet. For H/D = 3 large scale
vortices, shed within the axial jet, are convected downstream. For H/D = 4,
i.e. close to the length of the potential core, the shed vortices are, owing to
breakdown and transition to turbulence, not as distinct within the wall jet as
for H/D = 3. Of course, as stated above, this specific behavior is coupled to
the considered initial conditions. For this particular case the inflow was created
by a 10D long pipe at Re = 6000.

Except from wall heat transfer a change in flow characteristic, due to H/D,
directly influences the wall shear stress (Cf ). As shown by Yapici et al. (1999)
both the magnitude of Cf and the radial location of the peak value changed
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considerably with H/D. Maximum dimensionless friction was obtained for
H/D = 4 at r/D ≈ 1 (Re = 9200). As the distance increased beyond H/D =
6 (length of the potential core) the peak became wider and also displaced
downstream. Naturally, also the wall pressure is influenced as H/D changes.
As shown by Tu & Wood (1996) the wall pressure distribution was close to
Gaussian and remained of similar shape as H/D was increased from 1 to 12
(Re = 11000). The dimensionless stagnation pressure (Cpstag ) remained on
a constant level for H/D approximately less than 6. For larger H/D Cpstag

decreased proportional to (H/D)−1.
In order to construct empirical laws describing the average wall friction,

wall pressure and wall heat transfer comprehensive parametrical studies have
been performed throughout the years. The theoretical expressions based on
Hiemenz flow solution or the division into separate regions, where approxima-
tions of the Navier-Stokes equations are valid, provide an estimate and are not
generally applicable for practical applications. In the work by Tu & Wood
(1996) the measured wall shear stress was compared to the Hiemenz solution
(shear increases linearly with the distance from the stagnation point). The
slope of Cf at the stagnation point was considerably steeper for the theoretical
relation. In the work by Phares et al. (2000) the wall shear stress was derived
analytically, for both fully developed slot and axisymmetric jets. By division
of the flow field into four separate regions the magnitude and peak location of
the shear stress was derived.

A great number of studies are aimed at determining the turbulent charac-
teristics of the impinging jet. This is relevant not only with respect to the phys-
ical aspects but also with respect to assessment of turbulence models and nu-
merical schemes. One of the more well known studies was performed by Cooper
et al. (1993). They made hot-wire measurements of a fully developed circular
impinging jet for nozzle-to-plate spacings within the range of [2 ≤ H/D ≤ 10]
and Reynolds numbers within the range of [23000 ≤ Re ≤ 70000]. Their results
have been used for turbulence model assessment by, among others, Craft et al.
(1993), Dianat et al. (1996), and Park & Sung (2001).

From a steady point of view (RANS approach) turbulent kinetic energy,
k, is produced in the shear-layer of the axial jet, owing to the strong radial
gradient of the axial velocity. The high level of k results in turbulent diffusion
and thus increased jet spreading (e.g. mixing and entrainment). IfH/D is large
enough also the center region of the axial jet becomes turbulent. If not, the
flow character within the stagnation region resembles that of the potential core.
Near the stagnation point, production can in a two-dimensional perspective,
by using continuity and ignoring shear stresses, be shown to be proportional to
the difference between the two turbulent normal stresses. After deflection the
flow develops into a wall jet involving one dominant mean flow gradient (wall-
normal gradient of the radial velocity), that resumes the intense production
of turbulence. Two wall parallel regions of production can be identified, one
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in the outer and one in the inner part of the wall jet. Due to diffusion in the
direction of the wall-normal gradient of k the two shear-layers merge and a
turbulent wall jet forms. In the near-wall region production is mainly balanced
by viscous dissipation. Even closer to the wall production goes, despite the
strong mean flow gradient, towards zero. The origin to this is the negligible
magnitude of k. The balance is here between terms proportional to the wall-
normal gradient of k, i.e. viscous dissipation and viscous diffusion.

2.1. The free jet

The initial region of the impinging jet (region (a) in figure 2.1) is, for large
enough nozzle-to-plate spacings, characterized by free jet behavior. A free jet
can be defined as a jet entering a large container containing a quiescent fluid.
Due to the radial spreading of the jet the axial velocity decreases continuously
in the streamwise direction. The region of the jet in which the flow field is not
affected by the growing annular shear-layer is called the potential core region.
The flow in this region is essentially irrotational. The shear-layer grows in size
in the downstream direction due to inherent shear-layer instability and vortex
roll-up. Initially, if the disturbance level is very small, the shear-layer instability
is similar to that described by Kelvin-Helmholtz linear stability theory.

The disturbances grow exponentially in the downstream direction why non-
linear effects quickly become important and the linear approximation breaks
down. As the disturbances grow large vortices start to roll up. These vortices
(named vortices and not eddies due to their more coherent nature) grow in
the downstream direction, increasing their length-scale. Simultaneously the
range of scales increases through nonlinear interaction. A common process in
the downstream direction is so-called vortex pairing, which strongly depends
on the nature of the initial flow field (see e.g. Liu & Sullivan 1996; Hwang
et al. 2001; Hwang & Cho 2003). Vortex pairing characterizes coalescence of
two discrete vortices. The resulting larger vortex is referred to as the primary
vortex (PV ). Studies on the vortex pairing process in circular free jets have
been conducted by, among others, Meyer et al. (1999).

At approximately four diameters downstream of the nozzle the free jet is
fully developed and thereby the potential core is no longer present.1 For an
axisymmetric fully developed free jet the width of the mean axial velocity field,
determined by the jet half-width2, grows linearly as shown by e.g. Fondse
et al. (1983), Cooper et al. (1993), and Hussein et al. (1994). Furthermore,
the variation of the mean centerline velocity is independent of the Reynolds
number and decreases proportional to x−1 for x/D larger than approximately

1The distance from the nozzle where a fully developed flow is reached differs from case to
case due to the applied conditions at the nozzle outlet. Note that also the definition of fully
developed turbulence differs from case to case.
2The jet half-width is the radial location at which the axial velocity is half of that at the
centerline.
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4 − 6 (see e.g. Crow & Champagne 1971; Hussein et al. 1994; Pope 2000),
making the free jet develop in a self-similar manner. (Note that for the free
jet the axial direction is represented by x, whereas for the impinging jet y
represents the axial direction.) The radial velocity, which is much smaller than
the axial, becomes self-similar in the far-field. Its magnitude can be directly
maintained from the continuity equation. In the fully developed turbulent jet
the Reynolds stresses also become self-similar (see Pope 2000). At the edge of
the jet, the rms3-velocities are much larger than in the center-region. This is a
consequence of the high levels of shear.

In the so-called self-preserving region of the jet the flow is not influenced by
the nozzle exit conditions. At which distance from the nozzle the jet reaches this
state is not clear as the results differ significantly within the literature. Some
suggest the distance to be around 8D and some up to 70D. In the work by
Fondse et al. (1983) the influence from nozzle conditions on jet dynamics and jet
self-preservation was studied. They concluded that if there exist an asymptotic
jet state, independent of the nozzle conditions, it occurs at distances far larger
than 20D.

As the character of the annular shear-layer resembles that of boundary
layers (main flow in the axial direction with weak axial gradients, weak mean
flow in the radial direction with strong radial gradients of the axial velocity and
homogeneity in the azimuthal direction) the simplified boundary layer equa-
tions can be employed. It can be shown that for increasing x the momentum
(∝ U2) is conserved, the kinetic energy (∝ U3) decreases and mass flow (∝ U)
increases. The latter is due to entrainment of ambient fluid. The conservation
of momentum follows from the governing equations (momentum is often used
to quantify the strength of the jet). The energy decreases as a consequence of
dissipation and redistribution of momentum.

2.1.1. Stability and structures of the free jet

Several characteristic flow structures can be identified in the free jet. These
are formed within the annular shear-layer. If the emanating jet is laminar (the
disturbance level is within the linear regime) these structures originate from
the above mentioned Kelvin-Helmholtz theory. One of the pioneering works
on structures in jets was conducted by Crow & Champagne (1971). They
studied the behavior of axisymmetric jets subjected to periodic forcing. The
fundamental mode of the unforced laminar jet (Poiseuille profile), at a Reynolds
number of O(102), was found to be the sinuous, i.e. spiral or helical mode. As
Re was increased to O(103) the varicose, i.e. axisymmetric, mode became
dominant (ring vortex). The axisymmetric structures remained also as the
pipe boundary layer was tripped turbulent. In the more recent work by Danaila
et al. (1997) the switch from the helical to the axisymmetric mode occurred

3The rms (root-mean-square) value defines the standard deviation of the dependent variable.
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within the same range of Reynolds numbers as for Crow & Champagne (1971).
The Strouhal number (based on the nozzle diameter and the mean velocity at
the nozzle) of the fundamental mode (”jet-column mode”), detected by Crow
& Champagne (1971), was found to be approximately equal to StD = 0.3
(λ ≈ 2.4D), independent of the Reynolds number [O(104) < Re < O(105)] and
exit shear-layer conditions. Note that this frequency may vary widely between
different experiments (see e.g. Liu & Sullivan 1996).

Without forcing and regardless of Re the maximum of the centerline fluc-
tuation (u/Ue) was, within the work by Crow & Champagne (1971), attained
at approximately eight diameters (x/D ≈ 8) downstream of the nozzle. Ac-
tive forcing of the fundamental mode augmented the vortical structures only
upstream of x/D ≈ 8, causing formation of an additional local maximum of
u/Ue at x/D ≈ 4. This maximum was due to the dynamics of the fundamen-
tal (u0.30/Ue) and the superharmonic (u0.60/Ue) modes. An increase of the
disturbance intensity yielded higher value of u0.30/Ue and further upstream
attained maximums. However, the response of the flow reached an asymptotic
behavior at approximately five percent disturbance intensity. Without forcing
the fundamental mode reached noticeable energy level downstream of two jet
diameters whereas, for the superharmonic mode, growth was induced further
upstream. Forcing of the fundamental mode was also found to promote the su-
perharmonic mode. As shown by Ginevsky et al. (2004) low frequency forcing
(StD = 0.32) yielded strong amplification of the axisymmetric mode (m = 0)
and high azimuthal correlation at (x/D = 3, r/D = 0.24). High frequency forc-
ing (StD = 3.7) yielded amplification of a broader spectral band, particularly
the m = 0 and m = 1 modes, and low azimuthal correlation.

As shown by Crow & Champagne (1971) and Ginevsky et al. (2004) the
dynamical character of the flow field is strongly affected by the applied forcing.
This attribute can be used to achieve a jet of desired character, as active forcing
at certain discrete frequencies may either promote or suppress the formation of
vortical structures and turbulence. Thus, the mixing characteristics and noise
generation in free jets can be controlled. Furthermore, as will be discussed
later, active forcing is an efficient tool in achieving high rates of wall heat
transfer for impinging jets. As shown by Raman et al. (1989) the excitability
of the jet depends, among other things, on the initial turbulence level of the
jet. In their experimental work they showed that the flow field was influenced
by a small single frequency disturbance for up to 5% initial turbulence level.
For higher turbulence level the jet was less influenced by forcing. They also
concluded that the natural jet development was relatively unaffected by the
initial turbulence level (within the range of [0.15%− 5%]).

Studies on suppression of turbulence in plane and circular jet flows have
been performed by, among others, Zaman & Hussain (1981). They showed
that the most unstable mode, with respect to the growth rate, of the circu-
lar jet equals a Strouhal number (based on the momentum thickness θ) of
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Stθ ≈ 0.017. However, this frequency is not the characteristic one for the ini-
tial roll-up of vortices in the natural jet. The frequency for the initial roll-up
equals a Strouhal number of Stθ ≈ 0.012 and represents the natural frequency
of the system (”shear-layer mode”). In case of forcing of the most unstable
mode there is quick growth and roll-up which results in early breakdown of the
shear-layer why the formation of energetic vortices becomes suppressed. With
no forcing the initial roll-up is slower why the shear-layer does not feature
quick breakdown. The shear-layer mode grows in size and undergoes succes-
sive pairing why large energetic structures survive far downstream (delayed
transition). When the jet was forced at the most unstable frequency maximum
suppression of turbulence was achieved. The corresponding diameter based
Strouhal number for suppression was in Zaman & Hussain (1981) concluded
to be StD = 2.15, which differs from values found in related work. They con-
cluded that StD was not a relevant parameter regarding shear-layer stability,
instead Stθ must be considered. As stated by Hussain (1983) the axisymmetric
mixing layer is characterized by two length-scales, i.e. the shear-layer thickness
(θ) and the radius of curvature (R = D/2). The former scale is the relevant one
if the diameter is significantly larger than the shear-layer thickness, i.e. in the
initial stage of the jet (x/D < 1), and is the proper scaling for the shear-layer
mode. Further downstream where the shear-layer becomes of same size as the
jet diameter the latter scale is the relevant one and is the proper scaling for
the jet-column mode.

The aforementioned suppression of discrete structures is a consequence of
promoted shear-layer transition which obstructs the growth and successive pair-
ing of discrete large scale vortices. The velocity fluctuations in the jet become
dampened within an axial interval of approximately [0.75 < x/D < 9] and
the length of the potential core increases as a consequence of weaker entrain-
ment. The entrainment of ambient fluid into the free jet is, as shown by Fondse
et al. (1983) and Popiel & Trass (1991), primarily due to the development of
large scale coherent structures (azimuthal vorticity). This suggests that lam-
inar inlet conditions produce larger rate of entrainment than turbulent inlet
conditions. With a turbulent boundary layer at the nozzle or if the flow is
disturbed (e.g. mesh screen at the exit) coalescence of coherent structures is
obstructed and, hence, the rate of entrainment decreases. For turbulent jets
the entrainment is, as stated by Tritton (1988), a viscous process and thus
determined by the small scales (for irrotational fluid to become rotational vis-
cosity is needed). However, the large scales define the shape of the jet and
consequently the interfacial area on which small turbulent scales act. The en-
ergy of the small scales is associated to the energy of the large scales why the
entrainment process is indirectly determined by the large inviscid scales. As
shown by Liepmann & Gharib (1992) entrainment is also greatly influenced
by streamwise oriented structures. Downstream of the potential core, in the
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turbulent regime, streamwise vorticity was found to be the main mechanism
behind fluid entrainment.

A laminar unforced shear-layer exhibits an initial roll-up at the shear-
layer mode (high frequency) whereas the jet-column mode (low frequency) is
obtained further downstream, at the end of the potential core, as a result
of successive pairing. The jet-column mode may also develop independently
from the shear-layer mode. If the emanating jet is turbulent (practical jet)
they typically roll-up at the jet-column mode and does not involve pairing (see
Hussain 1983). As shown by Mi et al. (2001), fully developed flow at the nozzle
outlet (achieved by a 72D pipe at Re = 16000) yielded no detectable formation
of coherent structures within the jet shear-layer (at least for x/D < 5) whereas
the laminar flow (achieved by smooth contraction) featured quick roll-up of
axisymmetric structures (StD = 0.4 at x/D = 3). The growth of the shear-
layer was stronger in the laminar case.

In addition to the axisymmetric m = 0 mode there are different types
of spiral or helical modes, i.e. the single helical modes (m = ±1) and the
double helical modes (m = ±2). Hussain (1983) concluded that the initial
disturbance found in their experiments was always of an axisymmetric character
(downstream to x/D ≈ 3). Furthermore, these axisymmetric structures could
occasionally be tilted and therefore be interpreted as being helical. Petersen
(1978) explained that the axisymmetric mode, for 2 to 6 diameters downstream
of the nozzle, could appear, both visually and statistically, as helical due to
obstruction of the azimuthal coherence by random straining (ReD = 5000 −
50000). In more recent work it has been shown that in the fully developed region
(jet far-field) of the natural circular jet the helical structures are the dominant
ones. This was experimentally shown by, among others, Tso & Hussain (1989)
(ReD = 69000). However, as shown by Yoda et al. (1992) (ReD = 5000) a few
years later both modes are equally represented in the far-field of the natural
jet. This conflict suggests that the development of the jet depends strongly on
the nozzle outlet conditions and also on the choice of measurement technique.
Yoda et al. (1992) also showed that any type of forcing, within a wide range
of Strouhal numbers, favored the helical mode in the far-field of the jet. It has
been found that also the initial region of the circular jet is equally sensitive to
both axisymmetric and helical disturbances. Drubka et al. (1989) concluded
that in the initial region of the laminar jet (laminar exit boundary layer) the
two fundamental modes are approximately equally amplified. At x/D = 0.5
the energy level of these two modes were similar but with approximately 20%
higher frequency for the m = 1 mode (ReD = 50000). They concluded that
there is temporal switching between the axisymmetric and the helical modes.
At some instant of time the m = 0 mode could clearly be seen and at a later
instant instead the helical mode was observed.

Linear stability analysis of circular jets have been conducted by e.g. Batch-
elor & Gill (1962), Morris (1976), Michalke & Hermann (1982), and Cohen &
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Wygnanski (1987). Batchelor & Gill (1962) showed, among other things, that
the fully developed jet (beyond the potential core) is unstable only to the he-
lical mode (inviscid analysis). Michalke & Hermann (1982) showed in their
inviscid analysis that the ratio between the radius of the jet and the momen-
tum thickness was the relevant parameter (studied different tanh profiles). As
this parameter decreases downstream, due to the diverging mean flow, the
most unstable mode changes accordingly. For x/D less than approximately
2 the m = 0 mode exhibits maximum amplification and further downstream
the m = 1 mode is the most unstable one. Morris (1976) stated that one
should use realistic mean velocity profiles, i.e. not top-hat, for stability cal-
culations. The disadvantage with realistic profiles is that, in most cases, no
simple analytical solution exist. Also brought forward in his work was that for
the hyperbolic-tangent profile the axisymmetric and helical modes are equally
amplified. However, a small change in profile may make either of the modes
dominant. Which mode that becomes dominant is also influenced by the initial
perturbations. If the applied excitation is symmetric the axisymmetric mode
will dominate a few diameters downstream.

In the work by Cohen & Wygnanski (1987) linear stability analysis was
compared to experimental data. They found high correlation between the lin-
ear theory and the experimental results. Hence, their results confirm that vis-
cous effects are not very important for the evolution of the jet. Furthermore,
their results also showed that the divergence of the jet is of great importance
for the development of the flow. Close to the nozzle, at x/D = 0.5, the ratio
between the radius R and the momentum thickness θ is large. At this loca-
tion the m = 0 mode and the first four helical modes exhibited similar growth
rates. Further downstream the higher helical modes diminished, whereas the
growth rates for the m = 0 and the m = 1 modes remained high and of similar
level. At x/D = 1 the axisymmetric mode featured the strongest amplifica-
tion. However, downstream from this location the m = 1 mode became more
and more dominant. Also at high Reynolds number, i.e. fully developed tur-
bulent flow, coherent structures seem to evolve in similar fashion as recently
described. However, due to the fluctuations associated to the turbulent flow
these structures are not as easy to detect.

The successive change of the dominant frequency in the jet is by some
referred to as a continuous process and by some to as a step-like process (co-
alescence of vortices). Among others, Petersen (1978) and Popiel & Trass
(1991) showed that the spacing, λ, between successive ring vortices grew lin-
early with the axial distance as λ/D = 0.55x/D. This can also be expressed as
λ/D = (Uc/U0)StD, where Uc is the convection velocity, U0 the exit velocity
and StD the diameter based Strouhal number. Thus, the vortex passing fre-
quency changes proportional to (x/D)−1. With Uc/U0 = 0.65 the jet-column
mode found by Crow & Champagne (1971) is attained at x/D = 4. As also
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stated by Landa & McClintock (2004) the dominant frequency is, as a conse-
quence of the divergence of the jet, monotonically decreasing with the distance
from the nozzle outlet and does not behave as a step function. They explained
that vortex pairing was not the cause of the decreasing frequency but rather a
consequence. This was also concluded by Ho & Huang (1982).

In this work distinct vortex pairing is attained within the shear-layer of
the axial jet for the top-hat profile and for the turbulent inflow conditions.
At the location for pairing the dominant frequency halves and the wavelength
doubles. But as can be seen from Hällqvist & Fuchs (2005a, 2006a) the sub-
harmonic (Stn/2) is not a consequence of pairing as it contains energy also
upstream of pairing, however with lower energy content than for the natural
mode (Stn). Pairing is obtained at the spatial point where the subharmonic
mode obtains similar energy level as the natural mode. The finding that paring
is a consequence and not a cause agrees with the conclusions made by Landa &
McClintock (2004). The discrepancy lies in the conclusion how the dominant
frequency decreases (see Petersen 1978). However, a step-like behavior of the
dominant frequency seems to be the most common description (see e.g. Zaman
& Hussain 1981; Hussain 1983; Mankbadi 1985; Hwang et al. 2001; Ginevsky
et al. 2004; Hsiao et al. 2004).

In the region between the successive ring vortices, called the braid region,
secondary azimuthal instabilities grow which result in formation of counter-
rotating streamwise oriented vortex pairs. The mechanism behind this is the
stretching induced by the co-rotating ring vortices. These structures have been
studied, by among others, Liepmann & Gharib (1992) and Brancher et al.
(1994). There are also other types of instabilities present in free jets, such
as side jets (see e.g. Brancher et al. 1994; Monkewitz & Pfizenmaier 1991).
However, these kind of instabilities and structures are not the purpose of this
thesis why they are not further discussed.

2.2. The wall jet

As for boundary layers the wall jet (see region (c) in figure 2.1) features a strong
near-wall shear-layer in which the log-law applies, if the flow is fully developed.
However, contrary to boundary layers the ambient velocity is not constant for
large wall-normal distances. Instead there is a maximum in velocity at some
distance from the wall, above which the velocity goes towards zero. Thus,
wall jets feature, on average, two parallel shear-layers, among which the outer
resembles of a free shear-layer. The outer shear-layer is inviscidly unstable as
it features a point of inflection. If the boundary layer thickness is small relative
to the azimuthal scale the wall jet takes on a two-dimensional character.

As shown by Chun & Schwarz (1967) and later by Cohen et al. (1992)
the incompressible laminar two-dimensional wall jet features two coexisting
unstable modes. The inviscid mode which governs large scale disturbances and
the viscous mode which governs small scale disturbances. The viscous mode is
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dominant in the near-wall region whereas the inviscid mode is dominant in the
outer wall jet region. The latter is the more unstable one. The developing stage
of the wall jet is strongly influenced by the initial conditions. In the work by
Knowles & Myszko (1998) the wall jet was produced by an impinging jet and
thus the initial conditions could be modified by changing the nozzle-to-plate
spacing. By doing this the initial thickness and turbulence level of the wall
jet can be controlled. Regardless of initial conditions the mean velocity of the
wall jet reached self-similarity at r/D = 2.5, whereas the turbulent statistics
became self-similar further downstream at r/D = 4.5. The outer shear-layer
was shown to grow linearly as it evolved downstream.

In the work by Dejoan & Leschziner (2005) the evolution of a randomly
perturbed laminar wall jet at Reb = 9600 was treated by highly resolved LES.
The wall jet showed a self-similar behavior at 20 discharge-nozzle heights (b).
As the inner and outer shear-layers interact no evident distinction can be made
regarding scaling. However, in the self-similar regime, the appropriate scaling in
the inner layer is the friction velocity uτ and ν/uτ . In the outer the appropriate
scaling is the maximum velocity and y1/2, i.e the wall-normal distance at which
the mean velocity (in the outer shear-layer) is half of the maximum.

2.3. Dynamical features of the impinging jet

Depending on the nozzle-to-plate spacing the dynamics in the proximal part of
the impinging jet are as described in section 2.1. It should however be noted
that it has been shown, by some authors, that as a target plate is introduced
into the flow the large coherent vortices that impinge onto the plate may induce
a feedback mechanism that triggers the flow at the nozzle outlet (self-sustained
oscillations). This phenomenon may result in a change of the dynamical behav-
ior. Note that it is plausible that the feedback mechanism is also relevant for
free jets (see e.g. Rockwell & Naudascher 1979; Thomas & Goldschmidt 1985).
The dynamics within the wall jet may deviate from that described in section
2.2 since the inlet conditions for the wall jet in the impinging jet configuration
are determined by the upstream flow conditions. For pure wall jet studies the
inlet conditions are often well defined and rarely of a quasi-turbulent nature.

The feedback mechanism (the origin to the resonance phenomenon) is of
great importance for the dynamics of the jet if the induced pressure waves
are of sufficient strength, i.e. of similar order as the inherent hydrodynamic
instabilities. Acoustic resonance or feedback occurs for high speed impinging
jets. As shown by Ho & Nossier (1981) resonance is obtained at mach number
M = 0.9 but not at M = 0.5 (see also Umeda et al. 1987; Hourigan et al. 1996;
Ginevsky et al. 2004). In the present study the velocity is considered to be
low (a few meters per second, M = O(0.01)) and therefore the flow is treated
as incompressible. As pressure waves (acoustics) can not be captured by the
incompressible approach the influence from this mechanism is omitted and has
no influence on the results presented herein. This is justified by the low flow
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Figure 2.2. Instantaneous velocity field represented by scalar
concentration in (a) and absolute vorticity in (b).

speed since this mechanism is only significant for high speed flows in which the
acoustic wavelength is of the same order as H/D (see Rockwell & Naudascher
1979). In addition to the acoustic feedback there may be hydrodynamic feed-
back through the backflow (see e.g. Rockwell & Naudascher 1979; Thomas &
Chu 1989; Maurel et al. 1996; Hsiao et al. 1999, 2004). Hence for impinging jets,
the formation of coherent structures (in the shear-layer of the ”free jet”) may
be influenced by the nozzle-to-plate spacing. However, from the experimental
work by Popiel & Trass (1991) it can be concluded that the initial formation of
vortices is not influenced by the presence of the impingement plate. As shown
in the experimental work by Anderson & Longmire (1995) the vortex passing
frequency, measured in the vicinity of the impingement wall (0.02D above the
wall), is slightly higher for the impinging jet than for the corresponding free
jet. However, in the ”free jet” region, above 1D from the wall, no effects from
impingement was observed. This suggests that the feedback phenomenon is
not relevant for the development of the flow in the initial region of the axial
jet if H/D is larger than approximately one. The possible influences from this
mechanism have not been considered within this work as the main focus is
not on describing the sources of vortex formation, rather the consequences of
vortex dynamics on wall heat transfer.

To get an understanding of the complex dynamics characteristic for im-
pinging jets qualitative visualizations are depicted in figure 2.2. This figure
depicts the instantaneous velocity field of an impinging jet featuring a top-hat
profile subjected to periodic excitation. This specific case is chosen as it clearly
illustrates the basic dynamical features of the flow. The instantaneous scalar
concentration is shown in figure 2.2(a) and the instantaneous vorticity in fig-
ure 2.2(b). This specific case characterizes axisymmetric formation of vortices.
Note that a symmetric vortex pair within the 2-D plane (symmetric around
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x = 0) represents one axisymmetric ring vortex (toroid) in 3-D. At approx-
imately y/D = 1.2 two individual ring vortices are closely located. As time
progresses the vortices will coalesce and form one larger discrete ring vortex, a
so-called primary vortex. Primary vortices, formed from pairing, can be seen
further downstream in the flow. The significant local thinning of the axial jet
core just upstream of impingement in figure 2.2(a) is associated to the large
scale ring vortex seen in figure 2.2(b). If the nozzle-to-plate spacing would have
been larger this vortex would, at a location further downstream, completely ab-
sorb the potential core. Within the wall jet, downstream of |x/D = 1|, a sharp
symmetrical ring vortex is located. This vortex has initiated formation of a
counter rotating secondary vortex (SV ), which in turn, at a later instant of
time, may cause local flow separation (see Hällqvist & Fuchs 2005b). Fur-
ther downstream the energy of the discrete vortices decreases and finally, as
they break down, they are completely absorbed by the surrounding flow. At
this stage there are no evident discrete modes present and the flow is hence
considered to be fully turbulent.

Illustrative pictures of the impinging jet flow field can also be found in
the experimental studies by, among others, Popiel & Trass (1991), Anderson
& Longmire (1995), Cornaro et al. (1999), and Angioletti et al. (2003) and in
the numerical study by e.g. Tsubokura et al. (2003).

Analysis and control of the vortical structures formed within circular im-
pinging jets were performed by Liu & Sullivan (1996). In their experiment
the natural frequency was, at a Reynolds number of 12300, measured to be
Stθ = 0.016. This corresponded to a diameter based Strouhal number of
StD = 1.23. Further downstream the vortex passage frequency changed in
a stepwise manner to StD = 0.61. They concluded that the natural frequency
of the impinging jet was the same as for the free jet if H/D > 1.1. For smaller
H/D the presence of the wall resulted in an increase of the frequency. Hence,
one can conclude, also from this work, that impingement has no influence on
the formation of vortices. Implying that there is no influence from feedback
mechanisms on the initial flow field, when H/D is larger than approximately
one jet diameter. Both Liu & Sullivan (1996) and Cornaro et al. (1999) showed
that for small spacing, H/D = 1.125, no large scale vortices were formed within
the annular shear-layer. Instead, vortices were shed as the flow was deflected
by the wall. Downstream within the wall jet pair of vortices merged. Depend-
ing on the forcing frequency the character of vortex pairing changed (see Liu &
Sullivan 1996). When forced close to the subharmonic of the natural frequency
(Ste ≈ 0.83) stable pairing was obtained (Ste is the diameter based forcing
or excitation frequency). When forced at a higher frequency (Ste ≈ 1.53) in-
termittent vortex pairing was obtained. In the former strong counter rotating
secondary vortices were formed (in turn inducing unsteady separation) whereas
in the latter less organized eddy-like structures were formed.
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The formation of counter rotating secondary vortices and wall separation
was observed for more than three decades ago by Harvey & Perry (1971). Later
Didden & Ho (1985) made detailed studies on unsteady separation produced by
an impinging jet. They showed that the boundary layer separated periodically
as a consequence of the, by the primary vortices, induced unsteady adverse
pressure gradient. They found that the convection speed of the primary vortices
was the same in the wall jet and in the annular shear-layer of the axial jet
(Uc = 0.61U0). However, the induced secondary vortices were convected at
20% higher speed. By means of PIV Landreth & Adrian (1990) studied the
instantaneous flow field of a circular impinging jet at Re = 6564 and H/D =
4. They observed an abrupt increase of the wall boundary layer thickness at
approximately two diameters downstream of the stagnation point. From these
results they concluded that secondary vortices consistently break away from
the wall jet. The secondary vortices were formed close to r/D = 1.8.

Recently Hall & Ewing (2005) studied the influence from Reynolds num-
ber (Re = 23300 and Re = 50000) on the formation and three-dimensionality
of vortical structures present in a fully developed circular impinging jet with
a nozzle-to-plate spacing of two. They showed that the normalized contribu-
tion from azimuthal modes were approximately equal for the two considered
Reynolds numbers. However, from frequency spectrums it was observed that
large-scale structures were more prominent and of a more periodic character
for the high-Re case. The convection velocity for the large scale structures was
similar in both cases. The breakdown of structures in the radial direction was,
judging from the integral length-scale in the azimuthal direction, slightly more
pronounced in the high-Re case.

2.4. Heat and mass transfer of the impinging jet

The impinging jet is probably most acknowledged for its capability in achieving
significant rates of wall heat transfer (or equivalently mass transfer). This is
why impinging jets are widely used for cooling and heating in practical engi-
neering applications. The heat transfer from or to the target plate (quantified
by the Nusselt number, Nu) is, from an average perspective, influenced by three
mechanisms. These are: convection by the mean flow, turbulent transport and
molecular diffusion. Instantaneously there are only two mechanisms present,
i.e. convection by the unsteady flow and molecular diffusion. As buoyancy
effects are assumed to be negligible the transport of heat is directly determined
from the known velocity field. If the flow is strongly convective (diffusion being
negligible) heat behaves as a tracer. Under these circumstances smoke visu-
alizations can be used to characterize the dynamics of the flow. If diffusive
effects need to be accounted for, i.e. diffusive time-scale comparable to the
convective, smoke visualizations do not provide the true picture of the flow.
This is the case also in the wall region of convection dominated flows, where



18 2. IMPINGING JETS

diffusive effects are dominant. Some of the basic aspects of impinging jet heat
transfer can be found in the work by Arganbright & Resch (1971).

As described before the geometrical parameter H/D is of great importance
also for Nu. If the spacing is larger than the length of the potential core a fully
developed jet will impinge onto the wall, i.e. turbulent jet impingement. Due
to a high level of turbulent kinetic energy (k) within the center region of the
axial jet maximum heat transfer is obtained at the stagnation point. From the
stagnation point and downstream Nu decreases monotonically. If the potential
core is longer than H/D the initial region of the wall jet becomes laminar-
like, featuring low levels of k. Thus, the Nusselt number experiences a local
minimum at the stagnation point (saddle shape). As the laminar-like wall jet
accelerates wall shear increases, due to thinning of the velocity boundary layer,
and a local maximum of Cf is obtained at approximately r/D = 1/2. As the
flow is laminar the maximum in wall friction is accompanied by a maximum
in wall heat transfer. From this maximum and somewhat downstream Nu
decreases. Further downstream the range of scales has grown large and the wall
jet becomes turbulent. This results in a second maximum of Nu. Note that
the second maximum is also influenced by large organized structures. These
coherent structures may also obstruct the formation of a second maximum (see
e.g. Liu & Sullivan 1996). Maximum stagnation heat transfer is attained when
the nozzle-to-plate spacing is about 6−8 nozzle diameters long (see e.g. Baughn
& Shimizu 1989). For smaller H/D the level of k is the limiting factor and for
larger H/D the axial momentum is the limiting factor.

The wall heat transfer is strongly influenced by the dynamics of the un-
steady velocity field. Generally lumps of chaotic eddies have a positive effect
on wall heat transfer whereas large ordered structures may, depending on the
sense of rotation, have a promotive or obstructive effect. To clarify this the
transfer of heat to or from the wall may be divided into contributions from:
(1) the mean flow, (2) coherent structures, (3) chaotic structures (turbulence)
and (4) molecular diffusion. This division of sources was made by Liu & Sul-
livan (1996) in their study of excited circular impinging jets. They concluded
that when intermittent vortex pairing was promoted the induced large amount
of chaotic structures yielded a second maximum of the Nusselt number at
r/D = 1.5 − 1.8. For stable vortex pairing the induced organized large scale
structures had locally a negative effect on wall heat transfer, owing to unsteady
separation and decreased mean shear (Reynolds analogy: Nu ∝ Cf ). Active
control of wall heat transfer was also conducted by Hwang et al. (2001) and
Hwang & Cho (2003). Contrary to Liu & Sullivan (1996) vortex pairing was
obtained within the free jet shear-layer. Promotion of vortex pairing resulted
in shorter potential core and thus higher Nu for small H/D and lower Nu for
large H/D. Suppression of vortex pairing gave the opposite effect. Further-
more, the secondary maximum (for H/D = 4) moved downstream as vortex
pairing was suppressed.
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A change in Reynolds number has larger influence on wall heat transfer
for small H/D than for large. As shown by Angioletti et al. (2003) stagnation
point heat transfer increased by 15% when Re was changed from 1500 to 4000
for H/D = 4.5. The same change for H/D = 2 resulted in a 56% increase. For
the smaller spacing there were also more pronounced changes in the relative
distribution of Nu. A second peak of Nu was only obtained for the higher
Re case. As shown by, among others, Tawfek (1996) and Chan et al. (2002)
the normalized stagnation point heat transfer increases linearly with increasing
Reynolds number for all considered values of H/D.

Based on laminar flow theory Shadlesky (1983) derived a relation for the
stagnation point Nusselt number which is valid for axisymmetric jets: Nu0 =
0.585(Pr)0.4(ReD)1/2. This relation holds for small nozzle-to-plate spacings
for which the stagnation flow is laminar. Chan et al. (2002) found that the
Re-dependence on the stagnation Nusselt number increased as H/D became
larger than the potential core (Re0.54 instead of Re1/2). The considered range
of Reynolds numbers was [5600 ≤ Re ≤ 13200]. Due to the changing character
of the wall jet Viskanta (1993) found that Nu was proportional to (ReD)1/2

downstream to r/D = 2 and to (ReD)0.7 for larger radii. A more complete
relation was derived by Tawfek (1996), in which the average Nusselt number
scales as: Nu = 0.453(Pr)1/3(ReD)0.691(H/D)−0.22(r/D)−0.38. This relation
holds for [2 ≤ r/D ≤ 30], [6 ≤ H/D ≤ 58] and [3400 ≤ ReD ≤ 41000].

In order to assess high wall heat transfer it is, as discussed above, important
to pay attention to the inflow conditions (mean profile and perturbations) and
the nozzle-to-plate spacing of the impinging jet. Further improvements of the
wall heat transfer can be achieved by modification of the surface conditions (see
e.g. Baukal & Gebhart 1997; Beitelmal et al. 2000) or by installing perforated
plates prior to impingement (see Lee et al. 2002a). The shape of the nozzle
outlet has also large influence on the wall heat transfer, particularly for small
H/D (see e.g. Colucci & Viskanta 1996; Garimella & Nenaydykh 1996; Brignoni
& Garimella 2000; Lee & Lee 2000a,b).

2.5. Swirling impinging jets

A swirling free jet involves the same basic features as the non-swirling free
jet, characterizing a fundamental Kelvin-Helmholtz instability. However, addi-
tional instabilities are introduced by the azimuthal velocity component. These
instabilities may be due to centrifugal instability (see e.g. Billant et al. 1998).
As shown by Panda & McLaughlin (1994) the overall growth of instability waves
in swirling jets is, as a consequence of the quick growth of the momentum thick-
ness, weaker why vortex pairing becomes suppressed (compare with the R/θ
ratio for free jets above). This results in less distinct coherent structures and
promotion of the transition to turbulence. For a swirling jet the spreading and
entrainment rates are higher relative to a non-swirling jet. In the latter case
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entrainment is associated to the large scale coherent structures. These how-
ever are not present in strongly swirling flows why an alternative explanation
is needed. The high rate of entrainment may originate from the strong radial
pressure gradient which is induced to balance the centrifugal force. It may also
be influenced by centrifugal instabilities.

For a strongly swirling jet a recirculation bubble is formed that may cause
reversed flow also at the nozzle exit (see Komori & Ueda 1985). This phenome-
non (vortex breakdown or vortex bursting) is, as stated by Panda & McLaughlin
(1994), the origin to the promoted transition. As the flow field, induced by the
vortex breakdown, interacts with the annular shear-layer rapid transition to
turbulence is obtained. Within two diameters downstream of the nozzle outlet
the jet becomes fully turbulent. Vortex breakdown occurs at a specific critical
swirl number and is defined as the formation of a central recirculation zone
(backflow in the core region). It should be noted that in addition to the swirl
number (which may be defined in different ways), also the radial distribution
of the velocity profiles is important. Generally speaking, the swirl number,
independently of its definition, is not adequate to characterize the swirling jet
flow (see Hällqvist & Fuchs 2006b). As shown by Panda & McLaughlin (1994)
the size, shape and location for breakdown change strongly with the Reynolds
number. For sufficiently high Re breakdown occurred within the nozzle. For
a free circular swirling jet there are several different modes or states of break-
down, i.e. pronounced structural change. As shown by Sarpkaya (1971) there
are basically, depending on the Reynolds number and swirl number, three types
of vortex breakdown. One of these is the axisymmetric breakdown, where an
axisymmetric recirculation bubble is formed. The flow then becomes stabilized
and then breaks down a second time forming a helical shape. Billant et al.
(1998) studied the characteristics of various breakdown states. They identified
four distinct forms of vortex breakdown. These include the, above mentioned,
bubble and helical modes.

Lee et al. (2002b) performed experimental work on a swirling round im-
pinging jet with heat transfer. They concluded that the effect of the swirling
jet flow was mainly represented in the near stagnation region and that the av-
eraged Nusselt number became lower for increasing swirl numbers. For larger
radial distances (r/D > 2) the effect from swirl was negligible. Huang & El-
Genk (1998) also made experimental studies on swirling impinging jets. They
found, similar to Lee et al. (2002b), that the swirl velocity influenced the level
of wall heat transfer and location of the second peak in Nusselt number. In
both these works there is comparison with conventional non-swirling circular
impinging jets. Comparison with conventional jets for small nozzle-to-plate
spacing may be somewhat misleading as the commonly used swirl generators
(see also Wen & Jang 2003) produce multiple jet impingement. Multiple jets
feature, due to additional shear, higher level of turbulence. This contributes
to an augmentation of the wall heat transfer. Contrary to the results for Lee
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et al. (2002b), Wen & Jang (2003) concluded that the wall heat transfer was
augmented with applied swirl. Maximum effect was found at high Reynolds
number (Re = 27000) and small H/D.

Instead of using swirl generators it is possible to generate a swirling jet
by using a long rotating pipe. However, this is a much more demanding ex-
perimental setup. This type of setup was used by Imao et al. (1996). They
made experimental studies of turbulence characteristics in a rotating pipe using
LDV. This setup has also been used by Facciolo (2003) to study the turbulent
characteristics in the rotating pipe and in the turbulent swirling jet.

The studies of swirling impinging jets in this thesis are conducted for small
nozzle-to-plate spacings and at a Reynolds number of 20000. Two different
types of inflow conditions have been considered. The first one is a simple top-
hat profile with superimposed solid body rotation. The second one originates
from a precursor simulation of rotating turbulent pipe flow. The influence from
three different swirl levels on the flow field and on the wall heat transfer has
been studied in this thesis (see Hällqvist & Fuchs 2004, 2005c, 2006b).



CHAPTER 3

Theory and governing equations

3.1. Basic equations

The motion of incompressible fluids is fully described by four governing equa-
tions, i.e. the continuity equation and the momentum equations. The latter
ones are commonly refereed to as the Navier-Stokes equations (NS). The con-
tinuity equation is derived from the physical principle of conservation of mass,
stating that the time rate of change of the mass of a fluid element is zero. Using
Cartesian tensor notation and Einstein’s summation convention, the continuity
equation can be written as

∂ui

∂xi
= 0. (3.1)

The momentum equations are based on Newton’s second law which states
that the time rate of change of momentum of a fluid element equals the sum of
forces exerted on it. With the assumption of a Newtonian fluid, see equation
(3.8), the momentum equations take the following form
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, (3.2)

here expressed in conservative dimensional form. The subscripts i and j rep-
resent the components/directions in configuration space and can take values
between one and three, i.e. i, j = 1, 2, 3. By setting t = t∗D0/V0, u = u∗V0

and x = x∗D0 the momentum equations can, after dropping the superscript
(∗), be written in dimensionless form as
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where V0 is the characteristic velocity, D0 the characteristic length-scale of the
flow and Re is the Reynolds number. This is a dimensionless number defined
as

22
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Re =
V0D0

ν
, (3.4)

where ν is the kinematic viscosity of the fluid. The Reynolds number defines
the ratio between inertia forces and viscous forces.

Fluid motion can be decomposed into translation, rotation and deforma-
tion. The translation is given by the velocity itself. The two latter ones are
defined by the symmetric and the antisymmetric part, respectively, of the ve-
locity gradient tensor ui,j as

∂ui

∂xj
= Sij + Ωij . (3.5)

The symmetric part is the deviatoric strain rate tensor

Sij =
1
2

(
∂ui

∂xj
+
∂uj

∂xi

)
, (3.6)

and the antisymmetric part is the rate of rotation tensor

Ωij =
1
2

(
∂ui

∂xj
− ∂uj

∂xi

)
. (3.7)

The strain rate tensor Sij can be further decomposed into one isotropic part
and one traceless part. The former describes the rate of change of the volume
of the fluid element and the latter describes pure deformation. In a Newtonian
incompressible fluid the stress within the fluid is given by

Tij = −p δij + τij = −p δij + µ

(
∂ui

∂xj
+
∂uj

∂xi

)
, (3.8)

where Tij is the total stress tensor and τij the viscous stress tensor, which is
linearly related to the strain rate tensor.

From the rate of rotation tensor the vorticity of a fluid element can be
written as

ωi = εijk
∂uk

∂xj
, (3.9)

where the subscript i = 1, 2, 3 defines the coordinate direction. Vorticity can
not be created in inviscid flows as shear forces are absent. In order for the
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initial vorticity to arise viscous effects are mandatory. However, the rate of
vorticity can change also in inviscid flows through vortex tilting and vortex
stretching. These mechanisms are only present in three-dimensional flows. By
tilting vorticity is transformed from one direction to another direction. By
stretching the moment of inertia decreases and thus, due to conservation, the
vorticity increases. Stretching can also be negative, i.e. the vorticity decreases
whereas the moment of inertia increases.

An important parameter for practical applications is the force exerted by
the flow on a solid wall. This force depends on the wall shear stress (τw)

τw = µ

(
∂u

∂y

)
y=0

, (3.10)

where ∂u/∂y is the wall-normal derivative of the wall parallel flow velocity.
From the wall shear stress it is possible to define the dimensionless skin friction
coefficient as

Cf = τw/

(
1
2
ρV 2

0

)
. (3.11)

As this coefficient is based on the wall-normal derivative it is difficult to accu-
rately asses, both experimentally and computationally.

3.2. Turbulence

The Reynolds number defined in the previous section can be used to classify the
state of the flow. Low values of Re correspond to typically low speeds or small
length-scales. In these cases the flow is structured and ordered, known as lami-
nar flow. For Reynolds numbers larger than some certain critical value, Recrit,
that depends on the particular flow, the flow becomes irregular and ultimately,
with increasing Re, turbulent. The stability of laminar flows are often ana-
lyzed by linear stability analysis. Linearization of the Navier-Stokes equations
is done by introducing small perturbations and neglecting second order terms.
This method has successfully been used to predict the critical Reynolds num-
ber for different (simple) flows. For boundary layer flows the critical Reynolds
number is reached at some downstream location, xcrit. The region downstream
of xcrit is called the transition region. As the Reynolds number increases even
more, due to the increase of x, the flow develops into fully turbulent flow. The
Reynolds number at which the flow changes character is called the transition
Reynolds number, Retr. The turbulence becomes fully developed only at some
higher Re. The nonlinearity of the Navier-Stokes equations make it impossible
to analytically describe the transition process nor fully turbulent flow fields.
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Turbulence is said to be one of the principal unresolved problems in physics
today. Turbulence is characterized by the following features:

• Irregular - the fluid motion is chaotic, making statistical methods the
only possible approach for description of the flow.

• Dissipative - viscous forces continuously transfer turbulent kinetic en-
ergy into heat, therefore turbulence needs a balancing supply of energy
to persist.

• Diffusive - high rates of mixing, efficient in transporting momentum and
heat.

• Three-dimensional and time dependent - turbulence is three-dimensional
and features high levels of fluctuating vorticity. The vorticity fluctua-
tions depend on a process called vortex stretching. This process is absent
in two-dimensional flows. All turbulent flows are rotational.

• Continuum - even the smallest turbulent scales are much larger than
the mean free path, i.e. mean molecular distance.

• Property of the flow - turbulence is a feature of the flow and not the
fluid.

The velocity and size of the large rotational flow structures constitute the
largest eddies of the turbulent flow. These eddies are characterized by a ve-
locity of the same order of magnitude as the typical velocity-scale V0 and by a
typical length-scale D0, which is of the order of the mean flow. The large scales
of the eddies are frequently referred to as the integral velocity-scale u0 and the
integral length-scale 
0, respectively. Thus, the energy of the large eddies is
proportional to u2

0. Kolmogorov’s theory implies that the turbulent kinetic en-
ergy, extracted from the mean flow, is transferred through a cascade of smaller
and smaller scales down to the smallest dissipative scales. Kolmogorov’s theory
is valid for very large Re. By considering dissipation effects one can show that
even if the large-scale fluctuations are non-isotropic (since these depend on the
particular problem and boundary conditions) the smaller scale statistics are
isotropic in character. (Isotropic turbulence implies that statistical quantities
are directionally independent.) The larger eddies behave very much as in an
inviscid fluid, i.e. viscous dissipation is not relevant. On the other hand, the
smallest scales of turbulence, the so-called Kolmogorov length-, velocity- and
time-scales are determined by the viscosity ν and the viscous dissipation ε. The
Kolmogorov scales can be determined by dimensional analysis and are

η =
(
ν3/ε

)1/4
, (3.12)

uη = (εν)1/4
, (3.13)

τη = (ν/ε)1/2
. (3.14)
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The Reynolds number based on these scales equals unity

uηη

ν
= 1. (3.15)

The dissipation, ε, can be estimated as

ε = ν(uη/η)2 = ν/τ2
η . (3.16)

For turbulence in equilibrium (dissipation equals production) one may estimate
the dissipation of turbulent kinetic energy by the integral scales as

ε ∼ u3
0/
0. (3.17)

In terms of the integral scales and the turbulent Reynolds number (Re =
u0
0/ν) one may express the Kolmogorov scales as


0
η

= O(Re3/4), (3.18)

u0

uη
= O(Re1/4), (3.19)

t0
τη

= O(Re1/2). (3.20)

The wide range of length-scales 
 can be divided into three regions in
accordance to figure 3.1. The energetic region contains the largest eddies (larger
than approximately 
 = 
0/6). The inertial subrange region contains scales
from approximately 
 = 
0/6 down to scales of the order of 
 = 60η. According
to Kolmogorov the spectrum in this range is determined by the wavenumber
(eddy size) and the dissipation of turbulent kinetic energy . By dimensional
arguments one finds that the spectrum of the turbulent kinetic energy is

E(κ) = Ck ε
2/3κ−5/3, (3.21)

where κ is the wavenumber, defined as 2π/
, and Ck is the Kolmogorov con-
stant. This relation applies only in the inertial subrange region for Reynolds
numbers tending to infinity, i.e. the influence from energetic scales and mean
strain can be ignored. The far range of the spectrum, which contains the small-
est scales (smaller than about 
 = 60η) belong to the dissipative subrange. Kol-
mogorov’s theory assumes universal spectral behavior (in the inertial and the
dissipative ranges). It also assumes that turbulence is in equilibrium. The two
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Universal equilibrium range

Dissipation
subrange

Inertial subrangeEnergy containing
range

Figure 3.1. Energy spectrum for fully developed high-Re turbulence.

universal ranges of scales are by definition termed as the universal equilibrium
range.

The time- and length-scales of turbulent flows can be determined by using
data of statistical character. The correlation of a variable with itself, at any
given point in space, is the so-called time autocorrelation function and is defined
as

ρ(s) = u′(t)u′(t+ s) / u′(t)2, (3.22)

where the prime indicates a fluctuating component and s is the lag time. This
quantity can be used to calculate the integral time-scale of the flow as

t0 =
∫ ∞

0

ρ(s) ds. (3.23)

The integral time-scale is a measure of how long time the u′ variable is highly
correlated with itself, i.e. a measure of the memory of the flow. The corre-
sponding correlation in space (for each time instant and in the direction of the
velocity component) is termed as the longitudinal autocorrelation and is given
by

f(ξ1) = u′1(x1)u′1(x1 + ξ1) / u′1(x1)2, (3.24)
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where ξ1 is the separation in the x1 direction. A corresponding expression can
be defined for the transversal correlation (with the distance vector normal to
the velocity direction). From the space autocorrelation one may define the
integral longitudinal length-scale as the mean interaction distance according to


0 =
∫ ∞

0

f(ξ1) dξ1. (3.25)

If the local convection velocity Uc is more or less unaffected by the turbulent
fluctuations one can relate time and space correlations by Taylor’s hypothesis,

∂

∂t
= Uc

∂

∂x
. (3.26)

This relationship makes it possible to evaluate more relevant two point space
correlations from the easier measured one point time correlations.

Viscous dissipation transforms turbulent kinetic energy of the flow into
internal energy, i.e. heat. This is due to the fluctuating velocity gradients
∂u′i/∂xj, working against the deviatoric stresses 2νs′ij , where s′ij is the fluc-
tuating strain rate. The complete dissipation of turbulent kinetic energy is
defined as

ε = 2νs′ijs
′
ij , (3.27)

and is by definition always positive. The dissipation is often approximated as

ε = νu′i,ju
′
i,j. (3.28)

Turbulent flow fields are often analyzed in terms of the Reynolds stress
equation. This equation describes the time rate of change of the Reynolds
stresses, Rij (also u′iu

′
j). The Reynolds stress equation can be written as

∂Rij

∂t
+ Uk

∂Rij

∂xk
= Pij − εij + Πij − ∂

∂xm

(
Jijm − ν

∂Rij

∂xm

)
, (3.29)

where Pij is the production tensor

Pij = −u′iu′k
∂Uj

∂xk
− u′ju

′
k

∂Ui

∂xk
, (3.30)

and εij is the dissipation tensor
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εij = 2ν
∂u′i
∂xk

∂u′j
∂xk

. (3.31)

The third term on the right hand side of equation 3.29 is referred to as the
pressure-rate-of-strain tensor and represents redistribution of energy among
the components. This tensor has zero trace and has thus no influence on the
equation for the turbulent kinetic energy. The first term inside the parenthesis
represents transport due to the fluctuating pressure (pressure transport) and
the fluctuating velocity (turbulent convection). The second term inside the
parenthesis represents viscous diffusion. By taking half the trace of the Rey-
nolds stress equation the transport equation for the turbulent kinetic energy is
obtained. This equation is often used in (RANS) turbulence modeling context
(one- and two-equation models).

3.3. Basics of heat and mass transfer

If the flow field can be assumed to be unaffected by variations in temperature
or variations in concentration the transport equation for a passive scalar can be
used to represent heat or mass transfer. The instantaneous scalar concentration
is denoted by c. The scalar is assumed to be advected by the fluid in addition to
molecular diffusion (that obeys Fourier’s- or Fick’s-law). Thus, the transport
equation for c can be expressed as

∂c

∂t
+ uj

∂c

∂xj
= Γ

∂2c

∂xj
2 . (3.32)

In this equation Γ represents the diffusivity and defines the significance of
molecular effects, i.e. same interpretation as viscosity in equation (3.2). If c
represents temperature Γ represents the thermal diffusivity α. If the kinematic
viscosity is put in relation to the thermal diffusivity one obtains the Prandtl
number as Pr = ν/α. The Prandtl number is a dimensionless number repre-
senting the ratio of diffusion of momentum to diffusion of heat. For boundary
layer flows of fluids with Pr close to unity the thermal boundary layer is of
the same size as the velocity boundary layer. In air at room temperature the
Prandtl number is equal to 0.72, meaning that the thermal diffusion is stronger
than the diffusion of momentum. Thus, the thermal boundary layer becomes
thicker than the velocity boundary layer. If c represents concentration of a
tracer Γ represents the molecular diffusivity and ν/Γ the Schmidt number, Sc.

The heat flux per unit area towards the wall (q′′w) can be expressed by
Fourier’s law of heat conduction as
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q′′w = −k
(
∂T

∂y

)
y=0

, (3.33)

where k is the thermal conductivity and ∂T/∂y is the wall-normal derivative of
the temperature. The thermal conductivity is a property of the wall material.
The minus sign indicates that heat is transferred in the opposite direction of
the temperature gradient. Fourier’s law is probably most known for describing
conduction of heat in solid materials but is relevant since at y = 0 there is no
fluid motion and, thus, heat transfer is solely due to conduction. The heat flux
can also be expressed in terms of Newton’s law of cooling as

q′′ = h(Tw − T0), (3.34)

where h is the convection heat transfer coefficient, Tw is the wall temperature
and T0 the fluid temperature outside the thermal boundary layer. In case of the
impinging jet T0 represents the temperature at the velocity inlet (also denoted
by C0). Note that (T0−Tw) is constant. The convection heat transfer coefficient
depends on conditions within the boundary layer and does thus change over the
wall. From equation (3.33) and equation (3.34) one can formulate an expression
on h as

h = − k

Tw − T0

(
∂T

∂y

)
y=0

. (3.35)

The wall heat transfer can be reformulated into a non-dimensional number,
known as the Nusselt number, according to

Nu =
hL

k
= − L

Tw − T0

(
∂T

∂y

)
y=0

, (3.36)

where L defines some characteristic length-scale. For the impinging jet it is
represented by D0. As seen from the scaling Nu is proportional to the dimen-
sionless wall-normal temperature gradient at the surface. The Nusselt number
defines the ratio of convection heat transfer to conductive heat transfer be-
tween the wall and the moving fluid. In case of forced convection the space
averaged Nusselt number depends on the Reynolds number and the Prandtl
number whereas the local Nusselt number depends also on some spatial vari-
able. Under specific conditions (no pressure gradient and Pr = 1) the heat and
momentum transfer can be related according to Reynolds analogy as
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Nu =
1
2
CfRePr. (3.37)

In most situations the Prandtl number does not equal unity why modified
versions of the Reynolds analogy have been defined. As will be seen from
the results presented in this thesis the instantaneous Nusselt number shows
momentarily and locally the same trend as the instantaneous friction coefficient,
i.e. Nu ∝ Cf . Under these circumstances Reynolds analogy is believed to be
of relevance.



CHAPTER 4

Turbulence modeling

4.1. Introduction

In principle, the complete system of governing equations (conservation of mass,
momentum and energy) can be solved numerically for all parameter values.
However, for large Reynolds numbers the smallest scales of the problem become
so small that no one has the computer resources to obtain a fully resolved flow
field. Also, for any practical problem one is not interested in instantaneous data
of the flow, which are random, but rather in quantities that are reproducible
(i.e. deterministic). Thus, one has to reduce the amount of data in such a
way that the reduced problem (equations) have deterministic solutions. This
reduction can be achieved in several ways. For example by averaging, i.e.
ensemble-, spatial- and/or temporal-averages. In the latter case, one eliminates
time dependency altogether, which leads to an averaged stationary problem.
This approach is reasonable for statistically stationary flows. However, for flows
that contain unsteady coherent structures, this approach may lead to loss of
essential information.

Within the framework of the Reynolds Averaged Navier-Stokes (RANS)
one often assumes that the flow is statistically stationary (or close to that state).
The averaging within RANS eliminates the details of turbulence in both space
and time. Due to the nonlinearity of the Navier-Stokes equations additional
terms, the Reynolds stresses (u′iu

′
j), appear in the averaged equations. These

terms are the origin to the so-called closure problem. Thus, to solve the RANS
equations, one has to express the unknown correlations in terms of the known
(averaged) dependent variables. Such expressions lead to the formulation of
turbulence models.

Probably the most well known model is the so-called k− ε model in which
the turbulent scales are determined from two transport equations, i.e. the
transport equation for the turbulent kinetic energy k and the transport equa-
tion for the dissipation rate of turbulent kinetic energy ε. The turbulent length-
scale can thus be defined as k3/2/ε, the turbulent velocity-scale as k1/2 and the
turbulent time-scale as k/ε. The basic two-equation model is the so-called
standard k − ε model. There are however more sophisticated models devel-
oped, such as the realizable k − ε model and the renormalization group k − ε

32
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model (RNG). The turbulent scales can also be obtained by solving alternative
transport equations as in case of e.g. the k − ω model.

The basic philosophy for this category of models is to describe the turbulent
momentum transfer by an additional viscosity term, the so-called eddy viscosity
νt. In analogy to equation (3.8) the turbulent-viscosity hypothesis (Boussinesq
hypothesis) relates the Reynolds stresses to the mean velocity gradients as

u′iu
′
j =

2
3
kδij − 2νtSij , (4.1)

where νt, for the standard k − ε model, is given by

νt = Cµ
k2

ε
. (4.2)

In the above equation Cµ is a positive model constant, determined from ex-
perimental data. The advantages with this approach is its simplicity and the
relatively low computational cost that is associated to the computation of νt.
The main disadvantages of the turbulent-viscosity hypothesis are related to
isotropy and linearity of the model. The model assumes that the anisotropy
tensor (aij = u′iu

′
j − 2

3kδij) is aligned with the mean rate of strain tensor Sij .
This alignment, however, is not present even for simple shear flows. The in-
sensitivity to rotation is another weakness of the Boussinesq approach. Thus,
flows featuring strong mean streamline curvature or rotation are not possible
to accurately predict. Furthermore, history effects can not be accounted for,
which may cause nonphysical behavior. In the k − ε model the production of
turbulent kinetic energy Pk is expressed in terms of the scalar quantity νt and
is given by Pk = 2νtS

2
ij . As seen, the production cannot be negative which

may cause excessive level of turbulence in, for instance, stagnation flows (such
as the impinging jet).

There are models, within the RANS context, that do not feature the above
discussed deficiencies. An example of such a model is the Reynolds Stress
Model (RSM). In this model the production is not modeled but directly given
by equation 3.30, why the rotational part of the mean flow is accounted for.
Furthermore, this model does not use the linear Boussinesq hypothesis. Instead,
transport equations are solved for the individual Reynolds stresses. The com-
putational cost and complexity of this model is, however, significantly higher
relative to the eddy viscosity models.

4.2. Large eddy simulation

To fully describe a turbulent flow, all scales of motion, from the largest energetic
scales 
0 to the smallest Kolmogorov scales η, must be resolved. The relation
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between these two scales is for isotropic turbulence described by �0
η = O(Re3/4).

In three dimensions the number of degrees of freedom becomes O(Re9/4). The
shortest characteristic time-scale is represented by the time it takes for infor-
mation to be advected through the smallest eddy, i.e. η/u0. This time-scale
is also of O(Re3/4). Thus, the computational requirement for DNS (Direct
Numerical Simulation), resolving all the scales of the Navier-Stokes equations,
behaves as O(Re3). Therefore, DNS cannot be applied to complex geometries
and higher Re flows.

If one is interested in the dynamics of the flow and/or when the RANS
framework is inadequate (lack of general models and lack of well calibrated rela-
tions) one may use Large Eddy Simulation (LES). In LES one introduces spatial
averaging, i.e. filtering. The filtering is aimed at eliminating or smoothing out
fluctuations smaller than the predefined cutoff wavenumber. This wavenumber
is in many cases equal or proportional to the grid size. The spatial filtering of
the Navier-Stokes equations introduces, similar to the averaging within RANS,
a new group of terms. These terms are referred to as the Sub-Grid-Scale (SGS)
terms or the Sub-Filter-Scale (SFS) terms and have to be modeled, by a so-
called SGS model, in order to close the system of equations. Under certain
conditions, they can also be ignored, which leads to a reasonable approxima-
tion if the grid is fine enough. In contrast, one cannot neglect the Reynolds
stresses. This is so since the size of the SGS terms can be made, theoretically,
as small as one wishes (depending only on the filter size). In contrast the Rey-
nolds stresses, though are second order in terms of the fluctuations, cannot be
reduced to arbitrarily small values, but remain finite and balance some other
terms in the RANS equations.

In LES the larger eddies are explicitly computed and one accounts for the
effects of the unresolved small scales on the resolved ones through the SGS
model. In this model approximations to the SGS terms are sought. For the
SGS model to be generally valid one must have high enough grid resolution
in order to resolve the problem dependent scales. This corresponds to the
unresolved scales being problem independent, i.e. of an universal character.
On average, such behavior is found in the inertial subrange of the turbulent
kinetic energy spectrum. In true LES one uses explicit filtering and explicit
SGS modeling. Several models have been developed during the past years.
The first model was derived by Smagorinsky (1963), the so-called Smagorinsky
model. This is a simple model and has been the foundation for many of the
later developed ones. (For detailed information on the complete subject of LES
see e.g. Sagaut (2001).)

4.2.1. Filtering

In order to reduce the number of degrees of freedom, and thus also the com-
putational cost, a spatial low-pass filter is applied to the dependent variables.
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However, when doing this one trades accuracy for performance since the amount
of information contained in the variables decreases with increasing filter width.
Thus, one must find an applicable balance between these two aspects. This
can be done properly only by a posteriori analysis. The filtering operator is
assumed to be linear, distributive and commutative with respect to derivative
operators. One often adds further constrains on the filtering process. For ex-
ample, one often requires that the filtering process is invariant under uniform
translation (Galilean invariant). Another constrain may be that the averag-
ing process satisfies the above mentioned properties also at the discrete level.
Additional constrains may be related to preserving certain integral quantities,
such as energy. It is not self-evident that these constraints are necessary con-
ditions for a physical solution. It is rather assumed that these constraints are
sufficient. However, if the SGS terms do behave as indicated above, i.e. vanish
as the filter width approaches zero, then the error due to the constraints should
also vanish. (Unless the two branches of solutions are disconnected and the re-
sult depends on the path of approach to the solution, i.e. multiple solutions in
the extended parameter space that includes the filter size. There is however no
evidence for any such behavior.)

A general explicit spatial filter can in physical space be defined as

u(x) = G � u =
∫ ∞

−∞
G(x − ξ)u(ξ)dξ, (4.3)

where u is the space filtered velocity (not to be confused with the averaging
within RANS), G is the filter kernel and G � u is the convolution of G and
u. The filter function for the commonly applied top-hat filter can, in 1-D, be
written as

G(x− ξ) =

⎧⎨⎩
1
∆ if |x− ξ| ≤ ∆

2

0 otherwise
, (4.4)

where ∆ is the filter width or filter size. By taking the Fourier transform of the
kernel one obtains the so-called transfer function Ĝ. This function is non-local
in spectral space for the top-hat filter, i.e. there is not a distinct separation of
frequencies. On the contrary, a filter function that is local in spectral space,
i.e. the sharp cutoff filter, is non-local in physical space. Note that the spa-
tial filtering implicitly introduces temporal filtering since the smallest resolved
time-scale can be associated to the size of the smallest resolved length-scale
(see Sagaut 2001, pp. 13).
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The linear nature of the filter does not commute with the nonlinear ad-
vection term why an extra stress term is, as shown below, introduced. After
applying a general filter, the momentum equations (3.3) become

∂ui

∂t
+

∂

∂xj
(uiuj) = − ∂p

∂xi
+

1
Re

∂

∂xj

∂ui

∂xj
. (4.5)

In this form the system of equations are not closed. To solve this the nonlinear
term can be expressed by using Leonard decomposition as

uiuj = uiuj + τij , (4.6)

where τij is the so-called SGS stress tensor (the SGS terms). If one expands
the unfiltered variable in terms of the filter size, one can show that the SGS
stress is second order in the filter size. With the above defined decomposition
the momentum equations takes the following form

∂ui

∂t
+

∂

∂xj
(uiuj) = − ∂p

∂xi
+

1
Re

∂

∂xj

∂ui

∂xj
− ∂τij
∂xj

. (4.7)

As the solutions to the problems presented herein are smooth and do not
contain discontinuities or shocks the nonconservative form of the momentum
equations can be used without affecting the accuracy. By dropping the overbars
the momentum equations can in their final form be written as

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂p

∂xi
+

1
Re

∂

∂xj

∂ui

∂xj
− ∂τij
∂xj

. (4.8)

In equation (4.8) the convective term is written in advective form as compared
to the divergence form in equation (4.7). It should be pointed out that for
any solution of the governing equations, the conservative and non-conservative
forms are identical. The differences between the two formulations arise only for
the discrete formulations and corresponding solutions. The divergence form is
conservative a priori, also from a numerical perspective.

The role of the SGS terms is, as mentioned above, to account for the ef-
fects of the unresolved scales on the resolved ones. If the filter size is much
larger than the Kolmogorov scale the smallest resolved scales become large and
molecular viscosity cannot account for dissipation. Energy build-up among the
smallest scales must hence be handled by the SGS terms. A second role of the
SGS terms is to allow energy transfer from the small scales to the larger ones,
i.e. backscatter. The former property is a mandatory property of SGS mod-
els. The second property is often mentioned as being an important property.
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Backscatter is important in simulations of e.g. transition, in which growth of
disturbances is to be determined.

In LES one may use an explicit or an implicit filter as long as they account
for the properties of the SGS terms. As the grid is refined there is one basic
difference between these two approaches. With explicit filtering the solution
approaches that of the filtered governing equations whereas for implicit filtering
the solution approaches that for DNS. One example of an implicit filter is
any local averaging operator or any local polynomial approximation to the
dependent variable. An often used implicit filter is the discretization scheme
(based on finite differences, finite volumes or finite elements). Explicit filtering
has the advantage that it clearly separates two important parameters. Namely,
the filter size, which is related to the physics of the flow, and the grid size,
which is related only to the resolution of the small scales. The ratio between
these two parameters must be chosen with care. The ratio can be made smaller
for high order schemes as compared to low order schemes. In the work by Chow
& Moin (2003) the minimum ratio for the fourth order scheme was concluded
to be twice the cell size and for the second order scheme it was concluded to
be four times the cell size. This in order not to mask the contribution from the
unresolved terms.

The uniform filter (constant filter width) is of convolution type and does
commute with partial derivatives whereas a nonuniform filter features variable
filter width and does not commute with partial derivatives. A consequence
of this is that commutators, i.e. commutation errors, are introduced into the
solution. The commutator terms may be handled by the SGS model but this
adds of course additional complexity to the modeling. As stated by Chow &
Moin (2003) a fourth order explicit filter should be used in order to separate
the commutation errors from the modeled terms, which are of second order.
Applying explicit filtering is associated with complications on inhomogeneous
or unstructured grids. Using a simple filter in such cases introduces additional
errors as the form of the filtered LES equations deviate from that of the Navier-
Stokes equations. There are however filtering methods that allow variable grid
spacing (see e.g. Vasilyev et al. 1998; Marsden et al. 2002). More details on
homogeneous filtering can be found in the work by e.g. Sarghini et al. (1999),
Gullbrand (2002), Gullbrand & Chow (2002), and Gullbrand & Chow (2003).

Detailed studies of the influence from filtering in practical low order LES
was conducted by Brandt (2004). He showed that explicit filtering of the whole
velocity field is not possible on a ”normal” resolution LES grid. The background
to this is that as the filter width was increased the SGS terms grew slowly
and finally, as a consequence of too low effective grid resolution, diminished.
Instead, if only the nonlinear terms were filtered the desired behavior was
obtained, i.e. the numerical error diminished while the SGS terms grew. Clear
separation was obtained at a filter width of two. As stated by Lund (2003)
the filtering of the nonlinear terms is the critical and thus the essential issue in
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nonuniform simulations. Thus, for consistency explicit filtering of the nonlinear
terms should be performed at each time step.

Relative to explicit filtering, implicit filtering is less computationally ex-
pensive and does not involve commutation errors (cf. Fureby & Grinstein 2002).
Implicit filtering has some drawbacks though. Firstly, as the cutoff wavenum-
ber is determined by the grid spacing and the filter does not have a sharp cutoff
in the Fourier space, the smallest resolved scales are often influenced by numer-
ical errors. Thus, high order discretization schemes and high grid resolution are
essential in order to minimize the contribution from these errors. Secondly, the
influence from the implicit model, i.e. the discretization scheme itself, is diffi-
cult to assess. When comparing different SGS models explicit filtering is more
appropriate as it is independent of the grid spacing. The filtering process and
the SGS modeling must be considered as an inseparable issue since the filtering
operator may be more suited for a model A than for a model B (see Stefano
& Vasilyev 2002). This issue is of great importance for models relying on in-
formation contained in the smallest resolved scales. Stefano & Vasilyev (2002)
studied the influence from sharp (cutoff) and smooth (top-hat and Gaussian)
filters. They found that the SGS stress tensor and the spectral content of the
solution depends strongly on the applied filter. In order to construct efficient
SGS models a sharp cutoff filter should be used as this filter yields a distinct
separation of scales. Furthermore, the cutoff filter is Galilean invariant. In top-
hat and Gaussian filtering the limit between resolved and modeled scales is not
well defined and the modeling process becomes significantly more complicated.
However, the sharp cutoff filter cannot be applied in bounded domains as it is
non-local in physical space. This is why top-hat filters are commonly used in
complex geometries.

Despite the known theoretical advantages of explicit filtering the practical
benefits are, as stated by e.g. Gullbrand & Chow (2002), hard to motivate.
Furthermore, as shown in the work by Lund (2003) the accuracy of their LES
simulations was improved at a greater rate with implicit filtering and mesh
refinement as compared to explicit filtering. Due to the limitations in computer
hardware and the complexities involved in inhomogeneous filtering, implicit
filtering is most frequently used in LES. As stated above, mesh refinement of
the grid results in less influence from numerical errors on the smallest resolved
scales. This in conjunction with the additional complexity of inhomogeneous
explicit filtering is the motivation behind applying the ”universal” implicit
filtering approach within this work. The shape of the implicit filter cannot be
determined. However, since we (and practically the whole LES community) do
not apply the filtering on the boundary conditions, it never enters explicitly in
the equations and thereby its explicit form is not required at all.
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4.2.2. SGS modeling

The SGS stress tensor has to be modeled in order to close the system of equa-
tions. As stated above, these terms may also be ignored provided that the
grid spacing is fine enough. The first explicit SGS model was developed in the
sixties by Smagorinsky (1963). In this model the SGS stress tensor is related
to the filtered rate of strain, in analogy to eddy viscosity models in RANS.
The introduced eddy viscosity is modeled by using the filter (grid) size as the
reference length-scale. One drawback with this model is that the model con-
stant, Cs, is not universal but case dependent if the grid is not fine enough. In
addition the model cannot handle backscatter, i.e. it is absolutely dissipative
as the rate of energy transfer to the modeled scales is strictly positive.

The Smagorinsky model has clear problems in near-wall regions where
damping or wall functions are required. During the years a large number of
improved models have been developed. The dynamic model by Germano et al.
(1991) allows local values of the model coefficient, C. The model coefficient
is calculated from the resolved motion and approaches zero in regions of fully
resolved flow, i.e. the effects of the model diminish. This model is based on
two filter functions. The first one is most commonly represented by the grid
size and the second one is a so-called test filter. The test filter is the larger,
often chosen to be around twice the grid size, and used for calculating C. A
potential problem with this model is that the model coefficient can become
indeterminate as it may change sign in the flow field. This can lead to numer-
ical instability. To solve the problem the model coefficient can be bounded.
Artificial limiting of C was worked on by Olsson & Fuchs (1996, 1998). Note
that a negative value of C (however bounded) is not a completely undesired
feature as it allows the dynamic model to account for backscatter.

As the coefficient in the dynamic model is a scalar quantity the model
becomes isotropic. This means that the smallest scales, at test filter level, are
assumed to be of universal character. In some cases it is difficult to assess an
overall universality of the smallest resolved scales. In the Divergence Dynamic
Model (DDM), derived by Held & Fuchs (1997), C is divided into three parts,
one in each spatial direction. Hence, sub-grid anisotropy could be handled
in a more correct manner. This model is based on the fact that only the
divergence of the SGS stress tensor is used in the momentum equations. In the
scale similarity model (SSM) (see Bardina et al. 1980) it is assumed that the
interaction between resolved and modeled scales behaves similar for different
filter sizes. This model has a major drawback as it is not dissipative. This
problem was solved by Bardina et al. (1983) who proposed an ad hoc approach
by introducing the so-called mixed model. The mixed model is a combination
of SSM and the Smagorinsky models.

In the work by Tammerman (2003) it was shown that for calculation of
separated channel flow the grid resolution and the near-wall treatment were of
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major importance whereas the choice of SGS model was more or less nonessen-
tial. Hence, for their specific problem a simple model in conjunction with a fine
mesh provided accurate results. As stated by Geurts (2003) a sophisticated
SGS model at fairly large filter width produces similar results to a poor model
at small filter width. Depending on the type of results wanted and on the
complexity of the flow and geometry simple models may provide satisfactory
results (see also da Silva & Pereira 2004).

From the behavior of SGS models and the construction of SSM one may
conclude that it is roughly equivalent using an explicit model as using a finer
grid without an explicit SGS model. In some cases using an explicit model may
pay-off computationally. Whereas in other cases, not using an explicit model
can be compensated for by refining the grid. In the computations presented
in this thesis we have not considered explicit SGS modeling. Instead we have
prioritized the grid resolution. However, the error introduced by neglecting the
SGS terms and instead introducing artificial dissipation is most probably not
more harmful than applying an improper explicit model incapable of handling
complex flow features such as dissipation, anisotropy and backscatter. The
computational resources saved by considering implicit modeling may, roughly,
permit construction of a grid with twice as many cells.

In the work by Fureby & Grinstein (2002) an implicit model was used for
computation of high Re compressible flows. For compressible flow the implicit
method is referred to as the MILES (Monotone Implicit LES) approach. They
stated that an explicit SGS model capable of handling inhomogeneities and
rapid deformation becomes far too complex to be of practical interest. This
fact motivated them to use a nonconventional implicit approach. Their results
showed that the implicit method predicted the energy cascade and statistical
moments, for free jets and wall-bounded flows, better than the eddy viscosity
models and comparable to the anisotropic differential stress model (DSM).
However, the computational effort using the DSM model was 68% higher as
compared to the implicit model. An implicit modeling approach was also used
in the work by Margolin et al. (1999). It produced similar results as an explicit
eddy-viscosity model. They concluded that the solvers implicit viscosity served
well as an effective SGS model and that second order accuracy was needed in
order not to obtain excessive dissipation. Too high dissipation resulted in
steeper energy spectrum within the inertial subrange and hence also in slightly
lower variance.

Pasquetti (2005) performed LES with and without SGS modeling of turbu-
lent wake flow (however in a spectral manner). From the results they concluded
that the no-model approach yielded comparable or even better results, regard-
ing first order statistics and spectral content, than the explicit approach. In
the work by Meinke et al. (2002) turbulent flows were studied by means of
different types of SGS models, grid resolutions and numerical schemes (second
order mixed central-upwind scheme and sixth order compact schemes). The
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results showed that using an explicit SGS model does not improve the quality
of the solution. This regardless of the Reynolds number, grid resolution and
numerical scheme. More important for the results are the mesh resolution and
the filtering parameters.

Detailed studies on the present code with and without explicit modeling
have been conducted by Olsson (1997) and Olsson & Fuchs (1996, 1998). In
their later work (cf. Olsson & Fuchs 1998) they studied the SGS model ef-
fect for an impinging jet at ReD = 104 and with a nozzle-to-plate spacing of
four jet diameters. The numerical scheme was the same as within this work.
The reference case was a highly resolved implicit simulation (1283 cells on the
highest multi-grid level). Two explicit models were considered, the dynamic
Smagorinsky model and the stress-similarity model. Their conclusion was that
the implicit method yielded results of same quality as the explicit approaches
and, furthermore, the effect from the SGS models were not masked by the
numerical scheme.

4.3. Near-wall treatment

The near-wall region is of great importance for turbulent flows since within
this region viscous effects are important. In high Reynolds number wall flows
the grid size and consequently the smallest resolvable scales can be magnitudes
larger than the physical scales of the near-wall flow. The physical scales must
hence be treated by some sort of model, often termed as ”wall function”. This
kind of modeling is, as stated by Pope (2000), of limited generality in complex
flows such as flows with e.g. separation and impingement. As depicted in the
work on separated channel flow by Tammerman (2003) the results were sensitive
to the type of the implemented wall-law. The shown discrepancies originated
from the basic problem of predicting correct instantaneous wall shear stress.

The most common approach, which also is applied within this work, is
to resolve the flow in a similar manner as in DNS, i.e. by using wall-normal
grid stretching. This is referred to as Quasi-Direct Numerical Simulation by
Spalart (2000) since all eddies in the boundary layer are resolved and the SGS
stresses are of the same order of magnitude as the viscous stresses. However,
the required grid spacing significantly affects the computational cost and is thus
difficult to actualize in complex geometries. By using wall boundary treatment
the computational time can be reduced by a factor of 10 as shown in the work
on trailing edge flow by Wang (1999). Therefore improved SGS modeling for
the near-wall region of complex flows is desirable.

Due to the amount of computer resources needed to resolve the near-wall
region alternative approaches have been developed that also involve unsteady
RANS. The near-wall RANS simulation is matched to the outer LES simulation
at some deterministic distance from the wall. One of these approaches is the, so-
called, Detached Eddy Simulation (DES) technique developed by Spalart et al.
(1997). In this method the Spalart-Allmaras one-equation turbulence model is
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employed. Another approach, implemented by Davidson & Peng (2003), is the
so-called hybrid LES-RANS method. In this method a two-equation k-ω model
is used in the near-wall region. One problem with these kind of approaches is
to obtain appropriate matching between the two different simulation strategies,
e.g. where the interface shall be located, how to determine it and how to assess
correct boundary conditions for the LES (spectral content, time and space
correlations).

In-spite of the efforts to develop a general treatment of solid walls, it is
clear that so far there exist no generally valid models. One may also argue that
there is only little hope for such models, unless they include local and non-local
information, making such modeling dependent on the specific problem (i.e. not
general).

4.4. Modeling of scalar transport

The spatial filtering of the scalar transport equation (3.32) yields an additional
term that accounts for the sub-grid-scale fluxes on the resolved scalar concen-
tration. The filtered scalar equation is

∂c

∂t
+ uj

∂c

∂xj
= Γ

∂

∂xj

∂c

∂xj
− ∂ψj

∂xj
. (4.9)

The additional term ψj is the scalar SGS (of the turbulent fluxes) and can be
treated by models in analogy to the momentum SGS terms. As in case of mo-
mentum SGS, for adequately fine spatial resolution one may neglect altogether
the explicit scalar SGS terms. For further information on scalar SGS modeling
see e.g. Revstedt (1999).



CHAPTER 5

Numerical aspects

As a complement or as a replacement to experimental work on fluid dynamics
digital computers can be used to numerically solve the Navier-Stokes equa-
tions. The different methods solving these equations are tools that are used
in Computational Fluid Dynamics (CFD). The problem under consideration
may either be steady-state or time-dependent. The numerical methods must
fulfil some well-known properties, namely: consistency, stability and conver-
gence. Consistency implies that the discrete problem is an approximation to
the differential one. A solution method is stable if any given error remains
bounded (in certain sense) during the solution procedure. Stability may be
investigated by different methods, including the linear normal-mode analysis
(von Neumann). Convergence implies that as the grid is refined the solu-
tion to the discrete problem approaches the solution to the differential prob-
lem. According to Lax equivalence theorem (see Tannehill et al. 1997), which
is valid for certain linear initial value problems, the following relation holds:
consistency + stability <=> convergence. Naturally, the problem to be solved
has to be well-posed. Well-posedness implies that a solution to the problem
must exist and be unique, and depend continuously upon the initial and bound-
ary data.

For the results presented within this work an in-house developed code has
been employed. This code is constructed on a staggered Cartesian grid and
for the discretization of the governing equations finite differences have been
used. On structured grids finite differences allow easy implementation and are
computationally highly efficient. One potential drawback when compared to
the finite volume approach is that high-order finite difference methods, applied
to the continuity equation, may not be inherently conservative. However, this
is not the case here.

5.1. Partial differential equations

When solving physical problems governed by partial differential equations it is
important to be familiar with the basic mathematical properties of the system
of equations. This in order to formulate appropriate numerical schemes and
boundary conditions. The classification can be performed by analyzing the
symbol of the principle part of the system. There are four main categories of
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partial differential equations: the hyperbolic, the parabolic, the elliptic and
all the others not belonging to any of these categories. Different assump-
tions made on the Navier-Stokes equations may lead to systems of different
types. The character of the systems indicates the character of the flows (wave-
dominated, diffusion dominated or evolutionary, which are hyperbolic, elliptic
and parabolic, respectively).

Hyperbolic equations characterize wave propagation problems, i.e. the
solution depends solely on conditions at certain parts of the domain (so-called
”domain of dependence”). This is also the case for parabolic equations for
which the domain of dependence is the limiting case and it extends to the whole
domain. Parabolic equations involve dissipative effects, which smooth out sharp
gradients, whereas hyperbolic equations do not involve any dissipative effects,
i.e. discontinuities may occur.

For hyperbolic and parabolic equations all characteristics are real. An
elliptic system has no real characteristics at all. The number of ingoing char-
acteristics determines the number of required boundary conditions. For elliptic
systems, which are always of even order, 2m, one has to specify m conditions
on all boundary points. The incompressible, steady-state, Navier-Stokes equa-
tions are of order 2d, where d is the dimension of the problem. Thus, one has
to specify d conditions on all boundary points. These conditions may be of
different types, i.e. one may specify the velocity vector on some of the bound-
aries and possible some other forms of conditions at other boundaries. When
the velocity vector is specified, global mass conservation has to be satisfied.
The time dependent incompressible Navier-Stokes equations do not belong to
any of the three categories; they are, so-called, incompletely parabolic. The
system requires boundary conditions as an elliptic system (i.e. d conditions on
all boundary points at all times) and additionally, initial conditions at all other
points of the domain under consideration.

5.2. Spatial discretization

One of the major problems in numerical simulation of fluid flow are the errors
introduced by the spatial disctretization. These errors are primarily due to the
finite size of the grid. However the choice of discretization scheme, i.e. trun-
cation error and characteristic behavior (dispersive or dissipative), is of course
also of great importance for the outcome of the simulation. There is a gen-
eral belief that higher order numerical accuracy is important for handling the
physics of the small scales that are supported on a given grid. This, however,
is highly dependent on the scheme itself and not only on its formal order of ac-
curacy. High order schemes and high grid resolution have a stronger tendency
to cause nonphysical oscillation and slow convergence rate as compared to low
order schemes and coarse grids.
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Discrete spatial derivatives can be derived from Taylor-series expansion.
The Taylor series for a continuous function u(x) in the vicinity of xi can be
written as

u(x) = u(xi) +
N∑

n=1

(x − xi)n

n!

(
∂nu

∂xn

)
i

, (5.1)

where N defines the highest order term. Rewritten as an expression for the
first order derivative at xi the following is achieved
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By replacing x by xi+1 or xi−1 forward or backward differencing is obtained
and by combining these two central differencing is obtained. The value of the
approximated derivative may differ significantly between these three methods.
However, this difference decreases as the grid is refined.

The forward difference scheme can, if truncated, be written as
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The leading error term, i.e. the second term on the right hand side, is directly
proportional to the grid spacing, meaning that the approximation is of first
order accuracy. The second term is also proportional to the second derivative
of u. The consequence of this is that the scheme is dissipative in nature.
There is also some dispersion introduced by the third term. But as this term is
proportional to the square of the grid spacing the error due to dispersion is low.
Thus, the forward and backward schemes, i.e. upwinding, is of a dissipative
character.

The central difference scheme can, when truncated, be written as
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Also here the leading error term is directly proportional to the grid spacing
and the second derivative of u. However, for uniform grids this term vanishes
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and the central scheme becomes second order accurate. Thus, intuitively, in
order to maintain accuracy the grid should be as uniform as possible. But as
the truncation error also depends on derivatives of u minimum error is, for a
given number of grid nodes, obtained on stretched grids. Regions featuring
steep gradients, such as boundary layers, demand high resolution in order to
resolve the local physical scales and to minimize the error. (In order not to
alter the formal order of accuracy one can use coordinate transformation, i.e.
construction of an uniform computational grid by transforming the governing
equations by analytically derived metric coefficients, see section 5.5.)

By increasing the formal order of accuracy the magnitude of the leading
error term decreases, resulting in less dissipative or dispersive effects. This is
of great importance for time dependent flows containing small scale structures,
since too high artificial dissipation will weaken or even prevent the development
of these structures and thus influence the reliability of the simulation. However,
applying a high order method on a coarse grid incapable of resolving important
scales is not desirable. A high order method relies on information from a greater
number of neighboring nodes as compared to low order methods. Thus, a high
order method acts as a filter, smoothing out the smallest resolvable scales. If
the grid is coarse this results in inaccurate representation of steep gradients.
The advantages of high order methods can only be gained on relatively fine
grids. If the grid is fine enough is, as stated by Ferziger & Peric (2001), both
problem and method dependent and cannot be determined a priori. One should
note that the order of the truncation error does not provide any information
about the magnitude of the error only how the error changes as the grid is
refined.

A less common use of larger number of grid data to express derivatives is not
for attaining higher order but rather to improve the high frequency properties
of a numerical scheme. In recent years one has developed discretization schemes
that have better dissipative and dispersive properties for a wider range of scales
(wave-numbers). Since these schemes are of lower order, the additional data
is used to ”optimize” the above mentioned properties. These optimal schemes
may be useful when explicit filtering is used. Another recent trend in higher
order schemes, is using compact versions. These version involve less number
of grid points as compared to classical higher order schemes, but on the other
hand they do require derivatives of the dependent variables,

The choice of method for discretization of the governing equations is non-
trivial and must be based on the complete problem. In the present work no
explicit SGS model is used and hence the discretization scheme must be de-
signed with this in mind. Furthermore, to avoid masking of the SGS stress
by the truncation error high order schemes are needed. For the spatial dis-
cretization of the advection term in the momentum equation (4.8) a O(h3)
upwind-biased scheme, proposed by Rai & Moin (1991), has been used. Orig-
inally this scheme was used for DNS simulations of fully developed channel
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flow. In DNS the numerical dissipation should be minimized since the dissipa-
tion of energy is fully handled by the action of viscosity. Rai & Moin (1991)
used this weakly dissipative scheme in order to control aliasing errors and, to
minimize the dissipation, an extra fine mesh was constructed. (As verified by
Olsson (1997), Olsson & Fuchs (1998) and Revstedt (1999) the considered dis-
cretization of the advection term adds appropriate amount of dissipation to the
simulation to allow implicit SGS modeling.) Applied to the advection term the
finite difference equation can be written as

FDEadv = ui, j
2ui+1 ,j ± 3ui, j ∓ 6ui−1, j ± ui−2, j

6h
, (5.5)

where h is the grid spacing. The upper operator of (±) is used for ui, j > 0
and the lower for ui, j < 0. An identical expression can also be constructed by
introducing an explicit artificial viscosity term that is added to the standard
fourth order central differences. In this way one can easily identify the size and
form of the added (artificial viscosity) term

FDEadv = PDEadv − TEadv = PDEadv − 1
12

|u| h3 ∂
4u

∂x4
+ O(h4). (5.6)

It should be pointed out that this estimate is not valid for the highest frequency
modes that are supported by the grid, since for these modes the Taylor expan-
sion converges slowly and the leading term is not dominating over the rest of
the terms in the expansion.

The other terms in the momentum and continuity equations are approxi-
mated by fourth order central differences.

5.2.1. Scalar equation

In the spatial discretization of the scalar equation (4.9) the O(h3) upwind-
biased scheme has been used for the convective term. The diffusive term is
approximated by O(h4) central finite differences. Near boundaries a hybrid
scheme has been used for the convective term. This scheme implies that cen-
tral differences are used where diffusion is dominant and upwinding where
convection is dominant.

5.3. Temporal discretization and solution procedures

In LES the time step ∆t should primarily be limited by the physical time
limitation, based on the integral and Kolmogorov time-scales. Such limitation
would imply also that the CFL number will be lower than unity. For the
simulations presented herein the maximum CFL number in time and space has
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been within the range of 0.2 ± 0.05. A too high value of this criterion causes
the solution to explode.

The momentum equations have been advanced in time by a three-step
Runge-Kutta (RK) method and, as the flow is treated as incompressible, a
pressure correction technique has been used to ensure a divergence free solution.
The pressure correction involves repeated solution of a Poisson equation. The
Poisson equation is of an elliptic character and can be treated in an iterative
manner. In this specific case a point Gauss-Seidel relaxation algorithm has
been used in a multi-grid framework. A multi-grid is used in order to speed
up the convergence. Once the pressure corrections are computed, the velocity
field is also updated, in such a way that (a linearized version of) the residuals
of the momentum equations remain unaffected when the continuity equation is
being satisfied.

As stated above, the time integration of the momentum equations employs
a three-step Runge-Kutta scheme. Similar scheme can be used also for the
scalar transport equation. However, for high Prandtl or high Schmidt numbers
this may require a smaller time step for the scalar equation. Hence, in most
cases we use only a low-storage second order scheme for the scalar equation and
allow several time steps in each time step used for the Navier-Stokes equations.

5.4. Boundary conditions

5.4.1. Inflow conditions

The outcome of a numerical simulation depends strongly, as discussed above,
on the discretization scheme, the computational grid and the type of modeling.
However, the solution of the Navier-Stokes equations depends also strongly on
the specified boundary conditions and errors or uncertainties in these. On solid
walls one often specifies no-slip conditions. These conditions are well defined
and can be subjected to errors only if the wall has some porosity or unresolved
surface roughness. On the other hand, specifying inflow and outflow conditions
is much less obvious. In general, one may be able to specify such conditions, at
best, with known uncertainty. In many other cases the error in the boundary
conditions is unknown, making comparisons with experiments doubtful since
no definitive conclusion can be drawn by the comparison. The benefits from
having an accurate scheme, a fine grid and a sophisticated SGS model may be
masked by uncertainties in boundary conditions, when comparisons are made
with experimental data.

In some applications, where the inflow is laminar an assumed velocity pro-
file may be specified. For low Re flows the effect of an error in that profile
disappears at a distance that depends on the viscous dissipation. In this work,
essentially, three different mean profiles have been considered: the top-hat,
the weakly mollified and the strongly mollified. Characteristic for the top-hat
profile is that the imposed annular shear-layer is not grid independent since
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the shear-layer thickness is directly determined by the local grid resolution. In
contrast, the mollified mean velocity profile features a well defined shear-layer
thickness. In effect, this profile is a consistent form of the LES filtering applied
to the top-hat profile.

For turbulent flows, the inlet velocity profile should contain, in addition
to an accurate average velocity vector, also a fluctuating component that has
a turbulent spectral behavior. In most experimental setups the turbulent flow
field is not fully developed and it contains (due to too short inlet sections) non-
specified secondary flow and fluctuating components. The options that one has,
in terms of the fluctuating component, are to impose random perturbations of
known amplitude or to alter the spectral content of these perturbations such
that they resemble the one predicted by Kolmogorov’s theory. Random per-
turbations, though not physical, are modified by the Navier-Stokes equations
after a rather short distance: The high frequency components dissipate quickly
and the spectral content of the perturbations approaches rapidly the spectral
content of a turbulent flow. On the other hand, a random perturbation which
contains all modes can also promote the modes that are naturally amplified by
the flow downstream. We define the randomly perturbed inlet velocity as

v(r, t) = V (r) + 2A(Rand(r, t) − 1/2), (5.7)

where V is the mean velocity, A is the amplitude of the perturbations and Rand
is a function providing pseudo random numbers within the interval [0, 1]. (The
abnormally high viscous forces caused by the random fluctuations can, as stated
by Friedrich et al. (2001), be overcome by artificially increasing Re and then
gradually decreasing it to the desired value. By doing this the transient time is
sufficient for the fluctuating energy to be distributed among all wavenumbers.)

As an alternative to random perturbations one may use the velocity field
from a precursor simulation of turbulent flow as inflow conditions. In doing
so the correct correlations and spectrums are achieved in the inlet plane. The
drawback, though, is the amount of storage capacity needed and the time
consuming precursor simulation. This method is also relatively inflexible as
an additional calculation must be performed if an alternative velocity field is
wanted. Within the present work, pipe flow simulations have been conducted
for the prescribed Reynolds and swirl numbers (rotating pipe). These simula-
tions have been performed in a periodic Cartesian domain with a length of 8πR,
where R is the pipe radius. The number of cells in (x, y, z) were (162, 162, 194)
on the finest out of four multi-grid levels, where z represents the streamwise
direction. At each time step the midplane (xy-plane) of the pipe was saved
for future use (space correlations in x and y and time correlation in z). More
detailed information on the precursor simulations can be found in Hällqvist &
Fuchs (2006b).
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There are other methods developed for emulating turbulent flow. Among
others, Na & Moin (1998) used a frozen velocity field from a precursor simula-
tion of periodic channel flow as inlet condition to the DNS of divergent channel
flow. Only one instant of the channel simulation was stored. The spatial
streamwise direction was converted into temporal using Taylor’s hypothesis.
When all temporal planes had been read the frozen velocity field was updated
by randomly disturbing the Fourier coefficients. By doing this the spectral
content was relatively unchanged whereas the velocity signal changed char-
acter. More sophisticated methods have been used by, among others Kondo
et al. (1997), who generated artificial divergence free isotropic turbulence from
prescribed power spectral density and cross-spectral density. Methods for syn-
thesizing turbulence have also been studied by Klein et al. (2003) and Kempf
et al. (2005).

In order to trigger specific instability modes of the system one may use
sinusoidal perturbations. By doing this one adds temporal correlation to the
boundary, determined by the predefined frequency or frequencies, while the
correlation in space remains undefined. This methodology, here referred to as
periodic forcing, can be formulated as

v(r, t) = V (r) +Asin(2πStet), (5.8)

where A is the amplitude of the sinus function and Ste is the forcing or exci-
tation frequency, here expressed in terms of a Strouhal number (fD0/V0). In
this specific case the forcing is applied in a symmetric fashion.

5.4.2. Wall treatment

One of the major problems inherent in LES is to resolve the flow near walls
subjected to the no-slip condition. There are no easy ways of solving this
problem. Wall functions are frequently used but these are not of an univer-
sal character and may become invalid in certain regions. For example, wall
functions based on the logarithmic law of the wall which is only valid for fully
developed boundary layer flows. Hence, the only reliable method is to fully
resolve the near-wall flow. This is computationally highly expensive, why this
method is limited to moderate Reynolds numbers and simple geometries. One
should however not only focus on the wall-normal resolution as the small re-
solved scales are generally of a three-dimensional character. Hence, one needs
relatively high resolution also in the streamwise and spanwise directions. In
the work by Tammerman (2003) it was shown that despite adequate near-wall
resolution the streamwise resolution influenced the prediction of separated flow
substantially.

To determine if the resolution is sufficient viscous units are frequently used.
However, this scaling is only valid for fully developed boundary layers. Within
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the stagnation region scaling originating from Hiemenz solution can be used.
Comparison between these two scalings reveals that the viscous one is more
demanding. In the present work viscous units, even though being a crude
estimate, have been used for relative comparison of different grids.

As the grid is structured, composed by rectangular cells, the resolution in
viscous units will differ when going in the radial direction along the wall. This
since y+ is based on the wall friction τw according to

y+ =
y

δv
=

y

ν
√

ρ
τw

, (5.9)

where δv is the viscous length-scale and y the wall-normal distance. Minimum
resolution is attained at the location for maximum wall friction. Note that
estimation of the wall resolution on the basis of the averaged flow field can be
misleading since in order to properly resolve the unsteady flow the instanta-
neous velocity field ought to be considered.

In the simulations presented in this thesis the velocity and temperature are
both equal to zero at the impingement and confinement walls.

5.4.3. Outflow conditions

The outflow conditions differ significantly depending on the nozzle-to-plate
spacing. If the spacing is small the complete height at the outlet features
positive flow (no backflow) on average and probably also instantaneously. For
larger spacing there will be backflow, both on average and temporarily. Hence,
the boundary condition at the outlet must be flexible and allow a variety of flow
conditions without introducing errors. The present outlet boundary is given
by a hyperbolic convection equation according to Olsson & Fuchs (1998)

un+1
j − un

j

∆t
+ Uc

un
j − un

j−1

h
= 0. (5.10)

This equation results in the following discrete expression for the convection
velocity Uc at the outlet

Uc = − h

∆t

(
un

j − un−1
j

un−1
j − un−1

j−1

)
, (5.11)

based on the time discretization at n−1. It has been shown by Olsson & Fuchs
(1998) that this type of boundary condition has negligible influence on the
results in the near-impingement region for the considered width of the domain.
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5.5. Computational grid

The staggered Cartesian grid is generated at the initial stage of the simula-
tion from analytical expressions. These analytical expressions are controlled
by parameters given in an input file. By using this type of grid generation one
maintains high accuracy also on stretched grids. The grid control parameters
determine the spatial extension, mesh density in the three separate coordi-
nate directions, number of multi-grid levels, multi-grid type and level of grid
stretching.

The stretching in the direction of the wall-normal coordinate (y-direction)
is defined as

y(η) = atan

(
tan(A ∗B)η

A

)
/B, (5.12)

where η is the coordinate in computational space and y is the coordinate in
physical space. The stretching is determined by the parameters A and B. In
the two longitudinal directions the stretching function is defined as

x(ξ) = z(ξ) = C

(
1 +

sinh((ξ/C − 1)D)
sinh(D)

)
, (5.13)

where ξ is the coordinate in computational space and x and z are the coordi-
nates in physical space and C and D are stretching parameters. In order to
attain constant grid spacing (∆ξ and ∆η) during the computation the govern-
ing equations are in a 2-D framework transformed via

T =
∂

∂X
=
(
∂

∂ξ

)(
∂ξ

∂X

)
+
(
∂

∂η

)(
∂η

∂X

)
, (5.14)

∂2

∂X2
=
∂T

∂X
=

∂

∂X

[(
∂

∂ξ

)(
∂ξ

∂X

)
+
(
∂

∂η

)(
∂η

∂X

)]
, (5.15)

where X is x or y. The metric parameters, i.e. ∂ξ/∂X etc., are exactly de-
rived from the stretching functions. When the metric coefficients are computed
numerically the stretching must, as shown by Rai & Moin (1991), be smooth
in order not to alter the accuracy of the numerical scheme. We compute all
stretching parameters using analytical expressions and thereby avoid reduction
in the numerical accuracy.



CHAPTER 6

Computational accuracy

The different types of errors can be divided into four groups. The first is
related to the accuracy of the implemented models. Some of the models are
approximations, in the sense that by varying certain parameters, the errors can
diminish, whereas other models are not. The latter models do not approximate
the real problem, independently of how refined and detailed the computations
are made. The second group of errors is of numerical character and include
contributions from the finite resolution in space and time and contributions
from the discrete representation of derivatives (so-called discretization errors).
The third group of errors becomes significantly important if the numerical
solution is not fully converged (in the sense that the discrete problem is solved
only approximately). The fourth error source originates from the finite accuracy
arithmetic on the computer (”round-off” errors). An additional error source is
that originating from the applied boundary conditions.

6.1. Modeling errors

In complex flows or at high Re errors originating from the wavenumber cutoff
being located at anisotropic scales, are introduced. By refining the grid the
cutoff is moved towards higher wavenumbers and the SGS scales become, hence,
more homogeneous and universal in character (only weakly affected by the
boundary conditions and the large scales of the flow). Furthermore, in this
wavenumber regime the energy content is negligible as compared to the energy
content among the larger scales. This suggests that the SGS scales have very
limited influence on the low wavenumbers. (A low energy content at cutoff is
also important for minimization of aliasing errors that arise from the discrete
approximation of the nonlinear terms.) Under these circumstances the SGS
terms can be modeled by a simple dissipative model, such as the present implicit
one. For more complex flows or for higher Re (coarser grid) a model capable
of handling more complex features might be necessary (such as anisotropy).

As the discretization scheme, in this work, also represents the model the
error due to modeling can not be isolated. Hence, in an a posteriori analysis of
the results the influence from the total error is accounted for. The accuracy of
the results can then be verified by comparison with experimental or DNS data.
Even though the detailed behavior of the present model cannot be assessed
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the good correlation with experimental data, for the results presented in this
thesis, indicates that the implicit modeling approach (in conjunction with a
fine grid) yields results of high physical accuracy and relevance.

6.2. Numerical errors

The order of accuracy of the numerical scheme is explicitly determined by
the truncation error. Common problems with first order schemes are due to
the first term of the truncation error being similar to the viscous term in the
governing equations. This introduces so-called artificial viscosity, which tends
to reduce all gradients (dissipative). For second order schemes a characteristic
problem is the influence from the odd derivative of the truncation error, which
may cause dispersion (distortion of phase relations between various waves as
waves with different wavelengths travels at different speeds).
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Figure 6.1. Influence from grid resolution on the computa-
tional results for an impinging jet with H/D = 2 at Re =
20000. Mean radial velocity U at x/D = 1 in (a) and urms at
x/D = 1 in (b). (—): 194 ∗ 98 ∗ 194, (- - -): 194 ∗ 146 ∗ 194,
(- · -): 194 ∗ 226 ∗ 194.

The influence from the discretization error can be estimated from figure 6.1.
Three grids with different resolution in the wall-normal direction have been
considered. The coarsest grid has 98 cells in the y-direction and the finest has
226 cells. The grid used for the computations in this thesis (for H/D = 2)
is the grid with 146 cells in y. As depicted this grid yields almost identical
results to the highly resolved grid, with respect to both first and second order
statistics (less than 5% deviation). The near-wall node is for this grid located
0.0009D from the wall. The average grid spacing in the y-direction is, as a
comparison, 0.0138D. (For more details on the influence from discretization
see Hällqvist & Fuchs 2005a,b)
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6.3. Sampling errors

The convergence of statistical moments depends on the number of statistically
independent samples. Higher order moments demand greater number of sam-
ples, i.e. longer computational time, as compared to lower order moments.
When evaluating LES results it is important to be familiar with the size of
the sampling errors associated to the statistical moments, since this group of
errors may render the computational results meaningless. The sampling error
ε for the mean X of a stochastic variable x can, according to Johansson &
Alfredsson (1988), be expressed as

ε(X) =
1√
N

xrms

Xm
, (6.16)

where N is the total number of statistically independent samples and Xm the
converged mean value (Xm = lim 1

N

∑N
n=1 xn, N → ∞).

The error due to the finite computational time is within this work chosen to
be of similar magnitude as the numerical error (derived from grid refinement),
i.e. of the order of 2 − 4%.



CHAPTER 7

Results

In this chapter the primal results obtained within this work are briefly pre-
sented. A more thorough discussion of the results are given in the enclosed
papers in part two of this thesis.
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Figure 7.1. Power Spectral Density (PSD) for u′ in the jet
shear-layer at y/D = 1 in (a) and evolution of the dominant
frequencies within the shear-layer in (b).

7.1. Flow field characteristics of the impinging jet

With a nozzle-to-plate spacing (H/D) of two the proximal region of the im-
pinging jet is characterized by a free jet. Thus, the flow can evolve without
influence from the impingement wall to approximately 1D downstream of the
nozzle. During this evolvement the initial randomly perturbed velocity field
develops coherent structures that represent the energetic scales of the flow.
Additional to these large scale structures there are a wide range of irregular,
less energetic, scales. The spectrum in figure 7.1(a) depicts the distribution of
energy among the different temporal scales within the annular shear-layer 1D
above the wall. The left peak is associated to the subharmonic mode (Stn/2)
of the jet and the right peak is associated to the natural mode of the jet (Stn),
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where St is the Strouhal number, based on the diameter of the nozzle and the
mean velocity at the nozzle. The former mode represents the primary vortices
and the latter the shear-layer mode of the axial jet. In figure 7.1(b) the evo-
lution of dominant modes within the annular shear-layer is depicted. Close to
the nozzle the shear-layer mode is dominating. Farther downstream at approx-
imately y/D = 1.2 the energy of the subharmonic mode becomes similar to the
natural mode. At this location the vortex pairing process take place. From this
location and downstream the subharmonic is the dominant frequency. If the
nozzle-to-plate spacing would have been larger a second pairing event would
take place, whereas, the fundamental mode of the axial jet (i.e. the jet column
mode) would become dominant. For the present spacing this pairing event oc-
curs within the wall jet. These results clearly indicate that the natural mode
as well as the fundamental mode of the free jet can be captured and accurately
predicted.

The primary vortices are convected downstream, along the wall, and may
initiate counter rotating secondary vortices. These secondary vortices may, in
turn, induce local flow separation which, as will be seen in the coming section,
has strong influence on the wall heat transfer.
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Figure 7.2. Turbulent kinetic energy k in the xy-plane in (a)
and instantaneous vorticity in the xy-plane in (b).

On an average perspective the flow features, as depicted in figure 7.2(a),
negligible levels of turbulent kinetic energy, k, close to the nozzle. This is partly
attributed to the inflow conditions, which here are represented by the randomly
perturbed top-hat profile. The shear-layer close to the nozzle is, as depicted
in figure 7.2(b), of a steady character. At approximately y/D = 1.8 the shear-
layer becomes highly unsteady and, consequently, the level of k becomes high.
The shear-layer grows in size when going downstream. As the wall starts to
influence the flow the growth of structures weakens. This can be seen from
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the locally low level of k in the region where the shear-layer is deflected by
the wall. In the wall jet the strong influence from shear contributes to high
production of k. Maximum level of k is obtained in the region around x/D = 2.
From the vorticity plot one can identify intense vortical motion within the
corresponding region. The high level of vorticity originates from primary and
secondary vortices.

As seen from the above results the flow character of the impinging jet is
inherently unsteady and features formation of coherent structures. It has also
been shown that the annular shear-layer features coalescence of vortices. The
resulting larger vortex is long-lived and influences the flow character in the wall
jet by initiating formation of secondary vortices. Further details on the basic
character of the impinging jet are found in Paper 1.

7.2. Heat transfer characteristics of the impinging jet

The heat transfer of the impinging jet is influenced by convection by the un-
steady flow and molecular diffusion. The latter mechanism is important where
the mean velocity is low, such as in the near-wall region. The coherent struc-
tures, discussed in the former section, are efficient in mixing and transporting
heat. However, contrary to turbulent motion, the coherent structures may
have a negative effect on the wall heat transfer. This is determined by the
sense of rotation of these structures. In the present studies the flow at the
nozzle is at high temperature and the wall is cold. Thus, a counter rotating
secondary vortex has a positive effect on the wall heat transfer as it entrains
hot fluid towards the wall at its leading edge (downstream most side). This is
illustrated by the instantaneous velocity fields in figure 7.3. From the instan-
taneous vorticity in figure 7.3(a) the secondary vortex (SV) rotates clockwise
and contribute, thus, to the local maximum in Nu at x/D = 1.7. As also can
be seen, the secondary vortex results in local flow separation, as the friction co-
efficient is negative within this region. The counterclockwise rotating primary
vortex (PV) is located above and slightly upstream of the secondary vortex.
As seen from the behavior of the friction coefficient and the Nusselt number
they correlate perfectly upstream of separation. This indicates that the Rey-
nolds analogy (i.e. Nu ∝ Cf ), in this region of the wall jet, is of relevance.
Downstream of the reattachment point weaker correlation is observed, owing
to higher rate of irregular structures.

The local flow separation and flow character is more clearly illustrated by
figure 7.3(b). From these figures one may conclude that for this specific nozzle-
to-plate spacing of two the wall heat transfer is, for small radius, essentially
influenced by mean flow convection and the coherent structures. The secondary
vortices have a positive effect on the wall heat transfer. The influence from
turbulence increases successively with increasing radius. However, due to the
local lack of adequate spatial resolution (in the far-field) in addition to the
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Figure 7.3. Enlarged views of the separation region at an
arbitrary instant of time. The instantaneous vorticity is de-
picted in (a) and velocity vectors are depicted in (b).
(—): normalized Nusselt number, (- - -): normalized friction
coefficient.

influence from the outflow boundary, the far-field character of the wall jet has
not been studied.

By increasing the nozzle-to-plate spacing the character of the wall heat
transfer changes. For H/D = 2 the core region of the axial jet is not influenced
by the annular shear-layer. Hence, the character of the flow in the stagnation
region is similar to that within the potential core. This results, most frequently,
in a Nusselt number distribution featuring a minimum at the stagnation point.
For somewhat larger radius a local maximum is obtained. The minimum is
attributed to low level of fluctuations and the maximum is, on an average
perspective, attributed to a local thinning of the thermal boundary layer (asso-
ciated to the strongly accelerating wall jet). From a dynamical perspective this
maximum is also influenced by the primary vortices formed within the annular
shear-layer. These structures penetrate the laminar-like wall jet and augment
the near-wall shear, and thus also the Nusselt number. For larger H/D, for
which the potential core does not impinge onto the wall, the flow in the stag-
nation region features high levels of fluctuations. This results in maximum in
heat transfer at the stagnation point. For increasing radius the Nusselt number
decreases, more or less, monotonically. The precise character of the stagnation
heat transfer depends also strongly on the inflow conditions. For more details
on heat transfer mechanisms and heat transfer characteristics see Paper 2.

7.3. The effect from inflow conditions

As already discussed the inflow conditions have strong influence on the dynam-
ical character of the flow and, hence, also on the wall heat transfer. This is
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Figure 7.4. Influence from boundary conditions on the in-
stantaneous scalar field for H/D = 4. The left, middle and
right picture shows the resulting flow field from a top-hat
profile with imposed random perturbations, a mollified pro-
file with imposed random perturbations and fully developed
turbulent inflow condition, respectively.

particularly so for small H/D, as the axial jet is not allowed to develop. For
sufficiently large H/D (larger than the potential core) the flow that impinges
onto the wall is, more or less, unaffected by the inflow conditions.

To illustrate the overall influence from inflow conditions instantaneous visu-
alizations of the scalar concentration, for impinging jets with a nozzle-to-plate
spacing of four jet diameters, are depicted in figure 7.4. In this figure effects
from, both, the mean velocity profile and the perturbations are considered.
The left most picture shows the flow field resulting from a randomly perturbed
top-hat profile. The middle picture shows the corresponding results for a ran-
domly perturbed mollified profile and the right picture shows the corresponding
results for fully developed turbulent inflow condition. As can be seen the ap-
plied top-hat profile produces much higher correlation to the fully turbulent
case than the mollified profile. The weakly mollified profile yields, to a greater
extent, formation of large scale axisymmetric vortices, whereas the two other
cases behave in a more diffusive manner with a large amount of small irregu-
lar structures, i.e. more turbulent like. As a conclusion from this illustration,
the randomly perturbed top-hat profile is a very good candidate in emulating
turbulent inflow conditions.

A more detailed assessment of the influence from the inflow conditions
are depicted in figure 7.5. This figure clearly indicates the importance of ap-
propriate inflow conditions. As seen, with fully developed turbulent inflow
condition the agreement with the experimental results by Cooper et al. (1993)
at x/D = 1 in figure 7.5(a) is very good. In this experiment the flow at the
nozzle was generated by fully developed pipe flow (80D long). The randomly
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Figure 7.5. Mean radial velocity at x/D = 1 in (a) and at
x/D = 2.5 in (b) (Re = 20000, H/D = 2). (—): Random
perturbed top-hat profile, (- - -): fully developed turbulent in-
flow condition, (◦): experimental data by Cooper et al. (1993)
(Re = 23000, fully developed pipe flow).
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Figure 7.6. Radial perturbation velocity (urms) at x/D = 0
in (a) and at x/D = 0.5 in (b) (Re = 20000, H/D = 2).
(—): Random perturbed top-hat profile, (- - -): fully developed
turbulent inflow condition, (◦): experimental data by Cooper
et al. (1993), (∗): experimental data by Geers et al. (2004)
(Re = 23000, fully developed pipe flow).

perturbed top-hat profile yields a velocity profile with lower velocity in the
near-wall region. Further downstream at x/D = 2.5 in figure 7.5(b) the two
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simulations yield almost identical results. This is due to the natural develop-
ment of the flow. The agreement with the experimental results at this station
is somewhat less good.

The influence on turbulent statistics is more pronounced than on the mean
flow. This becomes particularly clear when studying the flow character at small
distances from the jet axis. Figure 7.6 depicts the radial perturbation velocity
along the stagnation line and in the annular shear-layer. Along the stagnation
line in figure 7.6(a) the top-hat case features negligible level of fluctuations.
With turbulent inflow conditions though, the level of urms is almost identical to
that measured by Geers et al. (2004). The higher level of turbulence within the
stagnation region with turbulent inflow conditions has naturally a positive effect
on the wall heat transfer. In the shear-layer in figure 7.6(b) the discrepancy
between the two computations are not as pronounced. Only in the near-wall
region the top-hat case fails in predicting the correct behavior. The turbulent
case and the experiments exhibit a local peak of urms near the wall. The
agreement with the data by Cooper et al. (1993) is, at this station, overall
higher relative to the data by Geers et al. (2004).

The present results indicate that the inflow conditions are of significant
importance. To obtain data that features high correlation with experimental
data on turbulent impinging jets, turbulent inflow conditions are needed. This
is particularly so for turbulent quantities in the center most regions. The results
also indicate that two, practically, identical experiments may provide results
that do not fully agree. This might be associated to different experimental
setups (i.e. jet nozzle conditions) and the different measurement techniques.
For further details on the influence from inflow boundary conditions see Paper
5 and Paper 6.

7.4. Effects of swirl

When swirl is applied to the nozzle outlet an additional mean velocity compo-
nent becomes important, i.e. the azimuthal velocity component. This results
in additional shear forces, why the resulting force vector will be directed with
an angle, with respect to the inlet plane, determined by the swirl number, S.
The swirl number is here defined as the ratio between the azimuthal velocity at
r = D/2 and the mean axial velocity, V0. Three different swirl numbers have
been considered, i.e. S = 0, S = 0.5 and S = 1. The azimuthal velocity is here
applied as solid body rotation. The axial velocity is given by the randomly
perturbed top-hat profile (cf. Paper 3).

The results for S = 0 and S = 0.5 do not differ much. However, with high
swirl, i.e. S = 1, the spreading of the jet becomes as strong as a recirculation
bubble is formed. This bubble results, as depicted in figure 7.7, in reversed
flow along the stagnation line for y/D < 0.6. The flow character within this
bubble is highly unsteady. Despite the high level of fluctuations, the wall heat
transfer in the stagnation region is as, depicted in figure 7.8, low. The low
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Figure 7.7. Mean axial velocity decay along the stagnation
line (Re=20000, H/D = 2). (—): S = 0, (- - -): S = 0.5,
(- · -): S = 1.
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(Re=20000, H/D = 2). (—): S = 0, (- - -): S = 0.5, (- · -):
S = 1.

levels of Nu are attributed to the insignificant contribution from mean flow
convection. Thus, in order to obtain high rates of wall heat transfer in the
stagnation region of swirling impinging jets the spreading of the flow must be
controlled. A negative influence from swirl on wall heat transfer was also found
by Lee et al. (2002b).

However, swirl may also have a positive effect on the wall heat transfer.
This has been concluded by e.g. Wen & Jang (2003). The influence on the
flow in the stagnation region is not completely given by the swirl number itself.
The radial distribution of the mean velocity components and the character of
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line for turbulent inflow conditions (Re=20000, H/D = 2).
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the inflow perturbations are all essential. In Paper 6 the boundary conditions
have been determined from separate simulations of rotating turbulent pipe flow.
When comparing the results from these simulations with other inlet conditions
(i.e. those originating from solid body rotation) some major differences are
observed. Even for a high level of swirl the spreading of the axial jet with
fully developed turbulent inflow condition is, as depicted in figure 7.9, low.
This in combination with the high level of fluctuations results in high levels
of heat transfer within the stagnation region. As depicted in figure 7.10 the
maximum stagnation Nusselt number is attained for the highly swirling case.
For larger radii the influence from swirl diminish. The non-swirling case yields,
for x/D > 1, overall slightly higher level of wall heat transfer. This is attributed
to the weaker spreading of the axial jet, since a higher spreading rate results in
a wider wall jet. A wider wall jet features a weaker near-wall sher-layer, and
consequently also a more gradual thermal boundary layer.

We have also considered the influence of swirl on annular impinging jets
(cf. Paper 4). This setup is, with respect to the character of the mean
velocity profiles and superimposed perturbations, similar to that in Paper 3.
The results from this study show similar trends to those discussed above, i.e.
with high level of swirl the Nusselt number for small radius (approximately
smaller than x/D = 1.4) becomes obstructed. For larger radii the influence
from the applied swirl is weak. Relative to the circular swirling jet (solid body
rotation), the annular configuration yields slightly higher rate of heat transfer in
the stagnation region for the non-swirling and the strongly swirling cases. This
is attributed to the rate of fluctuations and the character of the mean flow. The
level and character of the imposed swirl is not only essential for the rate of wall
heat transfer. The dynamical behavior of the flow is also significantly affected.
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Figure 7.10. Local Nusselt number as function of x/D for
turbulent inflow conditions (Re=20000, H/D = 2). (—): S =
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The formation of coherent structures has shown to become less distinct with
increasing level of swirl.



CHAPTER 8

Industrial significance

This work represents a pre-development project initiated by Scania CV AB
and KTH (Royal Institute of Technology). The main objectives of this project
are to increase the competence on numerical simulations of unsteady flows with
emphasis on large eddy simulation, turbulence and heat transfer mechanisms.
This thesis provides, from both an academic and an industrial point of view,
insight into all these areas of interest. The results summarized in this thesis
are directly beneficial for several components in trucks, such as engine cooling,
cooling of electronics and heating/cooling of materials.

The impinging jet is represented in a great number of applications. The
most evident one, closely related to this work, is the cooling air flow that
impinges onto the engine. The geometry of the engine is however, in relation
to the studied geometry, far more complex. More relevant is the cooling of the
heat exchangers installed in front of the fan and the engine. Cooling of a heat
exchanger, for instance a radiator, involves both impinging and wall parallel
flows. Thus, the same mechanisms discussed in this thesis are present also for
this application. Besides from cooling and heating the impinging jet is also
represented by the fuel injected into the engines combustion chamber.

A truck, and of course several other engineering applications, involve a
great number of parts for which sufficient cooling is a necessity. As the consid-
ered range of impinging jets covers different types of flows and involve different
heat transfer mechanisms the knowledge and understanding gained from this
study can directly be transferred to the more complex industrial applications.
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CHAPTER 9

Conclusions

This thesis covers some of the basic characteristics in numerical simulation of
impinging jets with heat transfer. The performed simulations feature, to begin
with, the simplest kind of inflow conditions, i.e. a randomly perturbed top-hat
velocity profile. The flow and scalar fields of this simulation have been studied
in some detail and are summarized in Paper 1 and Paper 2 in this thesis.
In the thereafter following work the influence from swirl (solid body rotation)
was studied for both circular (cf. Paper 3) and annular impinging jets (cf.
Paper 4). The next step was to enhance the study by introducing explicit
forcing of discrete frequency components. The character of the applied forcing
was decided on the basis of the natural frequency of the jet. Both the natural
mode plus harmonics and off-harmonics of this mode were excited. Additional
to the periodically forced top-hat profile also a periodically forced smoothed
profile was studied. Flow field statistics and heat transfer characteristics for
these cases are summarized in Paper 5 in this thesis. In the final and most
sophisticated study the demands on computer hardware was increased as it
involved precursor simulations of turbulent pipe flow. These precursor simu-
lations were carried out in order to construct turbulent inflow conditions for
the impinging jet simulations. The results on turbulent jet impingement are
summarized in Paper 6 in this thesis. In this paper also the influence from
nozzle-to-plate spacing, Reynolds number and swirl are discussed.

The results presented in this thesis represent a broad coverage of impinging
jets for a variety of different flow configurations. Detailed descriptions, both
quantitatively and qualitatively, on the basic heat transfer mechanisms have
been given. The influence from the geometrical parameter H/D has been
isolated. The nozzle-to-plate spacing has strong influence on the flow character,
both within the axial jet and within the wall jet. Small spacing results in an
abrupt deflection of the axial jet and, thus, the wall boundary layer becomes
thin and the wall heat transfer becomes high. For large spacing the axial jet
develops without influence from the wall, why the impinging flow will be less
influenced by the inflow conditions and also of a more turbulent character.

The influence from swirl on wall heat transfer depends strongly on the ap-
plied conditions. The production of turbulence increases with swirl, which is
positive for the wall heat transfer. However, with increased level of swirl also
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the spreading of the jet increases, which have a negative effect on the wall heat
transfer. For the simplest case, featuring solid body rotation, the stagnation
point heat transfer decreases with swirl, whereas for the inlet conditions orig-
inating from the rotating pipe simulation, the stagnation point heat transfer
increases.

It has been shown that the character of the inflow boundary conditions
has a dramatic influence on the dynamical and statistical character of the flow
field. A small change of the mean velocity profile may result in a flow field
of completely different character. This is particularly important if the region
of interest is in the close vicinity of the inflow. Turbulent inflow conditions
have shown to be of significant importance for small radius, particularly in
case of swirling impinging jets. For non-swirling flows and outside of the core
region of the axial jet the more simple randomly perturbed top-hat condition
yields results comparable to the turbulent counterpart. From the comparisons
with experimental data it is evident that implicit large eddy simulation can be
used to accurately predict turbulent flows, provided that the flow is adequately
resolved.

Possible extensions to this introductory work should involve further mod-
eling aspects, as well as means for controlling and optimizing the heat transfer
properties of impinging jets. Furthermore, some additional studies on swirling
impinging jets are needed in order to more precisely asses the influence from
the inflow conditions, i.e. with respect to the radial distribution of the mean
velocity components and the character of the fluctuating field. This study is
essential as many industrial cooling/heating applications feature swirling jet
impingement.



CHAPTER 10

Papers and authors contributions

Paper 1
Numerical study of impinging jets. Flow field characteristics
T. Hällqvist (TH) & L. Fuchs (LF).

This paper summarizes the results for a circular impinging air jet at ReD =
20000 featuring a randomly perturbed top-hat inflow profile and a nozzle-to-
plate spacing of two jet diameters. The objectives are to describe the average
properties of the flow and also some dynamical features. The LES code was
provided by LF and the paper was written by TH under supervision by LF.

Paper 2
Numerical study of impinging jets. Heat transfer characteristics
T. Hällqvist & L. Fuchs.

This paper is a continuation of Paper 1 and describes the dynamical character
and heat transfer mechanisms of the impinging air jet.

Paper 3
Numerical study of swirling impinging jets with heat transfer
T. Hällqvist & L. Fuchs.

This paper deals with swirling circular impinging jets. The velocity inlet is
applied with solid body rotation. The influence from the level of swirl on
the flow and scalar fields are studied. This paper was written by TH under
supervision by LF. The numerical code is the same as in the former papers.
This paper was presented by TH at ASME Heat Transfer/Fluids Engineering
Summer Conference in Charlotte, USA, July 2004.

Paper 4
Numerical study of swirling and non-swirling annular impinging jets with heat
transfer
T. Hällqvist & L. Fuchs.

The results presented in this paper is a continuation of Paper 3 and deals
with swirling annular impinging jets. This paper was written by TH under
supervision by LF. The numerical code is the same as in the former papers. This
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paper was presented by TH at the 17th AIAA Computational Fluid Dynamics
Conference in Toronto, Canada, June 2005.

Paper 5
Characteristics of forced circular impinging jets
T. Hällqvist & L. Fuchs.

In this paper the randomly perturbed inflow conditions are complemented by
periodic forcing. Two mean velocity profiles are considered, the top-hat and the
smooth profiles. The nozzle-to-plate spacing is two and the Reynolds number
is 20000. In this paper the dynamical character of the flow as well as the wall
heat transfer are studied. This paper was written by TH under supervision by
LF. The numerical code is the same as in the former papers.

Paper 6
Large eddy simulation of impinging jets with emphasis on the inflow conditions
T. Hällqvist & L. Fuchs.

In this paper the main focus is on the inflow conditions. Additional to the sim-
ple, former considered approaches, also turbulent inflow conditions are applied.
The influence from nozzle-to-plate spacing, Reynolds number, mollification and
swirl are also studied. Both flow and heat transfer characteristics are discussed.
This paper was written by TH under supervision by LF. The numerical code
is the same as in the former papers.
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